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In information theory -as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing and pattern recognition -many flexibilizations of the omnipresent Kullback-Leibler information distance (relative entropy) and of the closely related Shannon entropy have become frequently used tools. To tackle corresponding constrained minimization (respectively maximization) problems by a newly developed dimension-free bare (pure) simulation method, is the main goal of this paper. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary dimension, and our method is precise (i.e., converges in the limit). As a side effect, we also derive an innovative way of constructing new useful distances/divergences. To illustrate the core of our approach, we present numerous examples. The potential for widespread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences and entropies in various different research fields (which may also serve as an interdisciplinary interface).

The minimization inf Q∈Ω D(Q, P) of divergences from one distribution (respectively, its equivalent vector of frequencies) P to an appropriate set Ω of distributions (frequency vectors) appears in a natural way in various different contexts, as indicated in the following. For instance, let P = P true be the true distribution of a mechanism which generates non-deterministic data and Ω is a pregiven model in the sense of a (parametric or non-parametric) family of distributions which serves as an "approximation" (in fact, a collection of approximations) of the "truth" P true . If P true /

∈ Ω -e.g. since Ω reflects some simplifications of P true which is in line with the general scientific procedure -then the positive quantity Φ Ptrue (Ω) := inf Q∈Ω D(Q, P true ) can be used as an index of model adequacy in the sense of a degree of departure between the model and the truth (cf. Lindsay [START_REF] Lindsay | Statistical distances as loss functions in assessing model adequacy[END_REF], see also e.g. Lindsay et al. [223], Markatou & Sofikitou [START_REF] Markatou | Non-quadratic distances in model assessment[END_REF], Markatou & Chen [START_REF] Markatou | Statistical distances and the construction of evidence functions for model adequacy[END_REF]); small index values should indicate high adequacy. If P true ∈ Ω, then Φ Ptrue (Ω) = 0 which corresponds to full adequacy. This index of model adequacy Φ Ptrue (Ω) can also be seen as index of goodness/quality of approximation to the truth or as model misspecification error, and it can be used for model assessment as well as for model search (model selection, model hunting) by comparing the indices Φ Ptrue (Ω 1 ), Φ Ptrue (Ω 2 ), . . . of competing models Ω 1 , Ω 2 , . . . and choosing the one with the smallest index; this idea can be also used for classification (e.g. analogously to Bilik & Khomchuk [START_REF] Bilik | Minimum divergence approaches for robust classification of ground moving targets[END_REF] who deal with continuous (rather than discrete) distributions) where the Ω i are interpreted as (possibly data-derived but fixed) classes which are disjoint and non-exhaustive.

Typically, in statistical analyses the true distribution P true is unknown and is either replaced by a hypothesis-distribution P hyp or by a distribution P data derived from data (generated by P true ) which converges to P true as the data/sample size tends to infinity (e.g. P data may be the well-known empirical distribution or a conditional distribution). Correspondingly, Φ P data (Ω) reflects a data-derived approximation (estimate) of the index of model adequacy (resp. of the model misspecification error) from which one can cast corresponding model-adequacy tests and related goodness-of-fit tests. Moreover, for the case of i.i.d. data-generation and P data to be the corresponding empirical distribution, the (not necessarily existent or unique) bestmodel-member/element choice arg min Q∈Ω D(Q, P data ) amounts to the well-known minimum distance estimator which for the Kullback-Leibler information divergence D is equal to the omnipresent maximum likelihood estimator; for comprehensive surveys on divergence-based statistical testing and estimation, the reader is referred to e.g. the references in the second half of the first paragraph in the current introduction.

Most of the above-mentioned considerations also hold for deterministic (rather than non-deterministic) frameworks where P is a general Euclidean vector (rather than a probability-distribution describing frequency vector in the probability simplex) and Ω is a model in the sense of a family of general Euclidean vectors (which may be encodings of more complicated context descriptions).

Returning to the general context, let us mention that from CASM ϕ-divergences one can also derive the widely used ϕ-entropies E ϕ (Q) of a distribution Q (and non-probability versions thereof) in the sense of Burbea & Rao [START_REF] Burbea | On the convexity of some divergence measures based on entropy functions[END_REF] (see also Csiszar [START_REF] Csiszár | A class of measures of informativity of observation channels[END_REF], Ben-Bassat [START_REF] Ben-Bassat | f-entropies, probability of error, and feature selection[END_REF], Ben-Tal & Teboulle [START_REF] Ben-Tal | Rate-distortion theory with generalized information measures via convex programming duality[END_REF], Kesavan & Kapur [START_REF] Kesavan | The generalized maximum entropy principle[END_REF], Dacunha-Castelle & Gamboa [START_REF] Dacunha-Castelle | Maximum d'entropie et probleme des moments[END_REF], Teboulle & Vajda [START_REF] Teboulle | Convergence of best φ-entropy estimates[END_REF], Gamboa & Gassiat [START_REF] Gamboa | Asymptotic distribution of (h, φ)-entropies[END_REF], Vajda & Zvarova [START_REF] Vajda | On generalized entropies, Bayesian decisions and statistical diversity[END_REF]); these entropies can e.g. be basically constructed from D ϕ (Q, P unif ) where P unif denotes the uniform distribution. Moreover, by use of certain deterministic transformations h one can also deduce the more general (h, ϕ)-entropies (and non-probability versions thereof) in the sense of Salicru et al. [START_REF] Salicru | Asymptotic distribution of (h, φ)-entropies[END_REF] (see also e.g. Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF]). As will be worked out in detail in Subsection IV-C below, from this one can deduce as special cases a variety of prominently used quantities in research, such as for instance:

• the omnipresent Shannon entropy [START_REF] Shannon | A mathematical theory of communication[END_REF], the γ-order Renyi entropy [START_REF] Renyi | On measures of entropy and information[END_REF], the γ-order entropy of Havrda-Charvat [START_REF] Havrda | Quantification method of classification process[END_REF] (also called non-additive γ-order Tsallis entropy [START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs Statistics[END_REF] in statistical physics), the γ-order entropy of Arimoto [START_REF] Arimoto | Information-theoretical considerations on estimation problems[END_REF], Vajda's quadratic entropy [START_REF] Vajda | Theory of Statistical Inference and Information[END_REF], Sharma-Mittal entropies [START_REF] Sharma | New nonadditive measures of entropy for discrete probability distributions[END_REF],

• the Euclidean γ-norms, as well as • measures of diversity, heterogeneity and unevenness, like the Gini-Simpson diversity index, the diversity index of Hill [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF], the Simpson-Herfindahl index (which is also known as index of coincidence, cf. Harremoes & Topsoe [START_REF] Harremoes | Inequalities between entropy and index of coincidence derived from information diagrams[END_REF] and its generalization in Harremoes & Vajda [START_REF] Harremoes | On the Bahadur-efficient testing of uniformity by means of the entropy[END_REF]), the diversity index of Patil & Taillie [START_REF] Patil | Diversity as a concept and its measurement[END_REF], the γ-mean heterogeneity index (see e.g. van der Lubbe [START_REF] Van Der Lubbe | An axiomatic theory of heterogeneity and homogeneity[END_REF]); see also Nayak [START_REF] Nayak | On diversity measures based on entropy functions[END_REF] and Jost [START_REF] Jost | Entropy and diversity[END_REF] for some interrelations with the above-mentioned entropies.

Given that the constraint set Ω reflects some incomplete/partial information about a system (e.g. moment constraints), the maximization over Q ∈ Ω of the above-mentioned entropies, norms and diversity indices (and the more general (h, ϕ)-entropies) is important for many research topics, most notably manifested in Jaynes's [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF], [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF] omnipresent, "universally applicable" maximum entropy principle (which employs the Shannon entropy), and its generalizations (see e.g. the books of Kapur [START_REF] Kapur | Maximum-entropy models in science and engineering[END_REF], Kapur & Kesavan [START_REF] Kapur | Entropy Optimization Principles With Applications[END_REF], Arndt [START_REF] Arndt | Information Measures[END_REF], and Gzyl et al. [START_REF] Gzyl | Loss Data Analysis. The Maximum Entropy Approach[END_REF] for comprehensive surveys).

Besides the above-mentioned principal overview, let us now briefly discuss some existing technical issues for the minimization of CASM ϕ-divergences Φ P (Ω) := inf Q∈Ω D ϕ (Q, P). For (not necessarily discrete) probability distributions/measures P and sets Ω of probability distributions/measures satisfying a finite set of linear equality constraints, Φ P (Ω) has been characterized in Csiszar [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF] and more recently by Csiszar & Matus [START_REF] Csiszár | Information projections revisited[END_REF], Broniatowski & Keziou [START_REF] Broniatowski | Minimization of φ-divergences on sets of signed measures[END_REF], Leonard [START_REF] Léonard | Minimization of entropy functionals[END_REF], and Pelletier [START_REF] Pelletier | Inference in ϕ--families of distributions[END_REF] among others, in various contexts; those results extend to inequality constraints. Minimizations of γ-order Renyi divergences on γ-convex sets Ω are studied e.g. in Kumar & Sason [START_REF] Kumar | Projection theorems for the Renyi divergence on α-convex sets[END_REF], whereas Kumar & Sundaresan [203] [204] investigate minimizations of Sundaresan's divergence on certain convex sets Ω.

To our knowledge, no general representation for Φ P (Ω) for a positive distribution/measure P (respectively, for an Euclidean vector with positive components) and a general set Ω of signed measures (respectively, of Euclidean vector with components of arbitrary sign) exists. At the contrary, many algorithmic approaches for such minimization problems have been proposed; they mostly aim at finding minimizers more than at the evaluation of the minimum divergence itself, which is obtained as a by-product. Moreover, it is well-known that such kind of CASM ϕ-divergence minimization problems may be hard to tackle or even intractable via usual methods such as the omnipresent gradient descent method and versions thereof, especially for non-parametric or semi-parametric Ω in sufficiently high-dimensional situations. For instance, Ω may consist (only) of constraints on moments or on L-moments (see e.g. Broniatowski & Decurninge [START_REF] Broniatowski | Estimation for models defined by conditions on their L-moments[END_REF]); alternatively, Ω may be e.g. a tubular neighborhood of a parametric model (see e.g. Liu & Lindsay [START_REF] Liu | Building and using semiparametric tolerance regions for parametric multinomial models[END_REF], Ghosh & Basu [START_REF] Ghosh | A new family of divergences originating from model adequacy tests and applications to robust statistical inference[END_REF]). The same intractability problem holds for the above-mentioned (h, ϕ)-entropy maximization problems. In the light of this, the goals of this paper are:

• to solve constrained minimization problems of a large range of CASM ϕ-divergences and deterministic transformations thereof (respectively constrained maximization problems of (h, ϕ)-entropies including Euclidean norms and diversity indices), by means of a newly developed dimension-free bare (pure) simulation method which is precise (i.e., converges in the limit) and which needs almost no assumptions (like convexity) on the set Ω of constraints; in doing so, for the sake of brevity we concentrate on finding/computing the minimum divergences themselves rather than the corresponding minimizers (to achieve the latter, e.g. dichotomous search could be used in a subsequent step, however); • to derive a method of constructing new useful distances/divergences; • to present numerous examples in order to illuminate our method and its potential for wide-spread applicability; as we go along, we also deliver many recent references for uses of the outcoming distances/divergences and entropies (covering in particular all the above-mentioned ones).

This agenda is achieved in the following way. In the next Section II, we briefly introduce the principal idea of our new bare-simulation optimization paradigm. After manifesting the fundamentally employed class of CASM ϕ-divergences in Section III, we give in Section IV the main cornerstones, construction principles and theorems, for deterministic as well as for statistical divergence-minimization problems; the maximization of generalized entropies is addressed, too. Section V deals with the concrete determination of the involved simulation-weights, as well as with the interrelated issue of creating associated CASM ϕ-divergences. Some sampling-concerning details for the principal implementation of our bare-simulation optimization approach are worked out in Section VI. The main proofs are presented in the appendices.

A first simulation-based algorithm in vein with the present proposal has been developed by Broniatowski [START_REF] Broniatowski | A weighted bootstrap procedure for divergence minimization problems[END_REF], in the restricted setup of risk estimation for power divergences. The present paper extends this considerably by considering general CASM ϕ-divergences and related entropies, and by dealing with corresponding general optimization problems, of both deterministic respectively stochastic type.

II. A NEW MINIMIZATION PARADIGM

We concern with minimization problems of the following type, where M is a topological space and T is the Borel σ-field over a given base on M; e.g. take M = K to be the K-dimensional Euclidean space equipped with the Borel σfield T .

Definition 1: A measurable function Φ : M → [0, ∞] and measurable set Ω ⊂ M3 are called "bare-simulation minimizable" (BS-minimizable) respectively "bare-simulation maximizable" (BS-maximizable) if for

Φ(Ω) := inf Q∈Ω {Φ(Q)} < ∞ respectively Φ(Ω) := sup Q∈Ω {Φ(Q)} < ∞ (1) 
there exists a measurable function G : [0, ∞[ → [0, ∞[ as well as a sequence ((X n , A n , ¥ n )) n∈x of probability spaces and on them a sequence (ξ n ) n∈x4 of M-valued random variables such that

G -lim n→∞ 1 n log ¥ n [ξ n ∈ Ω] = inf Q∈Ω Φ(Q) = Φ(Ω) (2) 
respectively

G -lim n→∞ 1 n log ¥ n [ξ n ∈ Ω] = sup Q∈Ω Φ(Q) = Φ(Ω); (3) 
in situations where Φ is fixed and different Ω's are considered, we say that "Φ is bare-simulation minimizable (BS-minimizable) on Ω" respectively "Φ is bare-simulation maximizable (BS-maximizable) on Ω".

Remark 2: (a) Even in situations where one can uniformly choose (X n , A n , ¥ n ) ≡ ( X, A, ¥), the sequence (ξ n ) n∈x may be not "independent and identically distributed" . (b) Throughout the paper, we shall mainly deal with BS-minimizability.

The basic idea/incentive of this new approach is: if a minimization problem [START_REF] Aalen | Modeling the heterogeneity in survival analysis by the compound Poisson distribution[END_REF] has no explicit solution and is computationally intractable (or unfeasible) but can be shown to be BS-minimizable with concretely constructable (ξ n ) n∈x and (¥ n ) n∈x , then one can basically simulate the log-probabilities -1 n ¥ n [ξ n ∈ Ω] for large enough integer n ∈ x to obtain an approximation of (1) without having to evaluate the corresponding (not necessarily unique) minimizer, where the latter is typically time-costly. Finding minimizers can be performed through dichotomic search, once an algorithm leading to the minimal value of the divergence on adequate families of sets Ω is at hand; for the sake of brevity, this is omitted in the current paper.

For reasons of transparency, we start to demonstrate this approach for the following important/prominent class of minimization problems with the following components:

(i) M is the K-dimensional Euclidean space K , i.e. Ω is a set of vectors Q with a number of K components (where K may be huge, as it is e.g. the case in big data contexts);

(ii) Φ(•) := Φ P (•) depends on some known vector P in K with K nonnegative components;

(iii) Φ P (•) is a "directed distance" (divergence) from P into Ω in the sense of Ω Q → Φ P (Q) := D(Q, P ), where D(•, •) has the the two properties "D(Q, P ) ≥ 0" and "D(Q, P ) = 0 if and only if Q = P ". In particular, D(•, •) needs neither satisfy the symmetry D(Q, P ) = D(P, Q) nor the triangular inequality. In other words, [START_REF] Aalen | Modeling the heterogeneity in survival analysis by the compound Poisson distribution[END_REF] together with (i)-(iii) constitutes a distance/divergence-minimization problem; we design a "universal" method to solve such problems by constructing appropriate (cf.( 2)) sequences (ξ n ) n∈x of K -valued random variables, for all directed distances D(•, •) from a large subclass of the important omnipresent Csiszar-Ali-Silvey-Morimoto CASM ϕ-divergences (also called f -divergences).

As a second demonstration for the workability of our paradigm, we "extend" (i) to (iii) to the setup where P is a random element of the simplex K of K-component probability (frequency) vectors (cf. the exact definition below) and Ω ⊂ K ; for the subsetup where P corresponds to a data-observation-dependent probability distribution and Ω corresponds to a pregiven model in the sense of a family of probability distributions, the formula (1) amounts to the corresponding (discrete) "minimization-distance estimation problem (MDEP)" of choosing the best model element/member under given data 5 . This is important/prominent in statistics and in the adjacent research fields of artificial intelligence and machine learning; the concrete solving of the MDEP is especially "hard" for nonparametric respectively semiparametric problems, and our BS method is predestined for such kind of contexts.

III. DIRECTED DISTANCES

In detail, concerning the above-mentioned point (i) we take the Kdimensional Euclidean space M = K , denote from now on -as usual -its elements (i.e. vectors) in boldface letters, and also employ the subsets K =0 := {Q := (q 1 , . . . , q K ) ∈ K : q i = 0 for all i = 1, . . . , K}, K >0 := {Q := (q 1 , . . . , q K ) ∈ K : q i > 0 for all i = 1, . . . , K}, K ≥0 := {Q := (q 1 , . . . , q K ) ∈ K : q i ≥ 0 for all i = 1, . . . , K}, K ≤0 := {Q := (q 1 , . . . , q K ) ∈ K : q i ≤ 0 for all i = 1, . . . , K}, K := {Q := (q 1 , . . . , q K ) ∈ K ≥0 : K i=1 q i = 1} (simplex of probability vectors), K >0 := {Q := (q 1 , . . . , q K ) ∈ K >0 :

K i=1 q i = 1}.
Concerning the directed distances D(•, •) in (ii) and (iii), we deal with the important omnipresent Csiszar-Ali-Silvey-Morimoto ϕdivergences (CASM ϕ-divergences) -adapted to our context: Definition 3: (a) Let the "divergence-generator" be a lower semicontinuous convex function ϕ : ] -∞, ∞[→ [0, ∞] satisfying ϕ(1) = 0.

Furthermore, for the effective domain dom(ϕ) := {t ∈ : ϕ(t) < ∞} we assume that its interior int(dom(ϕ)) is non-empty which implies that int(dom(ϕ)) =]a, b[ for some -∞ ≤ a < 1 < b ≤ ∞. Moreover, we suppose that ϕ is strictly convex in 5 an alternative naming also used in literature is to call Ω a model class (rather than model), and each P ∈ Ω a model (rather than model element) a non-empty neighborhood ]t sc -, t sc + [⊆]a, b[ of one (t sc -< 1 < t sc + ). Also, we set ϕ(a) := lim t↓a ϕ(t) and ϕ(b) := lim t↑b ϕ(t) (these limits always exist). The class of all such functions ϕ will be denoted by Υ(]a, b[). A frequent choice is e. ≥0 and Q := (q 1 , . . . , q K ) ∈ Ω ⊂ K , we define the Csiszar-Ali-Silvey-Morimoto ϕ-divergence

Φ P (Q) := D ϕ (Q, P) := K k=1 p k • ϕ q k p k ≥ 0. (4) 
As usual, in (4) we employ the three conventions that p • ϕ 0 p = p • ϕ(0) > 0 for all p > 0, and 0 • ϕ q 0 = q • lim x→∞ ϕ(x•sgn(q)) x•sgn(q)

> 0 for q = 0 (employing the sign of q), and 0 • ϕ 0 0 := 0. Throughout the paper, we only consider constellations (ϕ, P, Ω) for which the very mild condition

Φ P (Ω) := inf Q∈Ω D ϕ (Q, P) = ∞ 6 holds.
For probability vectors P and Q in K , the ϕ-divergences D ϕ (Q, P) were introduced by Csiszar [START_REF] Csiszár | Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten[END_REF], Ali & Silvey [START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF] and Morimoto [START_REF] Morimoto | Markov processes and the H-theorem[END_REF] (where the first two references even deal with more general probability distributions); for some comprehensive overviews -including statistical applications to goodness-of-fit testing and minimum distance estimation -the reader is referred to the insightful books of e.g. Liese & Vajda [START_REF] Liese | Convex Statistical Distances[END_REF], Read & Cressie [START_REF] Read | Goodness-of-Fit Statistics for Discrete Multivariate Data[END_REF], Vajda [START_REF] Vajda | Theory of Statistical Inference and Information[END_REF], Csiszar & Shields [START_REF] Csiszár | Information Theory and Statistics: a Tutorial[END_REF], Stummer [START_REF] Stummer | Exponentials, Diffusions, Finance, Entropy and Information[END_REF], Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF], Liese & Miescke [START_REF] Liese | Statistical Decision Theory: Estimation, Testing, and Selection[END_REF], the survey articles of e.g. Liese & Vajda [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], Vajda & van der Meulen [START_REF] Vajda | Goodness-of-fit criteria based on observations quantized by hypothetical and empirical percentiles[END_REF], Reid & Williamson [START_REF] Reid | Information, divergence and risk for binary experiments[END_REF], Basseville [START_REF] Basseville | Divergence measures for statistical data processing --an annotated bibliography[END_REF], and the references therein. Some exemplary recent studies and applications of CASM ϕdivergences appear e.g. in Qiao & Minematsu [START_REF] Qiao | A study on invariance of f-divergence and its application to speech recognition[END_REF] for invariances in speech recognition, Nguyen et al. [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF] in connection with empirical risk optimization, Feixas et al. [START_REF] Feixas | Information Theory Tolls for Image Processing[END_REF] for various different image processing tasks, Luo et al. [START_REF] Luo | F-divergences driven video key frame extraction[END_REF] for video clip segmentation and key frame generation, Kißlinger & Stummer [START_REF] Kißlinger | New model search for nonlinear recursive models, regressions and autoregressions[END_REF] for model preselection (structure detection) in the context of nonlinear recursive models with additional exogenous inputs, Mahboubi & Kochenderfer [START_REF] Mahboubi | Learning traffic patterns at small airports from flight tracks[END_REF] within a context of traffic-pattern learning from flight tracks, Guo et al. [START_REF] Guo | Improving scale invariant feature transform with local color descriptor for image classification[END_REF] for local contrastive descriptors in image classification through e.g. regional color distributions, Csiszar & Breuer [START_REF] Csiszár | Expected value minimization in information theoretic multiple priors models[END_REF] for modelling generalized-ball type constraints in expectation minimization problems, Kißlinger & Stummer [START_REF] Kißlinger | A new toolkit for robust distributional change detection[END_REF] for the detection of distributional changes in random data (streams and clouds), Noh et al. [START_REF] Noh | Generative local metric learning for nearest neighbor classification[END_REF] within a context of generative local metric learning for nearest neighbor classification, Yu et al. [START_REF] Yu | Oil spill segmentation via adversarial f-divergence learning[END_REF] for adversarial learning within oil spill segmentation, Arslan [START_REF] Arslan | Statistical coverage control of mobile sensor networks[END_REF] for automated active reconfiguration in mobile sensor networks, Sason [START_REF] Sason | On data-processing and majorization inequalities for f-Divergences with applications[END_REF] in connection with with data-processing and majorization inequalities, Ciftci et al. [START_REF] Ciftci | Data-driven nonparametric chance-constrained optimization for microgrid energy management[END_REF] for the optimization of multienergy microgrids in energy infrastructure systems, and Stummer [START_REF] Stummer | Optimal transport with some directed distances[END_REF] for solving some new optimal transport (OT) problems which flexibilize some Wasserstein-distance based OTs.

For the setup of D ϕ (Q, P) for vectors P, Q with non-negative components the reader is referred to e.g. Stummer & Vajda [START_REF] Stummer | On divergences of finite measures and their applicability in statistics and information theory[END_REF] (who deal with even more general nonnegative measures and giving some statistical as well as information-theoretic applications) and Gietl & Reffel [START_REF] Gietl | Continuity of f -projections and applications to the iterative proportional fitting procedure[END_REF] (including applications to iterative proportional fitting). The case of ϕ-divergences for vectors with arbitrary components can be extracted from e.g. Broniatowski & Keziou [START_REF] Broniatowski | Minimization of φ-divergences on sets of signed measures[END_REF] who actually deal with finite signed measures. For a comprehensive technical treatment, see also Broniatowski & Stummer [64].

Clearly, from (4) it is obvious that in general D ϕ (Q, P) = D ϕ (P, Q) (non-symmetry). Moreover, it is straightforward to deduce that D ϕ (Q, P) = 0 if and only if Q = P (reflexivity). Very prominent and important examples of CASM ϕ-divergences are the power divergences in the scaling of e.g. Liese & Vajda [START_REF] Liese | Convex Statistical Distances[END_REF] (in other scalings also called Rathie & Kannapan's nonadditive directed divergences of order γ [START_REF] Rathie | A directed-divergence function of type β[END_REF], Cressie-Read divergences [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF] [START_REF] Read | Goodness-of-Fit Statistics for Discrete Multivariate Data[END_REF], relative Tsallis entropies or Tsallis crossentropies [START_REF] Tsallis | Generalized entropy-based criterion for consistent testing[END_REF] (see also Shiino [START_REF] Shiino | H-Theorem with generalized relative entropies and the Tsallis statistics[END_REF]), Amari's alpha-divergences [START_REF] Amari | Differential-Geometrical Methods in Statistics[END_REF]) where basically (up to technicalities) ϕ(t) := ϕ γ (t) :=

t γ -γ•t+γ-1 γ•(γ-1)
(γ ∈ \{0, 1}), ϕ(t) := ϕ 0 (t) := lim γ→0 ϕ γ (t) = -log t+t-1, ϕ(t) := ϕ 1 (t) := lim γ→1 ϕ γ (t) = t•log t+1-t.

Usually, in the literature one takes t ∈ ]0, ∞[ (and the limit as t → 0), except for the case γ = 2 where one handles t ∈ ] -∞, ∞[; for our purposes, we have to essentially extend these divergence generators ϕ γ for t < 0, which will be carried out and discussed in detail below, namely in [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF], [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF] (see also Table 1), as well as at several other places in this paper. Notice that D ϕ1 (Q, P) basically corresponds to the (extended form of) the omnipresent Kullback-Leibler information resp. relative entropy. Below, we shall also consider the minimization/maximization of important transforms of power divergences such as Renyi divergences/entropies, Sundaresan's divergence, etc., which are frequently used in information theory and its applications to e.g. artificial intelligence, machine learning, and physics. 6 i.e. dom(ϕ) covers (at least) a non-empty part of {1} ∪ R Ω P , where R Ω P := q k p k : k ∈ {1, . . . , K}, Q := (q 1 , . . . , q K ) ∈ Ω is the range of all possible entry-ratios.

Remark 4: Since, in general, our methods work also for non-probability vectors Q, P, we can also deal with -plain versions and transformations of -weighted ϕ-divergences of the form

D wei ϕ (Q, P) := K k=1 c k • p k • ϕ q k p k ≥ 0 (5) 
where c k > 0 (k = 1, . . . , K) are weights which not necessarily add up to one. Indeed, by means of [START_REF] Afek | DNA mismatches reveal conformational penalties in protein-DNA recognition[END_REF] we formally end up with inf Q∈Ω D wei ϕ (Q, P) = inf Q wei ∈Ω wei D ϕ (Q wei , P wei ) where P wei := (c 1 • p 1 , . . . , c K • p K ), Q wei := (c 1 • q 1 , . . . , c K • q K ) and Ω wei is the corresponding rescaling of Ω. Of course, all the necessary technicalities for the ϕ-divergences (see below) have to be adapted to the weighted ϕ-divergences; for the sake of brevity, this will not be discussed in detail. Notice that P wei , Q wei are generally not probability vectors anymore, even if Q, P are probability vectors. In the latter case, and under the assumption K k=1 c k = 1, the divergences (5) coincide with the discrete versions of the (c-)local divergences of Avlogiaris et al. [START_REF] Avlogiaris | On local divergences between two probability measures[END_REF], [START_REF] Avlogiaris | On testing local hypotheses via local divergence[END_REF] who also give absolutely-continuous versions and beyond (see also Broniatowski & Stummer [64] for an imbedding in a general divergence framework).

IV. CONSTRUCTION PRINCIPLES, BS-MINIMIZABILITY/AMENABILITY A. The cornerstone

In this Section IV, we show that a number of deterministic optimization problems and and problems in statistical minimum risk based approaches pertaining to non-or semi-parametric contexts are BS-minimizable/amenable in the sense of Definition 1. The below-mentioned Sections V and VI will draw conclusions, proposing effective solutions.

For the construction of the desired sequence (ξ n ) n∈x of K -valued random variables (viz. random vectors) and a corresponding probability distribution ¥ (which will not depend on n), we will assume that the divergence generator ϕ ∈ Υ(]a, b[) has the additional property that it can be represented as

ϕ(t) = sup z∈ z • t -log e z•y d(y) , t ∈ , (6) 
for some probability distribution/measure on the real line such that the function z → M GF (z) := e z•y d(y) is finite on some open interval containing zero 7 . From this, we shall construct -basically in Section V below -a sequence (W n ) n∈x of i.i.d. copies of a random variable W whose distribution (under ¥) is (i.e. ¥[W ∈ • ] = [ • ]), from which the desired (ξ n ) n∈x will be constructed.

Since ϕ attains its minimal value at the point 1, fit follows that ϕ (1) = 0. By [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF], for all t in int(dom(ϕ)), ϕ (t) is the reciprocal of ψ(z) := (d/dz) log M GF (z) at point t, whence ψ(0) = 1, which is to say that the expectation E ¥ [W ] = 1.

The class of functions ϕ ∈ Υ(]a, b[) satisfying the representability (6) will be denoted by Υ(]a, b[).

Remark 5: The condition ϕ ∈ Υ(]a, b[) implies that can not be a one-point distribution (Dirac mass) δ y at some point y, since for such a situation one can straightforwardly deduce from (6) that ϕ(y) = 0 and ϕ(t) = ∞ for all t = y, which leads to int(dom(ϕ)) = ∅ and thus ϕ / ∈ Υ(]a, b[) (in fact, our requirement ϕ(y) = 0 would narrow down to y = 1 anyway).

Let us remark that the class Υ(]a, b[) contains many divergence generators; this together with ϕ-construction principles will be developed at length in Section V below. Also, for the minimization problems considered in Section IV-B hereunder, we mostly modify the generator ϕ into c • ϕ for strictly positive scales c. At this point, for the sake of transparency, we only present a summarizing Table 1 of supp()

= ¥[W ∈ • ] Details Q = (q k ) k=1,...K = λ - = λ + = ¥[W ∈ • ] ]0, ∞[ c • ϕγ (t) := c • t γ -γ•t+γ-1 γ•(γ-1) K ≥0 K >0 c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) ]0, ∞[ ∞ ∞ -∞ c 1-γ ]0, ∞[ tilted stable
Prop. 22, for γ < 0, c > 0

-1 γ-1 • K k=1 q k + 1 γ • K k=1 p k distribution on [0, ∞[ Ex. 39(a),48(d) ]0, ∞[ c • ϕγ (t) K ≥0 K ≥0 as above ]0, ∞[ c γ ∞ -∞ c 1-γ [0, ∞[ Compound P OI( c γ ) Prop. 24, for γ ∈]0, 1[, c > 0 -GAM ( c 1-γ , γ 1-γ ) Ex. 39(a),48(b) ]-∞, ∞[ c • {ϕγ (t) • 1 ]0,∞[ (t) K >0 K c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) • 1 [0,∞[ (q k ) ]0, ∞[ ∞ ∞ c 1-γ ∞ ]-∞, ∞[ distorted stable distri- Prop. 27, +( 1 γ - t γ-1 ) • 1 ]-∞,0] (t)} -1 γ-1 • K k=1 q k + 1 γ • K k=1 p k bution on ]-∞, ∞[ Ex. 39(a), for γ ∈]2, ∞[, c > 0 Ex. 48(e) ]-∞, ∞[ c • ϕ 2 (t) = c • (t-1) 2 2 K >0 K c • K k=1 (q k -p k ) 2 2•p k ]-∞, ∞[ ∞ ∞ -∞ ∞ ]-∞, ∞[ N OR(1, 1 c ) Prop. 26, for c > 0 Ex. 39(b),48(c) ]0, ∞[ c • ϕ 0 (t) := c • {-log t K ≥0 K >0 c • K k=1 p k • log p k q k ]0, ∞[ ∞ ∞ -∞ 1 ]0, ∞[ GAM ( c, c) Prop. 23, +t -1} for c > 0 + K k=1 q k - K k=1 p k Ex. 39(c),48(a) ]0, ∞[ c • ϕ 1 (t) := c • {t • log t K >0 K ≥0 c • K k=1 q k • log q k p k ]0, ∞[ 1 ∞ -∞ ∞ {0, 1 c , . . .} 1 c -fold of P OI( c) Prop. 25, +1 -t} for c > 0 - K k=1 q k + K k=1 p k = 1 c • x 0 Ex. 40(a),50(a) ]0, ∞[ c • {t • log t K >0 K ≥0 c • K k=1 q k • log 2q k q k +p k ]0, ∞[ c log 2 ∞ -∞ c log 2 {0, 1 c , . . .} 1 c -fold of N B( c, 1 2 ) 
Ex. 43, Ex. 53,

+(t + 1) • log( 2 t+1 )}, c > 0 + K k=1 p k • log 2p k q k +p k = 1 c • x 0 are more general ] β-1 β ,∞[ c • (t-1) 2 2(β•t+1-β) for c > 0 K ≥0 ] β-1 β P, ∞[ c 2 • K k=1 (q k -p k ) 2 β•q k +(1-β)•p k ] β-1 β , ∞[ ∞ ∞ -∞ c 2β ] β-1 β , ∞[ modified tilted stable Ex. 41, β ∈ ]0, 1] component-wise distribution Ex. 52 ]z 1 , z 2 [ (t-z 1 ) z 2 -z 1 • log (t-z 1 )•p (z 2 -t)•(1-p) K >0 ]z 1 P, z 2 P[ K k=1 q k -z 1 •p k z 2 -z 1 • log p•(q k -z 1 •p k ) (1-p)•(z 2 •p k -q k ) ]z 1 , z 2 [ log 1 p log 1 1-p -∞ ∞ {z 1 , z 2 } [{z 1 }] = p, Ex. 45, z 1 < 1 -log (z 2 -z 1 )•p (z 2 -t) comp.-wise - K k=1 p k • log p•(z 2 -z 1 )•p k z 2 •p k -q k [{z 2 }] = 1 -p Ex. 54 z 2 > 1 for p := z 2 -1 z 2 -z 1 ∈ ]0, 1[ ]t sc -, t sc + [ c•ϕ α,β 1 ,β 2 (t) := 1 ]t sc - ,∞[ (t)• cα•{ K ≥0 K c • K k=1 p k • ϕ α,β 1 ,β 2 q k p k ]1-α • d, ∞[ ∞ ∞ -cβ 1 cβ 1 ]-∞, ∞[ law of θ + Z 1 -Z 2 
Ex. 46(a),

4+(β 1 +β 2 ) 2 g 2 -(β 1 -β 2 )g-2 2 d = 2β 2 1 -β 1 β 2 +β 2 2 2β 1 β 2 (β 2 -β 1 ) θ := 1+α • 1 β 2 -1 β 1
Ex. 55

+ log 4+(β 1 +β 2 ) 2 g 2 -2 β 1 β 2 g 2 } Z 1 , Z 2 independent, +1 ]-∞,t sc - ] (t)•{d-cβ 1 •(t-t sc -)} Z 1 ∼ GAM ( cβ 1 , cα), for 0 < β 1 < β 2 , α, c > 0, Z 2 ∼ GAM ( cβ 2 , cα) g := g(t) := 1-t α + 1 β 2 -1 β 1 , (generalized asymmetric d := cα•{ 3β 1 -β 2 2(β 2 -β 1 ) +log 2(β 2 -β 1 ) β 2 }, Laplace distribution) ]t sc -, t sc + [ c•ϕ α,β 1 ,β 2 (t) := 1 ]-∞,t sc + [ (t)• cα•{ K ≥0 K c • K k=1 p k • ϕ α,β 1 ,β 2 q k p k ]-∞, 1+α • d [ ∞ ∞ -cβ 2 cβ 2 ]-∞, ∞[

as above

Ex. 46(b),

4+(β 1 +β 2 ) 2 g 2 -(β 1 -β 2 )g-2 2 d = β 2 1 -β 1 β 2 +2β 2 2 2β 1 β 2 (β 1 -β 2 )
Ex. 55

+ log 4+(β 1 +β 2 ) 2 g 2 -2 β 1 β 2 g 2 } +1 [t sc + ,∞[ (t)•{d+ cβ 2 •(t-t sc + )} for β 1 > β 2 > 0, α, c > 0, g := g(t) := 1-t α + 1 β 2 -1 β 1 , d := cα•{ 3β 2 -β 1 2(β 1 -β 2 ) +log 2(β 1 -β 2 ) β 1 }, ]-∞, ∞[ c • ϕ α,β (t) := c • α • { 1 + β 2 g 2 K ≥0 K c • K k=1 p k • ϕ α,β q k p k ] -∞, ∞[ ∞ ∞ -cβ cβ ]-∞, ∞[ as above, but for θ = 1, Ex. 46(c), -1 + log 2•( 1+β 2 g 2 -1) β 2 g 2 } Z 1 ∼ GAM ( cβ, cα), Ex. 55 for β, α, c > 0 and g := g(t) := 1-t α Z 2 ∼ GAM ( cβ, cα) Table 1.
Selection of concrete examples treated in this paper, included with some important features (to be explained in the course of method build-up).

