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Abstract: Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is
associated with both higher energy expenditure and lower body mass index. While it was clearly
established that TH act directly in the target tissues to fulfill its metabolic activities, some studies
have rather suggested that TH act in the hypothalamus to control these processes. This paradigm
shift has subjected the topic to intense debates. This review aims to recapitulate how TH control
adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial
importance for the design of new pharmacological agents that would take advantage of the TH
metabolic properties.
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1. Introduction

Obesity is an uncontrolled worldwide pandemic whose incidence has tripled during
the last forty years. Given its social and economic burden as well as the abundance of its
comorbidities such as diabetes, hypertension or atherosclerosis, many studies aimed at
isolating pharmacological targets to prevent and fight this condition. Among the numerous
therapeutic possibilities, thyroid hormones (TH, including thyroxine, or T4, and tri-iodo-
thyronine, or T3, its more active metabolite) emerged as promising candidates. Already in
1895, Adolf Magnus Levy reported the influence of the thyroid status on the human basal
metabolic rate. It was confirmed later that the level of circulating T3 is correlated with
energy expenditure in humans [1,2]: hypothyroidism and hyperthyroidism are respectively
associated with low and high energy expenditure but most importantly to high and low
body mass index [3]. Similar effects are observed with exogenous T3 treatment in mice [4].
However, T3 cannot be used as a pharmacological agent since it also triggers tachycardia,
lean mass loss and osteoporosis [5–7]. Thus, a recent intense effort has been dedicated
to understanding how T3 fulfills its different metabolic activities, looking for the target
tissues and the specific thyroid hormone receptors (TRs) involved. The final goal would
be to identify new chemical compounds that could uncouple the metabolic benefits of T3
from its adverse effects.

The action of T3 on energy expenditure is traditionally considered to result from its
local action in several metabolic tissues. However, an alternative possibility is that T3 acts
in the hypothalamus, setting the sympathetic tune and stimulating the activity of distant
tissues [8]. In both hypotheses, T3 acts via its binding to local TRs, either in metabolic tissue
or hypothalamus of which respective importance remain controversial. It is yet crucial for
the development of new pharmacological reagents which aim to stimulate T3 signaling in
a tissue-selective manner to increase energy expenditure.
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2. Energy Expenditure and Adipose Tissues: The Main Route for
Adaptive Thermogenesis
2.1. Adaptive Thermogenesis as a Way to Modulate Energy Expenditure

Energy expenditure is defined as a combination of both basal and adaptive thermogen-
esis [9]. Basal thermogenesis is the heat produced by a resting organism through all its basal
exothermic metabolic processes. Thermoneutrality is then defined as the range of ambient
temperature within which the body temperature can be maintained only relying on heat
produced by the biochemical transformations occurring at basal metabolic rate [10]. In con-
trast, adaptive thermogenesis corresponds to the extra-heat produced by a combination of
physical activity and specific responses triggered to face physiological stressors, including
diet or ambient temperatures below thermoneutrality [9]. Thus, adaptive thermogenesis is
a tunable component of a particular interest to increase energy expenditure. It can occur
through shivering, involving the muscles, or to a greater extent through non-shivering
mechanisms in which both adipose tissues and muscles contribute. The regulation of
energy expenditure involves a dialogue between the autonomous nervous system and
major peripheral organs such as the liver, the heart, the muscles, the white adipose tissue
(WAT), and the brown adipose tissue (BAT). These peripheral organs also communicate
together by releasing in the circulation several diffusible factors [11–15].

2.2. Adipose Tissues and Muscle, the Main Actors of Adaptive Thermogenesis

The three different types of adipose tissues are defined by their cell types composition,
location, and subsequent functionality. Brown adipose tissue (BAT) is mainly composed of
brown adipocytes characterized by a high mitochondrial content, generating its distinctive
color, and giving this tissue a high respiration potential [16–18]. Brown adipocytes produce
the uncoupling protein 1, UCP1, an inner mitochondrial membrane protein which, on
activation by free fatty acids, drives the uncoupling of oxidative phosphorylation from
ATP production by operating as a proton carrier (Figure 1). The lipid catabolism by brown
adipocytes thus does not result in ATP production but in exothermic reactions [19,20].
Lipids, the main fuel of BAT thermogenesis, mainly come from brown adipocyte lipid
droplets but can also be imported from circulation [21,22]. Glucose metabolism is also
crucial for BAT activity as it contributes to lipogenesis to replenish lipid droplets or can
be used as an alternative fuel [23–26]. However, while UCP1 was historically considered
the only crucial mediator of BAT thermogenesis, recent work suggests that other mech-
anisms also participate to this process. For instance, adipocyte-specific deletion of the
mitochondrial creatine kinase b (Ckb) markedly decreases the thermogenic response after
β3-adrenergic receptor stimulation [27]. CKB triggers ATP-dependent creatine phosphory-
lation, concomitantly with the activity of phosphatases that dephosphorylate it, generating
a futile cycle [28]. This mechanism contributes to energy expenditure even in the presence
of UCP1 [27]. It clearly highlights that there are UCP1-independent BAT thermogenic
mechanisms [20,29], with more to be discovered.

