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Abstract When too few field measurements are available for the geological mod-

eling of complex folded structures, results of implicit methods typically exhibit an

unsatisfactory bubbly aspect. However, in such cases, anisotropy data are often read-

ily available but not fully exploited. Among them, fold axis data are a straightforward

indicator of this local anisotropy direction. Focusing on the so-called potential field

method, this work aims to evaluate the effect of the incorporation of such data into the

modeling process. Given locally sampled fold axis data, this paper proposes to use

the second-order derivatives of the scalar field in addition to the existing first-order

ones. The mathematical foundation of the approach is developed and the respective

efficiencies of both kinds of constraints are tested. Their integration and impact are

discussed based on a synthetic case study, thereby providing practical guidelines to

geomodeling tool users on the parsimonious use of data for the geological modeling

of complex folded structures.
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1 Introduction

Structural geological modeling aims to achieve three-dimensional models of geo-

logical objects and of their relationships. It is a mandatory and determining step for

most geological studies in various fields of application: resource estimation, reservoir

study, risk assessment, environmental remediation. It relies on a conceptual model

proposed by geologists based on field observations. Given these preliminary data, the

main goal is to choose a suitable mathematical model with parameters that give an

optimal representation of the reality [Wellmann and Caumon, 2018].

For this purpose, explicit and implicit modeling are the two leading approaches.

The former directly builds geological interfaces by solving a least-square smooth

approximation problem on a discrete mesh [Mallet, 1992]. In contrast, the latter relies

on a preliminary interpolation of a three-dimensional scalar field from geological

data. Only then are the surfaces of interest extracted: they are those holding the same

scalar value, referred to as their potential.

Over the last decade, implicit modeling algorithms have gained popularity in ge-

omodeling software. Two families of methods can be distinguished, depending on

whether the interpolation is performed on a meshed grid [Frank et al., 2007, Caumon

et al., 2012] or not [Houlding, 1994]. Focus here is on the meshless approach. In this

context, different basis functions have been deployed in order to interpolate the scalar

field: the Radial-Basis functions [Cowan et al., 2003, Turk and O’brien, 2005, Hillier

et al., 2014], the Moving Least Squares functions [Manchuk and Deutsch, 2019, Re-

naudeau et al., 2019] or the dual form of kriging with the use of covariance functions

[Lajaunie et al., 1997, Calcagno et al., 2008]. Following in the footsteps of Lajaunie

et al. [1997], the approach developed in this paper is of geostatistical nature. It ex-

ploits and investigates possible improvements of the so-called potential field method.

One drawback of this seminal and efficient method is that it is not suited to the

representation of complex structures such as poly-deformed areas, where the avail-

able data can be too sparse to correctly describe geometries at the chosen complexity

level [Hillier et al., 2014]. To deal with this issue, other methods typically introduce

inferred or interpreted locally varying anisotropies [Boisvert et al., 2009]. Alterna-

tively, when facing important uncertainties, experienced users can introduce a priori

geological knowledge into the model in the form of additional control points. This

workaround is usually time consuming, error prone and user dependent. By its deter-

ministic nature, it also prohibits any uncertainty analysis or quantification.

In the specific case of poly-deformed areas, which are at the core of the present

study, the most challenging aspect is to understand, represent and model folded struc-

tures [Ramsay and Huber, 1987]. They are typically complex when formed by a suc-

cession of folding events or impacted by salt intrusions. In fact, taking into account

these consecutive events can help enhance the implicit modeling framework. For in-

stance, Maxelon et al. [2009] interpret variations in the orientation of the dominant

planar fabrics. Laurent et al. [2016] suggest to integrate additional field data describ-
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ing folds, lineations and vergence. This approach and the inference of its parameters

are discussed in Grose et al. [2017]. In another vein, de la Varga and Wellmann [2016]

adopt a Bayesian point of view: field data and interpretations are taken as prior infor-

mation in the model.

While all these geological measurements bring relevant information about fold

geometry, one straightforward pointer of the preferential direction of continuity of

the fold structure (later referred to as the anisotropy) is the hinge line (Fig. 1). In

the implicit approach, this line is directly linked to the underlying scalar field, which

stays constant along the hinge line [Hillier et al., 2014]. It turns out that working with

the direction of this line has a practical asset: it allows to use isotropic covariance

functions in the interpolation model, while taking into account the anisotropy of the

fold structure. The hinge line is deduced in practice from geological observations and

more particularly from fold axes data, which are typically readily available in most

geological studies. However, they are not always fully exploited.

The main objective of this paper is to explore three possible ways of taking better

advantage of these data. First, by adding a second derivative constraint along the

hinge line. Under some mild assumptions on the fold structure, it is proven that this

is not only an appropriate mathematical translation of the constant property of the

scalar field along this line, but also an additional geometrical feature that can help to

better define the model. Second, by optimizing the location and number of first order

derivative data. Last, by further constraining the model using both first and second

derivative data in two orthogonal directions.

We start off in Sec. 2 by summarizing the theoretical background of the potential-

field method. A new implementation of the second-order derivative values of the

potential is introduced in this framework. The mathematical advantages of using first

and second derivatives are given, and proofs of their ability to improve fold geometry

modeling are also provided when needed. Then, a challenging synthetic case study

with sparse data is presented in Sec. 3. It is used to illustrate the assets and limitations

of using these mathematical objects in Sec. 4, thereby leading to the consideration of

the maximum curvature criterion. These results, finally discussed in Sec. 5, should

allow geomodeling software developers or users to get more insight on fold axis

incorporation for the anisotropy modeling process.

2 Mathematical Framework

2.1 Three-dimensional implicit function construction

The key challenge of three-dimensional structural modeling in geology boils down

to a reconstruction problem. It consists in approximating a three-dimensional model

of the reality from sparse data sampled on the geological field under study. In the

implicit modeling approach, focus is on the scalar field function Z, called potential,

that maps any point p ∈ R
3 to a real value

p 7→ Z(p) R
3 → R.
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Punctual, localized and sparse measurements of this function are used to estimate

it on the entire domain of interest. This is achieved by means of an interpolation

technique (co-kriging, radial basis functions). The primary purpose of this scalar field

is the extraction of iso-surfaces Sα

Sα =
{

p ∈ R
3, Z(p) = α

}

.

They are the surfaces of interest, corresponding to the geological interfaces of the

three-dimensional structural model. The so-called potential field method [Lajaunie

et al., 1997] directly considers increments of the scalar field sampled on iso-surfaces.

The implicit function is then defined up to an additive constant. It can be set by

choosing a reference iso-surface, the potential value of which is arbitrarily set to zero

[Calcagno et al., 2008].

2.2 Typical input data characterization

In order to sample the scalar field, geologists have access to different categories of

data. In this work, we focus on field measurement data (or surface data) but the fol-

lowing remarks can be easily generalized to borehole data, or manual or automatic

surface interpretation from geophysical surveys.

Field measurements may be summarized into two main categories: position point

information (p∈R
3) and orientation vector data (d∈R

3). With regards to the implicit

function Z to build, these field data mathematically correspond to the local evaluation

of the function Z(p) or its directional derivative Dd Z(p), respectively:

i. The assertion that two points, pi and p j, belong to the same interface Sα .

They consequently present same potential value, therefore the difference of their

potential value (called increment) is null

Z(pi)−Z(p j) = 0 ∀ pi,p j ∈ Sα .

These points are usually called contact points. Among implicit approaches, incre-

ment data constitute the peculiarity of the potential field method; other implicit

methods directly integrate contact point information by itself.

Since the potential value of Z(p) at a particular point p is not geological data,

increment data are geologically the most convenient to sample, but direct values

of potential zi may be introduced alternatively

Z(pi) = zi ∀ pi ∈ R
3.

ii. By definition, the first order derivative of Z at point p in a direction d is

Dd Z(p) = lim
h→0

Z(p+h d)−Z(p)

h ‖d‖
.

As the potential values have no physical meaning, there is no way to sample

directional derivatives other than identifying direction lines that lie in the plane

tangent to geological interfaces. Indeed, as geological interfaces are supposed to
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be iso-potential surfaces, all derivatives of the potential along such direction lines

will vanish. Such directions will usually be sampled as unit vectors τ such that

Dτ Z(p) = 0, which can also be written

Dτ Z(p) = τ.∇Z(p) = 〈∇Z(p),τ〉= 0,

where ∇Z(p) denotes the gradient of the scalar field, that writes

∇Z(p) =





Dex Z(p)
Dey Z(p)
Dez Z(p)



 ,

with (ex,ey,ez) being the standard basis of R3.