As already explained above, the representability ( 6) is the cornerstone for our approach, and opens the gate to make use of simulation methods in appropriate contexts. We first develop this approach for deterministic minimization problems (cf. Subsection IV-B); thereafter, in Subsection IV-C, we "extend" this to the setup where P is identified with an unknown probability vector in the simplex K which is supposed to be the limit (as n tends to infinity) of the empirical distribution pertaining to a collection of observations X n := (X 1 , .., X n ); in the classical statistical setting, this amounts to the estimation of Φ P (Ω) based on X n , leading to the important "minimization-distance estimation problem" in statistics, artificial intelligence and machine learning. Finally, we end up this Section IV by shortly dealing with divergences between fuzzy sets (cf. Subsection IV-D) and basic belief assignments (cf. Subsection IV-E).

B. Deterministic minimization problems

Problem 6: For pregiven ϕ ∈ Υ(]a, b[), positive-entries vector P := (p 1 , .., p K ) ∈ K >0 (or from some subset thereof), and subset Ω ⊂ K (also denoted in boldface letters, with a slight abuse of notation) with regularity properties

cl(Ω) = cl (int (Ω)) , int (Ω) = ∅, (7) 
find

Φ P (Ω) := inf Q∈Ω D ϕ (Q, P), (8) 
provided that inf

Q∈Ω D ϕ (Q, P) < ∞. (9) 
An immediate consequence thereof is -for pregiven ϕ ∈ Υ(]a, b[) -the treatment of the more flexible problem

Φ P,h (Ω) := inf Q∈Ω h D ϕ (Q, P) = h inf Q∈Ω D ϕ (Q, P) (10) 
for any continuous strictly increasing function h : H → with H := [0, ∞[ and extension h(∞) := sup y∈H (y) (depending on the problem, a sufficiently large H ⊂ [0, ∞[ may be enough), respectively of

sup Q∈Ω h D ϕ (Q, P) = h inf Q∈Ω D ϕ (Q, P) (11) 
for any continuous strictly decreasing function h : H → and extension h(∞) := inf y∈H (y).

Remark 7:

(a) By the basic properties of ϕ, it follows that for all c > 0 the level sets ϕ c := {x ∈ : ϕ(x) ≤ c} are compact and so are the level sets of Q →D ϕ (Q, P)

Γ c := Q ∈ K : D ϕ (Q, P) ≤ c
for all c > 0 . (b) When Ω is not closed but merely satisfies [START_REF] Ahlswede | Identification entropy[END_REF], then the infimum in [START_REF] Ahlswede | An interpretation of identification entropy[END_REF] may not be reached in Ω although being finite; however we aim for finding the infimum/minimum in [START_REF] Ahlswede | An interpretation of identification entropy[END_REF]. Finding the minimizers in ( 8) is another question. For instance, this can be solved whenever, additionally, Ω is a closed set which implies the existence of minimizers in Ω. In this case, and when the number of such minimizers is finite, those can be approximated by dichotomic search. For the sake of brevity, this will not be addressed in this paper.

(c) The purpose of the condition ( 7) is to get rid of the lim sup type and lim inf type results in our below-mentioned "baresimulation" approach and to obtain simple limit-statements which motivate our construction. In practice, it is enough to verify

Ω ⊆ cl (int (Ω))
, which is equivalent to the left-hand part of [START_REF] Ahlswede | Identification entropy[END_REF]. Clearly, any open set Ω ⊂ K satisfies the left-hand part of [START_REF] Ahlswede | Identification entropy[END_REF]. In the subsetup where Ω is a closed convex set and int(Ω) = ∅, (7) is satisfied and the minimizer Q min ∈ Ω in ( 8) is attained and even unique.

When Ω is open and satisfies [START_REF] Ahlswede | Identification entropy[END_REF], then the infimum in (8) exists but is reached at some generalized projection of P on Ω (see Csiszar [START_REF] Csiszár | Sanov property, generalized I-projection and a conditional limit theorem[END_REF] for the definition in the Kullback-Leibler case of probability measures, which extends to any ϕ-divergence in our framework).

(d) Without further mentioning, the regularity condition ( 7) is supposed to hold in the full topology. Of course, int K = ∅ and thus, for the important probability-vector setup Ω ⊂ K the condition ( 7) is violated which requires extra refinements (cf. Subsection IV-C below). The same is needed for Ω ⊂ A • K for some A = 1, since obviously int A • K = ∅; such a context appears naturally e.g. in connection with mass transportation problems (cf. ( 102) below) and with distributed energy management (cf. the paragraph after [START_REF] Deza | Encyclopedia of Distances[END_REF]). (e) Often, Ω will present a (discrete) model 8 . Since Ω is assumed to have a non-void interior (cf. the right-hand part of ( 7)), this will exclude (parametric) models Ω := {Q θ : θ ∈ Θ} for some Θ ⊂ d (d < K -1), for which θ → Q θ constitutes a curve/surface in K ; however, for such a situation, one can employ standard minimization principles. Our approach is predestined for non-or semiparametric models, instead. For instance, ( 7) is valid for appropriate tubular neighborhoods of parametric models or for more general non-parametric settings such as e.g. shape constraints.

Let us now present our new bare-simulation approach (cf. Definition 1) for solving the distance-optimization Problem 6:

(BS1) Step 1: equivalently rewrite (8) such that the vector P "turns into" a probability vector P. More exactly, define M P := K i=1 p i > 0 and let P := P/M P , and for Q in Ω, let Q := Q/M P (notice that Q may be a non-probability vector). With the function ϕ ∈ Υ(]a, b[) defined through ϕ := M P • ϕ, we obtain

D ϕ (Q, P) = K k=1 p k • ϕ q k p k = K k=1 M P • p k • ϕ M P • q k M P • p k M P = D ϕ ( Q, P). ( 12 
)
It follows that the solution of ( 8) coincides with the one of the problem of finding

Φ P ( Ω) := inf Q∈ Ω D ϕ ( Q, P), with Ω := Ω/M P ; (13) 
as a side remark, one can see that in such a situation the rescaling of the divergence generator ϕ is important, which is one incentive that we incorporate multiples of ϕ below.

As an important special case we get for the choice P := (1, . . . , 1) := 1 that the "prominent/frequent" separable nonlinear optimization problem of finding the optimal value inf Q∈Ω K k=1 ϕ(q k ) -with objective (e.g. cost, energy, purpose) function ϕ ∈ Υ(]a, b[) and constraint set (choice set, search space) Ω -can be imbedded into our BS-approach by

inf Q∈Ω K k=1 ϕ(q k ) = inf Q∈Ω D ϕ (Q, 1) = inf Q∈Ω/K D K•ϕ ( Q, P unif ), (14) 
with P unif := ( 1 K , . . . , 1 K ) being the probability vector of frequencies of the uniform distribution on {1, . . . , K}. Notice that with our new BS approach one may even tackle more general optimization problems of the form inf Q∈ Ω K k=1 φ(q k ) where φ is some function which is finite and convex in a non-empty neighborhood (say, ]t 0 + a -1, t 0 + b -1[ with a < 1 < b) of some point t 0 ∈ as well as strictly convex in a non-empty sub-neighborhood of t 0 ; for this, the function 

ϕ(t) := φ(t + t 0 -1) -φ (t 0 ) • (t + t 0 -1) -t 0 -φ(t 0 ), t ∈]
inf Q∈Ω/K D K•ϕ ( Q, P unif ) = inf Q∈Ω K k=1 ϕ(q k ) = inf Q∈Ω K k=1 φ(q k + t 0 -1) -φ (t 0 ) • ((q k + t 0 -1) -t 0 ) -φ(t 0 ) = inf Q∈Ω+t0-1 K k=1 φ(q k ) -φ (t 0 ) • (q k -t 0 ) -φ(t 0 ) = K • t 0 • φ (t 0 ) -φ(t 0 ) + inf Q∈ Ω K k=1 φ(q k ) -φ (t 0 ) • K k=1 qk , with Ω := Ω + t 0 -1, (15) 
the term inf Q∈ Ω K k=1 φ(q k ) should be recoverable; for instance, later on we shall employ constraints sets Ω which particularly include K k=1 qk = A > 0, whereas another possibility would be to use a φ which satisfies φ (t 0 ) = 0. As a different line of flexibilization of ( 14), we can also deal with the problem inf Q∈Ω h

K k=1 ϕ(q k ) through inf Q∈Ω h K k=1 ϕ(q k ) = h inf Q∈Ω/K D K•ϕ ( Q, P unif ) (16) 
for any ϕ ∈ Υ(]a, b[) and any continuous strictly increasing function h : H → with H := [0, ∞[ (or a sufficiently large subset thereof), and with the problem sup Q∈Ω h

K k=1 ϕ(q k ) through sup Q∈Ω h K k=1 ϕ(q k ) = h inf Q∈Ω/K D K•ϕ ( Q, P unif ) (17) 
for any ϕ ∈ Υ(]a, b[) and any continuous strictly decreasing function h : H → . Combining [START_REF] Arikan | An inequality on guessing and its application to sequential decoding[END_REF] with [START_REF] Arimoto | Information-theoretical considerations on estimation problems[END_REF] (respectively, with ( 17)) leads to a further flexibilization. Of course, we can also apply our BS method to the maximization 

sup Q∈Ω h K k=1 ζ(q k )
sup Q∈Ω h K k=1 ζ(q k ) = h -inf Q∈Ω/K D -K•ζ ( Q, P unif ) , (18) 
and to inf Q∈Ω h K k=1 ζ(q k ) for any concave function ζ with -ζ ∈ Υ(]a, b[) and any continuous strictly decreasing

function h : H → , via inf Q∈Ω h K k=1 ζ(q k ) = h -inf Q∈Ω/K D -K•ζ ( Q, P unif ) . (19) 
Moreover, we can tackle sup Q∈ Ω K k=1 ζ(q k ) where ζ is some function which is finite and concave in a non-empty

neighborhood ]t 0 + a -1, t 0 + b -1[ (with a < 1 < b)
of some point t 0 ∈ as well as strictly concave in a non-empty sub-neighborhood of t 0 ; for this, the function

-ζ(t) := -ζ(t + t 0 -1) + ζ (t 0 ) • (t + t 0 -1) -t 0 + ζ(t 0 ), t ∈]a, b[,
should be a member of Υ(]a, b[), and from the corresponding minimization problem

-inf Q∈Ω/K D -K•ζ ( Q, P unif ) = sup Q∈Ω K k=1 ζ(q k ) = sup Q∈Ω K k=1 ζ(q k + t 0 -1) -ζ (t 0 ) • ((q k + t 0 -1) -t 0 ) -ζ(t 0 ) = sup Q∈Ω+t0-1 K k=1 ζ(q k ) -ζ (t 0 ) • (q k -t 0 ) -ζ(t 0 ) = K • t 0 • ζ (t 0 ) -ζ(t 0 ) + sup Q∈ Ω K k=1 ζ(q k ) -ζ (t 0 ) • K k=1 qk , with Ω := Ω + t 0 -1, (20) 
the term sup Q∈ Ω K k=1 ζ(q k ) should be recoverable; the left-hand side of (20) corresponds to the special case h(x) := x of the BS-minimizable [START_REF] Arrigoni | Evolutionary computing and machine learning for discovering of low-energy defect configurations[END_REF]. A combination of ( 20) with (18) (respectively, with ( 19)) leads to a further flexibilization.

Remark 8: (a) Since 1 can be seen e.g. as a reference vector with (normalized) equal components, the quantity inf Q∈Ω D ϕ (Q, 1) in ( 14) can be interpreted as an "index/degree of (in)equality of the set Ω", respectively as an "index/degree of diversity of the set Ω". (b) The quantity K k=1 ϕ(q k ) in ( 14) can be interpreted as (non-probability extension of an) ϕ-entropy in the sense of Burbea & Rao [START_REF] Burbea | On the convexity of some divergence measures based on entropy functions[END_REF] (see also Csiszar [START_REF] Csiszár | A class of measures of informativity of observation channels[END_REF], Ben-Bassat [START_REF] Ben-Bassat | f-entropies, probability of error, and feature selection[END_REF], Ben-Tal & Teboulle [START_REF] Ben-Tal | Rate-distortion theory with generalized information measures via convex programming duality[END_REF], Kesavan & Kapur [START_REF] Kesavan | The generalized maximum entropy principle[END_REF], Dacunha-Castelle & Gamboa [START_REF] Dacunha-Castelle | Maximum d'entropie et probleme des moments[END_REF], Teboulle & Vajda [START_REF] Teboulle | Convergence of best φ-entropy estimates[END_REF], Gamboa & Gassiat [START_REF] Gamboa | Asymptotic distribution of (h, φ)-entropies[END_REF], Vajda & Zvarova [START_REF] Vajda | On generalized entropies, Bayesian decisions and statistical diversity[END_REF]); for applications to scalar quantization for lossy coding of information sources see e.g. György & Linder [START_REF] György | Optimal entropy-constrained scalar quantization of a uniform source[END_REF]. More generally, the quantity h K k=1 ϕ(q k ) in ( 16) can be seen as (non-probability extension of an) (h, ϕ)-entropy in the sense of Salicru et al. [START_REF] Salicru | Asymptotic distribution of (h, φ)-entropies[END_REF] (see also e.g. Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF], Vajda & Vasek [375], as well as e.g. Chen et al. [START_REF] Chen | Stochastic gradient algorithm under (h, φ)-entropy[END_REF] for uses as supervised adaption criterion within stochastic information gradient algorithms and Ren et al. [START_REF] Ren | Minimum (h, φ)-entropy control for non-Gaussian stochastic networked control systems and its application to a networked DC motor control system[END_REF] for applications to tracking in networked control systems). Important special cases will be discussed in more detail, below.

Returning to the original distance-minimizing Problem 6, after the first step ( 12) and ( 13), we proceed as follows:

(BS2) Step 2: construct an appropriate sequence (ξ n ) n∈x of K -valued random variables/random vectors (cf. (2) in Definition 1):

The following condition transposes the minimization problem (13) into a BS minimizable/amenable problem in the sense of Definition 1 and it is required in order that Problem [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF] is equivalent to Problem [START_REF] Ahlswede | An interpretation of identification entropy[END_REF]. The connection of this condition with (6) will be discussed in Proposition 34 and its surroundings, see Section V. Condition 9: With M P = K i=1 p i > 0, the divergence generator ϕ in (8) (cf. also [START_REF] Amari | Differential-Geometrical Methods in Statistics[END_REF]

) satisfies ϕ := M P • ϕ ∈ Υ(]a, b[), i.e. ϕ ∈ Υ(]a, b[) (which is equivalent to ϕ ∈ Υ(]a, b[))
and there holds the representation

ϕ(t) = sup z∈   z • t -log e zy d (y)   , t ∈ , (21) 
for some probability measure on the real line such that the function z → M GF (z) := e zy d (y) is finite on some open interval containing zero 9 .

In the following, let us explain the above-mentioned Step 2 in detail: for any n ∈ x and any k ∈ {1, . . . , K}, let n k := n • p k where x denotes the integer part of x. We assume P ∈ K >0 , and since thus none of the p k 's is zero, one has lim

n→∞ n k n = p k . (22) 
Moreover, we assume that n ∈ x is large enough, namely n ≥ max k∈{1,...,K} 1 p k , and decompose the set {1, . . . , n} of all integers from 1 to n into the following disjoint blocks:

I (n) 1 := {1, . . . , n 1 }, I (n) 2 := {n 1 + 1, . . . , n 1 + n 2 },
and so on until the last block

I (n) K := { K-1
k=1 n k + 1, . . . , n} which therefore contains all integers from n 1 + . . .

+ n K-1 + 1 to n. Clearly, I (n) k has n k ≥ 1 elements (i.e. card(I (n) k ) = n k
where card(A) denotes the number of elements in a set A) for all k ∈ {1, . . . , K -1}, and the last block

I (n) K has n - K-1 k=1 n k ≥ 1 elements which anyhow satisfies lim n→∞ card(I (n) K )/n = p K 10
. Furthermore, consider a vector W := W 1 , . . . , W n where the W i 's are i.i.d. copies of the random variable W whose distribution is associated with the divergence-generator ϕ := M P • ϕ through [START_REF] Aviyente | Characterization of event related potentials using information theoretic distance measures[END_REF], in

the sense that ¥[ W ∈ • ] = [ • ].
We group the W i 's according the above-mentioned blocks and sum them up blockwise, in order to build the following Kcomponent random vector

ξ W n := 1 n i∈I (n) 1 W i , . . . , 1 n i∈I (n) K W i ; (23) 
notice that the signs of its components may be negative, depending on the nature of the W i 's; moreover, the expectation of its k-th component converges to p k as n tends to infinity (since the expectation of W 1 is 1), whereas the n-fold of the corresponding variance converges to p k times the variance of W 1 .

For such a context, we obtain the following assertion on BS-minimizability:

Theorem 10: Let P ∈ K >0 , M P := K i=1 p i > 0,
and suppose that the divergence generator ϕ satisfies the Condition 9 above, with (cf. ( 21)). Additionally, let W := ( W i ) i∈x be a sequence of random variables where the W i 's are i.i.d. copies of the random variable

W whose distribution is ¥[ W ∈ • ] = [ • ] 11 .
Then, in terms of the random vectors

ξ W n = 1 n i∈I (n) 1 W i , . . . , 1 n i∈I (n) K W i (cf. ( 23 
)) there holds -lim n→∞ 1 n log ¥ ξ W n ∈ Ω/M P = inf Q∈Ω D ϕ (Q, P ) (24) 
for any Ω ⊂ K with regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. In particular, for each P ∈ K >0 the function

Φ P (•) := D ϕ (•, P) (cf. ( 4 
)
) is bare-simulation minimizable (BS-minimizable, cf. ( 2))) on any such Ω ⊂ K .

The proof of Theorem 10 will be given in Appendix A.

Remark 11: (i) Whenever int(Ω) = ∅, it clearly holds that lim inf n→∞ 1 n log ¥ ξ W n ∈ Ω/M P > 0;
see the proof of Theorem 10. Hence, the limit in [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] exists and is finite when Ω satisfies [START_REF] Ahlswede | Identification entropy[END_REF]. (ii) For some contexts, one can explicitly give the distribution of each of the independent (non-deterministic parts of the) components

i∈I (n) k W i k=1,...,K
of the vector ξ W n ; this will ease the corresponding concrete simulations. For instance, we shall give those in the Examples 48, 50, 53, 54 and 55 in Section V below.

(iii) Let us emphasize that we have assumed P ∈ K >0 in Theorem 10 which excludes P from having zero components. However, in cases where lim x→∞ ϕ(x•sgn(q))

x•sgn(q)

= +∞ for q = 0 then if p k0 = 0 for some k 0 it follows that q k0 = 0, which proves that P ∈ K >0 imposes no restriction in Theorem 9, since the projection of P in Ω then belongs to the subspace of K generated by the non-null components of P; such a situation appears e.g. for power divergence generators ϕ γ with γ > 2. So there is no loss of generality assuming P ∈ K >0 in this case. 9 in particular, this implies that yd (y) = 1 (cf. (G11i) below) and that has light tails. 

I (n) K ) = n K . 11 and thus, E ¥ [ W i ] = 1
As examples for the applicability of Theorem 10, one can e.g. combine each of the divergence generators ϕ of Table 1 (except for the 9th row) with any of the optimization problems ( 8), ( 10), ( 11), ( 14), ( 16), [START_REF] Arndt | Information Measures[END_REF]; the needed distributions ¥

[ W ∈ • ] = [ • ]
correspond to the entry in the second last column with the choice c • M P instead of c. By taking ζ := -ϕ instead, one can solve the corresponding problems [START_REF] Arrigoni | Evolutionary computing and machine learning for discovering of low-energy defect configurations[END_REF] and [START_REF] Arslan | Statistical coverage control of mobile sensor networks[END_REF].

Returning to the general context, the limit statement [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] provides the principle for the approximation of the solution of Problem 8. Indeed, by replacing the left-hand side in [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] by its finite counterpart, we deduce for given large n

- 1 n log ¥ ξ W n ∈ Ω/M P ≈ inf Q∈Ω D ϕ (Q, P); (25) 
it remains to estimate the left-hand side of [START_REF] Ay | Information Geometry[END_REF]. The latter can be performed either by a naive estimator of the frequency of those replications of ξ W n, x which hit Ω/M P , or more efficiently by some improved estimator; this will be discussed in detail in Section VI below.

Remark 12: According to [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] of Theorem 9 as well as [START_REF] Ay | Information Geometry[END_REF], we can principally tackle the (approximative) computation of the minimum value

inf Q∈Ω D ϕ (Q, P ) = inf Q∈Ω K k=1 p k • ϕ q k p k
and in particular of

inf Q∈Ω K k=1 ϕ(q k ) = inf Q∈Ω D ϕ (Q, 1) (cf. ( 14 
))
by basically only employing a fast and accurate -pseudo, true, natural, quantum -random number generator 12 , provided that the constraint set Ω satisfies the mild assumptions ( 7) and [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. Notice that (7) also covers (e.g. high-dimensional) constraint sets Ω which are non-convex and even highly disconnected, and for which other minimization methods (e.g. pure enumeration, gradient or steepest descent methods, etc. 13 ) may be problematic or intractable. For instance, (7) covers kind of "K-dimensional (not necessarily regular) polka dot (leopard skin) pattern type" relaxations

Ω := ˙ N i=1 U i (Q dis i ) of finite discrete constraint sets Ω dis := {Q dis 1 , . . . , Q dis N }
of high cardinality N (e.g. being exponential or factorial in a large K), where each K-dimensional vector Q dis i (e.g. having pure integer components only) is surrounded by some small (in particular, nonoverlapping/disjoint) neighborhood U i (Q dis i ); in such a context, e.g. inf Q∈Ω K k=1 ϕ(q k ) can be regarded as a "BS-tractable" relaxation of the nonlinear discrete (e.g. integer, combinatorial 14 ) optimization program inf Q∈Ω dis K k=1 ϕ(q k ).

C. Minimum distance/risk estimation

In statistics of discrete data -and in the adjacent research fields of information theory, artificial intelligence and machine learning -one often encounters the following minimum distance estimation (MDE) problem which is often also named as estimation of the empirical risk: (MDE1) for index i ∈ x, let the generation of the i-th (uncertainty-prone) data point be represented by the random variable X i which takes values in the discrete set

Y := {d 1 , • • • , d K } of K distinct
values "of any kind"˙. It is assumed that there exists a probability measure [• ] on Y which is the a.s. limit of the empirical measures emp n defined by the collection of collected (X 1 , .., X n ) as n tends to infinity, in formula

lim n→∞ emp n := lim n→∞ 1 n n i=1 δ Xi = a.s. ( 26 
)
where δ y denotes the one-point distribution (Dirac mass) at point y 15 . We will assume that none of the entries of bears zero mass so that is identified with a point in the interior of K (see below). The underlying probability space (say, (X, A, ¥)) where the above a.s. convergence holds, pertains to the random generation of the sequence (X n ) n≥1 , of which we do not need to know but for [START_REF] Ayed | Distribution matching with the Bhattacharyya similarity: a bound optimization framework[END_REF]. Examples include the i.i.d. case (where the X i 's are independent and 12 see e.g. Tucci [START_REF] Tucci | Method for sampling probability distributions using a quantum computer[END_REF], Teh et al. [START_REF] Teh | GPUs and chaos: a new true random number generator[END_REF], Aghamohammadi & Crutchfield [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF], Herrero-Collantes & Garcia-Escartin [START_REF] Herrero-Collantes | Quantum random number generators[END_REF], Balygin et al. [START_REF] Balygin | A quantum random number generator based on the 100-Mbit/s Poisson photocount statistics[END_REF], Dang et al. [START_REF] Dang | Physically transient true random number generators based on paired threshold switches enabling Monte Carlo method applications[END_REF], Gong et al. [START_REF] Gong | True random number generators using electrical noise[END_REF], Chandrasekaran et al. [START_REF] Chandrasekaran | 0.36-mW, 52-Mbps true random number generator based on a stochastic delta-sigma modulator[END_REF], Drahi et al. [START_REF] Drahi | Certified quantum random numbers from untrusted light[END_REF], Kollmitzer et al. [START_REF]Quantum Random Number Generation[END_REF], Liu et al. [START_REF] Liu | Fast true random number generator based on chaotic oscillation in self-feedback weakly coupled superlattices[END_REF], Fischer & Gauthier [START_REF] Fischer | High-speed harvesting of random numbers[END_REF], Kim et al. [START_REF] Kim | Massively parallel ultrafast random bit generation with a chip-scale laser[END_REF], Stoller & Campbell [START_REF] Stoller | Demonstration of three true random number generator circuits using memristor created entropy and commercial off-the-shelf components[END_REF] 13 a detailed discussion and comparisons are beyond the scope of this paper, given its current length 14 see e.g. Schrijver [START_REF] Schrijver | Combinatorial Optimization[END_REF], Bertsimas & Weismantel [START_REF] Bertsimas | Optimization over Integers[END_REF], Chen et al. [START_REF] Chen | Applied Integer Programming[END_REF], Onn [START_REF] Onn | Nonlinear Discrete Optimization[END_REF], Korte & Vygen [START_REF] Korte | Combinatorial Optimization[END_REF], Wolsey [START_REF] Wolsey | Integer Programming[END_REF] for comprehensive books on discrete, integer and combinatorial programming and their vast applications 15 notice that emp n a probability measure on the data space Y, which is random due to its dependence on the X i 's have common distribution ), ergodic Markov chains on Y with stationary distribution , more globally autoregressive chains with stationary measure , etc. Let us briefly discuss our assumption (26) (resp. its vector form (30) below) on the limit behavior of the empirical distribution of the observed sample X n := (X 1 , .., X n ) as n tends to infinity. In the "basic" statistical context, the sample X n consists of i.i.d. replications of a generic random variable X with probability distribution P. However, our approach captures many other sampling schemes, where the distribution P is defined implicitly through [START_REF] Ayed | Distribution matching with the Bhattacharyya similarity: a bound optimization framework[END_REF] for which we aim at some estimate of Φ P () of a family of probability distributions on Y. Sometimes the sequence of samples (X n ) n≥1 may stem from a triangular array so that X n = (X 1,n , .., X kn,n ) with k n → ∞ and statement [START_REF] Ayed | Distribution matching with the Bhattacharyya similarity: a bound optimization framework[END_REF] is substituted by

lim n→∞ 1 k n kn i=1
δ Xi,n = P a.s. which does not alter the results of this paper by any means.

(MDE2) given a model , i.e. a family of probability distributions on Y each of which serves as a potential description of the underlying (unknown) data-generating mechanism , one would like to find

Φ () := inf ∈ D ϕ (, ) (27) 
which quantifies the adequacy of the model for modeling , via the minimal distance/dissimilarity of to ; a lower Φ -value means a better adequacy (in the sense of a lower departure between the model and the truth, cf. and model elements/members therein, the (fast and efficient) computation of Φ () constitutes a decisive first step, since if the latter is "too large" (respectively "much larger than" Φ () for some competing model ), then the model is "not adequate enough" (respectively "much less adequate than" ); in such a situation, the effort of computing the (not necessarily unique) best model element/member arg inf ∈ D ϕ (, ) within the model is "not very useful" and is thus a "waste of computational time". Because of such considerations, we concentrate ourselves to finding the infimum [START_REF] Baddeley | A statistical commentary on mineral prospectivity analysis[END_REF] rather than finding the corresponding minimizer(s). Variants of ( 27) are of interest, too.

Since int() is supposed to be a non-empty set in the space of probability distribution on Y, the present procedure is fitted for semi-parametric models , e.g. such as defined through moment conditions (as extensions of the Empirical Likelihood paradigm, see e.g. Broniatowski & Keziou [START_REF] Broniatowski | Divergences and duality for estimation and test under moment condition models[END_REF]), or through L-moment conditions (i.e. moment conditions pertaining to quantile measures, see Broniatowski & Decurninge [START_REF] Broniatowski | Estimation for models defined by conditions on their L-moments[END_REF]), or even more involved non-parametric models where the geometry of does not allow for ad-hoc procedures.

The measurement or the estimation of Φ () is a tool for the choice of pertinent putative models among a class of specifications. The case when Φ () > 0 is interesting in its own, since it is quite common in engineering modelling to argue in favor of misspecified models (or (non-void) neighborhoods of such models for sake of robustness issues), due to quest for conservatism; the choice between them is a widely open field e.g. in the practice of reliability. This also opens the question of the choice of the divergence generator ϕ; although this will not be discussed in this paper, as a motivating running example the reader may keep in mind the generator ϕ 2 (x) := (x -1) 2 /2 which induces the divergence D ϕ2 (, ) (see [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF] below for details) which quantifies the expected square relative error when substituting the true distribution by the model .

As examples of sets of probability distributions on Y which obey (through their K-vector of corresponding probability masses/frequencies) the global assumptions [START_REF] Ahlswede | Identification entropy[END_REF], one can consider semi-parametric models defined by moment conditions or defined through L-moment constraints (hence on the quantile functions), as well as more involved ones, for which no closed form of the divergence with respect to any probability distribution is available. In the context of model selection, the choice of may be dictated by various considerations, and misspecification may be assumed as a requisite, for example for conservatism in reliability design.

An estimate of Φ () can be used as a statistics for some test of fit, and indeed the likelihood ratio test adapted to some semi-parametric models has been generalized to the divergence setting (see Broniatowski & Keziou [62]). The statement of the limit distributions of our estimate, under the model and under misspecification, is postponed to future work.

In the following, we compute/approximate (27) -and some variants thereof -by our bare simulation (BS) method, by "mimicking" the deterministic minimization problem (8) respectively [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF]. Let us first remark that, as usual, each probability distribution (probability measure) on Y = {d 1 , . . . , d K } can be uniquely identified with the (row) vector P := (p 1 , . . . , p K ) ∈ K of the corresponding probability masses (frequencies)

p k = [{d k }] via [A] = K k=1 p k • 1 A (d k ) for each A ⊂ Y, where 1 A (•)
denotes the indicator function on the set A. In particular, the probability distribution in (MDE1) can be identified with

(p 1 , . . . , p K ) in terms of p k = [{d k }] (which in the i.i.d. case turns into p k = ¥[X 1 = d k ]
). Along this line, the family of probability distributions in (MDE2) can be identified with a subset Ω Ω ⊂ K of probability vectors (viz. of vectors of probability masses).

Analogously, each finite nonnegative measure Q on Y can be uniquely identified with a vector Q := (q 1 , . . . , q K ) ∈ K ≥0 , and each finite signed measure Q with a vector Q := (q 1 , . . . , q K ) ∈ K . The corresponding divergences between distributions/measures are then, as usual, defined through the divergences between their respective masses/frequencies:

D ϕ (Q, ) := D ϕ (Q, P). (28) 
In particular, emp n can be identified with the vector P emp n := (p emp n,1 , . . . , p emp n,K ) where

p emp n,k := 1 n • n k := 1 n • card( i ∈ {1, . . . , n} : X i = d k ) =: 1 n • card(I (n) k ), k ∈ {1, . . . , K}, (29) 
and accordingly the required limit behaviour ( 26) is equivalent to the vector-convergence

lim n→∞ n 1 n , . . . , n K n = (p 1 , . . . , p K ) a.s. ( 30 
)
Notice that, in contrast to the case handled in the above Subsection IV-B, the sets I ) is estimated once the sample (X 1 , .., X n ) is observed, we may reorder this sample by putting the n 1 sample points X i which are equal to d 1 in the first places, and so on; accordingly one ends up with index sets I (n) k as defined in Section IV-B. When the online acquisition of the data X i 's is required, then we usually do not reorder the sample, and the I (n) k 's do not consist in consecutive indexes, which does not make any change with respect to the resulting construction nor to the estimator.

The above considerations open the gate to our desired "mimicking" of ( 8) and [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF] to achieve [START_REF] Baddeley | A statistical commentary on mineral prospectivity analysis[END_REF] (and some variants thereof) by our bare simulation (BS) method. To proceed, we employ a family of random variables (W i ) i∈x of independent and identically distributed -valued random variables with probability distribution

[• ] := ¥[W 1 ∈ • ] (being connected with the divergence generator ϕ ∈ Υ(]a, b[) via the representability (6)), such that (W i ) i∈x is independent of (X i ) i∈x 16 .
As a next step, notice that the "natural candidate"

ξ W n,X := 1 n • K k=1    i∈I (n) k W i    • δ d k = 1 n n i=1 W i • δ Xi
is not a probability measure since its total mass is not 1 in general, since in terms of its equivalent vector version

ξ W n,X := 1 n i∈I (n) 1 W i , . . . , 1 n i∈I (n) K W i (31) 
the sum [START_REF] Balygin | A quantum random number generator based on the 100-Mbit/s Poisson photocount statistics[END_REF] is typically not equal to 1; this implies that no limit result of the form (24) with finite limit can hold, since ξ W n,X takes values in K and Ω Ω is a subset in the probability simplex K which has void interior in K causing a violation of condition (7) (cf. Remark 7(c)); moreover, depending on the concrete form of the generator ϕ, the corresponding weights may take negative values. Therefore, we need some "rescaling". Indeed, let us introduce the normalized weighted empirical measure

K k=1 1 n i∈I (n) k W i = 1 n n j=1 W i of the K vector components of
ξ wW n,X :=    1 K k=1 i∈I (n) k Wi • K k=1 i∈I (n) k W i • δ d k = n i=1 Wi n j=1 Wj • δ Xi , if n j=1 W j = 0, ∞ • K k=1 δ d k =: ∞, if n j=1 W j = 0, (32) 
which will substitute ξ W n,X and which may belong to Ω Ω with positive probability. The equivalent vector version of ξ wW n,X is given by

ξ wW n,X :=      i∈I (n) 1 Wi K k=1 i∈I (n) k Wi , . . . , i∈I (n) K Wi K k=1 i∈I (n) k Wi , if n j=1 W j = 0, (∞, . . . , ∞) =: ∞, if n j=1 W j = 0, (33) 
a point in the linear subset of K spanned by K at infinity.

