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A precise bare simulation approach to the
minimization of some distances. Foundations

Michel Broniatowski and Wolfgang Stummer

Abstract

In information theory — as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing
and pattern recognition — many flexibilizations of the omnipresent Kullback-Leibler information distance (relative entropy) and
of the closely related Shannon entropy have become frequently used tools. To tackle corresponding constrained minimization
(respectively maximization) problems by a newly developed dimension-free bare (pure) simulation method, is the main goal of
this paper. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary
dimension, and our method is precise (i.e., converges in the limit). As a side effect, we also derive an innovative way of constructing
new useful distances/divergences. To illustrate the core of our approach, we present numerous examples. The potential for wide-
spread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences
and entropies in various different research fields (which may also serve as an interdisciplinary interface).

Index Terms

f-divergences of Csiszar-Ali-Silvey-Morimoto type, power divergences, Kullback-Leibler information distance, relative en-
tropy, Renyi divergences, Bhattacharyya distance, Jensen-Shannon divergence/distance, alpha-divergences, Shannon entropy, Renyi
entropies, Bhattacharyya coefficient, Tsallis (cross) entropies, Cressie-Read measures, Hellinger distance, Euclidean norms, gen-
eralized maximum entropy method, importance sampling, fuzzy divergences.
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I. INTRODUCTION

D IRECTED (i.e., not necessarily symmetric) distances D(P,Q) between two finite discrete1 (probability) distributions
P,Q or between two general Euclidean vectors P,Q are known as divergences; they serve as important (dis)similarity

measures, proximity measures and discrepancy measures in various different research areas such as information theory,
statistics, artificial intelligence, machine learning, signal processing, pattern recognition, physics, finance, etc.2. Besides Bregman
distances/divergences (with which we do not deal here), another major class are the ϕ−divergences Dϕ(P,Q) of Csiszar-Ali-
Silvey-Morimoto (in short CASM ϕ−divergences, cf. [94], [11], [266]). The latter covers — with corresponding choices of ϕ
— e.g. the omnipresent Kullback-Leibler information distance/divergence [200] (also known as relative entropy), the Jensen-
Shannon distance/divergence, as well as the power divergences (also known as alpha-divergences, Cressie-Read measures, and
Tsallis cross-entropies). For some comprehensive overviews on CASM ϕ−divergences, the reader is referred to the insightful
books of e.g. Liese & Vajda [217], Read & Cressie [303], Vajda [371], Csiszar & Shields [99], Stummer [344], Pardo [282],
Liese & Miescke [216], the survey articles of e.g. Liese & Vajda [218], Vajda & van der Meulen [374], Reid & Williamson [304],
Basseville [34], and the references therein; an imbedding of CASM ϕ−divergences to more general frameworks can be found
e.g. in Stummer & Vajda [350], Broniatowski & Vajda [65], Stummer & Kißlinger [346] and Broniatowski & Stummer [64].

Frequently used special cases of the above-mentioned power divergences are e.g. the (squared) Hellinger distance, the
Pearson chi-square divergence, and the Neyman chi-square divergence. Moreover, several deterministic transformations of
power divergences are also prominently used in research, most notably the Bhattacharyya distance [48] and the more general
Renyi divergences [309] (also known as Renyi cross-entropies); a comprehensive exposition of the latter is given e.g. in van
Erven & Harremoes [380]. Some other important deterministic transformations of power divergences include the Bhattacharyya
coefficient (cf. [48],[49],[50]) — which is also called affinity (cf. Matusita [256]) and fidelity similarity (cf. e.g. Deza & Deza
[113]) — as well as the Bhattacharyya arccos distance (cf. [50]) and the Fisher distance (also known as Rao distance, geodesic
distance, cf. e.g. Deza & Deza [113]). As shown below, by further explicit transformations we can also recover Sundaresan’s
divergence [352] [353].

M. Broniatowski is with the LPSM, Sorbonne Université, 4 place Jussieu, 75252 Paris, France. ORCID 0000-0001-6301-5531.
W. Stummer is with the Department of Mathematics, University of Erlangen–Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany; e-mail: stum-
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1 for reasons of technicality, in this paper we only deal with such kind of distributions; for instance, these can be also achieved from more involved

systems by quantizations of observations represented by finite partitions of the observation/data space, or by making use of the dual representation for CASM
ϕ−divergences (cf. Liese & Vajda [218], Broniatowski & Keziou [61]).

2 since there exists a vast literature on divergences and connected entropies in these fields, for the sake of brevity we will give in this introduction only some
basic references; many corresponding concrete applications will be mentioned in the following sections, in the course of the method-illuminating examples.
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The minimization infQ∈ΩD(Q,P) of divergences from one distribution (respectively, its equivalent vector of frequencies) P
to an appropriate set Ω of distributions (frequency vectors) appears in a natural way in various different contexts, as indicated in
the following. For instance, let P = Ptrue be the true distribution of a mechanism which generates non-deterministic data and Ω
is a pregiven model in the sense of a (parametric or non-parametric) family of distributions which serves as an “approximation”
(in fact, a collection of approximations) of the “truth” Ptrue. If Ptrue /∈ Ω — e.g. since Ω reflects some simplifications of
Ptrue which is in line with the general scientific procedure — then the positive quantity ΦPtrue(Ω) := infQ∈ΩD(Q,Ptrue)
can be used as an index of model adequacy in the sense of a degree of departure between the model and the truth (cf. Lindsay
[222], see also e.g. Lindsay et al. [223], Markatou & Sofikitou [248], Markatou & Chen [249]); small index values should
indicate high adequacy. If Ptrue ∈ Ω, then ΦPtrue(Ω) = 0 which corresponds to full adequacy. This index of model adequacy
ΦPtrue(Ω) can also be seen as index of goodness/quality of approximation to the truth or as model misspecification error, and
it can be used for model assessment as well as for model search (model selection, model hunting) by comparing the indices
ΦPtrue(Ω1),ΦPtrue(Ω2), . . . of competing models Ω1,Ω2, . . . and choosing the one with the smallest index; this idea can
be also used for classification (e.g. analogously to Bilik & Khomchuk [54] who deal with continuous (rather than discrete)
distributions) where the Ωi are interpreted as (possibly data-derived but fixed) classes which are disjoint and non-exhaustive.

Typically, in statistical analyses the true distribution Ptrue is unknown and is either replaced by a hypothesis-distribution
Phyp or by a distribution Pdata derived from data (generated by Ptrue) which converges to Ptrue as the data/sample size tends
to infinity (e.g. Pdata may be the well-known empirical distribution or a conditional distribution). Correspondingly, ΦPdata(Ω)
reflects a data-derived approximation (estimate) of the index of model adequacy (resp. of the model misspecification error)
from which one can cast corresponding model-adequacy tests and related goodness-of-fit tests. Moreover, for the case of
i.i.d. data-generation and Pdata to be the corresponding empirical distribution, the (not necessarily existent or unique) best-
model-member/element choice arg minQ∈ΩD(Q,Pdata) amounts to the well-known minimum distance estimator which for
the Kullback-Leibler information divergence D is equal to the omnipresent maximum likelihood estimator; for comprehensive
surveys on divergence-based statistical testing and estimation, the reader is referred to e.g. the references in the second half
of the first paragraph in the current introduction.

Most of the above-mentioned considerations also hold for deterministic (rather than non-deterministic) frameworks where P
is a general Euclidean vector (rather than a probability-distribution describing frequency vector in the probability simplex) and
Ω is a model in the sense of a family of general Euclidean vectors (which may be encodings of more complicated context
descriptions).

Returning to the general context, let us mention that from CASM ϕ−divergences one can also derive the widely used
ϕ−entropies Eϕ(Q) of a distribution Q (and non-probability versions thereof) in the sense of Burbea & Rao [68] (see also
Csiszar [95], Ben-Bassat [38], Ben-Tal & Teboulle [40], Kesavan & Kapur [187], Dacunha-Castelle & Gamboa [102], Teboulle
& Vajda [357], Gamboa & Gassiat [132], Vajda & Zvarova [376]); these entropies can e.g. be basically constructed from
Dϕ(Q,Punif ) where Punif denotes the uniform distribution. Moreover, by use of certain deterministic transformations h one
can also deduce the more general (h, ϕ)−entropies (and non-probability versions thereof) in the sense of Salicru et al. [314]
(see also e.g. Pardo [282]). As will be worked out in detail in Subsection IV-C below, from this one can deduce as special
cases a variety of prominently used quantities in research, such as for instance:
• the omnipresent Shannon entropy [328], the γ−order Renyi entropy [309], the γ−order entropy of Havrda-Charvat [157]

(also called non-additive γ−order Tsallis entropy [363] in statistical physics), the γ̃−order entropy of Arimoto [16],
Vajda’s quadratic entropy [371], Sharma-Mittal entropies [329],

• the Euclidean γ−norms, as well as
• measures of diversity, heterogeneity and unevenness, like the Gini-Simpson diversity index, the diversity index of Hill

[160], the Simpson-Herfindahl index (which is also known as index of coincidence, cf. Harremoes & Topsoe [155] and its
generalization in Harremoes & Vajda [156]), the diversity index of Patil & Taillie [286], the γ−mean heterogeneity index
(see e.g. van der Lubbe [379]); see also Nayak [271] and Jost [176] for some interrelations with the above-mentioned
entropies.

Given that the constraint set Ω reflects some incomplete/partial information about a system (e.g. moment constraints), the max-
imization over Q ∈ Ω of the above-mentioned entropies, norms and diversity indices (and the more general (h, ϕ)−entropies)
is important for many research topics, most notably manifested in Jaynes’s [165],[166] omnipresent, “universally applicable”
maximum entropy principle (which employs the Shannon entropy), and its generalizations (see e.g. the books of Kapur [184],
Kapur & Kesavan [185], Arndt [17], and Gzyl et al. [150] for comprehensive surveys).

Besides the above-mentioned principal overview, let us now briefly discuss some existing technical issues for the minimization
of CASM ϕ−divergences ΦP(Ω) := infQ∈ΩDϕ(Q,P). For (not necessarily discrete) probability distributions/measures P and
sets Ω of probability distributions/measures satisfying a finite set of linear equality constraints, ΦP(Ω) has been characterized
in Csiszar [96] and more recently by Csiszar & Matus [98], Broniatowski & Keziou [60], Leonard [213], and Pelletier [288]
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among others, in various contexts; those results extend to inequality constraints. Minimizations of γ−order Renyi divergences on
γ−convex sets Ω are studied e.g. in Kumar & Sason [202], whereas Kumar & Sundaresan [203] [204] investigate minimizations
of Sundaresan’s divergence on certain convex sets Ω.

To our knowledge, no general representation for ΦP(Ω) for a positive distribution/measure P (respectively, for an Euclidean
vector with positive components) and a general set Ω of signed measures (respectively, of Euclidean vector with components
of arbitrary sign) exists. At the contrary, many algorithmic approaches for such minimization problems have been proposed;
they mostly aim at finding minimizers more than at the evaluation of the minimum divergence itself, which is obtained as
a by-product. Moreover, it is well-known that such kind of CASM ϕ−divergence minimization problems may be hard to
tackle or even intractable via usual methods such as the omnipresent gradient descent method and versions thereof, especially
for non-parametric or semi-parametric Ω in sufficiently high-dimensional situations. For instance, Ω may consist (only) of
constraints on moments or on L-moments (see e.g. Broniatowski & Decurninge [59]); alternatively, Ω may be e.g. a tubular
neighborhood of a parametric model (see e.g. Liu & Lindsay [225], Ghosh & Basu [135]). The same intractability problem
holds for the above-mentioned (h, ϕ)−entropy maximization problems. In the light of this, the goals of this paper are:
• to solve constrained minimization problems of a large range of CASM ϕ−divergences and deterministic transformations

thereof (respectively constrained maximization problems of (h, ϕ)−entropies including Euclidean norms and diversity
indices), by means of a newly developed dimension-free bare (pure) simulation method which is precise (i.e., converges
in the limit) and which needs almost no assumptions (like convexity) on the set Ω of constraints; in doing so, for the
sake of brevity we concentrate on finding/computing the minimum divergences themselves rather than the corresponding
minimizers (to achieve the latter, e.g. dichotomous search could be used in a subsequent step, however);

• to derive a method of constructing new useful distances/divergences;
• to present numerous examples in order to illuminate our method and its potential for wide-spread applicability; as we go

along, we also deliver many recent references for uses of the outcoming distances/divergences and entropies (covering in
particular all the above-mentioned ones).

This agenda is achieved in the following way. In the next Section II, we briefly introduce the principal idea of our new
bare-simulation optimization paradigm. After manifesting the fundamentally employed class of CASM ϕ−divergences in
Section III, we give in Section IV the main cornerstones, construction principles and theorems, for deterministic as well as
for statistical divergence-minimization problems; the maximization of generalized entropies is addressed, too. Section V deals
with the concrete determination of the involved simulation-weights, as well as with the interrelated issue of creating associated
CASM ϕ−divergences. Some sampling-concerning details for the principal implementation of our bare-simulation optimization
approach are worked out in Section VI. The main proofs are presented in the appendices.

A first simulation-based algorithm in vein with the present proposal has been developed by Broniatowski [58], in the restricted
setup of risk estimation for power divergences. The present paper extends this considerably by considering general CASM
ϕ−divergences and related entropies, and by dealing with corresponding general optimization problems, of both deterministic
respectively stochastic type.

II. A NEW MINIMIZATION PARADIGM

We concern with minimization problems of the following type, where M is a topological space and T is the Borel σ−field
over a given base on M; e.g. take M = RK to be the K−dimensional Euclidean space equipped with the Borel σ− field T .

Definition 1: A measurable function Φ :M 7→ [0,∞] and measurable set Ω ⊂M 3 are called “bare-simulation minimizable”
(BS-minimizable) respectively “bare-simulation maximizable” (BS-maximizable) if for

Φ(Ω) := inf
Q∈Ω
{Φ(Q)} <∞ respectively Φ(Ω) := sup

Q∈Ω
{Φ(Q)} <∞ (1)

there exists a measurable function G : [0,∞[7→ [0,∞[ as well as a sequence ((Xn,An,�n))n∈N of probability spaces and on
them a sequence (ξn)n∈N

4 of M−valued random variables such that

G

(
− lim
n→∞

1

n
log�n[ξn ∈ Ω]

)
= inf
Q∈Ω

Φ(Q) = Φ(Ω) (2)

respectively

G

(
− lim
n→∞

1

n
log�n[ξn ∈ Ω]

)
= sup
Q∈Ω

Φ(Q) = Φ(Ω); (3)

3 i.e. Ω ∈ T
4 in order to emphasize the dependence on Φ, one should use the notations (ξΦ,n)n∈N, �Φ,n, etc.; this is avoided for the sake of a better readability.
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in situations where Φ is fixed and different Ω’s are considered, we say that “Φ is bare-simulation minimizable (BS-minimizable)
on Ω” respectively “Φ is bare-simulation maximizable (BS-maximizable) on Ω”.

Remark 2: (a) Even in situations where one can uniformly choose (Xn,An,�n) ≡ (X̃, Ã, �̃), the sequence (ξn)n∈N may
be not “independent and identically distributed” .
(b) Throughout the paper, we shall mainly deal with BS−minimizability.

The basic idea/incentive of this new approach is: if a minimization problem (1) has no explicit solution and is computationally
intractable (or unfeasible) but can be shown to be BS-minimizable with concretely constructable (ξn)n∈N and (�n)n∈N, then
one can basically simulate the log-probabilities − 1

n�n[ξn ∈ Ω] for large enough integer n ∈ N to obtain an approximation of
(1) without having to evaluate the corresponding (not necessarily unique) minimizer, where the latter is typically time-costly.
Finding minimizers can be performed through dichotomic search, once an algorithm leading to the minimal value of the
divergence on adequate families of sets Ω is at hand; for the sake of brevity, this is omitted in the current paper.

For reasons of transparency, we start to demonstrate this approach for the following important/prominent class of minimization
problems with the following components:

(i) M is the K−dimensional Euclidean space RK , i.e. Ω is a set of vectors Q with a number of K components (where K
may be huge, as it is e.g. the case in big data contexts);

(ii) Φ(·) := ΦP (·) depends on some known vector P in RK with K nonnegative components;
(iii) ΦP (·) is a “directed distance” (divergence) from P into Ω in the sense of Ω 3 Q 7→ ΦP (Q) := D(Q,P ), where D(·, ·)

has the the two properties “D(Q,P ) ≥ 0” and “D(Q,P ) = 0 if and only if Q = P ”. In particular, D(·, ·) needs neither
satisfy the symmetry D(Q,P ) = D(P,Q) nor the triangular inequality.

In other words, (1) together with (i)-(iii) constitutes a distance/divergence-minimization problem; we design a “universal”
method to solve such problems by constructing appropriate (cf.(2)) sequences (ξn)n∈N of RK−valued random variables,
for all directed distances D(·, ·) from a large subclass of the important omnipresent Csiszar-Ali-Silvey-Morimoto CASM
ϕ−divergences (also called f−divergences).

As a second demonstration for the workability of our paradigm, we “extend” (i) to (iii) to the setup where P is a random element
of the simplex SK of K−component probability (frequency) vectors (cf. the exact definition below) and Ω ⊂ SK ; for the sub-
setup where P corresponds to a data-observation-dependent probability distribution and Ω corresponds to a pregiven model in
the sense of a family of probability distributions, the formula (1) amounts to the corresponding (discrete) “minimization-distance
estimation problem (MDEP)” of choosing the best model element/member under given data 5. This is important/prominent in
statistics and in the adjacent research fields of artificial intelligence and machine learning; the concrete solving of the MDEP
is especially “hard” for nonparametric respectively semiparametric problems, and our BS method is predestined for such kind
of contexts.

III. DIRECTED DISTANCES

In detail, concerning the above-mentioned point (i) we take the K− dimensional Euclidean space M = RK , denote from now
on — as usual — its elements (i.e. vectors) in boldface letters, and also employ the subsets

RK6=0 := {Q := (q1, . . . , qK) ∈ RK : qi 6= 0 for all i = 1, . . . ,K},
RK>0 := {Q := (q1, . . . , qK) ∈ RK : qi > 0 for all i = 1, . . . ,K},
RK≥0 := {Q := (q1, . . . , qK) ∈ RK : qi ≥ 0 for all i = 1, . . . ,K},
RK≤0 := {Q := (q1, . . . , qK) ∈ RK : qi ≤ 0 for all i = 1, . . . ,K},

SK := {Q := (q1, . . . , qK) ∈ RK≥0 :

K∑
i=1

qi = 1} (simplex of probability vectors),

SK>0 := {Q := (q1, . . . , qK) ∈ RK>0 :

K∑
i=1

qi = 1}.

Concerning the directed distances D(·, ·) in (ii) and (iii), we deal with the important omnipresent Csiszar-Ali-Silvey-Morimoto
ϕ− divergences (CASM ϕ−divergences) — adapted to our context:

Definition 3:
(a) Let the “divergence-generator” be a lower semicontinuous convex function ϕ : ] −∞,∞[→ [0,∞] satisfying ϕ(1) = 0.
Furthermore, for the effective domain dom(ϕ) := {t ∈ R : ϕ(t) <∞} we assume that its interior int(dom(ϕ)) is non-empty
which implies that int(dom(ϕ)) =]a, b[ for some −∞ ≤ a < 1 < b ≤ ∞. Moreover, we suppose that ϕ is strictly convex in

5an alternative naming also used in literature is to call Ω a model class (rather than model), and each P ∈ Ω a model (rather than model element)



5

a non-empty neighborhood ]tsc− , t
sc
+ [⊆]a, b[ of one (tsc− < 1 < tsc+ ). Also, we set ϕ(a) := limt↓a ϕ(t) and ϕ(b) := limt↑b ϕ(t)

(these limits always exist). The class of all such functions ϕ will be denoted by Υ̃(]a, b[). A frequent choice is e.g. ]a, b[=]0,∞[
or ]a, b[=]−∞,∞[.
(b) For ϕ ∈ Υ̃(]a, b[), P := (p1, . . . , pK) ∈ RK≥0 and Q := (q1, . . . , qK) ∈ Ω ⊂ RK , we define the Csiszar-Ali-Silvey-
Morimoto ϕ−divergence

ΦP (Q) := Dϕ(Q,P) :=

K∑
k=1

pk · ϕ
(
qk
pk

)
≥ 0. (4)

As usual, in (4) we employ the three conventions that p · ϕ
(

0
p

)
= p · ϕ(0) > 0 for all p > 0, and 0 · ϕ

(
q
0

)
= q ·

limx→∞
ϕ(x·sgn(q))
x·sgn(q) > 0 for q 6= 0 (employing the sign of q), and 0 · ϕ

(
0
0

)
:= 0. Throughout the paper, we only consider

constellations (ϕ,P,Ω) for which the very mild condition

ΦP(Ω) := inf
Q∈Ω

Dϕ(Q,P) 6=∞ 6

holds.

For probability vectors P and Q in SK , the ϕ−divergences Dϕ(Q,P) were introduced by Csiszar [94], Ali & Silvey [11] and
Morimoto [266] (where the first two references even deal with more general probability distributions); for some comprehensive
overviews — including statistical applications to goodness-of-fit testing and minimum distance estimation — the reader is
referred to the insightful books of e.g. Liese & Vajda [217], Read & Cressie [303], Vajda [371], Csiszar & Shields [99],
Stummer [344], Pardo [282], Liese & Miescke [216], the survey articles of e.g. Liese & Vajda [218], Vajda & van der
Meulen [374], Reid & Williamson [304], Basseville [34], and the references therein. Some exemplary recent studies and
applications of CASM ϕ− divergences appear e.g. in Qiao & Minematsu [298] for invariances in speech recognition, Nguyen
et al. [273] in connection with empirical risk optimization, Feixas et al. [124] for various different image processing tasks,
Luo et al. [232] for video clip segmentation and key frame generation, Kißlinger & Stummer [189] for model preselection
(structure detection) in the context of nonlinear recursive models with additional exogenous inputs, Mahboubi & Kochenderfer
[241] within a context of traffic-pattern learning from flight tracks, Guo et al. [145] for local contrastive descriptors in image
classification through e.g. regional color distributions, Csiszar & Breuer [100] for modelling generalized-ball type constraints
in expectation minimization problems, Kißlinger & Stummer [191] for the detection of distributional changes in random data
(streams and clouds), Noh et al. [275] within a context of generative local metric learning for nearest neighbor classification,
Yu et al. [416] for adversarial learning within oil spill segmentation, Arslan [19] for automated active reconfiguration in mobile
sensor networks, Sason [320] in connection with with data-processing and majorization inequalities, Ciftci et al. [89] for the
optimization of multienergy microgrids in energy infrastructure systems, and Stummer [345] for solving some new optimal
transport (OT) problems which flexibilize some Wasserstein-distance based OTs.

For the setup of Dϕ(Q,P) for vectors P, Q with non-negative components the reader is referred to e.g. Stummer &
Vajda [349] (who deal with even more general nonnegative measures and giving some statistical as well as information-theoretic
applications) and Gietl & Reffel [137] (including applications to iterative proportional fitting). The case of ϕ−divergences for
vectors with arbitrary components can be extracted from e.g. Broniatowski & Keziou [60] who actually deal with finite signed
measures. For a comprehensive technical treatment, see also Broniatowski & Stummer [64].

Clearly, from (4) it is obvious that in general Dϕ(Q,P) 6= Dϕ(P,Q) (non-symmetry). Moreover, it is straightforward to deduce
that Dϕ(Q,P) = 0 if and only if Q = P (reflexivity). Very prominent and important examples of CASM ϕ−divergences
are the power divergences in the scaling of e.g. Liese & Vajda [217] (in other scalings also called Rathie & Kannapan’s non-
additive directed divergences of order γ [302], Cressie-Read divergences [93] [303], relative Tsallis entropies or Tsallis cross-
entropies [364] (see also Shiino [331]), Amari’s alpha-divergences [12]) where basically (up to technicalities) ϕ(t) := ϕγ(t) :=
tγ−γ·t+γ−1
γ·(γ−1) (γ ∈ R\{0, 1}), ϕ(t) := ϕ0(t) := limγ→0 ϕγ(t) = − log t+t−1, ϕ(t) := ϕ1(t) := limγ→1 ϕγ(t) = t · log t+1−t.

Usually, in the literature one takes t ∈ ]0,∞[ (and the limit as t → 0), except for the case γ = 2 where one handles
t ∈ ]−∞,∞[; for our purposes, we have to essentially extend these divergence generators ϕγ for t < 0, which will be carried
out and discussed in detail below, namely in (43), (44) (see also Table 1), as well as at several other places in this paper.
Notice that Dϕ1(Q,P) basically corresponds to the (extended form of) the omnipresent Kullback-Leibler information resp.
relative entropy. Below, we shall also consider the minimization/maximization of important transforms of power divergences
such as Renyi divergences/entropies, Sundaresan’s divergence, etc., which are frequently used in information theory and its
applications to e.g. artificial intelligence, machine learning, and physics.

6 i.e. dom(ϕ) covers (at least) a non-empty part of {1} ∪ R
(

Ω
P

)
, where R

(
Ω
P

)
:=
{ qk
pk

: k ∈ {1, . . . ,K},Q := (q1, . . . , qK) ∈ Ω
}

is the range of
all possible entry-ratios.
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Remark 4: Since, in general, our methods work also for non-probability vectors Q,P, we can also deal with — plain
versions and transformations of — weighted ϕ−divergences of the form

Dwei
ϕ (Q,P) :=

K∑
k=1

ck · pk · ϕ
(
qk
pk

)
≥ 0 (5)

where ck > 0 (k = 1, . . . ,K) are weights which not necessarily add up to one. Indeed, by means of (5) we formally end up
with

inf
Q∈Ω

Dwei
ϕ (Q,P) = inf

Qwei∈Ωwei
Dϕ(Qwei,Pwei)

where Pwei := (c1 · p1, . . . , cK · pK), Qwei := (c1 · q1, . . . , cK · qK) and Ωwei is the corresponding rescaling of Ω. Of course,
all the necessary technicalities for the ϕ−divergences (see below) have to be adapted to the weighted ϕ−divergences; for the
sake of brevity, this will not be discussed in detail. Notice that Pwei, Qwei are generally not probability vectors anymore, even
if Q,P are probability vectors. In the latter case, and under the assumption

∑K
k=1 ck = 1, the divergences (5) coincide with

the discrete versions of the (c−)local divergences of Avlogiaris et al. [22], [23] who also give absolutely-continuous versions
and beyond (see also Broniatowski & Stummer [64] for an imbedding in a general divergence framework).

IV. CONSTRUCTION PRINCIPLES, BS-MINIMIZABILITY/AMENABILITY

A. The cornerstone

In this Section IV, we show that a number of deterministic optimization problems and and problems in statistical minimum
risk based approaches pertaining to non- or semi-parametric contexts are BS-minimizable/amenable in the sense of Definition
1. The below-mentioned Sections V and VI will draw conclusions, proposing effective solutions.

For the construction of the desired sequence (ξn)n∈N of RK−valued random variables (viz. random vectors) and a corre-
sponding probability distribution � (which will not depend on n), we will assume that the divergence generator ϕ ∈ Υ̃(]a, b[)
has the additional property that it can be represented as

ϕ(t) = sup
z∈R

(
z · t− log

∫
R

ez·yd�(y)
)
, t ∈ R, (6)

for some probability distribution/measure � on the real line such that the function z 7→MGF�(z) :=
∫
R
ez·yd�(y) is finite on

some open interval containing zero 7. From this, we shall construct — basically in Section V below — a sequence (Wn)n∈N
of i.i.d. copies of a random variable W whose distribution (under �) is � (i.e. �[W ∈ · ] = �[ · ]), from which the desired
(ξn)n∈N will be constructed.

Since ϕ attains its minimal value at the point 1, fit follows that ϕ′(1) = 0. By (6), for all t in int(dom(ϕ)), ϕ′(t) is the
reciprocal of ψ(z) := (d/dz) logMGF (z) at point t, whence ψ(0) = 1, which is to say that the expectation E�[W ] = 1.

The class of functions ϕ ∈ Υ̃(]a, b[) satisfying the representability (6) will be denoted by Υ(]a, b[).

Remark 5: The condition ϕ ∈ Υ(]a, b[) implies that � can not be a one-point distribution (Dirac mass) δy at some point y,
since for such a situation one can straightforwardly deduce from (6) that ϕ(y) = 0 and ϕ(t) =∞ for all t 6= y, which leads
to int(dom(ϕ)) = ∅ and thus ϕ /∈ Υ̃(]a, b[) (in fact, our requirement ϕ(y) = 0 would narrow down to y = 1 anyway).

Let us remark that the class Υ(]a, b[) contains many divergence generators; this together with ϕ−construction principles will
be developed at length in Section V below. Also, for the minimization problems considered in Section IV-B hereunder, we
mostly modify the generator ϕ into c̃ · ϕ for strictly positive scales c̃. At this point, for the sake of transparency, we only
present a summarizing Table 1 of a selection of concrete examples which will be treated in detail below:

7 in particular, this implies that � has light tails.
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As already explained above, the representability (6) is the cornerstone for our approach, and opens the gate to make use
of simulation methods in appropriate contexts. We first develop this approach for deterministic minimization problems (cf.
Subsection IV-B); thereafter, in Subsection IV-C, we “extend” this to the setup where P is identified with an unknown probability
vector in the simplex SK which is supposed to be the limit (as n tends to infinity) of the empirical distribution pertaining to a
collection of observations Xn := (X1, .., Xn); in the classical statistical setting, this amounts to the estimation of ΦP (Ω) based
on Xn, leading to the important “minimization-distance estimation problem” in statistics, artificial intelligence and machine
learning. Finally, we end up this Section IV by shortly dealing with divergences between fuzzy sets (cf. Subsection IV-D) and
basic belief assignments (cf. Subsection IV-E).

B. Deterministic minimization problems

Problem 6: For pregiven ϕ ∈ Υ(]a, b[), positive-entries vector P := (p1, .., pK) ∈ RK>0 (or from some subset thereof), and
subset Ω ⊂ RK (also denoted in boldface letters, with a slight abuse of notation) with regularity properties

cl(Ω) = cl (int (Ω)) , int (Ω) 6= ∅, (7)

find
ΦP(Ω) := inf

Q∈Ω
Dϕ(Q,P), (8)

provided that
inf

Q∈Ω
Dϕ(Q,P) <∞. (9)

An immediate consequence thereof is — for pregiven ϕ ∈ Υ(]a, b[) — the treatment of the more flexible problem

ΦP,h(Ω) := inf
Q∈Ω

h
(
Dϕ(Q,P)

)
= h

(
inf

Q∈Ω
Dϕ(Q,P)

)
(10)

for any continuous strictly increasing function h : H 7→ R with H := [0,∞[ and extension h(∞) := supy∈H(y) (depending
on the problem, a sufficiently large H ⊂ [0,∞[ may be enough), respectively of

sup
Q∈Ω

h
(
Dϕ(Q,P)

)
= h

(
inf

Q∈Ω
Dϕ(Q,P)

)
(11)

for any continuous strictly decreasing function h : H 7→ R and extension h(∞) := infy∈H(y).

Remark 7:
(a) By the basic properties of ϕ, it follows that for all c > 0 the level sets ϕc := {x ∈ R : ϕ(x) ≤ c} are compact and so

are the level sets of Q→Dϕ(Q,P)
Γc :=

{
Q ∈ RK : Dϕ(Q,P) ≤ c

}
for all c > 0 .
(b) When Ω is not closed but merely satisfies (7), then the infimum in (8) may not be reached in Ω although being finite;
however we aim for finding the infimum/minimum in (8). Finding the minimizers in (8) is another question. For instance, this
can be solved whenever, additionally, Ω is a closed set which implies the existence of minimizers in Ω. In this case, and when
the number of such minimizers is finite, those can be approximated by dichotomic search. For the sake of brevity, this will
not be addressed in this paper.
(c) The purpose of the condition (7) is to get rid of the lim sup type and lim inf type results in our below-mentioned “bare-
simulation” approach and to obtain simple limit-statements which motivate our construction. In practice, it is enough to verify
Ω ⊆ cl (int (Ω)), which is equivalent to the left-hand part of (7). Clearly, any open set Ω ⊂ RK satisfies the left-hand part of
(7). In the subsetup where Ω is a closed convex set and int(Ω) 6= ∅, (7) is satisfied and the minimizer Qmin ∈ Ω in (8) is
attained and even unique. When Ω is open and satisfies (7), then the infimum in (8) exists but is reached at some generalized
projection of P on Ω (see Csiszar [97] for the definition in the Kullback-Leibler case of probability measures, which extends
to any ϕ−divergence in our framework).
(d) Without further mentioning, the regularity condition (7) is supposed to hold in the full topology. Of course, int

(
SK
)

= ∅
and thus, for the important probability-vector setup Ω ⊂ SK the condition (7) is violated which requires extra refinements
(cf. Subsection IV-C below). The same is needed for Ω ⊂ A · SK for some A 6= 1, since obviously int

(
A · SK

)
= ∅; such a

context appears naturally e.g. in connection with mass transportation problems (cf. (102) below) and with distributed energy
management (cf. the paragraph after (113)).
(e) Often, Ω will present a (discrete) model 8. Since Ω is assumed to have a non-void interior (cf. the right-hand part of (7)),
this will exclude (parametric) models Ω := {Qθ : θ ∈ Θ} for some Θ ⊂ Rd (d < K − 1), for which θ 7→ Qθ constitutes
a curve/surface in RK ; however, for such a situation, one can employ standard minimization principles. Our approach is

8recall that an alternative naming also used in literature is to call Ω a model class (rather than model), and each P ∈ Ω a model (rather than model element)
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predestined for non- or semiparametric models, instead. For instance, (7) is valid for appropriate tubular neighborhoods of
parametric models or for more general non-parametric settings such as e.g. shape constraints.

Let us now present our new bare-simulation approach (cf. Definition 1) for solving the distance-optimization Problem 6:

(BS1) Step 1: equivalently rewrite (8) such that the vector P “turns into” a probability vector P̃. More exactly, define MP :=∑K
i=1 pi > 0 and let P̃ := P/MP, and for Q in Ω, let Q̃ := Q/MP (notice that Q̃ may be a non-probability vector).

With the function ϕ̃ ∈ Υ(]a, b[) defined through ϕ̃ := MP · ϕ, we obtain

Dϕ(Q,P) =

K∑
k=1

pk · ϕ
(
qk
pk

)
=

K∑
k=1

MP · p̃k ·
ϕ
(
MP·q̃k
MP·p̃k

)
MP

= Dϕ̃(Q̃, P̃). (12)

It follows that the solution of (8) coincides with the one of the problem of finding

Φ̃
P̃

(Ω̃) := inf
Q̃∈Ω̃

Dϕ̃(Q̃, P̃), with Ω̃ := Ω/MP; (13)

as a side remark, one can see that in such a situation the rescaling of the divergence generator ϕ is important, which is
one incentive that we incorporate multiples of ϕ below.

As an important special case we get for the choice P := (1, . . . , 1) := 1 that the “prominent/frequent” separable nonlinear
optimization problem of finding the optimal value infQ∈Ω

∑K
k=1 ϕ(qk) — with objective (e.g. cost, energy, purpose)

function ϕ ∈ Υ(]a, b[) and constraint set (choice set, search space) Ω — can be imbedded into our BS-approach by

inf
Q∈Ω

K∑
k=1

ϕ(qk) = inf
Q∈Ω

Dϕ(Q,1) = inf
Q̃∈Ω/K

DK·ϕ(Q̃,Punif ), (14)

with Punif := ( 1
K , . . . ,

1
K ) being the probability vector of frequencies of the uniform distribution on {1, . . . ,K}. Notice

that with our new BS approach one may even tackle more general optimization problems of the form infQ̆∈Ω̆

∑K
k=1 ϕ̆(q̆k)

where ϕ̆ is some function which is finite and convex in a non-empty neighborhood (say, ]t0 + a − 1, t0 + b − 1[ with
a < 1 < b) of some point t0 ∈ R as well as strictly convex in a non-empty sub-neighborhood of t0; for this, the function

ϕ(t) := ϕ̆(t+ t0 − 1)− ϕ̆′(t0) ·
(

(t+ t0 − 1)− t0
)
− ϕ̆(t0), t ∈]a, b[,

(which corresponds to shifting the argument and adding an affine-linear function) should be a member of Υ(]a, b[), and
from the corresponding minimization problem

inf
Q̃∈Ω/K

DK·ϕ(Q̃,Punif ) = inf
Q∈Ω

K∑
k=1

ϕ(qk) = inf
Q∈Ω

K∑
k=1

(
ϕ̆(qk + t0 − 1)− ϕ̆′(t0) · ((qk + t0 − 1)− t0)− ϕ̆(t0)

)
= inf

Q̆∈Ω+t0−1

K∑
k=1

(
ϕ̆(q̆k)− ϕ̆′(t0) · (q̆k − t0)− ϕ̆(t0)

)
= K ·

(
t0 · ϕ̆′(t0)− ϕ̆(t0)

)
+ inf

Q̆∈Ω̆

(
K∑
k=1

ϕ̆(q̆k)− ϕ̆′(t0) ·
K∑
k=1

q̆k

)
, with Ω̆ := Ω + t0 − 1, (15)

the term infQ̆∈Ω̆

∑K
k=1 ϕ̆(q̆k) should be recoverable; for instance, later on we shall employ constraints sets Ω̆ which

particularly include
∑K
k=1 q̆k = A > 0, whereas another possibility would be to use a ϕ̆ which satisfies ϕ̆′(t0) = 0. As

a different line of flexibilization of (14), we can also deal with the problem infQ∈Ω h
(∑K

k=1 ϕ(qk)
)

through

inf
Q∈Ω

h
( K∑
k=1

ϕ(qk)
)

= h
(

inf
Q̃∈Ω/K

DK·ϕ(Q̃,Punif )
)

(16)

for any ϕ ∈ Υ(]a, b[) and any continuous strictly increasing function h : H 7→ R with H := [0,∞[ (or a sufficiently
large subset thereof), and with the problem supQ∈Ω h

(∑K
k=1 ϕ(qk)

)
through

sup
Q∈Ω

h
( K∑
k=1

ϕ(qk)
)

= h
(

inf
Q̃∈Ω/K

DK·ϕ(Q̃,Punif )
)

(17)

for any ϕ ∈ Υ(]a, b[) and any continuous strictly decreasing function h : H 7→ R. Combining (15) with (16)
(respectively, with (17)) leads to a further flexibilization. Of course, we can also apply our BS method to the maximization
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supQ∈Ω h
(∑K

k=1 ζ(qk)
)

for any concave function ζ with −ζ ∈ Υ(]a, b[) and any continuous strictly increasing function
h : H 7→ R with H := −[∞, 0] (or a sufficiently large subset thereof), via

sup
Q∈Ω

h
( K∑
k=1

ζ(qk)
)

= h
(
− inf

Q̃∈Ω/K
D−K·ζ(Q̃,P

unif )
)
, (18)

and to infQ∈Ω h
(∑K

k=1 ζ(qk)
)

for any concave function ζ with −ζ ∈ Υ(]a, b[) and any continuous strictly decreasing
function h : H 7→ R, via

inf
Q∈Ω

h
( K∑
k=1

ζ(qk)
)

= h
(
− inf

Q̃∈Ω/K
D−K·ζ(Q̃,P

unif )
)
. (19)

Moreover, we can tackle supQ̆∈Ω̆

∑K
k=1 ζ̆(q̆k) where ζ̆ is some function which is finite and concave in a non-empty

neighborhood ]t0 + a− 1, t0 + b− 1[ (with a < 1 < b) of some point t0 ∈ R as well as strictly concave in a non-empty
sub-neighborhood of t0; for this, the function

− ζ(t) := −ζ̆(t+ t0 − 1) + ζ̆ ′(t0) ·
(

(t+ t0 − 1)− t0
)

+ ζ̆(t0), t ∈]a, b[,

should be a member of Υ(]a, b[), and from the corresponding minimization problem

− inf
Q̃∈Ω/K

D−K·ζ(Q̃,P
unif ) = sup

Q∈Ω

K∑
k=1

ζ(qk) = sup
Q∈Ω

K∑
k=1

(
ζ̆(qk + t0 − 1)− ζ̆ ′(t0) · ((qk + t0 − 1)− t0)− ζ̆(t0)

)
= sup

Q̆∈Ω+t0−1

K∑
k=1

(
ζ̆(q̆k)− ζ̆ ′(t0) · (q̆k − t0)− ζ̆(t0)

)
= K ·

(
t0 · ζ̆ ′(t0)− ζ̆(t0)

)
+ sup

Q̆∈Ω̆

(
K∑
k=1

ζ̆(q̆k)− ζ̆ ′(t0) ·
K∑
k=1

q̆k

)
, with Ω̆ := Ω + t0 − 1, (20)

the term supQ̆∈Ω̆

∑K
k=1 ζ̆(q̆k) should be recoverable; the left-hand side of (20) corresponds to the special case h(x) := x

of the BS-minimizable (18). A combination of (20) with (18) (respectively, with (19)) leads to a further flexibilization.

Remark 8: (a) Since 1 can be seen e.g. as a reference vector with (normalized) equal components, the quantity
infQ∈ΩDϕ(Q,1) in (14) can be interpreted as an “index/degree of (in)equality of the set Ω”, respectively as an
“index/degree of diversity of the set Ω”.
(b) The quantity

∑K
k=1 ϕ(qk) in (14) can be interpreted as (non-probability extension of an) ϕ−entropy in the sense of

Burbea & Rao [68] (see also Csiszar [95], Ben-Bassat [38], Ben-Tal & Teboulle [40], Kesavan & Kapur [187], Dacunha-
Castelle & Gamboa [102], Teboulle & Vajda [357], Gamboa & Gassiat [132], Vajda & Zvarova [376]); for applications to
scalar quantization for lossy coding of information sources see e.g. György & Linder [149]. More generally, the quantity
h
(∑K

k=1 ϕ(qk)
)

in (16) can be seen as (non-probability extension of an) (h, ϕ)−entropy in the sense of Salicru et al.
[314] (see also e.g. Pardo [282], Vajda & Vasek [375], as well as e.g. Chen et al. [78] for uses as supervised adaption
criterion within stochastic information gradient algorithms and Ren et al. [308] for applications to tracking in networked
control systems). Important special cases will be discussed in more detail, below.

Returning to the original distance-minimizing Problem 6, after the first step (12) and (13), we proceed as follows:

(BS2) Step 2: construct an appropriate sequence (ξn)n∈N of RK−valued random variables/random vectors (cf. (2) in Definition
1):

The following condition transposes the minimization problem (13) into a BS minimizable/amenable problem in the sense
of Definition 1 and it is required in order that Problem (13) is equivalent to Problem (8). The connection of this condition
with (6) will be discussed in Proposition 34 and its surroundings, see Section V.

Condition 9: With MP =
∑K
i=1 pi > 0, the divergence generator ϕ in (8) (cf. also (12)) satisfies ϕ̃ := MP ·ϕ ∈

Υ(]a, b[), i.e. ϕ̃ ∈ Υ̃(]a, b[) (which is equivalent to ϕ ∈ Υ̃(]a, b[)) and there holds the representation

ϕ̃(t) = sup
z∈R

z · t− log

∫
R

ezyd�̃(y)

 , t ∈ R, (21)
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for some probability measure �̃ on the real line such that the function z 7→ MGF
�̃
(z) :=

∫
R
ezyd�̃(y) is finite

on some open interval containing zero 9.

In the following, let us explain the above-mentioned Step 2 in detail: for any n ∈ N and any k ∈ {1, . . . ,K}, let
nk := bn · p̃kc where bxc denotes the integer part of x. We assume P ∈ RK>0, and since thus none of the p̃k’s is zero,
one has

lim
n→∞

nk
n

= p̃k. (22)

Moreover, we assume that n ∈ N is large enough, namely n ≥ maxk∈{1,...,K}
1
p̃k

, and decompose the set {1, . . . , n} of

all integers from 1 to n into the following disjoint blocks: I(n)
1 := {1, . . . , n1}, I(n)

2 := {n1 + 1, . . . , n1 + n2}, and so
on until the last block I(n)

K := {
∑K−1
k=1 nk + 1, . . . , n} which therefore contains all integers from n1 + . . .+ nK−1 + 1

to n. Clearly, I(n)
k has nk ≥ 1 elements (i.e. card(I

(n)
k ) = nk where card(A) denotes the number of elements in a

set A) for all k ∈ {1, . . . ,K − 1}, and the last block I
(n)
K has n −

∑K−1
k=1 nk ≥ 1 elements which anyhow satisfies

limn→∞ card(I
(n)
K )/n = p̃K

10. Furthermore, consider a vector W̃ :=
(
W̃1, . . . , W̃n

)
where the W̃i’s are i.i.d. copies

of the random variable W̃ whose distribution is associated with the divergence-generator ϕ̃ := MP · ϕ through (21), in
the sense that �[W̃ ∈ · ] = �̃[ · ]. We group the W̃i’s according the above-mentioned blocks and sum them up blockwise,
in order to build the following K− component random vector

ξW̃
n :=

( 1

n

∑
i∈I(n)

1

W̃i, . . . ,
1

n

∑
i∈I(n)

K

W̃i

)
; (23)

notice that the signs of its components may be negative, depending on the nature of the W̃i’s; moreover, the expectation
of its k−th component converges to p̃k as n tends to infinity (since the expectation of W̃1 is 1), whereas the n−fold of
the corresponding variance converges to p̃k times the variance of W̃1.

For such a context, we obtain the following assertion on BS-minimizability:

Theorem 10: Let P ∈ RK>0, MP :=
∑K
i=1 pi > 0, and suppose that the divergence generator ϕ satisfies the Condition 9

above, with �̃ (cf. (21)). Additionally, let W̃ := (W̃i)i∈N be a sequence of random variables where the W̃i’s are i.i.d. copies
of the random variable W̃ whose distribution is �[W̃ ∈ · ] = �̃[ · ] 11. Then, in terms of the random vectors

ξW̃
n =

( 1

n

∑
i∈I(n)

1

W̃i, . . . ,
1

n

∑
i∈I(n)

K

W̃i

)
(cf. (23))

there holds
− lim
n→∞

1

n
log �

[
ξW̃
n ∈ Ω/MP

]
= inf
Q∈Ω

Dϕ(Q,P ) (24)

for any Ω ⊂ RK with regularity properties (7) and finiteness property (9). In particular, for each P ∈ RK>0 the function
ΦP (·) := Dϕ(·,P) (cf. (4)) is bare-simulation minimizable (BS-minimizable, cf. (2))) on any such Ω ⊂ RK .

The proof of Theorem 10 will be given in Appendix A.

Remark 11: (i) Whenever int(Ω) 6= ∅, it clearly holds that lim infn→∞
1
n log �

[
ξW̃
n ∈ Ω/MP

]
> 0; see the proof of

Theorem 10. Hence, the limit in (24) exists and is finite when Ω satisfies (7).
(ii) For some contexts, one can explicitly give the distribution of each of the independent (non-deterministic parts of the)
components

(∑
i∈I(n)

k

W̃i

)
k=1,...,K

of the vector ξW̃
n ; this will ease the corresponding concrete simulations. For instance, we

shall give those in the Examples 48, 50, 53, 54 and 55 in Section V below.
(iii) Let us emphasize that we have assumed P ∈ RK>0 in Theorem 10 which excludes P from having zero components.
However, in cases where limx→∞

∣∣∣ϕ(x·sgn(q))
x·sgn(q)

∣∣∣ = +∞ for q 6= 0 then if pk0
= 0 for some k0 it follows that qk0

= 0, which
proves that P ∈ RK>0 imposes no restriction in Theorem 9, since the projection of P in Ω then belongs to the subspace of RK

generated by the non-null components of P; such a situation appears e.g. for power divergence generators ϕγ with γ > 2. So
there is no loss of generality assuming P ∈ RK>0 in this case.

9in particular, this implies that
∫
R
yd�̃(y) = 1 (cf. (G11i) below) and that �̃ has light tails.

10 if all p̃k (k = 1, . . . ,K) are rational numbers in ]0, 1[ with
∑K
k=1 p̃k = 1 and N is the (always existing) smallest integer such that all N · p̃k

(k = 1, . . . ,K) are integers (i.e. ∈ N), then for any multiple n = ` ·N (` ∈ N) one gets that all nk = n · p̃k are integers and that card(I
(n)
K ) = nK .

11 and thus, E�[W̃i] = 1
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As examples for the applicability of Theorem 10, one can e.g. combine each of the divergence generators ϕ of Table 1 (except
for the 9th row) with any of the optimization problems (8), (10), (11), (14), (16), (17); the needed distributions �[W̃ ∈ · ] = �̃[ · ]
correspond to the entry in the second last column with the choice c̃ ·MP instead of c̃. By taking ζ := −ϕ instead, one can
solve the corresponding problems (18) and (19).

Returning to the general context, the limit statement (24) provides the principle for the approximation of the solution of Problem
8. Indeed, by replacing the left-hand side in (24) by its finite counterpart, we deduce for given large n

− 1

n
log�

[
ξW̃
n ∈ Ω/MP

]
≈ inf
Q∈Ω

Dϕ(Q,P); (25)

it remains to estimate the left-hand side of (25). The latter can be performed either by a naive estimator of the frequency of
those replications of ξW̃

n,x̃ which hit Ω/MP, or more efficiently by some improved estimator; this will be discussed in detail
in Section VI below.

Remark 12: According to (24) of Theorem 9 as well as (25), we can principally tackle the (approximative) computation of
the minimum value

inf
Q∈Ω

Dϕ(Q,P ) = inf
Q∈Ω

K∑
k=1

pk · ϕ
(
qk
pk

)
and in particular of

inf
Q∈Ω

K∑
k=1

ϕ(qk) = inf
Q∈Ω

Dϕ(Q,1) (cf. (14))

by basically only employing a fast and accurate — pseudo, true, natural, quantum — random number generator12, provided
that the constraint set Ω satisfies the mild assumptions (7) and (9). Notice that (7) also covers (e.g. high-dimensional)
constraint sets Ω which are non-convex and even highly disconnected, and for which other minimization methods (e.g. pure
enumeration, gradient or steepest descent methods, etc. 13 ) may be problematic or intractable. For instance, (7) covers kind
of “K−dimensional (not necessarily regular) polka dot (leopard skin) pattern type” relaxations Ω :=

⋃̇N
i=1Ui(Qdisi ) of finite

discrete constraint sets Ωdis := {Qdis1 , . . . , QdisN } of high cardinality N (e.g. being exponential or factorial in a large K), where
each K−dimensional vector Qdisi (e.g. having pure integer components only) is surrounded by some small (in particular, non-
overlapping/disjoint) neighborhood Ui(Qdisi ); in such a context, e.g. infQ∈Ω

∑K
k=1 ϕ(qk) can be regarded as a “BS-tractable”

relaxation of the nonlinear discrete (e.g. integer, combinatorial 14 ) optimization program infQ∈Ωdis

∑K
k=1 ϕ(qk).

C. Minimum distance/risk estimation

In statistics of discrete data — and in the adjacent research fields of information theory, artificial intelligence and machine
learning — one often encounters the following minimum distance estimation (MDE) problem which is often also named as
estimation of the empirical risk:

(MDE1) for index i ∈ N, let the generation of the i−th (uncertainty-prone) data point be represented by the random variable Xi

which takes values in the discrete set Y := {d1, · · · , dK} of K distinct values “of any kind”˙. It is assumed that there
exists a probability measure P[· ] on Y which is the a.s. limit of the empirical measures Pempn defined by the collection
of collected (X1, .., Xn) as n tends to infinity, in formula

lim
n→∞

Pempn := lim
n→∞

1

n

n∑
i=1

δXi = P a.s. (26)

where δy denotes the one-point distribution (Dirac mass) at point y 15. We will assume that none of the entries of P
bears zero mass so that P is identified with a point in the interior of SK (see below). The underlying probability space
(say, (X,A,�)) where the above a.s. convergence holds, pertains to the random generation of the sequence (Xn)n≥1,
of which we do not need to know but for (26). Examples include the i.i.d. case (where the Xi’s are independent and

12 see e.g. Tucci [366], Teh et al. [358], Aghamohammadi & Crutchfield [6], Herrero-Collantes & Garcia-Escartin [159], Balygin et al. [31], Dang et al.
[103], Gong et al. [138], Chandrasekaran et al. [77], Drahi et al. [117], Kollmitzer et al. [194], Liu et al. [228], Fischer & Gauthier [126], Kim et al. [188],
Stoller & Campbell [342]

13 a detailed discussion and comparisons are beyond the scope of this paper, given its current length
14 see e.g. Schrijver [324], Bertsimas & Weismantel [45], Chen et al. [83], Onn [279], Korte & Vygen [195], Wolsey [393] for comprehensive books on

discrete, integer and combinatorial programming and their vast applications
15 notice that Pempn a probability measure on the data space Y , which is random due to its dependence on the Xi’s
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have common distribution P), ergodic Markov chains on Y with stationary distribution P, more globally autoregressive
chains with stationary measure P, etc.