On the contrary, adipocytes of the white adipose tissue (WAT) have reduced metabolic
activity. They ensure lipid storage, favoring lipogenesis during calorie excess and breaking
down triglycerides during energy restriction to fuel other organs’ activity [30]. Thus,
white adipocytes are not able of adaptive thermogenesis. However, upon prolonged cold
exposure, beige adipocytes emerge in WAT depots, a process known as browning, or
beiging [31,32]. Beige adipocytes express Ucp1 [33] and other thermogenic markers [34],
granting them the capacity to spend energy through thermogenesis (Figure 1).

In humans, BAT is mainly found in infants. In adults, browning can take place under
certain conditions within specific WAT depots, particularly in the abdominal, paraspinal,
supraclavicular and cervical regions [35]. Transcriptome analyses confirmed that these
Ucp1 expressing cells are more closely related to rodent beige adipocytes than to brown
adipocytes [36,37]. Browning in adults can be triggered [38–41], which could be promising
in the treatment of obesity. However, the significance of beige fat contribution on energy
expenditure is still a matter of debate [42–44].
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cium (Ca2+) from the cytosol to SR lumen using ATP hydrolysis. The calcium gradient generated by SERCA is dissipated 
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Figure 1. The main actors of adaptive thermogenesis and their principle thermogenic mechanisms. Adipose tissues and
muscles are the main actors of adaptive thermogenesis. White adipocytes are not thermogenic per se but can undergo
browning to generate beige adipocytes. Bottom left panel: Brown and beige adipocytes use free fatty acids (FFA) to fuel the
mitochondrial β-oxidation. β-oxidation generates reduced compounds (NADH, FADH2) whose oxidation is used by the
respiratory electron transport chain (complex I, II, III, IV) to pump protons (H+) into the intermembrane space. Thus, an
electrochemical gradient is created and used by ATP synthase to produce ATP. UCP1 is present in the inner mitochondrial
membrane and activated by FFA. UCP1 acts as a proton channel to dissipate the electrochemical gradient without producing
ATP. Thus, to match the inefficient ATP production, the metabolism must increase and heat is produced. Bottom right panel:
Myocytes express SERCA that is located in the sarcoplasmic reticulum (SR) membrane. SERCA transfers calcium (Ca2+)
from the cytosol to SR lumen using ATP hydrolysis. The calcium gradient generated by SERCA is dissipated by ryanodine
receptor (RyR1). SERCA transport activity can be inhibited by two peptides: phospholamban (PLP) or sarcolipin (SLN), but
its ATPase activity remains. To match Ca2+ transport, ATP mitochondrial synthesis increases and heat is produced.

Muscle is also a thermogenic organ. It increases energy expenditure by inducing the
sarcoplasmic and endoplasmic Ca2+-dependent ATPase (SERCA) that breaks down ATP
to transport Ca2+ from cytosol to reticulum lumen. SERCA activity is regulated by two
peptides that uncouple Ca2+ transport to ATP breakdown (Figure 1), generating a futile
cycle and ultimately heat production [45–48]. Muscle cells also produce UCP3, an UCP1-
related protein which uncoupling capacity remains unclear [49,50]. As skeletal muscle
is reckoned to represent as around 40% of the total body mass, we can expect that only
minor changes in its non-shivering thermogenesis could largely contribute to whole-body
thermogenesis and energy expenditure.