Geologists usually sample the tangent plane of geological interfaces using two

such tangent directions, respectively called strike and dip directions. Strike direc-

tion, given by the unit vector τs, is obtained as the intersection of the tangent plane

with a horizontal plane that holds the observation point. Dip direction, given by

the unit vector τd , is measured replacing the horizontal plane by a vertical plane.

Last, but not least, geological interfaces can be attributed a polarity, as forma-

tions can usually be chronologically ordered. Assuming that the potential Z is a

decreasing function of the geological age of the formations, and that ε ∈ {−1,1}
is such that ετs × τd points toward younger formations we then know that

(ετs × τd) ·∇Z > 0.

In practical applications and software packages, this inequality constraint is usu-

ally replaced by the (biased) assumption that the the gradient of the scalar field

has unit norm with the consequence that one can write

∇Z(p) = ετs × τd ,

This trick will be denoted as the gradient norm bias in the following.

2.3 A new input data: the second-order derivative data

Just as the first-order derivative, the second-order derivative of the potential computed

twice in direction d can be taken into account

D2
d Z(p) = lim

h→0

Z(p+h d)+Z(p−h d)−2 Z(p)

h2 ‖d‖2
. (1)

Motivations for the addition of such data and its impact on the method are dis-

cussed in Sec. 2.5. Let us notice that the directional second-derivative of Z in a di-

rection τ can be expressed using the Hessian matrix of Z, denoted by D2Z(p) in the

following

D2
τ Z(p) = tτ.D2Z(p).τ,

where the left-hand side superscript t indicates the transpose of a vector or matrix.
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2.4 The interpolation method: the potential field method

Using a co-kriging estimator [Wackernagel, 2013], the interpolated value of Z at point

p, Z∗(p), is computed by the weighted sum of different input data

[ Z(p)−Z(p0) ]
∗ = ∑

ii′

λii′ [Z(pi)−Z(pi′)] + ∑
j

λ j 〈∇Z(p j),τ j〉

+ ∑
k

dim

∑
d

λk,d Ded
Z(pk) + ∑

s

λs (tτs.D
2Z(ps).τs),

(2)

where the λii′ , λ j, λk and λs are coefficients to be determined and Z(p0) is an arbitrary

value of Z assigned at the arbitrary point p0 (most often chosen to be null).

In the universal co-kriging context [Chiles and Delfiner, 2009], the random func-

tion, here the potential function Z, is described as a combination of a residual random

function with zero mean, Y , and a deterministic drift function, m

Z(p)−Z(p0) = Y (p)+m(p). (3)

The drift function m is usually expressed as a linear combination of n basis functions

m(p) =
n

∑
ℓ=1

νℓ f ℓ(p), (4)

where the f ℓ are basis functions and νℓ unknown associated coefficients.

Kriging equations in this case, detailed in Appendix A, lead to a final co-kriging

system
(

K F
tF 0

)(

λ
µ

)

=

(

Kp

Fp

)

, (5)

where K and Kp are the covariance matrices, respectively between data among them-

selves, and data and interpolated points; F and Fp are the universality conditions on

data and interpolated points and λ and µ , the unknown variables to solve.

2.5 Motivations for second-order derivative data implementation

The main difference here, compared to the initial formulation of the method from

Lajaunie et al. [1997], is the addition of second-order derivative values of potential in

an established direction into the co-kriging equations. Original observations, which

lead to the motivations of this development, are detailed below, as well as the mathe-

matical proof of its merits.

2.5.1 Empirical observations

This new development has been motivated by the observation that, in case of folds

with planar hinge line, in addition to the first-order derivative values of the potential

(tangent), the second-order derivative values of the potential for a point on the hinge

line are (Fig. 2):
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i. null in the direction of the hinge line,

ii. maximal in the orthogonal direction (on the tangent plane).

To illustrate this, values of different directions for second-order derivative of an

arbitrary point of a hinge line (crest here) of the synthetic case (Sec. 3) are shown on

Fig. 2. The same pattern can be observed for all points on the crest, with a different

value for the direction angle φ .

2.5.2 Demonstration and application scope

Concerning the first observation, this empirical observation is supported by a theo-

retical demonstration developed in Appendix C for particular folds (Fig. 1). The only

requirement is that the axial poles n along the hinge line are colinear, or equivalently

that there exists a plane to which they are all normal, defined here as the ’tangent

plane’ Pt.

Here the study focuses on an upright fold, with vertical axial surface Sa. In this

case, the hinge line of the studied iso-potential surface coincides with the crest of

the fold. However, the demonstration that the second-order directional derivative is

null along a particular curve only relies on the existence of the tangent plane along

this curve. This means that the conclusions are the same for inclined folds, as long

as the axial poles n are still colinear. In the case of cylindrical folds, in particular, the

second-order directional derivative is null along any line parallel to the hinge line.

The demonstration provided in Appendix C shows that the property stands for

both syncline and anticline folds. Moreover, the axial surface and hinge line may

freely vary in direction in the tangent plane and hence characterize anisotropy of

the fold, irrespective of its shape. This opens up new constraints for fold axis data,

restricted in the present work to particular types of poly-deformed folds, but that

could conceivably be extended to more complex structures: even in cases where the

hinge line is not a planar curve, if a portion satisfies the tangent plane requirement,

we can incorporate the null second-order directional derivative information along it

at that location.

The second-order derivative of a three-dimensional function gives information

about the local behavior of this function, and thus intrinsically, for implicit approaches,

on resulting isosurface curvature. This could be a significant information, especially

in case of very curvy hinge lines. Indeed, the geometric meaning of these two previ-

ous observations is then:

1. a null value of second-order derivative of potential in the hinge line direction,

implies local flatness in the hinge direction

2. the maximal value of directional second-order derivative of potential in the or-

thogonal direction to the hinge line on the tangent plane means that the curvature

of the resulting isosurface is maximal orthogonal to the hinge direction.

2.5.3 Interest of second-order derivative data for assessing local geometry

Null first-derivative values of potential in all directions on the tangent plane already

express local flatness in the hinge direction. However, the addition of a null second-

order derivative value provides an additional information of ’smoothness’. Indeed,
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assuming the potential Z is sufficiently smooth, its Taylor expansion at a point p on

the hinge can be written

Z(p+h) = Z(p)+∇Z(p).h+htD2Z(p)h+O(‖h‖3).

For h in the tangent plane, the first-order term ∇Z(p).h is zero. If the hypotheses of

Sec. 2.5.1 are satisfied and h is along the hinge, the second-order term htD2Z(p)h
is null as well, so that Z(p+ h)− Z(p) is a third-order infinitesimal; by providing

the information D2
τ Z(p) = 0 for τ along the hinge line, one can expect the resulting

model to be smoother and then better constrained.

2.5.4 Fold axis data sampling

These mathematical properties are especially relevant for already existing field data,

such as fold axis data. This data consists in direction measurements (azimuth and

plunge values). In this section, we consider fold axis data sampled on the field. These

data are often largely rather interpreted than measured on geological maps but rarely

integrated, however, into final models. They represent unit localized vectors and do

not necessarily belong to the hinge line. Indeed, they may belong to the axis of an-

other sub-parallel surface of the folded system, but this information is still a relevant

constraint about the folded structure for the scalar field.

This direction measurement may be sampled in different manners (Fig. 1):

1. Fold axis may be measured directly on the axial surface (DA and DA′ ), on one

hinge line. This hinge zone is a fragility zone and is not often well preserved,

these observations are then pretty rare, and thus valuable.

2. In fact, fold axis data come abundantly from intersection lineations measurements

(DB). These lines are the result of the intersection between bedding planes (S0)

and cleavage planes (S1), which commonly takes place in folding processes.

3. Fold axis data may also be inferred from orientation measurements of fold limb

normal vectors (gradient data), called pole vectors. Then, stereographic projection

tools can be used to determine local fold axis data (DC measurement from n and

n′ pole vectors).

The first measurement is directly positioned on one hinge line. In practice, even

though the latter are measures at other locations, they are commonly replaced at the

hinge line location. Then, this paper studies the use of these three raw measurements

on the hinge line.