Let us briefly discuss our assumption (26) (resp. its vector form (30) below) on the limit behavior of the empirical
distribution of the observed sample Xn := (X1, .., Xn) as n tends to infinity. In the “basic” statistical context, the
sample Xn consists of i.i.d. replications of a generic random variable X with probability distribution P. However, our
approach captures many other sampling schemes, where the distribution P is defined implicitly through (26) for which
we aim at some estimate of ΦP (
) of a family 
 of probability distributions on Y . Sometimes the sequence of samples
(Xn)n≥1 may stem from a triangular array so that Xn = (X1,n, .., Xkn,n) with kn →∞ and statement (26) is substituted
by

lim
n→∞

1

kn

kn∑
i=1

δXi,n = P a.s.

which does not alter the results of this paper by any means.
(MDE2) given a model 
, i.e. a family 
 of probability distributions on Y each of which serves as a potential description of the

underlying (unknown) data-generating mechanism P, one would like to find

ΦP(
) := inf
Q∈


Dϕ(Q,P) (27)

which quantifies the adequacy of the model 
 for modeling P, via the minimal distance/dissimilarity of 
 to P; a lower
ΦP−value means a better adequacy (in the sense of a lower departure between the model and the truth, cf. Lindsay
[222], Lindsay et al. [223], Markatou & Sofikitou [248], Markatou & Chen [249]).
Hence, especially in the context of model selection within complex big-data contexts, for the search of appropriate models

 and model elements/members therein, the (fast and efficient) computation of ΦP(
) constitutes a decisive first step,
since if the latter is “too large” (respectively “much larger than” ΦP(
) for some competing model 
), then the model

 is “not adequate enough” (respectively “much less adequate than” 
); in such a situation, the effort of computing the
(not necessarily unique) best model element/member arg infQ∈
Dϕ(Q,P) within the model 
 is “not very useful” and
is thus a “waste of computational time”.
Because of such considerations, we concentrate ourselves to finding the infimum (27) rather than finding the corresponding
minimizer(s). Variants of (27) are of interest, too.

Since int(
) is supposed to be a non-empty set in the space of probability distribution on Y , the present procedure is fitted
for semi-parametric models 
, e.g. such as defined through moment conditions (as extensions of the Empirical Likelihood
paradigm, see e.g. Broniatowski & Keziou [62]), or through L-moment conditions (i.e. moment conditions pertaining to quantile
measures, see Broniatowski & Decurninge [59]), or even more involved non-parametric models where the geometry of 
 does
not allow for ad-hoc procedures.

The measurement or the estimation of ΦP(
) is a tool for the choice of pertinent putative models 
 among a class of
specifications. The case when ΦP(
) > 0 is interesting in its own, since it is quite common in engineering modelling to argue
in favor of misspecified models (or (non-void) neighborhoods of such models for sake of robustness issues), due to quest for
conservatism; the choice between them is a widely open field e.g. in the practice of reliability. This also opens the question of
the choice of the divergence generator ϕ; although this will not be discussed in this paper, as a motivating running example
the reader may keep in mind the generator ϕ2(x) := (x− 1)2/2 which induces the divergence Dϕ2(Q,P) (see (44) below for
details) which quantifies the expected square relative error when substituting the true distribution P by the model Q.

As examples of sets 
 of probability distributions on Y which obey (through their K−vector of corresponding probability
masses/frequencies) the global assumptions (7), one can consider semi-parametric models defined by moment conditions or
defined through L-moment constraints (hence on the quantile functions), as well as more involved ones, for which no closed
form of the divergence with respect to any probability distribution is available. In the context of model selection, the choice of

 may be dictated by various considerations, and misspecification may be assumed as a requisite, for example for conservatism
in reliability design.

An estimate of ΦP(
) can be used as a statistics for some test of fit, and indeed the likelihood ratio test adapted to some
semi-parametric models has been generalized to the divergence setting (see Broniatowski & Keziou [62]). The statement of
the limit distributions of our estimate, under the model and under misspecification, is postponed to future work.

In the following, we compute/approximate (27) — and some variants thereof — by our bare simulation (BS) method, by
“mimicking” the deterministic minimization problem (8) respectively (13). Let us first remark that, as usual, each probability
distribution (probability measure) P on Y = {d1, . . . , dK} can be uniquely identified with the (row) vector P := (p1, . . . , pK) ∈
SK of the corresponding probability masses (frequencies) pk = P[{dk}] via P[A] =

∑K
k=1 pk · 1A(dk) for each A ⊂ Y , where

1A(·) denotes the indicator function on the set A. In particular, the probability distribution P in (MDE1) can be identified with
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(p1, . . . , pK) in terms of pk = P[{dk}] (which in the i.i.d. case turns into pk = �[X1 = dk]). Along this line, the family

 of probability distributions in (MDE2) can be identified with a subset ΩΩ ⊂ SK of probability vectors (viz. of vectors of
probability masses).
Analogously, each finite nonnegative measure Q on Y can be uniquely identified with a vector Q := (q1, . . . , qK) ∈ RK≥0,
and each finite signed measure Q with a vector Q := (q1, . . . , qK) ∈ RK . The corresponding divergences between distribu-
tions/measures are then, as usual, defined through the divergences between their respective masses/frequencies:

Dϕ(Q,P) := Dϕ(Q,P). (28)

In particular, Pempn can be identified with the vector Pempn := (pempn,1 , . . . , p
emp
n,K ) where

pempn,k :=
1

n
· nk :=

1

n
· card(

{
i ∈ {1, . . . , n} : Xi = dk

}
) =:

1

n
· card(I

(n)
k ), k ∈ {1, . . . ,K}, (29)

and accordingly the required limit behaviour (26) is equivalent to the vector-convergence

lim
n→∞

(n1

n
, . . . ,

nK
n

)
= (p1, . . . , pK) a.s. (30)

Notice that, in contrast to the case handled in the above Subsection IV-B, the sets I(n)
k of indexes introduced in (29) and their

numbers nk = card(I
(n)
k ) of elements are now random (due to their dependence on the Xi’s) and MP

emp
n

= 1. In a batch
procedure, when Dϕ(ΩΩ,Pempn ) is estimated once the sample (X1, .., Xn) is observed, we may reorder this sample by putting
the n1 sample points Xi which are equal to d1 in the first places, and so on; accordingly one ends up with index sets I(n)

k as
defined in Section IV-B. When the online acquisition of the data Xi’s is required, then we usually do not reorder the sample,
and the I(n)

k ’s do not consist in consecutive indexes, which does not make any change with respect to the resulting construction
nor to the estimator.

The above considerations open the gate to our desired “mimicking” of (8) and (13) to achieve (27) (and some variants thereof)
by our bare simulation (BS) method. To proceed, we employ a family of random variables (Wi)i∈N of independent and
identically distributed R−valued random variables with probability distribution �[· ] := �[W1 ∈ · ] (being connected with the
divergence generator ϕ ∈ Υ(]a, b[) via the representability (6)), such that (Wi)i∈N is independent of (Xi)i∈N

16.

As a next step, notice that the “natural candidate”

ξW
n,X :=

1

n
·
K∑
k=1

 ∑
i∈I(n)

k

Wi

 · δdk =
1

n

n∑
i=1

Wi · δXi

is not a probability measure since its total mass is not 1 in general, since in terms of its equivalent vector version

ξW
n,X :=

( 1

n

∑
i∈I(n)

1

Wi, . . . ,
1

n

∑
i∈I(n)

K

Wi

)
(31)

the sum
∑K
k=1

1
n

∑
i∈I(n)

k

Wi = 1
n

∑n
j=1Wi of the K vector components of (31) is typically not equal to 1; this implies that

no limit result of the form (24) with finite limit can hold, since ξW
n,X takes values in RK and ΩΩ is a subset in the probability

simplex SK which has void interior in RK causing a violation of condition (7) (cf. Remark 7(c)); moreover, depending on the
concrete form of the generator ϕ, the corresponding weights may take negative values. Therefore, we need some “rescaling”.
Indeed, let us introduce the normalized weighted empirical measure

ξwW
n,X :=


1∑K

k=1

∑
i∈I(n)

k

Wi
·
∑K
k=1

(∑
i∈I(n)

k

Wi

)
· δdk =

∑n
i=1

Wi∑n
j=1 Wj

· δXi , if
∑n
j=1Wj 6= 0,

∞ ·
∑K
k=1 δdk =:∞, if

∑n
j=1Wj = 0,

(32)

which will substitute ξW
n,X and which may belong to ΩΩ with positive probability. The equivalent vector version of ξwW

n,X is
given by

ξwW
n,X :=


( ∑

i∈I(n)
1

Wi∑K
k=1

∑
i∈I(n)

k

Wi
, . . . ,

∑
i∈I(n)

K

Wi∑K
k=1

∑
i∈I(n)

k

Wi

)
, if

∑n
j=1Wj 6= 0,

(∞, . . . ,∞) =: ∞, if
∑n
j=1Wj = 0,

(33)

a point in the linear subset of RK spanned by SK at infinity.

16 on the common underlying probability space (X,A,�)
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Remark 13:
(i) (Concerning e.g. computer-program command availability) In case of

∑n
j=1Wj = 0, in (32) we may equivalently assign

to ξwW
n,X instead of ∞ any measure (e.g. probability distribution) which does not belong to 
, respectively, in (33) we may

equivalently choose for ξwW
n,X any vector outside of ΩΩ instead of ∞.

(ii) By construction, in case of
∑n
j=1Wj 6= 0, the sum of the random K vector components of (33) is now automatically

equal to 1, but — as (depending on ϕ) the Wi’s may take both positive and negative values — these random components
may be negative (resp. nonnegative) with probability strictly greater (resp. smaller) than zero (resp. one); in the framework
of (32) this means that ξwW

n,X is in general a random signed measure with total mass 1, in case of
∑n
j=1Wj 6= 0. However,

�[ξwW
n,X ∈ SK>0] > 0 since all the (identically distributed) random variables Wi have expectation 1 (as a consequence of the

assumed representability (6)); in case of �[W1 > 0] = 1 one has even �[ξwW
n,X ∈ SK>0] = 1. In the particular context of

Example 48(c), one gets �[ξwW
n,X ∈ SK>0] = (�[W1 > 0])

n
=

(∫∞
0

√
c̃

2π · exp(− c̃·(u−1)2

2 )du

)n
∈]0, 1[.

Summing up things, the probability �[ξwW
n,X ∈ ΩΩ] is strictly positive and finite at least for large n, whenever ΦP(ΩΩ) =

infQ∈ΩΩ Dϕ(Q,P) is finite.
(iii) By generalizing the terminology of e.g. Vajda [372], through the right-hand side of (32) one can interpret (for

∑n
j=1Wj 6= 0)

the normalized weighted empirical measure ξwW
n,X as response of an output neuron in a random perceptron consisting of random

inputs X, a layer with n units having one-point-distribution-valued responses δX1 , . . . , δXn , and independent random synaptic
weights

(
W1∑n
j=1 Wj

, . . . , Wn∑n
j=1 Wj

)
.

With the above-mentioned ingredients, we are now in the position to tackle a variant of the distance minimization problem
(27), by our bare simulation method through “mimicking” the deterministic minimization problem (8) respectively (13). For
this, we also employ the conditional distributions �n[ · ] := �Xn1 [ · ] := �[ · |X1, . . . , Xn] and obtain the following

Theorem 14: Suppose that (Xi)i∈N is a sequence of random variables with values in Y := {d1, · · · , dK} such that (26) holds
for some probability measure P[· ] on Y having no zero-mass frequencies (or equivalently, (30) holds for some probability
vector P ∈ SK>0). Moreover, let (Wi)i∈N be a family of independent and identically distributed R−valued random variables with
probability distribution �[· ] := �[W1 ∈ · ] being connected with the divergence generator ϕ ∈ Υ(]a, b[) via the representability
(6), such that (Wi)i∈N is independent of (Xi)i∈N. Then there holds

− lim
n→∞

1

n
log �Xn1

[
ξwW
n,X ∈ 


]
= inf

Q∈

inf
m6=0

Dϕ(m · Q,P) (34)

= inf
m6=0

inf
Q∈


Dϕ(m · Q,P)

= inf
m6=0

inf
Q∈ΩΩ

Dϕ(m · Q,P) (35)

= inf
Q∈ΩΩ

inf
m6=0

Dϕ(m · Q,P) = − lim
n→∞

1

n
log �Xn1

[
ξwW
n,X ∈ ΩΩ

]
(36)

for all sets 
 of probability distributions such that their equivalent probability-vector form ΩΩ satisfies the regularity properties (7)
in the relative topology and the finiteness property (9); notice that for the equality (35) we have used the “divergence link” (28).
In particular, for each P ∈ SK>0 (respectively, its equivalent probability-distribution P) the function Q 7→ infm 6=0Dϕ(m ·Q,P)
(respectively, the function Q 7→ infm 6=0Dϕ(m · Q,P)) is BS-minimizable (cf. (2)) on all sets ΩΩ ⊂ SK satisfying (7) in the
relative topology and (9) (respectively, on their probability-distribution-equivalent 
).

The proof of Theorem 14 will be given in Appendix B. Analogously to Remark 11(iii), let us emphasize that we have assumed
P ∈ SK>0 in Theorem 14. Henceforth, for sets ΩΩ ⊂ SK of probability vectors we deal with (7) only in the relative topology;
thus, the latter will be unmentioned for the sake of brevity. Remark 7(a),(b),(c),(e) applies accordingly.

Remark 15:
(i) In strong contrast to Theorem 10, the above result does not provide a direct tool for the solution of Problem (27) since

the limit in (34) bears no direct information on the minimum divergence Dϕ (
,P) := infQ∈
Dϕ(Q,P); the link between
the corresponding quantities can be emphasized and exploited e.g. in the case of power type divergences, which leads to
explicit minimization procedures as shown in the Subsection IV-C1 below. For general divergences, Theorem 14 allows for
the estimation of upper and lower bounds of Dϕ (
,P), as developed in the Subsection IV-C2 below.
(ii) Notice that D̆ϕ(Q,P) := infm6=0Dϕ(m · Q,P) satisfies the axioms of a divergence, that is, D̆ϕ(Q,P) ≥ 0, as well as
D̆ϕ(Q,P) = 0 if and only if Q = P (reflexivity). Hence, in Theorem 14 we are still within our framework of bare simulation
of a divergence minimum w.r.t. its first component (however, notice the difference to (i)).
(iii) Viewed from a “reverse” angle, Theorem 14 gives a crude approximation for the probability for ξwW

n,X to belong to 
,
conditionally upon X = (X1, . . . , Xn).
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(iv) In the same spirit as Remark 11(ii), for some contexts one can explicitly give the distribution of each of the independent
components

(∑
i∈I(n)

k

Wi

)
k=1,...,K

of the vector ξwW
n ; this will ease the corresponding concrete simulations in a batch

procedure. For instance, we shall give those in the Examples 48, 50, 53, 54 and 55 in the Section V below.
(v) Consider the special “degenerate” case where all the data observations are certain and thus (Xi)i∈N is nothing but a
purely deterministic sequence, say (x̃i)i∈N, of elements x̃i from the arbitrary set Y := {d1, . . . , dK} of K distinct values “of
any kind” (e.g., Y may consist of K distinct numbers); then the corresponding empirical distribution Pempn can be identified
with the vector Pempn := (pempn,1 , . . . , p

emp
n,K ) where

pempn,k :=
1

n
· nk :=

1

n
· card(

{
i ∈ {1, . . . , n} : x̃i = dk

}
) =:

1

n
· card(I

(n)
k ), k ∈ {1, . . . ,K}, (37)

and accordingly the required limit behaviour (26) is equivalent to the vector-convergence

lim
n→∞

(n1

n
, . . . ,

nK
n

)
= (p1, . . . , pK) for some p1 > 0, . . . , pK > 0 such that

K∑
k=1

pk = 1. (38)

Correspondingly, with the notations P := (p1, . . . , pK) and x̃ := (x̃1, . . . , x̃n), the vector-form part of the assertion (34) of
Theorem 14 becomes

− lim
n→∞

1

n
log �

[
ξwW
n,x̃ ∈ ΩΩ

]
= inf

Q∈ΩΩ
inf
m6=0

Dϕ(m · Q,P) = inf
m6=0

inf
Q∈ΩΩ

Dϕ(m · Q,P) (39)

for all subsets ΩΩ ⊂ SK satisfying the regularity properties (7) and the finiteness property (9); notice that the conditional
probability �Xn1 [ · ] has degenerated to the ordinary probability �[ · ].
(vi) In a similar fashion to the proof of (the special degenerate case (v) of) Theorem 14, one can show

− lim
n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
= inf

Q∈ΩΩ
inf
m6=0

Dϕ(m · Q,P) = inf
m6=0

inf
Q∈ΩΩ

Dϕ(m · Q,P) (40)

for all subsets ΩΩ ⊂ SK with regularity properties (7) and the finiteness property (9), where

ξwW
n :=


( ∑

i∈I(n)
1

Wi∑K
k=1

∑
i∈I(n)

k

Wi
, . . . ,

∑
i∈I(n)

K

Wi∑K
k=1

∑
i∈I(n)

k

Wi

)
=

n·ξWn∑n
i=1 Wi

, if
∑n
j=1Wj 6= 0,

(∞, . . . ,∞) =: ∞, if
∑n
j=1Wj = 0,

(41)

with I
(n)
1 := {1, . . . , n1}, I(n)

2 := {n1 + 1, . . . , n1 + n2}, . . . , I(n)
K := {

∑K−1
k=1 nk + 1, . . . , n} and nk := bn · pkc (k ∈

{1, . . . ,K}) for some pregiven known probability vector P := (p1, . . . , pK). Recall the definition of ξW
n in (23) (with W

instead of W̃). The limit behaviour (40) contrasts to the one of Theorem 10, where

− lim
n→∞

1

n
log �

[
ξW̃
n ∈ Ω/MP

]
= inf
Q∈Ω

Dϕ(Q,P) (cf. (24))

for any Ω ⊂ RK with regularity properties (7) and the finiteness property (9); recall that (W̃i)i∈N are i.i.d. random variables
with probability distribution �̃ (being connected with the divergence generator ϕ̃ := MP · ϕ via the representability (21)),
whereas (Wi)i∈N are i.i.d. random variables with probability distribution � (being connected with the divergence generator ϕ
via the representability (6)). Indeed, the construction leading to Theorem 10 does not hold any longer when Ω ⊂ SK is a set
of vectors within the probability simplex SK and P ∈ SK>0 is a known vector in this simplex with no zero entries. In such a
case, one has to use (40) and (41) instead. Notice that for each constant A > 0, (40) can be rewritten as

− lim
n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
= inf

Q∈A·ΩΩ
inf
m 6=0

Dϕ

(m
A
·Q,P

)
= inf

Q∈A·ΩΩ
inf
m̃ 6=0

Dϕ(m̃ ·Q,P) = inf
m̃ 6=0

inf
Q∈A·ΩΩ

Dϕ(m̃ ·Q,P); (42)

therein, the constraint Q ∈ A ·ΩΩ means geometrically that the vector Q lives in a subset of a simplex which is parallel to
the simplex SK of probability vectors and which is cut off at the edges of the first/positive orthant; in view of Remark 7(d)
and (42), we can also handle such a situation. Namely, in the light of the third expression in (42) in combination with (12)
to (14) for the special case of Ω := ΩΩ lying in the probability simplex, it makes sense to study e.g. functional relationships
between infm̃ 6=0Dc̃·ϕ(m̃ · Q,P) and Dc̃·ϕ(Q,P) (c̃ > 0) for Q ∈ A · SK with arbitrary A > 0 not necessarily being
equal to 1 (i.e. Q = A · Q for some probability distribution Q). Indeed, such a context appears naturally e.g. in connection
with mass transportation problems (cf. (102) below) and with distributed energy management (cf. the paragraph after (113));
the special case A = 1/K of (42) will also be used below for the application of our BS method to solving (generalized)
minimum/maximum entropy problems for probability vectors (and even for sub-/super-probability vectors) Q with constraints.

Let us proceed with the main context. As indicated in Remark 15(i), in a number of important cases the limit in the above
Theorem 14 can be stated in terms of an invertible function G−1 (cf. (2)) of infQ∈ΩΩDϕ(Q,P) by elimination of m. As



17

explained above, for the degenerate case (cf. Remark 15 (v), (vi)) the search for G−1 is even interesting for the more general
infimum over non-probability vectors. This is the scope of the following development.

1) Construction principle for the estimation of the minimum divergence, the power-type case :

Within the context of Theorem 14 respectively Remark 15 (v) and (vi), we obtain an explicit solution for the inner (i.e.
m−concerning) minimization in (34) for the important case of power-divergence generators ϕγ : R 7→ [0,∞] defined by

ϕγ(t) :=



tγ−γ·t+γ−1
γ·(γ−1) , if γ ∈ ]−∞, 0[ and t ∈]0,∞[,

− log t+ t− 1, if γ = 0 and t ∈]0,∞[,
tγ−γ·t+γ−1
γ·(γ−1) , if γ ∈ ]0, 1[ and t ∈ [0,∞[,

t · log t+ 1− t, if γ = 1 and t ∈ [0,∞[,
tγ−γ·t+γ−1
γ·(γ−1) · 1]0,∞[(t) + ( 1

γ −
t

γ−1 ) · 1]−∞,0](t), if γ ∈ ]1, 2[ and t ∈ ]−∞,∞[,
(t−1)2

2 , if γ = 2 and t ∈ ]−∞,∞[,
tγ−γ·t+γ−1
γ·(γ−1) · 1]0,∞[(t) + ( 1

γ −
t

γ−1 ) · 1]−∞,0](t), if γ ∈ ]2,∞[ and t ∈ ]−∞,∞[,

∞, else,

(43)

which for arbitrary multiplier c̃ > 0 generate (the vector-valued form of) the generalized power divergences displayed in the
first six rows of Table 1 (and beyond), i.e.

Dc̃·ϕγ (Q,P) :=



c̃ ·
{ K∑
k=1

(qk)γ ·(pk)1−γ

γ·(γ−1) − 1
γ−1 ·

K∑
k=1

qk + 1
γ ·

K∑
k=1

pk

}
, if γ ∈ ]−∞, 0[, P ∈ RK≥0 and Q ∈ RK>0,

c̃ ·
{ K∑
k=1

pk · log
(
pk
qk

)
+

K∑
k=1

qk −
K∑
k=1

pk

}
, if γ = 0, P ∈ RK≥0 and Q ∈ RK>0,

c̃ ·
{ K∑
k=1

(qk)γ ·(pk)1−γ

γ·(γ−1) − 1
γ−1 ·

K∑
k=1

qk + 1
γ ·

K∑
k=1

pk

}
, if γ ∈ ]0, 1[, P ∈ RK≥0 and Q ∈ RK≥0,

c̃ ·
{ K∑
k=1

qk · log
(
qk
pk

)
−

K∑
k=1

qk +
K∑
k=1

pk

}
, if γ = 1, P ∈ RK>0 and Q ∈ RK≥0,

c̃ ·
{ K∑
k=1

(qk)γ ·(pk)1−γ

γ·(γ−1) · 1[0,∞[(qk)− 1
γ−1 ·

K∑
k=1

qk + 1
γ ·

K∑
k=1

pk

}
, if γ ∈ ]1, 2[, P ∈ RK>0 and Q ∈ RK ,

c̃ ·
K∑
k=1

(qk−pk)2

2·pk , if γ = 2, P ∈ RK>0 and Q ∈ RK ,

c̃ ·
{ K∑
k=1

(qk)γ ·(pk)1−γ

γ·(γ−1) · 1[0,∞[(qk)− 1
γ−1 ·

K∑
k=1

qk + 1
γ ·

K∑
k=1

pk

}
, if γ ∈ ]2,∞[, P ∈ RK>0 and Q ∈ RK ,

∞, else;

(44)

notice that one has the straightforward relationship Dc̃·ϕγ (·, ·) = c̃ ·Dϕγ (·, ·); however, as a motivation for the introduction of
c̃ > 0, we shall show in the Examples 48, 50, 53, 54 in Section V below that the corresponding probability distribution � of
the Wi’s depends on c̃ in a non-straightforward way (see also Remark 15 (vi) for another motivation for c̃). In the course of
this, it turns out that c̃ · ϕγ ∈ Υ(]aγ ,∞[) with aγ = 0 for γ ∈]−∞, 1] and aγ = −∞ for γ ∈ [2,∞[.

For c̃ = 1 and probability vectors Q, P in SK respectively SK>0, the divergences (44) simplify considerably, namely to the well-
known power divergences Dϕγ (Q,P) in the scaling of e.g. Liese & Vajda [217] (in other scalings they are also called Rathie &
Kannapan’s non-additive directed divergences of order γ [302], Cressie-Read divergences [93] [303], relative Tsallis entropies
or Tsallis cross-entropies [364] (see also Shiino [331]), Amari’s alpha-divergences [12]); for some comprehensive overviews on
power divergences Dϕγ (Q,P) — including statistical applications to goodness-of-fit testing and minimum distance estimation
— the reader is referred to the insightful books of e.g. Liese & Vajda [217], Read & Cressie [303], Vajda [371], Stummer [344],
Pardo [282], Liese & Miescke [216], the survey articles of e.g. Liese & Vajda [218], Vajda & van der Meulen [374], and the
references therein. Prominent and widely used special cases of Dϕγ (Q,P) are the omnipresent Kullback-Leibler information
divergence (relative entropy) where γ = 1, the equally important reverse Kullback-Leibler information divergence (reverse
relative entropy) where γ = 0, the Pearson chi-square divergence (γ = 2), the Neyman chi-square divergence (γ = −1), the
Hellinger divergence (γ = 1

2 , also called squared Hellinger distance, squared Matusita distance [256] or squared Hellinger-
Kakutani metric, see e.g. Deza & Deza [113] 17). Some exemplary (relatively) recent studies and applications of power
divergences Dϕγ (Q,P) — aside from the vast statistical literature (including in particular maximum likelihood estimation and

17in some literature, the (square root of the) Hellinger divergence (HD) is misleadingly called Bhattacharyya distance; however, the latter is basically some
rescaled logarithm of HD, namely R1/2(Q,P) (cf. (69) with γ = 1/2)
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Pearson’s chi-square test) — appear e.g. in Matsuyama [253] for flexibilizations of the well-known expectation-maximization
(EM) algorithm and their uses for big-data completion (cf. [254]) and data credit computation in blockchain networks (cf.
[255]), Ku & Fine [199] in connection with blind source separation, Stummer & Vajda [348] as well as Stummer & Lao
[347] for optimal decisions about some alternative financial models, Berend et al. [41] for the derivation of a kind of reverse
Pinsker’s inequality (with γ = 1), Verrelst et al. [383] in geoscientific remote sensing via semiautomatic mapping of biophysical
parameters from optical earth observations, Salem at al. [315] for automatic alarm-triggering detection of events (e.g. patient
health degradations) from collected data by biomedical sensors, Fu et al. [128] for the study of income distributions in China,
Ha et al. [151] for x−ray spectrum reconstruction in computer tomography (CT) systems (with γ = 1), Iqbal & Seghouane
[161] for robust sequential dictionary learning, Luppino et al. [233] for unsupervised change detection in heterogeneous multi-
temporal satellite images (with γ = 1

2 ), Sason [320] in connection with data-processing and majorization inequalities, Krömer
& Stummer [198] for the smoothing and error-correcting of crude mortality rates (where they even employ non-probability-type
vectors), Bekhet & Ahmed [37] for effectiveness evaluations in video retrieval (with γ = −1, γ = 1

2 ), Cai et al. [71] for the
stabilization of trainings of generative adversarial networks (GANs), Fu et al. [129] for automatic molecule optimization, Görtler
et al. [139] for dimensionality reduction on uncertain data in visualization and computer graphics (with γ = 1

2 ), Kammerer
& Stummer [179] for optimal decision making in the presence of pandemics (e.g. COVID-19), Kanapram et al. [180] for the
development of collective self-awareness in a network of connected and autonomous vehicles through agent-centered detection
of abnormal situations (with γ = 1

2 ), Kumbhakar [206] for modelling the streamwise velocity profile in open-channel flows,
Sigmon et al. [335] for the improvement of genetic quality control in mouse research for biomedical applications (with γ = 2),
Zhang et al. [420] for the design of a noise-adaptation adapted generative adversarial network for medical image analysis (with
γ = 1

2 ), Chen et al. [79] for clustering high-dimensional microbial data from RNA sequencing (with γ = 1
2 ), Dharmawan et al.

[114] for the development of improvements in long-term cell observations via semiconductor-chips-based lensless holographic
microscopy, Liu & Sun [229] for analyzing approximate inferences in Bayesian neural networks, Rekavandi et al. [307] for
detections in functional magnetic resonance imaging (fMRI) as well as hyperspectral and synthetic aperture radar (SAR) data,
Seghouane & Shokouhi [325] for adaptive learning within robust radial basis function networks (RBFN), and Wang et al. [388]
for recommender-system relevant collaborative filtering in sparse data.

For c̃ = 1 and nonnegative-component vectors Q, P in RK≥0 respectively RK>0, the generalized power divergences Dϕγ (Q,P) of
(44) also (partially) simplify, and were treated by Stummer & Vajda [349] (for even more general probability measures, deriving
e.g. also generalized Pinsker’s inequalities); for a more general comprehensive technical treatment see also e.g. Broniatowski
& Stummer [64].

Returning to the general context, in Theorem 14 we stated that for each P ∈ SK>0 the function Q 7→ infm 6=0Dϕ(m · Q,P) is
BS-minimizable (cf. (2)) on all sets ΩΩ ⊂ SK satisfying (7) and (9). The (corresponding subsetup of the) following Lemma
16 is the cornerstone leading from this statement to BS-minimizability of the function Q 7→ Dϕ(Q,P)) on those same sets,
for the special divergences in (44). After giving the fundamental preparatory Lemma 16, we shall derive from it some BS-
minimizability/BS-maximizability results for (extensions of) a variety of important, widely used, closely related divergences
respectively entropy/diversity indices. To achieve this in a transparent way, we employ the following three fundamental quantities
Hγ(Q,P), I(Q,P) and Ĩ(Q,P). To begin with, let A > 0 be an arbitrary constant (notice that for the choice A = 1, all the
following vectors Q will turn into probability vectors Q). Moreover — for any constellation (γ,P,Q) ∈ Γ̃×M̃1×M̃2, where
Γ̃×M̃1×M̃2 :=]0, 1[×SK×A ·SK or Γ̃×M̃1×M̃2 :=]−∞, 0[×SK×A ·SK>0 or Γ̃×M̃1×M̃2 :=]1,∞[×SK>0×A ·SK
— let

0 < Hγ(Q,P) :=

K∑
k=1

(qk)γ · (pk)1−γ = 1 + γ · (A− 1) + γ · (γ − 1) ·Dϕγ (Q,P), γ ∈ R\{0, 1}, (45)

be the modified γ−order Hellinger integral of Q and P . Furthermore, for any P ∈ SK>0, Q ∈ A · SK , let

−1 < I(Q,P) :=

K∑
k=1

qk · log

(
qk
pk

)
= Dϕ1

(Q,P) +A− 1, (46)

be the modified Kullback-Leibler information (modified relative entropy). Finally, for any P ∈ SK , Q ∈ A · SK>0, let

1−A ≤ Ĩ(Q,P) :=

K∑
k=1

pk · log

(
pk
qk

)
= Dϕ0

(Q,P) + 1−A, (47)

be the modified reverse Kullback-Leibler information (modified reverse relative entropy).

In terms of (45), (46) and (47) we obtain the following
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Lemma 16: Let A > 0 be an arbitrary constant.
(a) Let c̃ > 0 be arbitrary and (γ,P,Q) ∈ Γ̃× M̃1 × M̃2 as above. Then one has

inf
m6=0

Dc̃·ϕγ (m ·Q,P) = inf
m>0

Dc̃·ϕγ (m ·Q,P) =
c̃

γ
·

[
1−Aγ/(γ−1) ·

[
1 + γ · (A− 1) +

γ · (γ − 1)

c̃
·Dc̃·ϕγ (Q,P)

]−1/(γ−1)
]

(48)

=
c̃

γ
·
[
1−Aγ/(γ−1) ·Hγ(Q,P)−1/(γ−1)

]
and consequently for any subset A ·ΩΩ ⊂ M̃2

inf
Q∈A·ΩΩ

inf
m6=0

Dc̃·ϕγ (m ·Q,P) =
c̃

γ
·

[
1−Aγ/(γ−1) ·

[
1 + γ · (A− 1) +

γ · (γ − 1)

c̃
· inf
Q∈A·ΩΩ

Dc̃·ϕγ (Q,P)

]−1/(γ−1)
]
, (49)

arg inf Q∈A·ΩΩ inf
m 6=0

Dc̃·ϕγ (m ·Q,P) = arg inf Q∈A·ΩΩ Dc̃·ϕγ (Q,P), (50)

inf
Q∈A·ΩΩ

inf
m6=0

Dϕγ (m ·Q,P) =
1

γ
·

[
1−Aγ/(γ−1) ·

[
inf

Q∈A·ΩΩ
Hγ(Q,P)

]−1/(γ−1)
]
, for γ < 0 and γ > 1, (51)

arg inf Q∈A·ΩΩ inf
m6=0

Dϕγ (m ·Q,P) = arg inf Q∈A·ΩΩ Hγ(Q,P), for γ < 0 and γ > 1, (52)

inf
Q∈A·ΩΩ

inf
m6=0

Dϕγ (m ·Q,P) =
1

γ
·

[
1−Aγ/(γ−1) ·

[
sup

Q∈A·ΩΩ
Hγ(Q,P)

]−1/(γ−1)
]
, for γ ∈]0, 1[, (53)

arg inf Q∈A·ΩΩ inf
m6=0

Dϕγ (m ·Q,P) = arg sup Q∈A·ΩΩ Hγ(Q,P), for γ ∈]0, 1[, (54)

provided that the infimum on the right-hand side of (49) exists.
(b) For any P ∈ SK>0, Q ∈ A · SK , c̃ > 0 one gets

inf
m 6=0

Dc̃·ϕ1
(m ·Q,P) = inf

m>0
Dc̃·ϕ1

(m ·Q,P) = c̃ ·
[
1−A · exp

(
− 1

A · c̃
·Dc̃·ϕ1

(Q,P) +
1

A
− 1

)]
(55)

= c̃ ·
[
1−A · exp

(
− 1

A
· I(Q,P)

)]
and consequently for any subset A ·ΩΩ ⊂ A · SK

inf
Q∈A·ΩΩ

inf
m 6=0

Dc̃·ϕ1
(m ·Q,P) = c̃ ·

[
1−A · exp

(
− 1

A · c̃
· inf
Q∈A·ΩΩ

Dc̃·ϕ1
(Q,P) +

1

A
− 1

)]
, (56)

arg inf Q∈A·ΩΩ inf
m6=0

Dc̃·ϕ1
(m ·Q,P) = arg inf Q∈A·ΩΩ Dc̃·ϕ1

(Q,P ), (57)

inf
Q∈A·ΩΩ

inf
m 6=0

Dϕ1
(m ·Q,P) =

[
1−A · exp

(
− 1

A
· inf
Q∈A·ΩΩ

I(Q,P)

)]
, (58)

arg inf Q∈A·ΩΩ inf
m6=0

Dϕ1
(m ·Q,P) = arg inf Q∈A·ΩΩ I(Q,P), (59)

provided that the infimum on the right-hand side of (56) exists.
(c) For any P ∈ SK , Q ∈ A · SK>0, c̃ > 0 we obtain

inf
m 6=0

Dc̃·ϕ0
(m ·Q,P) = inf

m>0
Dc̃·ϕ0

(m ·Q,P) = Dc̃·ϕ0
(Q,P) + c̃ · (1−A+ logA) (60)

= c̃ ·
(
Ĩ(Q,P) + logA

)
and consequently for any set subset A ·ΩΩ ⊂ A · SK>0

inf
Q∈A·ΩΩ

inf
m6=0

Dc̃·ϕ0
(m ·Q,P) = c̃ · (1−A+ logA) + inf

Q∈A·ΩΩ
Dc̃·ϕ0

(Q,P), (61)

arg inf Q∈A·ΩΩ inf
m 6=0

Dc̃·ϕ0
(m ·Q,P) = arg inf Q∈A·ΩΩ Dc̃·ϕ0

(Q,P), (62)

inf
Q∈A·ΩΩ

inf
m6=0

Dϕ1
(m ·Q,P) = logA+ inf

Q∈A·ΩΩ
Ĩ(Q,P), (63)

arg inf Q∈A·ΩΩ inf
m 6=0

Dϕ0
(m ·Q,P) = arg inf Q∈A·ΩΩ Ĩ(Q,P), (64)

provided that the infimum on the right-hand side of (61) exists.
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The proof of Lemma 16 is given in Appendix C.

Remark 17: Notice that for P ∈ SK>0 and Q ∈ A·SK , the modified Kullback-Leibler information has the property I(Q,P) ≥ 0
if A ≥ 1 (cf. (46)); otherwise, I(Q,P) may become negative, as can be easily seen from the case where P := Punif :=
( 1
K , . . . ,

1
K ) is the probability vector of frequencies of the uniform distribution on {1, . . . ,K}, and Q := ( 1

K+1 , 0, . . . , 0).
Analogously, for P ∈ SK and Q ∈ A ·SK>0 one gets Ĩ(Q,P) ≥ 0 if A ≤ 1 (cf. (47)); otherwise, Ĩ(Q,P) may become negative
(take e.g. Q = (K+1

K , . . . , K+1
K ) and P := (1, 0, . . . , 0)).

Remark 18: (a) In the context of Remark 15(vi), according to (42) applied to ϕ := c̃ · ϕγ , for all cases
γ ∈ ] − ∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[ the left-hand side of each of (49), (51), (53) is independent of A > 0 and equal to
− limn→∞

1
n log �

[
ξwW
n ∈ ΩΩ

]
where — as will be shown below — the corresponding W’s have probability distribution

�[· ] = �[W1 ∈ · ] (cf. (6)) which varies “quite drastically” with γ (and the case γ ∈]1, 2[ has to be even excluded for analytical
difficulties 18). Analogously, each of the left-hand sides of (56), (58), (61), (63) is also independent of A > 0 and equal
to − limn→∞

1
n log �

[
ξwW
n ∈ ΩΩ

]
for some W of respective distribution. Hence, by inversion, all the extremum-describing

target quantities infQ∈A·ΩΩDc̃·ϕγ (Q,P) (γ ∈ R\]1, 2[), infQ∈A·ΩΩHγ(Q,P) (γ ∈] −∞, 0[∪ [2,∞[), supQ∈A·ΩΩHγ(Q,P)

(γ ∈]0, 1[), infQ∈A·ΩΩ I(Q,P) and infQ∈A·ΩΩ Ĩ(Q,P) can be expressed as G
(
− limn→∞

1
n log �

[
ξwW
n ∈ ΩΩ)

]
for some

explicitly known (A−dependent) function G. This means that — in the sense of Definition 1 — all the corresponding four
“cornerstone quantities” Dc̃·ϕγ (Q,P), Hγ(Q,P), I(Q,P), Ĩ(Q,P) are BS-minimizable, respectively BS-maximizable, on
Ω = A · ΩΩ. The above-mentioned inversions (i.e. constructions of G(·)) will be concretely carried out below — namely in
the Propositions 22, 23, 24, 25, 26 and 27. In those, we also involve the BS-minimizability/maximizability of several other
important closely related divergences and measures of entropy (measures of diversity, measures of heterogeneity/homogeneity,
measures of concentration) which (i) are widely used in information theory and its applications to artificial intelligence, machine
learning and physics, and which (ii) can be built from the above-mentioned four cornerstone quantities (power divergences,
Hellinger integrals, Kullback-Leibler information divergences).
(b) The special case ϕ := c̃ ·ϕγ (γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[) of Theorem 14 works analogously to (a), with the differences
that we employ A = 1 (instead of arbitrary A > 0), (36) (instead of (42)), �Xn1 [·] (instead of �[·]), and ξwW

n,X (instead of
ξwW
n ).

(c) From the proof of Lemma 16 in Appendix C below, one can see that for the important case γ = 2 the formulas (48) to
(52) also hold for A < 0.

In the following, we further elaborate the three points (a),(b) and (c) of Remark 18 “comprehensively and unifyingly”, where the
expression “BS minimizable/maximizable” always has to be interpreted accordingly in terms of − limn→∞

1
n log�[ξwW

n ∈ · ]
respectively − limn→∞

1
n log�Xn1 [ξwW

n,X ∈ · ] (without explicit mentioning, for the sake of brevity).

Let us fix c̃ = 1 and an arbitrary triple (γ,P,Q) which satisfies the assumptions of Lemma 16(a) with A :=
∑K
k=1 qk > 0.

For such a setup, we have obtained in (45) the γ−order Hellinger integral (of Q and P) Hγ(Q,P) > 0, which is not a
divergence; as a terminology-concerning side remark, let us mention that Hγ(Q,P) (γ ≥ 1) is called relative information
generating function in Guiasu & Reischer [144], see e.g. also Clark [90]; moreover, Hγ(Q,P) is sometimes termed (γ−order)
Chernoff coefficient being a component of the Chernoff distances/informations [85]. Torgersen [361] uses the name (γ−order)
Hellinger transform. Notice that the special case γ = 1

2 is nothing but (a multiple of) the well-known important Bhattacharyya
coefficient (cf. [48],[49],[50])

BC(Q,P) := H1/2(Q,P) =

K∑
k=1

√
qk · pk = 1 +

1

2
· (A− 1) +

1

2
· (1

2
− 1) ·Dϕ 1

2

(Q,P)

which is also known as affinity (cf. Matusita [256], see e.g. also Toussaint [362]) and (classic, non-quantum) fidelity similarity
(cf. e.g. Deza & Deza [113]); for non-probability vectors P ∈ RK≥0 one can simply retransform P := P

MP
and thus imbed

BC(Q,P) =
√
MP ·BC(Q,P) into our BS context. There is a vast literature on very recent applications of the Bhattacharyya

coefficient, for instance it appears exemplarily in Peng & Li [289] for object tracking from successive video frames, Ayed et
al. [26] for efficient graph cut algorithms, Patra et al. [287] for collaborative filtering in sparse data, El Merabet et al. [119]
for region classification in intelligent transport systems in order to compensate the lack of performance of Global Navigation
Satellites Systems, Chiu et al. [86] for the design of interactive mobile augmented reality systems, Noh et al. [274] for dimension
reduction in interacting fluid flow models, Bai et al. [29] for material defect detection through ultrasonic array imaging, Dixit
& Jain [115] for the design of recommender systems on highly sparse context aware datasets, Guan et al. [143] for visible light
positioning methods based on image sensors, Lin et al. [220] for probabilistic representation of color image pixels, Chen et
al. [80] for distributed compressive video sensing, Jain et al. [162] for the enhancement of multistage user-based collaborative
filtering in recommendation systems, Pascuzzo et al. [285] for brain-diffusion-MRI based early diagnosis of the sporadic

18because in this case there are some indications that the representation (6) only holds for some signed probability distribution � (e.g. having a density with
positive and negative values).
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Creutzfeldt—Jakob disease, Sun et al. [351] for the design of automatic detection methods multitemporal (e.g. landslide) point
clouds, Valpione et al. [377] for the investigation of T cell dynamics in immunotherapy, Wang et al. [387] for the tracking
and prediction of downbursts from meteorological data, Xu et al. [403] for adaptive distributed compressed video sensing for
coal mine monitoring, Zhao et al. [424] for the shared sparse machine learning of the affective content of images, Chen et al.
[82] for image segmentation and domain partitioning, De Oliveira et al. [105] for the prediction of cell-penetrating peptides,
Eshaghi et al. [122] for the identification of multiple sclerosis subtypes through machine learning of brain MRI scans, Feng et
al. [125] for improvements of MRI-based detection of epilepsy-causing cortical malformations, Hanli et al. [153] for designing
pilot protection schemes for transmission lines, Jiang et al. [170] for flow-assisted visual tracking through event cameras,
Lysiak & Szmajda [235] for comparisons of selected feature quality evaluations, Joel & Sivakumar [172] for the despeckling
enhancement of medical ultrasound image quality, Reising et al. [305] for the design of security protection of Internet-of-
Things (IoT) devices, Skrbic et al. [338] for the uncovering of interplays between amino acid sequences and local structures in
proteins, Tsiapoki et al. [365] for the improvement of the detection performance of structural health monitoring frameworks,
van Molle et al. [381] for uncertainty quantification in deep neural networks, Yang et al. [413] for the determination of the
onset of transient signals, and Zhou & Yu [427] for the modelling of spatiotemporal human eye movements.

To proceed with the general context, for any γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[ let the function hγ : ]0,∞[ 7→ ]−∞,∞[ be such
that x 7→ hγ(1+γ · (A−1)+γ · (γ−1) ·x) is continuous and strictly increasing (respectively, strictly decreasing) for all x ≥ 0
with 1 + γ · (A− 1) + γ · (γ− 1) · x > 0; since Dϕγ (Q,P) is BS-minimizable on Ω = A ·ΩΩ, then also the — not necessarily
nonnegative — quantity hγ

(
1 + γ · (A − 1) + γ · (γ − 1) ·Dϕγ (Q,P)

)
= hγ

(
Hγ(Q,P)

)
is BS-minimizable (respectively,

BS-maximizable) on Ω = A ·ΩΩ. If hγ satisfies additionally hγ(1) = 0 as well as hγ(1+γ · (A−1)+γ · (γ−1) ·x) ≥ 0 for all
x ≥ 0 with 1+γ ·(A−1)+γ ·(γ−1)·x > 0, then Dhγ (Q,P) := hγ

(
1+γ ·(A−1)+γ ·(γ−1)·Dϕγ (Q,P)

)
= hγ

(
Hγ(Q,P)

)
constitutes a divergence 19 which is BS-minimizable on Ω = A ·ΩΩ (respectively, BS-maximizable on Ω = A ·ΩΩ).

Let us consider some important examples. For the identity mapping hIdγ (y) := y (y > 0) the function x 7→ 1 + γ · (A −
1) + γ · (γ − 1) · x is strictly increasing for γ < 0 and γ > 1 (on the required domain of x), and strictly decreasing for
γ ∈]0, 1[. Accordingly, Hγ(Q,P) is BS-minimizable on Ω = A ·ΩΩ for γ < 0 and γ ≥ 2 and BS-maximizable on Ω = A ·ΩΩ
for γ ∈ ]0, 1[ (this is consistent with (51), (53)); in particular, the Bhattacharyya coefficient BC(Q,P) is BS-maximizable on
Ω = A ·ΩΩ. Some other important choices are

hγ(y) := hc1,c2,c3(y) := c1 ·
(
yc2 − c3

)
, y > 0, c1, c2 ∈ R\{0}, c3 ∈ R, (65)

hγ(y) := hRc4,f (y) := lim
c2→0

hc4/f(c2),c2,1(y) =
c4
f ′(0)

· log(y), y > 0, c4 ∈ R\{0}, (66)

hγ(y) := hGB2
c5,c6(y) := c5 · (arccos(y))c6 , γ ∈ ]0, 1[, y ∈ ]0, 1], c5 > 0, c6 > 0, (67)

hγ(y) := hBBν,c7(y) := c7 ·
log(1− 1−y

ν )

log(1− 1
ν )

, γ ∈ ]0, 1[, y ∈ ]0, 1], c7 > 0, ν ∈]−∞, 0[∪ ]1,∞[, (68)

where the constants c1 to c7 may depend on γ, and f is some (maybe γ−dependent) function which is differentiable in a
neighborhood of 0 and satisfies f(0) = 0, f ′(0) 6= 0 (e.g. f(z) = c8 · z for some non-zero constant c8). Clearly, hc1,c2,c3(·)
is strictly increasing (respectively, strictly decreasing) if and only if c1 · c2 > 0 (respectively, c1 · c2 < 0). Moreover, hRc4,f (·)
is strictly increasing (respectively, strictly decreasing) if and only if c4

f ′(0) > 0 (respectively, c4
f ′(0) < 0). Furthermore, both

hGB2
c5,c6(·) and hGoBaν,c7 (·) are strictly decreasing.

For instance, the special case hγ(y) = hRc4,Id(y) with c4 := 1
γ·(γ−1) (recall that γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[) and identity

function f := Id leads to the quantities

Rγ(Q,P) := DhRc4,Id
(Q,P) =

log
(

1 + γ · (A− 1) + γ · (γ − 1) ·Dϕγ (Q,P)
)

γ · (γ − 1)
=

log
(
Hγ(Q,P)

)
γ · (γ − 1)

=
log
(∑K

k=1(qk)γ · (pk)1−γ
)

γ · (γ − 1)
, γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[, (69)

(provided that all involved power divergences are finite), which are thus BS-minimizable on Ω = A·ΩΩ; notice that Rγ(Q,P) ≥
0 if γ ∈ ]0, 1[ ∪ [ 2,∞[ together with A ∈ [1,∞[, and if γ ∈ ]−∞, 0[ together with A ∈ ]0, 1]. The special subcase A = 1 in
(69) (and thus, Q is a probability vector Q) corresponds to the prominent Renyi divergences/distances [309] (in the scaling of
e.g. Liese & Vajda [217] and in probability-vector form), see e.g. van Erven & Harremoes [380] for a comprehensive study
of their properties; as a side remark, γ · (γ − 1) ·Rγ(Q,P) is also employed in the Chernoff distances/informations [85]. The
special subcase R1/2(Q,P) (i.e. γ = 1/2 and A = 1 in (69)) corresponds to (a multiple of) the widely used Bhattacharyya

19in the usual sense that Dhγ (Q,P) ≥ 0 with equality iff Q = P.
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distance (of type 1) between Q and P, cf. [48] (see e.g. also Kailath [178]). Sometimes, exp(Rγ(Q,P)) is also called Renyi
divergence/distance. Some exemplary (relatively) recent studies and applications of Renyi divergences Rγ(Q,P) (respectively,
their multiple or exponential) — aside from the substantial statistical literature — appear e.g. in Zhao et al. [423] for the
study of isomeric stability of fullerenes (which are e.g. employed for state-of-the-art organic solar cells), in the papers of
Sundaresan [353], Bunte & Lapidoth [67], Sason [318], Kumar et al. [205] for (mismatch-cases of) coding and guessing as
well as task partitioning, in the papers of Prest [296], Bai et al. [30] for lattice-based cryptography, in He et al. [158] for robot
active olfaction search (by infotaxis) in turbulent flows, in Momeni et al. [263] for the design of reprogrammable encrypted
graphene-based coding metasurfaces, in Staszowska et al. [340] for accurate and precise cluster analysis for super-resolution
localization microscopy, in Yu & Tan [414] for distributed source simulation problems, in Zhang et al. [419] for sensor control,
in Yu & Tan [415] for the so-called random variable simulation problem, in Blanchet et al. [55] for the robust treatment
of extreme values in rainfall accumulation data, in Cai et al. [70] for sensor tasking for search and catalog maintenance of
geosynchronous space objects, in Gholami & Hodtani [134] for refinements of safety-and-security-targeted location verification
systems in wireless communication networks (e.g in Intelligent Transportation Systems (ITSs) and vehicular technology), in
Seweryn et al. [326] for the assessment of similarity and diversity of expression profiles in single cell systems, in Zhou [426]
for the study of secrecy constraints in key generation problems where side information might be present at untrusted users,
in Makkawi et al. [243] for the design of an automated decision-support framework for adaptive diagnosis of fault–tolerant
multi–sensor data fusion for vehicle localization, in Mao et al. [245] for privacy-preserving computation offloading for parallel
deep neural networks training.