2.3. Adaptive Thermogenesis Is Induced by Cold Exposure and High Fat Diet

Adaptive thermogenesis can be triggered by two natural drivers: cold exposure [16,51]
that increases the demand of heat production to maintain the body temperature, and high
fat diet [52–55] that stimulates the elimination of excessive calories. Cold is sensed by
thermoreceptors in the cutaneous terminals of primary somatosensory neurons [56,57].
High fat diet signaling likely involves the cholecystokinin release from endocrine cells of
the small intestine, which triggers excitation of gut vagal afferents [58,59]. In both cases,
the stress signal is integrated by the hypothalamus that rapidly triggers the release of
norepinephrine (NE) from the nerve terminals of the sympathetic nervous system (SNS)
innervating the BAT, and stimulating the β-adrenergic receptors present at the surface
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of the adipocytes. The signal is then relayed intracellularly by the cAMP-dependent
protein kinase A (Figure 2) [16]. Additionally, while cold exposure provokes WAT brown-
ing [26,60,61], the effects of high fat diet on this process are still conflicting [62,63]. As
expected, the concomitant knock-out of the 3 β-adrenergic receptors (β-AR) leads to cold
hypersensitivity [64] and to an increased sensitivity to diet-induced obesity at thermoneu-
trality [65]. A similar phenotype is observed in Ucp1KO mice [66,67], which historically
designated UCP1 as the only crucial mediator of BAT thermogenesis. However, Ucp1KO
animals display altered mitochondrial respiration and are more susceptible to reactive
oxygen species [68]. In the absence of functional mitochondria, any UCP1-independent
mechanism involving mitochondria would not be efficient in the Ucp1KO mice and thus
difficult to unravel. Thus, the below-mentioned papers mainly concluding on the role
of UCP1 should not be overinterpreted. Some other mechanisms might be involved, as
previously mentioned for creatine futile cycles [27,28].
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Figure 2. Control of brown adipocyte UCP1-dependent thermogenesis by norepinephrine and thyroid hormone. Sympa-
thetic neurons release synaptic norepinephrine that binds to β-adrenergic receptors (β-AR) coupled to stimulatory guanine
nucleotide binding protein (Gs) which activates adenylate cyclase (AC) to produce cAMP. This adrenergic signaling activates
transcription factors (TF) and coactivators involved in the regulation of D2. Both adrenergic signaling and thyroid hormone
receptors (TRs) regulate Ucp1 expression. Triglycerides are broken down into free fatty acids by lipases and transported to
mitochondria to fuel the β-oxidation and activate UCP1. UCP1 uncouples ATP production from respiration, requiring an
increased mitochondrial activity and heat is produced.

Interestingly, thyroid hormones status alters the thermogenesis in response to both
cold [69–71] and high fat diet [72], pointing out that they are a crucial component when it
comes to regulate energy expenditure and adaptive thermogenesis.
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3. T3, an Important Component of Energy Expenditure

The thyroid gland mainly produces T4, the inactive form of thyroid hormone, which
is converted to active T3 by deiodination in other organs [73]. While the serum levels of T4
and T3 are normally maintained in a narrow range, local deiodination can increase the T3
level by the type 2 deiodinase (D2) in different organs. T3 signaling is mediated by nuclear
receptors TRα1, TRβ1 and TRβ2 (collectively TRs) produced by Thra and Thrb, two genes
which are expressed in many cell types [74,75]. These receptors are bound to specific DNA
sequences and either repress or activate the transcription of neighboring genes depending
on T3 binding [76–78].

3.1. T3 Signaling Is Necessary for Cold-Induced Thermogenesis

D2 is expressed in BAT (Figure 2) and its activity can be locally induced upon cold
exposure [79], triggering within a few hours a fivefold increase in the local concentration
of T3 [80]. It leads to an increased TR activity within 24 h [81]. Accordingly, D2KO mice
that lack D2 activity [82], are more sensitive to cold than WT mice, losing more weight
and failing in efficiently defend their core body temperature when placed at 4 ◦C [83].
Their BAT does not fully respond to SNS stimulation. Importantly, brown adipocytes
isolated from D2KO mice also fail to efficiently increase oxygen consumption and cAMP
accumulation upon norepinephrine stimulation. Therefore, β-AR sensitivity is highly
dependent on T3 produced in BAT. Moreover, the dysfunctional adaptive thermogenesis
observed in vivo is not due to a lack of UCP1 activation or a defective lipolysis, but from
impaired lipogenesis, which disrupts the restoration of BAT lipids [84]. To compensate
for the altered thermogenesis, D2KO mice mount an exaggerated SNS response below
thermoneutrality. The permanent stimulation of BAT leads to an overexpression of the Ucp1
gene and to an increased lipolysis. The unopposed and persistent stimulation in absence of
lipogenesis results in the exhaustion of the free fatty acids storage in brown adipocytes,
preventing an efficient BAT thermogenesis and ultimately leading to hypothermia. This
suggests that in addition to increasing the sensitivity of BAT to β-AR, T3 also induces
lipogenesis in brown adipocytes.