Remark 13: (i) (Concerning e.g. computer-program command availability) In case of n j=1 W j = 0, in [START_REF] Barennes | Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases[END_REF] we may equivalently assign to ξ wW n,X instead of ∞ any measure (e.g. probability distribution) which does not belong to , respectively, in [START_REF] Bashford-Rogers | Analysis of the B cell receptor repertoire in six immune-mediated diseases[END_REF] we may equivalently choose for ξ wW n,X any vector outside of Ω Ω instead of ∞. (ii) By construction, in case of n j=1 W j = 0, the sum of the random K vector components of ( 33) is now automatically equal to 1, but -as (depending on ϕ) the W i 's may take both positive and negative values -these random components may be negative (resp. nonnegative) with probability strictly greater (resp. smaller) than zero (resp. one); in the framework of [START_REF] Barennes | Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases[END_REF] this means that ξ wW n,X is in general a random signed measure with total mass 1, in case of 

] = (¥[W 1 > 0]) n = ∞ 0 c 2π • exp(-c•(u-1) 2 2 )du n ∈]0, 1[.
Summing up things, the probability ¥[ξ wW n,X ∈ Ω Ω] is strictly positive and finite at least for large n, whenever

Φ P (Ω Ω) = inf Q∈Ω Ω D ϕ (Q, P) is finite.
(iii) By generalizing the terminology of e.g. Vajda [START_REF] Vajda | About perceptron realizations of Bayesian decisions[END_REF], through the right-hand side of (32) one can interpret (for n j=1 W j = 0) the normalized weighted empirical measure ξ wW n,X as response of an output neuron in a random perceptron consisting of random inputs X, a layer with n units having one-point-distribution-valued responses δ X1 , . . . , δ Xn , and independent random synaptic weights With the above-mentioned ingredients, we are now in the position to tackle a variant of the distance minimization problem [START_REF] Baddeley | A statistical commentary on mineral prospectivity analysis[END_REF], by our bare simulation method through "mimicking" the deterministic minimization problem (8) respectively [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF]. For this, we also employ the conditional distributions 

¥ n [ • ] := ¥ X n 1 [ • ] := ¥[ • | X 1 , . . . ,
] := ¥[W 1 ∈ • ] being connected with the divergence generator ϕ ∈ Υ(]a, b[) via the representability (6), such that (W i ) i∈x is independent of (X i ) i∈x . Then there holds -lim n→∞ 1 n log ¥ X n 1 ξ wW n,X ∈ = inf ∈ inf m =0 D ϕ (m • , ) (34) 
= inf m =0 inf ∈ D ϕ (m • , ) = inf m =0 inf Q∈Ω Ω D ϕ (m • Q, P) (35) 
= inf

Q∈Ω Ω inf m =0 D ϕ (m • Q, P) = -lim n→∞ 1 n log ¥ X n 1 ξ wW n,X ∈ Ω Ω (36) 
for all sets of probability distributions such that their equivalent probability-vector form Ω Ω satisfies the regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] in the relative topology and the finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]; notice that for the equality [START_REF] Basu | Minimum disparity estimation for continuous models: efficiency, distributions and robustness[END_REF] we have used the "divergence link" [START_REF] Bagrow | An information-theoretic, all-scales approach to comparing networks[END_REF].

In particular, for each P ∈ K >0 (respectively, its equivalent probability-distribution 2)) on all sets Ω Ω ⊂ K satisfying [START_REF] Ahlswede | Identification entropy[END_REF] in the relative topology and (9) (respectively, on their probability-distribution-equivalent ).

) the function Q → inf m =0 D ϕ (m • Q, P) (respectively, the function → inf m =0 D ϕ (m • , )) is BS-minimizable (cf. (
The proof of Theorem 14 will be given in Appendix B. Analogously to Remark 11(iii), let us emphasize that we have assumed P ∈ K >0 in Theorem 14. Henceforth, for sets Ω Ω ⊂ K of probability vectors we deal with [START_REF] Ahlswede | Identification entropy[END_REF] only in the relative topology; thus, the latter will be unmentioned for the sake of brevity. Remark 7(a),(b),(c),(e) applies accordingly.

Remark 15: (i) In strong contrast to Theorem 10, the above result does not provide a direct tool for the solution of Problem (27) since the limit in [START_REF] Basseville | Divergence measures for statistical data processing --an annotated bibliography[END_REF] bears no direct information on the minimum divergence D ϕ (, ) := inf ∈ D ϕ (, ); the link between the corresponding quantities can be emphasized and exploited e.g. in the case of power type divergences, which leads to explicit minimization procedures as shown in the Subsection IV-C1 below. For general divergences, Theorem 14 allows for the estimation of upper and lower bounds of D ϕ (, ), as developed in the Subsection IV-C2 below. (ii) Notice that Dϕ (, ) := inf m =0 D ϕ (m • , ) satisfies the axioms of a divergence, that is, Dϕ (, ) ≥ 0, as well as Dϕ (, ) = 0 if and only if = (reflexivity). Hence, in Theorem 14 we are still within our framework of bare simulation of a divergence minimum w.r.t. its first component (however, notice the difference to (i)). (iii) Viewed from a "reverse" angle, Theorem 14 gives a crude approximation for the probability for ξ wW n,X to belong to , conditionally upon X = (X 1 , . . . , X n ).

(iv) In the same spirit as Remark 11(ii), for some contexts one can explicitly give the distribution of each of the independent components

i∈I (n) k W i k=1,...,K
of the vector ξ wW n ; this will ease the corresponding concrete simulations in a batch procedure. For instance, we shall give those in the Examples 48, 50, 53, 54 and 55 in the Section V below. (v) Consider the special "degenerate" case where all the data observations are certain and thus (X i ) i∈x is nothing but a purely deterministic sequence, say ( x i ) i∈x , of elements x i from the arbitrary set Y := {d 1 , . . . , d K } of K distinct values "of any kind" (e.g., Y may consist of K distinct numbers); then the corresponding empirical distribution emp n can be identified with the vector P emp n := (p emp n,1 , . . . , p emp n,K ) where

p emp n,k := 1 n • n k := 1 n • card( i ∈ {1, . . . , n} : x i = d k ) =: 1 n • card(I (n) k ), k ∈ {1, . . . , K}, (37) 
and accordingly the required limit behaviour ( 26) is equivalent to the vector-convergence

lim n→∞ n 1 n , . . . , n K n = (p 1 , . . . , p K ) for some p 1 > 0, . . . , p K > 0 such that K k=1 p k = 1. (38) 
Correspondingly, with the notations P := (p 1 , . . . , p K ) and x := ( x 1 , . . . , x n ), the vector-form part of the assertion (34) of Theorem 14 becomes

-lim n→∞ 1 n log ¥ ξ wW n, x ∈ Ω Ω = inf Q∈Ω Ω inf m =0 D ϕ (m • Q, P) = inf m =0 inf Q∈Ω Ω D ϕ (m • Q, P) (39) 
for all subsets Ω Ω ⊂ K satisfying the regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and the finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]; notice that the conditional probability ¥ X n 1 [ • ] has degenerated to the ordinary probability ¥[ • ].

(vi) In a similar fashion to the proof of (the special degenerate case (v) of) Theorem 14, one can show

-lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω = inf Q∈Ω Ω inf m =0 D ϕ (m • Q, P) = inf m =0 inf Q∈Ω Ω D ϕ (m • Q, P) (40) 
for all subsets Ω Ω ⊂ K with regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and the finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF], where

ξ wW n :=      i∈I (n) 1 Wi K k=1 i∈I (n) k Wi , . . . , i∈I (n) K Wi K k=1 i∈I (n) k Wi = n•ξ W n n i=1 Wi , if n j=1 W j = 0, (∞, . . . , ∞) =: ∞, if n j=1 W j = 0, (41) 
with

I (n) 1 := {1, . . . , n 1 }, I (n) 2 
:= {n 1 + 1, . . . , n 1 + n 2 }, . . . , I

K := { K-1 (n) 
k=1 n k + 1, . . . , n} and n k := n • p k (k ∈ {1, . . . , K}) for some pregiven known probability vector P := (p 1 , . . . , p K ). Recall the definition of ξ W n in (23) (with W instead of W). The limit behaviour [START_REF] Ben-Tal | Rate-distortion theory with generalized information measures via convex programming duality[END_REF] contrasts to the one of Theorem 10, where

-lim n→∞ 1 n log ¥ ξ W n ∈ Ω/M P = inf Q∈Ω D ϕ (Q, P) (cf. ( 24 
))
for any Ω ⊂ K with regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and the finiteness property (9); recall that ( W i ) i∈x are i.i.d. random variables with probability distribution (being connected with the divergence generator ϕ := M P • ϕ via the representability (21)), whereas (W i ) i∈x are i.i.d. random variables with probability distribution (being connected with the divergence generator ϕ via the representability ( 6)). Indeed, the construction leading to Theorem 10 does not hold any longer when Ω ⊂ K is a set of vectors within the probability simplex K and P ∈ K >0 is a known vector in this simplex with no zero entries. In such a case, one has to use [START_REF] Ben-Tal | Rate-distortion theory with generalized information measures via convex programming duality[END_REF] and (41) instead. Notice that for each constant A > 0, (40) can be rewritten as

-lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω = inf Q∈A•Ω Ω inf m =0 D ϕ m A • Q, P = inf Q∈A•Ω Ω inf m =0 D ϕ ( m • Q, P) = inf m =0 inf Q∈A•Ω Ω D ϕ ( m • Q, P); (42)
therein, the constraint Q ∈ A • Ω Ω means geometrically that the vector Q lives in a subset of a simplex which is parallel to the simplex K of probability vectors and which is cut off at the edges of the first/positive orthant; in view of Remark 7(d) and [START_REF] Bernstein | Sur les fonctions absolument monotones[END_REF], we can also handle such a situation. Namely, in the light of the third expression in [START_REF] Bernstein | Sur les fonctions absolument monotones[END_REF] in combination with [START_REF] Amari | Differential-Geometrical Methods in Statistics[END_REF] to [START_REF] Applegate | The Traveling Salesman Problem[END_REF] for the special case of Ω := Ω Ω lying in the probability simplex, it makes sense to study e.g. functional relationships

between inf m =0 D c•ϕ ( m • Q, P) and D c•ϕ (Q, P) ( c > 0) for Q ∈ A • K with arbitrary A > 0 not necessarily being
equal to 1 (i.e. Q = A • Q for some probability distribution Q). Indeed, such a context appears naturally e.g. in connection with mass transportation problems (cf. (102) below) and with distributed energy management (cf. the paragraph after [START_REF] Deza | Encyclopedia of Distances[END_REF]); the special case A = 1/K of (42) will also be used below for the application of our BS method to solving (generalized) minimum/maximum entropy problems for probability vectors (and even for sub-/super-probability vectors) Q with constraints.

Let us proceed with the main context. As indicated in Remark 15(i), in a number of important cases the limit in the above Theorem 14 can be stated in terms of an invertible function G -1 (cf. ( 2)) of inf Q∈Ω Ω D ϕ (Q, P) by elimination of m. As explained above, for the degenerate case (cf. Remark 15 (v), (vi)) the search for G -1 is even interesting for the more general infimum over non-probability vectors. This is the scope of the following development.

1) Construction principle for the estimation of the minimum divergence, the power-type case :

Within the context of Theorem 14 respectively Remark 15 (v) and (vi), we obtain an explicit solution for the inner (i.e.

m-concerning) minimization in [START_REF] Basseville | Divergence measures for statistical data processing --an annotated bibliography[END_REF] for the important case of power-divergence generators ϕ γ : → [0, ∞] defined by

ϕ γ (t) :=                                t γ -γ•t+γ-1 γ•(γ-1) , if γ ∈ ] -∞, 0[ and t ∈]0, ∞[, -log t + t -1, if γ = 0 and t ∈]0, ∞[, t γ -γ•t+γ-1 γ•(γ-1) , if γ ∈ ]0, 1[ and t ∈ [0, ∞[, t • log t + 1 -t, if γ = 1 and t ∈ [0, ∞[, t γ -γ•t+γ-1 γ•(γ-1) • 1 ]0,∞[ (t) + ( 1 γ -t γ-1 ) • 1 ]-∞,0] (t), if γ ∈ ]1, 2[ and t ∈ ] -∞, ∞[, (t-1) 2 2 , if γ = 2 and t ∈ ] -∞, ∞[, t γ -γ•t+γ-1 γ•(γ-1) • 1 ]0,∞[ (t) + ( 1 γ -t γ-1 ) • 1 ]-∞,0] (t), if γ ∈ ]2, ∞[ and t ∈ ] -∞, ∞[, ∞, else, (43) 
which for arbitrary multiplier c > 0 generate (the vector-valued form of) the generalized power divergences displayed in the first six rows of Table 1 (and beyond), i.e.

D c•ϕγ (Q, P) :=                                                            c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) -1 γ-1 • K k=1 q k + 1 γ • K k=1 p k , if γ ∈ ] -∞, 0[, P ∈ K ≥0 and Q ∈ K >0 , c • K k=1 p k • log p k q k + K k=1 q k - K k=1 p k , if γ = 0, P ∈ K ≥0 and Q ∈ K >0 , c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) -1 γ-1 • K k=1 q k + 1 γ • K k=1 p k , if γ ∈ ]0, 1[, P ∈ K ≥0 and Q ∈ K ≥0 , c • K k=1 q k • log q k p k - K k=1 q k + K k=1 p k , if γ = 1, P ∈ K >0 and Q ∈ K ≥0 , c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) • 1 [0,∞[ (q k ) -1 γ-1 • K k=1 q k + 1 γ • K k=1 p k , if γ ∈ ]1, 2[, P ∈ K >0 and Q ∈ K , c • K k=1 (q k -p k ) 2 2•p k , if γ = 2, P ∈ K >0 and Q ∈ K , c • K k=1 (q k ) γ •(p k ) 1-γ γ•(γ-1) • 1 [0,∞[ (q k ) -1 γ-1 • K k=1 q k + 1 γ • K k=1 p k , if γ ∈ ]2, ∞[, P ∈ K >0 and Q ∈ K , ∞, else; (44) 
notice that one has the straightforward relationship

D c•ϕγ (•, •) = c • D ϕγ (•,
•); however, as a motivation for the introduction of c > 0, we shall show in the Examples 48, 50, 53, 54 in Section V below that the corresponding probability distribution of the W i 's depends on c in a non-straightforward way (see also Remark 15 (vi) for another motivation for c). In the course of this, it turns out that c

• ϕ γ ∈ Υ(]a γ , ∞[) with a γ = 0 for γ ∈] -∞, 1] and a γ = -∞ for γ ∈ [2, ∞[.
For c = 1 and probability vectors Q, P in K respectively K >0 , the divergences (44) simplify considerably, namely to the wellknown power divergences D ϕγ (Q, P) in the scaling of e.g. Liese & Vajda [START_REF] Liese | Convex Statistical Distances[END_REF] (in other scalings they are also called Rathie & Kannapan's non-additive directed divergences of order γ [START_REF] Rathie | A directed-divergence function of type β[END_REF], Cressie-Read divergences [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF] [START_REF] Read | Goodness-of-Fit Statistics for Discrete Multivariate Data[END_REF], relative Tsallis entropies or Tsallis cross-entropies [START_REF] Tsallis | Generalized entropy-based criterion for consistent testing[END_REF] (see also Shiino [START_REF] Shiino | H-Theorem with generalized relative entropies and the Tsallis statistics[END_REF]), Amari's alpha-divergences [START_REF] Amari | Differential-Geometrical Methods in Statistics[END_REF]); for some comprehensive overviews on power divergences D ϕγ (Q, P) -including statistical applications to goodness-of-fit testing and minimum distance estimation -the reader is referred to the insightful books of e.g. Liese & Vajda [START_REF] Liese | Convex Statistical Distances[END_REF], Read & Cressie [START_REF] Read | Goodness-of-Fit Statistics for Discrete Multivariate Data[END_REF], Vajda [START_REF] Vajda | Theory of Statistical Inference and Information[END_REF], Stummer [START_REF] Stummer | Exponentials, Diffusions, Finance, Entropy and Information[END_REF], Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF], Liese & Miescke [START_REF] Liese | Statistical Decision Theory: Estimation, Testing, and Selection[END_REF], the survey articles of e.g. Liese & Vajda [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], Vajda & van der Meulen [START_REF] Vajda | Goodness-of-fit criteria based on observations quantized by hypothetical and empirical percentiles[END_REF], and the references therein. Prominent and widely used special cases of D ϕγ (Q, P) are the omnipresent Kullback-Leibler information divergence (relative entropy) where γ = 1, the equally important reverse Kullback-Leibler information divergence (reverse relative entropy) where γ = 0, the Pearson chi-square divergence (γ = 2), the Neyman chi-square divergence (γ = -1), the Hellinger divergence (γ = 1 2 , also called squared Hellinger distance, squared Matusita distance [START_REF] Matusita | On the theory of statistical functions[END_REF] or squared Hellinger-Kakutani metric, see e.g. Deza & Deza [START_REF] Deza | Encyclopedia of Distances[END_REF] 17 ). Some exemplary (relatively) recent studies and applications of power divergences D ϕγ (Q, P) -aside from the vast statistical literature (including in particular maximum likelihood estimation and Pearson's chi-square test) -appear e.g. in Matsuyama [START_REF] Matsuyama | The α-EM algorithm: surrogate likelihood maximization using α-logarithmic information measures[END_REF] for flexibilizations of the well-known expectation-maximization (EM) algorithm and their uses for big-data completion (cf. [START_REF] Matsuyama | The Alpha-HMM estimation algorithm: prior cycle guides fast paths[END_REF]) and data credit computation in blockchain networks (cf. [START_REF] Matsuyama | Divergence family attains blockchain applications via α-EM algorithm[END_REF]), Ku & Fine [199] in connection with blind source separation, Stummer & Vajda [START_REF] Stummer | Optimal statistical decisions about some alternative financial models[END_REF] as well as Stummer & Lao [START_REF] Stummer | Limits of Bayesian decision related quantities of binomial asset price models[END_REF] for optimal decisions about some alternative financial models, Berend et al. [START_REF] Berend | Minimum KL-divergence on complements of L 1 balls[END_REF] for the derivation of a kind of reverse Pinsker's inequality (with γ = 1), Verrelst et al. [START_REF] Verrelst | Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and -3 Data: role of cost functions[END_REF] in geoscientific remote sensing via semiautomatic mapping of biophysical parameters from optical earth observations, Salem at al. [START_REF] Salem | Event detection in wireless body area networks using Kalman filter and power divergence[END_REF] for automatic alarm-triggering detection of events (e.g. patient health degradations) from collected data by biomedical sensors, Fu et al. [START_REF] Fu | Entropy-based China income distributions and inequality measures[END_REF] for the study of income distributions in China, Ha et al. [START_REF] Ha | Estimating the spectrum in computed tomography via Kullback-Leibler divergence constrained optimization[END_REF] for x-ray spectrum reconstruction in computer tomography (CT) systems (with γ = 1), Iqbal & Seghouane [START_REF] Iqbal | An α-divergence-based approach for robust dictionary learning[END_REF] for robust sequential dictionary learning, Luppino et al. [START_REF] Luppino | Unsupervised image regression for heterogeneous change detection[END_REF] for unsupervised change detection in heterogeneous multitemporal satellite images (with γ = 1 2 ), Sason [START_REF] Sason | On data-processing and majorization inequalities for f-Divergences with applications[END_REF] in connection with data-processing and majorization inequalities, Krömer & Stummer [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF] for the smoothing and error-correcting of crude mortality rates (where they even employ non-probability-type vectors), Bekhet & Ahmed [START_REF] Bekhet | Evaluation of similarity measures for video retrieval[END_REF] for effectiveness evaluations in video retrieval (with γ = -1, γ = 1 2 ), Cai et al. [START_REF] Cai | Utilizing Amari-alpha divergence to stabilize the training of generative adversarial networks[END_REF] for the stabilization of trainings of generative adversarial networks (GANs), Fu et al. [START_REF] Fu | α-MOP: molecule optimization with α-divergence[END_REF] for automatic molecule optimization, Görtler et al. [START_REF] Görtler | Uncertainty-aware principal component analysis[END_REF] for dimensionality reduction on uncertain data in visualization and computer graphics (with γ = 1

2 ), Kammerer & Stummer [START_REF] Kammerer | Some dissimilarity measures of branching processes and optimal decision making in the presence of potential pandemics[END_REF] for optimal decision making in the presence of pandemics (e.g. COVID-19), Kanapram et al. [START_REF] Kanapram | Collective awareness for abnormality detection in connected autonomous vehicles[END_REF] for the development of collective self-awareness in a network of connected and autonomous vehicles through agent-centered detection of abnormal situations (with γ = 1

2 ), Kumbhakar [START_REF] Kumbhakar | Streamwise velocity profile in open-channel flow based on Tsallis relative entropy[END_REF] for modelling the streamwise velocity profile in open-channel flows, Sigmon et al. [START_REF] Sigmon | Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research[END_REF] for the improvement of genetic quality control in mouse research for biomedical applications (with γ = 2), Zhang et al. [START_REF] Zhang | Noise adaptation generative adversarial network for medical image analysis[END_REF] for the design of a noise-adaptation adapted generative adversarial network for medical image analysis (with γ = 1 2 ), Chen et al. [START_REF] Chen | Comparison of beta diversity measures in clustering the high-dimensional microbial data[END_REF] for clustering high-dimensional microbial data from RNA sequencing (with γ = 1 2 ), Dharmawan et al. [START_REF] Dharmawan | Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy[END_REF] for the development of improvements in long-term cell observations via semiconductor-chips-based lensless holographic microscopy, Liu & Sun [START_REF] Liu | Alpha-divergence minimization with mixed variational posterior for Bayesian neural networks and its robustness against adversarial examples[END_REF] for analyzing approximate inferences in Bayesian neural networks, Rekavandi et al. [START_REF] Rekavandi | Robust subspace detectors based on α-divergence with application to detection in imaging[END_REF] for detections in functional magnetic resonance imaging (fMRI) as well as hyperspectral and synthetic aperture radar (SAR) data, Seghouane & Shokouhi [START_REF] Seghouane | Adaptive learning for robust radial basis function networks[END_REF] for adaptive learning within robust radial basis function networks (RBFN), and Wang et al. [START_REF] Wang | A new item similarity based on α-divergence for collaborative filtering in sparse data[END_REF] for recommender-system relevant collaborative filtering in sparse data.

For c = 1 and nonnegative-component vectors Q, P in K ≥0 respectively K >0 , the generalized power divergences D ϕγ (Q, P) of ( 44) also (partially) simplify, and were treated by Stummer & Vajda [START_REF] Stummer | On divergences of finite measures and their applicability in statistics and information theory[END_REF] (for even more general probability measures, deriving e.g. also generalized Pinsker's inequalities); for a more general comprehensive technical treatment see also e.g. Broniatowski & Stummer [START_REF] Broniatowski | Some universal insights on divergences for statistics, machine learning and artificial intelligence[END_REF].

Returning to the general context, in Theorem 14 we stated that for each 2)) on all sets Ω Ω ⊂ K satisfying [START_REF] Ahlswede | Identification entropy[END_REF] and [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. The (corresponding subsetup of the) following Lemma 16 is the cornerstone leading from this statement to BS-minimizability of the function Q → D ϕ (Q, P)) on those same sets, for the special divergences in [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]. After giving the fundamental preparatory Lemma 16, we shall derive from it some BSminimizability/BS-maximizability results for (extensions of) a variety of important, widely used, closely related divergences respectively entropy/diversity indices. To achieve this in a transparent way, we employ the following three fundamental quantities H γ (Q, P), I(Q, P) and I(Q, P). To begin with, let A > 0 be an arbitrary constant (notice that for the choice A = 1, all the following vectors Q will turn into probability vectors Q). Moreover -for any constellation (γ, P,

P ∈ K >0 the function Q → inf m =0 D ϕ (m • Q, P) is BS-minimizable (cf. (
Q) ∈ Γ × M 1 × M 2 , where Γ × M 1 × M 2 :=]0, 1[× K × A • K or Γ × M 1 × M 2 :=] -∞, 0[× K × A • K >0 or Γ × M 1 × M 2 :=]1, ∞[× K >0 × A • K -let 0 < H γ (Q, P) := K k=1 (q k ) γ • (p k ) 1-γ = 1 + γ • (A -1) + γ • (γ -1) • D ϕγ (Q, P), γ ∈ \{0, 1}, (45) 
be the modified γ-order Hellinger integral of Q and P . Furthermore, for any

P ∈ K >0 , Q ∈ A • K , let -1 < I(Q, P) := K k=1 q k • log q k p k = D ϕ1 (Q, P) + A -1, (46) 
be the modified Kullback-Leibler information (modified relative entropy). Finally, for any

P ∈ K , Q ∈ A • K >0 , let 1 -A ≤ I(Q, P) := K k=1 p k • log p k q k = D ϕ0 (Q, P) + 1 -A, (47) 
be the modified reverse Kullback-Leibler information (modified reverse relative entropy).

In terms of ( 45), ( 46) and ( 47) we obtain the following Lemma 16: Let A > 0 be an arbitrary constant. (a) Let c > 0 be arbitrary and (γ,

P, Q) ∈ Γ × M 1 × M 2 as above. Then one has inf m =0 D c•ϕγ (m • Q, P) = inf m>0 D c•ϕγ (m • Q, P) = c γ • 1 -A γ/(γ-1) • 1 + γ • (A -1) + γ • (γ -1) c • D c•ϕγ (Q, P) -1/(γ-1) (48) 
= c γ • 1 -A γ/(γ-1) • H γ (Q, P) -1/(γ-1)
and consequently for any subset

A • Ω Ω ⊂ M 2 inf Q∈A•Ω Ω inf m =0 D c•ϕγ (m • Q, P) = c γ • 1 -A γ/(γ-1) • 1 + γ • (A -1) + γ • (γ -1) c • inf Q∈A•Ω Ω D c•ϕγ (Q, P) -1/(γ-1) , (49) 
arg inf Q∈A•Ω Ω inf m =0 D c•ϕγ (m • Q, P) = arg inf Q∈A•Ω Ω D c•ϕγ (Q, P), (50) 
inf

Q∈A•Ω Ω inf m =0 D ϕγ (m • Q, P) = 1 γ • 1 -A γ/(γ-1) • inf Q∈A•Ω Ω H γ (Q, P) -1/(γ-1) , for γ < 0 and γ > 1, (51) 
arg inf Q∈A•Ω Ω inf m =0 D ϕγ (m • Q, P) = arg inf Q∈A•Ω Ω H γ (Q, P), for γ < 0 and γ > 1, (52) 
inf

Q∈A•Ω Ω inf m =0 D ϕγ (m • Q, P) = 1 γ • 1 -A γ/(γ-1) • sup Q∈A•Ω Ω H γ (Q, P) -1/(γ-1) , for γ ∈]0, 1[, (53) 
arg inf Q∈A•Ω Ω inf m =0 D ϕγ (m • Q, P) = arg sup Q∈A•Ω Ω H γ (Q, P), for γ ∈]0, 1[, (54) 
provided that the infimum on the right-hand side of (49) exists.

(b) For any

P ∈ K >0 , Q ∈ A • K , c > 0 one gets inf m =0 D c•ϕ1 (m • Q, P) = inf m>0 D c•ϕ1 (m • Q, P) = c • 1 -A • exp - 1 A • c • D c•ϕ1 (Q, P) + 1 A -1 (55) 
= c • 1 -A • exp - 1 A • I(Q, P)
and consequently for any subset

A • Ω Ω ⊂ A • K inf Q∈A•Ω Ω inf m =0 D c•ϕ1 (m • Q, P) = c • 1 -A • exp - 1 A • c • inf Q∈A•Ω Ω D c•ϕ1 (Q, P) + 1 A -1 , (56) 
arg inf Q∈A•Ω Ω inf m =0 D c•ϕ1 (m • Q, P) = arg inf Q∈A•Ω Ω D c•ϕ1 (Q, P ), (57) 
inf

Q∈A•Ω Ω inf m =0 D ϕ1 (m • Q, P) = 1 -A • exp - 1 A • inf Q∈A•Ω Ω I(Q, P) , (58) 
arg inf Q∈A•Ω Ω inf m =0 D ϕ1 (m • Q, P) = arg inf Q∈A•Ω Ω I(Q, P), (59) 
provided that the infimum on the right-hand side of (56) exists.

(c) For any

P ∈ K , Q ∈ A • K >0 , c > 0 we obtain inf m =0 D c•ϕ0 (m • Q, P) = inf m>0 D c•ϕ0 (m • Q, P) = D c•ϕ0 (Q, P) + c • (1 -A + log A) (60) = c • I(Q, P) + log A and consequently for any set subset A • Ω Ω ⊂ A • K >0 inf Q∈A•Ω Ω inf m =0 D c•ϕ0 (m • Q, P) = c • (1 -A + log A) + inf Q∈A•Ω Ω D c•ϕ0 (Q, P), (61) 
arg inf Q∈A•Ω Ω inf m =0 D c•ϕ0 (m • Q, P) = arg inf Q∈A•Ω Ω D c•ϕ0 (Q, P), (62) 
inf

Q∈A•Ω Ω inf m =0 D ϕ1 (m • Q, P) = log A + inf Q∈A•Ω Ω I(Q, P), (63) 
arg inf Q∈A•Ω Ω inf m =0 D ϕ0 (m • Q, P) = arg inf Q∈A•Ω Ω I(Q, P), (64) 
provided that the infimum on the right-hand side of (61) exists.

The proof of Lemma 16 is given in Appendix C.

Remark 17: Notice that for P ∈ K >0 and Q ∈ A• K , the modified Kullback-Leibler information has the property I(Q, P) ≥ 0 if A ≥ 1 (cf. ( 46)); otherwise, I(Q, P) may become negative, as can be easily seen from the case where P := P unif := ( 1 K , . . . , 1 K ) is the probability vector of frequencies of the uniform distribution on {1, . . . , K}, and Q := ( 1 K+1 , 0, . . . , 0). 47)); otherwise, I(Q, P) may become negative (take e.g. Q = ( K+1 K , . . . , K+1 K ) and P := (1, 0, . . . , 0)).

Analogously, for P ∈ K and Q ∈ A • K >0 one gets I(Q, P) ≥ 0 if A ≤ 1 (cf. (
Remark 18: (a) In the context of Remark 15(vi), according to [START_REF] Bernstein | Sur les fonctions absolument monotones[END_REF] 49), ( 51), ( 53) is independent of A > 0 and equal to -lim n→∞

applied to ϕ := c • ϕ γ , for all cases γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[ the left-hand side of each of (
1 n log ¥ ξ wW n
∈ Ω Ω where -as will be shown below -the corresponding W's have probability distribution 6)) which varies "quite drastically" with γ (and the case γ ∈]1, 2[ has to be even excluded for analytical difficulties 18 ). Analogously, each of the left-hand sides of ( 56), ( 58), ( 61), ( 63) is also independent of A > 0 and equal to -lim n→∞

[• ] = ¥[W 1 ∈ • ] (cf. (
1 n log ¥ ξ wW n
∈ Ω Ω for some W of respective distribution. Hence, by inversion, all the extremum-describing

target quantities inf Q∈A•Ω Ω D c•ϕγ (Q, P) (γ ∈ \]1, 2[), inf Q∈A•Ω Ω H γ (Q, P) (γ ∈] -∞, 0[ ∪ [2, ∞[), sup Q∈A•Ω Ω H γ (Q, P) (γ ∈]0, 1[), inf Q∈A•Ω Ω I(Q, P) and inf Q∈A•Ω Ω I(Q, P) can be expressed as G -lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω) for some explicitly known (A-dependent) function G.
This means that -in the sense of Definition 1 -all the corresponding four "cornerstone quantities" D c•ϕγ (Q, P), H γ (Q, P), I(Q, P), I(Q, P) are BS-minimizable, respectively BS-maximizable, on Ω = A • Ω Ω. The above-mentioned inversions (i.e. constructions of G(•)) will be concretely carried out below -namely in the Propositions 22,[START_REF] Avlogiaris | On testing local hypotheses via local divergence[END_REF][START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF][START_REF] Ay | Information Geometry[END_REF]26 and 27. In those, we also involve the BS-minimizability/maximizability of several other important closely related divergences and measures of entropy (measures of diversity, measures of heterogeneity/homogeneity, measures of concentration) which (i) are widely used in information theory and its applications to artificial intelligence, machine learning and physics, and which (ii) can be built from the above-mentioned four cornerstone quantities (power divergences, Hellinger integrals, Kullback-Leibler information divergences). (b) The special case Theorem 14 works analogously to (a), with the differences that we employ A = 1 (instead of arbitrary A > 0), [START_REF] Basu | Statistical Inference: The Minimum Distance Approach[END_REF] 

ϕ := c•ϕ γ (γ ∈ ]-∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[) of
(instead of (42)), ¥ X n 1 [•] (instead of ¥[•]), and ξ wW n,X (instead of ξ wW n ).
(c) From the proof of Lemma 16 in Appendix C below, one can see that for the important case γ = 2 the formulas ( 48) to (52) also hold for A < 0.

In the following, we further elaborate the three points (a),(b) and (c) of Remark 18 "comprehensively and unifyingly", where the expression "BS minimizable/maximizable" always has to be interpreted accordingly in terms of -lim n→∞

1 n log ¥[ξ wW n ∈ • ] respectively -lim n→∞ 1 n log ¥ X n 1 [ξ wW
n,X ∈ • ] (without explicit mentioning, for the sake of brevity).