There is vast literature on recent applications of the above-mentioned special case R1/2(Q,P) — that is, the Bhattacharyya
distance (of type 1); for instance, it appears in Tarighati & Jalden [356] for rate balancing in wireless sensor networks, Bi
et al. [51], [52] for certain uncertainty quantifications respectively stochastic sensitivity analyses in mechanical systems and
signal processing, Fu & He [130] for the design of multibit quantizers for cooperative spectrum sensing in cognitive radio
networks, Cohen et al. [91] for adaptive and causal random linear network coding with forward error correction for a point-to-
point communication channel with delayed feedback, Xu et al. [401] for cost minimization problems of big data analytics on
geo-distributed data centers connected to renewable energy sources with unpredictable capacity, Xu et al. [402] for community
identification in networks, Arrigoni & Madsen [18] for automated discovering of low-energy defect configurations in materials,
Fan et al. [123] for region-merging-based methods for synthetic aperture radar (SAR) image segmentation, Mahfouz et al.
[242] for some refined ensemble classifications in microarray-based automated cancer diagnosis, Matchev & Shyamsundar
[252] for some machine-learning based signal discovery in high energy physics (HEP) experiments, Wang et al. [386] for
the investigation of intratumoral heterogeneity (ITH) of some gastric cancer, Webster et al. [389] for the characterization,
identification, clustering and classification of disease, and Xiahou et al. [396] for the prediction of remaining useful life (RUL)
through fusion of expert knowledge and condition monitoring information.

As a further example, consider

Bγ,c5,c6(Q,P) := DhGB2
c5,c6

(Q,P) = c5 ·
(

arccos
(

1 + γ · (γ − 1) ·Dϕγ (Q,P)
))c6

= c5 ·
(

arccos
(
Hϕγ (Q,P)

))c6
= c5 ·

(
arccos

( K∑
k=1

(qk)γ · (pk)1−γ
))c6

≥ 0 , γ ∈ ]0, 1[, c5 > 0, c6 > 0,

which is BS-maximizable on ΩΩ. The case B1/2,1,1(Q,P) corresponds to the well-known Bhattacharyya arccos distance
(Bhattacharyya distance of type 2) in [50] (which is also called Wootters distance [395]), and B1/2,1,2(Q,P) to its variant
in [49]; the case B1/2,2,1(Q,P) is known as Fisher distance or Rao distance or geodesic distance (see e.g. Deza & Deza
[113]); a nice graphical illustration of the geometric connection between the Fisher distance B1/2,2,1(Q,P) and the Hellinger

distance/metric
√

1
2 ·Dϕ1/2

(Q,P) can be found e.g. on p.35 in Ay et al. [25]. Some exemplary applications of the Bhattacharyya
arccos distance B1/2,1,1(Q,P) can be found e.g. in Rao [301] and Juhasz [177] for cluster analysis of human populations, in
Martin-Fernandez et al. [251] for general hierarchical clustering, Greenacre [141] for metric scaling, and in Chen et al. [79]
for clustering high-dimensional microbial data from RNA sequencing.

Let us give another example, namely

B̃γ,ν,c7(Q,P) := DhBBν,c7
(Q,P) =

c7

log(1− 1
ν )
· log

(
1−

1−
(

1 + γ · (γ − 1) ·Dϕγ (Q,P)
)

ν

)
=

c7

log(1− 1
ν )
· log

(
1−

1−Hϕγ (Q,P)

ν

)
=

c7

log(1− 1
ν )
· log

(
1−

1−
∑K
k=1(qk)γ · (pk)1−γ

ν

)
∈ [0, c7[ ,

γ ∈ ]0, 1[, c7 > 0, ν ∈ ]−∞, 0[∪ ]1,∞[,

which is BS-maximizable on ΩΩ. The case B̃1/2,ν,1(Q,P) corresponds to the Bounded Bhattacharyya Distance Measures of
Jolad et al. [174].
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We can also employ divergences of the form R̆γ(Q,P) := Rγ(T1(Q), T2(P)) 20 where T1 : D1 7→ R1, T2 : D1 7→ R2 are
(say) invertible functions on appropriately chosen subsets D1,D2,R1,R2 of the probability-vector simplex SK . For instance,
consider the following special case (with a slight abuse of notation):

R̆γ(Q,P) := Rγ(Q̃, P̃) =
1

γ · (γ − 1)
· log

 K∑
k=1

(
(qk)ν1∑K
j=1(qj)ν1

)γ
·

(
(pk)ν2∑K
j=1(pj)ν2

)1−γ
 (70)

where (i) Q̃ := (q̃k)Kk=1 with q̃k := (qk)ν1∑K
j=1(qj)ν1

is the escort probability distribution (in vector form) associated with the

probability distribution (in vector form) Q := (qk)Kk=1 ∈ SK>0, and (ii) P̃ := (p̃k)Kk=1 with p̃k := (pk)ν2∑K
j=1(pj)ν2

is the escort

probability distribution associated with the probability distribution P := (pk)Kk=1 ∈ SK>0, in terms of some fixed escort
parameters ν1 > 0, ν2 > 0.

In particular, for the special choice ν1 = ν2 > 0 and γ := ν
ν1

with ν ∈]0, ν1[∪ [2ν1,∞[ we obtain from (70)

0 ≤ ν

ν1
·Rν/ν1

(Q̃, P̃) =
log
(∑K

k=1(q̃k)ν/ν1 · (p̃k)1−(ν/ν1)
)

ν
ν1
− 1

=
ν1

ν − ν1
· log

( K∑
k=1

(qk)ν · (pk)ν1−ν
)
− ν

ν − ν1
· log

( K∑
k=1

(qk)ν1

)
+ log

( K∑
k=1

(pk)ν1

)
=: R̆ν/ν1

(Q,P) (71)

which is BS-minimizable (in Q̃) on ΩΩ. Our divergence R̆ν/ν1
(Q,P) in (71) is basically a multiple of a divergence which

has been very recently used in Ghosh & Basu [136]. Moreover, R̆1/ν1
(Q,P) (i.e. the special case ν = 1 in (71)) is equal

to Sundaresan’s divergence [352] [353] (see also Lutwak et al. [234], Kumar & Sundaresan [203], [204], Yagli et al. [408]);
for our BS-approach, we need the restriction ν1 ∈ ]0, 1

2 ]∪ ]1,∞[. Notice that Sundaresan’s divergence can be employed in
mismatch-cases of (i) Campbell’s coding problem, (ii) Arikan’s guessing problem, (iii) memoryless guessing, and (iv) task
partitioning problems; see e.g. Sundaresan [353], Bunte & Lapidoth [67], Kumar et al. [205].

Returning to the general context, functions of the modified Kullback-Leibler information I(Q,P) and the modified reverse
Kullback-Leibler information Ĩ(Q,P) can be treated analogously. For the sake of brevity, we only deal with the former and
fix arbitrary P ∈ SK>0 and Q ∈ A · SK with A :=

∑K
k=1 qk > 0. For this, in (46) we have obtained I(Q,P) which is

generally not a divergence (cf. Remark 17). In the following, let the function h1 : ] − 1,∞[ 7→ ] −∞,∞[ be continuous and
strictly increasing (respectively, strictly decreasing); since Dϕ1

(Q,P) is BS-minimizable on Ω = A · ΩΩ, also the quantity
h1

(
A− 1 + Dϕ1(Q,P)

)
= h1

(
I(Q,P)

)
is BS-minimizable on Ω = A ·ΩΩ (respectively, BS-maximizable on Ω = A ·ΩΩ).

In particular, by using the negative identity mapping h−Idγ (y) := −y (y > −1) we get that −I(Q,P) is BS-maximizable.
Another exemplary choice for h1 is (cf. Sharma & Mittal [330] in the scaling of e.g. Morales et al. [264])

h1(y) := hSMs (y) :=
e(s−1)·y − 1

s− 1
, y ∈ R, s ∈ ]0, 1[∪ ]1,∞[, (72)

which is strictly increasing; hence, hSMs (I(Q,P)) (and also hSMs (Dϕ1(Q,P))) is BS-minimizable on Ω = A ·ΩΩ.

As another important application line, let us fix any (γ,Q) ∈ (Γ̃\]1, 2[) × M̃2 (cf. Lemma 16(a)) with A :=
∑K
k=1 qk >

0. Moreover, we take P := Punif := ( 1
K , . . . ,

1
K ) to be the probability vector of frequencies of the uniform distribution

on {1, . . . ,K}. Then, for γ ∈ ] − ∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[ one gets Hγ(Q,Punif ) = Kγ−1 ·
∑K
k=1 q

γ
k . One can rewrite

K1−γ ·Hγ(Q,Punif ) =
∑K
k=1 q

γ
k ; the latter is sometimes called heterogeneity index of type γ, see e.g. van der Lubbe [379],

with γ = 2 being the Simpson-Herfindahl index which is also known as index of coincidence (cf. Harremoes & Topsoe [155]
and its generalization in Harremoes & Vajda [156]). Alternatively,

∑K
k=1 q

γ
k is also called Onicescu’s information energy in

case of γ = 2 (cf. Onicescu [278], see also Pardo & Taneja [283] for comprehensive investigations) and in general information
energy of order γ (cf. Theodorescu [359], see also e.g. Pardo [281]); for exemplary applications to electron density functional
theory (DFT) for quantum chemical reactivity, the reader may take (discretized versions of) e.g. Liu et al. [226], Lopez-Rosa et
al. [231] and Rong et al. [311]. In some other literature (see e.g. Clark [90]),

∑K
k=1 q

γ
k is alternatively called Golomb’s [140]

information generating function (of a probability distribution Q); yet another name is generalized information potential and
for γ = 2 information potential (cf. e.g. Principe [297], Acu et al. [4]). From the above-mentioned investigations, we obtain

20 and analogously power divergences D̆c̃·ϕγ (Q,P) := Dc̃·ϕγ (T1(Q), T2(P)) etc.
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that
∑K
k=1 q

γ
k is BS-minimizable on Ω = A ·ΩΩ for γ < 0 and γ ≥ 2, and BS-maximizable on Ω = A ·ΩΩ for γ ∈]0, 1[. More

generally, by employing (65) and (66), for the class of entropies (diversity indices)

Eγ,c1,c2,c3(Q) := hc1,c2,c3

(
K∑
k=1

qγk

)
= c1 ·

((
K∑
k=1

qγk

)c2
− c3

)
= c1 ·

(
Kc2·(1−γ) ·Hγ(Q,Punif )c2 − c3

)
, c1, c2 ∈ R\{0}, c3 ∈ R, (73)

ERc4,f (Q) := hRc4,f

(
K∑
k=1

qγk

)
=

c4
f ′(0)

· log

(
K∑
k=1

qγk

)
,

=
c4
f ′(0)

·
(

log
(
Hγ(Q,Punif )

)
+ (1− γ) · log(K)

)
, c4 ∈ R\{0}, (74)

(which is similar to the entropy-class of Morales et al. [265] who use a different, more restrictive parametrization and probability
distributions Q), one gets the following extremum-behaviour:
• Eγ,c1,c2,c3(Q) is BS-minimziable if γ < 0 and c1 · c2 > 0;
• Eγ,c1,c2,c3(Q) is BS-minimizable if γ ≥ 2 and c1 · c2 > 0;
• Eγ,c1,c2,c3(Q) is BS-minimizable if γ ∈ ]0, 1[ and c1 · c2 < 0;
• Eγ,c1,c2,c3(Q) is BS-maximizable if γ < 0 and c1 · c2 < 0;
• Eγ,c1,c2,c3(Q) is BS-maximizable if γ ≥ 2 and c1 · c2 < 0;
• Eγ,c1,c2,c3(Q) is BS-maximizable if γ ∈ ]0, 1[ and c1 · c2 > 0;
• ERc4,f (Q) is BS-minimizable if γ < 0 and c4

f ′(0) > 0;
• ERc4,f (Q) is BS-minimizable if γ ≥ 2 and c4

f ′(0) > 0;
• ERc4,f (Q) is BS-minimizable if γ ∈ ]0, 1[ and c4

f ′(0) < 0;
• ERc4,f (Q) is BS-maximizable if γ < 0 and c4

f ′(0) < 0;
• ERc4,f (Q) is BS-maximizable if γ ≥ 2 and c4

f ′(0) < 0;
• ERc4,f (Q) is BS-maximizable if γ ∈ ]0, 1[ and c4

f ′(0) > 0.

From this, one can deduce that our new BS method works for the constrained minimization/maximization of the following
well-known, prominently used measures of entropy respectively measures of diversity, and beyond:
(E1) c1 = 1, c2 = 1

γ , c3 = 0: the Euclidean γ−norm (also known as γ−norm heterogeneity index, see e.g. van der Lubbe

[379]) ||Q||γ :=
(∑K

k=1 q
γ
k

)1/γ

= K(1−γ)/γ ·
(
Hγ(Q,Punif )

)1/γ

is BS-minimizable on Ω = A ·ΩΩ for γ ∈]0, 1[ and
γ ≥ 2, and BS-maximizable on Ω = A ·ΩΩ for γ < 0 (note that ||Q||1 = A) ;
similarly, the γ−mean heterogeneity index (see e.g. [379], as well as Jost [176] for its interpretation as “effective number of

species” respectively as “numbers equivalent”) given by EHI(Q) :=
(∑K

k=1 q
γ
k

)1/(γ−1)

= 1
K ·
(
Hγ(Q,Punif )

)1/(γ−1)

is BS-minimizable on Ω = A ·ΩΩ for γ ≥ 2, and BS-maximizable on Ω = A ·ΩΩ for γ < 0 and γ ∈]0, 1[. Alternatively,
EHI(Q) is also called (γ−order) Hill diversity index or Hill number [160], respectively (γ−order) Hannah-Kay index
[154], respectively (γ−order) Renyi heterogeneity (cf. Nunes et al. [276]), respectively (γ−order) exponential Renyi
entropy or exponential entropy (cf. Campbell [72]) since it is equal to exp(EgR(Q)) (cf. (E6) below). The γ−mean
heterogeneity index (under one of the above-mentioned namings) was recently employed e.g. by Greiff et al. [142]
for immunodiagnostic design of fingerprints of an individual’s ongoing immunological status (e.g., healthy, infected,
vaccinated) — culminating in accurate and early detection of disease and infection, by Ma & Li [237] for the quantification
of metagenome diversity and similarity, by Jasinska et al. [164] for studying bacterial evolution — in particular evolution
under sub-inhibitory antibiotic levels, by Ma et al. [238] for the definition of individual-level genetic diversity and
similarity profiles as well as their applications to datasets from the 1000-Genomes Project, and by Lassance & Vrins
[209] for some optimal selection procedure of financial-asset portfolios.

(E2) c1 = 1
21−γ−1 , c2 = 1, c3 = 1: the entropy

EgHC(Q) :=
1

21−γ − 1
·

(
K∑
k=1

qγk − 1

)
=

1

21−γ − 1
·
(
K1−γ ·Hγ(Q,Punif )− 1

)
(75)

is BS-minimizable on Ω = A ·ΩΩ for γ < 0, and BS-maximizable on Ω = A ·ΩΩ for γ ∈]0, 1[ and γ ≥ 2; the special
subcase A = 1 in (75) (and thus, Q = Q is a probability vector) corresponds to the γ−order entropy of Havrda-Charvat
[157] (also called non-additive γ−order Tsallis entropy [363] in statistical physics) where the special case γ = 2 is
(a multiple of) Vajda’s quadratic entropy [371] and Ahlswede’s identification entropy [7] (see also Ahlswede & Cai
[8]). Some exemplary (relatively) recent studies and applications of EgHC(Q) appear e.g. in Peter & Rangarajan [291]
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for shape matching, in Liu et al. [226] as well as in Rong et al. [311] to electron density functional theory (DFT) for
quantum chemical reactivity, in Yalcin & Beck [409] for the investigation of energy spectra of cosmic rays, in Wen
& Jiang [390] for the quantification of complexity degrees in complex networks, in Bhandari [46] for fast multilevel
thresholding for color image segmentation, in Erguzel et al. [121] for the investigation of Electroencephalography (EEG)
signals of subjects suffering from some psychiatric disorders, in Kang & Kim [182] for automatic synthetic aperture radar
(SAR) image registration, in Namdari & Li [269] for the modelling of Lithium-Ion battery capacity fade, in Seweryn
et al. [326] for the assessment of similarity and diversity of expression profiles in single cell systems, in Zhang et al.
[418] for the search of functional relationships between groundwater depth and vegetation distribution, in Kumbhakar et
al. [207] for the modelling of streamwise velocity profiles in wide–open channel turbulent flows (e.g. in rivers, streams,
canals, ditches), and in Ramezani & Pourdarvish [300] for transfer learning for image classification of gravitational
waves.

For the special case γ = 2, a directly connected quantity is the measure of concentration (cf. e.g. De Wet et al. [107])
EgMC(Q) := 1− 1

K − E
gHC(Q) =

∑K
k=1

(
qk − 1

K

)2
which (up to a multiple) was introduced by Brukner & Zeilinger

[66] as an appropriate measure of information for quantum experiments.

(E3) γ := 1
γ̃ , c1 = 1

γ̃−1 , c2 = γ̃, c3 = 1: the entropy

EgA(Q) :=
1

γ̃ − 1
·

( K∑
k=1

q
1/γ̃
k

)γ̃
− 1

 =
1

γ̃ − 1
·
(
K γ̃·(1−γ) ·H1/γ̃(Q,Punif )γ̃ − 1

)
(76)

is BS-minimizable on Ω = A ·ΩΩ for γ̃ < 0 and γ̃ ∈ ]0, 1[, and BS-maximizable on Ω = A ·ΩΩ for γ ≥ 2; the special
subcase A = 1 in (76) (and thus, Q = Q is a probability vector) corresponds to the γ̃−order entropy of Arimoto [16].

(E4) s ∈ R\{1}, c1 = 1
1−s , c2 = 1−s

1−γ , c3 = 1: the entropy

EgSM1(Q) :=
1

1− s
·

( K∑
k=1

qγk

)(1−s)/(1−γ)

− 1

 =
1

1− s
·
(
K1−s ·Hγ(Q,Punif )(1−s)/(1−γ) − 1

)
(77)

is BS-minimizable on Ω = A ·ΩΩ for γ < 0 and BS-maximizable on Ω = A ·ΩΩ for γ ∈ ]0, 1[ and γ ≥ 2; the special
subcase A = 1 in (77) (and thus, Q = Q is a probability vector) corresponds to the entropy of order γ and degree s of
Sharma & Mittal [329] in the scaling of e.g. Salicru et al. [314].

(E5) s ∈ R\{0}, γ = s+ 1, c1 = − 1
s , c2 = 1, c3 = 1: the diversity index

EgPT (Q) := −1

s
·

(
K∑
k=1

qs+1
k − 1

)
= −1

s
·
(
K−s ·Hs+1(Q,Punif )− 1

)
(78)

is BS-minimizable on Ω = A ·ΩΩ for s < −1 and BS-maximizable on Ω = A ·ΩΩ for s ∈ ]− 1, 0[ and s > 0; the special
subcase A = 1 in (78) (and thus, Q = Q is a probability vector) corresponds to the diversity index of degree s of Patil
& Taillie [286]; the case s = 1 for probability measures Q = Q gives the well-known Gini-Simpson diversity index.

(E6) c4 = 1
1−γ , f(z) = z: the entropy

EgR(Q) :=
1

1− γ
· log

(
K∑
k=1

qγk

)
=

1

1− γ
·
(

log
(
Hγ(Q,Punif )

)
+ (1− γ) · log(K)

)
=

log 2

1− γ
· log2

(
K∑
k=1

qγk

)
(79)

is BS-minimizable on Ω = A ·ΩΩ for γ < 0, and BS-maximizable on Ω = A ·ΩΩ for γ ∈]0, 1[ and γ ≥ 2; the special
subcase A = 1 in (79) (and thus, Q = Q is a probability vector) corresponds to the prominent (additive) γ−order Renyi
entropy [309]. As well known, there is a vast literature on Renyi entropies EgR(Q). Some exemplary (mostly recent)
studies and applications appear e.g. in Nath [270] — as well as in Arikan [15], Sundaresan [353], Bunte & Lapidoth
[67], Sason & Verdu [321], Kumar et al. [205] — for coding and guessing, in Bennett et al. [39] in connection with
unconditionally secure secret-key agreement protocols and quantum cryptography, in Mayoral [257] for cluster sampling,
in Aviyente et al. [21] for information extraction in certain neurophysiological signals (so-called event-related potentials),
in Tao et al. [355] as well as in Jiao et al. [171] for early defect/fault detection of rolling element bearings, in Pham et
al.: [292] for blind source separation, in Liu et al. [226] as well as in Rong et al. [311] to electron density functional
theory (DFT) for quantum chemical reactivity, in Sason [319] for data compression, in Carravilla et al. [73] for the
recognition of HIV-1 antibodies through STED microscopy and the corresponding design of therapeutic interventions, in
Joshi et al. [175] for the identification and tracking of relevant T cell receptors for adoptive immunotherapy, in Erguzel
et al. [121] for the investigation of Electroencephalography (EEG) signals of subjects suffering from some psychiatric
disorders, in German–Sallo [133] for fault–characteristics extraction from discrete signals in manufacturing systems, in
Schober et al. [323] for investigations of some evolutions of the T cell antigen receptor (TCR) repertoire, in Seweryn et
al. [326] for the assessment of similarity and diversity of expression profiles in single cell systems, in Amezquita-Sanchez
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[13] for the detection of incipient damage in high-rise buildings subjected to dynamic vibrations, in Barennes et al. [32]
for comparing the accuracy of current T cell receptor sequencing methods employed for the understanding of adaptive
immune responses, in Kumar et al. [201] for the segmentation of digital images through multilevel iterative variational
mode decomposition (VMD), and in Pandey [280] for the quantification of cosmic homogeneity.

Remark 19: (i) For Renyi entropies there are also matrix versions EgR(X) := 1
1−γ · log

(∑K1

i=1

∑K2

j=1 x
γ
ij

)
where

X := (xij)
j=1,...,K2

i=1,...,K1
is a K1 × K2−matrix whose elements xij are (say) strictly positive and sum up to A. Such a

setup with A = 1 is e.g. used in time-frequency analyses of signals where the i’s correspond to discrete time points,
the j’s to discrete frequencies, and xij to the probability that (i, j) occurs; see e.g. Popescu & Aiordachioaie [295] for
change detection in seismic signals. Another line of application is to use as X the normalized communicability matrix
of a directed network (respectively the upper triangular part of X in case of an unweighted and undirected network).
Of course, the matrix version EgR(X) can be easily and equivalently rewritten in our vector version EgR(Q) by setting
Q := (q1, . . . , qK1·K2) such that xij = q(i−1)·K2+j (i = 1, . . . ,K1, j = 1, . . . ,K2 and hence K := K1 ·K2; accordingly,
we can apply our BS method.
(ii) The latter conversion works analogously also for matrix versions of all the other entropies, divergences, etc. of this
paper; more flexible versions where i ∈ {1, . . . ,K1}, j ∈ Ji for some Ji ⊆ {1, . . . ,K2} as well as multidimensional-
array/tensor versions can be transformed in a similar book-keeping manner, too. For instance, within the above-mentioned
framework of unweighted and undirected networks, Chen et al. [81] and Shi et al. [332] employ communicability matrix
versions of the Shannon entropy and the Jensen-Shannon divergence (JSD), e.g. in order to derive a new complexity
measure of such kind of networks; see also Bagrow and Bollt [28] for similar network applications of the JSD. Moreover,
Jena et al. [167] use “3D versions” of Tsallis entropies for brain magnetic resonance (MR) image segmentation.

Remark 20: All the above cases which are BS-maximizable can be interpreted as bare-simulation approach to the solution
of generalized maximum entropy problems on Ω = A ·ΩΩ.

Remark 21: (i) If (all) the above- and below-mentioned entropies are used for probability vectors Q ∈ SK — i.e. one
employs E(Q) — then typically the components qk of Q represent a genuine probability mass (frequency) qk = �[{dk}] of
some data point (state) dk. However, Q ∈ SK may alternatively be artificially generated. For instance, for the purpose of
fault detections of mechanical drives, Boskoski & Juricic [57] use Renyi entropies where the qk’s are normalized squared
energy-describing coefficients of the wavelet packet transform of measured vibration records. Another exemplary “artificial”
operation is concatenation, see e.g. Subsection IV-D below.
(ii) An analogous statement holds for the employment of (all) the above- and below-mentioned divergences D(Q,P) — and
their transformations — between genuine respectively artificially generated probability vectors Q,P ∈ SK .

The remaining parameter cases γ = 0 and γ = 1 can be treated analogously. For the sake of brevity, we only deal with the
latter. For this, let Q ∈ A · SK with A :=

∑K
k=1 qk > 0 and P := Punif . Clearly, I(Q,Punif )− logK

K =
∑K
k=1 qk · log(qk);

thus the latter is BS-minimizable on Ω = A ·ΩΩ. More generally, for any continuous strictly increasing (respectively strictly
decreasing) function h1 : [−Ke , 0[ 7→ R, the quantity h1

(∑K
k=1 qk · log(qk)

)
is BS-minimizable on Ω = A ·ΩΩ (respectively

BS-maximizable on Ω = A ·ΩΩ). Important special cases are:
(E7) h1(y) := h−Id1 (y) = −y: the entropy

ESh(Q) := h−Id1

( K∑
k=1

qk · log(qk)
)

= −
K∑
k=1

qk · log(qk) (80)

is BS-maximizable on Ω = A · ΩΩ; the special subcase A = 1 in (80) (and thus, Q = Q is a probability vector)
corresponds to the omnipresent Shannon entropy; hence, by our bare-simulation approach we can particularly tackle
maximum entropy problems on almost arbitrary sets ΩΩ of probability vectors. Analogously, we can treat 1

log(K) · E
Sh(Q)

which is called Pielou’s evenness index [293], and 1 − 1
log(K) · E

Sh(Q) ∈ [0, 1] which is sometimes used as clonality
(clonotype diversity) index (see e.g. Gabriel et al. [131] for applications to HIV-connected T cell receptor repertoires, and
Bashford-Rogers et al. [33] (with supplementary private communication) for its use for comparative analyses of the BCR
repertoire in immune-mediated diseases, for the sake of understanding pathological mechanisms and designing treatment
strategies). As a further example for Remark 21, Lyubushin [236] uses qk’s which are normalized squared coefficients
of an orthogonal wavelet decomposition of some seismic noise, and accordingly, 1

log(K) · E
Sh(Q) can be interpreted as

the entropy of the distribution of energy of oscillations at various frequency and time scales.
Some further exemplary studies and applications of the maximization of ESh(Q) — aside from the vast physics literature
— appear e.g. in De Santis et al. [106] for cryptanalytic guessing problems for breaking ciphertexts with probabilistic
brute-force attacks, Johansson & Sternad [173] for tackling certain resource allocation problems under uncertainty,
Marano & Franceschetti [246] for ray propagation in percolating lattices, Miao et al. [260] for unsupervised mixed-pixel
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decomposition in image processing, Rodrigues et al. [310] for modelling biological species geographic distribution, Xiong
et al. [400] for capturing desirable phrasal and hierarchical segmentations within a statistical machine translation context,
Chan et al. [76] for alignment-free DNA sequence comparison, Mann & Garnett [244] for capturing some collective
behaviours of intelligent agents in social interactions, Singh et al. [336] for the study of finite buffer queueing systems,
Baddeley [27] for geoscientifical prediction of the occurrence of mineral deposits on regional scales, Einicke et al. [118]
for feature selection within change classification during running, and Han et al. [152] for substructure imaging of blood
cells by means of maximum entropy tomography (MET).

(E8) s ∈ ]0, 1[∪ ]1,∞[, h1(y) := hSM2
s (y) := e(s−1)·y−1

1−s (cf. (72)) with y ∈ R: the entropy

ESM2(Q) := hSM2
s

( K∑
k=1

qk · log(qk)
)

=
1

1− s
·

(
exp

{
(s− 1) ·

K∑
k=1

qk · log(qk)
}
− 1

)
(81)

is BS-maximizable on Ω = A · ΩΩ; the special subcase A = 1 in (81) (and thus, Q = Q is a probability vector)
corresponds to the (second type) entropy of Sharma & Mittal [329] in the scaling of e.g. Pardo [282] (p.20).

Returning to the general context, we now (as already indicated above) state explicitly the corresponding bare-simulation-
minimizations (respectively maximizations) of the power divergences infQ∈ΩΩDc̃·ϕγ (Q,P) (γ ∈ R), the Renyi divergences
infQ∈ΩΩRγ(Q,P) (γ ∈ R), the Hellinger integrals infQ∈A·ΩΩHγ(Q,P) (γ ∈] − ∞, 0[∪ ]1,∞[), supQ∈A·ΩΩHγ(Q,P)
(γ ∈]0, 1[), the modified Kullback-Leibler information infQ∈A·ΩΩ I(Q,P), the modified reverse Kullback-Leibler information
infQ∈A·ΩΩ Ĩ(Q,P), as well as the above-mentioned measures of entropy (diversity). Since the corresponding probability
distribution �[· ] = �[W1 ∈ · ] of the Wi’s (cf. the representability (6)) varies “quite drastically” with γ, we split this issue into
several pieces.

Proposition 22: (a) Consider the context of Remark 15(vi) for ϕ := c̃ ·ϕγ with γ < 0, and let P ∈ SK>0 as well as c̃ > 0 be
arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of non-negative real-valued random variables having
density21

fW1(y) :=
exp{− y·c̃

1−γ }
exp{c̃/γ}

· fZ(y) · 1]−∞,0[(y), y ∈ R, (82)

where fZ is the density of a random variable Z which has stable law with parameter-quadruple ( −γ1−γ , 1, 0,−
c̃1/(1−γ)·(1−γ)−γ/(1−γ)

γ )

in terms of “form-B notation” in Zolotarev [428], p.12. Then for all A > 0 and all ΩΩ ⊂ SK>0 with (7) there holds

− lim
n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
= inf

Q∈A·ΩΩ

c̃

γ
·

[
1−Aγ/(γ−1) ·

[
1 + γ · (A− 1) +

γ · (γ − 1)

c̃
·Dc̃·ϕγ (Q,P)

]−1/(γ−1)
]

(83)

as well as the BS minimizabilities/maximizabilites (cf. Definition 1)

inf
Q∈A·ΩΩ

Dc̃·ϕγ (Q,P) = lim
n→∞

c̃

γ · (γ − 1)
·

{
Aγ ·

(
1 +

γ

c̃
· 1

n
· log �

[
ξwW
n ∈ ΩΩ

])1−γ

+ γ · (1−A)− 1

}
, (84)

inf
Q∈A·ΩΩ

Hγ(Q,P) = lim
n→∞

Aγ ·
(

1 + γ · 1

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])1−γ

, (85)

inf
Q∈A·ΩΩ

c1 ·
(
Hγ(Q,P)c2 − c3

)
= lim
n→∞

c1 ·
{
Ac2·γ ·

(
1 +

γ

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])c2·(1−γ)

− c3
}
, if c1 · c2 > 0, c3 ∈ R, (86)

sup
Q∈A·ΩΩ

c1 ·
(
Hγ(Q,P)c2 − c3

)
= lim
n→∞

c1 ·
{
Ac2·γ ·

(
1 +

γ

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])c2·(1−γ)

− c3
}
, if c1 · c2 < 0, c3 ∈ R, (87)

inf
Q∈A·ΩΩ

Rγ(Q,P) = lim
n→∞

1

γ · (γ − 1)
· log

(
Aγ ·

(
1 + γ · 1

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
] )1−γ)

, (88)

inf
Q∈A·ΩΩ

c1 ·
(( K∑

k=1

qγk

)c2
− c3

)
= lim
n→∞

c1 ·
{
Kc2·(1−γ) ·Ac2·γ ·

(
1 +

γ

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

])c2·(1−γ)

− c3
}
,

if c1 · c2 > 0, c3 ∈ R, (89)

21 in the classical sense, with respect to Lebesgue measure
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sup
Q∈A·ΩΩ

c1 ·
(( K∑

k=1

qγk

)c2
− c3

)
= lim
n→∞

c1 ·
{
Kc2·(1−γ) ·Ac2·γ ·

(
1 +

γ

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

])c2·(1−γ)

− c3
}
,

if c1 · c2 < 0, c3 ∈ R, (90)

inf
Q∈A·ΩΩ

1

1− γ
·log

( K∑
k=1

qγk

)
= lim
n→∞

1

γ · (γ − 1)
·
[
log
(
Aγ ·

(
1 + γ · 1

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

] )1−γ)
+ (1− γ) · log(K)

]
, (91)

where ξwW
n is the normalized randomly weighted empirical measure given in (41), ξ̆

wW

n is its special case for c̃ = 1, and ˘̆
ξwW
n

is its special case for c̃ = 1 together with P = Punif 22. From this, the BS-minimizability/maximizability of the important
norms/entropies/diversity indices (E1) to (E6) follow immediately as special cases.
(b) The special case ϕ := c̃ · ϕγ (γ < 0) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), (iv) ξwW

n,X (instead of ξwW
n ), (v) ξ̆

wW

n,X (instead of ξ̆
wW

n ),

and (vi) ˘̆
ξwW
n,X (instead of ˘̆

ξwW
n ).

The assertions of Proposition 22 can be deduced from Theorem 14, Remark 15(vi), Lemma 16(a), (65), (69), (73), (74) and
the below-mentioned �−concerning Example 48(d). Employing Lemma 16(c) and Example 48(a) instead, one ends up with
the following proposition on the reverse Kullback-Leibler divergence:

Proposition 23: (a) Consider the context of Remark 15(vi) for ϕ := c̃ · ϕγ with γ = 0, and let P ∈ SK>0 as well as c̃ > 0
be arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of non-negative real-valued random variables with
Gamma distribution � = GAM(c̃, c̃) 23 (where the subcase c̃ = 1 is the exponential distribution � = EXP (1) with mean 1).
Then for all A > 0 and all ΩΩ ⊂ SK>0 with (7) there holds the BS minimizabilites (cf. (2))

inf
Q∈A·ΩΩ

Dc̃·ϕ0
(Q,P) = − lim

n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
+ c̃ · (A− 1− logA), (92)

inf
Q∈A·ΩΩ

Ĩ(Q,P) = inf
Q∈A·ΩΩ

K∑
k=1

pk · log

(
pk
qk

)
= − lim

n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
− logA.

(b) The special case ϕ := c̃ · ϕγ (γ = 0) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), and (iv) ξwW

n,X (instead of ξwW
n ).

Proposition 24: (a) Consider the context of Remark 15(vi) for ϕ := c̃ ·ϕγ with γ ∈]0, 1[, and let P ∈ SK>0 as well as c̃ > 0
be arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of non-negative real-valued random variables
with Compound-Poisson-Gamma distribution � = C(POI(θ), GAM(α, β)) having parameters θ = c̃

γ > 0, α = c̃
1−γ > 0,

β = γ
1−γ > 0; in other words, the Wi are independent copies of a random variable W1 :=

∑N
j=1W j

24 constituted of some
i.i.d. sequence (W j)j∈N of Gamma(α, β)−distributed random variables and some independent POI(θ)−distributed random
variable N . Then for all A > 0 and all ΩΩ ⊂ SK with (7) there hold (83), (84), (88), (91) as well as

sup
Q∈A·ΩΩ

Hγ(Q,P) = lim
n→∞

Aγ ·
(

1 + γ · 1

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])1−γ

, (93)

sup
Q∈A·ΩΩ

c1 ·
(
Hγ(Q,P)c2 − c3

)
= lim
n→∞

c1 ·
{
Ac2·γ ·

(
1 +

γ

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])c2·(1−γ)

− c3
}
, if c1 · c2 > 0, c3 ∈ R, (94)

inf
Q∈A·ΩΩ

c1 ·
(
Hγ(Q,P)c2 − c3

)
= lim
n→∞

c1 ·
{
Ac2·γ ·

(
1 +

γ

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
])c2·(1−γ)

− c3
}
, if c1 · c2 < 0, c3 ∈ R, (95)

sup
Q∈A·ΩΩ

c1 ·
(( K∑

k=1

qγk

)c2
− c3

)
= lim
n→∞

c1 ·
{
Kc2·(1−γ) ·Ac2·γ ·

(
1 +

γ

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

])c2·(1−γ)

− c3
}
,

if c1 · c2 > 0, c3 ∈ R, (96)

22the latter two notations will be also used in the following Propositions 23 to 27
23 here and henceforth, we use the notation that a Gamma distribution GAM(α, β) with rate parameter (inverse scale parameter) α > 0 and shape

parameter β > 0 has (Lebesgue-)density f(y) := αβ ·yβ−1·e−α·y
Γ(β)

· 1]0,∞[(y), y ∈ R; its cumulant generating function is Λ(z) = β · log( α
α−z ) for

z ∈]−∞, α[ (and Λ(z) =∞ for z ≥ α).
24 with the usual convention

∑0
i=1W i := 0
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inf
Q∈A·ΩΩ

c1 ·
(( K∑

k=1

qγk

)c2
− c3

)
= lim
n→∞

c1 ·
{
Kc2·(1−γ) ·Ac2·γ ·

(
1 +

γ

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

])c2·(1−γ)

− c3
}
,

if c1 · c2 < 0, c3 ∈ R. (97)

From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follows
immediately as special cases.
(b) The special case ϕ := c̃ ·ϕγ (γ ∈]0, 1[) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), (iv) ξwW

n,X (instead of ξwW
n ), (v) ξ̆

wW

n,X (instead of ξ̆
wW

n ),

and (vi) ˘̆
ξwW
n,X (instead of ˘̆

ξwW
n ).

This follows from Theorem 14, Remark 15(vi), Lemma 16(a), (65), (69), (73), (74) and the below-mentioned �−concerning
Example 48(b). Employing Lemma 16(b) and Example 50(a) instead, one ends up with the following proposition on the
Kullback-Leibler divergence:

Proposition 25: (a) Consider the context of Remark 15(vi) for ϕ := c̃ · ϕγ with γ = 1, and let P ∈ SK>0 as well as c̃ > 0
be arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of non-negative real-valued random variables
with distribution � = 1

c̃ · POI(c̃) being the “ 1
c̃−fold Poisson distribution with mean c̃” , which means that W1 = 1

c̃ · Z for a
Poissonian POI(c̃)−distributed random variable Z with mean c̃ (where the subcase c̃ = 1 amounts to � = POI(1)). Then for
all A > 0 and all ΩΩ ⊂ SK with (7) there holds

− lim
n→∞

1

n
log �

[
ξwW
n ∈ ΩΩ

]
= inf

Q∈A·ΩΩ
c̃ ·
[
1−A · exp

(
− 1

A · c̃
·Dc̃·ϕ1

(Q,P) +
1

A
− 1

)]
(98)

and the BS minimizabilities/maximizabilites (cf. Definition 1)

inf
Q∈A·ΩΩ

Dc̃·ϕ1
(Q,P) = lim

n→∞
c̃ ·
{

1−A ·
[
1 + log

(
1

A
·
(

1 +
1

c̃
· 1

n
· log �

[
ξwW
n ∈ ΩΩ

] ))]}
, (99)

inf
Q∈A·ΩΩ

I(Q,P) = inf
Q∈A·ΩΩ

K∑
k=1

qk · log

(
qk
pk

)
= − lim

n→∞
A · log

(
1

A
·
(

1 +
1

n
· log �

[
ξ̆
wW

n ∈ ΩΩ
] ))

,

max
Q∈A·ΩΩ

ESh(Q) = max
Q∈A·ΩΩ

(−1) ·
K∑
k=1

qk · log(qk) = lim
n→∞

logK

K
+A · log

(
1

A
·
(

1 +
1

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

] ))
, (100)

max
Q∈A·ΩΩ

EgSM2(Q) = max
Q∈A·ΩΩ

1

1− s
· exp

{
(s− 1) ·

K∑
k=1

qk · log(qk)− 1
}

= lim
n→∞

1

1− s
· exp

{
(1− s) ·

[
logK

K
+A · log

(
1

A
·
(

1 +
1

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

] ))]
− 1

}
, s ∈ ]0, 1[∪ ]1,∞[. (101)

The special subcase A = 1 in (100) (and thus, Q is a probability vector) corresponds to the maximum entropy problem for the
Shannon entropy ESh(·). This can hence be tackled by our bare-simulation approach for almost arbitrary sets ΩΩ of probability
vectors.
(b) The special case ϕ := c̃ · ϕγ (γ = 1) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), (iv) ξwW

n,X (instead of ξwW
n ), (v) ξ̆

wW

n,X (instead of ξ̆
wW

n ),

and (vi) ˘̆
ξwW
n,X (instead of ˘̆

ξwW
n ).

For the sake of completeness, let us mention here that we do not deal with the case γ ∈]1, 2[, for which we conjecture that
� becomes a signed finite measure with total mass 1, i.e. it has a density (with respect to some dominating measure) with
positive and negative values which “integrates to 1” ; accordingly, our BS method can not be applied to this situation.

To proceed with further γ−cases, a combination of Theorem 14 respectively Remark 15(vi), Lemma 16(a), (65), (69), (73),
(74) and the below-mentioned �−concerning Example 48(c) leads to the following

Proposition 26: (a) Consider the context of Remark 15(vi) for ϕ := c̃ · ϕγ with γ = 2, and let P ∈ SK>0 as well as c̃ > 0
be arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of real-valued random variables with probability
distribution � = NOR(1, 1

c̃ ) being the Normal (Gaussian) law with mean 1 and variance 1
c̃ . Then for all A > 0 and ΩΩ ⊂ SK

with (7) there hold all the BS-extremizabilites (83) to (91) as well as (116) (below) with plugging-in γ = 2. From this, the
BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follow immediately as special
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cases. By Remark 18(c), one can even take A < 0 in (83) to (91) and (116) as well as in (E1), (E2), (E4) and (E6).
(b) The special case ϕ := c̃ · ϕγ (γ = 2) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), (iv) ξwW

n,X (instead of ξwW
n ), (v) ξ̆

wW

n,X (instead of ξ̆
wW

n ),

and (vi) ˘̆
ξwW
n,X (instead of ˘̆

ξwW
n ).

For instance, the BS minimizability (89) of Proposition 26(a) can be employed to solve the following discrete Monge-
Kantorovich-type optimal mass transportation problem (optimal coupling problem) with side (i.e. additional) constraints:
given two nonnegative-entries vectors µ := (µ1, . . . µK1) ∈ [0,∞[K1 and ν := (ν1, . . . νK2) ∈ [0,∞[K2 with equal total
“mass”

∑K1

k=1 µk =
∑K2

k=1 νk = A > 0, compute

inf
K1×K2−matrices π

K1 ·K2 ·
K1∑
u=1

K2∑
v=1

(
πu,v −

1

K1 ·K2

)2

(102)

subject to
K2∑
v=1

πu,v = µu for all u ∈ {1, . . . ,K1}, (103)

K1∑
u=1

πu,v = νv for all v ∈ {1, . . . ,K2}, (104)

πu,v ∈ [0, A] for all u ∈ {1, . . . ,K1}, v ∈ {1, . . . ,K2}, (105)
side constraints on π, µ, ν. (106)

Indeed, this problem can be equivalently rewritten in terms K1 ·K2−dimensional vectors as follows: given two nonnegative-
entries vectors µ,ν as above, compute

inf
Q∈Ω

K1 ·K2 ·
K1·K2∑
k=1

(
qk −

1

K1 ·K2

)2

= inf
Q∈Ω

K1 ·K2 ·
K1·K2∑
k=1

q2
k + 1− 2A (107)

where Ω ⊂ RK1·K2 is the set of all vectors Q = (q1, . . . , qK1·K2
) which satisfy the constraints

K2∑
j=1

q(i−1)·K2+j = µi for all i ∈ {1, . . . ,K1}, (108)

K1∑
i=1

q(i−1)·K2+j = νj for all j ∈ {1, . . . ,K2}, (109)

qk ∈ [0, A] for all k ∈ {1, . . . ,K1 ·K2}, (110)
side constraints on Q, µ, ν. (111)

Clearly, via divisions by A, one can equivalently rewrite Ω = A · ΩΩ for some ΩΩ ⊂ SK1·K2 in the K1 · K2−dimensional
probability simplex. Hence, we can employ (89) with c1 = K1 ·K2, c2 = 1 and c3 = 1−2A, provided that the side constraints
(111) are such that Ω satisfies the regularity property (7) and the finiteness property (9). Notice that (107) is equal to

inf
Q∈Ω

D2·ϕ2
(Q,Punif )

where Punif := ( 1
K1·K2

, . . . , 1
K1·K2

) is the probability vector of frequencies of the uniform distribution on {1, . . . ,K1 ·K2},
and c̃ = 2. The special case A = 1 with side constraint (111) of the form K1 ·mini∈{1,...,K1} µi +K2 ·minj∈{1,...,K2} νj ≥ 1
was explicitly solved by e.g. Bertrand et al. [43], [44], who also give applications to cryptographic guessing problems (spy
problems), task partitioning and graph clustering.

The importance of the case γ = 2 stems also from the fact that one can equivalently rewrite separable quadratic minimization
problems as minimization problems of Pearson chi-square divergences. Indeed, by straightforward calculations one can derive
that

inf
Q̆∈Ω̆

K∑
k=1

( c1,k + c2,k · q̆k + c3,k · q̆2
k ) , c1,k ∈ R, c2,k ∈ R\{0}, c3,k ∈ ]0,∞[, (112)

is equal to (recall that ϕ2(t) := (t−1)2

2 , cf. (43))

c4 + inf
Q∈Ω

D2·ϕ2
(Q,P) , (113)
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where Q := (q1, . . . , qK) with qk := −c2,k · q̆k, P := (p1, . . . , pK) with pk :=
c22,k

2·c3,k > 0, c4 :=
∑K
k=1

(
c1,k−

c22,k
4·c3,k

)
, and Ω

is the corresponding reformulation of the constraint set Ω̆. To achieve the applicability of our BS method, we further transform
(113) into its equal form (cf. (12))

c4 + inf
Q̃∈Ω/MP

D2MP·ϕ2
(Q, P̃) (114)

with MP :=
∑K
k=1 pk > 0 and P̃ := P/MP. If Ω/MP satisfies (7) and (9) (e.g. it may be highly disconnected), then we

can apply Theorem 10. In contrast, if Ω/MP = A ·ΩΩ for some A ∈ R\{0} and some ΩΩ ⊂ SK>0 satisfying (7), then we can
apply Proposition 26(a) together with Remark 18(c); for instance, this may appear if Ω̆ contains (amongst others) the original
constraint

∑K
k=1 q̆k = C for some constant C > 0, and c2,k = c2 does not depend on k, which leads to the choice A = − c2·CMP

.
Notice that A < 0 if c2 > 0. For example, optimization problems (112) with c1,k > 0, c2,k > 0, c3,k > 0 and constraints∑K
k=1 q̆k = C, q̆k ∈ [q̆

k
, q̆k] appear in distributed energy management as economic dispatch problems in smart grids of power

generators, where q̆k is the active power generation of the k−th generator, C is the total power demand, q̆
k

resp. q̆k represent
the lower resp. upper bound of the k−th generator’s output, and the cost of power generation is c1,k + c2,k · q̆k + c3,k · q̆2

k (cf.
e.g. Yang et al. [412], Loia & Vaccaro [230], Wood et al. [394], Xu et al. [404]).
Another important special case of (112) to (114) is the omnipresent L2−minimization; indeed, with the choices c3,k = 1,
c2,k = −2vk, and c1,k = v2

k for some V = (v1, . . . , vK), the minimization problem (112) is nothing but infQ̆∈Ω̆ ||Q̆−V||22; if
Ω̆ depends on a pregiven L−dimensional vector x (with L < K), this can be regarded as a non-parametric regression problem
in a wide sense.

To continue with our general investigations, by combining Theorem 14 respectively Remark 15(vi), Lemma 16(a), (65), (69),
(73), (74) and the below-mentioned �−concerning Example 48(e), we arrive at the following

Proposition 27: (a) Consider the context of Remark 15(vi) for ϕ := c̃ · ϕγ with γ > 2, and let P ∈ SK>0 as well as c̃ > 0
be arbitrary but fixed. Furthermore, let W := (Wi)i∈N be an i.i.d. sequence of real-valued random variables having density25

exp{ y·c̃γ−1}
exp{c̃/γ}

· fZ(−y), y ∈]−∞,∞[, (115)

where fZ is the density of a random variable Z which has stable law with parameter-quadruple ( γ
γ−1 , 1, 0,

c̃1/(1−γ)·(γ−1)γ/(γ−1)

γ )

in terms of the above-mentioned “form-B notation” in Zolotarev [428]. Then for all A > 0 and ΩΩ ⊂ SK with (7) there hold
all the BS-extremizabilites (83) to (90) as well as

sup
Q∈A·ΩΩ

1

1− γ
·log

( K∑
k=1

qγk

)
= lim
n→∞

1

γ · (γ − 1)
·
[
log
(
Aγ ·

(
1 + γ · 1

n
· log �

[
˘̆
ξwW
n ∈ ΩΩ

] )1−γ)
+ (1− γ) · log(K)

]
. (116)

From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follow imme-
diately as special cases.
(b) The special case ϕ := c̃ · ϕγ (γ > 2) of Theorem 14 works analogously to (a), with the differences that we employ (i)
additionally a sequence (Xi)i∈N of random variables being independent of (Wi)i∈N and satisfying condition (26) (resp. (30)),
(ii) A = 1 (instead of arbitrary A > 0), (iii) �Xn1 [·] (instead of �[·]), (iv) ξwW

n,X (instead of ξwW
n ), (v) ξ̆

wW

n,X (instead of ξ̆
wW

n ),

and (vi) ˘̆
ξwW
n,X (instead of ˘̆

ξwW
n ).

As mentioned above, in the Propositions 22 to 27 we have combined Theorem 14 respectively Remark 15(vi), Lemma 16 and
explicitly solved representations (6). The latter, important step will be discussed in a structured, comprehensive manner in the
Section V below.

By retransformation, we can even deal with optimizations of nonnegative linear objective functions with constraint sets on
Euclidean γ-norm spheres. Indeed, for nonnegative Q̆ := (q̆1, . . . , q̆K) and P̆ := (p̆1, . . . , p̆K) one can rewrite their scalar
product as γ−order Hellinger integrals

K∑
k=1

q̆k · p̆k = c1 ·
K∑
k=1

qγk · p
1−γ
k = c1 ·Hγ(Q,P) where (117)

γ ∈ ]0, 1[∪ [2,∞[ if Q̆ ∈ [0,∞[K , P̆ ∈ ]0,∞[K respectively γ ∈ ]−∞, 0[ if Q̆ ∈ ]0,∞[K , P̆ ∈ ]0,∞[K , (118)

qk := q̆
1/γ
k , pk :=

p̆
1/(1−γ)
k∑K

i=1 p̆
1/(1−γ)
i

, c1 :=
( K∑
i=1

p̆
1/(1−γ)
i

)1−γ
=: ||P̆||1−γ . (119)

25 in the classical sense, with respect to Lebesgue measure
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The required constraint
∑K
k=1 qk = A > 0 retransforms to ||Q̆||γ = A1/γ and thus, Q̆ must lie on (the positive/nonnegative

part of) the γ−norm-sphere ∂Bγ(0, A1/γ) around the origin with radius A1/γ . Accordingly, for γ ∈ [2,∞[ we have

inf
Q̆∈Ω̆

K∑
k=1

q̆k · p̆k = c1 · inf
Q∈A·ΩΩ

Hγ(Q,P) (120)

and we can apply (85) of Proposition 26(a) respectively Proposition 27(a) 26, as long as the original constraint set Ω̆ ∈
∂Bγ(0, A1/γ) ∩ [0,∞[K transforms (via qk = q̆

1/γ
k ) into a constraint set A ·ΩΩ which satisfies the regularity assumption (7)

in the relative topology (as a side remark, notice that int(∂Bγ(0, A1/γ)) = ∅ in the full topology). For the case γ ∈ ]−∞, 0[
we also have (120) and apply (85) of Proposition 22(a) for any original constraint set Ω̆ ∈ ∂Bγ(0, A1/γ)∩ ]0,∞[K which
transforms into A ·ΩΩ satisfying (7) in the relative topology. In contrast, for the case γ ∈ ]0, 1[ we get

sup
Q̆∈Ω̆

K∑
k=1

q̆k · p̆k = c1 · sup
Q∈A·ΩΩ

Hγ(Q,P)

and apply (93) of Proposition 24(a) for any original constraint set Ω̆ ∈ ∂Bγ(0, A1/γ) ∩ [0,∞[K which transforms into A ·ΩΩ
satisfying (7) in the relative topology.