3.2. The Role of T3 Signaling in Response to Diet-Induced Obesity

Thermogenesis is also triggered by an excess of circulating lipids after a high fat
diet. The role of T3 signaling in this process is less documented. At 23 ◦C, D2KO mice
develop obesity similarly to control in response to a high fat diet [85]. As 23 ◦C is below
thermoneutrality and represents a mild cold stress [86], the SNS outflow increases to
raise energy expenditure, independently of T3. As mentioned above, in D2KO mice, this
activation is even higher to bypass a decrease in SNS sensitivity. Thus, it prevents obesity
despite a lack of D2. However, D2KO mice become hypersensitive to obesity at 30 ◦C [85],
a temperature at which SNS does not stimulate BAT thermogenesis. Consequently, there is
no compensation for the lack of local T3 that must be needed in these conditions to increase
energy expenditure and limit weight gain. This is accompanied by a blunted response
of Ucp1 expression in the BAT [85]. This suggests that a local increase of T3 catalyzed by
D2 is important to increase energy expenditure in BAT after a high fat diet. Mice KO for
A-FABP, an adipokine fatty acid-binding protein, fail to induce D2 expression in the BAT.
Subsequently, these mice cannot respond to either cold or high fat diet [87], supporting the
crucial role of T3 in these two responses.

3.3. Tissue-Selective Metabolic Action for T3 Signaling

The different studies cited and analyzed above clearly establish that T3 signaling is
critical to trigger adaptive thermogenesis both in response to cold and to a high fat diet and
that D2 up-regulation in BAT is likely to be involved in both cases. D2 is expressed in the
BAT [88] but also in myotubes [89–91]. To address the respective contribution of adipocytes
and muscle fibers in energy metabolism, tissue-selective knock-out (KO) were performed.
The consequences of inactivating D2 from Fabp4-expressing white and brown adipocytes



Cells 2021, 10, 1327 6 of 19

(FAT-D2KO) or Myosin light-chain 1f -expressing skeletal muscle fibers (SM-D2KO) have
been compared to a general KO of this enzyme (GLOB-D2KO) [92].

SM-D2KO mice do respond normally to cold or high fat diet. This suggests a negligible
contribution of T3 produced in myotubes to adaptive thermogenesis. Absence of D2 would
rather lead to changes in muscle contractile functions and fiber type composition [93].

Unlike GLOB-D2KO mice, FAT-D2KO mice are hypersensitive to diet-induced obesity
at 23 ◦C. FAT-D2KO mice have a reduced contribution of fatty acids to energy expenditure
and mainly use glucose as a source of energy. This phenotype indicates that locally
produced T3 accelerates fatty acids oxidation in BAT, a process required for BAT activation
and optimal Ucp1 expression/activity [94]. It can be hypothesized that the increase in
glucose oxidation in FAT-D2KO mice is a compensation for the altered fatty acids oxidation,
but does not produce as much heat in response to a high fat diet [95]. Altered fatty acids
oxidation could therefore explain the higher weight gain.

3.4. TR Isoform Selective Regulation of Adaptive Thermogenesis

Many mice models with knock-out (KO) or knock-in (KI) mutations of TRs have
been generated [96] to elicit the role of T3 action and the TR isoform specificity on energy
expenditure and thermogenesis. Thra/Thrb KO mice, devoid of all receptors, have a lower
body temperature at thermoneutrality [97,98] and fail to defend their temperature when
exposed to cold [98]. Thra KO mice, whose TRα1-expressing locus is deleted [97], also
display a limited capacity for adaptive thermogenesis and display a profound hypothermia
at 4 ◦C [99]. However, Ucp1 expression is not down-regulated in Thra KO mice. This
suggests that TRα1 function is not directly linked to the transcriptional regulation of
Ucp1. Brown adipocytes cultivated from Thra KO mice do not respond to norepinephrine
stimulation by an increased oxygen consumption, but the response of Ucp1 and D2 is
maintained. KI mice, heterozygous for a dominant-negative mutated form of TRβ1 that
cannot bind T3 [100], also have a defective thermogenesis but characterized by a reduction
of Ucp1 level and heat production during norepinephrine infusion [101]. Importantly,
while isolated adipocytes from hypothyroid mice supplemented with T3 can induce cAMP
production (reflecting the adrenergic responsiveness), they do not when supplemented
with GC-1 [101], a selective TRβ agonist [102]. This emphasizes the importance of TRα1 in
the brown adipocytes response. Altogether, the data suggest that the two receptors account
for a specific subset of thermogenic function: TRβ1 is rather involved in the T3 regulation
of Ucp1 in BAT while TRα1 accounts for the sympathetic nervous system sensitivity.