However, wherever they come from, these fold axis data measurements signifi-

cantly contribute to the global hinge line interpretation over the domain. This global

interpretation is performed by geologists from field data but also other observations

with various interpretative values, such as micro-scale structures, parasitic folds,

global regional context and expert knowledge. For a complete review of fold data

see Hudleston and Treagus [2010], McClay [2013].
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Fig. 3: Top (a) and side (b) view of the iso-surface Z = 2.5 of the potential of Eq. (7).

The elliptic hinge line of the fold, with semi-major and semi-minor axes, A and B,

is presented on (a) (dashed line). Random data for different samplings are generated

with the angle θ around this structure. Data sampling zones, A1 and A2, with their

respective cut off angles, c1 =
2π
24

, c2 =
4π
24

, c′1 =
8π
24

, c′2 =
10π
24

, are also shown, as well

as the vertex of the ellipse.

2.5.5 Covariance function requirements

Implementation of second-order derivative value of potential leads to the need of a

four-times differentiable covariance function (see Appendix B.2 for more details on

successive derivations of the covariance function). Thus, the classically implemented

cubic covariance model is not applicable; here the considered model is one of the

‘piecewise polynomial, positive definite and compactly supported radial functions of

minimal degree’ introduced by Wendland [1995], denoted by Wendland C4 in the

following, and which may be expressed as

C(r) =
1

3
(1− r)6

+(35r2 +18r+3). (6)

3 Case study

3.1 Presentation of the considered potential field

In this paper, an explicit theoretical potential function has been chosen as case study.

Shaped to represent an overturned anticline structure, the hinge line – or crest, since

they coincide here – describes an ellipse trajectory of semi-major and semi-minor
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(a) Scenario 1 with Sampling 1
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Result

A B

(b) Scenario 2 with Sampling 2

Fig. 4: Initial results of the potential field method on two different initial samplings.

Sampling 1 consists in 4 contact points (blue spheres) and 4 gradient data (black

arrows). Sampling 2 consists in 8 contact points and 8 gradient data.

axes A and B (Fig. 3). Therefore, this trajectory represents the main continuity direc-

tion of the structure, defined as anisotropy, here significantly varying in space. The

explicit potential function can be expressed as

Z(x,y,z) =

{

z−α sin(ω d) if d ∈ [l − ε ; l + ε],

z otherwise,
(7)

where

– d =
√

a (x− y)2 +b (x+ y)2,

– α = 1.9, ω = 2, a = 0.5 and b = 0.05, with a = 1
B2 and b = 1

A2 ,

– l and ε being chosen so that sin(ω d) = 0 for d = l − ε and d = l + ε , leading to

continuous isosurfaces: ε = π
ω and l = 5π

2ω .

Only one iso-potential surface of this field at level Z(x,y,z) = 2.5 is shown on

Fig. 3: this surface is defined as our reference of study thereafter.

3.2 Initial results on different samplings

In the implicit modeling framework, an anisotropic structure like this one requires a

dense sampling, in terms of quantity and localization of data, in order to obtain an ad-

missible model. The following section will highlight interpolation issues encountered

in such a sparse data environment.
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3.2.1 Random sampling strategy

In basic geological structural studies, sampled data are usually contact points and

gradient data. In that respect, considering the initial potential field method, Fig. 4

presents two different resulting interpolated surfaces, based on two different initial

samplings. These samplings have been randomly generated in different zones of the

structure (denoted A1 and A2 zones on Fig. 3). Resulting models of the potential field

method on each sampling is presented in Fig. 4.

– Scenario 1 (Fig. 4a): The first sampling consists in 4 random contact points (with

4 associated gradient data) generated in the A1 zone.

– Scenario 2 (Fig. 4b): The second sampling is defined by 4 random contact points

(with 4 associated gradient data) generated in the A1 zone, and 4 random contact

points/gradient data generated in the A2 zone.

As a consequence, both sampling density and area coverage of data are higher in

Sampling 2 compared to Sampling 1.

3.2.2 Interpolation parameters

In the following, the implemented covariance function is the Wendland C4 (Eq. 6),

the range of the model is equal to the diagonal of the model (15) and a vertical drift

is considered here

m(p) = ν z(p).

The interpolation is performed on a 20-by-20-by-20 grid (although for numerical

reasons the error score Ve (Sec. 3.2.3) is computed on a 20-by-20-by-80 grid). Al-

though true values of gradient data are known in this synthetic example, gradients are

defined unitary as a default choice, as it is implemented that way in software packages

(Sec. 2.2).

3.2.3 Modeling quality indicators

This work focuses mainly on the qualitative aspect of the resulting three dimensional

models, as it is generally performed in geological studies. For this purpose, the three-

dimensional isosurface of interest is presented for each experiment thereafter. In addi-

tion, in order to help visualization, the resulting surface of interpolation is compared

to the original theoretical surface using a vertical cross section along the ‘first di-

agonal’ (x = y, profile A-B on Fig. 4a). This cross section is shown underneath each

corresponding three dimensional model, even though the cross section direction is not

always displayed. However, a quantitative measure, the volume error Ve, is provided.

This indicator estimates the volume difference between the theoretical and modeled

surfaces in the region near the structure of interest; its computation is detailed in

Appendix D. This measure, made possible here by the relative simplicity of the syn-

thetic model, can be distorted by numerical errors, notably due to the grid resolution

in z. An uncertainty value ∆V is computed and provided for each model, and has
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to be taken into account when comparing values of the indicator Ve. In the end, the

investigations performed in this work can be seen as attempts to minimize this error

score. These different scores are reported in appendix D. To express improvements

of the resulting model compared to initial results in the same scenario i (with its own

volume error Vei
), the relative volumic improvement (RVI) ηVe is introduced

ηVe =
Vei

−Ve

Vei

where Vei
is the volume error of scenario i; i ∈ (1,2)

This signed indicator ηVe quantifies the reduction of error compared to the initial

model It is expressed as a percentage. Negative values mean deterioration compared

to initial results, 100% RVI means that the error is now null, whereas 0% RVI means

no change in volume error value. More details are provided in Appendix D.

These criteria, both qualitative and quantitative, have to be handled simultane-

ously in order to evaluate the results and then provide better insight on the scalar

field variations. All resulting values for the different experiments are summarized in

appendix D.4.

3.2.4 Critical case versus well-constrained scenario

Resulting surfaces of the potential field method with the two different samplings of

Sec. 3.2.1 are shown in Fig. 4. This interpolation is performed with the choice of

parametrization detailed in Sec. 3.2.2. These two starting assumptions lead to two

different results:

The resulting surface with Sampling 1 (Fig. 4a) presents a ‘bubbly’ aspect far

from the data, as it is generally observed with implicit modeling approaches in sparse

data situations. With no data around, the potential value tends towards the drift (mean)

value. This result is actually not satisfactory for geologists. The volumetric error is

Ve1
= 104.68. Moreover, this phenomena takes place here with use of Wendland C4

covariance model, but also occurs with the more usual cubic covariance one. This

example may be considered as a critical case scenario, where fold anisotropy intro-

duction would significantly benefit the model. Proposed solutions will be evaluated

in comparison with this vertical error score, which should never exceed this critical

value.

On the other hand, the resulting surface obtained with the better sampling, Sam-

pling 2, is shown in Fig. 4b. This sampling choice leads to a better result, as could be

expected. The volumic error is Ve2
= 48.36, which is 56.32 better than the previous

scenario. This change of scenario improves the result by 54%. Hence this scenario

may be considered as a better constrained model. Moreover, despite this prevailing

error, this result may be qualitatively considered as satisfying and thus, this scenario

considered as a well constrained model. This can be defined as a benchmark for fur-

ther comparisons with improvements made on the previous case. Still, the impact of

additional anisotropy information data will also be tested on this model in order to

see the impact of these new data on a satisfying well constrained model, but where

there is still possible room for improvement.

These two sampling starting assumptions are mentioned as Scenario 1 and Sce-

nario 2 in the following.
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3.2.5 Exploratory methodology

The first scenario is not satisfying, especially considering the fact that in such sit-

uations we observe that geologists actually already do hold anisotropy information:

either localized fold axis data or a final interpretation of the hinge line (Sec. 2.5.4).

The parsimonious deployment of both kinds of inputs is discussed in Sec. 5.