As a continuation of Remark 12, we can principally tackle all the optimization problems of this Subsection IV-C1 by basically
only employing a fast and accurate — pseudo, true, natural, quantum — random number generator, provided that the constraint
set A ·ΩΩ satisfies the mild assumptions (7) (in the relative topology) and (9). Recall that A > 0 (and for ϕ2 even A ∈ R\{0})
and that Q ∈ A ·ΩΩ implies in particular the constraint

∑K
k=1 qk = A. The regularity assumption (7) allows for e.g. high-

dimensional constraint sets A ·ΩΩ which are non-convex and even highly disconnected, and for which other minimization
methods (e.g. pure enumeration, gradient or steepest descent methods, etc.) may be problematic or intractable. For example,
(7) covers kind of “K−dimensional (not necessarily regular) polka dot pattern type” relaxations A ·ΩΩ :=

⋃̇N
i=1Ui(Qdisi ) of

finite discrete constraint sets A ·ΩΩdis := {Qdis1 , . . . , QdisN } of high cardinality N (e.g. being exponential or factorial in a large
K), where each K−dimensional vector Qdisi has total-sum-of-components equal to A and is surrounded by some small (“flat”,
i.e. in the relative topology) neighborhood Ui(Qdisi ). For the sake of brevity, in the following discussion we confine ourselves
to the deterministic setup (e.g. Proposition 26(a) rather than (b)) which particularly involves �[·] (rather than �Xn1 [·]) and ξwW

n

(rather than ξwW
n,X ). In such a context, all the optimization problems of this Subsection IV-C1, subsumed as (cf. (1) to (3))

inf
Q∈A·ΩΩ

Φ(Q) respectively sup
Q∈A·ΩΩ

Φ(Q)

can be regarded as a “BS-tractable” relaxations of the corresponding nonlinear discrete (e.g. integer, combinatorial) programming
problems

inf
Q∈A·ΩΩdis

Φ(Q) respectively sup
Q∈A·ΩΩdis

Φ(Q) ;

as examples take e.g. Φ(Q) = c1 ·
((∑K

k=1 q
γ
k

)c2
− c3

)
(with γ 6= 0, 1) or Φ(Q) = ΦP(Q) = Dc̃·ϕγ (Q,P). For instance,

A · ΩΩdis may contain only K−dimensional vectors Qdisi (i = 1, . . . , N ) whose components stem from a finite set B of
nonnegative integers and add up to A. If B = {0, 1}, then we can even deal with nonnegative linear objective functions
Φ(Q) =

∑K
k=1 p̆k ·qk where Q := (q1, . . . , qK) with qk ∈ {0, 1} and P̆ := (p̆1, . . . , p̆K) has components p̆k > 0 which reflect

e.g. the cost associated with the k−th state. Indeed, by noticing that q1/γ
k = qk for γ ∈ ]0, 1[∪ [2,∞[, we can employ (117)

and (119) to end up with

inf
Q∈A·ΩΩdis

K∑
k=1

qk · p̆k = ||P̆||1−γ · inf
Q∈A·ΩΩdis

K∑
k=1

qγk ·

(
p̆

1/(1−γ)
k∑K

i=1 p̆
1/(1−γ)
i

)1−γ

= ||P̆||1−γ · inf
Q∈A·ΩΩdis

Hγ(Q,P), γ ∈ [2,∞[, (121)

sup
Q∈A·ΩΩdis

K∑
k=1

qk · p̆k = ||P̆||1−γ · sup
Q∈A·ΩΩdis

Hγ(Q,P), γ ∈ ]0, 1[ . (122)

The corresponding relaxations are

inf
Q∈A·ΩΩ

K∑
k=1

qk · p̆k = ||P̆||1−γ · inf
Q∈A·ΩΩ

Hγ(Q,P), γ ∈ [2,∞[ , (123)

sup
Q∈A·ΩΩ

K∑
k=1

qk · p̆k = ||P̆||1−γ · sup
Q∈A·ΩΩ

Hγ(Q,P), γ ∈ ]0, 1[ ; (124)

26 here and analogously henceforth, by this we mean the condition (85) as it appears in the Proposition 26(a) respectively Proposition 27(a)
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for (123) we can apply (85) of Proposition 26(a) respectively Proposition 27(a), whereas for (124) we apply (93) of Proposition
24(a) — as long as the relaxation constraint set A ·ΩΩ satisfies (7) in the relative topology. For the sake of illustration, let us
consider a sum-minimization-type linear assignment problem with side constraints (for a comprehensive book on assignment
problems see e.g. Burkard et al. [69]). Suppose that there are K individuals (people, machines, etc.) to carry out K tasks
(jobs, etc.). Each individual is assigned to carry out exactly one task. There is cost cij > 0 if individual i is assigned to
(i.e., carries out) task j. We want to find the minimum total cost amongst all assignments. There may be side constraints, e.g.
each assignment has a value vij > 0 and the total value of the assignment should be above a pregiven threshold. As usual,
the problem can be formulated with the help of binary variables xij where xij = 1 if individual i is assigned to task j, and
xij = 0 otherwise. Accordingly, we want to compute

inf
K×K−matrices x=(xij)

K∑
i=1

K∑
j=1

cij · xij (125)

subject to
K∑
j=1

xij = 1 for all i ∈ {1, . . . ,K}, (i.e. each individual i does one task), (126)

K∑
i=1

xij = 1 for all j ∈ {1, . . . ,K}, (i.e. each task j is done by one individual), (127)

xij ∈ {0, 1} for all i ∈ {1, . . . ,K}, j ∈ {1, . . . ,K}, (128)
side (i.e. additional) constraints on x = (xij)i,j=1,...,K . (129)

Analogously to (107), this problem can be equivalently rewritten in terms of K2−dimensional vectors as follows: let
Q := (q1, . . . , qK2) and P̆ := (p̆1, . . . , p̆K2) be such that cij = p̆(i−1)·K+j and xij = q(i−1)·K+j for i, j ∈ {1, . . . ,K} and
compute

inf
Q∈K·ΩΩdis

K∑
k=1

qk · p̆k (130)

where K ·ΩΩdis ⊂ RK
2

is the set of all vectors Q = (q1, . . . , qK2) which satisfy the constraints
K∑
j=1

q(i−1)·K+j = 1 for all i ∈ {1, . . . ,K}, (131)

K∑
i=1

q(i−1)·K+j = 1 for all j ∈ {1, . . . ,K}, (132)

qk ∈ {0, 1} for all k ∈ {1, . . . ,K2}, (133)
side constraints on Q. (134)

As seen above, this can be rewritten as γ−order Hellinger-integral minimization problem (121), with γ ≥ 2. We can obtain a
highly disconnected “non-void-interior-type” relaxation of the binary integer programming problem (130) to (134) by replacing
(133) with

qk ∈ [0, ε1] ∪ [1− ε2, 1] for all k ∈ {1, . . . ,K2}, (135)

for some (possibly arbitrarily) small ε1, ε2 > 0 with ε1 + ε2 < 1. We denote by K · ΩΩ the outcoming set manifested
by the constraints (131), (132), (134) and (135), and accordingly we end up with a minimization problem of type (123),
which we can tackle by (85) of Proposition 26(a) respectively Proposition 27(a), as long as (7) (in the relative topology) is
satisfied. For instance, we can take γ = 2 and basically solve the corresponding optimization problem by basically simulating
K2−dimensional Gaussian random variables (even though the cardinality of K ·ΩΩdis may be high). As a side remark, let us
mention that our relaxation (135) contrasts considerably to the frequently used continuous linear programming (LP) relaxation

qk ∈ [0, 1] for all k ∈ {1, . . . ,K2}.

Let us finally mention that an important special case of a minimization problem (125) to (129) is — the integer programming
formulation of — the omnipresent (asymmetric) traveling salesman problem (TSP) with possible side constraints 27. There,
one has K cities and the cost of traveling from city i to city j 6= i is given by cij > 0. Moreover, one sets xij = 1 if the
traveler goes directly from city i to city j (in that order), and xij = 0 otherwise. For technical reasons, for i = j we attribute a

27 see e.g. Applegate et al. [14], Gutin & Punnen [147], Cook [92] for comprehensive books on TSP, its variations and its applications to logistics, machine
scheduling, printed circuit board drilling, communication-network frequencing, genome sequencing, data clustering, and many others.
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cost cii > 0 (e.g. hotel costs), but we require that always xii = 0 which we subsume as the first part of the constraints (129).
Then, the constraint (126) means that the traveler leaves from city i exactly once, whereas (127) reflects that the traveler arrives
at city j exactly once. The goal is to find a directed tour — i.e. a directed cycle/circuit that visits all K cities once — of
minimum cost. Within this context, the second part of the constraints (129) should basically exclude solutions which consist of
disconnected subtours (subtour elimination constraints (of e.g. the seminal Dantzig et al. [104]), connectivity constraints, cut-set
constraints). Here, we also allow for additional/side constraints which we subsume as the third part (129) of the constraints.
Hence, by the above-mentioned considerations we can principally tackle such kind of TSP problems with our BS method.

For sum-maximization-type linear assignment problems with side constraints, where e.g. cij is a profit (rather than a cost) and
the ultimate goal is total profit maximization, we can proceed analogously, by employing (122) and (124) (instead of (121)
and (123)).

Let us end this subsection with a comparison: suppose that we have a (sufficiently large) number n of concrete data
observations Xi = xi (i = 1, . . . , n) from the unknown probability distribution P (in vector form), and from these we
want to approximate/estimate the unknown distance infQ∈ΩΩDϕγ (Q,P) from a family of probability models (in vector form)
ΩΩ (e.g. for model-adequacy evaluations, for goodness-of-fit testing purposes): by the above-mentioned Propositions 22 to 27
(and especially, by (84), (92), (99)) one can use

G
(
− 1

n
· log �xn1

[
ξwW
n,x ∈ ΩΩ

] )
(136)

where �xn1 [ · ] := �[ · |X1 = x1, . . . , Xn = xn], x := (x1, . . . , xn), and G (cf. (2)) is e.g. chosen as follows:

G(z) := − c̃
γ·(γ−1) ·

{
1−

(
1− γ

c̃ · z
)1−γ}

for the three cases γ < 0, γ ∈]0, 1[ and γ ≥ 2, G(z) := z for γ = 0 (reversed
Kullback-Leibler divergence), and G(z) := −c̃ · log(1 − 1

c̃ · z) for γ = 1 (Kullback-Leibler divergence). Notice that (136)
contrasts to the alternative approximation (of infQ∈ΩΩDϕγ (Q,P)) given by

inf
Q∈ΩΩ

Dϕγ (Q,Pemp,con ) (137)

which is used in the context of “classical” statistical minimum distance estimation (MDE) with power divergences; in (137),
we have employed Pemp,con = 1

n ·
∑n
i=1 δxi to be the realization of the empirical distribution Pempn = 1

n ·
∑n
i=1 δXi .

Indeed, especially in complicated high-dimensional non-parametric or semi-parametric big-data contexts, we have substituted
a quite difficult optimization problem (137) by a much easier solvable counting problem (136). The same holds analogously
for Renyi distances/divergences, etc.

2) Construction principle for bounds of the minimum divergence in the general case :

Turning back to Theorem 14, we now consider the general case when the divergence ϕ ∈ Υ(]a, b[) is not of the power type
(43). Recall from (34) the crucial terms (with P ∈ S>0)

inf
m 6=0

Dϕ(m ·ΩΩ,P) := inf
m 6=0

inf
Q∈ΩΩ

Dϕ(m · Q,P) = inf
Q∈ΩΩ

inf
m 6=0

Dϕ(m · Q,P) < ∞ (138)

for all sets ΩΩ satisfying the regularity properties (7) and the convenient, more restrictive finiteness property

inf
Q∈ΩΩ

inf
k=1,...,K

qk
pk
∈ dom(ϕ), sup

Q∈ΩΩ
sup

k=1,...,K

qk
pk
∈ dom(ϕ) (139)

which implies (9); notice that infk=1,...,K
qk
pk
≤ 1, supk=1,...,K

qk
pk
≥ 1 with equalities if and only if Q = P. Since ΩΩ 6= {P}

(cf. the right-hand side of (7)), the double infimum (supremum) in (139) is strictly smaller (larger) than 1. In general, the
inner minimization infm6=0Dϕ(m · Q,P) in (138) can not be performed in explicit closed form, but e.g. in the specific case
of power divergences (cf. (43), (44)) the optimization infm 6=0Dc̃·ϕγ (m ·Q,P) produces an explicit form, which in turn leads
to a simple one-to-one correspondence between Dc̃·ϕγ (ΩΩ,P) and infm 6=0 Dc̃·ϕγ (m ·ΩΩ,P) (cf. Lemma 16).

Under (7) and (139) it clearly holds

inf
m6=0

Dϕ(m ·ΩΩ,P) ≤ Dϕ(ΩΩ,P) ≤ Dϕ(Q,P). (140)

For transparency, we first investigate the (widely useable) subsetup where dom(ϕ) =]0,∞[ (and thus, int(dom(ϕ)) = ]a, b[ =
]0,∞[) and ΩΩ ⊂ SK>0. Let us start with the lower bound infm 6=0Dϕ(m ·ΩΩ,P). It can be proved that the minimizer in m is a
well defined constant, which belongs to a compact set in R>0. To see this, let us first observe that, obviously, from (139) one
can obtain



35

[
inf

Q∈Ω
inf

k=1,...,K

m · qk
pk

∈ dom(ϕ), sup
Q∈Ω

sup
k=1,...,K

m · qk
pk

∈ dom(ϕ)
]
⇐⇒ m ∈]0,∞[. (141)

Moreover, for any fixed Q in ΩΩ there is a unique number m = m(Q) > 0 which satisfies the first-order optimality condition
for m ∈ ]0,∞[

ψQ(m) :=
d

dm
Dϕ (m · Q,P) =

K∑
k=1

qk · ϕ′
(
m · qk
pk

)
= 0 (142)

and thus
Dϕ (m(Q) · Q,P) = inf

m 6=0
Dϕ (m · Q,P) ; (143)

indeed, the mapping ]0,∞[ 3 m → Dϕ (m · Q,P) is strictly convex and infinitely differentiable (which follows straight-
forwardly from (G5),(G6) in the below-mentioned Section V together with (C7ii), (C7iii) in Appendix D), and the strictly
increasing function ψQ is such that ψQ(m) is strictly negative for all m ∈]0, 1[ for which supk=1,...,K

m·qk
pk

< 1 whereas
ψQ(m) is strictly positive for all m > 1 for which infk=1,...,K

m·qk
pk

> 1 (recall the note right after (139) and ϕ′(1) = 0).
Hence, for any Q ∈ ΩΩ the unique zero m(Q) of (142) (and hence, unique minimizer in (143)) is in the compact interval

[ 1

supk=1,...,K
qk
pk

,
1

infk=1,...,K
qk
pk

]
⊆
[ 1

supQ∈ΩΩ supk=1,...,K
qk
pk

,
1

infQ∈ΩΩ infk=1,...,K
qk
pk

]
⊂
]1

b
,

1

a

[
= ]0,∞[.

When ΩΩ is closed in SK , then by continuity of the function Q 7→ Dϕ (m (Q) · Q,P) there exists a Q∗ in ΩΩ which achieves
the infimum on ΩΩ. When ΩΩ is not closed but satisfies (7), then the infimum exists anyway, possibly on the boundary ∂ΩΩ.
Anyhow, for such Q∗ there holds

Dϕ (m(Q∗) · Q∗,P) ≤ Dϕ (ΩΩ,P) ≤ Dϕ (Q∗,P) , (144)

where we use the continuity of Q 7→ Dϕ (Q,P) and (7) to obtain the last inequality above, even when Q∗ ∈ ∂ΩΩ and Q∗ /∈ ΩΩ.

That (144) provides sharp bounds can be seen through the case of power divergences. Indeed, for the latter one basically gets (cf.
Appendix C) m(Q) = (1 + γ·(γ−1)

c̃ ·Dc̃·ϕγ (Q,P) )1/(1−γ) and Dϕγ (m(Q) · Q,P) = c̃
γ (1−m(Q)) for the case γ ∈ R\{0, 1},

respectively, m(Q) = exp(− 1
c̃ · Dc̃·ϕ1

(Q,P)) and Dc̃·ϕ1
(m(Q) · Q,P) = c̃

γ (1 − m(Q)) for the case γ = 1, respectively,
m(Q) = 1 and Dc̃·ϕ0

(m(Q) · Q,P) = Dc̃·ϕ0
(Q,P) for the remaining case γ = 0. In all cases, Dϕγ (m(Q) · Q,P) is an

increasing function of Dϕγ (Q,P) and therefore, Q∗ ∈ arg infQ∈ΩΩDϕ (m(Q) · Q,P) also satisfies Q∗ ∈ arg infQ∈ΩΩDϕ (Q,P).
Hence, the right-hand side and the left-hand side of (144) coincide. Now due to (6), the LHS of (144) can be estimated since
by Theorem 14 for each P ∈ SK>0 the divergence infm6=0Dϕ (m · Q,P) is BS-minimizable on sets ΩΩ ⊂ SK . We shall propose
in Section V an algorithm to handle the estimation of the RHS of (144), whenever P is known (as in Remark 13(v)) or when
P is approximated by the empirical distribution of the data set (X1, .., Xn). Also note that (144) holds also for ΩΩ substituted
by A ·ΩΩ for any A 6= 0.

Other cases of interest include when dom (ϕ) is not ]0,∞[. We list two cases which extend the above discussion. Firstly,
consider ϕ with dom (ϕ) = [0,∞[. Then — since ϕ′(0) = −∞ in order that (6) should hold (see (G10ii) in Section V below)
— we may extend (144) to cases when ΩΩ ⊂ SK instead of ΩΩ ⊂ SK>0, hence allowing for possible null entries in ΩΩ. When
dom (ϕ) = ]a, b[ for some a < 0, then clearly the same argument leading to (144) holds; this case is of interest, for instance,
when extending a statistical model to signed measures (see e.g. Broniatowski et al. [63] for the important task of testing the
number of components in a parametric probability mixture model).

Example 28: Consider the (non-probability version of the) Jensen-Shannon divergence defined by

J(Q,P) := I(Q, (Q + P)/2) + I(P, (Q + P)/2), P,Q ∈ RK≥0,

where I(Q,P) denotes the modified Kullback-Leibler information between Q and P (cf. (46) with P instead of P). In
(188) and (189) of Example 43 below, we shall show that J(Q,P) = DϕsnKL(Q,P) with (basically) divergence generator
ϕsnKL(t) := t · log t+ (t+ 1) · log

(
2
t+1

)
for t > 0. It is known that J2 is a metric. We explore the sharpness of the bounds

for J(ΩΩ,P) as defined in (144). For this, we consider a given probability distribution P on Y with strictly positive entries;
the set ΩΩ consists of all probability distributions Q on Y whose total variation distance V (Q,P) :=

∑K
k=1 |qk − pk| 28 to P

lies between v and v + h for v > 0 and small h and which also satisfies

sup

(
sup

k=1,...,K

pk
qk
, sup
k=1,...,K

qk
pk

)
≤ L

28 notice that V (Q,P) always takes values in the interval [0, 2[
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for some strictly positive finite L. This set ΩΩ defines a class of distributions Q away from P still keeping some regularity
w.r.t. P. Also, ΩΩ satisfies (7). We will prove that the bounds in (120) are sharp in this case. Notice that J(m ·Q,P) =∞ for
m < 0 and hence infQ∈ΩΩ infm6=0 J(m ·Q,P) = infQ∈ΩΩ infm>0 J(m ·Q,P). We first provide a lower bound for the latter. It
holds for all m > 0 and Q in ΩΩ

J(mQ,P) = (m+ 1) · log (2)− (m+ 1) · log (m+ 1) +m logm+ Iα(P,Q) +m · I1−α(Q,P)

where α := 1/ (m+ 1) and Iα(P,Q) is the α−skewed Kullback-Leibler divergence between P and Q defined through

Iα(P,Q) := I(P, αP+ (1− α)Q).

By Inequality (27) in Yamano [410]

Iα(P,Q) ≥ − log

(
1− α2

4
V (Q,P)2

)
.

Since (m + 1) · log (2) − (m + 1) · log(m + 1) + m · logm is non-negative for all m > 0 and takes its minimal value 0 for
m = 1, we obtain

inf
m>0

J(mQ,P) ≥ inf
m>0

K(m)

where

K(m) := − log

(
1− 1

4 (m+ 1)
2 · V (Q,P)2

)
−m · log

(
1− m2

4 (m+ 1)
2 · V (Q,P)2

)
.

Since − log(1− x) ≥ x for all x < 1 and both 1
4(m+1)2 · V (Q,P)2 and m2

4(m+1)2 · V (Q,P)2 are less than 1, it follows that

K(m) ≥ V (Q,P)2

4
· m

3 + 1

(m+ 1)
2

where the right-hand side attains its minimal value on ]0,∞[ at m+ =
√

3− 1 ≈ 0.73. Hence, we obtain

inf
m>0

J(m ·Q,P ) ≥ V (Q,P)2

4
· (2
√

3− 3) > 0.116 v2

Now by (19) in Yamano [410], for any Q

J(Q,P) ≤ 1

4
J(Q,P)

where J(Q,P) := I(Q,P) + I(P,Q) is the Jensen divergence (also called symmetrized Kullback-Leibler divergence) between
Q and P. Since (see Dragomir [116])

I(P,Q) ≤
K∑
k=1

√
pk
qk
· |qk − qk| ,

it follows that
J(Q∗,P) ≤ 1

2

√
L · V (Q∗,P)

which provides

0.116 v2 ≤ inf
m>0

J(m · Q∗,P) = J(m(Q∗) · Q∗,P) ≤ J(ΩΩ,P) ≤ J(Q∗,P) ≤ 1

2

√
L · (v + h).

For small v the difference between the RHS and the LHS in the above display is cst ·v+o(v)+ 1
2

√
L ·h which proves that the

bounds are sharp locally, with non-trivial lower bound. Other upper bounds can be adapted to sets ΩΩ defined through tighter
conditions on supQ∈ΩΩ supk=1,...,K

pk
qk

and supQ∈ΩΩ supk=1,...,K
qk
pk

(of e.g. Dragomir [116]).

3) On the difference between minimization problems of deterministic nature and risk minimization:

In the context of minimization of the functional ΦP(Q) over Ω ⊂ RK for known vector P, due to Theorem 10 our bare
simulation approach allows for the approximate solution for any divergence Dϕ satisfying the basic representation (6). Indeed,
any proxy of �

[
ξW̃
n ∈ Ω/MP

]
yields a corresponding proxy for ΦP[Ω]. This paves the way to the solution of numerous

optimization problems, where the divergence Dϕ is specifically suited to the problem at hand.
In the statistical context, when the probability distribution (in its vector-form) P is unknown up to some indirect information

provided by sampling or by any mean providing a sequence (Xi)i∈N satisfying condition (26) (resp. (30)), Theorem 14 adds
a complementary step of complexity; indeed, the estimation of ΦP(ΩΩ) over ΩΩ ⊂ SK results as its subproduct through the
optimization upon m which can be performed explicitly only in a number of specific divergences Dϕ, e.g. the power divergences
Dϕγ , and which carries over also to their monotone transformations such as e.g. the Renyi divergences. It is of relevance to
mention that — as already indicated above — these divergences cover a very broad range of statistical criteria, indeed most of
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them, from the (maximum-likelihood estimation connected) likelihood divergence (γ = 0) to the Kullback-Leibler one (γ = 1),
the two standard Chi-square distances (γ = 2, γ = −1), the Hellinger distance (γ = 1/2), etc.; in contrast with deterministic
minimization problems, the choice of a statistical criterion (or risk function) is not imposed by the modelling of the problem
at hand, but is dictated by the need for sharp measures of fit. Other divergences are more difficult to handle and our general
results in Section IV-C2 should still prove some usefulness, since estimation of upper and lower bounds for risk is of common
use.

As a “preparatory” remark, recall first that each probability distribution (probability measure) P on Y = {d1, . . . , dK} has
been uniquely identified with the vector P := (p1, . . . , pK) ∈ SK of the corresponding probability masses (frequencies)
pk = P[{dk}] via P[A] =

∑K
k=1 pk · 1A(dk) for each A ⊂ Y; from this, we have measured the distance/divergence between

two probability distributions P,Q through the distance/divergence between their frequency vectors P,Q:

Dϕ(Q,P) := Dϕ(Q,P) (cf. (28)).

However, it has been noted in Kißlinger & Stummer [190] in a context of even more general divergences D(Q,P) between
vectors P,Q that — alternatively — the latter two may consist of components pk = P[{Ek}], qk = Q[{Ek}] which are
probabilities of only some selected (e.g. increasing) events (Ek)k∈{1,...,M} of application-based concrete interest (within not
necessarily discrete probability models). Of course, we can apply our BS method to such a vector context.

As other alternatives, in the following we deal with divergences between non-probabilistic uncertainty quantifications.

D. Minimization problems with fuzzy sets

Our BS framework also covers the — imprecise/inexact/vague information describing — fuzzy sets (cf. Zadeh [417]) and
optimization problems on divergences between those. Indeed, let Y = {d1, . . . , dK} be a finite set (called the universe (of
discourse)), A ⊂ Y and MA : Y 7→ [0, 1] be a corresponding membership function, where MA(dk) represents the degree/grade
of membership of the element dk to the set A; accordingly, the object A∗ := {〈x,MA(x)〉|x ∈ Y} is called a fuzzy set in
Y (or fuzzy subset of Y). Moreover, if A ⊂ Y and B ⊂ Y are unequal, then the corresponding membership functions MA

and MB should be unequal. Furthermore, we model the vector of membership degrees to A by PA :=
(
pAk
)
k=1,...,K

:=(
MA(dk)

)
k=1,...,K

which satisfies the key constraint 0 ≤ pAk ≤ 1 for all k ∈ {1, . . . ,K} and, consequently, the aggregated

key constraint 0 ≤
∑K
k=1 p

A
k ≤ K (as a side remark,

∑K
k=1M

A(dk) is called power of the fuzzy set A∗). For divergence
generators ϕ in Υ(]a, b[) (resp. Υ̃(]a, b[)) with — say — 0 ≤ a < 1 < b and for two sets A,B ⊂ Y we can apply (4) to
the corresponding membership functions and define the ϕ−divergence Dϕ(B∗, A∗) between the fuzzy sets B∗ and A∗ (on the
same universe Y) as

Dϕ(B∗, A∗) := Dϕ(PB ,PA) =

K∑
k=1

pAk · ϕ
(
pBk
pAk

)
=

K∑
k=1

MA(dk) · ϕ
(
MB(dk)

MA(dk)

)
≥ 0 (145)

(depending on ϕ, zero degree values may have to be excluded for finiteness). For instance, we can take ϕ(t) := ϕ1(t) :=
t · log t+ 1− t ∈ [0,∞[ for t ∈ [0,∞[ (cf. (43)) to end up with a generalized Kullback-Leibler divergence (generalized relative
entropy) between B∗ and A∗; this contrasts the choice ϕ(t) := ϕ̆(t) := t · log t ∈ [− 1

e ,∞[ of Bhandari & Pal [47] for which
Dϕ̆(B∗, A∗) (which they call fuzzy expected information for discrimination in favor of B against A) may become negative (cf.
Stummer & Vajda [349] in a more general context). In terms of (145), as a special case of the above-mentioned BS concepts,
we can tackle optimization problems of the type

inf
B∗∈Ω∗

Dϕ(B∗, A∗) := inf
PB∈Ω

Dϕ(PB ,PA)

where Ω∗ is a collection of fuzzy sets (on the same universe Y) whose membership-degree vectors form the set Ω satisfying
(7) and (9). Because of the inequality-type key constraint

0 ≤MB(dk) ≤ 1 for all k ∈ {1, . . . ,K}

which is contained in Ω and which implies 0 ≤
∑K
k=1 p

B
k ≤ K, Theorem 10 and its consequences and derived examples

will apply correspondingly — unless there is a more restrictive constraint which violates (7) such as e.g.
∑K
k=1 p

B
k = C with

C ≤ K for which Theorem 14 (and its consequences and derived examples) can be employed.

The above-mentioned considerations can be extended to the recent concept of ν−rung orthopair fuzzy sets (cf. Yager [406])
and divergences between those. Indeed, for A ⊂ Y , besides a membership function MA : Y 7→ [0, 1] one additionally models
a non-membership function NA : Y 7→ [0, 1], where NA(dk) represents the degree/grade of non-membership of the element
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dk to the set A. Moreover, if A ⊂ Y and B ⊂ Y are unequal, then the corresponding non-membership functions NA and NB

should be unequal. For fixed ν ∈ [1,∞[, the key constraint

0 ≤
(
MA(dk)

)ν
+
(
NA(dk)

)ν ≤ 1 for all k ∈ {1, . . . ,K} (146)

is required to be satisfied, too. Accordingly, the object A∗∗ := {〈x,MA(x), NA(x)〉|x ∈ Y} is called a ν−rung orthopair
fuzzy set in Y (or . . . subset of Y). The object A∗∗ is called intuitionistic fuzzy set in Y (cf. Atanassov [20]) in case of
ν = 1, and Pythagorean fuzzy set in Y (cf. Yager [405], [407]) in case of ν = 2. For the choice ν = 1 together with
NA(x) := 1 −MA(x), the object A∗∗ can be regarded as an extended representation of the fuzzy set A∗ in Y . As is well
known, there is a vast amount of recent literature on applications of fuzzy sets; for the sake of brevity, let us exemplarily
mention the survey of Yanase & Triantaphyllou [411] on some recent uses in computer-aided medical diagnosis. For any
ν−rung orthopair fuzzy set A∗∗ in Y , we model the corresponding vector of concatenated membership and non-membership
degrees to A by PA :=

(
pAk
)
k=1,...,2K

:=
(
MA(d1), . . .MA(dK), NA(d1), . . . NA(dK)

)
which due to (146) satisfies the

aggregated key constraint

0 ≤
2K∑
k=1

(
pAk
)ν ≤ K;

in other words, PA lies (within the 2K−dimensional Euclidean space) in the intersection of the first/positive orthant with the
ν−norm ball centered at the origin and with radius K1/ν . Analogously to (145), we can define the ϕ−divergence Dϕ(B∗∗, A∗∗)
between the ν−rung orthopair fuzzy sets B∗∗ and A∗∗ (on the same universe Y) as

Dϕ(B∗∗, A∗∗) := Dϕ(PB ,PA) =

2K∑
k=1

pAk · ϕ
(
pBk
pAk

)
=

K∑
k=1

{
MA(dk) · ϕ

(
MB(dk)

MA(dk)

)
+NA(dk) · ϕ

(
NB(dk)

NA(dk)

)}
≥ 0

(147)
respectively as its variant

Dvar
ϕ (B∗∗, A∗∗) := Dϕ(

(
PB
)ν
,
(
PA
)ν

)

=

2K∑
k=1

(
pAk
)ν · ϕ((pBk )ν(

pAk
)ν
)

=

K∑
k=1

{(
MA(dk)

)ν · ϕ((MB(dk)
)ν

(MA(dk))
ν

)
+
(
NA(dk)

)ν · ϕ((NB(dk)
)ν

(NA(dk))
ν

)}
≥ 0. (148)

For the special choice ν = 1, NA(x) := 1−MA(x) and ϕ(t) := ϕ1(t) := t · log t+1− t ∈ [0,∞[ for t ∈ [0,∞[ (cf. (43)), one
can straightforwardly show that the outcoming divergence Dϕ1(B∗∗, A∗∗) coincides with Dϕ̆(B∗∗, A∗∗) where ϕ̆(t) := t · log t;
the latter divergence was used e.g. in Bhandari & Pal [47] under the name average fuzzy information for discrimination in
favor of B against A). Moreover, the special choice ν = 1 and ϕ(t) := ϕsnKL,1(t) (cf. (188)) leads to the Jensen-Shannon
divergence between B∗∗ and A∗∗ given by DϕsnKL,1(B∗∗, A∗∗) := DϕsnKL,1(PB ,PA); from (147) and (189) one can see
that this coincides with the symmetric information measure between B∗∗ and A∗∗ of Vlachos & Sergiadis [385].

In terms of the divergences (147) and (148), we can tackle — as a special case of the above-mentioned BS concepts —
optimization problems of the type

inf
B∗∗∈Ω∗∗

Dϕ(B∗∗, A∗∗) := inf
PB∈Ω

Dϕ(PB ,PA) respectively

inf
B∗∗∈Ω∗∗

Dvar
ϕ (B∗∗, A∗∗) := inf

PB∈Ω
Dϕ(

(
PB
)ν
,
(
PA
)ν

),

where Ω∗∗ is a collection of ν−rung orthopair fuzzy sets whose concatenated-membership-nonmembership-degree vectors form
the set Ω satisfying (7) and (9) as well as (146) for B in place of A. Because of the latter, Theorem 10 and its consequences
and derived examples will apply correspondingly — unless there is a more restrictive constraint which violates (7) such as
e.g.

∑2K
k=1 p

B
k = C with C ≤ K for which Theorem 14 (and its consequences and derived examples) can be employed; such

a situation appears e.g. in the above-mentioned case ν = 1 together with NA(x) := 1−MA(x) which leads to C = K.

For ν−rung orthopair fuzzy sets A∗∗ in Y , we can also further “flexibilize” our divergences by additionally incorporating the
hesitancy degree of the element dk to A which is defined as

HA(dk) :=
(

1−
(
MA(dk)

)ν − (NA(dk)
)ν)1/ν

∈ [0, 1]

(cf. Yager [406]) and which implies the key constraint(
HA(dk)

)ν
+
(
MA(dk)

)ν
+
(
NA(dk)

)ν
= 1 for all k ∈ {1, . . . ,K}. (149)
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Accordingly, the object A∗∗∗ := {〈x,MA(x), NA(x), HA(x)〉|x ∈ Y} can be regarded as an extended representation of
the ν−rung orthopair fuzzy set A∗∗ in Y . For A∗∗∗, we model the corresponding vector of concatenated membership, non-
membership and hesitancy degrees to A by

PA :=
(
pAk
)
k=1,...,3K

:=
(
MA(d1), . . .MA(dK), NA(d1), . . . NA(dK), HA(d1), . . . HA(dK)

)
which due to (149) satisfies the aggregated key constraint

3K∑
k=1

(
pAk
)ν

= K; (150)

in other words, PA lies (within the 3K−dimensional Euclidean space) in the intersection of the first/positive orthant with the
ν−norm sphere centered at the origin and with radius K1/ν . Analogously to (147) and (148), we can define the ϕ−divergence
Dϕ(B∗∗∗, A∗∗∗) between the extended-representation-type ν−rung orthopair fuzzy sets B∗∗∗ and A∗∗∗ (on the same universe
Y) as

Dϕ(B∗∗∗, A∗∗∗) := Dϕ(PB ,PA)

=

3K∑
k=1

pAk · ϕ
(
pBk
pAk

)
=

K∑
k=1

{
MA(dk) · ϕ

(
MB(dk)

MA(dk)

)
+NA(dk) · ϕ

(
NB(dk)

NA(dk)

)
+HA(dk) · ϕ

(
HB(dk)

HA(dk)

)}
≥ 0

respectively as its variant

Dvar
ϕ (B∗∗∗, A∗∗∗) := Dϕ(

(
PB
)ν
,
(
PA
)ν

) =

3K∑
k=1

(
pAk
)ν · ϕ((pBk )ν(

pAk
)ν
)

=

K∑
k=1

{(
MA(dk)

)ν · ϕ((MB(dk)
)ν

(MA(dk))
ν

)
+
(
NA(dk)

)ν · ϕ((NB(dk)
)ν

(NA(dk))
ν

)
+
(
HA(dk)

)ν · ϕ((HB(dk)
)ν

(HA(dk))
ν

)}
≥ 0. (151)

For instance, by taking the special choice ν = 2 and ϕ(t) := ϕsnKL,1(t) (cf. (188)) in (151), we arrive at the Jensen-Shannon
divergence between B∗∗∗ and A∗∗∗ of the form Dvar

ϕsnKL,1(B∗∗∗, A∗∗∗) := Dvar
ϕsnKL,1(PB ,PA) which — by the virtue of (151)

and (189) — coincides with the (squared) Pythagorean-fuzzy-set Jensen-Shannon divergence measure between B∗∗∗ and A∗∗∗

of Xiao & Ding [399]. To continue with the general context, as a particular application of the above-mentioned BS concepts,
we can tackle general optimization problems of the type

inf
B∗∗∗∈Ω∗∗∗

Dϕ(B∗∗∗, A∗∗∗) := inf
PB∈Ω

Dϕ(PB ,PA) respectively

inf
B∗∗∗∈Ω∗∗∗

Dvar
ϕ (B∗∗∗, A∗∗∗) := inf

PB∈Ω
Dϕ(

(
PB
)ν
,
(
PA
)ν

)

where Ω∗∗∗ is a collection of extended-representation-type ν−rung orthopair fuzzy sets whose concatenated-membership-
nonmembership-hesitancy-degree vectors form the set Ω satisfying (7) and (9) as well as (149) for B in place of A. Because
of the latter and the implied aggregated key constraint (150) for B in place of A, Theorem 14 (and its consequences and
derived examples) can be employed.

Of course, we can also correspondingly adapt the transformations of ϕ−divergences and entropy-type special cases given in
the sections above and below, to (classical respectively ν−rung othopair) fuzzy sets, and apply our BS method for this. For
the sake of brevity, we only give a short example, namely the γ−order Renyi divergence between ν−rung othopair fuzzy sets
which we define by (cf. (69))

Rvarγ (B∗∗∗, A∗∗∗) :=
1

γ · (γ − 1)
·

[
log

(
3K∑
k=1

((
pBk
)ν)γ · ((pAk )ν)1−γ

)
− log(K)

]

=
1

γ · (γ − 1)
·

[
log

(
K∑
k=1

{((
MB(dk)

)ν)γ · ((MA(dk)
)ν)1−γ

+
((
NB(dk)

)ν)γ · ((NA(dk)
)ν)1−γ

+
((
HB(dk)

)ν)γ · ((HA(dk)
)ν)1−γ

})
− log(K)

]
≥ 0; γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 1,∞[, (152)

depending on γ, zero degree values may have to be excluded for finiteness. As a side remark, let us mention that our divergence
(152) contrasts to the recent (first) divergence of Verma [382] who basically uses a different scaling, the product

∏K
k=1 instead

of the sum
∑K
k=1, as well as (pAk )

ν
+(pBk )

ν

2 instead of
(
pAk
)ν

. By equivalently rewriting (152), we can use (88) with A = 1
together with the Propositions 22, 24, 26 and 27 to tackle for γ ∈ ]−∞, 0[ ∪ ]0, 1[ ∪ [ 2,∞[ the minimization problem

inf
B∗∗∗∈Ω∗∗∗

Rvar,norγ (B∗∗∗, A∗∗∗) = inf
PB∈ΩΩ

Rγ(PB ,PA)
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with artificially generated probability vectors (cf. (150))

PC :=

((
MC(d1)

)ν
K

, . . . ,

(
MC(dK)

)ν
K

,

(
NC(d1)

)ν
K

, . . . ,

(
NC(dK)

)ν
K

,

(
HC(d1)

)ν
K

, . . . ,

(
HC(dK)

)ν
K

)
, C = A,B;

here, Ω∗∗∗ is a collection of extended-representation-type ν−rung orthopair fuzzy sets B∗∗∗ whose corresponding normalized
concatenated-membership-nonmembership-hesitancy-degree vectors PB form the set ΩΩ satisfying (7) (in the relative topology).

The above-mentioned considerations can be carried over to (classical, intuitionistic, Pythagorean, ν−rung orthopair) L−fuzzy
sets, where the range of the membership functions, non-membership functions and hesitancy functions is an appropriately
chosen lattice L (rather than L = [0, 1]); for the sake of brevity, this is omitted here.

E. Minimization problems with basic belief assignments

Our BS framework also covers — imprecise/inexact/vague information describing — basic belief assignments from Dempster-
Shafer evidence theory (cf. [109], [327]) and optimization problems on divergences between those. Indeed, let Y = {d1, . . . , dK}
be a finite set (called the frame of discernment) of mutally exclusive and collectively exhaustive events dk. The corresponding
power set of Y is denoted by 2Y and has 2K elements; we enumerate this by 2Y := {A1, . . . , A2K} where for convenience
we set A1 := ∅. A mapping M : 2Y 7→ [0, 1] is called a basic belief assignment (BBA) 29 if it satisfies the two conditions

M(∅) = 0 and
∑
A∈2Y

M(A) = 1. (153)

Here, the belief mass M(A) reflects e.g. the trust degree of evidence to proposition A ∈ 2Y . From this, one can build the
belief function Bel : 2Y 7→ [0, 1] by Bel(A) :=

∑
B:B⊆AM(B) and the plausability function Pl : 2Y 7→ [0, 1] by Pl(A) :=∑

B:B∩A6=∅M(B). Moreover, we model the 2K−dimensional vector of (M−based) BBA values (vector of (M−based) belief
masses) by PM :=

(
pMk
)
k=1,...,2K

:= (M(Ak))k=1,...,2K which satisfies the key constraint 0 ≤ pMk ≤ 1 for all k ∈ {1, . . . , 2K}
and, by virtue of (153), the aggregated key constraint

∑2K

k=1 p
M
k = 1. Hence, PM lies formally in the 2K−dimensional simplex

S2K (but generally not in the corresponding probability-vector-describing SK).

For divergence generators ϕ in Υ(]a, b[) with — say — 0 ≤ a < 1 < b and for two BBAs M1,M2 on the same frame
of discernment Y , we can apply (4) to the corresponding vectors of BBA-values and define the ϕ−divergence Dϕ(M2,M1)
between the BBAs M2 and M1 (in short, Belief−ϕ−divergence) as

Dϕ(M2,M1) := Dϕ(PM2 ,PM1) =

2K∑
k=1

pM1

k · ϕ

(
pM2

k

pM1

k

)
=

2K∑
k=1

M1(Ak) · ϕ
(
M2(Ak)

M1(Ak)

)
≥ 0 (154)

(depending on ϕ, zero belief masses may have to be excluded for finiteness). For instance, we can take in (154) the special
case ϕ(t) := ϕsnKL,1(t) (cf. (188)) to end up with the recent Belief-Jensen-Shannon divergence of Xiao [397], [398] who
applies this to multi-sensor data fusion. As another special case we can take ϕ(t) := ϕ1/2(t) (cf. (43)) to end up with the
4−times square of the recent Hellinger distance of BBAs of Li et al. [224], who use this for characterizing the degree of
conflict between BBAs. To continue with the general context, as a particular application of the above-mentioned BS concepts,
we can tackle general optimization problems of the type

inf
M2∈ΩBBA

Dϕ(M2,M1) := inf
PM2∈Ω

Dϕ(PM2 ,PM2) respectively

where ΩBBA is a collection of BBAs whose vectors of BBA-values form the set Ω ∈ S2K satisfying (7) and (9) as well as
(149). for B in place of A. Hence, Theorem 14 (and its consequences and derived examples) can be employed.

We can also apply our BS method to “crossover cases ” Dϕ(PM ,P) (respectively with interchanged components) where PM

is a vector of M−based BBA values and P is a vector whose sum of components may not necessarily be 1. For instance,
for the special choice ϕ(t) := ϕ1(t) := t · log t + 1 − t ∈ [0,∞[ (cf. 43), PM :=

(
pMk
)
k=1,...,2K

:= (M(Ak))k=1,...,2K ,
P := (pk)k=1,...,2K with pk := 2|Ak| − 1 employing the cardinality |Ak| of Ak, and the usual convention 0 · log( 0

0 ) := 0, we
end up with (cf. (44))

Dϕ1
(PM ,P) =

2K∑
k=2

M(Ak) · log
( M(Ak)

2|Ak| − 1

)
− 1 +

2K∑
k=2

(2|Ak| − 1) =: −EDE(M)− 1 +

2K∑
k=2

(2|Ak| − 1)

29sometimes alternatively called basic probability assignment (BPA)
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where EDE(M) := −
∑2K

k=2M(Ak) · log
(
M(Ak)

2|Ak|−1

)
≥ 0 is nothing but (a multiple of) Deng’s entropy of the BBA (BPA) M

(cf. [110], see also e.g. Kang & Deng [181]).

Our BS method can also be applied to divergences between rescalings of BBAs. For instance, let M̆(A) := M(A)
2|A|−1

(A ∈ 2Y )

with the convention that 0
0 := 0, and denote the corresponding vector PM̆ :=

(
pM̆k

)
k=1,...,2K

:=
(
M̆(Ak)

)
k=1,...,2K

. Accord-

ingly, we define the ϕ−divergence Dϕ(M̆2, M̆1) between the rescaled BBAs M̆2 and M̆1 (in short, rescaled Belief−ϕ−divergence)
as

Dϕ(M̆2, M̆1) := Dϕ(PM̆2 ,PM̆1) =

2K∑
k=1

pM̆1

k ·ϕ

(
pM̆2

k

pM̆1

k

)
=

2K∑
k=2

M̆1(Ak) ·ϕ

(
M̆2(Ak)

M̆1(Ak)

)
=

2K∑
k=2

M1(Ak)

2|Ak| − 1
·ϕ
(
M2(Ak)

M1(Ak)

)
≥ 0

(155)
where for A1 := ∅ we have used the convention that 0 · ϕ( 0

0 ) := 0 (depending on ϕ, other zero rescaled belief masses may
have to be excluded for finiteness); notice that Remark 4 applies with ck := 1

2|Ak|−1
> 0. As an example, for the special

choice ϕ(t) := ϕ1(t) := t · log t+ 1− t ∈ [0,∞[ (cf. 43), we derive from (44) and (155) the divergence

0 ≤ Dϕ1
(M̆2, M̆1) =

2K∑
k=2

M2(Ak)

2|Ak| − 1
· log

(M2(Ak)

M1(Ak)

)
−

2K∑
k=2

M2(Ak)

2|Ak| − 1
+

2K∑
k=2

M1(Ak)

2|Ak| − 1

=: DSD(M2,M1)−
2K∑
k=2

M2(Ak)

2|Ak| − 1
+

2K∑
k=2

M1(Ak)

2|Ak| − 1

where DSD(M2,M1) has been recently developed by Song & Deng [339]; notice that DSD(M2,M1) may be negative (cf.
Stummer & Vajda [349]) and then it is not a divergence anymore. However, for applications to data fusion Song & Deng apply
the symmetrization 1

2 ·
(
DSD(M2,M1) +DSD(M1,M2)

)
which is equal to 1

2 ·
(
Dϕ1(M̆2, M̆1) +Dϕ1(M̆1, M̆2)

)
and thus

nonnegative.

Of course, we can also correspondingly adapt the transformations of ϕ−divergences (e.g. Renyi divergences) and entropy-type
special cases given in the sections above and below, to BBAs as well as crossover cases and rescalings, and apply our BS
method for this.

V. FINDING/CONSTRUCTING/ON THE DISTRIBUTION OF THE WEIGHTS

Recall first that in Theorem 14, one crucial component is the sequence (Wn)n∈N of weights being i.i.d. copies of a random
variable W whose probability distribution is � (i.e. �[W ∈ · ] = �[ · ]), where the latter has to be connected with the divergence
generator ϕ ∈ Υ(]a, b[) through the representation

ϕ(t) = sup
z∈R

z · t− log

∫
R

ezyd�(y)

 , t ∈ R, (cf. (6))

under the additional requirement that the function z 7→ MGF�(z) :=
∫
R
ezyd�(y) is finite on some open interval containing

zero (“light-tailedness”); for Theorem 10, we need the corresponding variant (21) for MP · ϕ ∈ Υ(]a, b[) (rather than ϕ).

Hence, finding such “BS-associated pairs (ϕ, �)” is an important issue. Subsequently, let us discuss the following direction:
starting from a concrete optimization problem (27) — respectively (8) — with pregiven ϕ ∈ Υ̃(]a, b[) (cf. Definition 3), as a first
step one would like to verify whether indeed ϕ ∈ Υ(]a, b[) (i.e. it additionally satisfies (6)) — respectively MP ·ϕ ∈ Υ(]a, b[);
as a second step, one would like to find the corresponding � explicitly.

As far as the above-mentioned first step is concerned, let us first present some fundamental properties of all ϕ ∈ Υ(]a, b[):

Proposition 29: Let ϕ ∈ Υ(]a, b[). Then the following assertions hold:
(G1) ϕ : ]−∞,∞[→ [0,∞] is lower semicontinuous and convex;
(G2) ϕ(1) = 0;
(G3) int(dom(ϕ)) =]a, b[ for some −∞ ≤ a < 1 < b ≤ ∞;
(G4) ϕ is continuously differentiable on ]a, b[ (i.e. ϕ ∈ C1(]a, b[);
(G5) ϕ is strictly convex only in a non-empty neighborhood ]tsc− , t

sc
+ [⊆]a, b[ of one (tsc− < 1 < tsc+ );

(G6) ϕ is infinitly differentiable on ]tsc− , t
sc
+ [ (i.e. ϕ ∈ C∞(]tsc− , t

sc
+ [), and hence, ϕ′(1) = 0, ϕ′′(t) > 0 for all t ∈]tsc− , t

sc
+ [;

notice that the left-hand second derivative and the right-hand second derivative of ϕ may not coincide at tsc− respectively
at tsc+ (i.e. possible non-second-differentiability at these two points);
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(G7) if a > −∞, then a = tsc− ;
if a = −∞, then either tsc− = −∞ or ϕ(t) = ϕ(tsc− ) + ϕ′(tsc− ) · (t − tsc− ) for all t ∈] −∞, tsc− [ (affine-linearity); notice
that ϕ′(tsc− ) < 0;

(G8) if b <∞, then b = tsc+ ;
if b = ∞, then either tsc+ = ∞ or ϕ(t) = ϕ(tsc+ ) + ϕ′(tsc+ ) · (t − tsc+ ) for all t ∈]tsc+ ,∞[ (affine-linearity); notice that
ϕ′(tsc+ ) > 0;

(G9) the Fenchel-Legendre transform (also called convex conjugate) of ϕ

ϕ∗(z) = sup
t∈R

(z · t− ϕ(t)) = sup
t∈]a,b[

(z · t− ϕ(t)) , z ∈ R, (156)

has the following properties:
(G9i) int(dom(ϕ∗)) =]λ−, λ+[, where dom(ϕ∗) := {z ∈ R : −∞ < ϕ∗(z) <∞},

λ− := inft∈]a,b[ ϕ
′(t) = limt↓a ϕ

′(t) =: ϕ′(a) < 0 and
λ+ := supt∈]a,b[ ϕ

′(t) = limt↑b ϕ
′(t) =: ϕ′(b) > 0;

(G9ii) if a > −∞, then
• λ− = −∞;
• the function z 7→ e−a·z+ϕ

∗(z) =: M(z) is absolutely monotone on ]−∞, 0[,
i.e. all derivatives exist and satisfy ∂k

∂zk
M(z) ≥ 0 (k ∈ N0, z ∈]−∞, 0[);

• limz→0−M(z) = 1;
(G9iii) if b <∞, then

• λ+ =∞;
• the function z 7→ eb·z+ϕ

∗(−z) =: M(z) is absolutely monotone on ]−∞, 0[;
• limz→0−M(z) = 1;

(G9iv) if a = −∞ and b = −∞, then
• the function z 7→ eϕ

∗(z) =: M(z) is exponentially convex on ]λ−, λ+[,
i.e. M(·) is continuous and satisfies

n∑
i,j=1

ci · cj ·M
(zi + zj

2

)
≥ 0 for all n ∈ N, ci, cj ∈ R and zi, zj ∈]λ−, λ+[;

• limz→0−M(z) = 1;
as a side remark, notice the well-known fact that exponential-convexity is stronger than the usual log-convexity.

(G10) the endpoints of int(dom(ϕ)) =]a, b[ have the following important “functioning” for the underlying probability distri-
bution � (cf. (6)) respectively of an associated random variable W with �[· ] := �[W ∈ · ]:

(G10i) a = inf supp(�) = inf supp(W ), b = sup supp(�) = sup supp(W ), where supp(�) respectively supp(W ) denotes
the support of � respectively W ; consequently, ]a, b[= int(conv(supp(�))) = int(conv(supp(W ))) where conv(A)
denotes the convex hull of a set A;

(G10ii) if a > −∞, then ϕ(a) = − log �[{a}] = − log�[W = a ]; consequently, there holds:
a = min supp(�) = min supp(W ) if and only if �[{a}] = �[W = a ] > 0 if and only if ϕ(a) < ∞ if and only if
a ∈ dom(ϕ);

(G10iii) if b <∞, then ϕ(b) = − log �[{b}] = − log�[W = b ]; consequently, there holds:
b = max supp(�) = max supp(W ) if and only if �[{b}] = �[W = b ] > 0 if and only if ϕ(b) < ∞ if and only if
b ∈ dom(ϕ).