4. Central T3 Can Trigger Adaptive Thermogenesis: The Still Controversial Role of
the Brain
4.1. Role of Central T3 in the Activation of BAT Thermogenesis

Based on the aforementioned role of BAT and the importance of D2 expression and
activity in this tissue, the classical view was that the thermogenic effect of T4/T3 mainly
involves their direct action in the BAT (Figure 3). However, as early as in 1997, some authors
already hypothesized that the thermal setpoint was centrally regulated and the effect of
hyperthyroidism on BAT was the consequence of hyperthyroidism in the brain [103]. It
was already known that electrical stimulation of the ventromedial hypothalamus (VMH)
increases BAT temperature while VMH lesions inhibit thermogenesis [104,105]. As TRs and
TH transporters are expressed in the VMH, TH signaling might be important in this brain
area for the regulation of peripheral metabolism [106–108]. In 2010, Lopez et al. brought
clear evidence that injection of T3 in VMH, but not in other hypothalamic nuclei, triggers a
thermogenic response in BAT, an increase in energy expenditure and a subsequent weight
loss without affecting food intake [8]. This treatment reduces hypothalamic AMPKα

phosphorylation in the VMH, which in turn induces the SNS/β-AR system and activates
the BAT (Figure 3), an effect that depends on TRs expression in the VMH. Both TRα and
TRβ are present in the VMH; however, VMH-specific deletion of TRβ does not alter Ucp1
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BAT expression [109], suggesting that TRα in the VMH is the main contributor for the T3
centrally mediated BAT activation.
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Figure 3. The different views for TH-induced adaptive thermogenesis. In the classical « peripheral » view (left panel), TH
(red dots) are produced by the hypothalamic-pituitary-thyroid axis. TH are then released in the blood (red arrows) and
are transported to targeted tissues. Then, they locally act on their receptors to trigger BAT and muscle thermogenesis, as
well as WAT browning. This paradigm has been challenged by the description of a central mode of TH action to trigger
adaptive thermogenesis (right panel). In this view, TH reaching the ventromedial medial hypothalamus decreases AMPKα

phosphorylation in this region, alleviating endoplasmic reticulum (ER) stress. It leads to an increased sympathetic nervous
system (SNS) output (axons drawn in blue) and the release of synaptic norepinephrine (blue dots) to trigger both BAT
thermogenesis and WAT browning. However, no evidence as so far been brought to consider a TH-central control of muscle
adaptive thermogenesis.

Regulation of hypothalamic AMPKα activity to stimulate SNS and BAT thermogenesis
has already been described for several hypothalamic peptides and hormones, including
Bmp8b [110], Glp1 [111], estradiol [112] or leptin [113]. Recent work suggests that reduced
AMPKα lowers endoplasmic reticulum stress in the hypothalamus [114] which in return
facilitates BAT thermogenesis [115]. It is conceivable that central T3 uses this pathway to
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trigger its metabolic effects. However, the precise molecular mechanisms hidden behind
remain unknown.

Despite raising new possibilities and a fresher view for T3 mode of action, such studies
are nevertheless controversial. Indeed, the implantation of bee wax pellets containing T3
in the VMH [116] does not reproduce the thermogenic response observed after VMH T3
injection [117]. In addition, T3 injected in the blood triggers a thermogenic response even
in β-AR triple KO mice [118], arguing against a possible involvement of a SNS input to the
BAT. ASTRO-D2KO mice that lack D2 expression in Gfap-expressing astrocytes, display
an increased BAT activity and an accelerated fatty acid oxidation [92]. As astrocytes are
the only T3-producing cells in the brain [119], it emphasizes a role for central T3 in BAT
activity. However, these observations are at odd with Lopez et al. conclusions [8] as it
suggests that central T3 does not stimulate but rather slows down BAT thermogenesis.

Interestingly, the thermogenic effects of injecting T3 in the VMH are observed in
mice first exposed at 18 ◦C to recruit the BAT and then acclimated at 30 ◦C [8]. On the
contrary, mice implanted with bee wax pellets, where no thermogenic effect of central
T3 is observed, are kept at 23 ◦C. Yet, temperature is determinant when looking at BAT
activity. As mentioned before, room temperature represents a mild cold stress exposure
and activates BAT whereas thermoneutrality is obtained at 30 ◦C. In experiments using bee
wax pellets, housing mice at 23 ◦C could constitutively activate BAT thermogenesis thus
preventing any visible effect of central T3 on this process.

4.2. The Promising Metabolic Effects of WAT Browning: Also Concerned by a Central T3 Control?

In mice, browning can be triggered by three different mechanisms: (1) recruitment
and activation of immune cells in WAT delivering norepinephrine locally [120], (2) direct
action of hormones on white adipocytes, (3) SNS activation of the WAT. Some convincing
elements have linked T3 to the two latter mechanisms.