However, the following results on the exploitation of fold axis data fit for both

approaches. Indeed, the integration of the hinge line may be done by discretizing it

and then use punctual fold axis data, which is the correct mathematical expression of

this information. Nevertheless these conclusions raise different outstanding issues:

i. Whereas in theory null second-order derivatives yield additional smoothness in-

formation compared to first order derivative values, in practice for hinge line con-

ditioning, is it a real relevant constraint to add?

ii. Although the use of tangent data was already possible in the initial method of

[Lajaunie et al., 1997], in practice, the use of such constraints for fold geome-

try modeling is not necessarily always adopted by geologists, even though data

of different types mentioned in Sec. 2.5.4 are available. When tangent data are

taken into account, there is still uncertainty about the necessary amount of them

to well constrain poly-deformed folds in sparse data environment, as well as a ge-

ographical distribution preference. These understandings would allow to define

priorities for either the direct geological sampling strategy of fold axis data or the

parametrization of an interpreted hinge line.

iii. Considering the tangent plane, for a given data field measurement (fold axis) on

the hinge line, different geometric constraints may be taken into account: at least

two tangent data, a null second-order derivative value and a maximal second-

order derivative value. The relevance of each one should be investigated.

4 Investigations on better fold axis data integration

In the following, these three issues are addressed on the synthetic case regarding the

two previous scenarios proposed in Sec. 3. The hinge line direction is known; differ-

ent constraints are imposed upon it depending on the experiment. All the resulting

surfaces are compared to the theoretical one (Fig. 3) through cross sections just as

presented in Sec. 3.2, even though its orientation is no longer indicated. The different

volumetric error indicators are listed in appendix D.4.

4.1 Use of fold axis data as tangent data, null second-order derivative data or both

On the hinge line, a null first-order derivative value of potential constraint may be

imposed for fold axis vector data. New observations made in Sec. 2.5.1 motivated the

addition of a null second-order derivative value of potential constraint as well.

In order to characterize the contribution of each constraint in practice, Fig. 5

shows the impact of such data on the synthetic case, regarding the two different start-

ing scenarios. 15 homogeneously distributed vectors are sampled along the hinge line
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SCENARIO 1 SCENARIO 2

Initial result
Theory

Result

A B

(a) Ve1
= 104.68±4.27

Theory

Result

A B

(b) Ve2
= 48.36±3.40

15 tangent data

(c) Ve = 85.19±4.27,ηVe = 19% (d) Ve = 50.72±3.40,ηVe =−5%

15 null D2

(e) Ve = 91.52±4.17,ηVe = 13% (f) Ve = 49.76±3.40,ηVe =−3%

15 tangent data +

15 null D2

(g) Ve = 91.39±4.35,ηVe = 13% (h) Ve = 49.01±3.40,ηVe =−1%

Fig. 5: Impact of (c)(d) 15 tangent data (green arrows), (e)(f) 15 null second-order

derivative data (D2, pink arrows), (g)(h) both data on the resulting surface compared

to (a)(b) the initial result with Sampling 1 or Sampling 2
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and expressed in terms of tangent (Figures 5c, 5d), null second-order derivative (D2)

(Figures 5e, 5f) or both (Figures 5g, 5h). For comparison, the initial results from

Sec. 3.2.4 are also recalled (Figures 5a, 5b). The conclusions are the following:

– Scenario 1: The introduction of null second-order derivative constraints does have

an impact on the resulting model (Fig. 5e), in comparison with the initial result of

this scenario (Fig. 5a). These constraints appear to flatten the unwanted bulging as

expected; the resulting surface draws near the theoretical one. Ve is 92 ± 4, RVI is

around 13%. However, the introduction of tangent data constraints alone (Fig. 5c)

visually leads to a better result: the modeled hinge line seems to be localized more

accurately. In addition, Ve is 85 ± 4, RVE is around 19%. Finally, the combination

of both constraints (Figures 5g) leads to a qualitatively similar result that the one

with tangent data constraints only. However, Ve is 91 ± 4, RVI is around 13%,

which is closer to the result with null second order derivatives. The differences

between these three results fall within the uncertainty bounds given by ∆V : direct

comparisons should be qualitative in nature.

– Scenario 2: In this specific well constrained case, the RVI scores of these four

comparisons indicate that the four models are equivalent (within the uncertainty

range, at this resolution). Qualitatively, these models do not show perceptible

differences either. As a conclusion, in this well constrained scenario, the addition

of either tangent or null second-order derivative data does not seem necessary.

In the end, these different results do not bring to light the interest of the intro-

duction of second-order derivative value made on Sec. 2.5.3. This could possibly

be explained by the pre-existence of local flatness, or at least smoothness, of the

model preceding its introduction. Actually this smoothness is generally inherent in

geological surfaces. As a matter of fact, this local feature is the main assumption of

geological modeling interpolation methods. However, second-order derivative values

could bring relevant information in ambiguous surfaces in other surface modeling

applications.

4.2 Quantity or spatial distribution of tangent data impact

In response to observations made on Sec. 4.1, it still appears relevant to sample fold

axis data and incorporate them in terms of tangent data alone at least. The impact

of the modalities of this integration, such as quantity and spatial distribution remain

ill-known. For this purpose, the impact of quantity and spatial distribution of these

data has been studied on the synthetic example.

4.2.1 Impact of the quantity of tangent data

The impact of the quantity of tangent data along the hinge line is described in Fig. 6.

29 initial tangent data regularly spaced along the hinge line have been decreased to

8, then 4 data points only.

– Scenario 1: The results show that the quality of the resulting model remains the

same for these three numbers of tangent data values. The relative improvement
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NUMBER OF

TANGENT DATA

SCENARIO 1 SCENARIO 2

29

(a) Ve = 85.26±4.27, ηVe = 19% (b) Ve = 50.69±3.40, ηVe =−5%

8

(c) Ve = 85.06±4.25, ηVe = 19% (d) Ve = 50.50±3.40, ηVe =−4%

4

(e) Ve = 85.03±4.12, ηv = 19% (f) Ve = 53.32±3.42, ηVe =−10%

Fig. 6: Impact of the number of tangent data along the hinge line in the two different

scenarios
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POSITION OF

TANGENT DATA

SCENARIO 1 SCENARIO 2

Regular

(a) Ve = 92.73±4.25, ηVe = 11% (b) Ve = 51.14±3.40, ηVe =−6%

Close to initial

data

(c) Ve = 89.42±3.95, ηVe = 15% (d) Ve = 49.72±3.40, ηVe =−3%

Far from data

(e) Ve = 119.72±4.25, ηVe =−14% (f) Ve = 49.35±3.40, ηVe =−2%

Fig. 7: Impact of the spatial distribution of the tangent data along the hinge line in the

two different scenarios. 6 tangent data are poised in different ways: (a)(b) regularly

spaced along the hinge line, (c)(d) close to the initial data, (e)(f) far from the initial

data
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(RVI) is about 19% for 29 tangent data (Fig. 6a), 8 data (Fig. 6c) or 4 data

(Fig. 6e). This principally suggests that the integration of a limited number of

tangent data already shows a positive impact on the result, thus a fine distribution

of these tangent data is not necessary, at least in this particular case.

– Scenario 2: In the well-constrained scenario, the number of tangent data does not

seem to have a significant impact on the result. These different constraints lead to

similar results (Fig. 6b, Fig. 6d, Fig. 6f) on the edge of the indicator’s resolution.

These statements are also similar to the ones observed in the previous experiment

with derivative constraints (Sec. 4.1).

4.2.2 Impact of the spatial distribution of tangent data

Now considering a fixed number of tangent data, the impact of the localization of

such data along the hinge line is described by Fig. 7. Three major sampling strategies

have been adopted here: new tangent data regularly spaced along the hinge line, new

data close to the initial inputs (contact points and gradient data) and new data far from

the initial inputs. Adding anisotropy information in the last location could potentially

be of some specific interest, since this zone is the ellipse’s vertex area (Fig. 3) where

the anisotropy direction varies strongly, in comparison to the whole structure.

– Scenario 1: With a constant number of tangent data, the results show that the

use of these data close to initial contact points and gradient data (Fig. 7c), or

regularly spaced (Fig. 7a), qualitatively give the best results, by flattening the

budging around the hinge line. The quantitative improvement of these strategies

is around 11% and 15%, respectively. However, regularly spaced data visually

seem to improve the result mainly around the vertex area, whereas tangent data

close to initial data improve the result around these well-constrained zones. This

highlights that local information of flatness is given. On the contrary, additional

tangent data placed far from contact points and gradient data (Fig.7e) make the

modeling worse by −14%. This could be explained by the contradiction between

the forced local flatness given through six tangent data constraints at the vertex

position here and the forced unitary norm given by gradient data which may lead

to some unexpected results (Sec. ii.).