(G11) the first two derivatives of ϕ at the point 1 have the following important “functioning” for the underlying probability
distribution � (cf. (6)) respectively of an associated random variable W :

(G11i) 1 = ϕ′−1(0) =
∫
R
y d�(y) = E�[W ] where ϕ′−1(·) denotes the inverse of the first derivative ϕ′(·) of ϕ(·),

(G11ii) 1
ϕ′′(1) =

∫
R

(
y −

∫
R
ỹ d�(ỹ)

)2

d�(y) = E�[W 2]− (E�[W ])2 = V ar�[W ];
in particular, scaling c̃ · ϕ (c̃ > 0) does not change the mean 1 but the variance of W .

The corresponding proof of Proposition 29 will be given in Appendix D, except for the second items of (G9ii) and (G9iii) as
well as the first item of (G9iv). Those will be treated in the second next paragraph below, because the corresponding line of
argumentation builds an insightful start for subsequently performed procedures to further track down the weight distribution �.

The properties (G1) to (G9iv) constitute necessary conditions for a pregiven function ϕ to belong to Υ(]a, b[)); accordingly,
these should be verified first, in concrete situations where one aims to apply the BS approach. An important role is played by
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the boundary points a and b of int(dom(ϕ)) through (G10i) to (G10iii), because their finiteness opens the gate to apply —
via some straightforward transformations — a rich class of real-valued characterization theorems for probability distributions
whose support lies in the positive real line [0,∞[. In contrast, there exist much less real-valued characterization theorems
for probability distributions whose support is the whole real line ] −∞,∞[; typically, the involved conditions are also more
difficult to verify.

Indeed, if ϕ ∈ Υ(]a, b[) then one can deduce straightforwardly from the representation (6) that

eϕ
∗(z) =

∞∫
−∞

ez·y d�(y) = E�[ez·W ], z ∈]λ−, λ+[, (157)

where W is a random variable whose distribution is �[W ∈ · ] = �[ · ]; under the additional knowledge a > −∞ (and
consequently λ− = −∞) employed together with (G10i) and thus �[W ≥ a ] = �[ [a,∞[ ] = 1, one arrives at

eϕ
∗(z)−a·z =

∞∫
a

ez·(y−a) d�(y) =

∞∫
0

ez·ỹ d
˜̃
�(ỹ) = E�[ez·(W−a)], z ∈]−∞, λ+[, (158)

where the probability distribution ˜̃�[ · ] := �[ · + a ] is the a−shifted companion of �; recall that λ+ > 0. Put in other words,

�[W̃ ∈ · ] =
˜̃
�[ · ] is the probability distribution of the (a.s.) nonnegative random variable W̃ := W − a. Naturally, in this

context, the interesting case is −∞ < a ≤ 0. Similarly, if ϕ ∈ Υ(]a, b[) and b < ∞ (and hence λ+ = ∞), one can derive
from (G10i) and its consequence �[W ≤ b ] = �[ ]−∞, b] ] = 1 that

eϕ
∗(−z)+b·z =

b∫
−∞

ez·(b−y) d�(y) =

∞∫
0

ez·ỹ d
˜̃
�(ỹ) = E�[ez·(b−W )], z ∈]−∞,−λ−[, (159)

where −λ− > 0 and the probability distribution ˜̃�[ · ] := �[ b − · ] is the mirrored−b−shifted companion of �. This means

that �[W̃ ∈ · ] =
˜̃
�[ · ] is the probability distribution of the (a.s.) nonnegative random variable W̃ := b −W . Naturally, the

interesting case is 0 < b ≤ ∞.

As already indicated above, the considerations (157) to (159) open the gate to the adaption of well-known real-valued (rather
than complex-valued) characterizations from probability theory. To begin with, the following assertions are very prominent:

Theorem 30: (a) Let M :]−∞, 0] 7→]0,∞[ be continuous on ]−∞, 0] with M(0) = 1. Then one has

M is absolutely monotone on ]−∞, 0[ ⇐⇒ ∃ unique prob. distr. ˜̃� on [0,∞[ s.t. M(z) =

∞∫
0

ez·yd
˜̃
�(y) for all z ∈]−∞, 0[.

(b) Let I be an open interval which contains 0, and M : I 7→ [0,∞[ be continuous with M(0) = 1. Then one gets

M is exponentially convex ⇐⇒ ∃ unique prob. distr. ˜̃� on ]−∞,∞[ such that M(z) =

∞∫
−∞

ez·yd
˜̃
�(y) for all z ∈ I .

Assertion (a) of Theorem 30 is known as (probability-version of) Bernstein’s theorem [42] (see e.g. also Schilling et al. [322]),
whereas assertion (b) is known as (probability-version of) Widder’s theorem [391] 30 (see e.g. also Widder [392], Akhiezer
[9], Shucker [333], Jaksetic & Pecaric [163], Kotelina & Pevny [196]).

From Theorem 30(b) and (157), the first item in (G9iv) follows immediately by using the choice I =]λ−, λ+[. Moreover,
Theorem 30(a) together with (158) (respectively (159)) implies the second item of (G9ii) (respectively of (G9iii)). In fact, with
the help of Theorem 30 and some further considerations e.g. on light-tailedness, one even gets assertions on the sufficiency of
(G9ii), (G9iii) and (G9iv) for a “candidate generator” ϕ to belong to the BS-suitable class Υ(]a, b[). More precisely, we obtain

Proposition 31: Suppose that ϕ :] −∞,∞[7→ [0,∞] satisfies (G1) to (G8), and recall the notations in (G9i). Then, ϕ ∈
Υ(]a, b[) if one of the following three conditions holds:
(a) a > −∞, λ− = −∞, and the function z 7→ e−a·z+ϕ

∗(z) is absolutely monotone on ]−∞, 0[,
(b) b <∞, λ+ =∞, and the function z 7→ eb·z+ϕ

∗(−z) is absolutely monotone on ]−∞, 0[,

30 for the relevant conversion between the involved Riemann-Stieltjes integral with nondecreasing (but not necessarily right-continuous) integrator into a
measure integral, one can apply the general theory in e.g. Chapter 6 of Chow & Teicher [88].
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(c) a = −∞, b = −∞, and the function z 7→ eϕ
∗(z) is exponentially convex on ]λ−, λ+[.

If one of the three conditions (a) to (c) holds, then31 the associated probability distribution � (cf. (6)) has expectation
∫
R
yd�(y) =

1 and finite moments of all orders, i.e.
∫
R
yjd�(y) <∞ for all j ∈ N0; in terms of �[· ] := �[W ∈ · ] this means that E�[W ] = 1

and E�[W j ] <∞.

The proof of Proposition 31 will be given in Appendix D. As far as applicability is concerned, it is well known that, in general,
verifying absolute monotonicity is typically more comfortable than verifying exponential convexity. Fortunately, one can often
use the former, since for many known divergence generators there holds a > −∞ (often a = 0) or b <∞ or both, which by
virtue of (G10i) is directly linked with the (endpoints of the) support of the potentially existing probability distribution �.

For a pregiven divergence generator ϕ, once its membership in Υ(]a, b[) (and in particular, the representability (6)) is verified,
one would like to concretely find the underlying probability distribution �. This may be quite challenging, but can be made
more comfortable by systematically narrowing down the family of distributions where � belongs to. In fact, we have already
performed a first down-narrowing, in terms of identifying the endpoints of the support of � to be the endpoints of the effective
domain of ϕ (cf. (G10i)). A further down-narrowing can be achieved from (157) to (159) in combination with real-valued
characterization theorems which are more specific than Theorem 30. This will be shown exemplarily for a few important
sub-setups, in the following.

For the identification of light-tailed semi/half-lattice distributions, we obtain the following two sets of sufficient conditions,
which even allow for the desired explicit determination of �:

Proposition 32: Suppose that ϕ :]−∞,∞[ 7→ [0,∞] satisfies (G1) to (G8), with some a > −∞. Furthermore, assume that
there exists some constant c̆ > 0 as well as some function H : [0,∞[ 7→ [0,∞[ which is continuous on [0, 1] with H(1) = 1
and absolutely monotone on ]0, 1[, such that

eϕ
∗( zc̆ )−a· zc̆ = H(ez), z ∈]−∞, c̆ · λ+[.

Then one has ϕ ∈ Υ(]a, b[) and

� =

∞∑
n=0

pn · δa+c̆·n with pn :=
1

n!
· dnH

dt
(0),

i.e. �[W = a+ c̆ · n ] = pn (n ∈ N0).

Proposition 33: Suppose that ϕ :] −∞,∞[ 7→ [0,∞] satisfies (G1) to (G8), with some b < ∞. Furthermore, assume that
there exists some constant c̆ > 0 as well as some function H : [0,∞[ 7→ [0,∞[ which is continuous on [0, 1] with H(1) = 1
and absolutely monotone on ]0, 1[, such that

eϕ
∗(− zc̆ )+b· zc̆ = H(ez), z ∈]−∞,−c̆ · λ−[.

Then one has ϕ ∈ Υ(]a, b[) and

� =

∞∑
n=0

pn · δb−c̆·n with pn :=
1

n!
· dnH

dt
(0),

i.e. �[W = b− c̆ · n ] = pn (n ∈ N0).

The Propositions 32 respectively 33 follow from (158) respectively (159), some straightforward transformations, and a well-
known characterization of probability generating functions H (see e.g. in Theorem 1.2.10 of Stroock [343]).

As an incentive for the following investigations, let us recall the discussion in the surroundings of Condition 9 pertaining to
the minimization problem (13), where we have addressed possible connections between the two representabilities (6) (needed
e.g. for Theorem 14) and (21) (needed e.g. for Theorem 10); this strongly relates to the question, for which constants c̃ > 0
the validity ϕ ∈ Υ(]a, b[) triggers the validity of c̃ ·ϕ ∈ Υ(]a, b[). To begin with, it is straightforward to see that ϕ ∈ Υ(]a, b[)
always implies c̃ · ϕ ∈ Υ(]a, b[) for all integers c̃ ∈ N; indeed, if ϕ satisfies (6) for some � = �[W ∈ · ], then for each integer
c̃ ∈ N one gets that c̃ ·ϕ satisfies (6) for �̃ = �[

∑c̃
j=1

Wj

c̃ ∈ · ]; in the latter, the Wj’s are i.i.d. copies from W . Clearly, MGF
�̃

is then finite on some open interval containing zero (differing from the one for MGF� only by a scaling with 1/c̃).

For the following family of distributions, one can even trigger c̃ · ϕ ∈ Υ(]a, b[) for all c̃ > 0: for the sake of a corresponding
precise formulation, recall first the common knowledge that, generally speaking, a probability distribution � on R with light

31 basically by Theorem 30 with M(·) defined in G9(ii),(iii) or (iv); see Appendix D.



45

tails — in the sense that its moment generating function z 7→ MGF�(z) :=
∫
R
ez·yd�(y) is finite on some open interval

]λ−, λ+[ containing zero — is (said to be) infinitely divisible if there holds

for each n ∈ N there exists a probability distribution �n on R such that

∞∫
−∞

ez·yd�(y) =
( ∞∫
−∞

ez·yd�n(y)
)n
, z ∈]λ−, λ+[;

(160)
in fact, (160) means that the (light-tailed) moment generating function MGF� is infinitely divisible in the sense that each n−th
root (MGF�)

1/n must be the moment generating function of some (light-tailed) probability distribution (denoted here by �n).
In particular, (160) implies that �n is unique, and that � must necessarily have (one-sided or two-sided) unbounded support
supp(�). The latter may differ from supp(�n). In our BS context (6), (160) equivalently means that the associated random
variable W is infinitely divisible (with light-tailed distribution), in the sense that

for each n ∈ N there exists a sequence of i.i.d. random variables Yn,1, · · · , Yn,n such that W d
= Yn,1 + · · ·+ Yn,n, (161)

where d
= means “have equal probability distributions” and �[W ∈ · ] = �[ · ], �[Yn,1 ∈ · ] = �n[ · ].

For the above-mentioned context, we obtain the useful

Proposition 34: Suppose that ϕ ∈ Υ(]a, b[), with connected probability distribution � from (6) (recall that this implies that
� is not a one-point distribution, cf. Remark 5). Then there holds:

c̃ · ϕ ∈ Υ(]a, b[) for all c̃ > 0 ⇐⇒ � is infinitely divisible.

The proof of Proposition 34 is given in Appendix E.

Notice that Proposition 34 covers especially the important prominent power divergences (cf. Examples 39 and 40 below) for
which we provide the corresponding infinitely divisible distributions explicitly in the Examples 48 and 50 below, and for which
the subsequent form of estimators (cf. Chapter VI below) can be simplified.

For the identification of light-tailed infinitely divisible distributions, we obtain the following three sets of sufficient conditions:

Proposition 35: Suppose that ϕ :] − ∞,∞[7→ [0,∞] satisfies (G1) to (G8), and recall the notations in (G9i) as well as
a = inf supp(�), b = sup supp(�) (cf. (G10i)). Then, ϕ ∈ Υ(]a, b[) and the associated probability distribution � is infinitely
divisible, if one of the following three conditions holds:
(a) a > −∞, λ− = −∞, and the function z 7→ ϕ∗′(z)− a = (ϕ′)−1(z)− a is absolutely monotone on ]−∞, 0[,
(b) b <∞, λ+ =∞, and the function z 7→ −ϕ∗′(−z) + b = −(ϕ′)−1(−z) + b is absolutely monotone on ]−∞, 0[,
(c) a = −∞, b = −∞, and the function z 7→ ϕ∗′′(z)

ϕ∗′′(0) = ϕ′′(1)
ϕ′′((ϕ′)−1(z)) is exponentially convex on ]λ−, λ+[.

In the first case (a) there automatically follows b =∞, whereas in the second case (b) one automatically gets a = −∞.

The proof of Proposition 35 is given in Appendix E.

So far, in the current section we have started from a given divergence generator ϕ ∈ Υ̃(]a, b[) having some additional properties,
switched to its Fenchel-Legendre transform ϕ∗ and some exponentially-linear transforms thereof, and presented some sufficient
conditions for verifying that the outcome is a moment-generating function MGF� of a unique probability distribution � which
has light tails. For finding the concrete �, one typically should know the explicit form of ϕ∗. However, it is well known
that it can sometimes be hard to determine the explicit form of the Fenchel-Legendre transform of a convex function. This
issue also applies for the reverse direction of starting from a concrete probability distribution � with light tails, computing
its log-moment-generating function (called cumulant-generating function) z 7→ Λ�(z) := logMGF�(z) and the corresponding
Fenchel-Legendre transform Λ∗� which is nothing but the associated divergence generator ϕ (cf. (6)). As will be illuminated
in several examples below, the — “kind of intermediate” — construction method given in the below-mentioned Theorem 36
can help to ease these two tasks. To formulate this, we employ the class F of functions F :] −∞,∞[7→ [−∞,∞] with the
following properties:
(F1) int(dom(F )) =]aF , bF [ for some −∞ ≤ aF < 1 < bF ≤ ∞;
(F2) F is smooth (infinitely continuously differentiable) on ]aF , bF [;
(F3) F is strictly increasing on ]aF , bF [.

Clearly, for any F ∈ F one gets the existence of F (aF ) := limt↓aF F (t) ∈ [−∞,∞[ and F (bF ) := limt↑bF F (t) ∈]−∞,∞];
moreover, its inverse F−1 : R(F ) 7→ [aF , bF ] exists, where R(F ) := {F (t) : t ∈ dom(F )}. Furthermore, F−1 is strictly
increasing and smooth (infinitely continuously differentiable) on the open interval int(R(F )) = {F (t) : t ∈]aF , bF [} =
]F (aF ), F (bF )[, and F−1(int(R(F ))) =]aF , bF [. Within such a context, we obtain
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Theorem 36: Let F ∈ F and fix an arbitrary point c ∈ int(R(F )). Moreover, introduce the notations32 ]λ−, λ+[:=
int(R(F ))− c and ]tsc− , t

sc
+ [:=]1 + aF − F−1(c), 1 + bF − F−1(c)[ (which implies λ− < 0 < λ+ and tsc− < 1 < tsc+ ).

Furthermore, define the functions Λ : ]−∞,∞[ 7→ [−∞,∞] and ϕ : ]−∞,∞[ 7→ [0,∞] by

Λ(z) := Λ(c)(z) :=


∫ z

0
F−1(u+ c) du+ z · (1− F−1(c)) ∈]−∞,∞[, if z ∈]λ−, λ+[,∫ λ−

0
F−1(u+ c) du+ λ− · (1− F−1(c)) ∈ [−∞,∞], if z = λ− > −∞,∫ λ+

0
F−1(u+ c) du+ λ+ · (1− F−1(c)) ∈ [−∞,∞], if z = λ+ <∞,

∞, else,

(162)

where the second respectively third line are meant as limz↓λ−
( ∫ z

0
F−1(u+ c) du+ z · (1− F−1(c))

)
respectively

limz↑λ+

( ∫ z
0
F−1(u+ c) du+ z · (1− F−1(c))

)
, and

ϕ(t) := ϕ(c)(t) :=



(t+ F−1(c)− 1) · [F
(
t+ F−1(c)− 1

)
− c]−

∫ F(t+F−1(c)−1)−c
0 F−1(u+ c)du ∈ [0,∞[,

if t ∈]tsc− , t
sc
+ [,

(tsc− + F−1(c)− 1) · [F
(
tsc− + F−1(c)− 1

)
− c]−

∫ F(tsc−+F−1(c)−1)−c
0 F−1(u+ c)du ∈ ]0,∞],

if t = tsc− > −∞,

(tsc+ + F−1(c)− 1) · [F
(
tsc+ + F−1(c)− 1

)
− c]−

∫ F(tsc+ +F−1(c)−1)−c
0 F−1(u+ c)du ∈ ]0,∞],

if t = tsc+ <∞,
ϕ(tsc− ) + λ− · (t− tsc− ) ∈ ]0,∞], if tsc− > −∞, and t ∈ ]−∞, tsc− [,

ϕ(tsc+ ) + λ+ · (t− tsc+ ) ∈ ]0,∞], if tsc+ <∞, and t ∈ ]tsc+ ,∞[,

∞, else,

(163)

where the second respectively third line are again meant as lower respectively upper limit.
Then, Λ and ϕ have the following properties:
(i) On ]λ−, λ+[, the function Λ is smooth and strictly convex and consequently, exp(Λ)) is smooth and strictly log-convex;
moreover, there holds Λ(0) = 0, Λ′(0) = 1;
(ii) ϕ ∈ Υ̃(]a, b[), where a := tsc− · 1{−∞}(λ−)−∞· 1]−∞,0[(λ−), b := tsc+ · 1{∞}(λ+)+∞· 1]0,∞[(λ+), and ϕ has the properties
(G1) to (G8).
(iii) ϕ(t) = supz∈]−∞,∞[ (z · t− Λ(z)) = supz∈]λ−,λ+[ (z · t− Λ(z)) for all t ∈ R.
(iv) Λ(z) = ϕ∗(z) = supt∈]−∞,∞[ (t · z − ϕ(t)) = supt∈]a,b[ (t · z − ϕ(t)) for all z ∈ R.

The proof of Theorem 36 will be given Appendix F.

Remark 37: Theorem 36 indicates that the F−constructed function z 7→ exp(Λ(z)) = exp(ϕ∗(z)) is a good candidate for
a moment generating function of a probability distribution �, and hence for the representability (6). However, one still needs
to verify one of the conditions (a) to (c) of Proposition 31. This may go wrong, as the case of power divergences ϕγ with
γ ∈]1, 2[ indicates (cf. the conjecture of Example 48(f) below).

Notice that the newly constructed Λ and ϕ (cf. (162), (163)) depend on the choice of the anchor point c; this is e.g. illustrated
in Example 40(b) below. Hence, as a side effect, by using whole families (Fϑ)ϑ together with different anchor points c, via
Theorem 36 one can generate new classes (and new classifications) of ϕ−divergence generators — and thus of corresponding
ϕ−divergences — which can be of great use, even in other contexts beyond our BS optimization framework.

If F satisfies F (1) = 0 and thus F−1(0) = 1, then the natural choice c := 0 induces ]λ−, λ+[= int(R(F )) and ]tsc− , t
sc
+ [=

]aF , bF [, and consequently (due to F−1(c)− 1 = 0) leads to the simplification of “the first lines of” (162) and (163) to

Λ(z) := Λ(0)(z) :=

z∫
0

F−1(u)du, z ∈ int(R(F )), (164)

ϕ(t) := ϕ(0)(t) := t · F (t)−
F (t)∫
0

F−1(u)du, t ∈]aF , bF [; (165)

the simplifications of the respective other lines of (162) and (163) are straightforward.

32for the sake of brevity, we avoid here the more complete notation λF,c− , λF,c+ , tsc,F,c− , tsc,F,c+ indicating the dependence on F and c.



47

Remark 38: Let F ∈ F with aF = 0, bF =∞, F (1) = 0 and hence, int(R(F )) = ]F (0), F (∞)[. Then the transformation

F̃ (t) :=


−
∫ F ( 1

t )

0
F−1(u) du, if t ∈]0,∞[,

−
∫ F (∞)

0
F−1(u) du, if t = 0,

−∞, if t ∈]−∞, 0[,

(166)

satisfies F̃ ∈ F with aF̃ = 0, bF̃ =∞, F̃ (1) = 0 and int(R(F̃ )) =
]
−
∫ F (∞)

0
F−1(u) du,−

∫ F (0)

0
F−1(u) du

[
. By choosing

the natural anchor point c = 0 (for both F and F̃ ) and by using the relations F̃ (t) = −Λ(F ( 1
t )), F̃−1(z) = 1

F−1(Λ−1(−z)) , as
well as (264) in combination with (266) (for both contexts), it is straightforward to see that the corresponding quantities Λ̃ and
ϕ̃ satisfy Λ̃(z) = −(−Λ)−1(z) (z ∈ int(R(F̃ ))) and ϕ̃(t) = t · ϕ( 1

t ) (t ∈]0,∞[). Hence, the corresponding divergences
(cf. (4)) are “reciprocal to each other” in the sense that Dϕ̃(Q,P) = Dϕ(P,Q) for all P,Q ∈ SK>0, and in case that Λ and
Λ̃ are indeed cumulant generating functions of some light-tailed distributions � and �̃ (cf. Remark 37), then the latter two are
said to be inverse to each other in the sense of Tweedie [368] (see also e.g. Folks [127]).

As already indicated above, from Theorem 36 one can comfortably generate various interesting examples, which we demonstrate
in the following.

Example 39: (a) For γ ∈ R\{1, 2}, c̃ ∈]0,∞[ and ]aFγ,c̃ , bFγ,c̃ [ = ]0,∞[ we define

Fγ,c̃(t) :=


c̃

γ−1 · (t
γ−1 − 1), if t ∈ ]0,∞[,

− c̃
γ−1 , if t = 0 and γ ∈ ]1, 2[∪ ]2,∞[,

−∞, if t = 0 and γ < 1,

−∞, if t ∈ ]−∞, 0[,

Clearly, R(Fγ,c̃) =
[
− c̃

γ−1 ,∞
[

for γ ∈ ]1, 2[∪ ]2,∞[, respectively R(Fγ,c̃) =
]
− ∞, c̃

1−γ
[

for γ < 1; notice that 0 ∈
int(R(Fγ,c̃)) for all γ ∈ R\{1, 2}. Furthermore, Fγ,c̃(·) is strictly increasing and smooth on ]0,∞[, and thus, Fγ,c̃ ∈ F. Since
Fγ,c̃(1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ−, λ+[= int(R(Fγ,c̃)) and ]tsc− , t

sc
+ [=]0,∞[.

By using F−1
γ,c̃ (x) = (1 + (γ−1)·x

c̃ )
1

γ−1 for x ∈ int(R(Fγ,c̃)), we can derive from formula (162) (see also (164)) for all
γ ∈ R\{0, 1, 2} and z ∈ R

Λγ,c̃(z) := Λ
(0)
γ,c̃(z) =



c̃
γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

}
, if γ ∈ ]1, 2[∪ ]2,∞[ and z ∈

]
− c̃

γ−1 ,∞
[

or if γ ∈]−∞, 0[∪]0, 1[ and z ∈
]
−∞, c̃

1−γ
[
,

− c̃
γ < 0, if γ ∈ ]1, 2[∪ ]2,∞[ and z = − c̃

γ−1 ,

− c̃
γ > 0, if γ < 0 and z = c̃

1−γ ,

∞, if γ ∈ ]0, 1[ and z = c̃
1−γ ,

∞, else.

(167)

Notice that Λγ,c̃(0) = 0 for all γ ∈ R\{0, 1, 2}. Moreover, for γ ∈ ]1, 2[∪ ]2,∞[ one has Λγ,c̃(∞) = ∞, Λ′γ,c̃(−
c̃

γ−1 ) = 0

and Λ′γ,c̃(∞) =∞. For γ < 0 one gets Λγ,c̃(−∞) = −∞, Λ′γ,c̃(
c̃

1−γ ) =∞ and Λ′γ,c̃(−∞) = 0. In contrast, if γ ∈ ]0, 1[ then
Λγ,c̃(−∞) = − c̃

γ < 0, Λ′γ,c̃(
c̃

1−γ ) =∞ and Λ′γ,c̃(−∞) = 0. To proceed, from formula (163) (see also (165)) we can deduce
for all γ ∈ R\{0, 1, 2} and t ∈ R

ϕγ,c̃(t) := ϕ
(0)
γ,c̃(t) =



c̃ · t
γ−γ·t+γ−1
γ·(γ−1) ∈ [0,∞[, if t ∈]0,∞[,

c̃
γ > 0, if γ ∈ ]1, 2[∪ ]2,∞[ and t = 0,

∞, if γ < 0 and t = 0,
c̃
γ > 0, if γ ∈ ]0, 1[ and t = 0,
c̃
γ −

c̃
γ−1 · t ∈ ]0,∞[, if γ ∈ ]1, 2[∪ ]2,∞[ and t < 0,

∞, else,

(168)

which coincides with c̃ ·ϕγ(t) for ϕγ(t) from (43) and which generates the γ−corresponding power divergences given in (44);
the first line in (168) can be proved by
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ϕγ,c̃(t) := ϕ
(0)
γ,c̃(t) := t · Fγ,c̃ (t)−

Fγ,c̃(t)∫
0

F−1
γ,c̃ (u)du

=
t · c̃
γ − 1

· (tγ−1 − 1)− c̃

γ
·

{(
γ − 1

c̃
·
[

c̃

γ − 1
· (tγ−1 − 1)

]
+ 1

) γ
γ−1

− 1

}
= c̃ · t

γ − γ · t+ γ − 1

γ · (γ − 1)
, t ∈]0,∞[ . (169)

Notice that for all γ ∈ R\{0, 1, 2} one has ϕγ,c̃(1) = 0, ϕ′γ,c̃(1) = 0 and ϕγ,c̃(∞) = ∞. Moreover, for γ ∈ ]1, 2[∪ ]2,∞[

one has ϕ′γ,c̃(0) = − c̃
γ−1 < 0 and ϕ′γ,c̃(∞) = ∞. In contrast, for γ < 0 and γ ∈ ]0, 1[ one gets ϕ′γ,c̃(0) = −∞ and

ϕ′γ,c̃(∞) = c̃
1−γ > 0.

(b) For γ = 2, c̃ ∈]0,∞[ and ]aFγ,c̃ , bFγ,c̃ [ = ]−∞,∞[ we define

F2,c̃(t) := c̃ · (t− 1), t ∈ ]−∞,∞[,

Clearly, R(F2,c̃) = ] −∞,∞[, 0 ∈ int(R(F2,c̃)), and F2,c̃(·) is strictly increasing as well as smooth on ] −∞,∞[. Hence,
F2,c̃ ∈ F. Since F2,c̃(1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ−, λ+[= int(R(F2,c̃)) = ]−∞,∞[
and ]tsc− , t

sc
+ [= ]−∞,∞[. By using F−1

2,c̃ (x) = 1 + x
c̃ for x ∈ int(R(F2,c̃)), we can derive from formula (162) (see also (164))

Λ2,c̃(z) := Λ
(0)
2,c̃(z) =

c̃

2
·

{(
1

c̃
· z + 1

)2

− 1

}
=
z2

2c̃
+ z, z ∈ ]−∞,∞[. (170)

Notice that Λ2,c̃(0) = 0, Λ2,c̃(−∞) = Λ2,c̃(∞) = ∞, Λ′2,c̃(−∞) = −∞ and Λ′2,c̃(∞) = ∞. From formula (163) (see also
(165)) we can deduce analogously to (169)

ϕ2,c̃(t) := ϕ
(0)
2,c̃(t) = c̃ · (t− 1)2

2
∈ [0,∞[, t ∈ ]−∞,∞[, (171)

which coincides with c̃ ·ϕ2(t) for ϕ2(t) from (43) which generates the corresponding power divergence given in the sixth line
of (44). Notice that ϕ2,c̃(1) = 0, ϕ′2,c̃(1) = 0 and ϕ2,c̃(−∞) = ϕ2,c̃(∞) =∞.

As an application of the reciprocity considerations of Remark 38, it is straightforward to see from the above-mentioned
considerations (a) and (b) that for all γ ∈ R\{0, 1} one has F̃γ,c̃(t) = −Λγ,c̃(Fγ,c̃(

1
t )) = F1−γ,c̃(t) for all t ∈]0,∞[.

(c) Let us now continue with the remaining case γ = 0 (recall the natural anchor point c := 0). By using F−1
0,c̃ (x) = 1

1− xc̃
for

x ∈ int(R(F0,c̃)) =]−∞, c̃[, we can derive from formula (162) (see also (164))

Λ0,c̃(z) := Λ
(0)
0,c̃(z) =

{
−c̃ · log

(
1− z

c̃

)
, if z ∈

]
−∞, c̃

[
,

∞, if z ∈
[
c̃,∞

[
.

(172)

Notice that Λ0,c̃(0) = 0, Λ0,c̃(−∞) = −∞, Λ′0,c̃(c̃) =∞ and Λ′0,c̃(−∞) = 0. Moreover, from formula (163) (see also (165))
we can deduce

ϕ0,c̃(t) := ϕ
(0)
0,c̃(t) =

{
c̃ · (− log t+ t− 1) ∈ [0,∞[, if t ∈ ]0,∞[,

∞, if t ∈ ]−∞, 0],
(173)

which coincides with c̃ · ϕ0(t) for the generator ϕ0(t) from (43) which generates the reverse Kullback-Leibler divergence
(reverse relative entropy) given in (44) with c̃ = 1; the first line in (173) can be proved by

ϕ0,c̃(t) := ϕ
(0)
0,c̃(t) := t · F0,c̃ (t)−

F0,c̃(t)∫
0

F−1
0,c̃ (u)du

= t · c̃ ·
(

1− 1

t

)
− (−c̃) · log

(
1− 1

c̃
·
[
c̃ ·
(

1− 1

t

)])
= c̃ · (− log t+ t− 1) , t ∈]0,∞[ . (174)
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Notice that one has ϕ0,c̃(1) = 0, ϕ0,c̃(∞) =∞, ϕ′0,c̃(1) = 0, ϕ′0,c̃(0) = −∞ and ϕ′0,c̃(∞) = c̃.

Example 40: (a) For the remaining case γ = 1, c̃ ∈]0,∞[ and ]aF1,c̃
, bF1,c̃

[=]0,∞[ we define

F1,c̃(t) :=

{
c̃ · log t = limγ→1 Fγ,c̃(t), if t ∈ ]0,∞[,

−∞, if t ∈]−∞, 0].

Clearly, R(F1,c̃) =] − ∞,∞[. Moreover, F1,c̃(·) is strictly increasing and smooth on ]0,∞[, and hence, Fγ,c̃ ∈ F. Since
F1,c̃(1) = 0, let us first choose the natural anchor point c := 0, which leads to ]λ−, λ+[= int(R(F1,c̃)) =] − ∞,∞[ and
]tsc− , t

sc
+ [=]0,∞[. By using F−1

1,c̃ (x) = exp(xc̃ ) for x ∈ R(F1,c̃), we can derive from formula (162) (see also (164))

Λ1,c̃(z) := Λ
(0)
1,c̃(z) :=

z∫
0

F−1
1,c̃ (u) du = c̃ ·

(
exp

(z
c̃

)
− 1
)
, z ∈]−∞,∞[. (175)

Notice that Λ1,c̃(0) = 0, Λ1,c̃(−∞) = −c̃, Λ1,c̃(∞) =∞, Λ′1,c̃(−∞) = 0 and Λ′0,c̃(∞) =∞. Moreover, from formula (163)
(see also (165)) we can deduce

ϕ1,c̃(t) := ϕ
(0)
1,c̃(t) :=


c̃ · (t · log t+ 1− t) ∈ [0,∞[, if t ∈ ]0,∞[,

1, if t = 0,

∞, if t ∈ ]−∞, 0[,

(176)

which coincides with c̃ · ϕ1(t) for the generator ϕ1(t) from (43) which generates the Kullback-Leibler divergence (relative
entropy) given in (44) with c̃ = 1; the first line in (176) can be proved by

ϕ1,c̃(t) := ϕ
(0)
1,c̃(t) := t · F1,c̃ (t)−

F1,c̃(t)∫
0

F−1
1,c̃ (u)du

= t · c̃ · log t− c̃ ·
(

exp

(
1

c̃
· [c̃ · log t]

)
− 1

)
= c̃ · (t · log t+ 1− t) , t ∈]0,∞[ , (177)

Notice that one has ϕ1,c̃(1) = 0, ϕ1,c̃(∞) =∞, ϕ′1,c̃(1) = 0, ϕ′1,c̃(0) = −∞ and ϕ′1,c̃(∞) =∞.

As an application of the reciprocity considerations of Remark 38, it is straightforward to see that F̃1,c̃(t) = −Λ1,c̃(F1,c̃(
1
t )) =

F0,c̃(t) for all t ∈]0,∞[.
(b) For the choice c̃ = 1, let us now fix a general anchor point c ∈ R(F1,c̃) =]−∞,∞[ (rather than c = 0), which leads to
]λ−, λ+[= int(R(F1,1))− c =]−∞,∞[ and ]tsc− , t

sc
+ [=]1 + aF1,1 − F−1

1,1 (c), 1 + bF1,1 − F−1
1,1 (c)[ = ]1− ec,∞[. Accordingly,

the formula (162) (see also (164)) leads to

Λ1,1(z) := Λ
(c)
1,1(z) :=

z∫
0

F−1
1,1 (u+ c)du+ z · (1− F−1

1,1 (c))

= ec · (ez − 1) + z · (1− ec), z ∈]−∞,∞[, (178)

for which there holds Λ
(c)
1,1(0) = 0, Λ

(c)
1,1(−∞) =∞· 1]0,∞[(c)−∞· 1]−∞,0[(c)−1 · 1{0}(c), Λ

(c)
1,1(∞) =∞, Λ

(c)′
1,1 (−∞) = 1−ec

and Λ
(c)′
1,1 (∞) =∞. Moreover, from formula (163) (see also (165)) we can deduce

ϕ1,1(t) := ϕ
(c)
1,1(t) :=


(t+ ec − 1) · [log(t+ ec − 1)− c] + 1− t ∈ [0,∞[, if t ∈ ]1− ec,∞[,

ec, if t = 1− ec,
∞, if t ∈ ]−∞, 1− ec[;

(179)

the first line in (179) can be proved by

ϕ1,1(t) := ϕ
(c)
1,1(t) := (t+ F−1

1,1 (c)− 1) · [F1,1

(
t+ F−1

1,1 (c)− 1
)
− c]−

F1,1(t+F−1
1,1 (c)−1)−c∫
0

F−1
1,1 (u+ c)du

= (t+ ec − 1) · [log(t+ ec − 1)− c]− ec ·
{

exp[log(t+ ec − 1)− c]− 1
}

= (t+ ec − 1) · [log(t+ ec − 1)− c] + 1− t, t ∈]1− ec,∞[ . (180)
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Clearly, one has ϕ(c)
1,1(1) = 0, ϕ(c)

1,1(∞) =∞, ϕ(c)′
1,1 (1) = 0, ϕ(c)′

1,1 (1− ec) = −∞ and ϕ(c)′
1,1 (∞) =∞.

The corresponding divergence D
ϕ

(c)
1,1

(Q,P) has been recently used in Broniatowski et al. [63] for the important task of testing
mixtures of probability distributions; in fact, in order to get considerable comfort in testing mixture-type hypotheses against
corresponding marginal-type alternatives, they employ choices c > 0 since then ϕ

(c)
1,1(t) is finite especially for some range

of negative values t < 0. The latter feature is also valid for the divergence generator ϕbw,β,c̃ in the next example (cf. (182)
below).

Example 41: For β ∈ ]0, 1], c̃ ∈ ]0,∞[ and ]aFbw,β,c̃ , bFbw,β,c̃ [ = ]1− 1
β ,∞[ we define

Fbw,β,c̃(t) :=

{
c̃

2β ·
(

1− 1
(β·t+1−β)2

)
, if t ∈ ]1− 1

β ,∞[,

−∞, if t ∈ ]−∞, 1− 1
β ].

Clearly, R(Fbw,β,c̃) =
]
− ∞, c̃

2β

[
and 0 ∈ int(R(Fbw,β,c̃)). Moreover, Fbw,β,c̃(·) is strictly increasing and smooth on

]1− 1
β ,∞[, and thus, Fbw,β,c̃ ∈ F. Since Fbw,β,c̃(1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ−, λ+[ =

int(R(Fbw,β,c̃)) =
]
−∞, c̃

2β

[
and ]tsc− , t

sc
+ [ = ]aFbw,β,c̃ , bFbw,β,c̃ [ = ]1− 1

β ,∞[. By using F−1
bw,β,c̃(x) = 1

β ·
{

1√
1−2β·x/c̃

+β−1
}

for x ∈ int(R(Fbw,β,c̃)), we can derive from formula (162) (see also (164)) for all β ∈ ]0, 1] and z ∈ R

Λbw,β,c̃(z) := Λ
(0)
bw,β,c̃(z) =

−( 1
β − 1) · z + c̃

β2 ·
{

1−
√

1− 2β
c̃ · z

}
, if z ∈

]
−∞, c̃

2β

]
,

∞, else.
(181)

Notice that Λbw,β,c̃(0) = 0. Moreover, Λbw,β,c̃(−∞) = ∞, Λbw,β,c̃(
c̃

2β ) = c̃·(β+1)
2β2 , Λ′bw,β,c̃(−∞) = − 1−β

β < 0 and
Λ′bw,β,c̃(

c̃
2β ) =∞. Furthermore, from formula (163) (see also (165)) we can straightforwardly deduce for all t ∈ R

ϕbw,β,c̃(t) := ϕ
(0)
bw,β,c̃(t) :=

{
c̃ · (t−1)2

2(β·t+1−β) ∈ [0,∞[, if t ∈ ]1− 1
β ,∞[,

∞, if t ∈ ]−∞, 1− 1
β ].

(182)

Note that 1− 1
β < 0 so that negative t are allowed here. For t ≥ 0, ϕbw,β,c̃(t) is known as Rukhin’s generator (cf. [312], see

e.g. also Marhuenda et al. [247], Pardo [282]). Obviously, one has ϕbw,β,c̃(1) = 0, ϕ′bw,β,c̃(1) = 0, ϕ′bw,β,c̃(1−
1
β ) = −∞ and

ϕ′bw,β,c̃(∞) = c̃
2β . From the generator ϕbw,β,c̃ given in (182), we build the corresponding divergence (cf. (4))

Dϕbw,β,c̃(Q,P) = c̃ ·
K∑
k=1

pk ·
( qkpk − 1)2

2(β · qkpk + 1− β)

=
c̃

2
·
K∑
k=1

(qk − pk)2

β · qk + (1− β) · pk
, if P ∈ RK and Q ∈ RK with Q ∈ ] P · (1− 1

β
),∞[ component-wise; (183)

for the special subcase c̃ = 1 and Q ∈ RK>0, Dϕbw,β,1(Q,P) can be interpreted as — “non-probability version” of — the
well-known blended weight chi-square divergence of Lindsay [221] (see e.g. also Basu & Lindsay [35], Györfy & Vajda [148],
Basu et al. [36]). The special case c̃ = 1 and β = 1

2 for probability vectors, i.e. Dϕbw,1/2,1
(Q,P), is equal to (a multiple of the

matrix-vector-converted (cf. Remark 19)) Sanghvi’s genetic difference measure [316] and equal to the double of the so-called
(squared) Vincze-Le Cam distance (cf. Vincze [384], Le Cam [212], see also e.g. Topsoe [360] — who used the alternative
naming triangular discrimination — and Vajda [373]); this divergence Dϕbw,1/2,1

(Q,P) has been used e.g. in Liu et al. [227]
for a machine learning context of detecting salient objects, where Q and P are appropriate histograms of RGB color.

Remark 42: (a) By straightforward calculations, one can show that ϕbw,1,c̃ (i.e. with the choice β = 1) is equal to the
c̃ − fold power-divergence generator ϕγ,c̃ = c̃ · ϕγ (cf. (43)) with γ = −1; the corresponding divergence Dϕbw,1,c̃(Q,P)
is thus equal to the power divergence Dc̃·ϕ−1

(Q,P) (cf. (44)) which is nothing but the — “non-probability version” — of
Neyman’s chi-square divergence.
(b) For the case β = 0 — which has been excluded in Example 41 for technical brevity — the divergence generator ϕbw,0,c̃
corresponds to c̃ − fold power-divergence generator ϕγ,c̃ with γ = 2; the corresponding divergence Dϕbw,0,c̃(Q,P) is thus
equal to the power divergence Dc̃·ϕ2

(Q,P) (cf. (44)) which is nothing but the — “non-probability version” — of Pearson’s
(i.e. the classical) chi-square divergence.
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Example 43: Let us give an interesting generalization of the Kullback-Leibler case of Example 40(a). For c̃ > 0 and
α ∈ ]− 1, 0[ ∪ ]0,∞[ let us define

FgKL,α,c̃(t) :=


c̃ · log

(
(1+α)·t
1+α·t

)
, if { α ∈ ]0,∞[ and t ∈ ]0,∞[ } or { α ∈ ]− 1, 0[ and t ∈ ]0,− 1

α [ },
−∞, if α ∈ ]− 1, 0[ ∪ ]0,∞[ and t ∈ ]−∞, 0],
∞, if α ∈ ]− 1, 0[ and t ∈ [− 1

α ,∞[,

(notice that limα→0+ FgKL,α,c̃(t) = F1,c̃(t), cf. Example 40(a)). Clearly, ]aFgKL,α,c̃ , bFgKL,α,c̃ [ := ]0,∞[ for α ∈ ]0,∞[ and
]aFgKL,α,c̃ , bFgKL,α,c̃ [ := ]0,− 1

α [ for α ∈ ] − 1, 0[. Moreover, R(FgKL,α,c̃) = ] − ∞, c̃ · log(1 + 1
α )[ for α ∈ ]0,∞[ and

R(FgKL,α,c̃) = ] − ∞,∞[ for α ∈ ] − 1, 0[. Furthermore, FgKL,α,c̃(·) is strictly increasing and smooth on the respective
]aFgKL,α,c̃ , bFgKL,α,c̃ [, and thus, FgKL,α,c̃ ∈ F. Since FgKL,α,c̃(1) = 0, let us choose the natural anchor point c := 0,
which leads to ]λ−, λ+[ = int(R(FgKL,α,c̃)) = ] − ∞, c̃ · log(1 + 1

α )[ and ]tsc− , t
sc
+ [ = ]0,∞[ for the case α ∈ ]0,∞[, re-

spectively, to ]λ−, λ+[ = int(R(FgKL,α,c̃)) = ] − ∞,∞[ and ]tsc− , t
sc
+ [ = ]0,− 1

α [ for the case α ∈ ] − 1, 0[. By employing
F−1
gKL,α,c̃(x) = 1

(1+α)·e−x/c̃−α for x ∈]λ−, λ+[, one can deduce from formula (162) (see also (164))

ΛgKL,α,c̃(z) := Λ
(0)
gKL,α,c̃(z)

:=


∫ z

0
F−1
gKL,α,c̃(u) du = − c̃

α · log((1 + α)− α · ez/c̃), if α ∈ ]0,∞[ and z ∈ ]−∞, c̃ · log(1 + 1
α )[,∫ z

0
F−1
gKL,α,c̃(u) du = − c̃

α · log((1 + α)− α · ez/c̃), if α ∈ ]− 1, 0[ and z ∈ ]−∞,∞[,

∞, if α ∈ ]0,∞[ and z ∈ [c̃ · log(1 + 1
α ),∞[,

(184)

for which there holds ΛgKL,α,c̃(0) = 0 and ΛgKL,α,c̃(−∞) = − c̃
α · log(1 + α) for α ∈ ] − 1, 0[ ∪ ]0,∞[, as well as

ΛgKL,α,c̃(c̃ · log(1 + 1
α )) =∞ for α ∈ ]0,∞[ and ΛgKL,α,c̃(∞) =∞ for α ∈ ]− 1, 0[. The corresponding derivative satisfies

Λ′gKL,α,c̃(−∞) = 0 for α ∈ ]−1, 0[ ∪ ]0,∞[, as well as Λ′gKL,α,c̃(c̃ · log(1+ 1
α )) =∞ for α ∈ ]0,∞[ and Λ′gKL,α,c̃(∞) = − 1

α
for α ∈ ]− 1, 0[. Furthermore, from formula (163) (see also (165)) one can derive

ϕgKL,α,c̃(t) := ϕ
(0)
gKL,α,c̃(t)

:=


c̃ ·
[
t · log t+ (t+ 1

α ) · log
(

1+α
1+α·t

) ]
∈ [0,∞[, if { α ∈ ]0,∞[ and t ∈ ]0,∞[ } or { α ∈ ]− 1, 0[ and t ∈ ]0,− 1

α [ },
c̃
α · log(1 + α) ∈ ]0,∞[, if α ∈ ]− 1, 0[ ∪ ]0,∞[ and t = 0,
∞, if α ∈ ]− 1, 0[ ∪ ]0,∞[ and t ∈ ]−∞, 0[,
∞, if α ∈ ]− 1, 0[ and t ∈ [− 1

α ,∞[;

(185)

the first line in (185) can be proved by

ϕgKL,α,c̃(t) := ϕ
(0)
gKL,α,c̃(t) := t · FgKL,α,c̃ (t)−

FgKL,α,c̃(t)∫
0

F−1
gKL,α,c̃(u) du

= c̃ · t · log

(
(1 + α) · t
1 + α · t

)
+
c̃

α
· log

(
(1 + α)− α · exp

[
log

(
(1 + α) · t
1 + α · t

)])
= c̃ ·

[
t · log t+ t · log

( 1 + α

1 + α · t

)
+

1

α
· log

( 1 + α

1 + α · t

)]
. (186)

Obviously, one has ϕgKL,α,c̃(1) = 0, ϕ′gKL,α,c̃(1) = 0, ϕ′gKL,α,c̃(0) = −∞ for α ∈ ]−1, 0[ ∪ ]0,∞[. Moreover, for α ∈ ]0,∞[

there holds ϕgKL,α,c̃(∞) =∞, and ϕ′gKL,α,c̃(∞) = c̃ · log(1 + 1
α ), whereas for α ∈ ]− 1, 0[ we obtain ϕgKL,α,c̃(− 1

α ) =∞,
and ϕ′gKL,α,c̃(−

1
α ) =∞.

From the generator ϕgKL,α,c̃ given in (185), we build the corresponding divergence (cf. (4))

DϕgKL,α,c̃(Q,P) = c̃ ·
{ K∑
k=1

qk · log
( qk

(1− 1
1+α ) · qk + 1

1+α · pk

)
+

1

α
·
K∑
k=1

pk · log
( pk

(1− 1
1+α ) · qk + 1

1+α · pk

)}
, (187)

if { α ∈ ]0,∞[, P ∈ RK>0 and Q ∈ RK≥0 } or { α ∈ ]− 1, 0[, P ∈ RK>0 and Q ∈ RK≥0 with Q ≤ − 1

α
·P }.
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Notice that the symmetry DϕgKL,α,c̃(Q,P) = DϕgKL,α,c̃(P,Q) generally holds only if P,Q ∈ RK>0 and α = 1; indeed, this
special case leads to

ϕsnKL,c̃(t) := ϕgKL,1,c̃(t) :=


c̃ ·
[
t · log t+ (t+ 1) · log

(
2
t+1

) ]
∈ [0,∞[, if t ∈ ]0,∞[,

c̃ · log 2, if t = 0,

∞, if t ∈ ]−∞, 0[,

(188)

and

DϕsnKL,c̃(Q,P) := DϕgKL,1,c̃(Q,P) = c̃·
{ K∑
k=1

qk ·log
( 2qk
qk + pk

)
+

K∑
k=1

pk ·log
( 2pk
qk + pk

)}
, P ∈ RK>0,Q ∈ RK≥0. (189)

For the special subcase that c̃ = 1 and that P = P, Q = Q are probability vectors, the divergence (189) can be rewritten as
sum of two Kullback-Leibler divergences (cf. (44))

DϕsnKL,1(Q,P) = Dϕ1
(Q, (Q+ P)/2) +Dϕ1

(P, (Q+ P)/2), P ∈ SK>0,Q ∈ SK≥0, (190)

which is the well-known (cf. Burbea & Rao [68], Lin [219], Pardo & Vajda [284], Topsoe [360], Endres & Schindelin
[120], Vajda [373], Sason [317]) Jensen-Shannon divergence (being also called symmetrized and normalized Kullback-Leibler
divergence, symmetrized and normalized relative entropy, capacitory discrimination); this is equal to the (2 log 2)−fold of
a special (namely, equally-weighted two-population) case of the Sibson information radius of order 1 (cf. [334]) which has
also been addressed e.g. by Rao [301] for genetic cluster analysis. By the way, for α > 0 the divergence DϕgKL,α,c̃(Q,P)
can also be interpreted as a multiple of a special non-equally-weighted Sibson information radius of order 1. In a context
of comparison of — not necessarily connected — networks where Q, P are probability vectors derived from matrices (cf.
Remark 19) which are transforms of corresponding graph invariants (e.g. network portraits), the (matrix-equivalent of the)
Jensen-Shannon divergence DϕsnKL,1(Q,P) is also called the network portrait divergence, cf. Bagrow and Bollt [28].
There is a vast literature on recent applications of the Jensen-Shannon divergence, for instance it appears exemplarily in Kvitsiani
et al. [208] for finding connections between the circuit-level function of different interneuron types in regulating the flow of
information and the behavioural functions served by the cortical circuits, in Xu et al. (2014) for browsing and exploration
of video sequences, in Jenkinson et al. [168] for the fundamental understanding of the epigenome that leads to a powerful
approach for studying its role in disease and aging, in Martin et al. [250] for the implementation of an evolutionary-based global
localization filter for mobile robots, in Suo et al. [354] for the revelation of critical regulators of cell identity in mice, in Abante
et al. [2] for the detection of biologically significant differences in DNA methylation between alleles associated with local
changes in genetic sequences — for a better understanding of the mechanism of complex human diseases, in Afek et al. [5] for
revealing mechanisms by which mismatches can recruit transcription factors for modulating replication and repair activities in
cells, in Alaiz-Rodriguez & Parnell [10] for the quantification of stability in feature selection and ranking algorithms, in Biau
et al. [53] for generative adversarial networks (GANs) in artificial intelligence and machine learning, in Carre et al. [74] for
the standardization of brain magnetic resonance (MR) images, in Chakraborty et al. [75] for hierarchical clustering in foreign
exchange FOREX markets (e.g. in periods of major international crises), in Chong et al. [87] as part of a web-based platform
for comprehensive analysis of microbiome data outputs, in Cui et al. [101] for modelling latent friend recommendation in
online social media, in Gholami & Hodtani [134] for refinements of safety-and-security-targeted location verification systems
in wireless communication networks (e.g in Intelligent Transportation Systems (ITSs) and vehicular technology), in Guo &
Yuan [146] for accurate abnormality classification in semi-supervised Wireless Capsule Endoscopy (WCE) for digestive system
cancer diagnosis, in Jiang et al. [169] for the training of deep neural discriminative and generative networks used for designing
and evaluating photonic devices, in Kartal et al. [186] for uncovering the relationship between some genomic features and
cell type-specific methylome diversity, in Laszlovszky et al. [210] for investigating mechanisms of basal forebrain neurons
which modulate synaptic plasticity,cortical processing, brain states and oscillations, in Lawson et al. [211] for the improved
understanding of some genetic circuits that allow cancer cells to evade destruction by the host immune system, in Li et al. [215]
for the search of causes of the progressive neurodevelopmental disorder Rett syndrome, in Machado et al. [239] for discovering
relations between distinct RNA viruses (including SARS-CoV-2), in Mohammadi et al. [261] for the identification of cell states
and their underlying topology, in Mohanty et al. [262] for the design of implantable nanophotonic (i.e. chip-scale optical circuit
type) silicon probes for sub-millisecond deep-brain optical stimulation — e.g. for the purpose of gaining a deeper understanding
of the neural code, in Perera et al. [290] for the quantification of the level of rationality in supply chain networks, in Pierri et
al. [294] for the study of growth of malicious/misleading information in some social media diffusion networks, in Rabadan et
al. [299] for the identification of gene mutations that lead to the genesis and progression of tumors, in Reiter et al. [306] for
quantifying metastatic phylogenetic diversity, in Van de Sande et al. [378] as part of a computational toolbox for single-cell
gene regulatory network analysis, in Skinnider et al. [337] for the prediction of the chemical structures of genomically encoded
antibiotics — in order to find means against the looming global crisis of antibiotic resistance, in Tuo et al. [367] for the
detection of high-order single nucleotide polymorphism (SNP) interactions, in Uttam et al. [370] for predicting the risk of
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colorectal cancer recurrence and inferring associated tumor microenvironment networks, in Zhang et al. [421] for incipient fault
(namely, crack) detection, in Zhi et al. [425] for the strengthening of information-centric networks against interest flooding
attack (IFAs), in Acera Mateos et al. [3] for deep-learning classification of SARS-CoV-2 and co-infecting RNA viruses, in
Avsec et al. [24] for uncovering the motifs and syntax of cis-regulatory sequences in genomics data, in Barennes et al. [32] for
comparing the accuracy of current T cell receptor sequencing methods employed for the understanding of adaptive immune
responses, in Chen et al. [79] for clustering high-dimensional microbial data from RNA sequencing, in Chen et al. [84] for
investigating key aspects of effective vocal social communication, in Koldobskiy et al. [193] for investigations of genetic and
epigenetic drivers of paediatric acute lymphoblastic leukaemia, in McGinnis et al. [258] for evaluating RNA sequencing of
pooled blood cell samples, in Mühlroth & Grottke [268] for the detection of emerging trends and technologies through artificial
intelligence techniques, in Necci et al. [272] for the assessment of protein intrinsic disorder predictions, in Okada et al. [277]
for the identification of genetic factors that cause individual differences in whole lymphocyte profiles and their changes after
vaccination, and in Zhang et al. [422] for the learning of functional magnetic resonance imaging (fMRI) time-series in a brain
disease diagnosis context.