Rodents treatment with GC-1, a TR-β agonist, induces browning of subcutaneous
WAT, increases energy expenditure, oxygen consumption, food intake and adiposity in both
WT [121] and ob/ob obese mice [122]. GC-1 also reduces BAT activity, as testified by the
decrease in Ucp1 expression and the lower [18F]-FDG uptake in this tissue, which suggests
that BAT is not responsible for the observed effects. Recently, Johann et al. showed that
T3-induced WAT browning is neither associated with norepinephrine nor cAMP increase
in the inguinal WAT. Moreover, browning is still observed at thermoneutrality, i.e., when
the WAT is functionally denervated [123]. This is confirmed by the in vitro browning of
primary white adipocytes treated with GC-1 [122]. This suggests that T3 induces browning
through a peripheral mechanism.

However, like BAT activity, WAT browning might also be sensitive to a central action
of T3. T3 injection in the VMH, but not other brain regions, triggers WAT browning
via the same AMPK-dependent pathway described for T3 mediated activation of the
BAT [124]. These results reinforce other observations where T3 centrally administered
by osmotic minipumps also increases WAT browning [125]. This common activation for
both BAT and WAT could find its origin in shared neuronal pathways for BAT and WAT
innervation [126,127].

Paradoxically, WAT browning is also observed in hypothyroid mice [128]. This is
concomitant to a decrease in BAT activity despite a paradoxical high expression of ther-
mogenic genes and norepinephrine concentration in this tissue. This likely points out to a
primary defect in BAT thermogenesis, compensated by an increased sympathetic outflow
to both BAT and WAT. A similar observation was already made in previous cold exposure
studies [83,84].

Browning has raised many therapeutic interests in recent years, especially since beige
adipocytes are a main site of adaptive thermogenesis in humans after cold exposure [40]
and administration of β3-adrenergic receptor agonists [39,129]. Some results indicate that
T3 might also potentiate browning in humans. First, D2 allowing conversion from T4 to T3,
is expressed and active in human preadipocytes from both mesenteric and subcutaneous
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adipose tissues [130]. In addition, T3 also induces Ucp1 expression, mitogenesis and oxygen
consumption in a TRβ-dependent manner in vitro in multipotent adipose-derived stem
cells [131]. In agreement, T3 has also recently been shown to induce Ucp1 expression
and reduce lipid accumulation in human white adipocytes [132]. This is in line with the
observation that T4 serum levels in healthy subject correlates with Ucp1 expression in
WAT [124]. Taken together, these observations suggest that the T3 effect on human WAT
browning might participate in the thermogenic response orchestrated by T3 injection.

In addition, the thermogenic and metabolic responses to T3 are also observed in
Ucp1KO animals [123,133]. This persistent response suggests that T3 triggers UCP1-
independent thermogenic processes in brown/beige adipose tissues. It seems however that
known mechanisms such as calcium and creatine are not inducible by T3 [28,134,135]. An
alternative would be that T3-mediated thermogenic effects could also involve other tissues.

4.3. Muscle: Another Thermogenic Actor, Same Conflict?

Interestingly, it was observed that T3-mediated increase in body temperature in
Ucp1KO mice is associated with a higher lipid uptake and a decrease in glycogen content in
muscles [123]. In humans, increased TH levels trigger a higher glucose uptake in skeletal
muscle than in BAT and WAT [136]. Increased metabolic rate is also noticed in the muscle
of patients with THRB mutations that have high circulating levels of T4 and T3 [137]. As
TRα1 is highly expressed in muscles [75], T3 might directly stimulates T3 responsive genes
expression in this tissue.

Accordingly, T3 may increase muscle metabolic response. This has been assessed in
a mouse model carrying a dominant-negative mutant TRα1 in α-skeletal actin-expressing
cells [138], restricting the mutation to skeletal muscle and no other tissues [139]. This
mutated form of TRα1 cannot recruit co-activators, preventing the T3-induced transcrip-
tional response [140]. As expected, the increase of energy expenditure usually triggered
by T3 is blunted in these mutant mice [138]. Muscles from mutants also display lower
respiratory capacities ex vivo following T3 treatment. More surprisingly, unchallenged
mutant mice display a paradoxical 5-fold increase of the muscle content in sarcolipin.
This protein interacts with SERCA [141] to favor Ca2+ uncoupling from ATP hydrolysis
(Figure 1), and thus contributes to the non-shivering thermogenesis in skeletal muscle [142].
The sarcolipin excess might thus represent a compensation for inadequate T3 response of
the muscle thermogenesis. Neither muscle-specific deletion of D2 nor TRα1 dominant-
negative expression alters energy expenditure or weight gain under high fat diet compared
to littermate controls [92,138,143]. Collectively, it suggests that under a physiological stress,
T3 in muscle might not be critical for its thermogenic action. It rather seems crucial for the
response to pharmacological doses of T3. Finally, T3 intracerebroventricular injections does
not induce thermogenic markers in muscle, reinforcing the idea that there is no indirect
activation via the SNS [8] and that the metabolic effects mediated by T3 in muscle involve
a local action.