– Scenario 2: The addition of tangent data does not significantly affect the resulting

model whatever position of these data is (Figures 7b, 7d, 7f). RVI values are

similar, within the limit of their uncertainties.

As a conclusion, with respect to this only case study, it seems that a parsimo-

nious regularly spaced sampling of tangent data is the most cautious strategy to

adopt. Adding anisotropy information where it is particularly needed could, counter-

intuitively, worsen the modeling, possibly because of the gradient norm bias.

4.3 Insights on orthogonal constraints of fold axis data on the tangent plane

The previous sections, 4.1 and 4.2, have considered only fold axis data directions, i.e.

the hinge line direction. However, it is possible to take into account the orthogonal
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CONSTRAINTS

PER POINT

SAMPLING 1 SAMPLING 2

1

(a) Ve = 85.26±4.27, ηVe = 19% (b) Ve = 50.69±3.40, ηVe =−5%

2

(c) Ve = 78.81±4.12, ηVe = 25% (d) Ve = 49.51±3.40, ηVe =−2%

3

(e) Ve = 78.52±4.11, ηVe = 25% (f) Ve = 49.51±3.40, ηVe =−2%

4

(g) Ve = 33.34±3.59, ηVe = 68% (h) Ve = 31.00±3.56, ηVe = 36%

Fig. 8: Comparison of the impact of (first row) 1, (second row) 2, (third row) 3 and

(last row) 4 constraints per point at the same 6 locations on the fold axis of the theo-

retical surface
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direction on the local tangent plane (Fig. 1) of these fold axis data. This consideration

would be relevant for two major reasons. First, the first-order derivative value is null

in this direction. In practice this second tangent data is sometimes already integrated

in the model, completed with a younging direction, which indicates the polarity of

the normal of the tangent plane. This is performed in order to express pole vectors

(Fig. 1) on the hinge line. Indeed, this vector shall not be provided to the model as a

gradient input, because of the gradient norm bias. In the end, more insights on this

tangent constraint impact would benefit to the understanding of its relevance. Second,

the observations made in Sec. 2.5.1 revealed that this direction is a maximum value

of the second-order derivative. This new constraint could have potential interest in

search of the valuation of fold axis data in the enhancement of geometric control of

fold structures.

For this purpose, Fig. 8 shows the consecutive impact of these four constraints,

first and second-order derivatives in the two mentioned directions, for 6 fold axis data

on the crest line:

– Scenario 1: The use of tangent data in the hinge line direction only (Fig. 8a) leads

to the same observations previously made in this case (Sec. 4.1,4.2). However,

the addition of the second tangent data (Fig. 8c) seems to conduct to a flatter

hinge line, but not especially better positioned. The addition of null-second or-

der derivative in the hinge line direction (Fig. 8e) does not add an appreciable

qualitative or quantitative difference. Finally, the incorporation of second-order

derivative values in the orthogonal direction (Fig. 8g) leads to noticeably better

results; the resulting surface appears to be closer to the theoretical one than it has

ever been so far, and the RVI score is around 68%. The volumic error Ve is even

better than the initial result in the well-constrained scenario S2 (33.34 instead of

48.36).

– Scenario 2: In this well constrained scenario, there is no significant difference

between the first three constraint influences, i.e. the addition of two tangent data

(Figures 8b, 8d) and null second-order derivative value (Fig. 8f). Just as in the

case of Scenario 1, the final addition of second-order derivative values in the

orthogonal direction (Fig.8h) conducts to a very satisfying model. Qualitatively,

the resulting surface is very close to the theoretical one, closest than it has been at

any time for the different attempts in this work. RVI score is around 36%, whereas

the previous results with this same sampling did not show positive improvement

scores.

The observations performed on this single synthetic case lead to several conclu-

sions. In addition to tangent data in the hinge line direction, the integration of orthog-

onal tangent data does not appear in this case to add sufficient information to constrain

the fold structure as expected. The conclusions on the addition of null second-order

derivative data are the same as the ones previously made (Sec. 4.1: these data do not

affect significantly the model. However, the addition of the second-order derivative

values in the direction where they are maximal, orthogonal to the hinge line, seems

to affect in a very significant way the results; at least as it could be expected by users

in such situation.
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Unfortunately, in practice it is not possible to directly sample these values on

the field. Then, the immediate integration of this constraint on real cases for now

would only be possible by an empirical approach. Indeed, the value of this constraint

controls the orthogonal curvature, hence the local ‘pinch’ of the fold. This value could

potentially be estimated by a trial-and-error approach with visualization tools, for

example. However, these observations are worth exploring, and should open a path

for further mathematical developments on the integration of a local maximum as a

criterion input for implicit methods.

5 Conclusion and discussion

This paper tackles a well-known issue encountered in the potential field method:

when the data is sparse, classical models can lead to unsatisfactory results (e.g. pre-

senting a ‘bubbly’ aspect). This is particularly the case when the geological field is

made of complex folded structures. In such situations, geologists are forced to add

artificial control points. The alternative proposed here is to incorporate information

about the anisotropy. It can be characterized by fold axis data, which have the ad-

vantage of being readily available in most fold structural studies. This approach is

motivated from a mathematical point of view in Sec. 2, using the potential method

[Lajaunie et al., 1997] as a reference. This allows to describe poly-phased structures

in a purely geometric, parsimonious manner, without having to make strong assump-

tions on the underlying succession of geological events. Another asset of this method

is that the covariance function used for the interpolation of the potential scalar field

can remain isotropic.

A challenging case study is described in Sec. 3. It serves in Sec. 4 as a founding

example to gain more insight into the usage of fold axis data for characterizing the

anisotropic geometries of folds. Three major conclusions are drawn from this explo-

ration.

i. From a mathematical point of view, the second-order derivative values of the

three-dimensional scalar field are shown to be of particular interest. They bring

theoretical information on the curvature of the surface, notably where it is flat

and might coincide with the hinge line. However, in the chosen example, adding

null second-order derivative constraints to the model only slightly improves the

results. When combined with tangent data, almost no improvement is observed.

Obviously, no generalization can be drawn from a single example. Nonetheless, it

might be conjectured that the effect of these mathematical objects are bound to be

limited in other geological studies too. Indeed, one of the most important features

characterizing complex iso-surfaces is their smoothness. It is at the foundation

of geological interpolation methods, which try to minimize the curvature. When

dealing with fold structures, curvatures turn out to be quite regular, especially

in the hinge line direction. Therefore, it is our belief that tangent data suffice to

capture this key characteristic.

ii. Tangent data turn out to have a significant impact on the quality of the results;

when ignored, undesirable effects are observed. Even with a very small number

of such data, fold anisotropy integration is notably improved. It is also observed
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that their effect is all the more positive as fold axis vectors are sampled close to

the initial gradient and contact point data.

iii. The value of the second-order derivative in the orthogonal direction of the hinge

line (i.e. the maximum value of second-order derivatives) appears to be particu-

larly useful. Models incorporating this information in a synthetic example show

promising results. Unfortunately, this value is hardly reachable in practice, al-

though it could conceivably be estimated if a cross-section is available. Alter-

nately, an arbitrary value could be chosen, which would control the local pinch of

the fold. Such observations suggest to investigate the incorporation of a Gaussian

curvature condition in the model; this is left for future research.

All these remarks hold for discrete fold axis data. They usually come from raw

measurements, but could also be generated from the discretization of an interpreted

hinge line. Indeed, the ontological boundary between these two types of model input

is not immediate: the interpretation of the hinge line stems from a combination of

fold axis data and other geological observations such as micro-scale structures or the

regional context. In practice, the interpreted hinge line could be directly integrated

as a sketch (expert interpretation) or automatically interpolated from some direction

measurements (automatic interpretation). Then, it could be discretized with synthetic

fold axis data. A non-negligible limitation of this technique is that the uncertainty

linked to such artificial input is generally intractable. Nonetheless, interpreted data

hold as much geological value as field measurements [Frodeman, 1995]. Therefore,

favoring either one over the other should remain an expert choice, based on practical

considerations such as the desired model complexity, the state of play, or the targeted

applications. It goes beyond the methodological scope proposed here.