Let us fix c = 1 and an arbitrary triple (γ, P, Q) which satisfies the assumptions of Lemma 16(a) with A := K k=1 q k > 0. For such a setup, we have obtained in [START_REF] Bertsimas | Optimization over Integers[END_REF] the γ-order Hellinger integral (of Q and P) H γ (Q, P) > 0, which is not a divergence; as a terminology-concerning side remark, let us mention that H γ (Q, P) (γ ≥ 1) is called relative information generating function in Guiasu & Reischer [START_REF] Guiasu | The relative information generating function[END_REF], see e.g. also Clark [START_REF] Clark | Local entropy statistics for point processes[END_REF]; moreover, H γ (Q, P) is sometimes termed (γ-order) Chernoff coefficient being a component of the Chernoff distances/informations [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF]. Torgersen [START_REF] Torgersen | Comparison of Statistical Experiments[END_REF] uses the name (γ-order) Hellinger transform. Notice that the special case γ = 1 2 is nothing but (a multiple of) the well-known important Bhattacharyya coefficient (cf. [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF], [START_REF] Bhattacharyya | On a measure of divergence between two multinomial populations[END_REF], [START_REF] Bhattacharyya | On some analogues of the amount of information and their use in statistical estimation (contd.)[END_REF])

BC(Q, P) := H 1/2 (Q, P) = K k=1 √ q k • p k = 1 + 1 2 • (A -1) + 1 2 • ( 1 2 -1) • D ϕ 1 2 (Q, P)
which is also known as affinity (cf. Matusita [START_REF] Matusita | On the theory of statistical functions[END_REF], see e.g. also Toussaint [START_REF] Toussaint | Probability of error, expected divergence and the affinity of several distributions[END_REF]) and (classic, non-quantum) fidelity similarity (cf. e.g. Deza & Deza [START_REF] Deza | Encyclopedia of Distances[END_REF]); for non-probability vectors P ∈ K ≥0 one can simply retransform P := P M P and thus imbed

BC(Q, P) = √ M P • BC(Q, P) into our BS context.
There is a vast literature on very recent applications of the Bhattacharyya coefficient, for instance it appears exemplarily in Peng & Li [START_REF] Peng | Target scale adaptive control based on comparing Bhattacharyya coefficient[END_REF] for object tracking from successive video frames, Ayed et al. [START_REF] Ayed | Distribution matching with the Bhattacharyya similarity: a bound optimization framework[END_REF] for efficient graph cut algorithms, Patra et al. [START_REF] Patra | A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data[END_REF] for collaborative filtering in sparse data, El Merabet et al. [START_REF] Merabet | Maximal similarity based region classification method through local image region descriptors and Bhattacharyya coefficient-based distance: application to horizon line detection using wide-angle camera[END_REF] for region classification in intelligent transport systems in order to compensate the lack of performance of Global Navigation Satellites Systems, Chiu et al. [START_REF] Chiu | Interactive mobile augmented reality system for image and hand motion racking[END_REF] for the design of interactive mobile augmented reality systems, Noh et al. [START_REF] Noh | Fluid dynamic models for Bhattacharyya-based discriminant analysis[END_REF] for dimension reduction in interacting fluid flow models, Bai et al. [START_REF] Bai | Grain scattering noise modeling and its use in the detection and characterization of defects using ultrasonic arrays[END_REF] for material defect detection through ultrasonic array imaging, Dixit & Jain [START_REF] Dixit | Proposed similarity measure using Bhattacharyya coefficient for context aware recommender system[END_REF] for the design of recommender systems on highly sparse context aware datasets, Guan et al. [START_REF] Guan | Visible light dynamic positioning method using improved camshift-Kalman algorithm[END_REF] for visible light positioning methods based on image sensors, Lin et al. [START_REF] Lin | A new probabilistic representation of color image pixels and its applications[END_REF] for probabilistic representation of color image pixels, Chen et al. [START_REF] Chen | Iterative reweighted Tikhonov-regularized multihypothesis prediction scheme for distributed compressive video sensing[END_REF] for distributed compressive video sensing, Jain et al. [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] for the enhancement of multistage user-based collaborative filtering in recommendation systems, Pascuzzo et al. [START_REF] Pascuzzo | Prion propagation estimated from brain diffusion MRI is subtype dependent in sporadic Creutzfeldt-Jakob disease[END_REF] for brain-diffusion-MRI based early diagnosis of the sporadic Creutzfeldt-Jakob disease, Sun et al. [START_REF] Sun | An automatic coordinate unification method of multitemporal point clouds based on virtual reference datum detection[END_REF] for the design of automatic detection methods multitemporal (e.g. landslide) point clouds, Valpione et al. [START_REF] Valpione | Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy[END_REF] for the investigation of T cell dynamics in immunotherapy, Wang et al. [START_REF] Wang | Forewarning method of downburst based on feature recognition and extrapolation[END_REF] for the tracking and prediction of downbursts from meteorological data, Xu et al. [START_REF] Xu | An adaptive distributed compressed video sensing algorithm based on normalized Bhattacharyya coefficient for coal mine monitoring video[END_REF] for adaptive distributed compressed video sensing for coal mine monitoring, Zhao et al. [START_REF] Zhao | Discrete probability distribution prediction of image emotions with shared sparse learning[END_REF] for the shared sparse machine learning of the affective content of images, Chen et al. [START_REF] Chen | A generalized asymmetric dual-front model for active contours and image segmentation[END_REF] for image segmentation and domain partitioning, De Oliveira et al. [START_REF] De Oliveira | Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space[END_REF] for the prediction of cell-penetrating peptides, Eshaghi et al. [START_REF] Eshaghi | Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data[END_REF] for the identification of multiple sclerosis subtypes through machine learning of brain MRI scans, Feng et al. [START_REF] Feng | Improved detection of focal cortical dysplasia in normal-appearing FLAIR images using a Bayesian classifier[END_REF] for improvements of MRI-based detection of epilepsy-causing cortical malformations, Hanli et al. [START_REF] Hanli | A novel pilot protection scheme for transmission lines based on current distribution histograms and their Bhattacharyya coefficient[END_REF] for designing pilot protection schemes for transmission lines, Jiang et al. [START_REF] Jiang | Flow-assisted visual tracking using event camera[END_REF] for flow-assisted visual tracking through event cameras, Lysiak & Szmajda [START_REF] Lysiak | Empirical comparison of the feature evaluation methods based on statistical measures[END_REF] for comparisons of selected feature quality evaluations, Joel & Sivakumar [START_REF] Joel | Nonsubsampled contourlet transform with cross-guided bilateral filter for despeckling of medical ultrasound images[END_REF] for the despeckling enhancement of medical ultrasound image quality, Reising et al. [START_REF] Reising | Radio identity verification-based IoT security using RF-DNA fingerprints and SVM[END_REF] for the design of security protection of Internet-of-Things (IoT) devices, Skrbic et al. [START_REF] Skrbic | Local sequence-structure relationships in proteins[END_REF] for the uncovering of interplays between amino acid sequences and local structures in proteins, Tsiapoki et al. [START_REF] Tsiapoki | Combination of damage feature decisions with adaptive boosting for improving the detection performance of a structural health monitoring framework: validation on an operating wind turbine[END_REF] for the improvement of the detection performance of structural health monitoring frameworks, van Molle et al. [START_REF] Van Molle | Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks[END_REF] for uncertainty quantification in deep neural networks, Yang et al. [START_REF] Yang | Evaluating onset times of acoustic emission signals using histogram distances[END_REF] for the determination of the onset of transient signals, and Zhou & Yu [START_REF] Zhou | Human visual search follows a suboptimal Bayesian strategy revealed by a spatiotemporal computational model and experiment[END_REF] for the modelling of spatiotemporal human eye movements.

To proceed with the general context, for any

γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[ let the function h γ : ]0, ∞[ → ] -∞, ∞[ be such that x → h γ (1 + γ • (A -1) + γ • (γ -1) • x)
is continuous and strictly increasing (respectively, strictly decreasing) for all x ≥ 0 19 which is BS-minimizable on

with 1 + γ • (A -1) + γ • (γ -1) • x > 0; since D ϕγ (Q, P) is BS-minimizable on Ω = A • Ω Ω, then also the -not necessarily nonnegative -quantity h γ 1 + γ • (A -1) + γ • (γ -1) • D ϕγ (Q, P) = h γ H γ (Q, P) is BS-minimizable (respectively, BS-maximizable) on Ω = A • Ω Ω. If h γ satisfies additionally h γ (1) = 0 as well as h γ (1 + γ • (A -1) + γ • (γ -1) • x) ≥ 0 for all x ≥ 0 with 1+γ •(A-1)+γ •(γ -1)•x > 0, then D hγ (Q, P) := h γ 1+γ •(A-1)+γ •(γ -1)•D ϕγ (Q, P) = h γ H γ (Q, P) constitutes a divergence
Ω = A • Ω Ω (respectively, BS-maximizable on Ω = A • Ω Ω).

Let us consider some important examples. For the identity mapping h

Id γ (y) := y (y > 0) the function x → 1 + γ • (A - 1) + γ • (γ -1)
• x is strictly increasing for γ < 0 and γ > 1 (on the required domain of x), and strictly decreasing for

γ ∈]0, 1[. Accordingly, H γ (Q, P) is BS-minimizable on Ω = A • Ω Ω for γ < 0 and γ ≥ 2 and BS-maximizable on Ω = A • Ω Ω for γ ∈ ]0, 1[ (this is consistent with (51), (53)); in particular, the Bhattacharyya coefficient BC(Q, P) is BS-maximizable on Ω = A • Ω Ω. Some other important choices are h γ (y) := h c1,c2,c3 (y) := c 1 • y c2 -c 3 , y > 0, c 1 , c 2 ∈ \{0}, c 3 ∈ , ( 65 
)
h γ (y) := h R c4,f (y) := lim c2→0 h c4/f (c2),c2,1 (y) = c 4 f (0)
• log(y),

y > 0, c 4 ∈ \{0}, (66) 
h γ (y) := h GB2 c5,c6 (y) := c 5 • (arccos(y)) c6 , γ ∈ ]0, 1[, y ∈ ]0, 1], c 5 > 0, c 6 > 0, (67) 
h γ (y) := h BB ν,c7 (y) := c 7 • log(1 -1-y ν ) log(1 -1 ν ) , γ ∈ ]0, 1[, y ∈ ]0, 1], c 7 > 0, ν ∈] -∞, 0[ ∪ ]1, ∞[, (68) 
where the constants c 1 to c 7 may depend on γ, and f is some (maybe γ-dependent) function which is differentiable in a neighborhood of 0 and satisfies f (0) = 0, f (0) = 0 (e.g. f (z) = c 8 • z for some non-zero constant c 8 ). Clearly, h c1,c2,c3 (•) is strictly increasing (respectively, strictly decreasing) if and only if

c 1 • c 2 > 0 (respectively, c 1 • c 2 < 0). Moreover, h R c4,f (•) is strictly increasing (respectively, strictly decreasing) if and only if c4 f (0) > 0 (respectively, c4 f (0) < 0). Furthermore, both h GB2 c5,c6 (•) and h GoBa ν,c7 (•) are strictly decreasing.
For instance, the special case

h γ (y) = h R c4,Id (y) with c 4 := 1 γ•(γ-1) (recall that γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[) and identity function f := Id leads to the quantities R γ (Q, P) := D h R c 4 ,Id (Q, P) = log 1 + γ • (A -1) + γ • (γ -1) • D ϕγ (Q, P) γ • (γ -1) = log H γ (Q, P) γ • (γ -1) = log K k=1 (q k ) γ • (p k ) 1-γ γ • (γ -1) , γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[, (69) 
(provided that all involved power divergences are finite), which are thus BS-minimizable on

Ω = A•Ω Ω; notice that R γ (Q, P) ≥ 0 if γ ∈ ]0, 1[ ∪ [ 2, ∞[ together with A ∈ [1, ∞[, and if γ ∈ ] -∞, 0[ together with A ∈ ]0, 1].
The special subcase A = 1 in (69) (and thus, Q is a probability vector Q) corresponds to the prominent Renyi divergences/distances [START_REF] Renyi | On measures of entropy and information[END_REF] (in the scaling of e.g. Liese & Vajda [START_REF] Liese | Convex Statistical Distances[END_REF] and in probability-vector form), see e.g. van Erven & Harremoes [START_REF] Van Erven | Renyi divergence and Kullback-Leibler divergence[END_REF] for a comprehensive study of their properties; as a side remark, γ • (γ -1) • R γ (Q, P) is also employed in the Chernoff distances/informations [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF]. The special subcase R 1/2 (Q, P) (i.e. γ = 1/2 and A = 1 in ( 69)) corresponds to (a multiple of) the widely used Bhattacharyya distance (of type 1) between Q and P, cf. [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF] (see e.g. also Kailath [178]). Sometimes, exp(R γ (Q, P)) is also called Renyi divergence/distance. Some exemplary (relatively) recent studies and applications of Renyi divergences R γ (Q, P) (respectively, their multiple or exponential) -aside from the substantial statistical literature -appear e.g. in Zhao et al. [START_REF] Zhao | Toward understanding the isomeric stability of fullerenes with density functional theory and the information-theoretic approach[END_REF] for the study of isomeric stability of fullerenes (which are e.g. employed for state-of-the-art organic solar cells), in the papers of Sundaresan [START_REF] Sundaresan | Guessing Under Source Uncertainty[END_REF], Bunte & Lapidoth [START_REF] Bunte | Encoding tasks and Renyi entropy[END_REF], Sason [START_REF] Sason | On the Renyi divergence, joint range of relative entropies, and a channel coding theorem[END_REF], Kumar et al. [START_REF] Kumar | A unified framework for problems on guessing, source coding and task partitioning[END_REF] for (mismatch-cases of) coding and guessing as well as task partitioning, in the papers of Prest [START_REF] Prest | Sharper bounds in lattice-based cryptography using the Renyi divergence[END_REF], Bai et al. [START_REF] Bai | Improved security proofs in lattice-based cryptography: using the Renyi divergence rather than the statistical distance[END_REF] for lattice-based cryptography, in He et al. [START_REF] He | Robot active olfaction search in turbulent flow and infotaxis search based on Renyi divergence[END_REF] for robot active olfaction search (by infotaxis) in turbulent flows, in Momeni et al. [START_REF] Momeni | An information theory-inspired strategy for design of reprogrammable encrypted graphenebased coding metasurfaces at terahertz frequencies[END_REF] for the design of reprogrammable encrypted graphene-based coding metasurfaces, in Staszowska et al. [START_REF] Staszowska | The Renyi divergence enables accurate and precise cluster analysis for localization microscopy[END_REF] for accurate and precise cluster analysis for super-resolution localization microscopy, in Yu & Tan [START_REF] Yu | Wyner's common information under Renyi divergence measures[END_REF] for distributed source simulation problems, in Zhang et al. [START_REF] Zhang | Two novel sensor control schemes for multitarget tracking via delta generalised labelled multi-Bernoulli filtering[END_REF] for sensor control, in Yu & Tan [START_REF] Yu | Simulation of random variables under Renyi divergence measures of all orders[END_REF] for the so-called random variable simulation problem, in Blanchet et al. [START_REF] Blanchet | On distributionally robust extreme value analysis[END_REF] for the robust treatment of extreme values in rainfall accumulation data, in Cai et al. [START_REF] Cai | Sensor tasking for search and catalog maintenance of geosynchronous space objects[END_REF] for sensor tasking for search and catalog maintenance of geosynchronous space objects, in Gholami & Hodtani [START_REF] Gholami | A more general information theoretic study of wireless location verification system[END_REF] for refinements of safety-and-security-targeted location verification systems in wireless communication networks (e.g in Intelligent Transportation Systems (ITSs) and vehicular technology), in Seweryn et al. [START_REF] Seweryn | Application of information theoretical approaches to assess diversity and similarity in single-cell transcriptomics[END_REF] for the assessment of similarity and diversity of expression profiles in single cell systems, in Zhou [START_REF] Zhou | Multiple private key generation for continuous memoryless sources with a helper[END_REF] for the study of secrecy constraints in key generation problems where side information might be present at untrusted users, in Makkawi et al. [START_REF] Makkawi | Adaptive diagnosis for fault tolerant data fusion based on α-Renyi divergence strategy for vehicle localization[END_REF] for the design of an automated decision-support framework for adaptive diagnosis of fault-tolerant multi-sensor data fusion for vehicle localization, in Mao et al. [START_REF] Mao | Privacy-preserving computation offloading for parallel deep neural networks training[END_REF] for privacy-preserving computation offloading for parallel deep neural networks training.

There is vast literature on recent applications of the above-mentioned special case R 1/2 (Q, P) -that is, the Bhattacharyya distance (of type 1); for instance, it appears in Tarighati & Jalden [START_REF] Tarighati | Optimality of rate balancing in wireless sensor networks[END_REF] for rate balancing in wireless sensor networks, Bi et al. [START_REF] Bi | The role of the Bhattacharyya distance in stochastic model updating[END_REF], [START_REF] Bi | The Bhattacharyya distance: enriching the P-box in stochastic sensitivity analysis[END_REF] for certain uncertainty quantifications respectively stochastic sensitivity analyses in mechanical systems and signal processing, Fu & He [START_REF] Fu | Bhattacharyya distance criterion based multibit quantizer design for cooperative spectrum sensing in cognitive radio networks[END_REF] for the design of multibit quantizers for cooperative spectrum sensing in cognitive radio networks, Cohen et al. [START_REF] Cohen | Adaptive Causal Network Coding With Feedback[END_REF] for adaptive and causal random linear network coding with forward error correction for a point-topoint communication channel with delayed feedback, Xu et al. [START_REF] Xu | Renewable energy-aware big data analytics in geo-distributed data centers with reinforcement learning[END_REF] for cost minimization problems of big data analytics on geo-distributed data centers connected to renewable energy sources with unpredictable capacity, Xu et al. [START_REF] Xu | Optimal rates for community estimation in the weighted stochastic block model[END_REF] for community identification in networks, Arrigoni & Madsen [START_REF] Arrigoni | Evolutionary computing and machine learning for discovering of low-energy defect configurations[END_REF] for automated discovering of low-energy defect configurations in materials, Fan et al. [START_REF] Fan | Region-merging method with texture pattern attention for SAR image segmentation[END_REF] for region-merging-based methods for synthetic aperture radar (SAR) image segmentation, Mahfouz et al. [START_REF] Mahfouz | EKNN: ensemble classifier incorporating connectivity and density into kNN with application to cancer diagnosis[END_REF] for some refined ensemble classifications in microarray-based automated cancer diagnosis, Matchev & Shyamsundar [START_REF] Matchev | ThickBrick: optimal event selection and categorization in high energy physics. Part I. Signal discovery[END_REF] for some machine-learning based signal discovery in high energy physics (HEP) experiments, Wang et al. [START_REF] Wang | Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma[END_REF] for the investigation of intratumoral heterogeneity (ITH) of some gastric cancer, Webster et al. [START_REF] Webster | Characterisation, identification, clustering, and classification of disease[END_REF] for the characterization, identification, clustering and classification of disease, and Xiahou et al. [START_REF] Xiahou | Remaining useful life prediction by fusing expert knowledge and condition monitoring information[END_REF] for the prediction of remaining useful life (RUL) through fusion of expert knowledge and condition monitoring information.

As a further example, consider

B γ,c5,c6 (Q, P) := D h GB2 c 5 ,c 6 (Q, P) = c 5 • arccos 1 + γ • (γ -1) • D ϕγ (Q, P) c6 = c 5 • arccos H ϕγ (Q, P) c6 = c 5 • arccos K k=1 (q k ) γ • (p k ) 1-γ c6 ≥ 0 , γ ∈ ]0, 1[, c 5 > 0, c 6 > 0,
which is BS-maximizable on Ω Ω. The case B 1/2,1,1 (Q, P) corresponds to the well-known Bhattacharyya arccos distance (Bhattacharyya distance of type 2) in [START_REF] Bhattacharyya | On some analogues of the amount of information and their use in statistical estimation (contd.)[END_REF] (which is also called Wootters distance [START_REF] Wootters | Statistical distance and Hilbert space[END_REF]), and B 1/2,1,2 (Q, P) to its variant in [START_REF] Bhattacharyya | On a measure of divergence between two multinomial populations[END_REF]; the case B 1/2,2,1 (Q, P) is known as Fisher distance or Rao distance or geodesic distance (see e.g. Deza & Deza [START_REF] Deza | Encyclopedia of Distances[END_REF]); a nice graphical illustration of the geometric connection between the Fisher distance B 1/2,2,1 (Q, P) and the Hellinger distance/metric 1 2 • D ϕ 1/2 (Q, P) can be found e.g. on p.35 in Ay et al. [START_REF] Ay | Information Geometry[END_REF]. Some exemplary applications of the Bhattacharyya arccos distance B 1/2,1,1 (Q, P) can be found e.g. in Rao [START_REF] Rao | Cluster analysis applied to a study of race mixture in human populations[END_REF] and Juhasz [START_REF] Juhasz | The Hellinger Distance as Used for the Representation of Serological ABO Distances Among Earlier Human Populations[END_REF] for cluster analysis of human populations, in Martin-Fernandez et al. [START_REF] Martin-Fernandez | Measures of difference for compositional data and hierarchical clustering methods[END_REF] for general hierarchical clustering, Greenacre [START_REF] Greenacre | Weighted metric multidimensional scaling[END_REF] for metric scaling, and in Chen et al. [START_REF] Chen | Comparison of beta diversity measures in clustering the high-dimensional microbial data[END_REF] for clustering high-dimensional microbial data from RNA sequencing.

Let us give another example, namely

B γ,ν,c7 (Q, P) := D h BB ν,c 7 (Q, P) = c 7 log(1 -1 ν ) • log 1 - 1 -1 + γ • (γ -1) • D ϕγ (Q, P) ν = c 7 log(1 -1 ν ) • log 1 - 1 -H ϕγ (Q, P) ν = c 7 log(1 -1 ν ) • log 1 - 1 - K k=1 (q k ) γ • (p k ) 1-γ ν ∈ [0, c 7 [ , γ ∈ ]0, 1[, c 7 > 0, ν ∈ ] -∞, 0[ ∪ ]1, ∞[,
which is BS-maximizable on Ω Ω. The case B 1/2,ν,1 (Q, P) corresponds to the Bounded Bhattacharyya Distance Measures of Jolad et al. [START_REF] Jolad | A new family of bounded divergence measures and application to signal detection[END_REF].

We can also employ divergences of the form Ȓγ (Q, P) := R γ (T 1 (Q), T 2 (P)) 20 where

T 1 : D 1 → R 1 , T 2 : D 1 → R 2 are
(say) invertible functions on appropriately chosen subsets D 1 , D 2 , R 1 , R 2 of the probability-vector simplex K . For instance, consider the following special case (with a slight abuse of notation):

Ȓγ (Q, P) := R γ ( Q, P) = 1 γ • (γ -1) • log   K k=1 (q k ) ν1 K j=1 (q j ) ν1 γ • (p k ) ν2 K j=1 (p j ) ν2 1-γ   (70) 
where (i)

Q := ( q k ) K k=1 with q k := (q k ) ν 1 K j=1 (qj ) ν 1
is the escort probability distribution (in vector form) associated with the probability distribution (in vector form) Q := (q k ) K k=1 ∈ K >0 , and (ii)

P := ( p k ) K k=1 with p k := (p k ) ν 2 K j=1 (pj ) ν 2
is the escort probability distribution associated with the probability distribution

P := (p k ) K k=1 ∈ K >0 , in terms of some fixed escort parameters ν 1 > 0, ν 2 > 0.
In particular, for the special choice

ν 1 = ν 2 > 0 and γ := ν ν1 with ν ∈]0, ν 1 [ ∪ [2ν 1 , ∞[ we obtain from (70) 0 ≤ ν ν 1 • R ν/ν1 ( Q, P) = log K k=1 ( q k ) ν/ν1 • ( p k ) 1-(ν/ν1) ν ν1 -1 = ν 1 ν -ν 1 • log K k=1 (q k ) ν • (p k ) ν1-ν - ν ν -ν 1 • log K k=1 (q k ) ν1 + log K k=1 (p k ) ν1 =: Ȓν/ν1 (Q, P) (71) 
which is BS-minimizable (in Q) on Ω Ω. Our divergence Ȓν/ν1 (Q, P) in ( 71) is basically a multiple of a divergence which has been very recently used in Ghosh & Basu [START_REF] Ghosh | A scale-invariant generalization of the Renyi entropy, associated divergences and their optimizations under Tsallis' nonextensive framework[END_REF]. Moreover, Ȓ1/ν1 (Q, P) (i.e. the special case ν = 1 in ( 71)) is equal to Sundaresan's divergence [START_REF] Sundaresan | A measure of discrimination and its geometric properties[END_REF] [353] (see also Lutwak et al. [START_REF] Lutwak | Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information[END_REF], Kumar & Sundaresan [START_REF] Kumar | Minimization problems based on relative α-entropy I: forward projection[END_REF], [START_REF] Kumar | Minimization problems based on relative α-entropy II: reverse projection[END_REF], Yagli et al. [START_REF] Yagli | Minimax Renyi redundancy[END_REF]); for our BS-approach, we need the restriction

ν 1 ∈ ]0, 1 2 ] ∪ ]1, ∞[.
Notice that Sundaresan's divergence can be employed in mismatch-cases of (i) Campbell's coding problem, (ii) Arikan's guessing problem, (iii) memoryless guessing, and (iv) task partitioning problems; see e.g. Sundaresan [START_REF] Sundaresan | Guessing Under Source Uncertainty[END_REF], Bunte & Lapidoth [START_REF] Bunte | Encoding tasks and Renyi entropy[END_REF], Kumar et al. [START_REF] Kumar | A unified framework for problems on guessing, source coding and task partitioning[END_REF].

Returning to the general context, functions of the modified Kullback-Leibler information I(Q, P) and the modified reverse Kullback-Leibler information I(Q, P) can be treated analogously. For the sake of brevity, we only deal with the former and fix arbitrary P ∈ K >0 and Q ∈ A • K with A := K k=1 q k > 0. For this, in [START_REF] Bhandari | A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation[END_REF] we have obtained I(Q, P) which is generally not a divergence (cf. Remark 17). In the following, let the function h 1 : ] -1, ∞[ → ] -∞, ∞[ be continuous and strictly increasing (respectively, strictly decreasing); since D ϕ1 (Q, P) is BS-minimizable on Ω = A • Ω Ω, also the quantity

h 1 A -1 + D ϕ1 (Q, P) = h 1 I(Q, P) is BS-minimizable on Ω = A • Ω Ω (respectively, BS-maximizable on Ω = A • Ω Ω).
In particular, by using the negative identity mapping h -Id γ (y) := -y (y > -1) we get that -I(Q, P) is BS-maximizable. Another exemplary choice for h 1 is (cf. Sharma & Mittal [START_REF] Sharma | New nonadditive measures of entropy for discrete probability distributions[END_REF] in the scaling of e.g. Morales et al. [START_REF] Morales | Asymptotic properties of divergence statistics in a stratified random sampling and its applications to test statistical hypotheses[END_REF])

h 1 (y) := h SM s (y) := e (s-1)•y -1 s -1 , y ∈ , s ∈ ]0, 1[ ∪ ]1, ∞[, (72) 
which is strictly increasing; hence, h SM s (I(Q, P)) (and also

h SM s (D ϕ1 (Q, P))) is BS-minimizable on Ω = A • Ω Ω.
As another important application line, let us fix any (γ, Q)

∈ ( Γ\]1, 2[) × M 2 (cf. Lemma 16(a)) with A := K k=1 q k > 0.
Moreover, we take P := P unif := ( 1 K , . . . , 1 K ) to be the probability vector of frequencies of the uniform distribution on {1, . . . , K}.

Then, for γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[ one gets H γ (Q, P unif ) = K γ-1 • K k=1 q γ k . One can rewrite K 1-γ • H γ (Q, P unif ) = K k=1 q γ
k ; the latter is sometimes called heterogeneity index of type γ, see e.g. van der Lubbe [START_REF] Van Der Lubbe | An axiomatic theory of heterogeneity and homogeneity[END_REF], with γ = 2 being the Simpson-Herfindahl index which is also known as index of coincidence (cf. Harremoes & Topsoe [START_REF] Harremoes | Inequalities between entropy and index of coincidence derived from information diagrams[END_REF] and its generalization in Harremoes & Vajda [START_REF] Harremoes | On the Bahadur-efficient testing of uniformity by means of the entropy[END_REF]). Alternatively, K k=1 q γ k is also called Onicescu's information energy in case of γ = 2 (cf. Onicescu [START_REF] Onicescu | Energie informationnelle[END_REF], see also Pardo & Taneja [START_REF] Pardo | Information energy and its applications[END_REF] for comprehensive investigations) and in general information energy of order γ (cf. Theodorescu [START_REF] Theodorescu | Energie informationelle et notions apparentees[END_REF], see also e.g. Pardo [START_REF] Pardo | Order-α weighted information energy[END_REF]); for exemplary applications to electron density functional theory (DFT) for quantum chemical reactivity, the reader may take (discretized versions of) e.g. Liu et al. [START_REF] Liu | Renyi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory[END_REF], Lopez-Rosa et al. [START_REF] Lopez-Rosa | Electron-pair entropic and complexity measures in atomic systems[END_REF] and Rong et al. [START_REF] Rong | Information-theoretic approach in density functional theory and its recent applications to chemical problems[END_REF]. In some other literature (see e.g. Clark [START_REF] Clark | Local entropy statistics for point processes[END_REF]), K k=1 q γ k is alternatively called Golomb's [START_REF] Golomb | The information generating function of a probability distribution[END_REF] information generating function (of a probability distribution Q); yet another name is generalized information potential and for γ = 2 information potential (cf. e.g. Principe [START_REF] Principe | Information Theoretic Learning[END_REF], Acu et al. [START_REF] Acu | Information potential for some probability density functions[END_REF]). From the above-mentioned investigations, we obtain that K k=1 q γ k is BS-minimizable on Ω = A • Ω Ω for γ < 0 and γ ≥ 2, and BS-maximizable on Ω = A • Ω Ω for γ ∈]0, 1[. More generally, by employing ( 65) and ( 66), for the class of entropies (diversity indices)

E γ,c1,c2,c3 (Q) := h c1,c2,c3 K k=1 q γ k = c 1 • K k=1 q γ k c2 -c 3 = c 1 • K c2•(1-γ) • H γ (Q, P unif ) c2 -c 3 , c 1 , c 2 ∈ \{0}, c 3 ∈ , (73) E R c4,f (Q) := h R c4,f K k=1 q γ k = c 4 f (0) • log K k=1 q γ k , = c 4 f (0) • log H γ (Q, P unif ) + (1 -γ) • log(K) , c 4 ∈ \{0}, (74) 
(which is similar to the entropy-class of Morales et al. [START_REF] Morales | Uncertainty of discrete stochastic systems: general theory and statistical inference[END_REF] who use a different, more restrictive parametrization and probability distributions Q), one gets the following extremum-behaviour:

• E γ,c1,c2,c3 (Q) is BS-minimziable if γ < 0 and c 1 • c 2 > 0; • E γ,c1,c2,c3 (Q) is BS-minimizable if γ ≥ 2 and c 1 • c 2 > 0; • E γ,c1,c2,c3 (Q) is BS-minimizable if γ ∈ ]0, 1[ and c 1 • c 2 < 0; • E γ,c1,c2,c3 (Q) is BS-maximizable if γ < 0 and c 1 • c 2 < 0; • E γ,c1,c2,c3 (Q) is BS-maximizable if γ ≥ 2 and c 1 • c 2 < 0; • E γ,c1,c2,c3 (Q) is BS-maximizable if γ ∈ ]0, 1[ and c 1 • c 2 > 0; • E R c4,f (Q) is BS-minimizable if γ < 0 and c4 f (0) > 0; • E R c4,f (Q) is BS-minimizable if γ ≥ 2 and c4 f (0) > 0; • E R c4,f (Q) is BS-minimizable if γ ∈ ]0, 1[ and c4 f (0) < 0; • E R c4,f (Q) is BS-maximizable if γ < 0 and c4 f (0) < 0; • E R c4,f (Q) is BS-maximizable if γ ≥ 2 and c4 f (0) < 0; • E R c4,f (Q) is BS-maximizable if γ ∈ ]0, 1[ and c4 f (0) > 0.
From this, one can deduce that our new BS method works for the constrained minimization/maximization of the following well-known, prominently used measures of entropy respectively measures of diversity, and beyond: (E1) c 1 = 1, c 2 = 1 γ , c 3 = 0: the Euclidean γ-norm (also known as γ-norm heterogeneity index, see e.g. van der Lubbe [START_REF] Van Der Lubbe | An axiomatic theory of heterogeneity and homogeneity[END_REF])

||Q|| γ := K k=1 q γ k 1/γ = K (1-γ)/γ • H γ (Q, P unif ) 1/γ is BS-minimizable on Ω = A • Ω Ω for γ ∈]0, 1[ and γ ≥ 2,
and BS-maximizable on Ω = A • Ω Ω for γ < 0 (note that ||Q|| 1 = A) ; similarly, the γ-mean heterogeneity index (see e.g. [START_REF] Van Der Lubbe | An axiomatic theory of heterogeneity and homogeneity[END_REF], as well as Jost [START_REF] Jost | Entropy and diversity[END_REF] for its interpretation as "effective number of species" respectively as "numbers equivalent") given by E HI (Q) :

= K k=1 q γ k 1/(γ-1) = 1 K • H γ (Q, P unif ) 1/(γ-1)
is BS-minimizable on Ω = A • Ω Ω for γ ≥ 2, and BS-maximizable on Ω = A • Ω Ω for γ < 0 and γ ∈]0, 1[. Alternatively, E HI (Q) is also called (γ-order) Hill diversity index or Hill number [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF], respectively (γ-order) Hannah-Kay index [START_REF] Hannah | Concentration in Modern Industry[END_REF], respectively (γ-order) Renyi heterogeneity (cf. Nunes et al. [START_REF] Nunes | The definition and measurement of heterogeneity[END_REF]), respectively (γ-order) exponential Renyi entropy or exponential entropy (cf. Campbell [START_REF] Campbell | Exponential entropy as a measure of extent of a distribution[END_REF]) since it is equal to exp(E gR (Q)) (cf. (E6) below). The γ-mean heterogeneity index (under one of the above-mentioned namings) was recently employed e.g. by Greiff et al. [START_REF] Greiff | A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status[END_REF] for immunodiagnostic design of fingerprints of an individual's ongoing immunological status (e.g., healthy, infected, vaccinated) -culminating in accurate and early detection of disease and infection, by Ma & Li [START_REF] Ma | Measuring metagenome diversity and similarity with Hill numbers[END_REF] for the quantification of metagenome diversity and similarity, by Jasinska et al. [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF] for studying bacterial evolution -in particular evolution under sub-inhibitory antibiotic levels, by Ma et al. [START_REF] Ma | Defining individual-level genetic diversity and similarity profiles[END_REF] for the definition of individual-level genetic diversity and similarity profiles as well as their applications to datasets from the 1000-Genomes Project, and by Lassance & Vrins [START_REF] Lassance | Minimum Renyi entropy portfolios[END_REF] for some optimal selection procedure of financial-asset portfolios.

(E2) c 1 = 1 2 1-γ -1 , c 2 = 1, c 3 = 1: the entropy E gHC (Q) := 1 2 1-γ -1 • K k=1 q γ k -1 = 1 2 1-γ -1 • K 1-γ • H γ (Q, P unif ) -1 (75) 
is BS-minimizable on Ω = A • Ω Ω for γ < 0, and BS-maximizable on Ω = A • Ω Ω for γ ∈]0, 1[ and γ ≥ 2; the special subcase A = 1 in (75) (and thus, Q = Q is a probability vector) corresponds to the γ-order entropy of Havrda-Charvat [START_REF] Havrda | Quantification method of classification process[END_REF] (also called non-additive γ-order Tsallis entropy [START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs Statistics[END_REF] in statistical physics) where the special case γ = 2 is (a multiple of) Vajda's quadratic entropy [START_REF] Vajda | Theory of Statistical Inference and Information[END_REF] and Ahlswede's identification entropy [START_REF] Ahlswede | Identification entropy[END_REF] (see also Ahlswede & Cai [8]). Some exemplary (relatively) recent studies and applications of E gHC (Q) appear e.g. in Peter & Rangarajan [START_REF] Peter | Information geometry for landmark shape analysis: unifying shape representation and deformation[END_REF] for shape matching, in Liu et al. [START_REF] Liu | Renyi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory[END_REF] as well as in Rong et al. [START_REF] Rong | Information-theoretic approach in density functional theory and its recent applications to chemical problems[END_REF] to electron density functional theory (DFT) for quantum chemical reactivity, in Yalcin & Beck [START_REF] Yalcin | Generalized statistical mechanics of cosmic rays: application to positron-electron spectral indices[END_REF] for the investigation of energy spectra of cosmic rays, in Wen & Jiang [START_REF] Wen | Measuring the complexity of complex networks by Tsallis entropy[END_REF] for the quantification of complexity degrees in complex networks, in Bhandari [START_REF] Bhandari | A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation[END_REF] for fast multilevel thresholding for color image segmentation, in Erguzel et al. [START_REF] Erguzel | Entropy: a promising EEG biomarker dichotomizing subjects with opioid use disorder and healthy controls[END_REF] for the investigation of Electroencephalography (EEG) signals of subjects suffering from some psychiatric disorders, in Kang & Kim [START_REF] Kang | Automatic SAR image registration via Tsallis entropy and iterative search process[END_REF] for automatic synthetic aperture radar (SAR) image registration, in Namdari & Li [START_REF] Namdari | An entropy-based approach for modeling Lithium-Ion battery capacity fade[END_REF] for the modelling of Lithium-Ion battery capacity fade, in Seweryn et al. [START_REF] Seweryn | Application of information theoretical approaches to assess diversity and similarity in single-cell transcriptomics[END_REF] for the assessment of similarity and diversity of expression profiles in single cell systems, in Zhang et al. [START_REF] Zhang | Modelling groundwater-dependent vegetation index using entropy theory[END_REF] for the search of functional relationships between groundwater depth and vegetation distribution, in Kumbhakar et al. [START_REF] Kumbhakar | Mathematical modelling of streamwise velocity profile in open channels using Tsallis entropy[END_REF] for the modelling of streamwise velocity profiles in wide-open channel turbulent flows (e.g. in rivers, streams, canals, ditches), and in Ramezani & Pourdarvish [START_REF] Ramezani | Transfer learning using Tsallis entropy: an application to Gravity Spy[END_REF] for transfer learning for image classification of gravitational waves.