Remark 44: Let us transform ϕgSH,α(t) := 1−t
α · log(1 +α)−ϕgKL,α,1(t) = −t · log t+ 1

α · (1 +α · t) · log(1 +α · t)− 1
α ·

(1 +α) · t · log(1 +α) (for t ∈ [0, 1]). The function ϕgSH,α(·) is strictly concave on [0, 1] with ϕgSH,α(0) = ϕgSH,α(1) = 0.
Hence, for probability vectors Q = (qk)k=1,...,K , the ϕ−entropy

∑K
k=1 ϕgSH,α(qk) is Kapur’s [183] generalization of the

Shannon entropy (which corresponds to α = 0 in the limit) whose maximization has been connected with generalizations of
the Bose-Einstein statistics and the Fermi-Dirac statistics e.g. in Kapur & Kesavan [185].

Example 45: Let us fix any z1, z2 ∈ R, p ∈]0, 1[ which satisfy z1 < 1 < z2 and z1 ·p+z2 · (1−p) = 1 (and thus p = z2−1
z2−z1 ).

On ]aFtwop , bFtwop [:=]z1, z2[ we define

Ftwop(t) :=
1

z2 − z1
· log

(
(t− z1) · p

(z2 − t) · (1− p)

)
=

1

z2 − z1
· log

(
(t− z1) · (z2 − 1)

(z2 − t) · (1− z1)

)
, t ∈ ]z1, z2[,

where for the last equality we have used the above constraint (in order to obtain a two-parameter representation). Straightfor-
wardly, we have R(Ftwop) =]−∞,∞[. Moreover, Ftwop(·) is strictly increasing and smooth on ]0,∞[, and thus, Ftwop ∈ F.
Since Ftwop(1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ−, λ+[= int(R(FsnKL,c̃)) =] −∞,∞[
and ]tsc− , t

sc
+ [=]z1, z2[. By using

F−1
twop(x) =

p · z1 + (1− p) · z2 · e(z2−z1)·x

p+ (1− p) · e(z2−z1)·x , x ∈]−∞,∞[,

we derive from formula (162) (see also (164))

Λtwop(z) := Λ
(0)
twop(z) :=

z∫
0

F−1
twop(u)du = log

(
p · ez1·z + (1− p) · ez2·z

)
, z ∈]−∞,∞[, (191)

which has the properties Λtwop(0) = 0, Λtwop(−∞) = ∞ · 1]−∞,0[(z1) −∞ · 1]0,∞[(z1) + log p · 1{0}(z1), Λtwop(∞) = ∞,
Λ′twop(−∞) = z1 and Λ′twop(∞) = z2. Furthermore, from formula (163) (see also (165)) we deduce

ϕtwop(t) := ϕ
(0)
twop(t) :=



t−z1
z2−z1 · log

(
(t−z1)·(z2−1)
(z2−t)·(1−z1)

)
− log

(
z2−1
z2−t

)
∈ [0,∞[, if t ∈ ]0,∞[,

log
(
z2−z1
z2−1

)
, if t = z1,

log
(
z2−z1
1−z1

)
, if t = z2,

∞, if t ∈ ]−∞, z1[∪ ]z2,∞[;

(192)

the first line in (192) can be proved by
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ϕtwop(t) := ϕ
(0)
twop(t) := t · Ftwop (t)−

Ftwop(t)∫
0

F−1
twop(u)du

=
t

z2 − z1
· log

(
(t− z1) · p

(z2 − t) · (1− p)

)
− log

(
p ·
(

(t− z1) · p
(z2 − t) · (1− p)

) z1
z2−z1

+ (1− p) ·
(

(t− z1) · p
(z2 − t) · (1− p)

) z2
z2−z1

)

=
t− z1

z2 − z1
· log

(
(t− z1) · p

(z2 − t) · (1− p)

)
− log

(
(z2 − z1) · p
z2 − t

)
(193)

=
t− z1

z2 − z1
· log

(
(t− z1) · (z2 − 1)

(z2 − t) · (1− z1)

)
− log

(
z2 − 1

z2 − t

)
, t ∈ ]z1, z2[ ,

where for the last equality we have used the above constraint (to obtain a two-parameter representation). Straightforwardly,
one has ϕtwop(1) = 0, ϕ′twop(1) = 0, ϕ′twop(z1) = −∞ and ϕ′twop(z2) =∞.

From the generator ϕtwop given in (192), we build the corresponding divergence (cf. (4))

Dϕtwop(Q,P) =

K∑
k=1

qk − z1 · pk
z2 − z1

· log
( (z2 − 1) · (qk − z1 · pk)

(1− z1) · (z2 · pk − qk)

)
−

K∑
k=1

pk · log
( (z2 − 1) · pk
z2 · pk − qk

)
. (194)

It is known that some types of robustness properties of minimum-divergence estimators are connected with the boundedness
of the derivative ϕ′ of the divergence generator ϕ; this property is satisfied for the next Example 46 (and its W−concerning
continuation in Example 55), which leads to the new classes of divergences (199), (203) and (208):

Example 46: (a) For any parameter-quadrupel α, β1, β2, c̃ ∈ ]0,∞[ with β1 < β2, we choose

]aF , bF [ := ]aFα,β1,β2,c̃
, bFα,β1,β2,c̃

[ :=
]
1− α · (β1 − β2)2 + β2

1 + β1 · β2

2β1 · β2 · (β2 − β1)
, ∞

[
3 1

and define with θ̆ := 1 + α ·
(

1
β2
− 1

β1

)
< 1

Fα,β1,β2,c̃(t) :=


c̃ · β1−β2

2 + c̃
1−t
α + 1

β2
− 1
β1

·
(

1− 1
2 ·
√

4 +
(

1−t
α + 1

β2
− 1

β1

)2 · (β1 + β2)2
)
, if t ∈ ]aF , bF [\{θ̆},

c̃ · β1−β2

2 , if t = θ̆ ∈ ]aF , bF [,

−c̃ · β1, if t = aF ,

−∞, if t ∈ ]−∞, aF [.

(195)

Notice that θ̆ ∈ ]aF , bF [ if and only if β1 ∈ ]β2

3 , β2[; if (say) the latter holds, then one has the continuity limt→θ̆ Fα,β1,β2,c̃(t) =

c̃ · β1−β2

2 . For β1 ≤ β2

3 one gets ]aF , bF [\{θ̆} = ]aF , bF [. Returning to the general case, one can see in a straightforward
way that Fα,β1,β2,c̃(·) is strictly increasing and that R(Fα,β1,β2,c̃) = [−c̃ · β1, c̃ · β1[. Furthermore, Fα,β1,β2,c̃(·) is smooth
on ]aF , bF [, and thus Fα,β1,β2,c̃ ∈ F. Since Fα,β1,β2,c̃(1) = 0, let us choose the natural anchor point c := 0, which leads
to ]λ−, λ+[ = int(R(Fα,β1,β2,c̃) = ] − c̃ · β1, c̃ · β1[ and ]tsc− , t

sc
+ [= ]aF , bF [. Moreover, it is straightforward to see that the

corresponding inverse is

F−1
α,β1,β2,c̃

(x) = 1 + α ·
( 1

β2
− 1

β1

)
− α ·

1
β2
− 1

β1
− 2x

c̃·β1·β2

1 + x
c̃ ·
(

1
β2
− 1

β1

)
− x2

c̃2·β1·β2

, x ∈ int(R(Fα,β1,β2,c̃)); (196)

from this, we can derive from formula (162) (see also (164)) for all z ∈ R

Λα,β1,β2,c̃(z) := Λ
(0)
α,β1,β2,c̃

(z) =


θ̆ · z − c̃ · α · log

(
1 + z

c̃ ·
(

1
β2
− 1

β1

)
− z2

c̃2·β1·β2

)
, if z ∈ ]− c̃ · β1, c̃ · β1[,

−c̃ · θ̆ · β1 − c̃ · α · log
(

2− 2β1

β2

)
, if z = −c̃ · β1,

∞, else.

(197)
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Notice that Λα,β1,β2,c̃(0) = 0 and limz→c̃·β1
Λα,β1,β2,c̃(z) =∞. Moreover, Λ′α,β1,β2,c̃

(−c̃ · β1) = aF and Λ′−c̃·β1
(c̃ · β1) =

∞ = bF (which have to be interpreted as limits, as usual). To proceed, from formula (163) (see also (165)) we can deduce
for all t ∈ R

ϕα,β1,β2,c̃(t) :=ϕ
(0)
α,β1,β2,c̃

(t) =


c̃ · α ·

{√4+(β1+β2)2·( 1−t
α + 1

β2
− 1
β1

)2− ( 1−t
α + 1

β2
− 1
β1

)·(β1−β2)− 2

2

+ log

√
4+(β1+β2)2·( 1−t

α + 1
β2
− 1
β1

)2− 2

β1β2·( 1−t
α + 1

β2
− 1
β1

)2

}
∈ [0,∞[, if t ∈ ]aF ,∞[,

c̃ · α ·
{

3β1−β2

2(β2−β1) + log 2(β2−β1)
β2

}
− c̃ · β1 · (t− aF ) ∈ ]0,∞[, if t ∈]−∞, aF ].

(198)

The first subcase in (198) can be proved by

ϕα,β1,β2,c̃(t) := ϕ
(0)
α,β1,β2,c̃

(t) := t · Fα,β1,β2,c̃ (t) −

Fα,β1,β2,c̃
(t)∫

0

F−1
α,β1,β2,c̃

(u) du

= (t− θ̆) · Fα,β1,β2,c̃ (t) + c̃ · α · log
(

1 +
Fα,β1,β2,c̃ (t)

c̃
·
( 1

β2
− 1

β1

)
−

(Fα,β1,β2,c̃ (t))2

c̃2 · β1 · β2

)
= c̃ · α ·

√
4 + (β1 + β2)2 · ( 1−t

α + 1
β2
− 1

β1
)2 − ( 1−t

α + 1
β2
− 1

β1
) · (β1 − β2) − 2

2

+ c̃ · α · log

(
1 +

[β1 − β2

2
+

1
1−t
α + 1

β2
− 1

β1

·
(

1− 1

2
·
√

4 +
(1− t
α

+
1

β2
− 1

β1

)2 · (β1 + β2)2
)]
· β1 − β2

β1 · β2

−
[β1 − β2

2
+

1
1−t
α + 1

β2
− 1

β1

·
(

1− 1

2
·
√

4 +
(1− t
α

+
1

β2
− 1

β1

)2 · (β1 + β2)2
)]2
· 1

β1 · β2

)
and some straightforward calculations. The second line in (198) follows by computing
ϕα,β1,β2,c̃(aF ) = c̃ · α ·

{
3β1−β2

2(β2−β1) + log 2(β2−β1)
β2

}
. Notice that ϕα,β1,β2,c̃(1) = 0, ϕ′α,β1,β2,c̃

(1) = 0, ϕα,β1,β2,c̃(−∞) = ∞
and ϕα,β1,β2,c̃(∞) =∞. Moreover, ϕ′α,β1,β2,c̃

(−∞) = ϕ′α,β1,β2,c̃
(aF ) = −c̃ · β1 and ϕ′α,β1,β2,c̃

(∞) = c̃ · β1.
From the generator ϕα,β1,β2,c̃ given in (198), we construct the corresponding divergence (cf. (4))

Dϕα,β1,β2,c̃
(Q,P) =

K∑
k=1

pk · ϕα,β1,β2,c̃

( qk
pk

)

=

K∑
k=1

pk ·
[
1]aF ,∞[(

qk
pk

) · c̃ · α ·
{√4 + (β1 + β2)2 · (

1− qkpk
α + 1

β2
− 1

β1
)2 − (

1− qkpk
α + 1

β2
− 1

β1
) · (β1 − β2) − 2

2

+ log

√
4 + (β1 + β2)2 · (

1− qkpk
α + 1

β2
− 1

β1
)2 − 2

β1β2 · (
1− qkpk
α + 1

β2
− 1

β1
)2

}
+ 1]−∞,aF ](

qk
pk

) · c̃ ·
{
α ·
{ 3β1 − β2

2(β2 − β1)
+ log

2(β2 − β1)

β2

}
− β1 · (

qk
pk
− aF )

}]
, P ∈ RK≥0,Q ∈ RK . (199)

Notice that we can particularly include the case where pk = 0 in combination with qk 6= 0, since limt→0+ t·ϕα,β1,β2,c̃(
1
t ) = c̃·β1

and limt→0− t · ϕα,β1,β2,c̃(
1
t ) = −c̃ · β1 are both finite, and hence pk · ϕα,β1,β2,c̃(

qk
pk

) = qk · pkqk · ϕα,β1,β2,c̃(
qk
pk

) stays finite as
pk tends to zero.

(b) For any parameter-quadrupel α, β1, β2, c̃ ∈ ]0,∞[ with β1 > β2, one can proceed analogously to (a). Let us start by
choosing

]aF , bF [ := ]aFα,β1,β2,c̃
, bFα,β1,β2,c̃

[ :=
]
−∞, 1 + α · (β1 − β2)2 + β1 · β2 + β2

2

2β1 · β2 · (β1 − β2)
,
[
3 1
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and defining with the same θ̆ := 1 + α ·
(

1
β2
− 1

β1

)
> 1

Fα,β1,β2,c̃(t) :=


c̃ · β1−β2

2 + c̃
1−t
α + 1

β2
− 1
β1

·
(

1− 1
2 ·
√

4 +
(

1−t
α + 1

β2
− 1

β1

)2 · (β1 + β2)2
)
, if t ∈ ]aF , bF [\{θ̆},

c̃ · β1−β2

2 , if t = θ̆ ∈ ]aF , bF [,

c̃ · β2, if t = bF ,

∞, if t ∈ ]bF ,∞[.

(200)

Clearly, θ̆ ∈ ]aF , bF [ if and only if β1 ∈ ]β2, 3β2[; if (say) the latter holds, then one gets the continuity limt→θ̆ Fα,β1,β2,c̃(t) =

c̃ · β1−β2

2 . For β1 ≤ 3β2 there holds ]aF , bF [\{θ̆} = ]aF , bF [. Returning to the general case, one can show comfortably that
Fα,β1,β2,c̃(·) is strictly increasing and that R(Fα,β1,β2,c̃) =]− c̃ · β2, c̃ · β2]. Moreover, Fα,β1,β2,c̃(·) is smooth on ]aF , bF [, and
hence Fα,β1,β2,c̃ ∈ F. In face of the validity of Fα,β1,β2,c̃(1) = 0, let us choose the natural anchor point c := 0, which amounts
to ]λ−, λ+[ = int(R(Fα,β1,β2,c̃) = ]− c̃ ·β2, c̃ ·β2[ and ]tsc− , t

sc
+ [= ]aF , bF [. Since the first line in (200) coincides formally with

that of (195) (with different ]aF , bF [), the corresponding inverse is formally the same as (196) (with different ]aF , bF [), and
hence

Λα,β1,β2,c̃(z) := Λ
(0)
α,β1,β2,c̃

(z) =


θ̆ · z − c̃ · α · log

(
1 + z

c̃ ·
(

1
β2
− 1

β1

)
− z2

c̃2·β1·β2

)
, if z ∈ ]− c̃ · β2, c̃ · β2[,

c̃ · θ̆ · β2 − c̃ · α · log
(

2− 2β2

β1

)
, if z = c̃ · β2,

∞, else.

(201)

Notice that Λα,β1,β2,c̃(0) = 0 and limz→−c̃·β2
Λα,β1,β2,c̃(z) = −∞. Furthermore, Λ′α,β1,β2,c̃

(−c̃ · β2) = −∞ = aF and
Λ′−c̃·β1

(c̃ · β2) = bF . To proceed, from formula (163) (see also (165)) we can derive — analogously to (198) — for all t ∈ R

ϕα,β1,β2,c̃(t) :=ϕ
(0)
α,β1,β2,c̃

(t) =


c̃ · α ·

{√4+(β1+β2)2·( 1−t
α + 1

β2
− 1
β1

)2− ( 1−t
α + 1

β2
− 1
β1

)·(β1−β2)− 2

2

+ log

√
4+(β1+β2)2·( 1−t

α + 1
β2
− 1
β1

)2− 2

β1β2·( 1−t
α + 1

β2
− 1
β1

)2

}
∈ [0,∞[, if t ∈ ]−∞, bF [,

c̃ · α ·
{

3β2−β1

2(β1−β2) + log 2(β1−β2)
β1

}
+ c̃ · β2 · (t− bF ) ∈ ]0,∞[, if t ∈ [bF ,∞[,

(202)

where the last line in (202) follows by calculating ϕα,β1,β2,c̃(bF ) = c̃·α·
{

3β2−β1

2(β1−β2) +log 2(β1−β2)
β1

}
. Notice that ϕα,β1,β2,c̃(1) =

0, ϕ′α,β1,β2,c̃
(1) = 0, ϕα,β1,β2,c̃(−∞) =∞ and ϕα,β1,β2,c̃(∞) =∞. Furthermore, ϕ′α,β1,β2,c̃

(−∞) = −c̃·β2 and ϕ′α,β1,β2,c̃
(∞) =

ϕ′α,β1,β2,c̃
(bF ) = c̃ · β2.

From the generator ϕα,β1,β2,c̃ given in (202), we construct the corresponding divergence (cf. (4))

Dϕα,β1,β2,c̃
(Q,P) =

K∑
k=1

pk · ϕα,β1,β2,c̃

( qk
pk

)

=

K∑
k=1

pk ·
[
1]−∞,bF [(

qk
pk

) · c̃ · α ·
{√4 + (β1 + β2)2 · (

1− qkpk
α + 1

β2
− 1

β1
)2 − (

1− qkpk
α + 1

β2
− 1

β1
) · (β1 − β2) − 2

2

+ log

√
4 + (β1 + β2)2 · (

1− qkpk
α + 1

β2
− 1

β1
)2 − 2

β1β2 · (
1− qkpk
α + 1

β2
− 1

β1
)2

}
+ 1[bF ,∞[(

qk
pk

) · c̃ ·
{
α ·
{ 3β2 − β1

2(β1 − β2)
+ log

2(β1 − β2)

β1

}
+ β2 · (

qk
pk
− bF )

}]
, P ∈ RK≥0,Q ∈ RK . (203)

As above, we can particularly include the case where pk = 0 in combination with qk 6= 0, since limt→0+
t·ϕα,β1,β2,c̃(

1
t ) = c̃·β2

and limt→0− t · ϕα,β1,β2,c̃(
1
t ) = −c̃ · β2 are both finite.

(c) The analysis for the case β1 = β2 =: β can be obtained by taking limβ1→β2
in (a) respectively (b). Alternatively, one can

start afresh. Due to its importance and its particularities, we nevertheless state the corresponding results explicitly. To begin
with, for any parameter-triple α, β, c̃ ∈ ]0,∞[ we choose

]aF , bF [ := ]aFα,β,c̃ , bFα,β,c̃ [ := ]−∞,∞ [



57

and define with θ̆ := 1

Fα,β,c̃(t) :=

 c̃·α
1−t ·

(
1−

√
1 +

(
1−t
α

)2 · β2
)
, if t ∈ ]aF , bF [\{θ̆},

0, if t = θ̆.
(204)

Clearly, one has the continuity limt→θ̆ Fα,β,c̃(t) = 0. Moreover, one can see in a straightforward way that Fα,β,c̃(·) is strictly
increasing and that R(Fα,β,c̃) =] − c̃ · β, c̃ · β[. Furthermore, Fα,β,c̃(·) is smooth on ]aF , bF [, and thus Fα,β,c̃ ∈ F. Since
Fα,β,c̃(1) = 0, let us choose the natural anchor point c := 0, which leads to the choice ]λ−, λ+[ = int(R(Fα,β,c̃) = ]− c̃·β, c̃·β[
and ]tsc− , t

sc
+ [= ]aF , bF [= ]−∞,∞[. The inverse in (196) collapses to

F−1
α,β,c̃(x) = 1 + α ·

2x
c̃·β2

1− x2

c̃2·β2

, x ∈ int(R(Fα,β,c̃)); (205)

from this, we can derive from formula (162) (see also (164)) for all z ∈ R

Λα,β,c̃(z) := Λ
(0)
α,β,c̃(z) =

{
θ̆ · z − c̃ · α · log

(
1− z2

c̃2·β2

)
, if z ∈ ]− c̃ · β, c̃ · β[,

∞, else.
(206)

Notice that Λα,β,c̃(0) = 0, limz→−c̃·β Λα,β,c̃(z) = −∞ =, and limz→c̃·β Λα,β,c̃(z) =∞. Furthermore, limz→−c̃·β Λ′α,β,c̃(z) =
−∞ = aF , and limz→c̃·β Λ′α,β,c̃(z) =∞ = bF . To proceed, the formula (198) (respectively, (202)) collapses to

ϕα,β,c̃(t) := ϕ
(0)
α,β,c̃(t) = c̃·α·

{√
1 + β2 ·

(1− t
α

)2

− 1+log
2 ·
(√

1 + β2 ·
(

1−t
α

)2

− 1
)

β2 ·
(

1−t
α

)2

}
∈ [0,∞[, t ∈ ]−∞,∞[ = ]aF , bF [.

(207)
Notice that ϕα,β,c̃(1) = 0, ϕ′α,β(1) = 0, ϕα,β,c̃(−∞) =∞ and ϕα,β,c̃(∞) =∞. Moreover, ϕ′α,β,c̃(−∞) = ϕ′α,β,c̃(aF ) = −c̃·β
and ϕ′α,β,c̃(∞) = ϕ′α,β,c̃(bF ) = c̃ · β.
From the generator ϕα,β1,β2,c̃ given in (207), we construct the corresponding divergence (cf. (4))

Dϕα,β,c̃(Q,P) =

K∑
k=1

pk · ϕα,β,c̃
( qk
pk

)

= c̃ · α ·
K∑
k=1

pk ·
{√

1 + β2 ·
(1− qk

pk

α

)2

− 1 + log
2 ·
(√

1 + β2 ·
(

1− qkpk
α

)2

− 1
)

β2 ·
(

1− qkpk
α

)2

}
, P ∈ RK≥0,Q ∈ RK . (208)

As above, we can particularly include the case where pk = 0 in combination with qk 6= 0, since limt→0+ t · ϕα,β,c̃( 1
t ) = c̃ · β

and limt→0− t · ϕα,β,c̃( 1
t ) = −c̃ · β are both finite. This ends the current Example 46.

As a side effect in the above-mentioned Example 46, for fixed β2, α, c̃ notice the interesting behaviour (e.g. with respect to
int(dom(F )) =]aF , bF [ and the range of ϕ′) as β1 moves from ]0, β2[ to β2 and further to ]β2,∞[.

Remark 47: The characterization of the probability distribution � in (6) which may result from Theorem 36 — as seen
through the above examples — considerably improves other approaches which make use of their identification through the
concept of power variance functions of Natural Exponential Families, as developed by Tweedie [369], Morris [267], Letac &
Mora [214], and others. This approach has been used in Broniatowski [58] in a similar perspective as developed here, but can
not be extended outside the range of power divergences, in contrast with the Examples 41, 43, 45 and 46 which can only be
handled as a consequence of Theorem 36.

To continue with our general procedure, suppose now that for a divergence generator ϕ of interest we have concretely/explicitly
found (e.g. by direct calculations or via our F−connection in Theorem 36, see also Remark 37) its Fenchel-Legendre transform
Λ = ϕ∗; for this “candidate”, in order to achieve the desired representability (6) it remains to verify that

exp(Λ(z)) =

∫
R

ez·y d�(y), z ∈ R, (209)

for some probability distribution/measure � on the real line (the light-tailedness in the sense of finiteness on some open interval
containing zero, will be typically guaranteed automatically by the assumptions on ϕ); of course, this is equivalent to “the
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existence ” of a random variable W whose moment generating function is equal to exp(Λ) (and thus, its cumulant generating
function (log moment generating function) is Λ), i.e.

exp(Λ(z)) = E�[exp(z ·W )] z ∈ R, (210)

with �[W ∈ · ] = �[ · ]); recall that from this, we need to simulate a sequence (Wi)i∈N of i.i.d. copies of W which are the
crucial building ingredients of ξW

n in Theorem 10, respectively, of ξwW
n,X in Theorem 14.

For the above-mentioned Examples 39 to 46, we can give explicit solutions to the representabilities (209) respectively (210);
this is achieved in the following Examples 48 to 55 (notice that the corresponding supports of � are explicitly mentioned in
the summarizing Table 1 above):

Example 48: for the power-divergence context of Example 39 we obtain:
(a) Case γ = 0, c̃ > 0: Λ0,c̃(z) = −c̃ · log

(
1− z

c̃

)
(cf. (172)) is the cumulant generating function of the Gamma distribution

� = GAM(c̃, c̃) with rate parameter (inverse scale parameter) c̃ and shape parameter c̃; hence, ϕ0,c̃ ∈ Υ(]0,∞[).
• Prominent special case c̃ = 1: � = GAM(1, 1) = EXP (1) is the exponential distribution with mean 1.
• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density f(y) := c̃c̃·yc̃−1·e−c̃·y

Γ(c̃) · 1]0,∞[(y)
(y ∈ R).

• Behaviour at zero: �[ ]0,∞[ ] = �[W > 0] = 1.
• Corresponding generator: ϕ0,c̃ = c̃·ϕ0 (cf. (173), (43)) of the c̃−fold of the reversed Kullback-Leibler divergence (reversed

relative entropy) given in the second line of (44).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is

GAM(c̃, c̃ · card(I
(n)
k )).

(b) Case γ ∈ ]0, 1[, c̃ > 0: Λ
(0)
γ,c̃(z) = c̃

γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

}
(cf. (167)) is the cumulant generating function of

the Compound-Poisson-Gamma distribution � = C(POI(θ), GAM(α, β)) with θ = c̃
γ > 0, rate parameter (inverse scale

parameter) α = c̃
1−γ > 0, and shape parameter β = γ

1−γ > 0. In other words, W has the comfortably simulable form
W =

∑N
i=1 W̃i

33 for some i.i.d. sequence (W̃i)i∈N of Gamma GAM(α, β) distributed random variables (with parameter-pair
(α, β)) and some independent POI(θ)−distributed random variable N . Hence, ϕγ,c̃ ∈ Υ(]0,∞[).
• Type: � is an infinitely divisible distribution (cf. Proposition 34), mixture of a one-point distribution at zero and a continuous

distribution on [0,∞[, with �[{0}] = �[W = 0] = e−θ and �[B] = �[W ∈ B] =
∫
B
fc̃,γ(u) du for every (measurable)

subset of ]0,∞[ having density

fC(POI(θ),GAM(α,β))(y) :=
exp (−α · y − θ)

y
·
∞∑
k=1

θk · (αy)kβ

k! · Γ(kβ)
· 1]0,∞[(y) (211)

=
1

y
· exp

(
−c̃ ·

(
y

1− γ
+

1

γ

))
·
∞∑
k=1

ak
k!
· c̃k/(1−γ) · γ−k · (1− γ)−kγ/(1−γ) · ykγ/(1−γ) · 1[0,∞[(y) =: fc̃,γ(y), y ∈ R,

where ak := 1/Γ( k·γ1−γ ) (see e.g. Aalen [1] with a different parametrization).
• Behaviour at zero: �[ [0,∞[ ] = �[W ≥ 0] = 1, �[ {0} ] = �[W = 0] = e−θ.
• Corresponding generator: ϕ(0)

γ,c̃ = c̃ ·ϕγ (cf. (168), (43)) of the power divergence given in the third line of (44); recall that
the special case γ = 1

2 corresponds to the prominent (multiple of the squared) Hellinger distance.
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is

C(POI(θ̆), GAM(α, β)) with θ̆ =
c̃·card(I

(n)
k )

γ > 0, α = c̃
1−γ > 0, β = γ

1−γ > 0.

(c) Case γ = 2, c̃ > 0: Λ
(0)
2,c̃(z) = z2

2c̃ +z (cf. (170) ) is the well-known cumulant generating function of the Normal distribution
(Gaussian distribution) � = N(1, 1

c̃ ) with mean 1 and variance 1
c̃ . Thus, ϕ2,c̃ ∈ Υ(]−∞,∞[).

• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density fN(1, 1c̃ )(y) :=
√

c̃
2π ·exp(− c̃·(y−1)2

2 ),
(y ∈ R).

• Behaviour at zero: �[ ]0,∞[ ] = �[W > 0] =
∫∞

0
fN(1, 1c̃ )(u) du ∈ ]0, 1[, �[ {0} ] = �[W = 0] = 0.

• Corresponding generator: ϕ(0)
2,c̃ = c̃ · ϕ2 (cf. (168), (43)) is the generator of the c̃−fold of the half Pearson-chisquare

divergence given in the sixth line of (44).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is

N(card(I
(n)
k ),

card(I
(n)
k )

c̃ ).

33with the usual convention
∑0
i=1 W̃i := 0
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(d) Case γ < 0, c̃ > 0: Λ
(0)
γ,c̃(z) = c̃

γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

}
(cf. (167)) is the cumulant generating function of a “tilted

(i.e. negatively distorted) stable distribution” �[ · ] = �[W ∈ · ] of a random variable W , which can be constructed as follows:
let Z be an auxiliary random variable (having density fZ and support supp(Z) = [0,∞[) of a stable law with parameter-
quadruple ( −γ1−γ , 1, 0,−

c̃1/(1−γ)·(1−γ)−γ/(1−γ)

γ ) in terms of the “form-B notation” on p.12 in Zolotarev [428]; by applying a
general Laplace-transform result on p.112 of the same text we can deduce

MZ(z) := E�[exp(z · Z)] =

∞∫
0

exp(z · y) · fZ(y) dy =

{
exp

(
c̃1/(1−γ)·(1−γ)−γ/(1−γ)

γ · (−z)α
)
, if z ∈]−∞, 0],

∞, if z ∈ ]0,∞[,
(212)

where α := − γ
1−γ ∈ ]0, 1[. Since 0 /∈ int(dom(MZ)) (and thus, Z does not have light-tails) we have to tilt (dampen) the

density in order to extend the effective domain. Accordingly, let W be a random variable having density

fW (y) :=
exp{− y·c̃

1−γ }
exp{c̃/γ}

· fZ(y) · 1]0,∞[(y), y ∈ R, (cf. (82)).

Then one can straightforwardly deduce from (212) that
∫∞

0
fW (y) dy = 1 and that

MW (z) := E�[exp(z ·W )] =

∞∫
0

exp(z · y) · fW (y) dy =

{
exp

(
c̃
γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

})
, if z ∈]−∞, c̃

1−γ ],

∞, if z ∈ ] c̃
1−γ ,∞[.

Hence, ϕγ,c̃ ∈ Υ(]0,∞[).
• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density fW .
• Behaviour at zero: �[ ]0,∞[ ] = �[W > 0] = 1.
• Corresponding generator: ϕ(0)

γ,c̃ = c̃ · ϕγ (cf. (168), (43)) of the power divergence given in the first line of (44).

• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=
∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) has density

fW̆ (y) :=
exp{− y·c̃

1−γ }

exp{c̃ · card(I
(n)
k )/γ}

· fZ̆(y) · 1]0,∞[(y), y ∈ R, (213)

where Z̆ is a random variable with density fZ̆ of a stable law with parameter-quadruple
( −γ1−γ , 1, 0,−card(I

(n)
k ) · c̃

1/(1−γ)·(1−γ)−γ/(1−γ)

γ ).

(e) Case γ > 2, c̃ > 0: Λ
(0)
γ,c̃(z) = c̃

γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

}
(cf. (167)) is the cumulant generating function of a

“distorted stable distribution” �[ · ] = �[W ∈ · ] of a random variable W , which can be constructed as follows: let Z be an
auxiliary random variable (having density fZ and support supp(Z) =] − ∞,∞]) of a stable law with parameter-quadruple
( γ
γ−1 , 1, 0,

c̃1/(1−γ)·(γ−1)γ/(γ−1)

γ ) in terms of the above-mentioned “form-B notation” ; by applying a general Laplace-transform
result on p. 112 of Zolotarev [428], we can derive

MZ(z) := E�[exp(z · Z)] =

∞∫
0

exp(z · y) · fZ(y) dy =

{
exp

(
c̃1/(1−γ)·(γ−1)γ/(γ−1)

γ · (−z)α
)
, if z ∈]−∞, 0],

∞, if z ∈ ]0,∞[,
(214)

where α := γ
γ−1 ∈ ]1, 2[. Since 0 /∈ int(dom(MZ)) (and thus, Z does not have light-tails) we have to distort the density in

order to extend the effective domain. Accordingly, let W be a random variable having density

fW (y) :=
exp{ y·c̃γ−1}
exp{c̃/γ}

· fZ(−y), y ∈ R, (cf. (115)).

Then one can straightforwardly deduce from (214) that
∫∞
−∞ fW (y) dy = 1 and that

MW (z) := E�[exp(z ·W )] =

∞∫
−∞

exp(z · y) · fW (y) dy =

{
exp

(
c̃
γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

})
, if z ∈ [− c̃

γ−1 ,∞[,

∞, if z ∈ ]−∞,− c̃
γ−1 [.

Thus, ϕγ,c̃ ∈ Υ(]−∞,∞[).
• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density fW .
• Behaviour at zero: �[ ]0,∞[ ] = �[W > 0] =

∫∞
0
fW (u) du ∈ ]0, 1[, �[ {0} ] = �[W = 0] = 0.

• Corresponding generator: ϕ(0)
γ,c̃ = c̃ · ϕγ (cf. (168), (43)) of the power divergence given in the seventh line of (44).
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• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=
∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) has density

fW̆ (y) :=
exp{ y·c̃γ−1}

exp{c̃ · card(I
(n)
k )/γ}

· fZ̆(−y), y ∈ R,

where Z̆ is a random variable with density fZ̆ of a stable law with parameter-quadruple
( γ
γ−1 , 1, 0, card(I

(n)
k ) · c̃

1/(1−γ)·(γ−1)γ/(γ−1)

γ ).

(f) Case γ ∈]1, 2[, c̃ > 0: one still has the (cumulant-generating-function) candidate Λ
(0)
γ,c̃(z) = c̃

γ ·
{(

γ−1
c̃ · z + 1

) γ
γ−1 − 1

}
(cf. (167)), but for the crucial exponent there holds γ

γ−1 > 2. From this, we conjecture that � becomes a signed finite measure
with total mass 1, i.e. it has a density (with respect to some dominating measure) with positive and negative values which
“integrates to 1” ; accordingly, our BS method can not be applied to this situation.

Remark 49: As a continuation of Remark 38 and the note in the third line after (169), we have shown as a side effect that
for γ ∈ ]−∞,−1]∪ ]0, 1[∪ [2,∞[ the distributions �γ and �1−γ of Example 48(b)-(e) are inverse to each other.

Example 50: for the power-divergence context of Example 40 we obtain:
(a) Case γ = 1, c̃ > 0, anchor point c = 0: Λ1,c̃(z) = c̃ ·

(
exp( zc̃ )− 1

)
(cf. (175)) is the cumulant generating function of

� = 1
c̃ ·POI(c̃) being the “ 1

c̃−fold Poisson distribution with mean c̃” which means that W = 1
c̃ ·Z for a POI(c̃)−distributed

random variable Z. Thus, ϕ1,c̃ ∈ Υ(]0,∞[).
• Prominent special case c̃ = 1: � = POI(1) is the Poisson distribution with mean 1.
• Type: � is an infinitely divisible (cf. Proposition 34) discrete distribution with frequencies: �[W = ` · 1

c̃ ] = exp(−c̃) · c̃
`

`!
for all nonnegative integers ` ∈ N0 (and zero elsewhere).

• Behaviour at zero: �[W ≥ 0] = 1, �[W = 0] = exp(−c̃).
• Corresponding generator: ϕ1,c̃ = c̃ ·ϕ1 (cf. (176), (43)) of the c̃−fold of the Kullback-Leibler divergence (relative entropy)

given in the fourth line of (44).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is
1
c̃ · POI(c̃ · card(I

(n)
k )).

(b) Case γ = 1, c̃ = 1, anchor point c ∈ R: Λ
(c)
1,1(z) = ec · (ez − 1) + z · (1 − ec) (cf. (178)) is the well-known cumulant

generating function of the “shifted Poisson distribution” � = POI(ec)+1−ec, i.e. W := Z+1−ec with a POI(ec)−distributed
random variable Z. Hence, ϕ(c)

1,1 ∈ Υ(]1− ec,∞[).

• Type: � is a discrete distribution with frequencies: �[W = `+1−ec] = exp(−ec)· e
c·`

`! for all ` ∈ N0 (and zero elsewhere).
• Behaviour at zero: �[W > 0] = 1 iff c < 0, �[W < 0] > 0 iff c > 0, �[W = 0] 6= 0 iff “c = log(1 + k) for some
k ∈ N0” .

• Corresponding generator: ϕ
(c)
1,1 (cf. (179)) of the divergence

D
ϕ

(c)
1,1

(Q,P) :=

K∑
k=1

(
qk + pk · (ec − 1)

)
·
{

log
( qk
pk

+ ec − 1
)
− c
}
−

K∑
k=1

qk +

K∑
k=1

pk,

if P ∈ RK6=0 and Q ∈ RKwith Q ∈ [(1− ec) ·P,∞[ component-wise, (215)

which for c = 0 coincides with the Kullback-Leibler divergence (relative entropy) given in the fourth line of (44).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is

POI(card(I
(n)
k ) · ec) + (1− ec) · card(I

(n)
k ).

Remark 51: (a) One can see from the Examples 48 and 50 the interesting effect that the “homogeneous” class of
power-divergence generators (ϕγ)γ∈R are connected to a “very inhomogeneous” family (�γ)γ∈R of W−distributions: discrete,
continuous, mixture of discrete and continuous, as the parameter γ varies.
Moreover, some cases satisfy �[W = 0] = 0 and some �[W = 0] > 0, some �[W > 0] = 1 and some �[W > 0] ∈]0, 1[.
(b) As a continuation of Remark 38 and the note in the last line of Example 40(a), we have shown as a side effect that for
the the natural-anchor-point choice c = 0, the distributions �1 of of Example 50(a) and �0 of Example 48(a) are inverse to
each other.

Example 52: for the context of Example 41 we obtain:
Case c̃ > 0, anchor point c = 0: Λbw,β,c̃(z) = −( 1

β − 1) · z + c̃
β2 ·

{
1 −

√
1− 2β

c̃ · z
}

(cf. (181)) is the cumulant

generating function of a probability distribution �[ · ] = �[W̌ ∈ · ] of a random variable W̌ , which can be constructed as



61

follows: W̌ := W
β − ( 1

β − 1), where W is the random variable constructed in Example 48(d) with γ = −1 and with c̃ replaced
by c̃

β2 (recall that W has a tilted stable distribution). In other words, � is a special kind of modified tilted stable distribution.
• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density fW̌ (u) := β · fW (β · u + 1 −
β) · 1]−( 1

β−1),∞[(u) (u ∈ R), where fW (·) is given in (82) with γ = −1 and with c̃ replaced by c̃
β2 .

• Behaviour at zero: �[ ]0,∞[ ] = �[W̌ > 0] > 0.

• Corresponding generator: ϕ(0)
bw,β,c̃ (cf. (182)) of the — “non-probability version” of — the well-known blended weight

chi-square divergence given in (183).
• Sums: for i.i.d. copies (W̌i)i∈N of W̌ , the probability distribution of ˘̌W :=

∑
i∈I(n)

k

W̌i = 1
β ·
∑
i∈I(n)

k

Wi − nk · ( 1
β − 1)

(cf. Remark 11(ii)) has density f ˘̌W
(u) := β · fW̆ (β · u+ (1− β) · nk) · 1]−nk·( 1

β−1),∞[(u) (u ∈ R), where fW̆ (·) is given
in (213) (cf. Example 48(d)) with γ = −1 and with c̃ replaced by c̃

β2 .

Example 53: for the context of Example 43 we obtain:
(a) Case α ∈ ]0,∞[, c̃ > 0, anchor point c = 0: ΛgKL,α,c̃(z) = − c̃

α · log((1 + α) − α · ez/c̃) (cf. (184)) is the cumulant
generating function of � = 1

c̃ ·NB( c̃α ,
1

1+α ) being the “ 1
c̃−fold Negative-Binomial distribution with parameters c̃

α and 1
1+α”

which means that W = 1
c̃ · Z for a NB( c̃α ,

1
1+α )−distributed random variable Z. Thus, ϕgKL,α,c̃ ∈ Υ(]0,∞[).

• Prominent special case c̃ = 1, α = 1 (see below): � = NB(1, 1
2 ) is the Negative-Binomial distribution with parameters 1

and 1
2 .

• Type: � is an infinitely divisible (cf. Proposition 34) discrete distribution with frequencies:
�[W = ` · 1

c̃ ] = (−1)` ·
(− c̃

α
`

)
· α` · (1 + α)−`−c̃/α for all nonnegative integers ` ∈ N0 (and zero elsewhere).

• Behaviour at zero: �[W ≥ 0] = 1, �[W = 0] = 1
(1+a)c̃/α

.
• Corresponding generator: ϕgKL,α,c̃ (cf. (185)) of the divergence (187); the special case c̃ = 1, α = 1 — i.e. ϕgKL,1,1 =:
ϕsnKL,1 (cf. (188)) — corresponds to the generator of the — “non-probability version” of the — Jensen-Shannon
divergence (symmetrized and normalized Kullback-Leibler divergence, symmetrized and normalized relative entropy)
given in (189).

• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=
∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is
1
c̃ ·NB( c̃α · card(I

(n)
k ), 1

1+α ).
(b) Case α ∈ ] − 1, 0[, c̃ > 0, anchor point c = 0: for any integer m ∈ N being strictly larger than c̃ and the choice
α = − c̃

m , we obtain ΛgKL,−c̃/m,c̃(z) = m · log((1− c̃
m ) + c̃

m · e
z/c̃) (cf. (184)) which is the cumulant generating function of

� = 1
c̃ ·BIN(m, c̃m ) being the “ 1

c̃−fold Binomial distribution with parameters m and c̃
m” which means that W = 1

c̃ ·Z for a
BIN(m, c̃m )−distributed random variable Z. Thus, ϕgKL,−c̃/m,c̃ ∈ Υ(]0,∞[).
• Type: � is a non-infinitely divisible discrete distribution with frequencies:
�[W = ` · 1

c̃ ] =
(
m
`

)
· ( c̃m )` · (1− c̃

m )m−` for ` ∈ {0, 1, . . . ,m} (and zero elsewhere).
• Behaviour at zero: �[W ≥ 0] = 1, �[W = 0] = (1− c̃

m )m.
• Corresponding generator: ϕgKL,α,c̃ (cf. (185)) of the divergence (187).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is
1
c̃ ·BIN(m · card(I

(n)
k ), c̃m ).

Example 54: for the context of Example 45 we obtain:
Case of anchor point c = 0: Λtwop(z) = log

(
p · ez1·z + (1 − p) · ez2·z

)
(cf. (191)) is the well-known cumulant generating

function of the two-point probability distribution � = p · δz1 + (1 − p) · δz2 , where z1 < 1 < z2 and p = z2−1
z2−z1 . Hence,

ϕtwop ∈ Υ(]z1, z2[).
• Type: � is a discrete distribution with frequencies: �[W = z1] = p, �[W = z2] = 1− p (and zero elsewhere).
• Behaviour at zero: �[W > 0] = 1 iff z1 > 0, �[W = 0] 6= 0 iff z1 = 0.
• Corresponding generator: ϕtwop (cf. (192)) of the divergence given in (194).
• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=

∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is the

distribution of the card(I
(n)
k )−th step of a generalized random walk starting at zero; this has a nice explicit (“binomial-

type” ) expression in the special case z1 = −z2, namely
∑card(I

(n)
k )

`=0

(card(I
(n)
k )

`

)
·pcard(I

(n)
k )−` ·(1−p)` ·δ

z2·(2`−card(I
(n)
k ))

.

Example 55: for the context of Example 46 we obtain:
Case α, β1, β2, c̃ ∈ ]0,∞[, anchor point c = 0: by using θ̆ := 1 + α ·

(
1
β2
− 1

β1

)
one can see that

Λα,β1,β2,c̃(z) = θ̆ · z − c̃ · α · log
(

1 + z
c̃ ·
(

1
β2
− 1

β1

)
− z2

c̃2·β1·β2

)
for z ∈ ]− c̃ ·min{β1, β2}, c̃ ·min{β1, β2}[

— with different boundary behaviour for the three subcases β1 < β2 resp. β1 > β2 resp. β1 = β2 (cf. (197),(201),(206)) —
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is the cumulant generating function of a generalized asymmetric Laplace distribution �[ · ] = �[W ∈ · ] of a random variable
W := θ̆ + Z1 − Z2, where Z1 respectively Z2 are auxiliary random variables which are independent and
GAM(c̃ · β1, c̃ · α)−distributed respectively GAM(c̃ · β2, c̃ · α)−distributed. In particular, E�[W ] = θ̆ + c̃·α

c̃·β1
− c̃·α

c̃·β2
= 1 (as

required). Thus, ϕα,β1,β2,c̃ ∈ Υ(]−∞,∞[).
• Prominent special case c̃ = 1, α = 1, β1 = β2 =: β (and hence, θ̆ = 1): � is a classical Laplace distribution (two-tailed

exponential distribution, bilateral exponential law) with location parameter 1 and scale parameter 1
β .

• Type: � is an infinitely divisible (cf. Proposition 34) continuous distribution with density

f(u) :=

√
2 · exp{ 1

σ·
√

2
· ( 1
κ − κ) · (u− θ)}

√
π · στ+1/2 · Γ(τ)

·

(√
2 · |u− θ|
κ+ 1

κ

)τ−1/2

·Kτ−1/2

(
1

σ ·
√

2
·
(
κ+

1

κ

)
· |u− θ|

)
, u 6= θ,

(216)
where (θ, κ, σ, τ) is given in Remark 56 below and Kλ is the modified Bessel function of the third kind with index λ.
For the above-mentioned special case of the classical Laplace distribution, this considerably simplifies to
f(u) := β

2 exp{−β · |u− 1|}.
• Behaviour at zero: �[ ]0,∞[ ] = �[W > 0] =

∫∞
0
f(u) du ∈ ]0, 1[, �[ {0} ] = �[W = 0] = 0.

• Corresponding generator: ϕα,β1,β2,c̃ (cf. (198) respectively (202) respectively (207)) of the divergence given in (199)
respectively (203) respectively (208).

• Sums: for i.i.d. copies (Wi)i∈N of W , the probability distribution of W̆ :=
∑
i∈I(n)

k

Wi (cf. Remark 11(ii)) is the same as

that of a random variable ˘̃
W := θ̆ · card(I

(n)
k ) + Z̆1− Z̆2, where Z̆1 respectively Z̆2 are auxiliary random variables which

are independent and GAM(c̃ · β1, c̃ ·α · card(I
(n)
k ))−distributed respectively GAM(c̃ · β2, c̃ ·α · card(I

(n)
k ))−distributed.

Remark 56: In the book of Kotz et al. [197] one can find a very comprehensive study on generalized asymmetric Laplace
distributions (also known as Bessel function distributions, McKay distributions), their close relatives (such as e.g. the financial-
econometric variance gamma model of Madan & Seneta [240]) as well as their applications; see also e.g. Klar [192] for
connections with some other Gamma difference distributions. [197] use a different parametrization (θ, κ, σ, τ) which is one-to-

one with our parametrization (θ̆, α, β1, β2, c̃ = 1), as follows: θ = θ̆, τ = c̃ ·α, σ = 1
c̃ ·
√

2
β1·β2

, κ =

√
4
c̃2

+(β1−β2)2 +β2−β1

2·
√
β1·β2

> 0.
In particular, this implies that we cover all generalized asymmetric Laplace distributions with mean 1. For better comparability,
we have used the parametrization (θ, κ, σ, τ) in the above-mentioned representation (216) of the density (due to [197]).

Let us end this section by giving some further comments on the task of finding concretely the probability distribution (if
existent) �[ · ] = �[W ∈ · ] from the Fenchel-Legendre transform Λ = ϕ∗ of a pregiven divergence generator ϕ, which should
satisfy

exp(Λ(z)) =

∫
R

ez·y d�(y) = E�[exp(z ·W )], z ∈ R, (cf. (209), (210)).

Recall that this is used for the simulation of the weights (Wi)i∈N which are i.i.d. copies of W and which are the crucial
building ingredients of ξW

n in Theorem 10, respectively, of ξwW
n,X in Theorem 14. The search for � can be done e.g. by

inversion of the moment generating function MGF, or by search in tables or computer software which list distributions and
their MGF. As already indicated above, we have eased/narrowed down this task by giving (additional) sufficient conditions
for some deriving principal properties of �. Also notice that � needs not necessarily to be explicitly known in full detail (e.g.
in terms of a computationally tractable density or frequency); for instance, as well known from insurance applications, for
— comfortably straightforwardly simulable — doubly-random sums W :=

∑N
i=1Ai of nonnegative i.i.d. random variables

(Ai)i∈N with known law ΠA[ · ] := Π[A ∈ · ] being independent of a counting-type random variable N with known law ΠN ,
one can mostly compute explicitly MGF�(z) = PGFΠN (MGFΠA(z)) in terms of � := ΠW and the probability generating
function PGFΠN of ΠN , but the corresponding density/frequency of � may not be known explicitly in a tractable form. The
above-mentioned Example 48(b) of power divergences with generator ϕγ (γ ∈]0, 1[) manifests such a situation.