In any case, using a discretized version of the interpreted hinge line remains more

desirable, in our opinion, than introducing purely arbitrary control points (e.g. contact

points or gradient data). Indeed, the latter generate complex, non-parsimonious mod-

els of the anisotropy. In particular, contact points force the surface to pass through

a particular point; this condition can be viewed as too restrictive. In addition, gra-

dient data control the contraction of the scalar field (isosurfaces get closer to each

other with the gradient norm) and thus introduce the gradient norm bias. The inter-

preted hinge line, on the other hand, gives some degree of freedom to the model and

solves the gradient norm bias by adding tangent data. By focusing on the two leading

types of information that characterize the anisotropy, namely the null and maximum

curvatures, it produces a parsimonious realistic model. The number of tangent or

second-derivative data to add to the model must be pondered relative to the induced

computational complexity, since each constraint adds one line to the co-kriging sys-

tem.

Another way of incorporating the hinge line into the model, which was not con-

sidered here, would be to use it as a drift function. This would require an explicit

analytic formula describing the hinge line, instead of a collection of discrete values.

In practice, it is possible to create an explicit fold potential from an initial three-

dimensional curve sketch using the distance to a skeleton [Henrion et al., 2010, Gar-

cia et al., 2018]. This approach brings geological modeling and computer graphics
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techniques closer together, but quantifying the uncertainty of such data remains an

open question. This is left for future research.
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A Formulation of the potential field method in terms of kriging equations

Whereas the seminal paper by [Lajaunie et al., 1997] adopted a dual (co-)kriging formulation, we retained

here the universal (co-)kriging formulation.

The interested reader may consult the chapter 3.4 of the book by [Chiles and Delfiner, 2009] to have

more details about this derivation.

Equation 2 writes:

[ Z(p)−Z(p0) ]
∗ =

ii′n

∑
ii′

λii′ [ Z(pi)−Z(pi′ ) ] +
gn

∑
g

λg Z′
g(pg) +

sn

∑
s

λs Z′′
s (ps) (A.8)

where the estimate [ Z(p)−Z(p0) ]
∗ is a linear combination of:

– ii′n increment data,
– gn first-order directional derivative of potential data (tangent and/or components of gradient data),
– sn second-order directional derivative of potential data,

and where for the sake of simplicity, we also index the directional derivatives Z’ and Z” with g and s rather

than with directions τg and τs:

Z′
g(pg) = Dτg Z(pg),

Z′′
s (ps) = D2

τs
Z(ps).

(A.9)

Similarly, in the following, in summations of first and second-order directional derivatives of any

function, we will drop the directions and index by g and s as well.

The estimation error ε is defined by

ε = [ Z(p)−Z(p0) ]
∗− [ Z(p)−Z(p0) ]

=
ii′n

∑
ii′

λii′ [ Z(pi)−Z(pi′ ) ] +
gn

∑
g

λg Z′
g(pg) +

sn

∑
s

λs Z′′
s (ps) − [ Z(p)−Z(p0) ].

(A.10)

A.1 Universality conditions

Universality conditions ensure that the estimation is unbiased in the sense that the expectation of the

estimation error is null i.e. E(ε) = 0.

Noting that

E[Z(p)−Z(p0)] = m(p) =
n

∑
ℓ

νℓ f ℓ(p),

E[Z′
g(pg)] = m′

g(pg) =
n

∑
ℓ

νℓ f ℓg
′(pg),

E[Z′′
s (ps)] = m′′

s (ps) =
n

∑
ℓ

νℓ f ℓs
′′(ps),

(A.11)



Title Suppressed Due to Excessive Length 25

with the same abbreviation logic as previously and m′
g(pg) (resp. f ℓg

′(pg)) standing for Dτg m(pg)

(resp. Dτg f ℓ(pg)).
Then, universality conditions write:

E[ε] = E[
ii′n

∑
ii′

λii′ [ Z(pi)−Z(pi′ ) ] +
gn

∑
g

λg Z′
g(pg) +

sn

∑
s

λs Z′′
s (ps) − [ Z(p)−Z(p0) ] ]

=
ii′n

∑
ii′

λii′ [ E[Z(pi)]−E[Z(pi′ )] ] +
gn

∑
g

λg E[Z′
g(pg)] +

sn

∑
s

λs E[Z′′
s (ps)] −E[Z(p)−Z(p0)]

=
ii′n

∑
ii′

λii′ [
n

∑
ℓ

νℓ f ℓ(pi)−
n

∑
ℓ

νℓ f ℓ(pi′ ) ] +
gn

∑
g

λg

n

∑
ℓ

νℓ f ℓg
′(pg) +

sn

∑
s

λs

n

∑
ℓ

νℓ f ℓs
′′(ps)

−
n

∑
ℓ

νℓ f ℓ(p)

=
n

∑
ℓ

νℓ (
ii′n

∑
ii′

λii′ [ f
ℓ(pi)− f ℓ(pi′ )] +

gn

∑
g

λg f ℓg
′(pg) +

sn

∑
s

λs f ℓs
′′(ps)− f ℓ(p) )

= 0,

(A.12)

which must be true for all values of νℓ and implies n equations (universality constraints), as many as

there are drift functions:

ii′n

∑
ii′

λii′ [ f
ℓ(pi) − f l(pi′ )] +

gn

∑
g

λg f ℓg
′(pg) +

sn

∑
s

λs f ℓs
′′(ps) − f ℓ(p) = 0 ∀ℓ ∈ {1, . . . ,n} (A.13)

denoted T ℓ(λii′ ,λg,λs) = 0 in the following.

A.2 Optimality conditions

Optimality conditions ensure that Var(ε) is minimal.

In this part, the following convention is adopted:

Cov(Z(pi), Z(p j)) =C••
i, j ,

Cov(Z′
g(pg), Z(p j)) =C•′•

g, j ,

Cov(Z′′
s (ps), Z′

j(p j)) =C•′′•′
s, j .

(A.14)

When double indices are used, the notation will refer to increment values, for example C••
ii′ , j

will refer

to Cov(Z(pi)−Z(pi′ ), Z(p j)).
The variance of the estimation error (A.10) is

Var(ε) = Var

[

ii′n

∑
ii′

λii′ [ Z(pi)−Z(pi′ ) ] +
gn

∑
g

λg Z′
g(pg) +

sn

∑
s

λs Z′′
s (ps) −Z(p)

]

= ∑
ii′ , i2i3

λii′λi2i3 C••
ii′ , i2i3

+ ∑
g,g′

λgλg′ C•′•′

g,g′ +∑
s,s′

λsλs′ C•′′•′′

s,s′ −Var[Z(p)]

+ 2 ( ∑
ii′ ,g

λii′λg C••′

ii′ ,g +∑
ii′ ,s

λii′λs C••′′

ii′ ,s +∑
g,s

λgλs C•′•′′
g,s − ∑

ii′ ,p

λii′ C••
ii′ ,p −∑

g,p

λg C•′•
g,p −∑

s,p

λs C•′′•
s,p )

(A.15)

Lagrange multipliers are used to minimize the quadratic form Var[ε(λii′ ,λg,λs)] under the constraint

that all universality conditions hold i.e. T ℓ(λii′ ,λg,λs) = 0 for all ℓ.



26 Pizzella et al.

This implies that

Var[ε(λii′ ,λg,λs)]+2 ∑
l

µl T ℓ(λii′ ,λg,λs) (A.16)

should have its partial derivatives with respect to each λii′ ,λg,λs and ℓ Lagrangian multipliers µℓ to

be nul.