5. Roles for T3 Central Action in Regulating Other SNS-Sensitive Mechanisms?

T3 and β-adrenergic signaling also regulate a common set of other physiological
parameters. Following Lopez et al. observations [8], the question arose whether some of
these SNS-sensitive mechanisms, which are not directly related to thermogenesis, could be
regulated via a central action of T3.

5.1. T3 Regulation of Glucose Homeostasis Is a Composite Process

Hypothyroidism is associated with a reduction in glucose uptake leading to peripheral
insulin resistance, while hyperthyroidism increases hepatic gluconeogenesis and thus
glycemia [144–146]. At least part of these effects is mediated through the direct binding of
T3 on TRβ in the promoters of target genes [144,147].

As for BAT thermogenic action of T3, some evidence suggest that T3 central action
could also be involved in regulating glucose metabolism. Indeed, mild hyperthyroidism
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increases glycemia and sympathetic liver denervation slightly prevents it. It suggests that
the peripheral effects outweighed the central ones: central-T3 would rather fine-tuned
the glucose production rather than hold the leadership. However, parasympathetic liver
denervation worsens insulin resistance during T4 administration [148]. Work from the
same group shows that T3 injection in the hypothalamic paraventricular nucleus (PVN)
rapidly triggers endogenous glucose production without affecting circulating T3, an effect
blunted after sympathetic denervation [149]. However, chronic PVN administration of T3
using bee wax pellets fails to recapitulate this effect as it did for BAT thermogenesis [117].
Collectively, these data argue for at least an involvement of central T3 in the regulation of
glucose homeostasis.

5.2. T3 Regulation of Heart Rate and Hypertrophy

Heart rate is regulated by both T3 and the β-AR system. However, T3 cardiac action
does not require β-AR since the T3-induced tachycardia and cardiac hypertrophy is intact
in β-AR triple KO [118]. Moreover, many cardiac genes are directly regulated by T3 [150]
and possess bona fide TR response element in their promoters [151]. This is in line with
heart-specific D2 overexpression that leads to tachycardia [152]. Finally, TRα1+/m mice
that express a mutant TRα1 with 10-fold reduced affinity to T3 [153], have a lower heart
rate despite presenting hyperstimulation of the SNS [154].

Only few elements could indicate a central T3 control of heart processes. Indeed,
Goldman et al. showed twenty years ago that short term intracerebral injection of T3
could stimulate heart rate [155]. Similarly, heart-specific D2 overexpression fails to induce
hypertrophy, suggesting a different mode of T3 control than for heart rate [152].

Collectively, these results argue mainly for a local, SNS-independent role of T3 in the
heart. TRα1 is certainly the main mediator of this effect as it is the main isoform present in
this tissue [75,156]. TRβ PV mutants that cannot bind T3, have shown to decrease heart
rate and contractility, but without displaying mRNA changes [157].

6. Selective Mice Models and Pharmacology: New Perspectives to Better Understand
and Take Advantage of T3 Metabolic Effects
6.1. Requirements for Elaborated Transgenic Models

Many effects mediated by T3 on adaptive thermogenesis have been deduced from the
phenotype of transgenic mice models, mainly mutated for TRs and deiodinases. However,
these results should be considered with caution due to these models’ spatiotemporal
limitations. First, most of these models exhibit the mutations without tissue specificity,
while deiodinases and TRs are widely expressed [75,158]. Thus, when the phenotype of a
particular tissue is observed, it should be taken into consideration that it may indirectly
results from alterations in other tissues reached by the mutation. In that respect, Cre-
lox system became increasingly important to investigate the role of genes in a specific
tissue/cell type [159]. For instance, tissue-specific deletion of D2 has allowed to allocate
the effects observed in GLOB-D2KO mice on lipid metabolism [85] to both astrocytes and
BAT, but not muscle [92].