In the end, if no explicit distribution � and no comfortably simulable W−construction are available, one can still try to simulate
an i.i.d. sequence (Wi)i∈N from the pregiven moment generating function (which is exp(Λ(z)) here); see e.g. McLeish [259]
and references therein which also contains saddle point methods approximation techniques.
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VI. ESTIMATORS

In the following, we demonstrate how one can principally implement our BS approach; a further, deeper analysis will be given
in a follow-up paper.

A. Estimators for the deterministic minimization problem

We address the minimization problem

Dϕ(Ω,P) := inf
Q∈Ω

Dϕ(Q,P) = inf
Q̃∈Ω̃

Dϕ̃(Q̃, P̃) =: Dϕ̃(Ω̃, P̃) with Ω̃ := Ω/MP (cf. (8) and (13)), (217)

whose numerical solution is based on Theorem 10 which basically states that for large integer n ∈ N one has

inf
Q∈Ω

Dϕ(Q,P) ≈ − 1

n
log �

[
ξW̃
n ∈ Ω̃

]
(218)

in terms of ϕ̃ := MP · ϕ and the random vectors

ξW̃
n =

( 1

n

∑
i∈I(n)

1

W̃i, . . . ,
1

n

∑
i∈I(n)

K

W̃i

)
(cf. (23))

with nk := bn · p̃kc leading to the disjoint index blocks I(n)
1 := {1, . . . , n1}, I(n)

2 := {n1 + 1, . . . , n1 + n2}, . . ., I(n)
K :=

{
∑K−1
k=1 nk + 1, . . . , n}. Recall that W̃ := (W̃1, . . . , W̃n) is a random vector consisting of components W̃i which are i.i.d.

copies of the random variable W̃ whose distribution is �[W̃ ∈ · ] = �̃[ · ] obeying the representation

ϕ̃(t) = sup
z∈R

z · t− log

∫
R

ezyd�̃(y)

 , t ∈ R, (cf. (21)).

Hence, the estimation of Dϕ(Ω,P) amounts to the estimation of �
[
ξW̃
n ∈ Ω̃

]
. For the rest of this subsection, we assume that

P̃ ∈ SK>0, that n is chosen such that all n · p̃k are integers (and hence, n =
∑K
k=1 nk), and that Ω̃ ⊂ RK satisfies the regularity

property
cl(Ω̃) = cl

(
int
(
Ω̃
))

, int
(
Ω̃
)
6= ∅

which implies that the same condition holds for Ω; moreover, we suppose that Dϕ̃(Ω̃, P̃) is finite. For the ease of the following
discussions, we introduce the notations

T (x) :=

 1

n1

∑
i∈I(n)

1

xi, . . . ,
1

nK

∑
i∈I(n)

K

xi

 for any x := (x1, .., xn)∈Rn,

as well as D for the diagonal matrix with diagonal entries 1/p̃1, . . . , 1/p̃K and null entries off the diagonal. Accordingly, the
probability in (218) becomes

�
[
ξW̃
n ∈ Ω̃

]
= �

[
T (W̃) ∈ Λ

]
where

Λ := D · Ω̃

is a set of vectors in RK which is known/derived from the concrete context. The naive estimator ̂̃Πnaive

L of �
[
ξW̃
n ∈ Ω̃

]
is con-

structed through the following procedure: simulate independently L copies W̃1, . . . ,W̃L of the vector W̃ :=
(
W̃1, . . . , W̃n

)
,

with independent entries under �̃, and define (with a slight abuse of notation)

̂̃
Π
naive

L :=
1

L

L∑
`=1

1Λ

(
T
(
W̃`

))
;

however this procedure is time costly, since this estimate has a very bad hit rate. Thus, in the following, a so-called “efficient
Importance Sampling (IS)” scheme — in the sense of Sadowsky & Bucklew [313] (denoted [SB] hereunder) — is adapted for
the sophisticated (i.e. non-naive) estimation of �[ξW̃

n ∈ Ω̃]. The main property of IS schemes lays in the fact that the runtime

for an estimate with a controlled relative error does not increase at exponential rate as n increases, in contrast to ̂̃Πnaive

L which
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has exponential increase. In detail, let δ > 0 be a given relative precision for an estimator PLn
S̃

of �[ξW̃
n ∈ Ω̃], based on a

number Ln of simulated samples generated under some distribution S̃, so that

δ :=
varS̃P

Ln
S̃(

�
[
ξW̃
n ∈ Ω̃

])2 .

Then Ln will grow exponentially as n tends to infinity if and only if S̃ is not “asymptotically optimal” , the derivation of
which is the scope of the current section.

To start with the details, for the sake of brevity (to avoid certain substantial discussions on potential technical relaxations) we
shall employ the following additional Assumption (OM) on the set Ω̃:

(OM) For any ω̃ ∈ cl(Ω̃) there exists a vector x = (x1, . . . , xn) ∈
]
tsc− , t

sc
+

[n
such that ω̃ =

(
1
n

∑
i∈I(n)

1
xi, . . . ,

1
n

∑
i∈I(n)

K

xi

)
,

or equivalently, for any λ ∈ cl(Λ) there exists a vector x = (x1, . . . , xn) ∈
]
tsc− , t

sc
+

[n
such that λ = T (x).

For instance, in the common case dom(ϕ̃) = dom(ϕ) = ]a, b[ =
]
tsc− , t

sc
+

[
= ]0,∞[ (e.g. for the power-divergence generators

ϕ̃ = c̃ · ϕγ , γ ≤ 0, cf. Example 39) the Assumption (OM) is always feasible.

To proceed, for any distribution S̃ on Rn with support included in the support of the product measure �̃⊗n it holds

�
[
ξW̃
n ∈ Ω̃

]
= E

�̃⊗n

[
1Λ(T (W̃))

]
= ES̃

[
1Λ

(
T
(
Ṽ
))
· d�̃
⊗n

dS̃

(
Ṽ
)]

from where the improved IS estimator of �
[
ξW̃
n ∈ Ω̃

]
is obtained by sampling L i.i.d. replications Ṽ1, . . . , ṼL of the random

vector Ṽ with distribution S̃ and by defining

̂̃
Π
improved

L :=
1

L

L∑
`=1

1Λ(T (Ṽ(`))) · d�̃
⊗n

dS̃

(
Ṽ(`)

)
. (219)

The precise form of the efficient IS distribution S̃opt relies on the definition of a “dominating point” of Λ, which we recall
now. For x := (x1, .., xn) in Rn we define

I
W̃

(x) := sup
z∈Rn

(
〈z,x〉 − logE

�̃
[ exp(〈z,W̃〉)]

)
,

and for λ in Λ we let
I(λ) := inf

{
I
W̃

(x) : T (x) = λ
}
.

Let λ := (λ1, . . . , λK) ∈ ∂Λ. We call λ a minimal rate point (mrp) of Λ if

I(λ) ≤ I(λ) for all λ ∈ Λ.

A minimal rate point λ is called a dominating point of Λ if a) λ ∈ ∂Λ, and b) I (λ) ≤ I(λ) for all λ ∈ Λ with attainment,
namely there exists a vector x ∈

]
tsc− , t

sc
+

[n
such that I

W̃
(x) = I (λ) with λ = T (x). The characterization of the dominating

point λ is settled in the following

Lemma 57: Let λ be a mrp of Λ. Then, under Assumption (OM), λ is a dominating point, and inf
{
I
W̃

(x) , T (x) = λ
}

is reached at some vector x in
]
tsc− , t

sc
+

[n
such that for all k ∈ {1, . . . ,K} and all i ∈ I

(n)
k there holds xi = λk and

I
W̃

(x) = n ·
∑K
k=1 p̃k · ϕ̃ (λk).

The proof Lemma 57 is given in Appendix G. Notice that (OM) implies the existence of a dominating point λ, but uniqueness
may not hold. In the latter case, one can try to proceed as in Theorem 2 of [SB] and the discussion thereafter.

However, we assume now uniqueness of λ; this allows for the identification of S̃opt. By Theorem 1 of [SB] and Theorem 3.1
of Csiszar [96], the asymptotically optimal IS distribution S̃opt is obtained as the Kullback-Leibler projection of �̃n⊗ on the
set of all probability distributions on Rn centered at point x, whose coordinates are — according to Lemma 57 — functions
of the coordinates of Q̃ := D−1λ such that T (x) = DQ̃.

The above definition of S̃opt presumes the knowledge of λ, which cannot be assumed (otherwise the minimization problem is
solved in advance). The aim of the following construction is to provide a proxy S̃ to S̃opt, where S̃ is the Kullback-Leibler
projection of �̃⊗n on the set of all probability distributions on Rn centered at some point x∗ which is close to x. For this sake,
we need to have at hand a proxy of λ or, equivalently, a preliminary guess Q̃∗ of Q̃ := arg infQ̃∈Ω̃

∑K
k=1 p̃k · ϕ̃(q̃k/p̃k). This
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guess is by no means produced in order to provide a direct estimate of Dϕ̃(Ω̃, P̃) but merely to provide the IS distribution S̃
which in turn leads to a sharp estimate of Dϕ̃(Ω̃, P̃).

Proxy method 1: in some cases we might have at hand some particular point Q̃∗ := (q̃∗1 , .., q̃
∗
K) in Ω̃; the resulting IS distribution

S̃ with Q̃ substituted by Q̃∗ is not optimal in the sense of [SB], but anyhow produces an estimator with good hitting rate,
possibly with a loss in the variance. A simple way to obtain such a point Q̃∗ in Ω̃ is to simulate runs of (say) M−variate
i.i.d. vectors W̃ under �̃⊗M until the first time where ξW̃

M belongs to Ω̃; then we set Q̃∗ := ξW̃
M for the succeeding realization

W̃. Before we proceed, it is useful to mention that the need for a drastic fall in the number of simulation runs pertains for
cases when Dϕ̃(Ω̃, P̃) is large. The following construction is suited to this case, which is of relevance in applications both in
optimization and in statistics when choosing between competing models none of which is assumed to represent the true one,
but merely less inadequate ones.

Proxy method 2: when Dϕ̃(Ω̃, P̃) is presumably large, we make use of asymptotic approximation to get a proxy of Q̃. For
this, we define a sampling distribution on RK fitted to the divergence through

f(Q̃) := C · exp

(
−

K∑
k=1

p̃k · ϕ̃(q̃k/p̃k)

)
= C · exp

(
−Dϕ̃

(
Q̃, P̃

))
(220)

where C is a normalizing constant. Let T be a K−variate random variable with density f . The distribution of T given(
T ∈ Ω̃

)
concentrates around arg infQ̃∈Ω̃Dϕ̃(Q̃, P̃) when Dϕ̃(Ω̃, P̃) is large. Indeed, for any Q̃ ∈ Ω̃ denote by Vε(Q̃) a

small neighborhood of Q̃ in RK with radius ε; clearly, the probability of the event
(
T ∈ Vε(Q̃)

)
when restricted to Q̃ ∈ Ω̃

is maximum when Q̃ = Q̃, where Q̃ is the “dominating point of Ω̃ ” in the sense that Q̃ := D−1λ is the above-defined
transform of the dominating point λ (assuming uniqueness); a precise argumentation under adequate conditions is postponed to
Appendix G. Accordingly, we obtain a proxy Q̃∗ of Q̃ by simulating a sequence of independent K−variate random variables
T1, . . . with distribution (220) until (say) Tm belongs to Ω̃ and set Q̃∗ := Tm.

To proceed with the derivation of the IS sampling distribution S̃ on Rn, we fix Q̃∗ := (q̃∗1 , .., q̃
∗
K) to be a proxy of Q̃ or an

initial guess in Ω̃. As an intermediate step, we construct the probability distribution Ũk on R given by

dŨk(v) := exp
(
τk · v − Λ

�̃
(τk)

)
d�̃(v) =

exp (τk · v)

MGF
�̃
(τk)

d�̃(v) (221)

where τk ∈ int(dom(MGF
�̃
)) is the unique solution of the equation Λ′

�̃
(τk) =

q̃∗k
p̃k

and thus — by relation (281) of Appendix
F — we can compute explicitly

τk = ϕ̃ ′
(
q̃∗k
p̃k

)
.

Therefore, Ũk is the Kullback-Leibler projection of �̃ on the class of all probability distributions on R whose expectation is
q̃∗k. As a side remark, notice that one possible way of obtaining an explicit form of the probability distribution Ũk may be by
identification through its moment generating function

dom(MGF
�̃
)− τk 3 z 7→MGFŨk(z) =

MGF
�̃
(z + τk)

MGF
�̃
(τk)

(222)

of which all ingredients are principally available. For instance, this will be used in Example 58 below. From (221), we define

S̃k := Ũk ⊗ · · · ⊗ Ũk︸ ︷︷ ︸
nktimes

for all k ∈ {1, . . . ,K},

whence

dS̃k (vk,1, . . . , vk,nk) = exp
( ∑
i∈I(n)

k

τk · vk,i − nk · Λ�̃
(τk)

)
d�̃ (vk,1) · · · d�̃ (vk,nk) , (223)

(224)

which manifests S̃k as the Kullback-Leibler projection of �̃⊗ · · · ⊗ �̃︸ ︷︷ ︸
nktimes

on the class of all probability distributions on Rk whose

expectation vector is Q̃∗ = (q̃∗1 , . . . , q̃
∗
K) ∈ Rk. Let now

S̃ := S̃1 ⊗ · · · ⊗ S̃K , (225)
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which therefore satisfies (recall that
∑K
k=1 nk = n)

dS̃ (v1,1, . . . v1,n1
, . . . , vK,1, . . . vK,nK ) = exp

( K∑
k=1

∑
i∈I(n)

k

(
τk ·vk,i−nk ·Λ�̃

(τk)
))
d�̃⊗n (v1,1, . . . v1,n1

, . . . , vK,1, . . . vK,nK ) .

(226)
The same procedure with all q̃∗k substituted by the coordinates q̃

k
of Q̃ produces Sopt. Therefore, S̃ is a substitute for Sopt

with the change in the centering from the unknown vector Q̃ to its proxy Q̃∗.

As a straightforward consequence of (219) and (226), we obtain the improved IS estimator of �
[
ξW̃
n ∈ Ω̃

]
as

̂̃
Π
improved

L =
1

L

L∑
`=1

1Λ(T (Ṽ(`))) ·
K∏
k=1

ISk(Ṽ
(`)
k ) (227)

where Ṽ
(`)
k :=

(
Ṽ

(`)
i

)
i∈I(n)

k

is the k−th block of the `−th replication Ṽ(`) of Ṽ under S, and the k−th importance-sampling

factor is

ĨSk(vk,1, . . . , vk,nk) :=
d�̃⊗nk

dS̃k
(vk,1, . . . , vk,nk) = exp

(
nk · Λ�̃

(τk) − τk ·
nk∑
i=1

vk,i

)
with nk = card(I

(n)
k ).

Summing up things, we arrive at the following algorithm in case that Ω̃ has a unique dominating point (in the above-defined
sense):

Step D1
Exemplarily, we start with proxy method 2 (the other proxy method 1 works analogously): get a proxy Q̃∗ of Q̃ by simulating
a sequence of independent K−variate random variables T1, . . . with distribution (220) until (say) Tm belongs to Ω̃ and set
Q̃∗ := Tm.
Step D2
For all k in {1, . . . ,K} compute τk = ϕ̃ ′

(
q̃∗k
p̃k

)
.

Step D3
For all ` in {1, . . . , L} perform a run of Ṽ(`) under S̃ as follows:
For all k in {1, . . . ,K} simulate nk i.i.d. random variables Ṽ (`)

k1
, . . . , Ṽ

(`)
knk

with common distribution Ũk defined in (221). Set

Ṽ
(`)
k := (Ṽ

(`)
k1
, . . . , Ṽ

(`)
knk

) to be the corresponding row vector.

Construct Ṽ(`) as the row vector obtained by concatenating the Ṽ
(`)
k , i.e.

Ṽ(`) :=
(
Ṽ

(`)
1 , . . . , Ṽ

(`)
K

)
,

and make use of ̂̃Πimproved

L given in (227) with the τk’s obtained in Step D2 above to define (in the light of (217), (218)) the
BS minimum-distance estimator

D̂ϕ(Ω,P) := D̂ϕ̃(Ω̃, P̃) := − 1

n
log
̂̃
Π
improved

L . (228)

For many cases, the simulation burden needed for the computation of ̂̃Πimproved

L — and thus of D̂ϕ(Ω,P) — can be drastically
reduced, especially for high dimensions K and large sample size n · L. In fact, in terms of the notations nk := card(I

(n)
k ),

Ŵ
(`)
k :=

∑
i∈I(n)

k

Ṽ
(`)
i and

ĨSF k(x) :=
d�̃∗nk

dŨ∗nkk

(x) = exp(nk · Λ�̃
(τk) − x · τk) (229)

(where �̃∗nk is the nk−convolution of the measure �̃), one can rewrite (227) as

̂̃
Π
improved

L =
1

L

L∑
`=1

1Λ

( ( 1

n1
Ŵ

(`)
1 , . . . ,

1

nK
Ŵ

(`)
K

) )
·
K∏
k=1

ĨSF k(Ŵ
(`)
k ). (230)

with K−vector
(

1
n1

Ŵ
(`)
1 , . . . , 1

nK
Ŵ

(`)
K

)
. Clearly, the random variable Ŵ

(`)
k (k = 1, . . . ,K) has distribution Ũ∗nkk . Hence, if

Ũ∗nkk can be explicitly constructed, then for the computation of ̂̃Πimproved

L it suffices to simulate the K · L random variables
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Ŵ
(`)
k rather than the n · L random variables Ṽ (`)

i ; notice that according to the right-hand side of (229), one can explicitly
compute ISFk (·) which can be interpreted as Importance Sampling Factor pertaining to the block k. In the case that �̃
is infinitely divisible, simulation issues may become especially comfortable. In the following, we exemplarily demonstrate
the tractability of this reduction effect, for the BS minimization of the important power divergences (for which the infinite
divisibility holds):

Example 58: Let ϕγ (γ ∈ R\]1, 2[) be the power divergence generator from the Examples 39 and 40, P ∈ RK>0, MP :=∑K
i=1 pi > 0 and nk = n · pk ∈ N where we have employed our notation nk = n · pk ∈ N for all k ∈ {1, . . . ,K}. Moreover,

let Q̃∗ := (q̃∗1 , . . . , q̃
∗
K) be a proxy obtained by either proxy method 1 or 2.

Case 1: Example 48(a): γ = 0, c̃ > 0. There holds Ũ∗nkk = GAM (c̃ ·MP − τk, nk · c̃ ·MP), with τk = c̃ ·MP · (1− pk
MP·q̃∗k

)

for q̃∗k > 0 (the latter is equivalent to τk < c̃ ·MP). Moreover, for all x > 0 one gets ĨSF k(x) =
(

c̃·MP

c̃·MP−τk

)nk·c̃·MP

· e−τk·x.

Case 2: 48(b): γ ∈ (0, 1) , c̃ > 0. We derive Ũ∗nkk = C
(
POI(nk · θ̆), GAM

(
c̃·MP

1−γ − τk,
γ

1−γ
))

with

θ̆ := c̃·MP

γ ·
( (γ−1)·τk

c̃·MP
+ 1
)γ/(γ−1)

and τk = c̃ ·MP ·
1−
(
q̃∗k·MP
pk

)γ−1

1−γ for q̃∗k > 0. Furthermore,

ĨSF k(x) = e−τkx · exp

(
nk · c̃ ·MP

γ
·

((
1 +

γ − 1

c̃ ·MP
· τk
) γ
γ−1

− 1

))
, x ≥ 0,

(where x = 0 covers the atom at zero).

Case 3: Example 48(c): γ = 2, c̃ > 0. One gets Ũ∗nkk = N(nk · (1 + τk
c̃·MP

), nk
c̃·MP

) with τk = c̃ ·MP · ( q̃
∗
k·MP

pk
− 1) for q̃∗k ∈ R.

Moreover, for all x ∈ R one obtains ĨSF k(x) = exp
( nk·τ2

k

2c̃·MP
− (x− nk) · τk

)
.

Case 4: Example 48(d): γ < 0, c̃ > 0. It holds that Ũ∗nkk has the (Lebesgue-)density

fŨ∗nkk
(x) :=

exp((τk − c̃·MP

1−γ ) · x)

exp
(
nk · c̃·MP

γ · (1 + γ−1
c̃·MP

· τk)γ/(γ−1)
) · f ˘̆

Z
(x) · 1]0,∞[(x), x ∈ R,

where τk = c̃ ·MP ·
1−
(
q̃∗k·MP
pk

)γ−1

1−γ for q̃∗k > 0, and ˘̆
Z is a random variable with density f ˘̆

Z
of a stable law with parameter-

quadruple ( −γ1−γ , 1, 0,−nk ·
(c̃·MP)1/(1−γ)·(1−γ)−γ/(1−γ)

γ ) (analogously to Z̆ of Example 40 (d) but with c̃ replaced by c̃ ·MP).
Also,

ĨSF k(x) = e−τkx · exp

(
nk · c̃ ·MP

γ
·

((
1 +

γ − 1

c̃ ·MP
· τk
) γ
γ−1

− 1

))
, x > 0.

Case 5 : Example 48(e): γ > 2, c̃ > 0. We derive that Ũ∗nkk has the (Lebesgue-)density

fŨ∗nkk
(x) :=

exp((τk + c̃·MP

γ−1 ) · x)

exp
(
nk · c̃·MP

γ · (1 + γ−1
c̃·MP

· τk)γ/(γ−1)
) · f ˘̆

Z
(−x), x ∈ R,

where τk = − c̃·MP

γ−1 ·
(
1 −

( q̃∗k·MP

pk

)γ−1 · 1]0,∞[(q̃
∗
k)
)

for q̃∗k ∈ R, and ˘̆
Z is a random variable with density f ˘̆

Z
of a stable law

with parameter-quadruple ( γ
γ−1 , 1, 0, nk ·

(c̃·MP)1/(1−γ)·(γ−1)γ/(γ−1)

γ ) (analogously to Z̆ of Example 40 (e) but with c̃ replaced
by c̃ ·MP). Furthermore,

ĨSF k(x) = e−τkx · exp

(
nk · c̃ ·MP

γ
·

((
1 +

γ − 1

c̃ ·MP
· τk
) γ
γ−1

− 1

))
, x ∈ R.

Case 6: Example 50(a): γ = 1, c̃ > 0, anchor point c = 0. It holds that Ũ∗nkk is the probability distribution
1

c̃·MP
· POI

(
nk · c̃ ·MP · exp( τk

c̃·MP
)
)

with support on the lattice
{

j
c̃·MP

, j ∈ N0

}
, where τk = c̃ · log

(
MP·q̃∗k
pk

)
for ω̃k > 0.

Moreover, for all j ∈ N0 we obtain (by setting x := j
c̃·MP

)

ĨSF k

(
j

c̃ ·MP

)
= exp

(
nk · c̃ ·MP ·

(
exp

(
τk

c̃ ·MP

)
− 1

)
−m · τk

c̃ ·MP

)
.
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Case 7: Example 50(b): γ = 1, c̃ = 1, anchor point c ∈ R. For MP = 1, Ũ∗nkk is the shifted Poisson distribution
POI (nk · ec+τk) + nk · (1 − ec) with support on the lattice {j + nk · (1− ec), j ∈ N0}, where τk = log

( q̃∗k
pk

+ ec − 1
)
− c

for q̃∗k > pk · (1− ec). Furthermore, for all j ∈ N0 we obtain (by setting x := j + nk · (1− ec))

ĨSF k (j + nk · (1− ec)) = exp (nk · ec · (eτk − 1)− j · τk) .

Notice that the mass of Ũ∗nkk at zero depends on the value of the anchor point c, since Ũ∗nkk [{0}] > 0 if and only if
c = log(1 + `

nk
) for some ` ∈ N0; moreover, Ũ∗nkk

[
]0,∞[

]
= 1 if c < 0 and Ũ∗nkk

[
]−∞, 0[

]
> 0 if c > 0.

Remark 59: (a) One can explicitly see in all cases of the above Example 58 that all ingredients for computation are at hand.
(b) For both Cases 4 and 5 in the above Example 58, algorithms for simulation can be obtained by adapting e.g. the works of
Devroye [111] and Devroye & James [112].

B. Estimators for the statistical minimization problem

1) General case, part 1: In the previous Subsection VI-A, as a first step we have estimated

�
[
ξW̃
n ∈ Ω̃

]
in terms of the improved IS estimator ̂̃Πimproved

L . From this, as a second step, we have derived — on the basis of Theorem
10 — the estimator

D̂ϕ(Ω,P) := − 1

n
log
̂̃
Π
improved

L (cf. (228))

of the minimum distance Dϕ(Ω,P) := infQ∈ΩDϕ(Q,P), where P ∈ RK>0 and Ω ⊂ RK . Recall that Ω̃ := Ω/MP with
MP :=

∑K
i=1 pi > 0, and that

ξW̃
n =

( 1

n

∑
i∈I(n)

1

W̃i, . . . ,
1

n

∑
i∈I(n)

K

W̃i

)
(cf. (23))

where W̃ := (W̃1, . . . , W̃n) is a random vector consisting of components W̃i which are i.i.d. copies of the random variable
W̃ whose distribution is �[W̃ ∈ · ] = �̃[ · ] obeying the representation (21).

In contrast, we now proceed as follows: as a first step, we derive an improved estimator Π̂improved
L of

�Xn1

[
ξwW
n,X ∈ ΩΩ

]
where ΩΩ ∈ SK is a set of probability vectors which satisfies the regularity properties (7) and the finiteness property (9). Recall
that

ξwW
n,X :=


( ∑

i∈I(n)
1

Wi∑K
k=1

∑
i∈I(n)

k

Wi
, . . . ,

∑
i∈I(n)

K

Wi∑K
k=1

∑
i∈I(n)

k

Wi

)
, if

∑n
j=1Wj 6= 0,

(∞, . . . ,∞) =: ∞, if
∑n
j=1Wj = 0,

(cf. (33))

where (Xi)i∈N is a sequence of random variables with values in Y := {d1, · · · , dK} such that

lim
n→∞

(n1

n
, . . . ,

nK
n

)
= (p1, . . . , pK) a.s. cf. ((30))

holds for some probability vector P := (p1, . . . , pK) ∈ SK>0, by employing the notation

nk := card(
{
i ∈ {1, . . . , n} : Xi = dk

}
) =: card(I

(n)
k ) (cf. (29));

hence, on the k-th block of indexes I(n)
k all the Xi’s share the same value dk. Moreover, recall that (Wi)i∈N is a family

of independent and identically distributed R−valued random variables with probability distribution �[· ] := �[W1 ∈ · ] being
connected with the divergence generator ϕ ∈ Υ(]a, b[) via the representability (6), such that (Wi)i∈N is independent of (Xi)i∈N.

As a second step (see Subsubsection VI-B2 below), for the important special case of the power-divergence generators ϕγ (cf.
(43)) we employ the Propositions 22 to 27 in order to deduce via the corresponding Π̂improved

L the estimators (e.g. for γ < 0)

̂Dc̃·ϕγ (ΩΩ,P) :=
c̃

γ · (γ − 1)
·

{(
1 +

γ

c̃
· 1

n
· log Π̂improved

L

)1−γ

− 1

}
,
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of the minimum power divergences
Dc̃·ϕγ (ΩΩ,P) := inf

Q∈ΩΩ
Dc̃·ϕγ (Q,P)

as well as connected estimators of important deterministic transformations thereof.

As a third step (see Subsubsection VI-B3 below), on the basis of Subsubsection IV-C2 we derive estimators of bounds of
Dϕ(ΩΩ,P) for more general divergence generators ϕ.

Let us start with the above-mentioned first step, by remarking that the development of the estimator Π̂improved
L works quite

analogously to that of ̂̃Πimproved

L in the previous Subsection VI-A. To make this even more transparent, we employ the notation
pempn,k := nk/n (cf. (29)) and label all random vectors of length n in the same way as above: we sort the already given and
thus fixed data Xi’s in such a way that the first n1 of them share the same value d1, and so on, until the last block with length
nK in which the data have common value dK .

In the light of the above considerations, we could achieve a naive estimate Π̂naive
L of �Xn1 [ξwW

n,X ∈ ΩΩ] through the following
procedure. We simulate independently L replicates W(1), . . . ,W(L) of the vector W := (W1, . . . ,Wn), with independent
entries under � (cf. (6)); those realizations do not depend on the Xi’s. Then we construct

Π̂naive
L :=

1

L

L∑
`=1

1ΩΩ

(
ξwW(`)

n,X

)
. (231)

However, this procedure is time costly, since the estimate given in (231) has a very bad hit rate. Hence, analogously to
Subsection VI-A we apply again an “efficient Importance Sampling (IS)” scheme in the sense of Sadowsky & Bucklew [313].
This will involve the simulation of L independent n−tuples V(`):=

(
V

(`)
n , . . . , V

(`)
n

)
with common distribution S on Rn, such

that �⊗n is (measure-)equivalent with respect to S. In fact, we rewrite �Xn1 [ξwW
n,X ∈ ΩΩ] as

�Xn1 [ξwW
n,X ∈ ΩΩ] = ES

[d�⊗n

dS
(V1, . . . , Vn) · 1ΩΩ(ξwV

n,X)
]

(232)

where S designates any IS distribution of the vector V :=(V1, . . . , Vn), and ES [ · ] denotes the corresponding expectation
operation. Notice that S is a random probability distribution on Rn; in fact, S is a conditional probability distribution given
Xn

1 , and thus it would be more precise to write S|Xn
1 instead of S; for the sake of brevity, we omit |Xn

1 .

As a consequence of (232), for adequately chosen S, an improved estimator of �Xn1 [ξwW
n,X ∈ ΩΩ] is given by

Π̂improved
L :=

1

L

L∑
`=1

d�⊗n

dS
(V

(`)
1 , . . . , V (`)

n ) · 1ΩΩ(ξwV(`)

n,X ) , (233)

which also estimates infQ∈ΩΩ infm6=0Dϕ(m · Q,P) by the virtue of (36).

Let us now deal with the concrete construction of a reasonable S. Given some (typically) large integer M , we start with the
realization W∗ := (W ∗1 , . . . ,W

∗
M ) such that Q∗ := ξwW∗

M,X ∈ int(ΩΩ). This may be given in advance or it may be achieved
by drawing replicates W = (W1, . . . ,WM ) under �⊗M until the first time where ξwW

M,X belongs to int(ΩΩ). Notice that by the
nature of ΩΩ, Q∗ is a probability vector which has the K components

q∗k :=

M∑
i=1

W ∗i∑M
j=1W

∗
j

1{dk}(Xi), k = 1, . . . ,K. (234)

Before we proceed, let us give the substantial remark that changing (V1, . . . , Vn) drawn under S to (c · V1, . . . , c · Vn) for any
c 6= 0 yields ξwV

n,X = ξw c·Vn,X so that the distribution S is not uniquely determined. Amongst all candidates, we choose the —
uniquely determined — S which is the Kullback-Leibler projection of �⊗n on the set of all probability distributions on Rn

such that the K “non-normalized” moment constraints

ES [ξV
n,X] = ξW∗

M,X (235)

(rather than the normalized ES [ξwV
n,X] = ξwW∗

M,X ) are satisfied, with the non-normalized vectors

ξW∗

M,X :=

 1

M

M∑
j=1

W ∗j

 ·Q∗ =: W ∗ ·Q∗, ξV
n,X :=

 1

n

n∑
j=1

Vj

 · ξwV
n,X .
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As already indicated above, this projection S is a well-determined unique distribution on Rn and — as we shall see in
Proposition 60 below — it is such that ξwV

n,X belongs to ΩΩ with probability bounded away from 0 as n increases, when
(V1, . . . , Vn) are drawn under S. Therefore, this IS distribution produces an estimate of �Xn1 [ξwW

n,X ∈ ΩΩ].

In order to justify the above construction of S, we give the following result, which states that the IS sampling distribution S
yields a good hitting rate. Its proof will be given in Appendix H.

Proposition 60: With the above definition of S, lim infn→∞ S
[
ξwV
n,X ∈ ΩΩ

]
is bounded away from 0.

We now come to the detailed construction of S. The constraints (235) can be written in explicit form as

ES

[ 1

nk

∑
i∈I(n)

k

Vi

]
= W ∗ · q∗k

pempn,k

, k = 1, . . . ,K. (236)

The distribution S can be obtained by blocks. Indeed, let us define Sk as the Kullback-Leibler (KL) projection of �⊗nk on the
set of all distributions on Rnk such that (236) holds. We define the resulting S as the product distribution of those Sk ’s. To
obtain the latter, we start by defining Uk as the KL projection of � on the set of all measures Q on R under (236). Then,

dUk(v) = exp(τkv − Λ� (τk)) d�(v) , (237)

where τk ∈ int(dom(MGF�)) is the unique solution of the equation

Λ′� (τk) = W ∗ · q∗k
pempn,k

and thus — by relation (281) of Appendix F — we can compute explicitly

τk = ϕ′

(
W ∗ · q∗k
pempn,k

)
.

The distribution Sk is then defined by
Sk := Uk ⊗ · · · ⊗ Uk︸ ︷︷ ︸

nktimes

from which we obtain
S := S1 ⊗ · · · ⊗ SK .

With this construction, it holds

dS

d�⊗n
(v1, . . . , vn) = exp

 K∑
k=1

 ∑
i∈I(n)

k

τk · vi − Λ�(τk)




which proves that S is indeed the KL projection of �⊗n we aimed at.

Therefore, V is composed of K independent blocks of length nk each, and the k−th subvector Vk consists of all the random
variables Vi whose index i satisfies Xi = dk. Within Vk, all components are i.i.d. with same distribution Uk on R defined
through

dUk
d�

(u) = exp {τk · u− Λ�(τk)} =
exp {τk · u}
MGF�(τk)

,

which leads to the moment generating function

dom(MGF�)− τk 3 z 7→MGFUk(z) :=

∫
R

ezydUk(y) =
MGF�(z + τk)

MGF�(τk)
.

Let us remark that Uk can be interpreted as the distorted distribution of � with the distortion parameter τk (in some cases, this
distortion even becomes a tilting/dampening).

The estimator Π̂improved
L defined in (233) can be implemented through the following algorithm:

Step S1
Choose some (typically large) M and simulate repeatedly i.i.d. vectors (W1, ..,WM ) — whose independent components have
common distribution � — until ξwW

M,X belongs to ΩΩ. Call (W ∗1 , ..,W
∗
M ) the corresponding vector and W ∗ the arithmetic mean
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of its components. Moreover, denote by ξwW∗

M,X the corresponding normalized weighted empirical measure, identified with the
K−component vector Q∗ := (q∗1 , .., q

∗
K) with q∗k defined in (234).

Step S2
For all k ∈ {1, . . . ,K} compute τk = ϕ′

(
W∗·q∗k
pempn,k

)
.

Step S3
For all ` ∈ {1, . . . , L} simulate independently for all k ∈ {1, . . . ,K} a row vector V

(`)
k :=

(
V

(`)
k1
, ..., V

(`)
knk

)
with independent

components with common distribution Uk defined in (221). Concatenate these vectors to define the row vector V(`).
Step S4
Compute the estimator Π̂improved

L by making use of the formula (233) which turns into the explicit form

Π̂improved
L =

1

L

L∑
`=1

exp

 K∑
k=1

nk · Λ�(τk)− τk ·
∑
i∈I(n)

k

V
(`)
i


 · 1ΩΩ

(
ξwV(`)

n,X

)
(238)

Analogously to the paragraph right after (228) of the previous Subsection VI-A, in many cases we may improve the simulation
burden needed for the computation of the estimator Π̂improved

L . In fact, in terms of the notations Ŵ
(`)
k :=

∑
i∈I(n)

k

V
(`)
i we

can rewrite (238) as

Π̂improved
L =

1

L

L∑
`=1

1ΩΩ

(
ξwV(`)

n,X

)
·
K∏
k=1

ISFk

(
Ŵ

(`)
k

)
(239)

with
ISFk(x) := exp(nk · Λ�(τk) − x · τk) (240)

and

ξwV(`)

n,X =


(

Ŵ
(`)
1∑K

k=1 Ŵ
(`)
k

, . . . ,
Ŵ

(`)
K∑K

k=1 Ŵ
(`)
k

)
, if

∑K
k=1 Ŵ

(`)
k 6= 0,

(∞, . . . ,∞) =: ∞, if
∑K
k=1 Ŵ

(`)
k = 0 .

(241)

Clearly, the random variable Ŵ
(`)
k (k = 1, . . . ,K) has distribution U∗nkk . Hence, if U∗nkk can be explicitly constructed, then

for the computation of Π̂improved
L it suffices to independently simulate the K ·L random variables Ŵ

(`)
k (rather than the n ·L

random variables V (`)
i ). In the following subsubsection, we exemplarily demonstrate the tractability of this reduction effect.

2) BS minimization of power divergences and related quantities: ´
Consider the special case of power divergence generators ϕ := c̃ · ϕγ (γ ∈ R\]1, 2[) of the Examples 39 and 40. The
corresponding estimators Π̂improved

L can be obtained as follows:
(i) within the results of Example 58, set MP = 1, and replace q̃∗k by W ∗ · q∗k as well as pk by pempn,k ; accordingly, Ũ∗nkk

turns into U∗nkk and ĨSF k into ISFk;
(ii) simulate independently the random variables Ŵ

(`)
k from U∗nkk (k ∈ {1, . . . ,K}, ` ∈ {1, . . . , L});

(iii) plug in the results of (i),(ii) into (239), (240), and (241) in order to concretely compute Π̂improved
L .

From this, we can easily generate improved estimators of the power divergences infQ∈ΩΩDc̃·ϕγ (Q,P) — and more generally,
improved estimators of all the infimum-quantities (e.g. Renyi divergences) respectively supremum-quantities in the parts (b)
of the Propositions 22, 23, 24, 25, 26 and 27 with A = 1 — by simply replacing �Xn1 [ξwW

n ∈ ΩΩ] (respectively, its variants)
by the corresponding estimator Π̂improved

L . If — in the light of Remark 15(vi) — the P = (p1, . . . , pK) is a pregiven known
probability vector 34 (rather than the limit of the vector of empirical frequencies/masses of a sequence of random variables Xi,
cf. (30)), then we proceed analogously as above by replacing pempn,k with pk; correspondingly, we obtain improved estimators
of all the infimum-quantities respectively supremum-quantities (e.g. Renyi entropies, diversity indices) in the parts (a) of the
Propositions 22, 23, 24, 25, 26 and 27 with A = 1.

For the sake of brevity, in the following we only present explicitly the outcoming improved estimators for the power divergences
(in the “Xi−context” ). Indeed, we simply replace the �Xn1 [ξwW

n ∈ ΩΩ] in the formulas (84), (92), (99) (with A = 1) by

34e.g. the uniform distribution Punif on {1, . . . ,K}
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the improved estimator Π̂improved
L obtained through (i) to (iii); for arbitrarily fixed c̃ > 0, this leads to the improved power-

divergence estimators (BS estimators of power divergences)

̂Dc̃·ϕγ (ΩΩ,P) := − c̃

γ(γ − 1)

{
1−

(
1 +

γ

c̃
· 1

n
· log Π̂improved

L

)1−γ
}
, γ ∈ ]−∞, 0[∪ ]0, 1[∪ [2,∞[, (242)

̂Dc̃·ϕ0
(ΩΩ,P) := − 1

n
log Π̂improved

L , γ = 0, (243)

̂Dc̃·ϕ1
(ΩΩ,P) := −c̃ · log

(
1 +

1

c̃
· 1

n
· log Π̂improved

L

)
, γ = 1. (244)

Let us finally remark that from the above-mentioned Steps S1 to S4 (and analogously D1 to D4) one can see that for our
BS method we basically need only a fast and accurate — pseudo, true, natural, quantum — random number generator. The
corresponding computations can be principally run in parallel, and require relatively moderate computer memory/storage; a
detailed discussion is beyond the scope of this paper, given its current length.

3) General case, part 2: The algorithm which is presented in this section aims at the evaluation of the bounds

inf
m 6=0

Dϕ (m ·ΩΩ,P) = inf
Q∈ΩΩ

Dϕ (m (Q) · Q,P)
(1)
= Dϕ (m(Q∗) · Q∗,P) ≤ Dϕ (ΩΩ,P) ≤ Dϕ (Q∗,P) (245)

obtained in Section IV-C2, where Q∗ satisfies the above equality (1). The estimator of the lower bound in (245) is
D̂ := − 1

n log Π̂
improved

L defined in (238).

We now turn to an estimate of the upper bound. Consider for any fixed Q := (q1, .., qK) in SK>0 the real number mn(Q) which
satisfies

Dϕ (mn(Q) · Q,Pempn ) = inf
m 6=0

Dϕ (m ·ΩΩ,Pempn )

where Pempn was defined in the course of (29). Such mn(Q) is well defined for all Q since it satisfies the equation (in m)

d

dm
Dϕ (m · Q,Pempn ) =

K∑
k=1

qk · ϕ′
(
m · qk
pempn,k

)
= 0. (246)

Since the mapping m → Dϕ (m · Q,P) is convex and differentiable, existence and uniqueness of mn(Q) hold; furthermore,
mn(Q) ∈

]
mink p

emp
n,k /qk,maxk p

emp
n,k /qk

[
since d

dmDϕ (m · Q,Pempn ) is negative when m = mink p
emp
n,k /qk and positive when

m = maxk p
emp
n,k /qk.

An estimate of the distribution Q∗ is required. This can be achieved as follows:
• Estimate infm 6=0Dϕ (m ·ΩΩ,P) through D̂ := − 1

n log Π̂improved
L defined in (238).

• Set i = 0.
• Get some Qi := (qi,1, . . . , qi,K) in ΩΩ; this can be obtained by simulating runs of vectors (W1, ..,Wn) through i.i.d.

sampling under �. Evaluate mn(Qi) by solving (246) (with qi,k instead of qk) for m, which is a fast calculation by the
bisection method.

• If Dϕ (mn(Qi) · Qi,Pempn ) < D̂ + η for some small η > 0, then the proxy of Q∗ is Qi, denoted by Q̂∗.
• Else set i← i+ 1 and get Qi in ΩΩ ∩ {Q : Dϕ (Q,Pempn ) < Dϕ (Qi−1,P

emp
n )} and iterate.

That this algorithm converges in the sense that it produces some Q̂∗ is clear. Since by (245)

Dϕ (m(Q∗) · Q∗,P) ≤ Dϕ (ΩΩ,P) ≤ Dϕ (Q∗,P) ,

we have obtained both estimated lower and upper bounds for Dϕ (ΩΩ,P).
That the upper bound is somehow optimal can be seen from the power case developed in Section VI-B2. Indeed, in this case

the solution of equation (246) is explicit and produces m(Q) as a function of Dϕ (Q,P) through a Hellinger integral, and the
mapping Q→ Dϕ (m(Q) · Q,P) is increasing with respect to D(Q,P). Hence, Q→ infm 6=0Dϕ (m · Q,P) is minimal when
Dϕ (Q,P) is minimal as Q ∈ ΩΩ. Therefore, Q∗ ∈ arg infQ∈ΩΩDϕ (m(Q) · Q,P) also satisfies Q∗ ∈ arg infQ∈ΩΩDϕ (Q,P).

APPENDIX A
PROOFS — PART 1

Proof of Theorem 10.
This is a straightforward application of the classical Cramer-type Large Deviation Theorem in the vector case (see Theorem
2.2.30 and Corollary 6.1.6 in Dembo & Zeitouni [108]). Recall that above we have transformed the original problem into



73

a context where the second argument in Dϕ(·, ·) is a probability vector, as follows: in terms of MP :=
∑K
i=1 pi > 0 we

normalized P̃ := P/MP, and Q̃ := Q/MP for Q in Ω. With ϕ̃ ∈ Υ(]a, b[) defined through ϕ̃ := MP · ϕ, we have obtained

Dϕ(Q,P) =

K∑
k=1

pk · ϕ
(
qk
pk

)
=

K∑
k=1

MP · p̃k ·
ϕ
(
MP·q̃k
MP·p̃k

)
MP

= Dϕ̃(Q̃, P̃) (cf. (12)).

It has followed that the solution of (8) coincides with the one of the problem of finding

Φ̃
P̃

(Ω̃) := inf
Q̃∈Ω̃

Dϕ̃(Q̃, P̃), with Ω̃ := Ω/MP (cf. (13)).

So let us continue by tackling (13). From the assumptions on ϕ̃ and the requirement (21) one can see that

W̃1 has moment generating function t→ E�[ez·W̃1 ] = MGF
�̃
(z) which is finite on a non-void neighborhood of 0, (247)

E�[W̃1] = 1, (248)

since ϕ̃(1) = 0 = ϕ̃′(1). With the help of these, we obtain the following

Proposition 61: Under the assumptions of Theorem 10, for any set Ω̃ ⊂M := RK with (7) one has

− inf
Q̃∈int(Ω̃)

Dϕ

(
Q̃, P̃

)
≤ lim inf

n→∞

1

n
log�

[
ξW̃
n ∈ Ω̃

]
≤ lim sup

n→∞

1

n
log�

[
ξW̃
n ∈ Ω̃

]
≤ − inf

Q̃∈cl(Ω̃)
Dϕ

(
Q̃, P̃

)
. (249)

Proof of Proposition 61.
Recall from Remark 15(v) that I(n)

k := {i ∈ {1, . . . , n} : x̃i = dk} and nk := card(I
(n)
k ) denotes the number of elements

therein (k ∈ {1, . . . ,K}), i.e. nk is the number of the x̃i’s which equal dk. We follow the line of proof of Theorem 2.2.30 in
Dembo & Zeitouni [108], which states the large deviation principle (LDP) for the vector of partial sums of random vectors
in RK , where we also use Corollary 6.1.6 in [108] in relation with condition (247). Indeed, since the k−th component of
the vector ξW̃

n is the 1/n−fold of the sum of the W̃i’s for which the corresponding x̃i’s equal dk
(
i.e., 1

n

∑
i∈I(n)

k

W̃i

)
the

proof will follow from a similar treatment as for the standard Cramer LDP in RK . The only difference lies in two facts: the
number of the summands for the coordinate k is nk , the number of x̃i’s which equal dk, instead of n in the standard case.
Furthermore we will need to substitute nk by its equivalent n · p̃k, which adds an approximation step. For the upper bound,
the proof is based on the corresponding result for B = B1 × · · · × BK where the Bk’s are open bounded intervals on R+.
Since the sequence (x̃1, . . .) satisfies

lim
n→∞

nk
n

= p̃k, (cf. (22))

there holds

1

n
log�

[
ξW̃
n ∈ B

]
=

1

n
log�

[ K⋂
k=1

(
1

n

∑
i∈I(n)

k

W̃i ∈ Bk
)]

=
1

n

K∑
k=1

log�

[
1 + o(1)

nk

∑
i∈I(n)

k

W̃i ∈
1

p̃k
Bk

]
, (250)

and hence

lim sup
n→∞

1

n
log�

[
ξW̃
n ∈ B

]
≤

K∑
k=1

p̃k · lim sup
nk→∞

1

nk
log�

[
1

nk

∑
i∈I(n)

k

W̃i ∈
1

pk
Bk

]

≤ −
K∑
k=1

inf
xk∈cl(Bk)

p̃k · ϕ
(
xk
p̃k

)
. (251)

To deduce (251) from (250), we have used (i) the fact that for all k the random variables 1
nk

(1 + o(1))) ·
∑
i∈I(n)

k

W̃i and
1
nk

∑
i∈I(n)

k

W̃i are exponentially equivalent in the sense that their difference ∆nk satisfies

lim sup
nk→∞

1

nk
log�[ |∆nk | > η ] = −∞,
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making use of the Chernoff inequality for all positive η, as well as (ii) Theorem 4.2.13 in [108]. Now the summation and the
inf-operations can be permuted in (251) which proves the claim for the rectangle B.

As in [108], for a compact set Ω we consider its finite covering by such open sets B and conclude; for Ω being a closed
set, a tightness argument holds, following [108] Theorem 2.2.30 verbatim. For the lower bound consider the same rectangle B.
The argument which locates the tilted distribution at the center of B, together with the use of the LLN for the corresponding
r.v’s as in [108], in combination with the same approximations as above to handle the approximation of nk by n · p̃k, complete
the proof of Proposition 61. We omit the details. �

Let us continue with the proof of Theorem 10, by giving the following two helpful lemmas for

ΦP(A) := inf
Q∈A

Dϕ (Q,P) , A ⊂M := RK , (252)

Lemma 62: For any open set A ⊂M := RK one has ΦP(A) = ΦP(cl(A)).

This is clear from the continuity of ΦP.

Lemma 63: For any A ⊂M := RK satisfying (7) one has ΦP(cl(A)) = ΦP(A) = ΦP(int(A)).

Proof of Lemma 63. Assume first that ΦP(A) is finite. Then suppose that A satisfies (7) and ΦP(cl(A)) < ΦP(int(A)).
The latter implies the existence of a point a ∈ cl(A) such that a /∈ int(A) and ΦP(a) = ΦP(cl(A)). But then, by Lemma 62
and (7) one gets ΦP(int(A)) = ΦP(cl(int(A))) = ΦP(cl(A)) = ΦP(a) which leads to a contradiction. When ΦP(A) = ∞
then ΦP(cl(A)) = ΦP(int(A)) = ΦP(A) =∞. �

Putting things together, the required asymptotic assertion (24) follows from (249), (7) and Lemma 63. This completes the proof
of Theorem 10. �

APPENDIX B
PROOFS — PART 2

Before we tackle the proof of Theorem 14, let us introduce the following

Lemma 64: If ΩΩ ⊂ SK satisfies condition (7), then ˜̃ΩΩ :=
⋃
m6=0

cl(m ·ΩΩ) has the property (7).

This can be deduced in a straightforward way: the assumption implies that cl(ΩΩ) satisfies (7), and thus also m ·cl(ΩΩ) satisfies
(7). But this implies the validity of (7) for the “cone”

⋃
m 6=0

m · cl(ΩΩ) which is nothing but
⋃
m6=0

cl(m ·ΩΩ).