For the special case γ = 2, a directly connected quantity is the measure of concentration (cf. e.g. De Wet et al. [START_REF] Wet | Tsallis'entropies -axiomatics, associated f -divergences and Fisher's information[END_REF])

E gM C (Q) := 1 -1 K -E gHC (Q) = K k=1 q k -1 K
2 which (up to a multiple) was introduced by Brukner & Zeilinger [START_REF] Brukner | Operationally invariant information in quantum measurements[END_REF] as an appropriate measure of information for quantum experiments.

(E3) γ := 1 γ , c 1 = 1 γ-1 , c 2 = γ, c 3 = 1: the entropy E gA (Q) := 1 γ -1 •   K k=1 q 1/ γ k γ -1   = 1 γ -1 • K γ•(1-γ) • H 1/ γ (Q, P unif ) γ -1 (76) 
is BS-minimizable on Ω = A • Ω Ω for γ < 0 and γ ∈ ]0, 1[, and BS-maximizable on Ω = A • Ω Ω for γ ≥ 2; the special subcase A = 1 in (76) (and thus, Q = Q is a probability vector) corresponds to the γ-order entropy of Arimoto [START_REF] Arimoto | Information-theoretical considerations on estimation problems[END_REF].

(E4) s ∈ \{1}, c 1 = 1 1-s , c 2 = 1-s 1-γ , c 3 = 1: the entropy E gSM 1 (Q) := 1 1 -s •   K k=1 q γ k (1-s)/(1-γ) -1   = 1 1 -s • K 1-s • H γ (Q, P unif ) (1-s)/(1-γ) -1 (77) 
is BS-minimizable on Ω = A • Ω Ω for γ < 0 and BS-maximizable on Ω = A • Ω Ω for γ ∈ ]0, 1[ and γ ≥ 2; the special subcase A = 1 in (77) (and thus, Q = Q is a probability vector) corresponds to the entropy of order γ and degree s of Sharma & Mittal [START_REF] Sharma | New nonadditive measures of entropy for discrete probability distributions[END_REF] in the scaling of e.g. Salicru et al. [START_REF] Salicru | Asymptotic distribution of (h, φ)-entropies[END_REF].

(E5) s ∈ \{0}, γ = s + 1, c 1 = -1 s , c 2 = 1, c 3 = 1: the diversity index E gP T (Q) := - 1 s • K k=1 q s+1 k -1 = - 1 s • K -s • H s+1 (Q, P unif ) -1 (78) 
is BS-minimizable on Ω = A • Ω Ω for s < -1 and BS-maximizable on Ω = A • Ω Ω for s ∈ ] -1, 0[ and s > 0; the special subcase A = 1 in (78) (and thus, Q = Q is a probability vector) corresponds to the diversity index of degree s of Patil & Taillie [START_REF] Patil | Diversity as a concept and its measurement[END_REF]; the case s = 1 for probability measures Q = Q gives the well-known Gini-Simpson diversity index.

(E6) c 4 = 1 1-γ , f (z) = z: the entropy E gR (Q) := 1 1 -γ • log K k=1 q γ k = 1 1 -γ • log H γ (Q, P unif ) + (1 -γ) • log(K) = log 2 1 -γ • log 2 K k=1 q γ k ( 79 
)
is BS-minimizable on Ω = A • Ω Ω for γ < 0, and BS-maximizable on Ω = A • Ω Ω for γ ∈]0, 1[ and γ ≥ 2; the special subcase A = 1 in (79) (and thus, Q = Q is a probability vector) corresponds to the prominent (additive) γ-order Renyi entropy [START_REF] Renyi | On measures of entropy and information[END_REF]. As well known, there is a vast literature on Renyi entropies E gR (Q). Some exemplary (mostly recent) studies and applications appear e.g. in Nath [START_REF] Nath | On a coding theorem connected with Renyi's entropy[END_REF] -as well as in Arikan [START_REF] Arikan | An inequality on guessing and its application to sequential decoding[END_REF], Sundaresan [START_REF] Sundaresan | Guessing Under Source Uncertainty[END_REF], Bunte & Lapidoth [START_REF] Bunte | Encoding tasks and Renyi entropy[END_REF], Sason & Verdu [START_REF] Sason | Improving bounds on lossless source coding and guessing moments via Renyi measures[END_REF], Kumar et al. [START_REF] Kumar | A unified framework for problems on guessing, source coding and task partitioning[END_REF] -for coding and guessing, in Bennett et al. [START_REF] Bennett | Generalized privacy amplification[END_REF] in connection with unconditionally secure secret-key agreement protocols and quantum cryptography, in Mayoral [START_REF]Renyi's entropy as an index of diversity in sample-stage cluster sampling[END_REF] for cluster sampling, in Aviyente et al. [START_REF] Aviyente | Characterization of event related potentials using information theoretic distance measures[END_REF] for information extraction in certain neurophysiological signals (so-called event-related potentials), in Tao et al. [START_REF] Tao | An alternative time-domain index for condition monitoring of rolling element bearings -a comparison study[END_REF] as well as in Jiao et al. [START_REF] Jiao | Application of feature fusion using coaxial vibration signal for diagnosis of rolling element bearings[END_REF] for early defect/fault detection of rolling element bearings, in Pham et al.: [START_REF] Pham | On the risk of using Renyi's entropy for blind source separation[END_REF] for blind source separation, in Liu et al. [START_REF] Liu | Renyi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory[END_REF] as well as in Rong et al. [START_REF] Rong | Information-theoretic approach in density functional theory and its recent applications to chemical problems[END_REF] to electron density functional theory (DFT) for quantum chemical reactivity, in Sason [START_REF] Sason | Tight bounds on the Renyi entropy via majorization with applications to guessing and compression[END_REF] for data compression, in Carravilla et al. [START_REF] Carravilla | Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions[END_REF] for the recognition of HIV-1 antibodies through STED microscopy and the corresponding design of therapeutic interventions, in Joshi et al. [START_REF] Joshi | Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer[END_REF] for the identification and tracking of relevant T cell receptors for adoptive immunotherapy, in Erguzel et al. [START_REF] Erguzel | Entropy: a promising EEG biomarker dichotomizing subjects with opioid use disorder and healthy controls[END_REF] for the investigation of Electroencephalography (EEG) signals of subjects suffering from some psychiatric disorders, in German-Sallo [START_REF] German-Sallo | Entropy indices based fault detection[END_REF] for fault-characteristics extraction from discrete signals in manufacturing systems, in Schober et al. [START_REF] Schober | Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection[END_REF] for investigations of some evolutions of the T cell antigen receptor (TCR) repertoire, in Seweryn et al. [START_REF] Seweryn | Application of information theoretical approaches to assess diversity and similarity in single-cell transcriptomics[END_REF] for the assessment of similarity and diversity of expression profiles in single cell systems, in Amezquita-Sanchez [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF] for the detection of incipient damage in high-rise buildings subjected to dynamic vibrations, in Barennes et al. [START_REF] Barennes | Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases[END_REF] for comparing the accuracy of current T cell receptor sequencing methods employed for the understanding of adaptive immune responses, in Kumar et al. [START_REF] Kumar | A new multilevel histogram thresholding approach using variational mode decomposition[END_REF] for the segmentation of digital images through multilevel iterative variational mode decomposition (VMD), and in Pandey [START_REF] Pandey | Renyi entropy as a measure of cosmic homogeneity[END_REF] for the quantification of cosmic homogeneity.

Remark 19: (i) For Renyi entropies there are also matrix versions E gR (X) :

= 1 1-γ • log K1 i=1 K2 j=1 x γ ij
where X := (x ij ) j=1,...,K2 i=1,...,K1 is a K 1 × K 2 -matrix whose elements x ij are (say) strictly positive and sum up to A. Such a setup with A = 1 is e.g. used in time-frequency analyses of signals where the i's correspond to discrete time points, the j's to discrete frequencies, and x ij to the probability that (i, j) occurs; see e.g. Popescu & Aiordachioaie [START_REF] Popescu | New procedure for change detection operating on Renyi entropy with application in seismic signals Processing[END_REF] for change detection in seismic signals. Another line of application is to use as X the normalized communicability matrix of a directed network (respectively the upper triangular part of X in case of an unweighted and undirected network). Of course, the matrix version E gR (X) can be easily and equivalently rewritten in our vector version E gR (Q) by setting Q := (q 1 , . . . , q K1•K2 ) such that x ij = q (i-1)•K2+j (i = 1, . . . , K 1 , j = 1, . . . , K 2 and hence K := K 1 • K 2 ; accordingly, we can apply our BS method. (ii) The latter conversion works analogously also for matrix versions of all the other entropies, divergences, etc. of this paper; more flexible versions where i ∈ {1, . . . , K 1 }, j ∈ J i for some J i ⊆ {1, . . . , K 2 } as well as multidimensionalarray/tensor versions can be transformed in a similar book-keeping manner, too. For instance, within the above-mentioned framework of unweighted and undirected networks, Chen et al. [START_REF] Chen | Complex network comparison based on communicability sequence entropy[END_REF] and Shi et al. [START_REF] Shi | Characterization of network complexity by communicability sequence entropy and associated Jensen-Shannon divergence[END_REF] employ communicability matrix versions of the Shannon entropy and the Jensen-Shannon divergence (JSD), e.g. in order to derive a new complexity measure of such kind of networks; see also Bagrow and Bollt [START_REF] Bagrow | An information-theoretic, all-scales approach to comparing networks[END_REF] for similar network applications of the JSD. Moreover, Jena et al. [START_REF] Jena | Maximum 3D Tsallis entropy based multilevel thresholding of brain MR image using attacking Manta Ray foraging optimization[END_REF] use "3D versions" of Tsallis entropies for brain magnetic resonance (MR) image segmentation.

Remark 20: All the above cases which are BS-maximizable can be interpreted as bare-simulation approach to the solution of generalized maximum entropy problems on Ω = A • Ω Ω.

Remark 21: (i) If (all) the above-and below-mentioned entropies are used for probability vectors Q ∈ S K -i.e. one employs E(Q) -then typically the components q k of Q represent a genuine probability mass (frequency) q k = ¥[{d k }] of some data point (state) d k . However, Q ∈ S K may alternatively be artificially generated. For instance, for the purpose of fault detections of mechanical drives, Boskoski & Juricic [START_REF] Boskoski | Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures[END_REF] use Renyi entropies where the q k 's are normalized squared energy-describing coefficients of the wavelet packet transform of measured vibration records. Another exemplary "artificial" operation is concatenation, see e.g. Subsection IV-D below. (ii) An analogous statement holds for the employment of (all) the above-and below-mentioned divergences D(Q, P) -and their transformations -between genuine respectively artificially generated probability vectors Q, P ∈ S K .

The remaining parameter cases γ = 0 and γ = 1 can be treated analogously. For the sake of brevity, we only deal with the latter. For this, let Q ∈ A • K with A := K k=1 q k > 0 and P := P unif . Clearly, I(Q, P unif ) -log K K = K k=1 q k • log(q k ); thus the latter is BS-minimizable on Ω = A • Ω Ω. More generally, for any continuous strictly increasing (respectively strictly decreasing) function

h 1 : [-K e , 0[ → , the quantity h 1 K k=1 q k • log(q k ) is BS-minimizable on Ω = A • Ω Ω (respectively BS-maximizable on Ω = A • Ω Ω). Important special cases are: (E7) h 1 (y) := h -Id 1 (y) = -y: the entropy E Sh (Q) := h -Id 1 K k=1 q k • log(q k ) = - K k=1 q k • log(q k ) (80) 
is BS-maximizable on Ω = A • Ω Ω; the special subcase A = 1 in (80) (and thus, Q = Q is a probability vector) corresponds to the omnipresent Shannon entropy; hence, by our bare-simulation approach we can particularly tackle maximum entropy problems on almost arbitrary sets Ω Ω of probability vectors. Analogously, we can treat 1 log(K) • E Sh (Q) which is called Pielou's evenness index [START_REF] Pielou | The measurement of diversity in different types of biological Collections[END_REF], and

1 -1 log(K) • E Sh (Q) ∈ [0, 1]
which is sometimes used as clonality (clonotype diversity) index (see e.g. Gabriel et al. [START_REF] Gabriel | Analysis of the TCR repertoire in HIV-exposed but uninfected infants[END_REF] for applications to HIV-connected T cell receptor repertoires, and Bashford-Rogers et al. [START_REF] Bashford-Rogers | Analysis of the B cell receptor repertoire in six immune-mediated diseases[END_REF] (with supplementary private communication) for its use for comparative analyses of the BCR repertoire in immune-mediated diseases, for the sake of understanding pathological mechanisms and designing treatment strategies). As a further example for Remark 21, Lyubushin [START_REF] Lyubushin | Seismic noise wavelet-based entropy in Southern California[END_REF] uses q k 's which are normalized squared coefficients of an orthogonal wavelet decomposition of some seismic noise, and accordingly, 1 log(K) • E Sh (Q) can be interpreted as the entropy of the distribution of energy of oscillations at various frequency and time scales. Some further exemplary studies and applications of the maximization of E Sh (Q) -aside from the vast physics literature -appear e.g. in De Santis et al. [START_REF] Santis | Bounds on entropy in a guessing game[END_REF] for cryptanalytic guessing problems for breaking ciphertexts with probabilistic brute-force attacks, Johansson & Sternad [START_REF] Johansson | Resource allocation under uncertainty using the maximum entropy principle[END_REF] for tackling certain resource allocation problems under uncertainty, Marano & Franceschetti [START_REF] Marano | Ray propagation in a random lattice: a maximum entropy, anomalous diffusion process[END_REF] for ray propagation in percolating lattices, Miao et al. [START_REF] Miao | A maximum entropy approach to unsupervised mixed-pixel decomposition[END_REF] for unsupervised mixed-pixel decomposition in image processing, Rodrigues et al. [START_REF] Rodrigues | Adaptive approach for a maximum entropy algorithm in ecological niche modeling[END_REF] for modelling biological species geographic distribution, Xiong et al. [START_REF] Xiong | A maximum-entropy segmentation model for statistical machine translation[END_REF] for capturing desirable phrasal and hierarchical segmentations within a statistical machine translation context, Chan et al. [START_REF] Chan | Composition vector method based on maximum entropy principle for sequence comparison[END_REF] for alignment-free DNA sequence comparison, Mann & Garnett [START_REF] Mann | The entropic basis of collective behaviour[END_REF] for capturing some collective behaviours of intelligent agents in social interactions, Singh et al. [START_REF] Singh | Analysis of finite buffer queue: maximum entropy probability distribution with shifted fractional geometric and arithmetic means[END_REF] for the study of finite buffer queueing systems, Baddeley [START_REF] Baddeley | A statistical commentary on mineral prospectivity analysis[END_REF] for geoscientifical prediction of the occurrence of mineral deposits on regional scales, Einicke et al. [START_REF] Einicke | Maximum-entropy-rate selection of features for classifying changes in knee and ankle dynamics during running[END_REF] for feature selection within change classification during running, and Han et al. [START_REF] Han | Three-dimensional substructure imaging of blood cells using maximum entropy tomography based on two non-orthogonal phase images[END_REF] for substructure imaging of blood cells by means of maximum entropy tomography (MET). 72)) with y ∈ : the entropy

(E8) s ∈ ]0, 1[ ∪ ]1, ∞[, h 1 (y) := h SM 2 s (y) := e (s-1)•y -1 1-s (cf. (
E SM 2 (Q) := h SM 2 s K k=1 q k • log(q k ) = 1 1 -s • exp (s -1) • K k=1 q k • log(q k ) -1 (81) 
is BS-maximizable on Ω = A • Ω Ω; the special subcase A = 1 in (81) (and thus, Q = Q is a probability vector) corresponds to the (second type) entropy of Sharma & Mittal [START_REF] Sharma | New nonadditive measures of entropy for discrete probability distributions[END_REF] in the scaling of e.g. Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF] (p.20).

Returning to the general context, we now (as already indicated above) state explicitly the corresponding bare-simulationminimizations (respectively maximizations) of the power divergences

inf Q∈Ω Ω D c•ϕγ (Q, P) (γ ∈ ), the Renyi divergences inf Q∈Ω Ω R γ (Q, P) (γ ∈ ), the Hellinger integrals inf Q∈A•Ω Ω H γ (Q, P) (γ ∈] -∞, 0[ ∪ ]1, ∞[), sup Q∈A•Ω Ω H γ (Q, P) (γ ∈]0, 1[),
the modified Kullback-Leibler information inf Q∈A•Ω Ω I(Q, P), the modified reverse Kullback-Leibler information inf Q∈A•Ω Ω I(Q, P), as well as the above-mentioned measures of entropy (diversity). Since the corresponding probability

distribution [• ] = ¥[W 1 ∈ • ] of the W i 's (cf.
the representability ( 6)) varies "quite drastically" with γ, we split this issue into several pieces.

Proposition 22: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ < 0, and let P ∈ K >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of non-negative real-valued random variables having density 21f W1 (y

) := exp{-y• c 1-γ } exp{ c/γ} • f Z (y) • 1 ]-∞,0[ (y), y ∈ , (82) 
where f Z is the density of a random variable Z which has stable law with parameter-quadruple

( -γ 1-γ , 1, 0, -c 1/(1-γ) •(1-γ) -γ/(1-γ) γ )
in terms of "form-B notation" in Zolotarev [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF], p.12. Then for all A > 0 and all Ω Ω ⊂ K >0 with (7) there holds

-lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω = inf Q∈A•Ω Ω c γ • 1 -A γ/(γ-1) • 1 + γ • (A -1) + γ • (γ -1) c • D c•ϕγ (Q, P) -1/(γ-1) (83) 
as well as the BS minimizabilities/maximizabilites (cf. Definition 1)

inf Q∈A•Ω Ω D c•ϕγ (Q, P) = lim n→∞ c γ • (γ -1) • A γ • 1 + γ c • 1 n • log ¥ ξ wW n ∈ Ω Ω 1-γ + γ • (1 -A) -1 , (84) 
inf

Q∈A•Ω Ω H γ (Q, P) = lim n→∞ A γ • 1 + γ • 1 n • log ¥ ξwW n ∈ Ω Ω 1-γ , (85) 
inf

Q∈A•Ω Ω c 1 • H γ (Q, P) c2 -c 3 = lim n→∞ c 1 • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 > 0, c 3 ∈ , ( 86 
)
sup Q∈A•Ω Ω c 1 • H γ (Q, P) c2 -c 3 = lim n→∞ c 1 • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 < 0, c 3 ∈ , ( 87 
) inf Q∈A•Ω Ω R γ (Q, P) = lim n→∞ 1 γ • (γ -1) • log A γ • 1 + γ • 1 n • log ¥ ξwW n ∈ Ω Ω 1-γ , ( 88 
) inf Q∈A•Ω Ω c 1 • K k=1 q γ k c2 -c 3 = lim n→∞ c 1 • K c2•(1-γ) • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 > 0, c 3 ∈ , ( 89 
)
sup Q∈A•Ω Ω c 1 • K k=1 q γ k c2 -c 3 = lim n→∞ c 1 • K c2•(1-γ) • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 < 0, c 3 ∈ , (90) inf Q∈A•Ω Ω 1 1 -γ •log K k=1 q γ k = lim n→∞ 1 γ • (γ -1) • log A γ • 1 + γ • 1 n • log ¥ ξwW n ∈ Ω Ω 1-γ + (1 -γ) • log(K) , (91) 
where ξ wW n is the normalized randomly weighted empirical measure given in [START_REF] Berend | Minimum KL-divergence on complements of L 1 balls[END_REF], ξwW n is its special case for c = 1, and ξwW n is its special case for c = 1 together with P = P unif 22 . From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follow immediately as special cases.

(b) The special case ϕ := c • ϕ γ (γ < 0) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. ( 30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]), (iv) ξ wW n,X (instead of ξ wW n ), (v) ξwW n,X (instead of ξwW n ),
and

(vi) ξwW n,X (instead of ξwW n ).
The assertions of Proposition 22 can be deduced from Theorem 14, Remark 15(vi), Lemma 16(a), ( 65), ( 69), ( 73), ( 74 >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of non-negative real-valued random variables with Gamma distribution = GAM ( c, c) 23 (where the subcase c = 1 is the exponential distribution = EXP (1) with mean 1). Then for all A > 0 and all Ω Ω ⊂ K >0 with [START_REF] Ahlswede | Identification entropy[END_REF] there holds the BS minimizabilites (cf. ( 2))

inf Q∈A•Ω Ω D c•ϕ0 (Q, P) = -lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω + c • (A -1 -log A), (92) 
inf

Q∈A•Ω Ω I(Q, P) = inf Q∈A•Ω Ω K k=1 p k • log p k q k = -lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω -log A.
(b) The special case ϕ := c • ϕ γ (γ = 0) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. (30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]
), and (iv) ξ wW n,X (instead of ξ wW n ).

Proposition 24: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ ∈]0, 1[, and let P ∈ K >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of non-negative real-valued random variables with Compound-Poisson-Gamma distribution = C(P OI(θ), GAM (α, β))

having parameters θ = c γ > 0, α = c 1-γ > 0, β = γ 1-γ > 0;
in other words, the W i are independent copies of a random variable W 1 := N j=1 W j 24 constituted of some i.i.d. sequence (W j ) j∈x of Gamma(α, β)-distributed random variables and some independent P OI(θ)-distributed random variable N . Then for all A > 0 and all Ω Ω ⊂ K with (7) there hold ( 83), ( 84), ( 88), [START_REF] Cohen | Adaptive Causal Network Coding With Feedback[END_REF] as well as

sup Q∈A•Ω Ω H γ (Q, P) = lim n→∞ A γ • 1 + γ • 1 n • log ¥ ξwW n ∈ Ω Ω 1-γ , ( 93 
)
sup Q∈A•Ω Ω c 1 • H γ (Q, P) c2 -c 3 = lim n→∞ c 1 • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 > 0, c 3 ∈ , ( 94 
) inf Q∈A•Ω Ω c 1 • H γ (Q, P) c2 -c 3 = lim n→∞ c 1 • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 < 0, c 3 ∈ , ( 95 
)
sup

Q∈A•Ω Ω c 1 • K k=1 q γ k c2 -c 3 = lim n→∞ c 1 • K c2•(1-γ) • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 > 0, c 3 ∈ , ( 96 
)
22 the latter two notations will be also used in the following Propositions 23 to 27 23 here and henceforth, we use the notation that a Gamma distribution GAM (α, β) with rate parameter (inverse scale parameter) α > 0 and shape

parameter β > 0 has (Lebesgue-)density f (y) := α β •y β-1 •e -α•y Γ(β) • 1 ]0,∞[ (y), y ∈ ; its cumulant generating function is Λ(z) = β • log( α α-z ) for z ∈] -∞, α[ (and Λ(z) = ∞ for z ≥ α).
24 with the usual convention 0

i=1 W i := 0 inf Q∈A•Ω Ω c 1 • K k=1 q γ k c2 -c 3 = lim n→∞ c 1 • K c2•(1-γ) • A c2•γ • 1 + γ n • log ¥ ξwW n ∈ Ω Ω c2•(1-γ) -c 3 , if c 1 • c 2 < 0, c 3 ∈ . ( 97 
)
From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follows immediately as special cases.

(b) The special case ϕ := c • ϕ γ (γ ∈]0, 1[) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. ( 30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]), (iv) ξ wW n,X (instead of ξ wW n ), (v) ξwW n,X (instead of ξwW n ),
and (vi) ξwW n,X (instead of ξwW n

).

This follows from Theorem 14, Remark 15(vi), Lemma 16(a), ( 65), ( 69), ( 73), ( 74) and the below-mentioned -concerning Then for all A > 0 and all Ω Ω ⊂ K with (7) there holds

-lim n→∞ 1 n log ¥ ξ wW n ∈ Ω Ω = inf Q∈A•Ω Ω c • 1 -A • exp - 1 A • c • D c•ϕ1 (Q, P) + 1 A -1 (98) 
and the BS minimizabilities/maximizabilites (cf. Definition 1)

inf Q∈A•Ω Ω D c•ϕ1 (Q, P) = lim n→∞ c • 1 -A • 1 + log 1 A • 1 + 1 c • 1 n • log ¥ ξ wW n ∈ Ω Ω , (99) 
inf

Q∈A•Ω Ω I(Q, P) = inf Q∈A•Ω Ω K k=1 q k • log q k p k = -lim n→∞ A • log 1 A • 1 + 1 n • log ¥ ξwW n ∈ Ω Ω , max Q∈A•Ω Ω E Sh (Q) = max Q∈A•Ω Ω (-1) • K k=1 q k • log(q k ) = lim n→∞ log K K + A • log 1 A • 1 + 1 n • log ¥ ξwW n ∈ Ω Ω , (100) 
max

Q∈A•Ω Ω E gSM 2 (Q) = max Q∈A•Ω Ω 1 1 -s • exp (s -1) • K k=1 q k • log(q k ) -1 = lim n→∞ 1 1 -s • exp (1 -s) • log K K + A • log 1 A • 1 + 1 n • log ¥ ξwW n ∈ Ω Ω -1 , s ∈ ]0, 1[ ∪ ]1, ∞[. (101) 
The special subcase A = 1 in (100) (and thus, Q is a probability vector) corresponds to the maximum entropy problem for the Shannon entropy E Sh (•). This can hence be tackled by our bare-simulation approach for almost arbitrary sets Ω Ω of probability vectors.

(b) The special case ϕ := c • ϕ γ (γ = 1) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. ( 30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]), (iv) ξ wW n,X (instead of ξ wW n ), (v) ξwW n,X (instead of ξwW n ),
and (vi) ξwW n,X (instead of ξwW n ).

For the sake of completeness, let us mention here that we do not deal with the case γ ∈]1, 2[, for which we conjecture that becomes a signed finite measure with total mass 1, i.e. it has a density (with respect to some dominating measure) with positive and negative values which "integrates to 1" ; accordingly, our BS method can not be applied to this situation.

To proceed with further γ-cases, a combination of Theorem 14 respectively Remark 15(vi), Lemma 16(a), ( 65), ( 69), ( 73 7) there hold all the BS-extremizabilites ( 83) to (91) as well as (116) (below) with plugging-in γ = 2. From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follow immediately as special cases. By Remark 18(c), one can even take A < 0 in [START_REF] Chen | Applied Integer Programming[END_REF] to [START_REF] Cohen | Adaptive Causal Network Coding With Feedback[END_REF] and [START_REF] Dragomir | Upper bounds for the Kullback-Leibler distance and applications[END_REF] as well as in (E1), (E2), (E4) and (E6). (b) The special case ϕ := c • ϕ γ (γ = 2) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. (30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]), (iv) ξ wW n,X (instead of ξ wW n ), (v) ξwW n,X (instead of ξwW n ),
and (vi) ξwW n,X (instead of ξwW n ).

For instance, the BS minimizability (89) of Proposition 26(a) can be employed to solve the following discrete Monge-Kantorovich-type optimal mass transportation problem (optimal coupling problem) with side (i.e. additional) constraints:

given two nonnegative-entries vectors µ := (µ 1 , . . . µ K1 ) ∈ [0, ∞[ K1 and ν := (ν 1 , . . . ν K2 ) ∈ [0, ∞[ K2 with equal total "mass" K1 k=1 µ k = K2 k=1 ν k = A > 0, compute inf K1×K2-matrices π K 1 • K 2 • K1 u=1 K2 v=1 π u,v - 1 K 1 • K 2 2 (102) subject to K2 v=1 π u,v = µ u for all u ∈ {1, . . . , K 1 }, (103) 
K1 u=1 π u,v = ν v for all v ∈ {1, . . . , K 2 }, (104) 
π u,v ∈ [0, A] for all u ∈ {1, . . . , K 1 }, v ∈ {1, . . . , K 2 }, (105) 
side constraints on π, µ, ν.

Indeed, this problem can be equivalently rewritten in terms K 1 • K 2 -dimensional vectors as follows: given two nonnegativeentries vectors µ,ν as above, compute

inf Q∈Ω K 1 • K 2 • K1•K2 k=1 q k - 1 K 1 • K 2 2 = inf Q∈Ω K 1 • K 2 • K1•K2 k=1 q 2 k + 1 -2A (107) 
where Ω ⊂ K1•K2 is the set of all vectors Q = (q 1 , . . . , q K1•K2 ) which satisfy the constraints

K2 j=1 q (i-1)•K2+j = µ i for all i ∈ {1, . . . , K 1 }, ( 108 
) K1 i=1 q (i-1)•K2+j = ν j for all j ∈ {1, . . . , K 2 }, (109) 
q k ∈ [0, A] for all k ∈ {1, . . . , K 1 • K 2 }, (110) 
side constraints on Q, µ, ν.

Clearly, via divisions by A, one can equivalently rewrite

Ω = A • Ω Ω for some Ω Ω ⊂ K1•K2 in the K 1 • K 2 -dimensional
probability simplex. Hence, we can employ (89) with c 1 = K 1 • K 2 , c 2 = 1 and c 3 = 1 -2A, provided that the side constraints [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF] are such that Ω satisfies the regularity property [START_REF] Ahlswede | Identification entropy[END_REF] and the finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. Notice that ( 107) is equal to

inf Q∈Ω D 2•ϕ2 (Q, P unif )
where

P unif := ( 1 K1•K2 , . . . , 1 K1•K2
) is the probability vector of frequencies of the uniform distribution on {1, . . . , K 1 • K 2 }, and c = 2. The special case A = 1 with side constraint [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF] of the form K 1 • min i∈{1,...,K1} µ i + K 2 • min j∈{1,...,K2} ν j ≥ 1 was explicitly solved by e.g. Bertrand et al. [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF], [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF], who also give applications to cryptographic guessing problems (spy problems), task partitioning and graph clustering.

The importance of the case γ = 2 stems also from the fact that one can equivalently rewrite separable quadratic minimization problems as minimization problems of Pearson chi-square divergences. Indeed, by straightforward calculations one can derive that

inf Q∈ Ω K k=1 ( c 1,k + c 2,k • qk + c 3,k • q2 k ) , c 1,k ∈ , c 2,k ∈ \{0}, c 3,k ∈ ]0, ∞[, (112) 
is equal to (recall that ϕ 2 (t) := (t-1) 2

2

, cf. ( 43))

c 4 + inf Q∈Ω D 2•ϕ2 (Q, P) , (113) 
where Q := (q 1 , . . . , q K ) with q k := -c 2,k • qk , P := (p 1 , . . . , p K ) with p k :=

c 2 2,k 2•c 3,k > 0, c 4 := K k=1 c 1,k - c 2 2,k 4•c 3,k ,
and Ω is the corresponding reformulation of the constraint set Ω. To achieve the applicability of our BS method, we further transform [START_REF] Deza | Encyclopedia of Distances[END_REF] into its equal form (cf. [START_REF] Amari | Differential-Geometrical Methods in Statistics[END_REF])

c 4 + inf Q∈Ω/M P D 2M P •ϕ2 (Q, P) (114) 
with M P := K k=1 p k > 0 and P := P/M P . If Ω/M P satisfies ( 7) and ( 9) (e.g. it may be highly disconnected), then we can apply Theorem 10. In contrast, if Ω/M P = A • Ω Ω for some A ∈ \{0} and some Ω Ω ⊂ K >0 satisfying ( 7), then we can apply Proposition 26(a) together with Remark 18(c); for instance, this may appear if Ω contains (amongst others) the original constraint K k=1 qk = C for some constant C > 0, and c 2,k = c 2 does not depend on k, which leads to the choice A = -c2•C M P . Notice that A < 0 if c 2 > 0. For example, optimization problems [START_REF] Devroye | On simulation and properties of the stable law[END_REF] with c 1,k > 0, c 2,k > 0, c 3,k > 0 and constraints K k=1 qk = C, qk ∈ [q k , qk ] appear in distributed energy management as economic dispatch problems in smart grids of power generators, where qk is the active power generation of the k-th generator, C is the total power demand, qk resp. qk represent the lower resp. upper bound of the k-th generator's output, and the cost of power generation is

c 1,k + c 2,k • qk + c 3,k • q2
k (cf. e.g. Yang et al. [START_REF] Yang | Consensus based approach for economic dispatch problem in a smart grid[END_REF], Loia & Vaccaro [START_REF] Loia | Decentralized economic dispatch in smart grids by self-organizing dynamic agents[END_REF], Wood et al. [START_REF] Wood | Power Generation, Operation, and Control[END_REF], Xu et al. [START_REF] Xu | Distributed Energy Management of Electrical Power Systems[END_REF]). Another important special case of ( 112) to [START_REF] Dharmawan | Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy[END_REF] is the omnipresent L 2 -minimization; indeed, with the choices

c 3,k = 1, c 2,k = -2v k , and c 1,k = v 2 k for some V = (v 1 , . . . , v K ), the minimization problem (112) is nothing but inf Q∈ Ω || Q -V|| 2 2 ;
if Ω depends on a pregiven L-dimensional vector x (with L < K), this can be regarded as a non-parametric regression problem in a wide sense.

To continue with our general investigations, by combining Theorem 14 respectively Remark 15(vi), Lemma 16(a), ( 65), ( 69), ( 73), ( 74) and the below-mentioned -concerning Example 48(e), we arrive at the following Proposition 27: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ > 2, and let P ∈ K >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of real-valued random variables having density25 

exp{ y• c γ-1 } exp{ c/γ} • f Z (-y), y ∈] -∞, ∞[, (115) 
where f Z is the density of a random variable Z which has stable law with parameter-quadruple

( γ γ-1 , 1, 0, c 1/(1-γ) •(γ-1) γ/(γ-1) γ )
in terms of the above-mentioned "form-B notation" in Zolotarev [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF]. Then for all A > 0 and Ω Ω ⊂ K with [START_REF] Ahlswede | Identification entropy[END_REF] there hold all the BS-extremizabilites ( 83) to (90) as well as

sup Q∈A•Ω Ω 1 1 -γ •log K k=1 q γ k = lim n→∞ 1 γ • (γ -1) • log A γ • 1 + γ • 1 n • log ¥ ξwW n ∈ Ω Ω 1-γ + (1 -γ) • log(K) . ( 116 
)
From this, the BS-minimizability/maximizability of the important norms/entropies/diversity indices (E1) to (E6) follow immediately as special cases.