Secondly, most of these models harbor mutations from early stages of development
while TH are crucial for many developmental processes [160–162]. Thus, the observations
made on these models are limited as we cannot distinguish functional from developmental
alterations. Notably, D2KO embryos have an altered BAT adipogenesis as well as ther-
mogenic markers expression [163]. Thus, altered adaptive thermogenesis observed in the
D2KO adults could stem from an inappropriate BAT maturation. It could be explained
by the crucial role of T3 for the induction of lipogenesis [164], a process required for BAT
growth [165]. In that respect, inducible models [166] allow triggering mutations at adult
stages and therefore free observations from putative developmental defects.

It is thus of a particular interest to combine both Cre-lox and inducible systems [159].
For instance, specific promoter-induced expression of Cre recombinase fused to the ligand
binding domain of the human estrogen receptor, allow locally triggering mutations after



Cells 2021, 10, 1327 11 of 19

tamoxifen injections [167]. Extending this to TRs or D2 will allow spatio-temporally
controlling their mutations, triggering them at adult stages in the tissues of interest such as
BAT, WAT muscle and brain. In this way, it will be possible to extract from the observations
the very essence of T3 role in adaptive thermogenesis in each of the concerned tissues.

6.2. Potential Therapeutical Applications: The Hope Raised by a New Class of Compounds

Given the beneficial metabolic effects of T3, including lowering serum cholesterol and
its potentiation of energy expenditure, T3 has been considered to be a potential drug target
to fight metabolic diseases. However, its use is precluded by its advert effects, particularly
in heart. A lot of efforts have been dedicated to design molecules to target TRβ and more
precisely its liver action to fight hypercholesterolemia, because TRβ seems to have only
a minor action in heart. Several TRβ agonists have been obtained, efficient to decrease
serum cholesterol but all failed in clinical trials due to off target effects, as previously
reviewed [168].

A breakthrough has been made by coupling T3 to incretins to target it to specific cell
types [169]. The incretins are small peptides that bind to specific transmembrane receptors,
allowing them to be selectively targeted to the cells expressing the receptor. After reaching
the cells, incretins trigger a cascade of phosphorylation intracellularly [170].

This principle has been applied with glucagon coupled to T3 (Glc-T3 compound) [171].
This compound mainly targets the liver and in a lesser extent the WAT, due to the expres-
sion pattern of the glucagon receptor [172]. By doing so, it lowers cholesterol, increases
fatty acid oxidation, and triggers WAT browning. Short term treatment protects from
atherosclerosis, nonalcoholic steatohepatitis, and limits obesity in mice models of these
diseases. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the
inherent harmful effects of each hormone. Indeed, liver-directed T3 action offsets the
diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovas-
cular system from adverse T3 action. To date, that is the best compound using selective
T3 activity.

Taking advantage of this concept targeting T3 to BAT or hypothalamus would be
of a great interest in the context of thermogenesis, provided to find incretin receptors
specifically expressed in these tissues. In this way, metabolic benefits of T3-mediated
thermogenesis could be reached while bypassing the undesired effects of thyroid hormone
administration [5–7].

7. Conclusions

The discovery of Lopez et al. concerning the central mode action of T3 [8] that could
recapitulate some of its metabolic effects called into question what was previously thought.
However, looking at the general picture, it appears that local should not be opposed to
central, as the two modes of action seem to complement one another. The general effect
observed under hyperthyroidism effect is most likely a combination of both. With the
progresses made in generating specific mice model, including inducible tissue-selective
mutations, new evidence should emerge shortly to clarify the debate. Meanwhile, the
precise molecular mechanisms by which T3 regulates adaptive thermogenesis remain
unclear and the emergence of these innovative mice models should help to elucidate the
situation. This is of a particular interest as thyroid hormones or their agonists harbor a
great metabolic potential when freed of their adverse effects. Understanding how and in
which tissues thyroid hormones act should enable identifying new levers to potentiate
their metabolic effects and take part in the fight against obesity and metabolic disorders.

Although the transgenic murine models and their future improvement are the corner-
stone to decipher T3-mediated effects on adaptive thermogenesis, it must be remembered
that these data should be carefully extrapolated to humans. Indeed, there are significant dif-
ferences in the physiological regulation of thermal homeostasis in the two species. Notably,
wearing clothes and living in heat regulated house keep humans closer to thermoneutrality.
In sharp contrast, most of the evidence derived from mice have been obtained at room
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temperature, below thermoneutrality. In this respect, one way to “humanize” mice thermal
homeostasis would be to systematically perform mice experiments at thermoneutrality. In
this way, the observations would be closer to human physiology and more likely to partici-
pate in developing human strategies to counter obesity through adaptive thermogenesis.
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