The Lagrangian L is then given by

L(λii′ ,λg,λs,µl) = ∑
ii′ ,i2i3

λii′λi2i3 C••
ii′ ,i2i3

+ ∑
g,g′

λgλg′ C•′•′

g,g′ +∑
s,s′

λsλs′ C•′′•′′

s,s′

+2 ( ∑
ii′ ,g

λii′λg C••′

ii′ ,g + ∑
ii′ ,s

λii′λs C••′′

ii′ ,s + ∑
g,s

λgλs C•′•′′
g,s )

−2 ( ∑
ii′

λii′ C••
p,ii′ + ∑

g

λg C••′
p,g + ∑

s

λs C••′′
p,s )

−2 ∑
ℓ

µℓ T ℓ(λii′ ,λg,λs)

(A.17)

Derivating this Lagrangian according to λii′ , λg, λs and µl gives



























































∑
i2i3

λi2i3 C••
ii′ ,i2i3

+∑
g

λg C••′

ii′ ,g
+∑

s
λs C••′′

ii′ ,s
+∑

ℓ

µℓ [ f
ℓ(pi)− f ℓ(pi′ )] =C••

p,ii′
∀ (i, i′)

∑
g′

λg′ C•′•′

g,g′
+∑

ii′
λii′ C••′

ii′ ,g
+∑

s
λs C•′•′′

g,s +∑
ℓ

µℓ f ℓg
′(pg) =C••′

p,g ∀ g

∑
s′

λs′ C•′′•′′

s,s′
+∑

ii′
λii′ C••′′

ii′ ,s
+∑

g
λg C•′•′′

g,s +∑
ℓ

µℓ f ℓs
′′(ps) =C••′′

p,s ∀ s

∑
ii′

λii′ [ f
ℓ(pi)− f ℓ(pi′ )]+∑

g
λg f ℓg

′(pg)+∑
s

λs f ℓs
′′(ps) = f ℓ(p) ∀ ℓ

(A.18)

which defines kriging equations and writes in matrix form:

(

K F
t F 0

)(

λ
µ

)

=

(

Kp

Fp

)

(A.19)

Denoting N = (ii′n +gn + sn), the number of data, and p, the number of points to estimate :

K is N ×N, Kp is N × p, F is N ×n, Fp is n× p and 0 is a block zero matrix.

K =







K••
ii′ ,i2i3

K••′

ii′ ,g
K••′′

ii′ ,s

K•′•
g,ii′

K•′•′

g,g′
K•′•′′

g,s

K••′′

s,ii′
K•′′•′

s,g K•′′•′′

s,s′






Kp =







K••
ii′ ,p

K•′•
g,p

K•′′•
s,p






Fp =





f 1(p1) · · · f 1(pp)
· · ·

f n(p1) · · · f n(pp)





F =





f 1(pi)− f 1(pi′ ) · · · f n(pi)− f n(pi′ )
f 1
g
′(pg) · · · f n

g
′(pg)

f 1
s
′′(ps) · · · f n

s
′′(ps)





(A.20)

with the same abbreviation logic f ℓg
′(pg) = Dτg f ℓ(pg) and f ℓs

′′(ps) = D2
τs

f ℓ(ps).

B Covariance function derivation developments

B.1 Definitions

Covariance function of Z between point p and point q

(p,q) 7→ Cov(Z(p),Z(q)) R
3 ×R

3 → R. (B.21)
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Stationarity case of order two assumption

Cov(Z(p),Z(q)) =CZ(p−q) =CZ(hpq), (B.22)

with

hpq 7→CZ(hpq) R
3 → R. (B.23)

Case of constant anisotropic distance (global anisotropy)

CZ(hpq) = K(r(hpq)), (B.24)

with

K R→ R the chosen covariance model function, (B.25)

r(hpq) = ‖hpq‖A =
√

(p−q)t A (p−q) R
3 → R the anisotropic norm, (B.26)

where A is a fixed rotation/dilatation matrix of R3.

In the following, r(hpq) may be denoted r for readability.

B.2 Notations

B.2.1 Differentiation with respect to variable p or q

Although by assumption the covariance function of Z between points p and q only depends on the

anisotropic distance r between them, in order to compute the partial derivatives needed in our model,

we still have to consider it as a function of two variables p and q in R
3. In the following, we will need to

differentiate with respect to either of them, which we will denote with a superscript indicating the variable

we differentiate upon.

For instance, for a function F : R3 ×R
3 → R, we note the partial derivative with respect to p along

the vector τ as

D
p
τ F(p,q) = lim

h→0

1

h
(F(p+hτ,q)−F(p,q)) .

Denoting (ex,ey,ez) the standard basis of R3, we can then define the gradient with respect to p as

∇pF(p,q) =





D
p
ex

F(p,q)
D

p
ey

F(p,q)
D

p
ez

F(p,q)



 .

By differentiating this with respect to q, we can define Dp,qF(p,q) and by further differentiating

with respect to one or the other variable, we can define higher-order differentials, like Dp,p,qF(p,q) or

Dp,p,q,qF(p,q).

The dimensions of these quantities must be kept in mind in the following equations: D
p
τ F(p,q) is a

scalar, ∇pF(p,q) is a 3D vector, Dp,qF(p,q) a 3 by 3 matrix, Dp,p,qF(p,q) is a 3x3x3 third-order tensor,

and ∇p,p,q,qF(p,q) a 3x3x3x3 fourth-order tensor.

Successive derivations of the covariance model K, which is a scalar function, are classically denoted

by K′ for the first derivative, and by K(n) for the n-th derivative.
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B.2.2 Antisymmetry property

In the particular case where F can be written as a function of p−q, i.e. there exists a function G : R3 →R

such that F(p,q) = G(p−q), differentiating with respect to p is the same as differentiating with respect

to q and changing the sign of the result.

In the present case, under our second-order stationary assumption, the covariance function of Z and

the anisotropic distance satisfy this antisymmetry property, so we can substitute p for q in their differentials

simply by changing the sign. The final sign of the substituted covariance function will then depend on the

parity of the number of substitutions in the following way: (−1)n Dp,p,...CZ(hpq) = Dq,q,...CZ(hpq) where

n is the number of substitutions.

B.3 First derivative of covariance function

Directional derivative at point p according to ex

Cov(Dex Z(p), Z(q)) = D
p
ex

Cov(Z(p),Z(q))

= Cov( lim
α→0

Z(p+α ex)−Z(p)

α
, Z(q))

= lim
α→0

1

α
[Cov(Z(p+α ex), Z(q))−Cov(Z(p), Z(q))]

= lim
α→0

1

α
[CZ(hpq +αex)−CZ(hpq)] = D

p
ex

CZ(hpq)

= lim
α→0

1

α
[K(r(hpq +αex))−K(r(hpq))] = D

p
ex

K(r(hpq)).

(B.27)

Thus, we obtain

D
p
ex

Cov(Z(p),Z(q)) = D
p
ex

CZ(hpq) = D
p
ex

K(r(hpq)). (B.28)

The gradient of CZ with respect to p is

∇pCZ(hpq) =





D
p
ex

CZ(hpq)
D

p
ey

CZ(hpq)
D

p
ez

CZ(hpq)



 . (B.29)

First derivative specification of CZ with respect to p

∇p CZ(hpq) = ∇pr(hpq) . K′(r(hpq)) , (B.30)

with

∇pr(hpq) =
A hpq

r(hpq)
. (B.31)

Let us notice again that

∇pr(hpq) =−∇qr(hpq). (B.32)

Equation B.30 leads to 2 conditions

– K should be differentiable,
– For ∇p CZ(hpq) to be defined where p = q, we need K′(0) = 0.

B.3.1 Generalization: first-order derivative of the covariance function in a specific

direction

Cov(Dτ Z(p), Z(q)) = Cov(τp .∇Z(p), Z(q))

= τp .∇p Cov(Z(p),Z(q))

= τp . ∇p CZ(hpq).

(B.33)
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B.4 Second-order derivative of the covariance function

Covariance of partial derivatives w.r.t. p according to ex and w.r.t. q according to ey

Cov(Dex Z(p),Dex Z(q)) = t ex.D
p,q CZ(hpq).ey. (B.34)

Second-order derivative specification of CZ with respect to p then q

Dp,q CZ(hpq) = K(2)(r(hpq)) ∇qr(hpq).
t ∇pr(hpq) + K′(r(hpq)) Dp,qr(hpq), (B.35)

with

Dp,q r(hpq) =−
A

r(hpq)
+

A hpq
t(A hpq)

r3(hpq)
∈ M3(R). (B.36)

Let us notice again that

Dp,q CZ(hpq) =−Dq,q CZ(hpq) =−Dp,p CZ(hpq). (B.37)

Equation B.35 leads to 2 conditions

– K should be twice differentiable,

– For Dp,q CZ(hpq) to be defined at hpq = 0, we need K′(0) = 0.