(b) The special case ϕ := c • ϕ γ (γ > 2) of Theorem 14 works analogously to (a), with the differences that we employ (i) additionally a sequence (X i ) i∈x of random variables being independent of (W i ) i∈x and satisfying condition (26) (resp. (30)),

(ii) A = 1 (instead of arbitrary A > 0), (iii) ¥ X n 1 [•] (instead of ¥[•]), (iv) ξ wW n,X (instead of ξ wW n ), (v) ξwW n,X (instead of ξwW n ),
and (vi) ξwW n,X (instead of ξwW n

).

As mentioned above, in the Propositions 22 to 27 we have combined Theorem 14 respectively Remark 15(vi), Lemma 16 and explicitly solved representations [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF]. The latter, important step will be discussed in a structured, comprehensive manner in the Section V below.

By retransformation, we can even deal with optimizations of nonnegative linear objective functions with constraint sets on Euclidean γ-norm spheres. Indeed, for nonnegative Q := (q 1 , . . . , qK ) and P := (p 1 , . . . , pK ) one can rewrite their scalar product as γ-order Hellinger integrals

K k=1 qk • pk = c 1 • K k=1 q γ k • p 1-γ k = c 1 • H γ (Q, P) where ( 117 
) γ ∈ ]0, 1[ ∪ [2, ∞[ if Q ∈ [0, ∞[ K , P ∈ ]0, ∞[ K respectively γ ∈ ] -∞, 0[ if Q ∈ ]0, ∞[ K , P ∈ ]0, ∞[ K , ( 118 
)
q k := q1/γ k , p k := p1/(1-γ) k K i=1 p1/(1-γ) i , c 1 := K i=1 p1/(1-γ) i 1-γ =: || P|| 1-γ . ( 119 
)
The required constraint K k=1 q k = A > 0 retransforms to || Q|| γ = A 1/γ and thus, Q must lie on (the positive/nonnegative part of) the γ-norm-sphere ∂B γ (0, A 1/γ ) around the origin with radius A 1/γ . Accordingly, for γ ∈ [2, ∞[ we have

inf Q∈ Ω K k=1 qk • pk = c 1 • inf Q∈A•Ω Ω H γ (Q, P) (120) 
and we can apply [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] of Proposition 26(a) respectively Proposition 27(a) 26 , as long as the original constraint set Ω ∈ ∂B γ (0,

A 1/γ ) ∩ [0, ∞[ K transforms (via q k = q1/γ k ) into a constraint set A
• Ω Ω which satisfies the regularity assumption (7) in the relative topology (as a side remark, notice that int(∂B γ (0, A 1/γ )) = ∅ in the full topology). For the case γ ∈ ] -∞, 0[ we also have [START_REF] Endres | A new metric for probability distributions[END_REF] and apply [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] of Proposition 22(a) for any original constraint set Ω ∈ ∂B γ (0, A 1/γ ) ∩ ]0, ∞[ K which transforms into A • Ω Ω satisfying [START_REF] Ahlswede | Identification entropy[END_REF] in the relative topology. In contrast, for the case γ ∈ ]0, 1[ we get

sup Q∈ Ω K k=1 qk • pk = c 1 • sup Q∈A•Ω Ω H γ (Q, P)
and apply [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF] of Proposition 24(a) for any original constraint set Ω ∈ ∂B γ (0,

A 1/γ ) ∩ [0, ∞[ K which transforms into A • Ω Ω satisfying (7) in the relative topology.
As a continuation of Remark 12, we can principally tackle all the optimization problems of this Subsection IV-C1 by basically only employing a fast and accurate -pseudo, true, natural, quantum -random number generator, provided that the constraint set A • Ω Ω satisfies the mild assumptions (7) (in the relative topology) and ( 9). Recall that A > 0 (and for ϕ 2 even A ∈ \{0})

and that Q ∈ A • Ω Ω implies in particular the constraint K k=1 q k = A.
The regularity assumption [START_REF] Ahlswede | Identification entropy[END_REF] allows for e.g. highdimensional constraint sets A • Ω Ω which are non-convex and even highly disconnected, and for which other minimization methods (e.g. pure enumeration, gradient or steepest descent methods, etc.) may be problematic or intractable. For example, (7) covers kind of "K-dimensional (not necessarily regular) polka dot pattern type" relaxations

A • Ω Ω := ˙ N i=1 U i (Q dis i ) of finite discrete constraint sets A • Ω Ω dis := {Q dis 1 , . . . , Q dis N } of high cardinality N (e.
g. being exponential or factorial in a large K), where each K-dimensional vector Q dis i has total-sum-of-components equal to A and is surrounded by some small ("flat", i.e. in the relative topology) neighborhood U i (Q dis i ). For the sake of brevity, in the following discussion we confine ourselves to the deterministic setup (e.g. Proposition 26(a) rather than (b)) which particularly involves

¥[•] (rather than ¥ X n 1 [•]
) and ξ wW n (rather than ξ wW n,X ). In such a context, all the optimization problems of this Subsection IV-C1, subsumed as (cf.

(1) to (3)) inf

Q∈A•Ω Ω Φ(Q) respectively sup Q∈A•Ω Ω Φ(Q)
can be regarded as a "BS-tractable" relaxations of the corresponding nonlinear discrete (e.g. integer, combinatorial) programming problems inf

Q∈A•Ω Ω dis Φ(Q) respectively sup Q∈A•Ω Ω dis Φ(Q) ;
as examples take e.g.

Φ(Q) = c 1 • K k=1 q γ k c2 -c 3 (with γ = 0, 1) or Φ(Q) = Φ P (Q) = D c•ϕγ (Q, P). For instance, A • Ω Ω dis may contain only K-dimensional vectors Q dis i (i = 1, .
. . , N ) whose components stem from a finite set B of nonnegative integers and add up to A. If B = {0, 1}, then we can even deal with nonnegative linear objective functions Φ(Q) = K k=1 pk • q k where Q := (q 1 , . . . , q K ) with q k ∈ {0, 1} and P := (p 1 , . . . , pK ) has components pk > 0 which reflect e.g. the cost associated with the k-th state. Indeed, by noticing that q [START_REF] Drahi | Certified quantum random numbers from untrusted light[END_REF] and [START_REF] Merabet | Maximal similarity based region classification method through local image region descriptors and Bhattacharyya coefficient-based distance: application to horizon line detection using wide-angle camera[END_REF] to end up with

1/γ k = q k for γ ∈ ]0, 1[ ∪ [2, ∞[, we can employ
inf Q∈A•Ω Ω dis K k=1 q k • pk = || P|| 1-γ • inf Q∈A•Ω Ω dis K k=1 q γ k • p1/(1-γ) k K i=1 p1/(1-γ) i 1-γ = || P|| 1-γ • inf Q∈A•Ω Ω dis H γ (Q, P), γ ∈ [2, ∞[, (121) sup Q∈A•Ω Ω dis K k=1 q k • pk = || P|| 1-γ • sup Q∈A•Ω Ω dis H γ (Q, P), γ ∈ ]0, 1[ . ( 122 
)
The corresponding relaxations are

inf Q∈A•Ω Ω K k=1 q k • pk = || P|| 1-γ • inf Q∈A•Ω Ω H γ (Q, P), γ ∈ [2, ∞[ , (123) 
sup

Q∈A•Ω Ω K k=1 q k • pk = || P|| 1-γ • sup Q∈A•Ω Ω H γ (Q, P), γ ∈ ]0, 1[ ; (124) 
for [START_REF] Fan | Region-merging method with texture pattern attention for SAR image segmentation[END_REF] we can apply [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] of Proposition 26(a) respectively Proposition 27(a), whereas for [START_REF] Feixas | Information Theory Tolls for Image Processing[END_REF] we apply [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF] of Proposition 24(a) -as long as the relaxation constraint set A • Ω Ω satisfies [START_REF] Ahlswede | Identification entropy[END_REF] in the relative topology. For the sake of illustration, let us consider a sum-minimization-type linear assignment problem with side constraints (for a comprehensive book on assignment problems see e.g. Burkard et al. [START_REF] Burkard | Assignment Problems[END_REF]). Suppose that there are K individuals (people, machines, etc.) to carry out K tasks (jobs, etc.). Each individual is assigned to carry out exactly one task. There is cost c ij > 0 if individual i is assigned to (i.e., carries out) task j. We want to find the minimum total cost amongst all assignments. There may be side constraints, e.g. each assignment has a value v ij > 0 and the total value of the assignment should be above a pregiven threshold. As usual, the problem can be formulated with the help of binary variables x ij where x ij = 1 if individual i is assigned to task j, and x ij = 0 otherwise. Accordingly, we want to compute

inf K×K-matrices x=(xij ) K i=1 K j=1 c ij • x ij (125) 
subject to K j=1

x ij = 1 for all i ∈ {1, . . . , K}, (i.e. each individual i does one task),

x ij = 1 for all j ∈ {1, . . . , K}, (i.e. each task j is done by one individual),

x ij ∈ {0, 1} for all i ∈ {1, . . . , K}, j ∈ {1, . . . , K},

side (i.e. additional) constraints on x = (x ij ) i,j=1,...,K .

Analogously to [START_REF] Wet | Tsallis'entropies -axiomatics, associated f -divergences and Fisher's information[END_REF], this problem can be equivalently rewritten in terms of K 2 -dimensional vectors as follows: let Q := (q 1 , . . . , q K 2 ) and P := (p 1 , . . . , pK 2 ) be such that c ij = p(i-1)•K+j and x ij = q (i-1)•K+j for i, j ∈ {1, . . . , K} and compute

inf Q∈K•Ω Ω dis K k=1 q k • pk (130) 
where

K • Ω Ω dis ⊂ K 2
is the set of all vectors Q = (q 1 , . . . , q K 2 ) which satisfy the constraints K j=1 q (i-1)•K+j = 1 for all i ∈ {1, . . . , K},

K i=1 q (i-1)•K+j = 1 for all j ∈ {1, . . . , K},

q k ∈ {0, 1} for all k ∈ {1, . . . , K 2 }, (132) 
side constraints on Q.

As seen above, this can be rewritten as γ-order Hellinger-integral minimization problem [START_REF] Erguzel | Entropy: a promising EEG biomarker dichotomizing subjects with opioid use disorder and healthy controls[END_REF], with γ ≥ 2. We can obtain a highly disconnected "non-void-interior-type" relaxation of the binary integer programming problem [START_REF] Fu | Bhattacharyya distance criterion based multibit quantizer design for cooperative spectrum sensing in cognitive radio networks[END_REF] to [START_REF] Gholami | A more general information theoretic study of wireless location verification system[END_REF] by replacing [START_REF] German-Sallo | Entropy indices based fault detection[END_REF] with

q k ∈ [0, ε 1 ] ∪ [1 -ε 2 , 1] for all k ∈ {1, . . . , K 2 }, (135) 
for some (possibly arbitrarily) small ε 1 , ε 2 > 0 with ε 1 + ε 2 < 1. We denote by K • Ω Ω the outcoming set manifested by the constraints ( 131), ( 132), ( 134) and ( 135), and accordingly we end up with a minimization problem of type [START_REF] Fan | Region-merging method with texture pattern attention for SAR image segmentation[END_REF], which we can tackle by [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] of Proposition 26(a) respectively Proposition 27(a), as long as [START_REF] Ahlswede | Identification entropy[END_REF] (in the relative topology) is satisfied. For instance, we can take γ = 2 and basically solve the corresponding optimization problem by basically simulating K 2 -dimensional Gaussian random variables (even though the cardinality of K • Ω Ω dis may be high). As a side remark, let us mention that our relaxation (135) contrasts considerably to the frequently used continuous linear programming (LP) relaxation

q k ∈ [0, 1] for all k ∈ {1, . . . , K 2 }.
Let us finally mention that an important special case of a minimization problem [START_REF] Feng | Improved detection of focal cortical dysplasia in normal-appearing FLAIR images using a Bayesian classifier[END_REF] to ( 129) is -the integer programming formulation of -the omnipresent (asymmetric) traveling salesman problem (TSP) with possible side constraints 27 . There, one has K cities and the cost of traveling from city i to city j = i is given by c ij > 0. Moreover, one sets x ij = 1 if the traveler goes directly from city i to city j (in that order), and x ij = 0 otherwise. For technical reasons, for i = j we attribute a cost c ii > 0 (e.g. hotel costs), but we require that always x ii = 0 which we subsume as the first part of the constraints [START_REF] Fu | α-MOP: molecule optimization with α-divergence[END_REF]. Then, the constraint [START_REF] Fischer | High-speed harvesting of random numbers[END_REF] means that the traveler leaves from city i exactly once, whereas [START_REF] Folks | Inverse distributions[END_REF] reflects that the traveler arrives at city j exactly once. The goal is to find a directed tour -i.e. a directed cycle/circuit that visits all K cities once -of minimum cost. Within this context, the second part of the constraints (129) should basically exclude solutions which consist of disconnected subtours (subtour elimination constraints (of e.g. the seminal Dantzig et al. [START_REF] Dantzig | Solution of a large-scale traveling-salesman problem[END_REF]), connectivity constraints, cut-set constraints). Here, we also allow for additional/side constraints which we subsume as the third part (129) of the constraints. Hence, by the above-mentioned considerations we can principally tackle such kind of TSP problems with our BS method.

For sum-maximization-type linear assignment problems with side constraints, where e.g. c ij is a profit (rather than a cost) and the ultimate goal is total profit maximization, we can proceed analogously, by employing ( 122) and ( 124) (instead of ( 121) and ( 123)).

Let us end this subsection with a comparison: suppose that we have a (sufficiently large) number n of concrete data observations X i = x i (i = 1, . . . , n) from the unknown probability distribution P (in vector form), and from these we want to approximate/estimate the unknown distance inf Q∈Ω Ω D ϕγ (Q, P) from a family of probability models (in vector form)

Ω Ω (e.g. for model-adequacy evaluations, for goodness-of-fit testing purposes): by the above-mentioned Propositions 22 to 27 (and especially, by ( 84), ( 92), ( 99)) one can use

G - 1 n • log ¥ x n 1 ξ wW n,x ∈ Ω Ω (136) 
where

¥ x n 1 [ • ] := ¥[ • | X 1 = x 1 , . . . , X n = x n ], x := (x 1 , . . . , x n ), and 
G (cf. ( 2 
)
) is e.g. chosen as follows:

G(z) := -c γ•(γ-1) • 1 -1 -γ c • z 1-γ
for the three cases γ < 0, γ ∈]0, 1[ and γ ≥ 2, G(z) := z for γ = 0 (reversed Kullback-Leibler divergence), and G(z

) := -c • log(1 -1 c • z) for γ = 1 (Kullback-Leibler divergence). Notice that (136) contrasts to the alternative approximation (of inf Q∈Ω Ω D ϕγ (Q, P)) given by inf Q∈Ω Ω D ϕγ (Q, emp,co n ) (137) 
which is used in the context of "classical" statistical minimum distance estimation (MDE) with power divergences; in [START_REF] Gietl | Continuity of f -projections and applications to the iterative proportional fitting procedure[END_REF],

we have employed emp,co n = 1 n • n i=1 δ xi to be the realization of the empirical distribution emp n = 1 n • n i=1 δ
Xi . Indeed, especially in complicated high-dimensional non-parametric or semi-parametric big-data contexts, we have substituted a quite difficult optimization problem (137) by a much easier solvable counting problem [START_REF] Ghosh | A scale-invariant generalization of the Renyi entropy, associated divergences and their optimizations under Tsallis' nonextensive framework[END_REF]. The same holds analogously for Renyi distances/divergences, etc.

2) Construction principle for bounds of the minimum divergence in the general case :

Turning back to Theorem 14, we now consider the general case when the divergence ϕ ∈ Υ(]a, b[) is not of the power type [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF]. Recall from (34) the crucial terms (with

P ∈ >0 ) inf m =0 D ϕ (m • Ω Ω, P) := inf m =0 inf Q∈Ω Ω D ϕ (m • Q, P) = inf Q∈Ω Ω inf m =0 D ϕ (m • Q, P) < ∞ (138) 
for all sets Ω Ω satisfying the regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and the convenient, more restrictive finiteness property

inf Q∈Ω Ω inf k=1,...,K q k p k ∈ dom(ϕ), sup Q∈Ω Ω sup k=1,...,K q k p k ∈ dom(ϕ) (139) 
which implies [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]; notice that inf k=1,...,K

q k p k ≤ 1, sup k=1,...,K q k p k ≥ 1 with equalities if and only if Q = P.
Since Ω Ω = {P} (cf. the right-hand side of ( 7)), the double infimum (supremum) in ( 139) is strictly smaller (larger) than 1. In general, the inner minimization inf m =0 D ϕ (m • Q, P) in [START_REF] Gong | True random number generators using electrical noise[END_REF] can not be performed in explicit closed form, but e.g. in the specific case of power divergences (cf. ( 43 

m • q k p k ∈ dom(ϕ), sup Q∈Ω sup k=1,...,K m • q k p k ∈ dom(ϕ) ⇐⇒ m ∈]0, ∞[. (141) 
Moreover, for any fixed Q in Ω Ω there is a unique number m = m(Q) > 0 which satisfies the first-order optimality condition for m ∈ ]0, ∞[

ψ Q (m) := d dm D ϕ (m • Q, P) = K k=1 q k • ϕ m • q k p k = 0 (142) 
and thus

D ϕ (m(Q) • Q, P) = inf m =0 D ϕ (m • Q, P) ; (143) 
indeed, the mapping ]0, ∞[ m → D ϕ (m • Q, P) is strictly convex and infinitely differentiable (which follows straightforwardly from (G5),(G6) in the below-mentioned Section V together with (C7ii), (C7iii) in Appendix D), and the strictly increasing function ψ Q is such that ψ Q (m) is strictly negative for all m ∈]0, 1[ for which sup k=1,...,K m•q k p k < 1 whereas ψ Q (m) is strictly positive for all m > 1 for which inf k=1,...,K m•q k p k > 1 (recall the note right after (139) and ϕ (1) = 0). Hence, for any Q ∈ Ω Ω the unique zero m(Q) of ( 142) (and hence, unique minimizer in [START_REF] Guan | Visible light dynamic positioning method using improved camshift-Kalman algorithm[END_REF]) is in the compact interval

1 sup k=1,...,K q k p k , 1 inf k=1,...,K q k p k ⊆ 1 sup Q∈Ω Ω sup k=1,...,K q k p k , 1 inf Q∈Ω Ω inf k=1,...,K q k p k ⊂ 1 b , 1 a = ]0, ∞[.
When Ω Ω is closed in K , then by continuity of the function Q → D ϕ (m (Q) • Q, P) there exists a Q * in Ω Ω which achieves the infimum on Ω Ω. When Ω Ω is not closed but satisfies [START_REF] Ahlswede | Identification entropy[END_REF], then the infimum exists anyway, possibly on the boundary ∂Ω Ω.

Anyhow, for such Q * there holds

D ϕ (m(Q * ) • Q * , P) ≤ D ϕ (Ω Ω, P) ≤ D ϕ (Q * , P) , (144) 
where we use the continuity of Q → D ϕ (Q, P) and ( 7) to obtain the last inequality above, even when

Q * ∈ ∂Ω Ω and Q * / ∈ Ω Ω.
That [START_REF] Guiasu | The relative information generating function[END_REF] provides sharp bounds can be seen through the case of power divergences. Indeed, for the latter one basically gets (cf.

Appendix C) m(Q) = (1 + γ•(γ-1) c • D c•ϕγ (Q, P) ) 1/(1-γ) and D ϕγ (m(Q) • Q, P) = c γ (1 -m(Q)) for the case γ ∈ \{0, 1}, respectively, m(Q) = exp(-1 c • D c•ϕ1 (Q, P)) and D c•ϕ1 (m(Q) • Q, P) = c γ (1 -m(Q)) for the case γ = 1, respectively, m(Q) = 1 and D c•ϕ0 (m(Q) • Q, P) = D c•ϕ0 (Q, P)
for the remaining case γ = 0. In all cases, D ϕγ (m(Q) • Q, P) is an increasing function of D ϕγ (Q, P) and therefore,

Q * ∈ arg inf Q∈Ω Ω D ϕ (m(Q) • Q, P) also satisfies Q * ∈ arg inf Q∈Ω Ω D ϕ (Q, P).
Hence, the right-hand side and the left-hand side of (144) coincide. Now due to [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF], the LHS of ( 144) can be estimated since by Theorem 14 for each P ∈ K >0 the divergence inf m =0 D ϕ (m • Q, P) is BS-minimizable on sets Ω Ω ⊂ K . We shall propose in Section V an algorithm to handle the estimation of the RHS of (144), whenever P is known (as in Remark 13(v)) or when P is approximated by the empirical distribution of the data set (X 1 , .., X n ). Also note that (144) holds also for Ω Ω substituted by A • Ω Ω for any A = 0.

Other cases of interest include when dom (ϕ) is not ]0, ∞[. We list two cases which extend the above discussion. Firstly, consider ϕ with dom (ϕ) = [0, ∞[. Then -since ϕ (0) = -∞ in order that (6) should hold (see (G10ii) in Section V below)

-we may extend [START_REF] Guiasu | The relative information generating function[END_REF] to cases when Ω Ω ⊂ K instead of Ω Ω ⊂ K >0 , hence allowing for possible null entries in Ω Ω. When dom (ϕ) = ]a, b[ for some a < 0, then clearly the same argument leading to [START_REF] Guiasu | The relative information generating function[END_REF] holds; this case is of interest, for instance, when extending a statistical model to signed measures (see e.g. Broniatowski et al. [START_REF] Broniatowski | Testing the number and the nature of the components in a mixture distribution[END_REF] for the important task of testing the number of components in a parametric probability mixture model).

Example 28: Consider the (non-probability version of the) Jensen-Shannon divergence defined by J(Q, P) := I(Q, (Q + P)/2) + I(P, (Q + P)/2), P, Q ∈ K ≥0 , where I(Q, P) denotes the modified Kullback-Leibler information between Q and P (cf. [START_REF] Bhandari | A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation[END_REF] with P instead of P). In [START_REF] Kim | Massively parallel ultrafast random bit generation with a chip-scale laser[END_REF] and [START_REF] Kißlinger | New model search for nonlinear recursive models, regressions and autoregressions[END_REF] of Example 43 below, we shall show that J(Q, P) = D ϕ snKL (Q, P) with (basically) divergence generator ϕ snKL (t) := t • log t + (t + 1) • log 2 t+1 for t > 0. It is known that J 2 is a metric. We explore the sharpness of the bounds for J(Ω Ω, P) as defined in [START_REF] Guiasu | The relative information generating function[END_REF]. For this, we consider a given probability distribution P on Y with strictly positive entries; the set Ω Ω consists of all probability distributions Q on Y whose total variation distance V (Q, P) := K k=1 |q k -p k | 28 to P lies between v and v + h for v > 0 and small h and which also satisfies sup sup k=1,...,K

p k q k , sup k=1,...,K q k p k ≤ L 28 notice that V (Q, P) always takes values in the interval [0, 2[
for some strictly positive finite L. This set Ω Ω defines a class of distributions Q away from P still keeping some regularity w.r.t. P. Also, Ω Ω satisfies [START_REF] Ahlswede | Identification entropy[END_REF]. We will prove that the bounds in [START_REF] Endres | A new metric for probability distributions[END_REF] are sharp in this case. Notice that J(m

• Q, P) = ∞ for m < 0 and hence inf Q∈Ω Ω inf m =0 J(m • Q, P) = inf Q∈Ω Ω inf m>0 J(m • Q, P).
We first provide a lower bound for the latter. It holds for all m > 0 and Q in Ω Ω

J(mQ, P) = (m + 1) • log (2) -(m + 1) • log (m + 1) + m log m + I α (P, Q) + m • I 1-α (Q, P)
where α := 1/ (m + 1) and I α (P, Q) is the α-skewed Kullback-Leibler divergence between P and Q defined through

I α (P, Q) := I(P, αP + (1 -α)Q).
By Inequality [START_REF] Baddeley | A statistical commentary on mineral prospectivity analysis[END_REF] in Yamano [410]

I α (P, Q) ≥ -log 1 - α 2 4 V (Q, P) 2 .
Since (m + 1) • log ( 2) -(m + 1) • log(m + 1) + m • log m is non-negative for all m > 0 and takes its minimal value 0 for m = 1, we obtain inf

m>0 J(mQ, P) ≥ inf m>0 K(m)
where

K(m) := -log 1 - 1 4 (m + 1) 2 • V (Q, P) 2 -m • log 1 - m 2 4 (m + 1) 2 • V (Q, P) 2 .
Since -log(1 -x) ≥ x for all x < 1 and both

1 4(m+1) 2 • V (Q, P) 2 and m 2 4(m+1) 2 • V (Q, P) 2 are less than 1, it follows that K(m) ≥ V (Q, P) 2 4 • m 3 + 1 (m + 1) 2 
where the right-hand side attains its minimal value on ]0, ∞[ at m + = √ 3 -1 ≈ 0.73. Hence, we obtain

inf m>0 J(m • Q, P ) ≥ V (Q, P) 2 4 • (2 √ 3 -3) > 0.116 v 2
Now by [START_REF] Arslan | Statistical coverage control of mobile sensor networks[END_REF] in Yamano [START_REF] Yamano | Some bounds for skewed α-Jensen-Shannon divergence[END_REF], for any Q

J(Q, P) ≤ 1 4 J(Q, P)
where J(Q, P) := I(Q, P) + I(P, Q) is the Jensen divergence (also called symmetrized Kullback-Leibler divergence) between Q and P. Since (see Dragomir [START_REF] Dragomir | Upper bounds for the Kullback-Leibler distance and applications[END_REF])

I(P, Q) ≤ K k=1 p k q k • |q k -q k | , it follows that J(Q * , P) ≤ 1 2 √ L • V (Q * , P) which provides 0.116 v 2 ≤ inf m>0 J(m • Q * , P) = J(m(Q * ) • Q * , P) ≤ J(Ω Ω, P) ≤ J(Q * , P) ≤ 1 2 √ L • (v + h).
For small v the difference between the RHS and the LHS in the above display is cst

• v + o(v) + 1 2 √ L
• h which proves that the bounds are sharp locally, with non-trivial lower bound. Other upper bounds can be adapted to sets Ω Ω defined through tighter conditions on sup Q∈Ω Ω sup k=1,...,K p k q k and sup Q∈Ω Ω sup k=1,...,K q k p k (of e.g. Dragomir [START_REF] Dragomir | Upper bounds for the Kullback-Leibler distance and applications[END_REF]).

3) On the difference between minimization problems of deterministic nature and risk minimization:

In the context of minimization of the functional Φ P (Q) over Ω ⊂ K for known vector P, due to Theorem 10 our bare simulation approach allows for the approximate solution for any divergence D ϕ satisfying the basic representation [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF]. Indeed, any proxy of ¥ ξ W n ∈ Ω/M P yields a corresponding proxy for Φ P [Ω]. This paves the way to the solution of numerous optimization problems, where the divergence D ϕ is specifically suited to the problem at hand.

In the statistical context, when the probability distribution (in its vector-form) P is unknown up to some indirect information provided by sampling or by any mean providing a sequence (X i ) i∈x satisfying condition (26) (resp. ( 30)), Theorem 14 adds a complementary step of complexity; indeed, the estimation of Φ P (Ω Ω) over Ω Ω ⊂ K results as its subproduct through the optimization upon m which can be performed explicitly only in a number of specific divergences D ϕ , e.g. the power divergences D ϕγ , and which carries over also to their monotone transformations such as e.g. the Renyi divergences. It is of relevance to mention that -as already indicated above -these divergences cover a very broad range of statistical criteria, indeed most of them, from the (maximum-likelihood estimation connected) likelihood divergence (γ = 0) to the Kullback-Leibler one (γ = 1), the two standard Chi-square distances (γ = 2, γ = -1), the Hellinger distance (γ = 1/2), etc.; in contrast with deterministic minimization problems, the choice of a statistical criterion (or risk function) is not imposed by the modelling of the problem at hand, but is dictated by the need for sharp measures of fit. Other divergences are more difficult to handle and our general results in Section IV-C2 should still prove some usefulness, since estimation of upper and lower bounds for risk is of common use.

As a "preparatory" remark, recall first that each probability distribution (probability measure) on Y = {d 1 , . . . , d K } has been uniquely identified with the vector P := (p 1 , . . . , p K ) ∈ K of the corresponding probability masses (frequencies)

p k = [{d k }] via [A] = K k=1 p k • 1 A (d k )
for each A ⊂ Y; from this, we have measured the distance/divergence between two probability distributions , through the distance/divergence between their frequency vectors P, Q: D ϕ (, ) := D ϕ (Q, P) (cf. ( 28)).

However, it has been noted in Kißlinger & Stummer [START_REF] Kißlinger | Robust statistical engineering by means of scaled Bregman distances[END_REF] in a context of even more general divergences D(Q, P) between vectors P, Q that -alternatively -the latter two may consist of components

p k = [{E k }], q k = [{E k }] which are
probabilities of only some selected (e.g. increasing) events (E k ) k∈{1,...,M } of application-based concrete interest (within not necessarily discrete probability models). Of course, we can apply our BS method to such a vector context.

As other alternatives, in the following we deal with divergences between non-probabilistic uncertainty quantifications.

D. Minimization problems with fuzzy sets

Our BS framework also covers the -imprecise/inexact/vague information describing -fuzzy sets (cf. Zadeh [START_REF] Zadeh | Fuzzy sets[END_REF]) and optimization problems on divergences between those. Indeed, let Y = {d 

D ϕ (B * , A * ) := D ϕ (P B , P A ) = K k=1 p A k • ϕ p B k p A k = K k=1 M A (d k ) • ϕ M B (d k ) M A (d k ) ≥ 0 (145) 
(depending on ϕ, zero degree values may have to be excluded for finiteness). For instance, we can take ϕ(t

) := ϕ 1 (t) := t • log t + 1 -t ∈ [0, ∞[ for t ∈ [0, ∞[ (cf. ( 43 
)
) to end up with a generalized Kullback-Leibler divergence (generalized relative entropy) between B * and A * ; this contrasts the choice ϕ(t) := φ(t [START_REF] Bhandari | Some new information measures for fuzzy sets[END_REF] for which D φ(B * , A * ) (which they call fuzzy expected information for discrimination in favor of B against A) may become negative (cf. Stummer & Vajda [START_REF] Stummer | On divergences of finite measures and their applicability in statistics and information theory[END_REF] in a more general context). In terms of (145), as a special case of the above-mentioned BS concepts, we can tackle optimization problems of the type

) := t • log t ∈ [-1 e , ∞[ of Bhandari & Pal
inf B * ∈Ω * D ϕ (B * , A * ) := inf P B ∈Ω D ϕ (P B , P A )
where Ω * is a collection of fuzzy sets (on the same universe Y) whose membership-degree vectors form the set Ω satisfying (7) and [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. Because of the inequality-type key constraint

0 ≤ M B (d k ) ≤ 1 for all k ∈ {1, . . . , K}
which is contained in Ω and which implies 0 ≤ K k=1 p B k ≤ K, Theorem 10 and its consequences and derived examples will apply correspondingly -unless there is a more restrictive constraint which violates [START_REF] Ahlswede | Identification entropy[END_REF] such as e.g. The above-mentioned considerations can be extended to the recent concept of ν-rung orthopair fuzzy sets (cf. Yager [START_REF] Yager | Generalized orthopair fuzzy sets[END_REF]) and divergences between those. Indeed, for A ⊂ Y, besides a membership function M A : Y → [0, 1] one additionally models a non-membership function N A : Y → [0, 1], where N A (d k ) represents the degree/grade of non-membership of the element d k to the set A. Moreover, if A ⊂ Y and B ⊂ Y are unequal, then the corresponding non-membership functions N A and N B should be unequal. For fixed ν ∈ [1, ∞[, the key constraint

0 ≤ M A (d k ) ν + N A (d k ) ν ≤ 1 for all k ∈ {1, . . . , K} (146) 
is required to be satisfied, too. Accordingly, the object A * * := { x, M A (x), N A (x) |x ∈ Y} is called a ν-rung orthopair fuzzy set in Y (or . . . subset of Y). The object A * * is called intuitionistic fuzzy set in Y (cf. Atanassov [START_REF] Atanassov | Intuitionistic fuzzy sets[END_REF]) in case of ν = 1, and Pythagorean fuzzy set in Y (cf. Yager [START_REF] Yager | Pythagorean fuzzy subsets[END_REF], [START_REF] Yager | Pythagorean membership grades, complex numbers, and decision making[END_REF]) in case of ν = 2. For the choice ν = 1 together with N A (x) := 1 -M A (x), the object A * * can be regarded as an extended representation of the fuzzy set A * in Y. As is well known, there is a vast amount of recent literature on applications of fuzzy sets; for the sake of brevity, let us exemplarily mention the survey of Yanase & Triantaphyllou [START_REF] Yanase | A systematic survey of computer-aided diagnosis in medicine: past and present developments[END_REF] on some recent uses in computer-aided medical diagnosis. For any ν-rung orthopair fuzzy set A * * in Y, we model the corresponding vector of concatenated membership and non-membership degrees to A by P A := p A k k=1,...,2K := M A (d 1 ), . . . M A (d K ), N A (d 1 ), . . . N A (d K ) which due to [START_REF] Guo | Semi-supervised WCE image classification with adaptive aggregated attention[END_REF] satisfies the aggregated key constraint

0 ≤ 2K k=1 p A k ν ≤ K;
in other words, P A lies (within the 2K-dimensional Euclidean space) in the intersection of the first/positive orthant with the ν-norm ball centered at the origin and with radius K 1/ν . Analogously to [START_REF] Guo | Improving scale invariant feature transform with local color descriptor for image classification[END_REF], we can define the ϕ-divergence D ϕ (B * * , A * * ) between the ν-rung orthopair fuzzy sets B * * and A * * (on the same universe Y) as

D ϕ (B * * , A * * ) := D ϕ (P B , P A ) = 2K k=1 p A k • ϕ p B k p A k = K k=1 M A (d k ) • ϕ M B (d k ) M A (d k ) + N A (d k ) • ϕ N B (d k ) N A (d k ) ≥ 0 (147 
) respectively as its variant

D var ϕ (B * * , A * * ) := D ϕ ( P B ν , P A ν ) = 2K k=1 p A k ν • ϕ p B k ν p A k ν = K k=1 M A (d k ) ν • ϕ M B (d k ) ν (M A (d k )) ν + N A (d k ) ν • ϕ N B (d k ) ν (N A (d k )) ν ≥ 0. (148) 
For the special choice ν = 1, N A (x) := 1 -M A (x) and ϕ(t [START_REF] Bhandari | Some new information measures for fuzzy sets[END_REF] under the name average fuzzy information for discrimination in favor of B against A). Moreover, the special choice ν = 1 and ϕ(t) := ϕ snKL,1 (t) (cf. ( 188)) leads to the Jensen-Shannon divergence between B * * and A * * given by D ϕ snKL,1 (B * * , A * * ) := D ϕ snKL,1 (P B , P A ); from [START_REF]The Traveling Salesman Problem and Its Variations[END_REF] and ( 189) one can see that this coincides with the symmetric information measure between B * * and A * * of Vlachos & Sergiadis [START_REF] Vlachos | Intuitionistic fuzzy information -applications to pattern recognition[END_REF].