Proof of Theorem 14.
Recall the interpretations of the two vectors ξW

n,X respectively ξwW
n,X given in (31) respectively (33), and that the sum of their

k components are
∑K
k=1

1
n

∑
i∈I(n)

k

Wi = 1
n

∑n
i=1Wi respectively

∑K
k=1

∑
i∈I(n)

k

Wi∑K
k=1

∑
i∈I(n)

k

Wi
= 1 (in case of

∑n
i=1Wi 6= 0). In

the light of these, for ΩΩ ⊂ SK one gets the set identification{
ξwW
n,X ∈ ΩΩ

}
=
⋃
m 6=0

{
ξW
n,X ∈ m ·ΩΩ,

1

n

n∑
i=1

Wi = m

}

since {
∑n
i=1Wi = 0} amounts to m = 0, which cannot hold when

{
ξwW
n,X ∈ ΩΩ

}
. Now

�Xn1

[
ξwW
n,X ∈ ΩΩ

]
= �Xn1

[ ⋃
m 6=0

{
ξW
n,X ∈ m ·ΩΩ,

1

n

n∑
i=1

Wi = m

}]
= �Xn1

[ ⋃
m6=0

{
ξW
n,X ∈ m ·ΩΩ

}]
= �Xn1

[
ξW
n,X ∈

⋃
m6=0

m ·ΩΩ
]

since
{
ξW
n,X ∈ m ·ΩΩ

}
⊂
{

1
n

∑n
i=1Wi = m

}
. Therefore

1

n
log�Xn1

[
ξwW
n,X ∈ ΩΩ

]
=

1

n
log�Xn1

[
ξW
n,X ∈

⋃
m6=0

m ·ΩΩ
]
. (253)
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Because of Proposition 61 — applied to Ω̃Ω :=
⋃
m6=0

m ·ΩΩ — one gets in terms of (252)

−ΦP

(
int
( ⋃
m 6=0

m ·ΩΩ
))

≤ lim inf
n→∞

1

n
log�Xn1

[
ξW
n,X ∈

⋃
m 6=0

m ·ΩΩ
]

≤ lim sup
n→∞

1

n
log�Xn1

[
ξW
n,X ∈

⋃
m 6=0

m ·ΩΩ
]
≤ −ΦP

(
cl
( ⋃
m 6=0

m ·ΩΩ
))
. (254)

But ΦP

(
int
( ⋃
m 6=0

m ·ΩΩ
))
≤ ΦP

( ⋃
m 6=0

int
(
m ·ΩΩ

))
= inf
m 6=0

ΦP(int(m ·ΩΩ)) (255)

and ΦP

(
cl
( ⋃
m6=0

m ·ΩΩ
))
≥ ΦP

( ⋃
m 6=0

cl
(
m ·ΩΩ

))
= inf
m6=0

ΦP(cl(m ·ΩΩ)). (256)

In fact, the inequality in (255) is straightforward because of
⋃
m6=0

int(m ·ΩΩ) ⊂ int(
⋃
m 6=0

m ·ΩΩ) (since the latter is the largest

open set contained in
⋃
m 6=0

m ·ΩΩ); the inequality in (256) follows from

ΦP

(
cl
( ⋃
m 6=0

m ·ΩΩ
))
≥ ΦP

(
cl
( ⋃
m6=0

cl
(
m ·ΩΩ

)))
= ΦP

( ⋃
m 6=0

cl
(
m ·ΩΩ

))
An application of Lemma 63 yields ΦP(int(m ·ΩΩ)) = ΦP(m ·ΩΩ) = ΦP(cl(m ·ΩΩ)) for all m 6= 0, and hence

inf
m 6=0

ΦP(int(m ·ΩΩ)) = inf
m6=0

ΦP(m ·ΩΩ) = inf
m 6=0

ΦP(cl(m ·ΩΩ)). (257)

By combining (253), (254), (255), (256) and (257), one arrives at

lim
n→∞

1

n
log�Xn1

[
ξwW
n,X ∈ ΩΩ

]
= lim
n→∞

1

n
log�Xn1

[
ξW
n,X ∈

⋃
m 6=0

m ·ΩΩ
]

= − inf
m 6=0

ΦP(m ·ΩΩ) = − inf
m 6=0

inf
Q∈m·ΩΩ

Dϕ (Q,P) = − inf
m 6=0

inf
Q∈ΩΩ

Dϕ (m · Q,P) ,

where in the second last equality we have “reverted” the notation (252). Note that we did not assume (7) for
⋃
m 6=0

m ·ΩΩ. �

APPENDIX C
PROOFS — PART 3

Proof of Lemma 16.
From (44) one gets straightforwardly for arbitrary c̃ > 0

Dc̃·ϕγ (m ·Q,P) :=



c̃·(mγ ·Hγ−m·A·γ+γ−1)
γ·(γ−1) , if γ ∈ ]−∞, 0[, P ∈ SK≥0, Q ∈ A · SK>0 and m > 0,

c̃ · (− logm+ Ĩ − 1 +m ·A), if γ = 0, P ∈ SK≥0, A ·Q ∈ SK>0 and m > 0,
c̃·(mγ ·Hγ−m·A·γ+γ−1)

γ·(γ−1) , if γ ∈ ]0, 1[, P ∈ SK≥0, Q ∈ A · SK≥0 and m ≥ 0,

c̃ · (A ·m · logm+m · (I −A) + 1), if γ = 1, P ∈ SK>0, Q ∈ A · SK≥0 and m ≥ 0,
c̃·(mγ ·Hγ ·1[0,∞[(m)−m·A·γ+γ−1)

γ·(γ−1) , if γ ∈ ]1, 2[, P ∈ SK>0, Q ∈ A · SK and m ∈]−∞,∞[,
c̃·(m2·H2−m·A·2+2−1)

2·(2−1) , if γ = 2, P ∈ SK>0, Q ∈ A · SK and m ∈]−∞,∞[,
c̃·(mγ ·Hγ ·1[0,∞[(m)−m·A·γ+γ−1)

γ·(γ−1) , if γ ∈ ]2,∞[, P ∈ SK>0, Q ∈ A · SK and m ∈]−∞,∞[,

∞, else,

(258)

where we have used the three m−independent abbreviations

Hγ :=

K∑
k=1

(qk)γ · (pk)1−γ = 1 + γ · (A− 1) +
γ · (γ − 1)

c̃
·Dc̃·ϕγ (Q,P), (cf. (45))

I :=

K∑
k=1

qk · log

(
qk
pk

)
=

1

c̃
·Dc̃·ϕ1

(Q,P) +A− 1, (cf. (46))
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Ĩ :=

K∑
k=1

pk · log

(
pk
qk

)
=

1

c̃
·Dc̃·ϕ0

(Q,P) + 1−A. (cf. (47))

To proceed, let us fix an arbitrary constant c̃ > 0.
(i) Case γ · (1− γ) 6= 0.
(ia) Let us start with the subcase γ ∈] − ∞, 0[. From the first and the last line of (258), it is clear that the corresponding

m−infimum can not be achieved for m ≤ 0; since Hγ > 0 one gets the unique minimizer mmin =
(
Hγ
A

)1/(1−γ)

> 0

and the minimum Dc̃·ϕγ (mmin ·Q,P) = c̃
γ · (1 −

H1/(1−γ)

Aγ/(1−γ) ). Hence, (48) is established. The assertions (49) and (50) follow

immediately by monotonicity inspection of x→ c̃
γ ·
[
1− 1

Aγ/(1−γ) ·
[
1 + γ · (A− 1) + γ·(γ−1)

c̃ · x
]−1/(γ−1)

]
for x ≥ 0 such

that 1 + γ · (A− 1) + γ·(γ−1)
c̃ · x ≥ 0.

(ib) The subcase γ ∈]0, 1[ (cf. the third line of (258)) works analogously if Hγ > 0; furthermore, if Hγ = 0 — which can
only appear when P, Q have disjoint supports (singularity)— then infm>0Dc̃·ϕγ (m ·Q,P) = c̃

γ which is (the corresponding
special case of) (48).
(ic) In the subcase γ ∈]1,∞[ (cf. the fifth, sixth and seventh line of (258)) it is straightforward to see that the desired infimum
can not be achieved for m < 0. Hence, one can proceed analogously to subcase (ia).
(id) The assertions (51) to (54) are straightforward.
(ii) Case γ = 1. From the fourth line of (258), one obtains the unique minimizer mmin = exp{−I/A} and the minimum
Dc̃·ϕ1

(mmin · Q,P) = c̃ · (1 − A ·mmin), which leads to (55). The monotonicity of x → c̃ · (1 − exp{−x/c̃}) for x ≥ 0
implies immediately (56) and (57); moreover, (58) and (59) are immediate.
(iii) Case γ = 0. The second line of (258) implies the unique minimizer mmin = 1/A, the minimum Dc̃·ϕ0

(mmin ·Q,P) =

c̃ · (Ĩ + logA), and hence (60). The assertions (61) to (64) are obvious. �

APPENDIX D
PROOFS — PART 4

Proof of Proposition 29. Clearly, (G1) and (G2) are part of the definition of Υ̃(]a, b[). Recall our required representability
(6). The therein involved Laplace-Stieltjes transform (Laplace-Lebesgue transform)

z 7→MGF�(z) :=

∫
R

ez·y d�(y) = E�[ez·W ] (259)

of a probability measure � on the real line respectively of an associated random variable W (with �[· ] := �[W ∈ · ]) has the
following fundamental properties, according to well-known general theory:
(M1) MGF� takes values in ]0,∞];
(M2) the effective domain dom(MGF�) is an interval which contains 0 and which may be degenerated or even the whole

real line; correspondingly, we denote its interior by ]λ−, λ+[:= int(dom(MGF�)) which may be the empty set (in case
that dom(MGF�) = {0}, i.e. λ− = λ+ = 0); clearly, there holds λ− ∈ [−∞, 0] and λ+ ∈ [0,∞];

(M3) MGF� is continuous on dom(MGF�) and lower semicontinuous on R;
(M4) if λ− 6= λ+, then MGF� is real analytic and thus infinitely differentiable on ]λ−, λ+[;
(M5) if MGF� is finite in a neighborhood of zero, i.e. 0 ∈]λ−, λ+[, then for all k ∈ N0 the k−th moment of � respectively

W exists and is finite and can be computed in terms of the k−th derivative MGF
(k)
� as

MGF
(k)
� (0) =

∫
R

yk d�(y) = E�[W k], (260)

which, by the way, then allows the interpretation of MGF� as “moment generating function of � resp. W ”35;
(M6) if λ− 6= λ+, then MGF� is strictly convex on ]λ−, λ+[.

Hence, the logarithm of the Laplace-Stieltjes transform

z 7→ Λ�(z) := logMGF�(z) := log

∫
R

ez·y d�(y) = logE�[ez·W ] (261)

35since we assume 0 ∈]λ−, λ+[, we have already used the meaningful abbreviation MGF (rather than LST) in (259)
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(which in case of 0 ∈]λ−, λ+[ can be interpreted as cumulant generating function) “carries over” (M1) to (M6), which partially
can be even refined:
(C1) Λ� takes values in ]−∞,∞];
(C2) dom(Λ�) = dom(MGF�) and thus int(dom(Λ�)) = ]λ−, λ+[;
(C3) Λ� is continuous on dom(Λ�) and lower semicontinuous on R;
(C4) if λ− 6= λ+, then λ� is infinitely differentiable on ]λ−, λ+[;
(C5) if 0 ∈]λ−, λ+[, then

Λ�(0) = 0, Λ′�(0) =

∫
R

y d�(y) = E�[W ], (262)

Λ′′� (0) =

∫
R

(
y −

∫
R

ỹ d�(ỹ)
)2

d�(y) = E�[W 2]− (E�[W ])2 = V ar�[W ]; (263)

(C6) under the assumption λ− 6= λ+ there holds: Λ� is strictly convex on ]λ−, λ+[ if and only if � is not a one-point
distribution (Dirac mass) if and only if W is not a.s. constant; otherwise, Λ� is linear;

(C7) under the assumption that � is not a one-point distribution (Dirac mass) — with the notations a := inf supp(�) =
inf supp(W ), b := sup supp(�) = sup supp(W ), tsc− := inf{Λ′�(z) : z ∈]λ−, λ+[} = limz↓λ− Λ′�(z) and
tsc+ := sup{Λ′�(z) : z ∈]λ−, λ+[} = limz↑λ+ Λ′�(z) — one gets the following assertions:

(C7i) ]tsc− , t
sc
+ [ ⊆ ]a, b[;

(C7ii) if a > −∞, then
• λ− = −∞,
• tsc− = limz→−∞ Λ′�(z) = limz→−∞

Λ�(z)
z = a;

(C7iii) if b <∞, then
• λ+ =∞,
• tsc+ = limz→∞ Λ′�(z) = limz→∞

Λ�(z)
z = b;

(C7iv) if a = −∞ and λ− = −∞, then tsc− = limz→−∞ Λ′�(z) = −∞ = a;
(C7v) if b =∞ and λ+ =∞, then tsc+ = limz→∞ Λ′�(z) =∞ = b;

(C7vi) if λ− ∈ ]−∞, 0[ and tsc− > −∞, then
• a = −∞,
• Λ�(λ−) ∈ ]−∞,∞[,
• Λ�(z) =∞ for all z < λ−,
• Λ′�(λ−) ∈ ]−∞,∞[;

(C7vii) if λ+ ∈ ]0,∞[ and tsc+ <∞, then
• b =∞,
• Λ�(λ+) ∈ ]−∞,∞[,
• Λ�(z) =∞ for all z > λ+,
• Λ′�(λ+) ∈ ]−∞,∞[;

(C7viii) if λ− ∈ ]−∞, 0[ and tsc− = −∞, then a = −∞;
(C7ix) if λ+ ∈ ]0,∞[ and tsc+ =∞, then b =∞.

Notice that (C7ii) to (C7ix) cover all possible constellations. For a proof of (C7ii) to (C7vii) as well as further details, see
e.g. Section 9.1 in Borovkov [56]. By contradiction, (C7viii) follows from (C7ii) and (C7ix) follows from (C7iii). Moreover,
(C7i) is a consequence (C7ii) to (C7ix). As a side remark, notice that (C6) refines (M6).

According to the representability requirement (6), one has

ϕ(t) = sup
z∈R

(z · t− Λ�(z)) =: Λ∗� (t), t ∈ R, (264)

(i.e. the divergence generator ϕ must be equal to the Fenchel-Legendre transform Λ∗� of a cumulant generating function Λ�) of
some probability distribution �, such that λ− < 0 < λ+ holds. Moreover, ϕ should satisfy ϕ(1) = 0, and should be finite as
well as strictly convex in a non-empty neighborhood ]tsc− , t

sc
+ [ of 1 (cf. the definition of Υ̃(]a, b[)). The latter rules out that � is

any one-point distribution (Dirac distribution), say � = δy0
for some y0 ∈ R, since in such a situation one gets Λ�(z) = z · y0,

and thus ϕ(t) = Λ∗� (t) = 0 for t = y0 and ϕ(t) = Λ∗� (t) = ∞ for all t ∈ R\{y0} (even in the case y0 = 1 for which
ϕ(1) = 0 is satisfied). Consequently, Λ� is strictly convex on ]λ−, λ+[ = int(dom(Λ�)) (cf. (C6)) and (C7) applies. Clearly,
by continuity one gets

Λ∗� (t) = sup
z∈]λ−,λ+[

(t · z − Λ�(z)) , t ∈ R. (265)
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For t ∈]tsc− , t
sc
+ [, the optimization problem (265) can be solved explicitly by the well-known “pure/original” Legendre transform,

namely

Λ∗� (t) = t · Λ′−1
� (t)− Λ�

(
Λ′−1
� (t)

)
, t ∈]tsc− , t

sc
+ [. (266)

Let us inspect the further cases t ≤ tsc− . In the contexts of (C7iv) and (C7viii), this is obsolete since tsc− = a = −∞. For (C7ii),
where tsc− = a > −∞, one can show Λ∗� (a) = − log �[{a}] = − log�[W = a ] which together with (264) proves (G10ii);
moreover, Λ∗� (t) = ∞ for all t < a (see e.g. Section 9.1 of Borovkov [56]). In the setup (C7vi), where tsc− > a = −∞ it is

clear that Λ∗� (t
sc
− ) = tsc− · Λ′−1

� (tsc− )− Λ�

(
Λ′−1
� (tsc− )

)
= tsc− · λ− − Λ�(λ−) and

Λ∗� (t) = t · λ− − Λ�(λ−) = Λ∗� (t
sc
− ) + λ− · (t− tsc− ) for all t ∈]−∞, tsc− [. (267)

As far as the cases t ≥ tsc+ is concerned, in the situations of (C7v) and (C7ix), this is obsolete since tsc+ = b =∞. For (C7iii),
where tsc+ = b < ∞, one can show Λ∗� (b) = − log �[{b}] = − log�[W = b ] which together with (264) proves (G10iii);
moreover, Λ∗� (t) = ∞ for all t > b (see e.g. Section 9.1 of Borovkov [56]). In the setup (C7vii), where tsc+ < b = ∞ it is

clear that Λ∗� (t
sc
+ ) = tsc+ · Λ′−1

� (tsc+ )− Λ�

(
Λ′−1
� (tsc+ )

)
= tsc+ · λ+ − Λ�(λ+) and

Λ∗� (t) = t · λ+ − Λ�(λ+) = Λ∗� (t
sc
+ ) + λ+ · (t− tsc+ ) for all t ∈]tsc+ ,∞[. (268)

As a side effect, we have thus also proved (G10i) and (G3) (notice that in (G3) we have started with a, b to be the endpoints
of the support of � respectively W , in contrast to Definition 3 where a, b are defined as the endpoints of the effective domain
of ϕ).

To proceed, from (264) and (266) we obtain

ϕ′(t) = (Λ∗� )
′(t) = Λ′−1

� (t), ϕ′′(t) = (Λ∗� )
′′(t) =

1

Λ′′�
(
Λ′−1
� (t)

) > 0, t ∈]tsc− , t
sc
+ [, (269)

which — together with the investigations below (266) — provides (G4) and (G5); moreover, (G6) is immediate since the
infinite differentiability is straightforward and ϕ′(1) = 0 because we have required both the nonnegativity of ϕ and (G2) (cf.
the definition of Υ̃(]a, b[)). The property (G7) follows from (C7ii), (C7iv), (C7viii), (264), (267) and ϕ′(tsc− ) = Λ′−1

� (tsc− ) = λ−.
Analogously, we get (G8) from (C7iii), (C7v), (C7ix), (264), (268) and ϕ′(tsc+ ) = Λ′−1

� (tsc+ ) = λ+.

Let us continue with (G9). By applying the general theory of double Fenchel-Legendre transforms (bi-conjugates), (156) turns
into

ϕ∗(z) = Λ�(z), z ∈ R, (270)

which deduces (G9i). The properties (G9ii), (G9iii) and (G9iv) follow from Theorem 30 (cf. the discussion thereafter). Finally,
we obtain (G11i) and (G11ii) from (269), (262) and (263). �

Proof of Proposition 31. The assertions follow immediately from (157), (158), (159), Theorem 30, (269) (and the discussion
thereafter) as well as (M5). �

APPENDIX E
PROOFS — PART 5

Proof of Proposition 34. The assertion follows straightforwardly from the following two facts:
(i) a moment generating function MGF is infinitely divisible if and only if MGF c is a moment generating function for all
c > 0 (cf. e.g. (the MGF-version of) Prop. IV.2.5 of Steutel & van Harn [341]).
(ii) z 7→ MGF (z) is a moment generating function if and only if z 7→ MGF (c̆ · z) =: MGFc̆(z) is a moment generating
function for all c̆ > 0.
Notice that for each c > 0, c̆ > 0 one has int(dom(MGF )) = int(dom(MGF c)) and int(dom(MGFc̆)) = 1

c̆ ·int(dom(MGF )),
and hence the light-tailedness remains unchanged: 0 ∈ int(dom(MGF )) if and only if 0 ∈ int(dom(MGF c)) if and only if
0 ∈ int(dom(MGFc̆)). Since ϕ ∈ Υ(]a, b[), we have

ϕ(t) = sup
z∈]λ−,λ+[

z · t− log
(∫
R

ez·y d�(y)
) , t ∈]a, b[ , (271)
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and thus for the exponential of its Fenchel-Legendre transform∫
R

ez·yd�(y), z ∈]λ−, λ+[. (272)

Now, let ϕ̃ := c̃ · ϕ ∈ Υ(]a, b[) for arbitrarily fixed c̃ > 0. From the application of (6) to ϕ̃ we obtain

ϕ̃(t) = sup
z̃∈]λ̃−,λ̃+[

z̃ · t− log

∫
R

ez̃·ỹd�̃c̃(ỹ)

 , t ∈]a, b[ , (273)

for some unique probability distribution �̃c̃ on R. Here, according to (G9i) for ϕ̃ we have used λ̃− := inft∈]a,b[ ϕ̃
′(t) = c̃ · λ−

and λ̃+ := supt∈]a,b[ ϕ̃
′(t) = c̃ · λ+. Dividing (273) by c̃, we arrive at

ϕ(t) =
ϕ̃(t)

c̃
= sup

z̃∈]c̃·λ−,c̃·λ+[

 z̃
c̃
· t− log

(∫
R

e
z̃
c̃ ·ỹ·c̃d�̃c̃(ỹ)

)1/c̃

 ,

= sup
z∈]λ−,λ+[

z · t− log
(∫
R

ez·ỹ·c̃d�̃c̃(ỹ)
)1/c̃

 , t ∈]a, b[ , (274)

and hence for the exponential of its Fenchel-Legendre transform

eϕ∗(z) =
(∫
R

ez·ỹ·c̃d�̃c̃(ỹ)
)1/c̃

, z ∈]λ−, λ+[. (275)

Here, according to (G9i) for ϕ̃ we have used λ̃− := inft∈]a,b[ ϕ̃
′(t) = c̃ · λ− and λ̃+ := supt∈]a,b[ ϕ̃

′(t) = c̃ · λ+.
From (272) and (275) we deduce for c̃ := 1

n the relation MGF�(z) = (MGF
�̃1/n

( zn ))n for all n ∈ N which (with the help of
(ii)) implies the infinitely divisibility of �.
For the reverse direction, let us assume that ϕ ∈ Υ(]a, b[) and that the corresponding � is infinitely divisible. Recall that ]a, b[=
int(dom(ϕ)). Moreover, we fix an arbitrary constant c̃ > 0. Of course, there holds c̃ ·ϕ ∈ Υ̃(]a, b[) and dom(c̃ ·ϕ) = dom(ϕ).
Furthermore, by multiplying (271) with c̃ > 0 and by employing (i), (ii) we get

c̃ · ϕ(t) = sup
z∈]λ−,λ+[

c̃ · z · t− log
(∫
R

ec̃·z·
y
c̃ d�(y)

)c̃ = sup
z̃∈]c̃·λ−,c̃·λ+[

z̃ · t− log
(∫
R

e
z̃
c̃ ·y d�(y)

)c̃
= sup

z̃∈]c̃·λ−,c̃·λ+[

z̃ · t− log
(∫
R

ez̃·yd�c̃(y)
) , t ∈]a, b[; (276)

for some probability distribution �c̃ on R. �

Proof of Proposition 35.
It is well known that a candidate function M :] −∞, 0[ 7→]0,∞[ is the moment-generating function of an infinitely divisible
probability distribution if and only if (logM)′ is absolutely monotone (see e.g. Theorem 5.11 of Schilling et al. [322]). By ap-
plying this to M(z) := e−a·z+ϕ

∗(z) respectively M(z) := eb·z+ϕ
∗(−z), one gets straightforwardly the assertion (a) respectively

(b); notice that the light-tailedness follows then from (G1) to (G8), and b =∞ respectively a = −∞ can be deduced from the
fact that the support of an infinitely distribution is always (one-sided or two-sided) unbounded. For the third case a = −∞,
b =∞ one can use the assertion (cf. e.g. Morris [267], p.73) that a candidate function M : ]λ−, λ+[ 7→ ]0,∞[ is the moment-
generating function of an infinitely divisible probability distribution if the connected function z 7→ (logM)′′(z)/(logM)′′(0) is
the moment-generating function of some auxiliary probability distribution; but the latter is equivalent to exponentially convexity
(cf. Theorem 30(b)). By applying this to M(z) := eϕ

∗(z), one ends up with (c). �

APPENDIX F
PROOFS — PART 6

Proof of Theorem 36. (i) Clearly, on ]λ−, λ+[ the function Λ is differentiable with strictly increasing derivative

Λ′(z) = F−1(z + c) + 1− F−1(c), z ∈]λ−, λ+[. (277)
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Hence, Λ is strictly convex and smooth (because of the smoothness of F−1), and satisfies Λ(0) = 0 as well as Λ′(0) = 1.
Also, the corresponding extensions of Λ to z = λ− and z = λ+ are continuous.
(ii) It is straightforward to see that on ]tsc− , t

sc
+ [ the function ϕ is differentiable with strictly increasing derivative

ϕ′(t) = F (t+ F−1(c)− 1)− c, t ∈]tsc− , t
sc
+ [. (278)

Hence, ϕ is strictly convex and smooth (because of the smoothness of F ), and satisfies ϕ(1) = 0 as well as ϕ′(1) = 0. Also,
the corresponding extensions of ϕ to t = tsc− and t = tsc− are continuous. Hence (G1), (G2), (G5) and (G6) hold.

To prove (G3) (and hence (G1)), let us first notice that obviously there holds a ≤ tsc− and tsc+ ≤ b. Moreover, the validity
of ϕ(t) <∞ for all t ∈]tsc− , t

sc
+ [ is clear from (163) since t+ F−1(c)− 1 ∈]aF , bF [= int(dom(F )) and the involved integral

over the continuous function F−1 is taken over a compact interval.
For the subcase tsc− = −∞ = a we have thus shown dom(ϕ)∩] − ∞, 1] =] − ∞, 1] =]a, 1], whereas for the subcase

tsc+ =∞ = b we have verified dom(ϕ) ∩ [1,∞[= [1,∞[= [1, b[.
Let us next examine the subcase “tsc− > −∞ and ϕ(tsc− ) < ∞”: if λ− > −∞ then a = −∞ and (163) implies ϕ(t) =

ϕ(tsc− ) + λ− · (t− tsc− ) <∞ for all t ∈ ]−∞, tsc− ] =]a, tsc− ], which leads to dom(ϕ)∩]−∞, 1] =]−∞, 1] =]a, 1]; in contrast,
if λ− = −∞ then a = tsc− and (163) implies ϕ(t) = ϕ(tsc− ) + λ− · (t − tsc− ) = ∞ for all t ∈ ] −∞, tsc− [=] −∞, a[, which
leads to dom(ϕ)∩]−∞, 1] = [a, 1].

In the subcase “tsc− > −∞ and ϕ(tsc− ) = ∞”, due to the strict convexity of ϕ one always has limt↓tsc− ϕ
′(t) = −∞; this

implies, by the below-mentioned (279), that λ− = −∞ and thus a = tsc− ; from (163) we derive ϕ(t) = ϕ(tsc− )+λ−·(t−tsc− ) =∞
for all t ∈ ]−∞, tsc− [=]−∞, a[, which leads to dom(ϕ)∩]−∞, 1] =]a, 1].

As a further step, we deal with the subcase “tsc+ < ∞ and ϕ(tsc+ ) < ∞”: if λ+ < ∞ then b = ∞ and (163) implies
ϕ(t) = ϕ(tsc+ ) + λ+ · (t− tsc+ ) <∞ for all t ∈ [tsc+ ,∞[= [tsc+ , b[, which leads to dom(ϕ)∩ [1,∞[= [1,∞[= [1, b[; in contrast,
if λ+ = ∞ then b = tsc+ and (163) implies ϕ(t) = ϕ(tsc+ ) + λ+ · (t − tsc+ ) = ∞ for all t ∈ ]tsc− ,∞[=]b,∞[, which leads to
dom(ϕ) ∩ [1,∞[= [1, b].

In the subcase “tsc+ < +∞ and ϕ(tsc+ ) = ∞”, due to the strict convexity of ϕ one always gets limt↑tsc+ ϕ′(t) = ∞; this
implies, by the below-mentioned (280), that λ+ =∞ and thus b = tsc+ ; from (163) we deduce ϕ(t) = ϕ(tsc+ )+λ+ ·(t−tsc+ ) =∞
for all t ∈ ]tsc+ ,∞[=]b,∞[, which leads to dom(ϕ) ∩ [1,∞[= [1, b[.
Putting things together, we have proved (G3). The property (G4) follows straightforwardly from (278), the continuity of F
and from limt↓tsc− ϕ

′(t) = λ−, limt↑tsc+ ϕ′(t) = λ+. To see the latter two, from (278) we obtain

lim
t↓tsc−

ϕ′(t) = lim
t↓tsc−

F (t+ F−1(c)− 1)− c = lim
t↓tsc−

F (t+ aF − tsc− )− c = inf{F (t̃)− c : t̃ ∈]aF , bF [} = λ−, (279)

lim
t↑tsc+

ϕ′(t) = lim
t↑tsc+

F (t+ F−1(c)− 1)− c = lim
t↑tsc+

F (t+ bF − tsc+ )− c = sup{F (t̃)− c : t̃ ∈]aF , bF [} = λ+. (280)

The two properties (G7) and (G8) are clear form the above considerations.
(iii) From (277) and (278) one gets easily

Λ′−1(t) = F
(
t+ F−1(c)− 1

)
− c = ϕ′(t), t ∈]tsc− , t

sc
+ [, (281)

as well as Λ′−1(1) = 0. From this, we derive

t · Λ′−1(t)− Λ
(
Λ′−1(t)

)
= t · [F

(
t+ F−1(c)− 1

)
− c] + [F−1(c)− 1] · [F

(
t+ F−1(c)− 1

)
− c]

−

F(t+F−1(c)−1)−c∫
0

F−1(u+ c)du

= ϕ(t), t ∈]tsc− , t
sc
+ [, (282)

and hence, with the help of (281) in combination with (279), (280)

ϕ(t) = max
z∈]λ−,λ+[

(z · t− Λ(z)) , t ∈]tsc− , t
sc
+ [, (283)

i.e. on ]tsc− , t
sc
+ [ the divergence generator ϕ is the classical Legendre transform of the restriction of Λ to ]λ−, λ+[. If “λ− > −∞,

Λ(λ−) ∈]−∞,∞[ and Λ′(λ−) ∈]−∞,∞[” respectively “λ+ < −∞, Λ(λ+) ∈]−∞,∞[ and Λ′(λ+) ∈]−∞,∞[”, then one
can apply classical facts of Fenchel-Legendre transformation to get the corresponding left-hand respectively right-hand linear
extensions of ϕ on the complement of ]tsc− , t

sc
+ [, in order to obtain the desired

ϕ(t) = sup
z∈]−∞,∞[

(z · t− Λ(z)) , t ∈ R; (284)

notice that tsc− = limz↓λ− Λ′(z) and tsc+ = limz↑λ+
Λ′(z).

(iv) This is just the inverse of (iii), by applying standard Fenchel-Legendre-transformation theory. �
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APPENDIX G
FURTHER DETAILS AND PROOFS FOR SUBSECTION VI-A

Proof of Lemma 57. By Assumption (OM), one gets for all λ ∈ cl(Λ) that {x ∈ (dom(ϕ̃)n : T (x) = λ}∩ ]tsc− , t
sc
+ [n 6= ∅.

Moreover, for any x = (x1, .., xn) in Rn, by the independence of the components of W̃ as well as (265) and (270), we have

I
W̃

(x) = sup
z=(z1,...,zn)∈Rn

(
〈x, z〉 −

n∑
i=1

Λ
�̃
(zi)

)
= sup

z∈]λ−,λ+[n

(
n∑
i=1

(
xi · zi − Λ

�̃
(zi)
))

=

n∑
i=1

(
sup

zi∈]λ−,λ+[

(
xi · zi − Λ

�̃
(zi)
))

=

n∑
i=1

ϕ̃(xi) =

K∑
k=1

∑
i∈I(n)

k

ϕ̃(xi) (285)

which is finite if and only if x ∈ (dom(ϕ̃))n (recall that ϕ̃ is a nonnegative function). Hence, for each λ ∈ Λ we obtain

I(λ) := inf
x∈Rn:T (x)=λ

I
W̃

(x) = inf
x∈(dom(ϕ̃))n:T (x)=λ

I
W̃

(x) = inf
x∈(dom(ϕ̃))n:T (x)=λ

K∑
k=1

∑
i∈I(n)

k

ϕ̃(xi) (286)

=

K∑
k=1

nk · ϕ̃(λk) = n ·
K∑
k=1

p̃k · ϕ̃(λk) = inf
x∈]tsc− ,t

sc
+ [n :T (x)=λ

I
W̃

(x) ; (287)

here, we have employed the following facts: (i) the right-most infimum in (286) is achieved by minimizing each of the K
terms

∑
i∈I(n)

k

ϕ̃(xi) under the linear constraint 1
nk
·
∑
i∈I(n)

k

xi = λk, and by the strict convexity of ϕ̃ on ]tsc− , t
sc
+ [ (cf. (G5))

the minimum of this generic term is attained when all components xi are equal to λk, and (ii) the outcoming minimum does
not depend on the particular (generally non-unique) choice of the xi’s. Notice that we have used the relation nk = n · p̃k
as well. To proceed, let λ be a minimal rate point of Λ, which means that λ ∈ ∂Λ and I(λ) ≤ I(λ) for all λ ∈ Λ. By
Assumption (OM) one can run all the steps in (286) and (287) with λ instead of λ, and hence

I(λ) = inf
x∈Rn:T (x)=λ

I
W̃

(x) = inf
x∈]tsc− ,t

sc
+ [n :T (x)=λ

I
W̃

(x) = n ·
K∑
k=1

p̃k · ϕ̃(λk) = n ·
K∑
k=1

p̃k · ϕ̃(q̃
k
/p̃k) (288)

where for the last equality we have employed the vector Q̃ := D−1λ which we have called the “dominating point of Ω̃”. Also
we have proved

I(λ) = n · inf
Q̃∈Ω̃

K∑
k=1

p̃k · ϕ̃(q̃k/p̃k). � (289)

On the obtainment of proxies of minimal rate points by proxy method 2:
For the rest of this section, besides (OM) we assume that dom(ϕ̃) = ]a, b[ = ]tsc− , t

sc
+ [, and that in case of a = −∞ or b = +∞

the divergence generator ϕ̃ is regularly varying at a or b accordingly, with positive index β, i.e. (with a slight abuse of notation)
• if a = −∞, then for all λ > 0 there holds

lim
u→−∞

ϕ̃ (λu)

ϕ̃ (u)
= λβ ,

• if b = +∞, then for all λ > 0 there holds

lim
u→+∞

ϕ̃ (λu)

ϕ̃ (u)
= λβ ;

this assumption is denoted by (Hϕ̃).
A proxy of Q̃ can be obtained by sampling from a distribution on RK defined through

f(Q̃) := C · exp

(
−

K∑
k=1

p̃k · ϕ̃(q̃k/p̃k)

)
= C · exp

(
−Dϕ̃

(
Q̃, P̃

))
(cf. (220))

where C is a normalizing constant; strict convexity (cf. (G5)) of ϕ̃ together with (Hϕ̃) prove that f is a well-defined (Lebesgue-)
density for a random variable T on RK . We denote by F(·) := �[T ∈ · ] the corresponding distribution on RK having density
f . The distribution of T given

(
T ∈ Ω̃

)
concentrates on the points in Ω̃ which minimize Dϕ̃

(
Q̃, P̃

)
as Q̃ runs in Ω̃, when

Dϕ̃(Ω̃, P̃) is large. This can be argued as follows. We will consider the case when Ω̃ is a compact subset in RK>0 and ϕ̃

satisfies (Hϕ̃) with b = +∞. For the case when Ω̃ is not compact, or belongs to RK/ {0}, see the Remark 67 hereunder.
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Consider a compact set Γ in Ω̃ and let Γt be defined as deduced from Γ in a way that makes Dϕ̃

(
Γt, P̃

)
increase with t for

sufficiently large t. For instance, set
Γt := t · Γ. (290)

Hence, in case of b = +∞ the divergence

Dϕ̃

(
Γt, P̃

)
= inf
gt∈Γt

K∑
k=1

p̃k · ϕ̃
(

(gt)k
p̃k

)
= inf
g∈Γ

K∑
k=1

p̃k · ϕ̃
(
t · gk
p̃k

)
tends to infinity as t→∞; the case a = −∞ works analogously with t→ −∞. In case of b <∞ we may consider

Γt := {b− g/t; g ∈ Γ} (291)

and indeed Dϕ̃

(
Γt, P̃

)
→∞ as t→∞, with a similar statement when a > −∞.

Assume that Γ has a dominating point g. Then Γt has dominating point g
t

:= t · g. We prove that T with distribution (220)
cannot be too far away (depending on t) from g

t
whenever T belongs to Γt. This argument is valid in the present description

of some asymptotics which makes Γt as a model for Ω̃ for large t; considering the case when Dϕ̃

(
Ω̃, P̃

)
is large is captured

through the asymptotic statement
lim
t→∞

Dϕ̃

(
Γt, P̃

)
= +∞.

There holds the following

Proposition 65: With the above notation and under condition (Hϕ̃), denote by B a neighborhood of g and Bt := t ·B. Then

F[Γt ∩Bc
t |Γt ] = � [T ∈ Γt ∩Bc

t | T ∈ Γt]→ 0

as t→∞, which proves that simulations under (220) produce proxies of the dominating points g
t

in Γt.

Before we start with the proof of Proposition 65, we first quote the following

Lemma 66: Let ϕ̃ satisfy (Hϕ̃) with b = +∞. Then for all A in RK such that

ᾰ := Dϕ̃(A, P̃) := inf
v∈A

K∑
k=1

p̃k · ϕ̃
(
vk
p̃k

)
is finite there holds

lim
t→∞

1

t
log

∫
A

exp

(
−t

K∑
k=1

p̃k · ϕ̃
(
vk
p̃k

))
dv1 . . . dvk = −Dϕ̃

(
A, P̃

)
.

Proof of Lemma 66. Let us first remark that according to the geometry of the set A, various combinations for the asymptotics
(290) or (291) may occur; for sake of brevity, we only handle the simplest ones, since all turn to be amenable through the
same arguments. Denote for positive r

B(r) :=

{
v ∈ RK :

K∑
k=1

p̃kϕ̃

(
vk
p̃k

)
> r

}
.

It holds, by making the change of variable r = t · ᾰ+ t · s,∫
A

exp

(
−t

K∑
k=1

p̃k · ϕ̃
(
vk
p̃k

))
dv1 . . . dvk =

∫
· · ·
∫

1R+(r) · 1A(v) · 1]
t
∑K
k=1 p̃kϕ̃

(
vk
p̃k

)
,∞
[(r) · e−r dr dv1 . . . dvK

= te−tᾰ
∫
· · ·
∫

1]−ᾰ,∞[(s) · 1A(v) · 1Bc(ᾰ+s)(v) · e−ts ds dv1 . . . dvK = te−tᾰ
∞∫
−ᾰ

V ol (A ∩Bc(ᾰ+ s)) · e−ts ds.

Let It := t ·
∫∞

0
V ol (A ∩Bc(ᾰ+ s)) e−tsds. We prove that

lim
t→∞

1

t
log It = 0. (292)

When a = −∞ or b = +∞, since ϕ̃ satisfies (Hϕ̃) there exists a polynomial P such that

V ol (A ∩Bc(ᾰ+ s)) ≤ P (s) ;
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whence, assuming without loss of generality that dom(ϕ̃) = R+, we obtain

1

t
log It ≤

1

t
log

∞∫
0

P
(u
t

)
te−udu

which yields that for large t
1

t
log It < 0.

When dealing with a context where a or b have finite value and the corresponding sets Γt are “far away” from Γ in terms
of the distance measure Dϕ̃

(
·, P̃
)

, then V ol (A ∩Bc(ᾰ+ s)) is bounded. Hence, lim supt→∞
1
t log It ≤ 0. Now fix ε > 0.

Then, since V ol (A ∩Bc(a+ s)) is increasing in s, we get

It ≥ t

∞∫
ε

V ol (A ∩Bc(ᾰ+ s)) e−tsds

≥ V ol (A ∩Bc(ᾰ+ ε)) e−tε.

Hence
1

t
log It ≥

1

t
log V ol (A ∩Bc(ᾰ+ ε))− ε

which yields lim inft→∞
1
t log It ≥ 0. Therefore (292) holds, which concludes the proof. �

We now turn to the

Proof of Proposition 65. Without loss of generality, let b = +∞, Γt as in (290) and Condition (Hϕ̃) hold. Moreover, consider
an arbitrary neighborhood B of g and the corresponding neighborhoods Bt := t ·B of g

t
= t · g. There holds

1

ϕ̃(t)
log� [T ∈ Γt] =

C

ϕ̃(t)
log

∫
Γt

exp

(
−

K∑
k=1

p̃k · ϕ̃
(
wk
p̃k

))
dw1 . . . dwK

(1)
=

CK

ϕ̃(t)
log t+

C

ϕ̃(t)
log

∫
Γ

exp

(
−tβ ·

K∑
k=1

p̃k ·
(
ϕ̃

(
vk
p̃k

)
· (1 + o(1))

))
dv1 . . . dvK

(2)
=

CK

ϕ̃(t)
log t+

C

(ϕ̃(t)/tβ)
· 1

tβ
log

(1 + o(1)) ·
∫
Γ

exp

(
−tβ

K∑
k=1

p̃k · ϕ̃
(
vk
p̃k

))
dv1 . . . dvK


(3)
= −Ct

β

ϕ̃(t)
·Dϕ̃(Γ, P̃) · (1 + o(1))

(4)
= −l̆(t) ·Dϕ̃(Γ, P̃) · (1 + o(1))

as t tends to infinity. In the above display, (1) follows from ϕ̃(tx) = (tx)
β · `(tx) = tβ ·xβ · `(x) · `(tx)

`(x) = tβ · ϕ̃(x) · (1 + o(1))

as t tends to infinity and x lies in a compact subset of ]0,∞[, where ` is a slowly varying function. The equality (2) follows
from compactness of Γ together with the fact that ϕ̃ is a regularly varying function with index β, so that

lim
t→∞

ϕ̃(tv)

ϕ̃(t)
= vβ

uniformly upon v on compact sets in ]0,∞[. The remaining equalities (3) and (4) follow from classical properties of regularly
varying functions, where ˘̀ := 1/` is a slowly varying function at infinity, together with standard Laplace-Integral approximation.

In the same way we can show
1

ϕ̃(t)
log�[ T ∈ Γt ∩Bc

t ] = −l̆(t) ·Dϕ̃(Γ ∩Bc, P̃) · (1 + o(1))

as t tends to infinity. Since B is a neighborhood of the unique dominating point g of Γ, one gets that Dϕ̃(Γ∩Bc, P̃) > Dϕ̃(Γ, P̃).
This implies that

�
[
T ∈ Γt ∩Bc

t

∣∣T ∈ Γt
]
→ 0 as t→∞. �

Remark 67: Firstly, let us quote that the case when Ω̃ is an unbounded subset in RK/ {0} is somewhat immaterial for
applications. Anyhow, if compactness of Γ is lost, then in order to use the same line of arguments as above, it is necessary to
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strengthen the assumptions (Hϕ̃) e.g. as follows: when b = +∞ then ϕ̃ has to be asymptotically homogeneous with degree
β > 0, in the sense that ϕ̃(tx) = tβϕ̃(x) ·(1+o(1)) as t→∞; for the subcase a = −∞ one employs an analogous assumption
as t→ −∞. The case when Ω̃ is a compact set in RK\{0} can be treated as above, by combining the asymptotics in t in the
neighborhood of a and b accordingly.

APPENDIX H
PROOF FOR SUBSECTION VI-B

Proof of Proposition 60. Recall the weighted empirical measure

ξV
n,X :=

 1

n

∑
i∈I(n)

1

Vi, . . . ,
1

n

∑
i∈I(n)

K

Vi


which satisfies the K linear constraints defined in (235) through

ES [ξV
n,X] = ξW∗

M,X = W ∗ · ξwW∗

M,X

where Q∗ := (q∗1 , . . . , q
∗
K) = ξwW∗

M,X ∈ int(ΩΩ) and W ∗ = 1
M

∑M
j=1W

∗
j . The probability distribution S defined on Rn is

the Kullback-Leibler projection of �⊗n on the class of all probability distributions on Rn which satisfy (235). We prove that
lim infn→∞ S

[
ξwV
n,X ∈ ΩΩ

]
> 0. To start with, we define for strictly positive δ the set

An,δ :=

{∣∣∣∣∣ 1n
n∑
i=1

Vi −W ∗
∣∣∣∣∣ ≤ δ

}
and write

S
[
ξwV
n,X ∈ ΩΩ

]
= S

[
{ξwV
n,X ∈ ΩΩ} ∩An,δ

]
+ S

[
{ξwV
n,X ∈ ΩΩ} ∩Acn,δ

]
=: I + II.

By the law of large numbers, the second term II tends to 0 as n tends to infinity. Moreover, one can rewrite

I = S

[ ⋃
m∈[W∗−δ,W∗+δ]

{
ξV
n,X ∈ m ·ΩΩ

}]
which entails

I ≥ S

[
1

nk

∑
i∈I(n)

k

Vi ∈ Vη
(
W ∗

q∗k
pk

)
for all k ∈ {1, . . . ,K}

]
,

where Vη
(
W ∗

q∗k
pk

)
denotes a neighborhood of W ∗ q

∗
k

pk
with radius η being small when δ is small, for large enough n, making

use of the a.s. convergence of nk/n to pk. Now, for any k ∈ {1, . . . ,K} one has

S

[
1

nk

∑
i∈I(n)

k

Vi /∈ Vη
(
W ∗

q∗k
pk

)]
≤ exp

(
− nk · inf

x∈Vη
(
W∗

q∗
k
pk

)c ϕ (x)

)
(293)

since any margin of S with index in I(n)
k is a corresponding Kullback-Leibler projection of � on the set of all distributions on

R with expectation W ∗ · q∗k
pempM,k

— where pempM,k denotes the fraction of the Xi’s (within X1, . . . , XM ) which are equal to dk (cf.
(29)) — and therefore has a moment generating function which is finite in a non-void neighborhood of 0, which yields (293)
by the Markov Inequality. Note that the event

{
ξwW∗

M,X ∈ int (ΩΩ)
}

is regenerative, so that M can be chosen large enough to
make pempM,k close to pk for all k ∈ {1, . . . ,K}. This proves the claim. �
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A. Radhakrishnan, L. Mihatsch, P. Lückemeier, J. Leube, G. Dössinger1, L. Klein, M. Neuenhahn, J.D. Oduro, L. Cicin-Sain, V.R. Buchholz and D.H.
Busch, “Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection,” Nature Immunol., Vol. 21, pp. 434–441,
2020.

[324] A. Schrijver, Combinatorial Optimization, Vol.A,B,C. Heidelberg, Germany: Springer, 2003.
[325] A.-K. Seghouane and N. Shokouhi, “Adaptive learning for robust radial basis function networks,” IEEE Trans. Cybernetics, Vol. 51, No. 5, pp.

2847–2856, 2021.
[326] M.T. Seweryn, M. Pietrzak and Q. Mab, “Application of information theoretical approaches to assess diversity and similarity in single-cell

transcriptomics,” Comput. Struct. Biotechn. J., Vol. 18, pp. 1830—1837, 2020.
[327] G. Shafer, A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press, 1976.
[328] C.E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, Vol. 27, no. 3, pp. 379–423, 1948.
[329] B.D. Sharma and D.P. Mittal, “New nonadditive measures of entropy for discrete probability distributions,” J. Math. Sci. (Delhi), Vol. 10, pp. 28–40,

1975.
[330] B.D. Sharma and D.P. Mittal, “New nonadditive measures of entropy for discrete probability distributions,” J. Combin. Inform. System Sci., Vol. 2, no.

4, pp. 122–132, 1977.
[331] M. Shiino, “H-Theorem with generalized relative entropies and the Tsallis statistics,” J. Phys. Soc. Japan, Vol. 67, no. 11, pp. 3658–3660, 1998.
[332] D.-D. Shi, D. Chen and G.-J. Pan, “Characterization of network complexity by communicability sequence entropy and associated Jensen-Shannon

divergence,” Phys. Rev. E, Vol. 101, No. 042305, 2020; doi:10.1103/PhysRevE.101.042305.
[333] D.S. Shucker, “Extensions and generalizations of a theorem of Widder and of the theory of symmetric local semigroups,” J. Funct. Anal., Vol. 58, pp.

291–309, 1984.
[334] R. Sibson, “Information radius,” Probab. Theory Rel. Fields, Vol. 14, pp. 149–160, 1969.
[335] J. S. Sigmon et al., “Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse

Research,” Genetics, Vol. 216, pp. 905—930, 2020.
[336] A.K. Singh, H.P. Singh and Karmeshu, “Analysis of finite buffer queue: maximum entropy probability distribution with shifted fractional geometric

and arithmetic means,” IEEE Commun. Lett., Vol. 19, no. 2, pp. 163–166, 2015.
[337] M.A. Skinnider, C.W. Johnston, M. Gunabalasingam, N.J. Merwin, A.M. Kieliszek, R.J. MacLellan, H. Li, M.R.M. Ranieri, A.L.H. Webster, M.P.T.

Cao, A. Pfeifle, N. Spencer, Q. H. To, D.P. Wallace, C.A. Dejong 3 and N.A. Magarvey, “Comprehensive prediction of secondary metabolite structure
and biological activity from microbial genome sequences,” Nature Commun., Vol. 11, 6058, 2020; doi:10.1038/s41467-020-19986-1.

[338] T. Skrbic, A. Maritan, A. Giacometti and J.R. Banavar, “Local sequence-structure relationships in proteins,” Protein Sci., Vol. 30, pp. 818—829, 2021.
[339] Y. Song and Y. Deng, “Divergence measure of belief function and its application in data fusion,” IEEE Access, Vol. 7, pp. 107465–107472, 2020.
[340] A.D. Staszowska, P. Fox-Roberts, L.M. Hirvonen, C.J. Peddie, L.M. Collinson, G.E. Jones and S. Cox, “The Renyi divergence enables accurate and

precise cluster analysis for localization microscopy,” Bioinformatics, Vol. 34, no. 23, pp. 4102—4111, 2018.
[341] F.W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions On The Real Line. New York, USA: Marcel Dekker Inc., 2004.
[342] S. Stoller and K.A. Campbell, “Demonstration of three true random number generator circuits using memristor created entropy and commercial

off-the-shelf components,” Entropy, Vol. 23, No. 371, 2021; doi:10.3390/e23030371.
[343] D.W. Stroock, Probability Theory: An Analytic View, 2nd ed. New York, USA: Cambridge University Press, 2011.
[344] W. Stummer, Exponentials, Diffusions, Finance, Entropy and Information. Aachen, Germany: Shaker, 2004.
[345] W. Stummer, “Optimal transport with some directed distances,” in: F. Nielsen and F. Barbaresco (eds.), Geometric Science of Information GSI 2021,

Lecture Notes in Computer Science, vol. 12829, pp. xxx—xxx. Cham, Switzerland: Springer Nature Switzerland, 2021.
[346] W. Stummer and A.-L. Kißlinger, “Some new flexibilizations of Bregman divergences and their asymptotics,” In: F. Nielsen and F. Barbaresco (eds.),

Geometric Science of Information GSI 2017, Lecture Notes in Computer Science, vol. 10589, pp. 514—522. Cham, Switzerland: Springer International
Publishing, 2017.

[347] W. Stummer and W. Lao, “Limits of Bayesian decision related quantities of binomial asset price models,” Kybernetika, Vol. 48, no.4, pp. 750–767,
2012.

[348] W. Stummer and I. Vajda, “Optimal statistical decisions about some alternative financial models,” J. Econometrics, Vol. 137, no.2, pp. 441–471, 2007.
[349] W. Stummer and I. Vajda, “On divergences of finite measures and their applicability in statistics and information theory,” Statistics, Vol. 44, no. 2, pp.

169—187, 2010.
[350] W. Stummer and I. Vajda, “On Bregman distances and divergences of probability measures,” IEEE Trans. Inf. Theory, Vol. 58, no. 3, pp. 1277–1288,

2012.



93

[351] W. Sun, J. Wang and F. Jin, “An automatic coordinate unification method of multitemporal point clouds based on virtual reference datum detection,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 13, pp. 3942–3950, 2020.

[352] R. Sundaresan, “A measure of discrimination and its geometric properties,” in: Proc. 2002 IEEE Int. Symp. Inf. Theory (ISIT 2002), Lausanne,
Switzerland, p. 264.

[353] R. Sundaresan, “Guessing Under Source Uncertainty,” IEEE Trans. Inf. Theory, Vol. 53, no. 1, pp. 269–287, 2007.
[354] S. Suo, Q. Zhu, A. Saadatpour, L. Fei, G. Guo and G.-C. Yuan, “Revealing the critical regulators of cell identity in the mouse cell atlas,” Cell Rep.,

Vol. 25, pp. 1436—1445, 2018.
[355] B. Tao, L. Zhu, H. Ding and Y. Xiong, “An alternative time-domain index for condition monitoring of rolling element bearings – a comparison study,”

Reliab. Eng. Syst. Saf., Vol. 92, pp. 660–670, 2007.
[356] A. Tarighati and J. Jalden, “Optimality of rate balancing in wireless sensor networks,” IEEE Trans. Signal Process., Vol. 64, no. 14, pp. 3735–3749,

2016.
[357] M. Teboulle and I. Vajda, “Convergence of best φ−entropy estimates,” IEEE Trans. Inf. Theory, Vol. 39, no. 1, pp. 297–301, 1993.
[358] J.S. Teh, A. Samsudin, M. Al-Mazrooie and A. Akhavan, “GPUs and chaos: a new true random number generator,” Nonlinear Dyn., Vol. 82, pp.

1913–1922, 2015.
[359] A. Theodorescu, “Energie informationelle et notions apparentees,” Trabajos de Estadist. Investigacion Oper., Vol. XXVIII, no. 2-3, pp. 183–206, 1977.
[360] F. Topsoe, “Some inequalities for information divergence and related measures of discrimination,” IEEE Trans. Inf. Theory, Vol. 46, no. 4, pp. 1602–1609,

2000.
[361] E. Torgersen, Comparison of Statistical Experiments. Cambridge, UK: Cambridge University Press, 1991.
[362] G.T. Toussaint, “Probability of error, expected divergence and the affinity of several distributions,” IEEE Trans. Syst. Man Cyb., Vol. 8, no. 6, pp.

482–485, 1978.
[363] C. Tsallis, “Possible generalization of Boltzmann-Gibbs Statistics,” Journal of Statistical Physics, Vol. 52, no. 1/2, pp. 479–487, 1988.
[364] C. Tsallis, “Generalized entropy-based criterion for consistent testing,” Phys. Rev. E, Vol. 58, No. 2, pp. 1442–1445, 1998;
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