B.4.1 Second-order derivative of the covariance function in a specific direction

Cov(D2
τ Z(p), Z(q)) = Cov( t τ .D2Z(p).τ, Z(q)) R

3 ×R
3 → R

= t τ.Dp,p CZ(hpq).τ

= ∑
i

∑
j

τ[i] τ[ j] Dp,p CZ(hpq)[i, j].
(B.38)

B.5 Third-order derivative of the covariance function

Cov(D2
τ Z(p),Dµ Z(q)) = Cov( t τ .D2Z(p).τ , t µ .∇Z(q))

= ∑
i

∑
j
∑
k

τ[i] τ[ j] µ[k] Dp,p,q CZ(hpq)[i, j,k]. (B.39)

Reminding that

Dp,p,q CZ(hpq) =−Dp,p,p CZ(hpq), (B.40)

where Dp,p,p CZ(hpq) is a third-order tensor (3x3x3) given by

Dp,p,p CZ(hpq)[i, j,k] = K′(r) Dp,p,pr[i, j,k]

+ K(2)(r) (∇pr[i]Dp,p[ j,k]+∇pr[ j]Dp,p[i,k]+∇pr[k]Dp,p[i, j])

+ K(3)(r) (∇pr[i]∇pr[ j]∇pr[k]).

(B.41)

The third-order derivative of r is also a third-order tensor (3x3x3) given by

Dp,p,pr(hpq)[i, j,k] =−
1

r3
[Ai, jtk +Ai,kt j +A j,kti]

+
3

r5
[ti t j tk],

(B.42)

where t = Ahp,q
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B.6 Fourth-order derivative of the covariance function

Cov(D2
τ Z(p),D2

µ Z(q)) = Cov( t τ .D2Z(p).τ , t µ .D2Z(q).µ)

= ∑
i

∑
j
∑
k

∑
l

τ[i] τ[ j] µ[k] µ[l] Dp,p,q,q CZ(hpq)[i, j,k, l]. (B.43)

Reminding that

Dp,p,q,q CZ(hpq) = Dp,p,p,p CZ(hpq), (B.44)

Dp,p,p,p CZ(hpq) is a 3x3x3x3 fourth-order tensor

Dp,p,p,p CZ(hpq) = K′(r) M1 +K(2)(r) M2 +K(3)(r) M3 +K(4)(r) M4, (B.45)

with

M1 = Dp,p,p,pr

M2[i, j,k, l] = Dp,pr[i, j] Dp,pr[k, l]+Dp,pr[i,k] Dp,pr[ j, l]+Dp,pr[i, l] Dp,pr[ j,k]

+∇pr[i]Dp,p,pr[ j,k, l]+∇pr[ j]Dp,p,pr[i,k, l]+∇pr[k]Dp,p,pr[i, j, l]+∇pr[l]Dp,p,pr[i, j,k]

M3[i, j,k, l] = Dp,pr[i, j] ∇pr[k] ∇pr[l]+Dp,pr[i,k] ∇pr[ j] ∇pr[l]+Dp,pr[i, l] ∇pr[ j] ∇pr[k]

+Dp,pr[ j,k] ∇pr[i] ∇pr[l]+Dp,pr[ j, l] ∇pr[i] ∇pr[k]+Dp,pr[k, l] ∇pr[i] ∇pr[ j]

M4[i, j,k, l] = ∇pr[i] ∇pr[ j] ∇pr[k] ∇pr[l]

(B.46)

and

Dp,p,p,p r(hpq)[i, j,k, l] =−
1

r3
(Ai jAkl +AikA jl +AilA jk)

+
3

r5
(Ai jAkl tk tl +AikA jl t j tl + ...+AklAi j ti t j)

−
15

r7
(ti t j tk tl),

(B.47)

where t = Ahp,q.

C Demonstration of null second-order derivative along the hinge line

If we consider a twice-differentiable parametric curve γ : t 7→





x(t)
y(t)
z(t)



 ∈ R
3 and define g : t 7→ Z(γ(t)),

where Z is our potential field (Z : R3 → R), we have in all generality

g′(t) = ∇Z(γ(t)).
−−→
γ ′(t) (C.48)

and

g′′(t) = ∇Z(γ(t)).
−−→
γ ′′(t)+ t

−−→
γ ′(t) . D2Z(γ(t)) .

−−→
γ ′(t). (C.49)

Let us assume that γ is a parametrization of a planar curve included in an isopotential of Z, and that

furthermore, there exists a plane that is tangent to this isopotential along the curve defined by γ . This is the

case, for instance, for any parametrization of the H3 curve of Fig. 1.

Under this assumption, g is constant, therefore in particular g′′ = 0. Since
−−→
γ ′′(t) is in the same plane as

γ (plane Pt in the case of Fig. 1), that is tangent to the isopotential, it is orthogonal to the gradient ∇Z(γ(t)).

Equation C.49 then reduces to t
−−→
γ ′(t)∇2Z(γ(t))

−−→
γ ′(t) = 0, i.e.

−−→
γ ′(t) ∈ Ker(D2Z(γ(t))). In other words,

the directional second derivative of Z is null along
−−→
γ ′(t), which is the direction of the crest/hinge line H3

in the particular case of Fig. 1.
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D Volumic error indicator

D.1 Volumic error (Ve) computation

The indicator Ve provides a quantitative measure of the ability of the model to reconstruct the structure of

interest of our synthetic example. It can be thought of as the volume between the two surfaces near the

fold.

Let us denote by z(x,y) and ẑ(x,y) the respective elevations of the theoretical surface and the modeled

surface at location (x,y). The isopotential considered in this work, described in Sec. 3 has a constant

elevation of z f loor = 0.6 on a large part of the domain, but no information is provided to any model in

this zone. In order not to penalize errors made far from the region of interest, instead of considering ẑ, we

consider min(ẑ,z f loor) when calculating the volume

Ve = ‖z−min(ẑ,z f loor)‖1 =
∫

|z(x,y)−min(ẑ(x,y),z f loor)|

D.2 Uncertainty (∆V ) on this computation

In practice, the interpolated value of the potential Z∗(x,y,z) is known only on the grid points (xi,y j,zk);
at each location (xi,y j) the elevation ẑ(xi,y j) is estimated by taking zk such that Z∗(xi,y j,zk) is closest

to 2.5, which is the value of the iso-surface considered here. This leads to an estimation uncertainty ∆V

that depends on the vertical resolution (the finer the grid, the lower this uncertainty). For each model,

this uncertainty is computed along with the volumic error indicator (it is almost constant but may vary a

little, because this uncertainty is zero for locations where ẑ ≤ z f loor , since we use the value z f loor anyway).

Several models are close in performance, in terms of this indicator; this uncertainty needs to be taken into

account when comparing them.

D.3 Relative volumic improvement (RVI, ηVe)

S1 : Scenario 1 ; S2 : Scenario 2

Ve : Volumic error (u3)

Ve1
: Volumic error of initial result of Scenario 1 (u3)

Ve2
: Volumic error of initial result of Scenario 2 (u3)

where u is the arbitrary length unit used here.

ηVe (RVI) : Signed relative difference of Ve compared to initial result in the same scenario (%)

ηVe =
Vei

−Ve

Vei

i ∈ (1,2)

D.4 Results

This part summarizes all the intermediate computations for the results concerning the volumic error of the

different investigations of Sec. 4.
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Figures

Figure 1

Fold geometry and planes of interest. Sa: Axial surface. n: Pole vectors belonging to the axial plane; n0:
Other pole vectors of the same pro�le. Pt : Tangent plane. S0: Bedding. S1: Cleavage. H1, H2, H3: Hinge
lines of beddings L1, L2, L3. The hinge line H3 and the crest line coincide in this case. DA and DA0 : Fold
axis measurements on hinge lines H2 and H3. DB: Intersection lineation between S0 and S1
measurement. DC: Fold axis inference from stereographic projections using n0 pole measurements.

Figure 2



Please see the Manuscript PDF �le for the complete �gure caption.

Figure 3

Please see the Manuscript PDF �le for the complete �gure caption.

Figure 4



Initial results of the potential �eld method on two different initial samplings. Sampling 1 consists in 4
contact points (blue spheres) and 4 gradient data (black arrows). Sampling 2 consists in 8 contact points
and 8 gradient data.

Figure 5

Impact of (c)(d) 15 tangent data (green arrows), (e)(f) 15 null second-order derivative data (D2, pink
arrows), (g)(h) both data on the resulting surface compared to (a)(b) the initial result with Sampling 1 or



Sampling 2

Figure 6

Impact of the number of tangent data along the hinge line in the two different scenarios



Figure 7

Impact of the spatial distribution of the tangent data along the hinge line in the two different scenarios. 6
tangent data are poised in different ways: (a)(b) regularly spaced along the hinge line, (c)(d) close to the
initial data, (e)(f) far from the initial data



Figure 8

Comparison of the impact of (�rst row) 1, (second row) 2, (third row) 3 and (last row) 4 constraints per
point at the same 6 locations on the fold axis of the theoretical surface