) := ϕ 1 (t) := t • log t + 1 -t ∈ [0, ∞[ for t ∈ [0, ∞[ (cf. ( 43 
In terms of the divergences ( 147) and ( 148), we can tackle -as a special case of the above-mentioned BS conceptsoptimization problems of the type

inf B * * ∈Ω * * D ϕ (B * * , A * * ) := inf P B ∈Ω D ϕ (P B , P A ) respectively inf B * * ∈Ω * * D var ϕ (B * * , A * * ) := inf P B ∈Ω D ϕ ( P B ν , P A ν ),
where Ω * * is a collection of ν-rung orthopair fuzzy sets whose concatenated-membership-nonmembership-degree vectors form the set Ω satisfying ( 7) and ( 9) as well as [START_REF] Guo | Semi-supervised WCE image classification with adaptive aggregated attention[END_REF] for B in place of A. Because of the latter, Theorem 10 and its consequences and derived examples will apply correspondingly -unless there is a more restrictive constraint which violates [START_REF] Ahlswede | Identification entropy[END_REF] such as e.g.

2K

k=1 p B k = C with C ≤ K for which Theorem 14 (and its consequences and derived examples) can be employed; such a situation appears e.g. in the above-mentioned case ν = 1 together with N A (x) := 1 -M A (x) which leads to C = K.

For ν-rung orthopair fuzzy sets A * * in Y, we can also further "flexibilize" our divergences by additionally incorporating the hesitancy degree of the element d k to A which is defined as

H A (d k ) := 1 -M A (d k ) ν -N A (d k ) ν 1/ν ∈ [0, 1]
(cf. Yager [START_REF] Yager | Generalized orthopair fuzzy sets[END_REF]) and which implies the key constraint

H A (d k ) ν + M A (d k ) ν + N A (d k ) ν = 1 for all k ∈ {1, . . . , K}. (149) 
Accordingly, the object A * * * := { x, M A (x), N A (x), H A (x) |x ∈ Y} can be regarded as an extended representation of the ν-rung orthopair fuzzy set A * * in Y. For A * * * , we model the corresponding vector of concatenated membership, nonmembership and hesitancy degrees to A by [START_REF] György | Optimal entropy-constrained scalar quantization of a uniform source[END_REF] satisfies the aggregated key constraint

P A := p A k k=1,...,3K := M A (d 1 ), . . . M A (d K ), N A (d 1 ), . . . N A (d K ), H A (d 1 ), . . . H A (d K ) which due to
3K k=1 p A k ν = K; (150) 
in other words, P A lies (within the 3K-dimensional Euclidean space) in the intersection of the first/positive orthant with the ν-norm sphere centered at the origin and with radius K 1/ν . Analogously to ( 147) and ( 148), we can define the ϕ-divergence D ϕ (B * * * , A * * * ) between the extended-representation-type ν-rung orthopair fuzzy sets B * * * and A * * * (on the same universe Y) as

D ϕ (B * * * , A * * * ) := D ϕ (P B , P A ) = 3K k=1 p A k • ϕ p B k p A k = K k=1 M A (d k ) • ϕ M B (d k ) M A (d k ) + N A (d k ) • ϕ N B (d k ) N A (d k ) + H A (d k ) • ϕ H B (d k ) H A (d k ) ≥ 0
respectively as its variant

D var ϕ (B * * * , A * * * ) := D ϕ ( P B ν , P A ν ) = 3K k=1 p A k ν • ϕ p B k ν p A k ν = K k=1 M A (d k ) ν • ϕ M B (d k ) ν (M A (d k )) ν + N A (d k ) ν • ϕ N B (d k ) ν (N A (d k )) ν + H A (d k ) ν • ϕ H B (d k ) ν (H A (d k )) ν ≥ 0. (151) 
For instance, by taking the special choice ν = 2 and ϕ(t) := ϕ snKL,1 (t) (cf. ( 188)) in [START_REF] Ha | Estimating the spectrum in computed tomography via Kullback-Leibler divergence constrained optimization[END_REF], we arrive at the Jensen-Shannon divergence between B * * * and A * * * of the form D var ϕ snKL,1 (B * * * , A * * * ) := D var ϕ snKL,1 (P B , P A ) which -by the virtue of ( 151) and ( 189) -coincides with the (squared) Pythagorean-fuzzy-set Jensen-Shannon divergence measure between B * * * and A * * * of Xiao & Ding [START_REF] Xiao | Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis[END_REF]. To continue with the general context, as a particular application of the above-mentioned BS concepts, we can tackle general optimization problems of the type where Ω * * * is a collection of extended-representation-type ν-rung orthopair fuzzy sets whose concatenated-membershipnonmembership-hesitancy-degree vectors form the set Ω satisfying ( 7) and ( 9) as well as [START_REF] György | Optimal entropy-constrained scalar quantization of a uniform source[END_REF] for B in place of A. Because of the latter and the implied aggregated key constraint [START_REF] Gzyl | Loss Data Analysis. The Maximum Entropy Approach[END_REF] for B in place of A, Theorem 14 (and its consequences and derived examples) can be employed.

Of course, we can also correspondingly adapt the transformations of ϕ-divergences and entropy-type special cases given in the sections above and below, to (classical respectively ν-rung othopair) fuzzy sets, and apply our BS method for this. For the sake of brevity, we only give a short example, namely the γ-order Renyi divergence between ν-rung othopair fuzzy sets which we define by (cf. ( 69))

R var γ (B * * * , A * * * ) := 1 γ • (γ -1) • log 3K k=1 p B k ν γ • p A k ν 1-γ -log(K) = 1 γ • (γ -1) • log K k=1 M B (d k ) ν γ • M A (d k ) ν 1-γ + N B (d k ) ν γ • N A (d k ) ν 1-γ + H B (d k ) ν γ • H A (d k ) ν 1-γ -log(K) ≥ 0; γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 1, ∞[, (152) 
depending on γ, zero degree values may have to be excluded for finiteness. As a side remark, let us mention that our divergence [START_REF] Han | Three-dimensional substructure imaging of blood cells using maximum entropy tomography based on two non-orthogonal phase images[END_REF] contrasts to the recent (first) divergence of Verma [START_REF] Verma | Multiple attribute group decision-making based on order-α divergence and entropy measures under q-rung orthopair fuzzy environment[END_REF] who basically uses a different scaling, the product 

P B ∈Ω Ω R γ (P B , P A )
with artificially generated probability vectors (cf. ( 150))

P C := M C (d 1 ) ν K , . . . , M C (d K ) ν K , N C (d 1 ) ν K , . . . , N C (d K ) ν K , H C (d 1 ) ν K , . . . , H C (d K ) ν K , C = A, B;
here, Ω * * * is a collection of extended-representation-type ν-rung orthopair fuzzy sets B * * * whose corresponding normalized concatenated-membership-nonmembership-hesitancy-degree vectors P B form the set Ω Ω satisfying (7) (in the relative topology).

The above-mentioned considerations can be carried over to (classical, intuitionistic, Pythagorean, ν-rung orthopair) L-fuzzy sets, where the range of the membership functions, non-membership functions and hesitancy functions is an appropriately chosen lattice L (rather than L = [0, 1]); for the sake of brevity, this is omitted here.

E. Minimization problems with basic belief assignments

Our BS framework also covers -imprecise/inexact/vague information describing -basic belief assignments from Dempster-Shafer evidence theory (cf. [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF], [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]) and optimization problems on divergences between those. Indeed, let Y = {d 1 , . . . , d K } be a finite set (called the frame of discernment) of mutally exclusive and collectively exhaustive events d k . The corresponding power set of Y is denoted by 2 Y and has 2 K elements; we enumerate this by 2 Y := {A 1 , . . . , A 2 K } where for convenience we set A 1 := ∅. A mapping M : 2 Y → [0, 1] is called a basic belief assignment (BBA) 29 if it satisfies the two conditions

M (∅) = 0 and A∈2 Y M (A) = 1. (153) 
Here, the belief mass M (A) reflects e.g. the trust degree of evidence to proposition A ∈ 2 Y . From this, one can build the belief function Bel : 2 Y → [0, 1] by Bel(A) := B:B⊆A M (B) and the plausability function

P l : 2 Y → [0, 1] by P l(A) := B:B∩A =∅ M (B)
. Moreover, we model the 2 K -dimensional vector of (M -based) BBA values (vector of (M -based) belief masses) by P M := p M k k=1,...,2 K := (M (A k )) k=1,...,2 K which satisfies the key constraint 0 ≤ p M k ≤ 1 for all k ∈ {1, . . . , 2 K } and, by virtue of ( 153), the aggregated key constraint

2 K k=1 p M k = 1.
Hence, P M lies formally in the 2 K -dimensional simplex 2 K (but generally not in the corresponding probability-vector-describing K ).

For divergence generators ϕ in Υ(]a, b[) with -say -0 ≤ a < 1 < b and for two BBAs M 1 , M 2 on the same frame of discernment Y, we can apply (4) to the corresponding vectors of BBA-values and define the ϕ-divergence D ϕ (M 2 , M 1 ) between the BBAs M 2 and M 1 (in short, Belief-ϕ-divergence) as

D ϕ (M 2 , M 1 ) := D ϕ (P M2 , P M1 ) = 2 K k=1 p M1 k • ϕ p M2 k p M1 k = 2 K k=1 M 1 (A k ) • ϕ M 2 (A k ) M 1 (A k ) ≥ 0 (154) 
(depending on ϕ, zero belief masses may have to be excluded for finiteness). For instance, we can take in (154) the special case ϕ(t) := ϕ snKL,1 (t) (cf. ( 188)) to end up with the recent Belief-Jensen-Shannon divergence of Xiao [START_REF] Xiao | Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[END_REF], [START_REF] Xiao | A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion[END_REF] who applies this to multi-sensor data fusion. As another special case we can take ϕ(t) := ϕ 1/2 (t) (cf. ( 43)) to end up with the 4-times square of the recent Hellinger distance of BBAs of Li et al. [START_REF] Li | Weighted Conflict Evidence Combination Method Based on Hellinger Distance and the Belief Entropy[END_REF], who use this for characterizing the degree of conflict between BBAs. To continue with the general context, as a particular application of the above-mentioned BS concepts, we can tackle general optimization problems of the type inf

M2∈Ω BBA D ϕ (M 2 , M 1 ) := inf P M 2 ∈Ω D ϕ (P M2 , P M2 ) respectively
where Ω BBA is a collection of BBAs whose vectors of BBA-values form the set Ω ∈ 2 K satisfying ( 7) and ( 9) as well as [START_REF] György | Optimal entropy-constrained scalar quantization of a uniform source[END_REF]. for B in place of A. Hence, Theorem 14 (and its consequences and derived examples) can be employed.

We can also apply our BS method to "crossover cases " D ϕ (P M , P) (respectively with interchanged components) where P M is a vector of M -based BBA values and P is a vector whose sum of components may not necessarily be 1. For instance, for the special choice ϕ(t

) := ϕ 1 (t) := t • log t + 1 -t ∈ [0, ∞[ (cf. 43), P M := p M k k=1,...,2 K := (M (A k )) k=1,...,2 K , P := (p k ) k=1,...,2 K with p k := 2 |A k | -1 employing the cardinality |A k | of A k ,
and the usual convention 0 • log( 0 0 ) := 0, we end up with (cf. ( 44))

D ϕ1 (P M , P) = 2 K k=2 M (A k ) • log M (A k ) 2 |A k | -1 -1 + 2 K k=2 (2 |A k | -1) =: -E DE (M ) -1 + 2 K k=2 (2 |A k | -1)
29 sometimes alternatively called basic probability assignment (BPA)

where

E DE (M ) := - 2 K k=2 M (A k ) • log M (A k ) 2 |A k | -1 ≥ 0 is nothing but (a multiple of)
Deng's entropy of the BBA (BPA) M (cf. [START_REF] Deng | Deng entropy[END_REF], see also e.g. Kang & Deng [START_REF] Kang | The maximum Deng entropy[END_REF]).

Our BS method can also be applied to divergences between rescalings of BBAs. For instance, let M (A) := M (A) 2 |A| -1 (A ∈ 2 Y ) with the convention that 0 0 := 0, and denote the corresponding vector P M := p M k k=1,...,2 K := M (A k ) k=1,...,2 K . Accordingly, we define the ϕ-divergence D ϕ ( M2 , M1 ) between the rescaled BBAs M2 and M1 (in short, rescaled Belief-ϕ-divergence) as

D ϕ ( M2 , M1 ) := D ϕ (P M2 , P M1 ) = 2 K k=1 p M1 k • ϕ p M2 k p M1 k = 2 K k=2 M1 (A k ) • ϕ M2 (A k ) M1 (A k ) = 2 K k=2 M 1 (A k ) 2 |A k | -1 • ϕ M 2 (A k ) M 1 (A k ) ≥ 0 (155 
) where for A 1 := ∅ we have used the convention that 0 • ϕ( 0 0 ) := 0 (depending on ϕ, other zero rescaled belief masses may have to be excluded for finiteness); notice that Remark 4 applies with c k := [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF], we derive from ( 44) and ( 155) the divergence

1 2 |A k | -1 > 0. As an example, for the special choice ϕ(t) := ϕ 1 (t) := t • log t + 1 -t ∈ [0, ∞[ (cf.
0 ≤ D ϕ1 ( M2 , M1 ) = 2 K k=2 M 2 (A k ) 2 |A k | -1 • log M 2 (A k ) M 1 (A k ) - 2 K k=2 M 2 (A k ) 2 |A k | -1 + 2 K k=2 M 1 (A k ) 2 |A k | -1 =: D SD (M 2 , M 1 ) - 2 K k=2 M 2 (A k ) 2 |A k | -1 + 2 K k=2 M 1 (A k ) 2 |A k | -1
where D SD (M 2 , M 1 ) has been recently developed by Song & Deng [START_REF] Song | Divergence measure of belief function and its application in data fusion[END_REF]; notice that D SD (M 2 , M 1 ) may be negative (cf.

Stummer & Vajda [START_REF] Stummer | On divergences of finite measures and their applicability in statistics and information theory[END_REF]) and then it is not a divergence anymore. However, for applications to data fusion Song & Deng apply the symmetrization

1 2 • D SD (M 2 , M 1 ) + D SD (M 1 , M 2 ) which is equal to 1 2 • D ϕ1 ( M2 , M1 ) + D ϕ1 ( M1 , M2
) and thus nonnegative.

Of course, we can also correspondingly adapt the transformations of ϕ-divergences (e.g. Renyi divergences) and entropy-type special cases given in the sections above and below, to BBAs as well as crossover cases and rescalings, and apply our BS method for this. under the additional requirement that the function z → M GF (z) := e zy d(y) is finite on some open interval containing zero ("light-tailedness"); for Theorem 10, we need the corresponding variant [START_REF] Aviyente | Characterization of event related potentials using information theoretic distance measures[END_REF] for

M P • ϕ ∈ Υ(]a, b[) (rather than ϕ).
Hence, finding such "BS-associated pairs (ϕ, )" is an important issue. Subsequently, let us discuss the following direction: 

(G1) ϕ : ] -∞, ∞[→ [0, ∞] is lower semicontinuous and convex; (G2) ϕ(1) = 0; (G3) int(dom(ϕ)) =]a, b[ for some -∞ ≤ a < 1 < b ≤ ∞; (G4) ϕ is continuously differentiable on ]a, b[ (i.e. ϕ ∈ C 1 (]a, b[); (G5) ϕ is strictly convex only in a non-empty neighborhood ]t sc -, t sc + [⊆]a, b[ of one (t sc -< 1 < t sc + ); (G6) ϕ is infinitly differentiable on ]t sc -, t sc + [ (i.e. ϕ ∈ C ∞ (]t sc -, t sc + [),
and hence, ϕ (1) = 0, ϕ (t) > 0 for all t ∈]t sc -, t sc + [; notice that the left-hand second derivative and the right-hand second derivative of ϕ may not coincide at t sc -respectively at t sc + (i.e. possible non-second-differentiability at these two points);

the boundary points a and b of int(dom(ϕ)) through (G10i) to (G10iii), because their finiteness opens the gate to applyvia some straightforward transformations -a rich class of real-valued characterization theorems for probability distributions whose support lies in the positive real line [0, ∞[. In contrast, there exist much less real-valued characterization theorems for probability distributions whose support is the whole real line ] -∞, ∞[; typically, the involved conditions are also more difficult to verify.

Indeed, if ϕ ∈ Υ(]a, b[) then one can deduce straightforwardly from the representation ( 6) that

e ϕ * (z) = ∞ -∞ e z•y d(y) = E ¥ [e z•W ], z ∈]λ -, λ + [, ( 157 
)
where W is a random variable whose distribution is ¥[W ∈ • ] = [ • ]; under the additional knowledge a > -∞ (and consequently λ -= -∞) employed together with (G10i) and thus ¥[

W ≥ a ] = [ [a, ∞[ ] = 1, one arrives at e ϕ * (z)-a•z = ∞ a e z•(y-a) d(y) = ∞ 0 e z• y d ( y) = E ¥ [e z•(W -a) ], z ∈] -∞, λ + [, (158) 
where the probability distribution

[ • ] := [ • + a ] is the a-shifted companion of ; recall that λ + > 0. Put in other words, ¥[ W ∈ • ] = [ • ]
is the probability distribution of the (a.s.) nonnegative random variable

W := W -a. Naturally, in this context, the interesting case is -∞ < a ≤ 0. Similarly, if ϕ ∈ Υ(]a, b[) and b < ∞ (and hence λ + = ∞), one can derive from (G10i) and its consequence ¥[W ≤ b ] = [ ] -∞, b] ] = 1 that e ϕ * (-z)+b•z = b -∞ e z•(b-y) d(y) = ∞ 0 e z• y d ( y) = E ¥ [e z•(b-W ) ], z ∈] -∞, -λ -[, (159) 
where -λ -> 0 and the probability distribution

[ • ] := [ b -• ] is the mirrored-b-shifted companion of . This means that ¥[ W ∈ • ] = [ • ]
is the probability distribution of the (a.s.) nonnegative random variable W := b -W . Naturally, the interesting case is 0 < b ≤ ∞.

As already indicated above, the considerations ( 157) to [START_REF] Herrero-Collantes | Quantum random number generators[END_REF] open the gate to the adaption of well-known real-valued (rather than complex-valued) characterizations from probability theory. To begin with, the following assertions are very prominent: Assertion (a) of Theorem 30 is known as (probability-version of) Bernstein's theorem [START_REF] Bernstein | Sur les fonctions absolument monotones[END_REF] (see e.g. also Schilling et al. [START_REF] Schilling | Bernstein Functions[END_REF]), whereas assertion (b) is known as (probability-version of) Widder's theorem [START_REF] Widder | Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral[END_REF] 30 (see e.g. also Widder [START_REF] Widder | The Laplace Transform[END_REF], Akhiezer [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF], Shucker [START_REF] Shucker | Extensions and generalizations of a theorem of Widder and of the theory of symmetric local semigroups[END_REF], Jaksetic & Pecaric [START_REF] Jaksetic | Exponential convexity method[END_REF], Kotelina & Pevny [START_REF] Kotelina | Exponential convexity and total positivity[END_REF]).

From Theorem 30(b) and ( 157), the first item in (G9iv) follows immediately by using the choice I =]λ -, λ + [. Moreover, Theorem 30(a) together with (158) (respectively ( 159)) implies the second item of (G9ii) (respectively of (G9iii)). In fact, with the help of Theorem 30 and some further considerations e.g. on light-tailedness, one even gets assertions on the sufficiency of (G9ii), (G9iii) and (G9iv) for a "candidate generator" ϕ to belong to the BS-suitable class If one of the three conditions (a) to (c) holds, then 31 the associated probability distribution (cf. ( 6)) has expectation yd(y) = 1 and finite moments of all orders, i.e. y j d(y) < ∞ for all j ∈ x 0 ; in terms of [• ] 

:= ¥[W ∈ • ] this means that E ¥ [W ] = 1 and E ¥ [W j ] < ∞.
The proof of Proposition 31 will be given in Appendix D. As far as applicability is concerned, it is well known that, in general, verifying absolute monotonicity is typically more comfortable than verifying exponential convexity. Fortunately, one can often use the former, since for many known divergence generators there holds a > -∞ (often a = 0) or b < ∞ or both, which by virtue of (G10i) is directly linked with the (endpoints of the) support of the potentially existing probability distribution .

For a pregiven divergence generator ϕ, once its membership in Υ(]a, b[) (and in particular, the representability ( 6)) is verified, one would like to concretely find the underlying probability distribution . This may be quite challenging, but can be made more comfortable by systematically narrowing down the family of distributions where belongs to. In fact, we have already performed a first down-narrowing, in terms of identifying the endpoints of the support of to be the endpoints of the effective domain of ϕ (cf. (G10i)). A further down-narrowing can be achieved from ( 157) to [START_REF] Herrero-Collantes | Quantum random number generators[END_REF] in combination with real-valued characterization theorems which are more specific than Theorem 30. This will be shown exemplarily for a few important sub-setups, in the following.

For the identification of light-tailed semi/half-lattice distributions, we obtain the following two sets of sufficient conditions, which even allow for the desired explicit determination of :

Proposition 32: Suppose that ϕ :] -∞, ∞[ → [0, ∞] satisfies (G1) to (G8)
, with some a > -∞. Furthermore, assume that there exists some constant c > 0 as well as some function

H : [0, ∞[ → [0, ∞[ which is continuous on [0, 1] with H(1) = 1 and absolutely monotone on ]0, 1[, such that e ϕ * ( z c )-a• z c = H(e z ), z ∈] -∞, c • λ + [. Then one has ϕ ∈ Υ(]a, b[) and = ∞ n=0 p n • δ a+c•n with p n := 1 n! • d n H dt (0), i.e. ¥[W = a + c • n ] = p n (n ∈ x 0 ).
Proposition 33: Suppose that ϕ :] -∞, ∞[ → [0, ∞] satisfies (G1) to (G8), with some b < ∞. Furthermore, assume that there exists some constant c > 0 as well as some function H : [0, ∞[ → [0, ∞[ which is continuous on [0, 1] with H(1) = 1 and absolutely monotone on ]0, 1[, such that

e ϕ * (-z c )+b• z c = H(e z ), z ∈] -∞, -c • λ -[. Then one has ϕ ∈ Υ(]a, b[) and = ∞ n=0 p n • δ b-c•n with p n := 1 n! • d n H dt (0), i.e. ¥[W = b -c • n ] = p n (n ∈ x 0 ).
The Propositions 32 respectively 33 follow from ( 158) respectively ( 159), some straightforward transformations, and a wellknown characterization of probability generating functions H (see e.g. in Theorem 1.2.10 of Stroock [START_REF] Stroock | Probability Theory: An Analytic View[END_REF]).

As an incentive for the following investigations, let us recall the discussion in the surroundings of Condition 9 pertaining to the minimization problem ( 13), where we have addressed possible connections between the two representabilities (6) (needed e.g. for Theorem 14) and ( 21 For the following family of distributions, one can even trigger c • ϕ ∈ Υ(]a, b[) for all c > 0: for the sake of a corresponding precise formulation, recall first the common knowledge that, generally speaking, a probability distribution on with light tails -in the sense that its moment generating function z → M GF (z) := e z•y d(y) is finite on some open interval ]λ -, λ + [ containing zero -is (said to be) infinitely divisible if there holds for each n ∈ x there exists a probability distribution n on such that [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF] means that the (light-tailed) moment generating function M GF is infinitely divisible in the sense that each n-th root (M GF ) 1/n must be the moment generating function of some (light-tailed) probability distribution (denoted here by n ). In particular, [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF] implies that n is unique, and that must necessarily have (one-sided or two-sided) unbounded support supp(). The latter may differ from supp( n ). In our BS context ( 6), [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF] equivalently means that the associated random variable W is infinitely divisible (with light-tailed distribution), in the sense that for each n ∈ x there exists a sequence of i.i.d. random variables 

∞ -∞ e z•y d(y) = ∞ -∞ e z•y d n (y) n , z ∈]λ -, λ + [; (160) in fact,
Y n,1 , • • • , Y n,n such that W d = Y n,1 + • • • + Y n,n , (161) 
∈ • ] = [ • ], ¥[Y n,1 ∈ • ] = n [ • ].
For the above-mentioned context, we obtain the useful Proposition 34: Suppose that ϕ ∈ Υ(]a, b[), with connected probability distribution from ( 6) (recall that this implies that is not a one-point distribution, cf. Remark 5). Then there holds:

c • ϕ ∈ Υ(]a, b[) for all c > 0 ⇐⇒ is infinitely divisible.
The proof of Proposition 34 is given in Appendix E.

Notice that Proposition 34 covers especially the important prominent power divergences (cf. Examples 39 and 40 below) for which we provide the corresponding infinitely divisible distributions explicitly in the Examples 48 and 50 below, and for which the subsequent form of estimators (cf. Chapter VI below) can be simplified.

For the identification of light-tailed infinitely divisible distributions, we obtain the following three sets of sufficient conditions: So far, in the current section we have started from a given divergence generator ϕ ∈ Υ(]a, b[) having some additional properties, switched to its Fenchel-Legendre transform ϕ * and some exponentially-linear transforms thereof, and presented some sufficient conditions for verifying that the outcome is a moment-generating function M GF of a unique probability distribution which has light tails. For finding the concrete , one typically should know the explicit form of ϕ * . However, it is well known that it can sometimes be hard to determine the explicit form of the Fenchel-Legendre transform of a convex function. This issue also applies for the reverse direction of starting from a concrete probability distribution with light tails, computing its log-moment-generating function (called cumulant-generating function) z → Λ (z) := log M GF (z) and the corresponding Fenchel-Legendre transform Λ * which is nothing but the associated divergence generator ϕ (cf. ( 6)). As will be illuminated in several examples below, the -"kind of intermediate" -construction method given in the below-mentioned Theorem 36 can help to ease these two tasks. To formulate this, we employ the class F of functions

Proposition 35: Suppose that ϕ :] -∞, ∞[ → [0, ∞]
F :] -∞, ∞[ → [-∞, ∞] with the following properties: (F1) int(dom(F )) =]a F , b F [ for some -∞ ≤ a F < 1 < b F ≤ ∞; (F2) F is smooth (infinitely continuously differentiable) on ]a F , b F [; (F3) F is strictly increasing on ]a F , b F [.
Clearly, for any F ∈ F one gets the existence of F (a

F ) := lim t↓a F F (t) ∈ [-∞, ∞[ and F (b F ) := lim t↑b F F (t) ∈] -∞, ∞]; moreover, its inverse F -1 : R(F ) → [a F , b F ] exists, where R(F ) := {F (t) : t ∈ dom(F )}. Furthermore, F -1 is strictly increasing and smooth (infinitely continuously differentiable) on the open interval int(R(F )) = {F (t) : t ∈]a F , b F [} = ]F (a F ), F (b F )[, and F -1 (int(R(F ))) =]a F , b F [. Within such a context,

we obtain

Theorem 36: Let F ∈ F and fix an arbitrary point c ∈ int(R(F )). Moreover, introduce the notations 32 ]λ -, λ

+ [:= int(R(F )) -c and ]t sc -, t sc + [:=]1 + a F -F -1 (c), 1 + b F -F -1 (c)[ (which implies λ -< 0 < λ + and t sc -< 1 < t sc + ). Furthermore, define the functions Λ : ] -∞, ∞[ → [-∞, ∞] and ϕ : ] -∞, ∞[ → [0, ∞] by Λ(z) := Λ (c) (z) :=          z 0 F -1 (u + c) du + z • (1 -F -1 (c)) ∈] -∞, ∞[, if z ∈]λ -, λ + [, λ- 0 F -1 (u + c) du + λ -• (1 -F -1 (c)) ∈ [-∞, ∞], if z = λ -> -∞, λ+ 0 
F -1 (u + c) du + λ + • (1 -F -1 (c)) ∈ [-∞, ∞], if z = λ + < ∞, ∞, else, (162) 
where the second respectively third line are meant as lim z↓λ-

z 0 F -1 (u + c) du + z • (1 -F -1 (c)) respectively lim z↑λ+ z 0 F -1 (u + c) du + z • (1 -F -1 (c)) , and 
ϕ(t) := ϕ (c) (t) :=                                      (t + F -1 (c) -1) • [F t + F -1 (c) -1 -c] - F (t+F -1 (c)-1)-c 0 F -1 (u + c)du ∈ [0, ∞[, if t ∈]t sc -, t sc + [, (t sc -+ F -1 (c) -1) • [F t sc -+ F -1 (c) -1 -c] - F (t sc -+F -1 (c)-1)-c 0 F -1 (u + c)du ∈ ]0, ∞], if t = t sc -> -∞, (t sc + + F -1 (c) -1) • [F t sc + + F -1 (c) -1 -c] - F (t sc + +F -1 (c)-1)-c 0 F -1 (u + c)du ∈ ]0, ∞], if t = t sc + < ∞, ϕ(t sc -) + λ -• (t -t sc -) ∈ ]0, ∞], if t sc -> -∞, and t ∈ ] -∞, t sc -[, ϕ(t sc + ) + λ + • (t -t sc + ) ∈ ]0, ∞], if t sc + < ∞, and t ∈ ]t sc + , ∞[, ∞, else, (163) 
where the second respectively third line are again meant as lower respectively upper limit. Then, Λ and ϕ have the following properties: (i) On ]λ -, λ + [, the function Λ is smooth and strictly convex and consequently, exp(Λ)) is smooth and strictly log-convex; moreover, there holds

Λ(0) = 0, Λ (0) = 1; (ii) ϕ ∈ Υ(]a, b[), where a := t sc -• 1 {-∞} (λ -) -∞ • 1 ]-∞,0[ (λ -), b := t sc + • 1 {∞} (λ + ) + ∞ • 1 ]0,∞[ (λ + )
, and ϕ has the properties (G1) to (G8).

(iii) ϕ(t) = sup z∈]-∞,∞[ (z • t -Λ(z)) = sup z∈]λ-,λ+[ (z • t -Λ(z)) for all t ∈ . (iv) Λ(z) = ϕ * (z) = sup t∈]-∞,∞[ (t • z -ϕ(t)) = sup t∈]a,b[ (t • z -ϕ(t)) for all z ∈ .
The proof of Theorem 36 will be given Appendix F.

Remark 37: Theorem 36 indicates that the F -constructed function z → exp(Λ(z)) = exp(ϕ * (z)) is a good candidate for a moment generating function of a probability distribution , and hence for the representability [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF]. However, one still needs to verify one of the conditions (a) to (c) of Proposition 31. This may go wrong, as the case of power divergences ϕ γ with γ ∈]1, 2[ indicates (cf. the conjecture of Example 48(f) below).

Notice that the newly constructed Λ and ϕ (cf. ( 162), ( 163)) depend on the choice of the anchor point c; this is e.g. illustrated in Example 40(b) below. Hence, as a side effect, by using whole families (F ϑ ) ϑ together with different anchor points c, via Theorem 36 one can generate new classes (and new classifications) of ϕ-divergence generators -and thus of corresponding ϕ-divergences -which can be of great use, even in other contexts beyond our BS optimization framework.

If F satisfies F (1) = 0 and thus F -1 (0) = 1, then the natural choice c := 0 induces ]λ -, λ + [= int(R(F )) and ]t sc -, t sc + [= ]a F , b F [, and consequently (due to F -1 (c) -1 = 0) leads to the simplification of "the first lines of" ( 162) and [START_REF] Jaksetic | Exponential convexity method[END_REF] to ) the simplifications of the respective other lines of ( 162) and ( 163) are straightforward. 32 for the sake of brevity, we avoid here the more complete notation λ F,c -, λ F,c + , t sc,F,c -, t sc,F,c + indicating the dependence on F and c.

Λ(z) := Λ (0) (z) := z 0 F -1 (u)du, z ∈ int(R(F )), (164) 
ϕ(t) := ϕ (0) (t) := t • F (t) - F (t) 0 F -1 (u)du, t ∈]a F , b F [; (165 
Remark 38:

Let F ∈ F with a F = 0, b F = ∞, F (1) 
= 0 and hence, int(R(F )) = ]F (0), F (∞)[. Then the transformation

F (t) :=      - F ( 1 t ) 0 F -1 (u) du, if t ∈]0, ∞[, - F (∞) 0 F -1 (u) du, if t = 0, -∞, if t ∈] -∞, 0[, (166) 
satisfies

F ∈ F with a F = 0, b F = ∞, F (1) = 0 and int(R( F )) = - F (∞) 0 F -1 (u) du, - F (0) 0 F -1 (u) du .
By choosing the natural anchor point c = 0 (for both F and F ) and by using the relations

F (t) = -Λ(F ( 1 t )), F -1 (z) = 1 F -1 (Λ -1 (-z))
, as well as [START_REF] Morales | Asymptotic properties of divergence statistics in a stratified random sampling and its applications to test statistical hypotheses[END_REF] in combination with (266) (for both contexts), it is straightforward to see that the corresponding quantities Λ and

ϕ satisfy Λ(z) = -(-Λ) -1 (z) (z ∈ int(R( F ))) and ϕ(t) = t • ϕ( 1 t ) (t ∈]0, ∞[).
Hence, the corresponding divergences (cf. ( 4)) are "reciprocal to each other" in the sense that D ϕ (Q, P) = D ϕ (P, Q) for all P, Q ∈ K >0 , and in case that Λ and Λ are indeed cumulant generating functions of some light-tailed distributions and (cf. Remark 37), then the latter two are said to be inverse to each other in the sense of Tweedie [START_REF] Tweedie | Inverse statistical variates[END_REF] (see also e.g. Folks [START_REF] Folks | Inverse distributions[END_REF]).

As already indicated above, from Theorem 36 one can comfortably generate various interesting examples, which we demonstrate in the following.

Example 39: (a) For γ ∈ \{1, 2}, c ∈]0, ∞[ and ]a F γ, c , b F γ, c [ = ]0, ∞[ we define F γ, c (t) :=          c γ-1 • (t γ-1 -1), if t ∈ ]0, ∞[, -c γ-1 , if t = 0 and γ ∈ ]1, 2[ ∪ ]2, ∞[, -∞, if t = 0 and γ < 1, -∞, if t ∈ ] -∞, 0[, Clearly, R(F γ, c ) = -c γ-1 , ∞ for γ ∈ ]1, 2[ ∪ ]2, ∞[, respectively R(F γ, c ) = -∞, c 1-γ for γ < 1; notice that 0 ∈ int(R(F γ, c
)) for all γ ∈ \{1, 2}. Furthermore, F γ, c (•) is strictly increasing and smooth on ]0, ∞[, and thus, F γ, c ∈ F. Since

F γ, c (1) 
= 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ

+ [= int(R(F γ, c )) and ]t sc -, t sc + [=]0, ∞[. By using F -1 γ, c (x) = (1 + (γ-1)•x c ) 1 γ-1 for x ∈ int(R(F γ, c
)), we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF]) for all

γ ∈ \{0, 1, 2} and z ∈ Λ γ, c (z) := Λ (0) γ, c (z) =                      c γ • γ-1 c • z + 1 γ γ-1 -1 , if γ ∈ ]1, 2[ ∪ ]2, ∞[ and z ∈ -c γ-1 , ∞ or if γ ∈] -∞, 0[∪]0, 1[ and z ∈ -∞, c 1-γ , -c γ < 0, if γ ∈ ]1, 2[ ∪ ]2, ∞[ and z = -c γ-1 , -c γ > 0, if γ < 0 and z = c 1-γ , ∞, if γ ∈ ]0, 1[ and z = c 1-γ , ∞, else. (167) 
Notice that Λ γ, c (0

) = 0 for all γ ∈ \{0, 1, 2}. Moreover, for γ ∈ ]1, 2[ ∪ ]2, ∞[ one has Λ γ, c (∞) = ∞, Λ γ, c (-c γ-1 ) = 0 and Λ γ, c (∞) = ∞. For γ < 0 one gets Λ γ, c (-∞) = -∞, Λ γ, c ( c 1-γ ) = ∞ and Λ γ, c (-∞) = 0. In contrast, if γ ∈ ]0, 1[ then Λ γ, c (-∞) = -c γ < 0, Λ γ, c ( c 1-γ ) = ∞ and Λ γ, c (-∞) = 0.
To proceed, from formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce for all γ ∈ \{0, 1, 2} and t ∈

ϕ γ, c (t) := ϕ (0) γ, c (t) =                    c • t γ -γ•t+γ-1 γ•(γ-1) ∈ [0, ∞[, if t ∈]0, ∞[, c γ > 0, if γ ∈ ]1, 2[ ∪ ]2, ∞[ and t = 0, ∞, if γ < 0 and t = 0, c γ > 0, if γ ∈ ]0, 1[ and t = 0, c γ -c γ-1 • t ∈ ]0, ∞[, if γ ∈ ]1, 2[ ∪ ]2, ∞[ and t < 0, ∞, else, (168) 
which coincides with c • ϕ γ (t) for ϕ γ (t) from [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF] and which generates the γ-corresponding power divergences given in [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]; the first line in [START_REF] Jenkinson | Potential energy landscapes identify the information-theoretic nature of the epigenome[END_REF] can be proved by

ϕ γ, c (t) := ϕ (0) γ, c (t) := t • F γ, c (t) - F γ, c (t) 0 F -1 γ, c (u)du = t • c γ -1 • (t γ-1 -1) - c γ • γ -1 c • c γ -1 • (t γ-1 -1) + 1 γ γ-1 -1 = c • t γ -γ • t + γ -1 γ • (γ -1) , t ∈]0, ∞[ . (169) 
Notice that for all γ ∈ \{0, 1, 2} one has ϕ γ, c (1) = 0, ϕ γ, c (1) = 0 and

ϕ γ, c (∞) = ∞. Moreover, for γ ∈ ]1, 2[ ∪ ]2, ∞[ one has ϕ γ, c (0) = -c γ-1 < 0 and ϕ γ, c (∞) = ∞. In contrast, for γ < 0 and γ ∈ ]0, 1[ one gets ϕ γ, c (0) = -∞ and ϕ γ, c (∞) = c 1-γ > 0. (b) For γ = 2, c ∈]0, ∞[ and ]a F γ, c , b F γ, c [ = ] -∞, ∞[ we define F 2, c (t) := c • (t -1), t ∈ ] -∞, ∞[, Clearly, R(F 2, c ) = ] -∞, ∞[, 0 ∈ int(R(F 2, c )), and F 2, c (•) is strictly increasing as well as smooth on ] -∞, ∞[. Hence, F 2, c ∈ F. Since F 2, c (1) 
= 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ

+ [= int(R(F 2, c )) = ]-∞, ∞[ and ]t sc -, t sc + [= ] -∞, ∞[. By using F -1 2, c (x) = 1 + x c for x ∈ int(R(F 2, c
)), we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF])

Λ 2, c (z) := Λ (0) 2, c (z) = c 2 • 1 c • z + 1 2 -1 = z 2 2 c + z, z ∈ ] -∞, ∞[. ( 170 
) Notice that Λ 2, c (0) = 0, Λ 2, c (-∞) = Λ 2, c (∞) = ∞, Λ 2, c (-∞) = -∞ and Λ 2, c (∞) = ∞.
From formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce analogously to (169)

ϕ 2, c (t) := ϕ (0) 2, c (t) = c • (t -1) 2 2 ∈ [0, ∞[, t ∈ ] -∞, ∞[, (171) 
which coincides with c • ϕ 2 (t) for ϕ 2 (t) from ( 43) which generates the corresponding power divergence given in the sixth line of [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]. Notice that ϕ 2, c (1) = 0, ϕ 2, c (1) = 0 and ϕ

2, c (-∞) = ϕ 2, c (∞) = ∞.
As an application of the reciprocity considerations of Remark 38, it is straightforward to see from the above-mentioned considerations (a) and (b) that for all γ ∈ \{0, 1} one has

F γ, c (t) = -Λ γ, c (F γ, c ( 1 t )) = F 1-γ, c (t) for all t ∈]0, ∞[. (c) 
Let us now continue with the remaining case γ = 0 (recall the natural anchor point c := 0). By using

F -1 0, c (x) = 1 1-x c for x ∈ int(R(F 0, c )) =] -∞, c[,
we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF])

Λ 0, c (z) := Λ (0) 0, c (z) = -c • log 1 -z c , if z ∈ -∞, c , ∞, if z ∈ c, ∞ . (172) 
Notice that Λ 0, c (0

) = 0, Λ 0, c (-∞) = -∞, Λ 0, c ( c) = ∞ and Λ 0, c (-∞) = 0.
Moreover, from formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce

ϕ 0, c (t) := ϕ (0) 0, c (t) = c • (-log t + t -1) ∈ [0, ∞[, if t ∈ ]0, ∞[, ∞, if t ∈ ] -∞, 0], (173) 
which coincides with c • ϕ 0 (t) for the generator ϕ 0 (t) from ( 43) which generates the reverse Kullback-Leibler divergence (reverse relative entropy) given in [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF] with c = 1; the first line in (173) can be proved by

ϕ 0, c (t) := ϕ (0) 0, c (t) := t • F 0, c (t) - F 0, c (t) 0 F -1 0, c (u)du = t • c • 1 - 1 t -(-c) • log 1 - 1 c • c • 1 - 1 t = c • (-log t + t -1) , t ∈]0, ∞[ . (174) 
Notice that one has ϕ 0, c (1

) = 0, ϕ 0, c (∞) = ∞, ϕ 0, c (1) = 0, ϕ 0, c (0) = -∞ and ϕ 0, c (∞) = c.
Example 40: (a) For the remaining case γ

= 1, c ∈]0, ∞[ and ]a F 1, c , b F 1, c [=]0, ∞[ we define F 1, c (t) := c • log t = lim γ→1 F γ, c (t), if t ∈ ]0, ∞[, -∞, if t ∈] -∞, 0]. Clearly, R(F 1, c ) =] -∞, ∞[. Moreover, F 1, c (•)
is strictly increasing and smooth on ]0, ∞[, and hence, F γ, c ∈ F. Since F 1, c (1) = 0, let us first choose the natural anchor point c := 0, which leads to ]λ -, λ

+ [= int(R(F 1, c )) =] -∞, ∞[ and ]t sc -, t sc + [=]0, ∞[. By using F -1 1, c (x) = exp( x c ) for x ∈ R(F 1, c
), we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF])

Λ 1, c (z) := Λ (0) 1, c (z) := z 0 F -1 1, c (u) du = c • exp z c -1 , z ∈] -∞, ∞[. (175) 
Notice that Λ 1, c (0

) = 0, Λ 1, c (-∞) = -c, Λ 1, c (∞) = ∞, Λ 1, c (-∞) = 0 and Λ 0, c (∞) = ∞.
Moreover, from formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce

ϕ 1, c (t) := ϕ (0) 1, c (t) :=      c • (t • log t + 1 -t) ∈ [0, ∞[, if t ∈ ]0, ∞[, 1, if t = 0, ∞, if t ∈ ] -∞, 0[, (176) 
which coincides with c • ϕ 1 (t) for the generator ϕ 1 (t) from ( 43) which generates the Kullback-Leibler divergence (relative entropy) given in ( 44) with c = 1; the first line in ( 176) can be proved by

ϕ 1, c (t) := ϕ (0) 1, c (t) 
:= t • F 1, c (t) - F 1, c (t) 0 F -1 1, c (u)du = t • c • log t -c • exp 1 c • [ c • log t] -1 = c • (t • log t + 1 -t) , t ∈]0, ∞[ , (177) 
Notice that one has ϕ 1, c (1

) = 0, ϕ 1, c (∞) = ∞, ϕ 1, c (1) = 0, ϕ 1, c (0) = -∞ and ϕ 1, c (∞) = ∞.
As an application of the reciprocity considerations of Remark 38, it is straightforward to see that

F 1, c (t) = -Λ 1, c (F 1, c ( 1 t )) = F 0, c (t) for all t ∈]0, ∞[. (b) For the choice c = 1, let us now fix a general anchor point c ∈ R(F 1, c ) =] -∞, ∞[ (rather than c = 0), which leads to ]λ -, λ + [= int(R(F 1,1 )) -c =] -∞, ∞[ and ]t sc -, t sc + [=]1 + a F1,1 -F -1 1,1 (c), 1 + b F1,1 -F -1 1,1 (c)[ = ]1 -e c
, ∞[. Accordingly, the formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF]) leads to

Λ 1,1 (z) := Λ (c) 1,1 (z) := z 0 F -1 1,1 (u + c)du + z • (1 -F -1 1,1 (c)) = e c • (e z -1) + z • (1 -e c ), z ∈] -∞, ∞[, (178) 
for which there holds [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce

Λ (c) 1,1 (0) = 0, Λ (c) 1,1 (-∞) = ∞ • 1 ]0,∞[ (c) -∞ • 1 ]-∞,0[ (c) -1 • 1 {0} (c), Λ (c) 1,1 (∞) = ∞, Λ (c) 1,1 (-∞) = 1 -e c and Λ (c) 1,1 (∞) = ∞. Moreover, from formula
ϕ 1,1 (t) := ϕ (c) 1,1 (t) :=      (t + e c -1) • [log(t + e c -1) -c] + 1 -t ∈ [0, ∞[, if t ∈ ]1 -e c , ∞[, e c , if t = 1 -e c , ∞, if t ∈ ] -∞, 1 -e c [; (179) 
the first line in (179) can be proved by

ϕ 1,1 (t) := ϕ (c) 1,1 (t) := (t + F -1 1,1 (c) -1) • [F 1,1 t + F -1 1,1 (c) -1 -c] - F1,1(t+F -1 1,1 (c)-1)-c 0 F -1 1,1 (u + c)du = (t + e c -1) • [log(t + e c -1) -c] -e c • exp[log(t + e c -1) -c] -1 = (t + e c -1) • [log(t + e c -1) -c] + 1 -t, t ∈]1 -e c , ∞[ . (180) 
Clearly, one has ϕ

(c) 1,1 (1) = 0, ϕ (c) 1,1 (∞) = ∞, ϕ (c) 1,1 (1) = 0, ϕ (c) 1,1 (1 - 
e c ) = -∞ and ϕ (c) 1,1 (∞) = ∞. The corresponding divergence D ϕ (c) 1,1
(, ) has been recently used in Broniatowski et al. [START_REF] Broniatowski | Testing the number and the nature of the components in a mixture distribution[END_REF] for the important task of testing mixtures of probability distributions; in fact, in order to get considerable comfort in testing mixture-type hypotheses against corresponding marginal-type alternatives, they employ choices c > 0 since then ϕ (c) 1,1 (t) is finite especially for some range of negative values t < 0. The latter feature is also valid for the divergence generator ϕ bw,β, c in the next example (cf. (182) below).

Example 41: For β ∈ ]0, 1], c ∈ ]0, ∞[ and ]a F bw,β, c , b F bw,β, c [ = ]1 -1 β , ∞[ we define F bw,β, c (t) := c 2β • 1 - 1 (β•t+1-β) 2 , if t ∈ ]1 -1 β , ∞[, -∞, if t ∈ ] -∞, 1 -1 β ]. Clearly, R(F bw,β, c ) = -∞, c 2β and 0 ∈ int(R(F bw,β, c )). Moreover, F bw,β, c (•) is strictly increasing and smooth on ]1-1 β , ∞[, and thus, F bw,β, c ∈ F. Since F bw,β, c (1) 
= 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ

+ [ = int(R(F bw,β, c )) = -∞, c
2β and ]t sc -, t sc

+ [ = ]a F bw,β, c , b F bw,β, c [ = ]1 -1 β , ∞[. By using F -1 bw,β, c (x) = 1 β • 1 √ 1-2β•x/ c + β -1 for x ∈ int(R(F bw,β, c
)), we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF]) for all β ∈ ]0, 1] and z ∈

Λ bw,β, c (z) := Λ (0) bw,β, c (z) =    -( 1 β -1) • z + c β 2 • 1 -1 -2β c • z , if z ∈ -∞, c 2β , ∞, else. (181) 
Notice that Λ bw,β, c (0 [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can straightforwardly deduce for all t ∈

) = 0. Moreover, Λ bw,β, c (-∞) = ∞, Λ bw,β, c ( c 2β ) = c•(β+1) 2β 2 , Λ bw,β, c (-∞) = -1-β β < 0 and Λ bw,β, c ( c 2β ) = ∞. Furthermore, from formula
ϕ bw,β, c (t) := ϕ (0) bw,β, c (t) := c • (t-1) 2 2(β•t+1-β) ∈ [0, ∞[, if t ∈ ]1 -1 β , ∞[, ∞, if t ∈ ] -∞, 1 -1 β ]. (182) 
Note that 1 -1 β < 0 so that negative t are allowed here. For t ≥ 0, ϕ bw,β, c (t) is known as Rukhin's generator (cf. [START_REF] Rukhin | Optimal estimator for the mixture parameter by the method of moments and information affinity[END_REF], see e.g. also Marhuenda et al. [START_REF] Marhuenda | Choosing the best Rukhin goodness-of-fit statistics[END_REF], Pardo [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF]). Obviously, one has ϕ bw,β, c (1) = 0, ϕ bw,β, c (1) = 0, ϕ bw,β, c (1

-1 β ) = -∞ and ϕ bw,β, c (∞) = c
2β . From the generator ϕ bw,β, c given in [START_REF] Kang | Automatic SAR image registration via Tsallis entropy and iterative search process[END_REF], we build the corresponding divergence (cf. ( 4))

D ϕ bw,β, c (Q, P) = c • K k=1 p k • ( q k p k -1) 2 2(β • q k p k + 1 -β) = c 2 • K k=1 (q k -p k ) 2 β • q k + (1 -β) • p k , if P ∈ K and Q ∈ K with Q ∈ ] P • (1 - 1 β ), ∞[ component-wise; (183) 
for the special subcase c = 1 and Q ∈ K >0 , D ϕ bw,β,1 (Q, P) can be interpreted as -"non-probability version" of -the well-known blended weight chi-square divergence of Lindsay [START_REF] Lindsay | Efficiency versus robustness: the case for minimum Hellinger distance and related methods[END_REF] (see e.g. also Basu & Lindsay [START_REF] Basu | Minimum disparity estimation for continuous models: efficiency, distributions and robustness[END_REF], Györfy & Vajda [START_REF] Györfy | A class of modified Pearson and Neyman statistics[END_REF], Basu et al. [START_REF] Basu | Statistical Inference: The Minimum Distance Approach[END_REF]). The special case c = 1 and β = 1 2 for probability vectors, i.e. D ϕ bw,1/2,1 (Q, P), is equal to (a multiple of the matrix-vector-converted (cf. Remark 19)) Sanghvi's genetic difference measure [START_REF] Sanghvi | Comparison of genetical and morphological methods for a study of biological differences[END_REF] and equal to the double of the so-called (squared) Vincze-Le Cam distance (cf. Vincze [START_REF] Vincze | On the concept and measure of information contained in an observation[END_REF], Le Cam [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF], see also e.g. Topsoe [START_REF] Topsoe | Some inequalities for information divergence and related measures of discrimination[END_REF] -who used the alternative naming triangular discrimination -and Vajda [START_REF] Vajda | On metric divergences of probability measures[END_REF]); this divergence D ϕ bw,1/2,1 (Q, P) has been used e.g. in Liu et al. [START_REF] Liu | Learning to Detect a Salient Object[END_REF] for a machine learning context of detecting salient objects, where Q and P are appropriate histograms of RGB color.

Remark 42: (a) By straightforward calculations, one can show that ϕ bw,1, c (i.e. with the choice β = 1) is equal to the c -f old power-divergence generator ϕ γ, c = c • ϕ γ (cf. [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF]) with γ = -1; the corresponding divergence D ϕ bw,1, c (Q, P) is thus equal to the power divergence D c•ϕ-1 (Q, P) (cf. [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]) which is nothing but the -"non-probability version" -of Neyman's chi-square divergence. (b) For the case β = 0 -which has been excluded in Example 41 for technical brevity -the divergence generator ϕ bw,0, c corresponds to c -f old power-divergence generator ϕ γ, c with γ = 2; the corresponding divergence D ϕ bw,0, c (Q, P) is thus equal to the power divergence D c•ϕ2 (Q, P) (cf. [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]) which is nothing but the -"non-probability version" -of Pearson's (i.e. the classical) chi-square divergence. 

∈ ] -1, 0[ ∪ ]0, ∞[ let us define F gKL,α, c (t) :=        c • log (1+α)•t 1+α•t , if { α ∈ ]0, ∞[ and t ∈ ]0, ∞[ } or { α ∈ ] -1, 0[ and t ∈ ]0, -1 α [ }, -∞, if α ∈ ] -1, 0[ ∪ ]0, ∞[ and t ∈ ] -∞, 0], ∞, if α ∈ ] -1, 0[ and t ∈ [-1 α , ∞[, (notice that lim α→0+ F gKL,α, c (t) = F 1, c (t), cf. Example 40(a)). Clearly, ]a F gKL,α, c , b F gKL,α, c [ := ]0, ∞[ for α ∈ ]0, ∞[ and ]a F gKL,α, c , b F gKL,α, c [ := ]0, -1 α [ for α ∈ ] -1, 0[. Moreover, R(F gKL,α, c ) = ] -∞, c • log(1 + 1 α )[ for α ∈ ]0, ∞[ and R(F gKL,α, c ) = ] -∞, ∞[ for α ∈ ] -1, 0[. Furthermore, F gKL,α, c (•)
is strictly increasing and smooth on the respective ]a F gKL,α, c , b F gKL,α, c [, and thus, F gKL,α, c ∈ F. Since F gKL,α, c (1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF])

+ [ = int(R(F gKL,α, c )) = ] -∞, c • log(1 + 1 α )[ and ]t sc -, t sc + [ = ]0, ∞[ for the case α ∈ ]0, ∞[, re- spectively, to ]λ -, λ + [ = int(R(F gKL,α, c )) = ] -∞, ∞[ and ]t sc -, t sc + [ = ]0, -1 α [ for the case α ∈ ] -1, 0[. By employing F -1 gKL,α, c (x) = 1 (1+α)•e -x/ c -α for x ∈]λ -, λ + [, one can deduce from formula
Λ gKL,α, c (z) := Λ (0) gKL,α, c (z) 
:=      z 0 F -1 gKL,α, c (u) du = -c α • log((1 + α) -α • e z/ c ), if α ∈ ]0, ∞[ and z ∈ ] -∞, c • log(1 + 1 α )[, z 0 F -1 gKL,α, c (u) du = -c α • log((1 + α) -α • e z/ c ), if α ∈ ] -1, 0[ and z ∈ ] -∞, ∞[, ∞, if α ∈ ]0, ∞[ and z ∈ [ c • log(1 + 1 α ), ∞[, (184) 
for which there holds Λ gKL,α, c (0) = 0 and [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) one can derive

Λ gKL,α, c (-∞) = -c α • log(1 + α) for α ∈ ] -1, 0[ ∪ ]0, ∞[, as well as Λ gKL,α, c ( c • log(1 + 1 α )) = ∞ for α ∈ ]0, ∞[ and Λ gKL,α, c (∞) = ∞ for α ∈ ] -1, 0[. The corresponding derivative satisfies Λ gKL,α, c (-∞) = 0 for α ∈ ]-1, 0[ ∪ ]0, ∞[, as well as Λ gKL,α, c ( c•log(1+ 1 α )) = ∞ for α ∈ ]0, ∞[ and Λ gKL,α, c (∞) = -1 α for α ∈ ] -1, 0[. Furthermore, from formula
ϕ gKL,α, c (t) := ϕ (0) gKL,α, c (t) : 
=            c • t • log t + (t + 1 α ) • log 1+α 1+α•t ∈ [0, ∞[, if { α ∈ ]0, ∞[ and t ∈ ]0, ∞[ } or { α ∈ ] -1, 0[ and t ∈ ]0, -1 α [ }, c α • log(1 + α) ∈ ]0, ∞[, if α ∈ ] -1, 0[ ∪ ]0, ∞[ and t = 0, ∞, if α ∈ ] -1, 0[ ∪ ]0, ∞[ and t ∈ ] -∞, 0[, ∞, if α ∈ ] -1, 0[ and t ∈ [-1 α , ∞[; (185) 
the first line in (185) can be proved by

ϕ gKL,α, c (t) := ϕ (0) gKL,α, c (t) := t • F gKL,α, c (t) - F gKL,α, c (t) 0 F -1 gKL,α, c (u) du = c • t • log (1 + α) • t 1 + α • t + c α • log (1 + α) -α • exp log (1 + α) • t 1 + α • t = c • t • log t + t • log 1 + α 1 + α • t + 1 α • log 1 + α 1 + α • t . (186) 
Obviously, one has ϕ gKL,α, c (1

) = 0, ϕ gKL,α, c (1) = 0, ϕ gKL,α, c (0) = -∞ for α ∈ ]-1, 0[ ∪ ]0, ∞[. Moreover, for α ∈ ]0, ∞[ there holds ϕ gKL,α, c (∞) = ∞, and ϕ gKL,α, c (∞) = c • log(1 + 1 α ), whereas for α ∈ ] -1, 0[ we obtain ϕ gKL,α, c (-1 α ) = ∞, and ϕ gKL,α, c (-1 α ) = ∞.
From the generator ϕ gKL,α, c given in [START_REF] Kapur | Entropy Optimization Principles With Applications[END_REF], we build the corresponding divergence (cf. ( 4))

D ϕ gKL,α, c (Q, P) = c • K k=1 q k • log q k (1 -1 1+α ) • q k + 1 1+α • p k + 1 α • K k=1 p k • log p k (1 -1 1+α ) • q k + 1 1+α • p k , (187) 
if

{ α ∈ ]0, ∞[, P ∈ K >0 and Q ∈ K ≥0 } or { α ∈ ] -1, 0[, P ∈ K >0 and Q ∈ K ≥0 with Q ≤ - 1 α • P }.
Notice that the symmetry D ϕ gKL,α, c (Q, P) = D ϕ gKL,α, c (P, Q) generally holds only if P, Q ∈ K >0 and α = 1; indeed, this special case leads to

ϕ snKL, c (t) := ϕ gKL,1, c (t) :=        c • t • log t + (t + 1) • log 2 t+1 ∈ [0, ∞[, if t ∈ ]0, ∞[, c • log 2, if t = 0, ∞, if t ∈ ] -∞, 0[, (188) 
and

D ϕ snKL, c (Q, P) := D ϕ gKL,1, c (Q, P) = c• K k=1 q k •log 2q k q k + p k + K k=1 p k •log 2p k q k + p k , P ∈ K >0 , Q ∈ K ≥0 . (189) 
For the special subcase that c = 1 and that P = P, Q = Q are probability vectors, the divergence (189) can be rewritten as sum of two Kullback-Leibler divergences (cf. ( 44))

D ϕ snKL,1 (Q, P) = D ϕ1 (Q, (Q + P)/2) + D ϕ1 (P, (Q + P)/2), P ∈ K >0 , Q ∈ K ≥0 , (190) 
which is the well-known (cf. Burbea & Rao [START_REF] Burbea | On the convexity of some divergence measures based on entropy functions[END_REF], Lin [START_REF] Lin | Divergence measures based on the Shannon entropy[END_REF], Pardo & Vajda [START_REF] Pardo | About distances of discrete distributions satisfying the data processing theorem of information theory[END_REF], Topsoe [START_REF] Topsoe | Some inequalities for information divergence and related measures of discrimination[END_REF], Endres & Schindelin [START_REF] Endres | A new metric for probability distributions[END_REF], Vajda [START_REF] Vajda | On metric divergences of probability measures[END_REF], Sason [START_REF] Sason | Tight bounds for symmetric divergence measures and a new inequality relating f -divergences[END_REF]) Jensen-Shannon divergence (being also called symmetrized and normalized Kullback-Leibler divergence, symmetrized and normalized relative entropy, capacitory discrimination); this is equal to the (2 log 2)-fold of a special (namely, equally-weighted two-population) case of the Sibson information radius of order 1 (cf. [START_REF] Sibson | Information radius[END_REF]) which has also been addressed e.g. by Rao [START_REF] Rao | Cluster analysis applied to a study of race mixture in human populations[END_REF] for genetic cluster analysis. By the way, for α > 0 the divergence D ϕ gKL,α, c (Q, P) can also be interpreted as a multiple of a special non-equally-weighted Sibson information radius of order 1. In a context of comparison of -not necessarily connected -networks where Q, P are probability vectors derived from matrices (cf. Remark 19) which are transforms of corresponding graph invariants (e.g. network portraits), the (matrix-equivalent of the) Jensen-Shannon divergence D ϕ snKL,1 (Q, P) is also called the network portrait divergence, cf. Bagrow and Bollt [START_REF] Bagrow | An information-theoretic, all-scales approach to comparing networks[END_REF].

There is a vast literature on recent applications of the Jensen-Shannon divergence, for instance it appears exemplarily in Kvitsiani et al. [START_REF] Kvitsiani | Distinct behavioural and network correlates of two interneuron types in prefrontal cortex[END_REF] for finding connections between the circuit-level function of different interneuron types in regulating the flow of information and the behavioural functions served by the cortical circuits, in Xu et al. ( 2014) for browsing and exploration of video sequences, in Jenkinson et al. [START_REF] Jenkinson | Potential energy landscapes identify the information-theoretic nature of the epigenome[END_REF] for the fundamental understanding of the epigenome that leads to a powerful approach for studying its role in disease and aging, in Martin et al. [START_REF] Martin | Using the Jensen-Shannon, density power, and Itakura-Saito divergences to implement an evolutionary-based global localization filter for mobile robots[END_REF] for the implementation of an evolutionary-based global localization filter for mobile robots, in Suo et al. [START_REF] Suo | Revealing the critical regulators of cell identity in the mouse cell atlas[END_REF] for the revelation of critical regulators of cell identity in mice, in Abante et al. [START_REF] Abante | Detection of haplotype-dependent allele-specific DNA methylation in WGBS data[END_REF] for the detection of biologically significant differences in DNA methylation between alleles associated with local changes in genetic sequences -for a better understanding of the mechanism of complex human diseases, in Afek et al. [START_REF] Afek | DNA mismatches reveal conformational penalties in protein-DNA recognition[END_REF] for revealing mechanisms by which mismatches can recruit transcription factors for modulating replication and repair activities in cells, in Alaiz-Rodriguez & Parnell [START_REF] Alaiz-Rodriguez | An information theoretic approach to quantify the stability of feature selection and ranking algorithms[END_REF] for the quantification of stability in feature selection and ranking algorithms, in Biau et al. [START_REF] Biau | Some theoretical properties of GANs[END_REF] for generative adversarial networks (GANs) in artificial intelligence and machine learning, in Carre et al. [START_REF] Carre | Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics[END_REF] for the standardization of brain magnetic resonance (MR) images, in Chakraborty et al. [START_REF] Chakraborty | Uncovering hierarchical structure of international FOREX market by using similarity metric between fluctuation distributions of currencies[END_REF] for hierarchical clustering in foreign exchange FOREX markets (e.g. in periods of major international crises), in Chong et al. [START_REF] Chong | Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data[END_REF] as part of a web-based platform for comprehensive analysis of microbiome data outputs, in Cui et al. [START_REF] Cui | Dual implicit mining-based latent friend recommendation[END_REF] for modelling latent friend recommendation in online social media, in Gholami & Hodtani [START_REF] Gholami | A more general information theoretic study of wireless location verification system[END_REF] for refinements of safety-and-security-targeted location verification systems in wireless communication networks (e.g in Intelligent Transportation Systems (ITSs) and vehicular technology), in Guo & Yuan [START_REF] Guo | Semi-supervised WCE image classification with adaptive aggregated attention[END_REF] for accurate abnormality classification in semi-supervised Wireless Capsule Endoscopy (WCE) for digestive system cancer diagnosis, in Jiang et al. [START_REF] Jiang | Deep neural networks for the evaluation and design of photonic devices[END_REF] for the training of deep neural discriminative and generative networks used for designing and evaluating photonic devices, in Kartal et al. [186] for uncovering the relationship between some genomic features and cell type-specific methylome diversity, in Laszlovszky et al. [START_REF] Laszlovszky | Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types[END_REF] for investigating mechanisms of basal forebrain neurons which modulate synaptic plasticity,cortical processing, brain states and oscillations, in Lawson et al. [START_REF] Lawson | Functional genomic landscape of cancer-intrinsic evasion of killing by T cells[END_REF] for the improved understanding of some genetic circuits that allow cancer cells to evade destruction by the host immune system, in Li et al. [START_REF] Li | MeCP2 links heterochromatin condensates and neurodevelopmental disease[END_REF] for the search of causes of the progressive neurodevelopmental disorder Rett syndrome, in Machado et al. [START_REF] Machado | Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov's complexity and Shannon's information theories[END_REF] for discovering relations between distinct RNA viruses (including SARS-CoV-2), in Mohammadi et al. [START_REF] Mohammadi | A multiresolution framework to characterize single-cell state landscapes[END_REF] for the identification of cell states and their underlying topology, in Mohanty et al. [START_REF] Mohanty | Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation[END_REF] for the design of implantable nanophotonic (i.e. chip-scale optical circuit type) silicon probes for sub-millisecond deep-brain optical stimulation -e.g. for the purpose of gaining a deeper understanding of the neural code, in Perera et al. [START_REF] Perera | Toplogical rationality of supply chain networks[END_REF] for the quantification of the level of rationality in supply chain networks, in Pierri et al. [START_REF] Pierri | Topology comparison of Twitter diffusion networks effectively reveals misleading information[END_REF] for the study of growth of malicious/misleading information in some social media diffusion networks, in Rabadan et al. [START_REF] Rabadan | Identification of relevant genetic alterations in cancer using topological data analysis[END_REF] for the identification of gene mutations that lead to the genesis and progression of tumors, in Reiter et al. [START_REF] Reiter | Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases[END_REF] for quantifying metastatic phylogenetic diversity, in Van de Sande et al. [START_REF] Van De Sande | A scalable SCENIC workflow for single-cell gene regulatory network analysis[END_REF] as part of a computational toolbox for single-cell gene regulatory network analysis, in Skinnider et al. [START_REF] Skinnider | Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences[END_REF] for the prediction of the chemical structures of genomically encoded antibiotics -in order to find means against the looming global crisis of antibiotic resistance, in Tuo et al. [START_REF] Tuo | Multipopulation harmony search algorithm for the detection of high-order SNP interactions[END_REF] for the detection of high-order single nucleotide polymorphism (SNP) interactions, in Uttam et al. [START_REF] Uttam | Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks[END_REF] for predicting the risk of colorectal cancer recurrence and inferring associated tumor microenvironment networks, in Zhang et al. [START_REF] Zhang | Jensen-Shannon divergence for non-destructive incipient crack detection and estimation[END_REF] for incipient fault (namely, crack) detection, in Zhi et al. [START_REF] Zhi | Resist interest flooding attacks via Entropy-SVM and Jensen-Shannon divergence in information-centric networking[END_REF] for the strengthening of information-centric networks against interest flooding attack (IFAs), in Acera Mateos et al. [START_REF] Acera Mateos | PACIFIC: a lightweight deep-learning classifier of SARS-CoV-2 and co-infecting RNA viruses[END_REF] for deep-learning classification of SARS-CoV-2 and co-infecting RNA viruses, in Avsec et al. [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] for uncovering the motifs and syntax of cis-regulatory sequences in genomics data, in Barennes et al. [START_REF] Barennes | Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases[END_REF] for comparing the accuracy of current T cell receptor sequencing methods employed for the understanding of adaptive immune responses, in Chen et al. [START_REF] Chen | Comparison of beta diversity measures in clustering the high-dimensional microbial data[END_REF] for clustering high-dimensional microbial data from RNA sequencing, in Chen et al. [START_REF] Chen | Flexible scaling and persistence of social vocal communication[END_REF] for investigating key aspects of effective vocal social communication, in Koldobskiy et al. [START_REF] Koldobskiy | Converging genetic and epigenetic drivers of paediatric acute lymphoblastic leukaemia identified by an information-theoretic analysis[END_REF] for investigations of genetic and epigenetic drivers of paediatric acute lymphoblastic leukaemia, in McGinnis et al. [START_REF] Mcginnis | No detectable alloreactive transcriptional responses under standard sample preparation conditions during donormultiplexed single-cell RNA sequencing of peripheral blood mononuclear cells[END_REF] for evaluating RNA sequencing of pooled blood cell samples, in Mühlroth & Grottke [START_REF] Mühlroth | Artificial intelligence in innovation: how to spot emerging trends and technologies[END_REF] for the detection of emerging trends and technologies through artificial intelligence techniques, in Necci et al. [START_REF] Necci | Critical assessment of protein intrinsic disorder prediction[END_REF] for the assessment of protein intrinsic disorder predictions, in Okada et al. [START_REF] Okada | Genome-wide association study of individual differences of human lymphocyte profiles using large-scale cytometry data[END_REF] for the identification of genetic factors that cause individual differences in whole lymphocyte profiles and their changes after vaccination, and in Zhang et al. [START_REF] Zhang | Multi-scale time-series kernel-based learning method for brain disease diagnosis[END_REF] for the learning of functional magnetic resonance imaging (fMRI) time-series in a brain disease diagnosis context.

Remark 44: Let us transform ϕ gSH,α (t) := 1-t α • log(1 + α) -ϕ gKL,α,1 (t) = -t • log t + 1 α • (1 + α • t) • log(1 + α • t) -1 α • (1 + α) • t • log(1 + α) (for t ∈ [0, 1]). The function ϕ gSH,α (•) is strictly concave on [0, 1] with ϕ gSH,α (0) = ϕ gSH,α (1) = 0.
Hence, for probability vectors Q = (q k ) k=1,...,K , the ϕ-entropy K k=1 ϕ gSH,α (q k ) is Kapur's [START_REF] Kapur | Four families of measures of entropy[END_REF] generalization of the Shannon entropy (which corresponds to α = 0 in the limit) whose maximization has been connected with generalizations of the Bose-Einstein statistics and the Fermi-Dirac statistics e.g. in Kapur & Kesavan [START_REF] Kapur | Entropy Optimization Principles With Applications[END_REF].

Example 45: Let us fix any z 1 , z 2 ∈ , p ∈]0, 1[ which satisfy z 1 < 1 < z 2 and z 1 • p + z 2 • (1 -p) = 1 (and thus p = z2-1 z2-z1 ). On ]a Ftwop , b Ftwop [:=]z 1 , z 2 [ we define F twop (t) := 1 z 2 -z 1 • log (t -z 1 ) • p (z 2 -t) • (1 -p) = 1 z 2 -z 1 • log (t -z 1 ) • (z 2 -1) (z 2 -t) • (1 -z 1 ) , t ∈ ]z 1 , z 2 [,
where for the last equality we have used the above constraint (in order to obtain a two-parameter representation). Straightforwardly, we have R(

F twop ) =] -∞, ∞[. Moreover, F twop (•)
is strictly increasing and smooth on ]0, ∞[, and thus, F twop ∈ F. Since F twop (1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ

+ [= int(R(F snKL, c )) =] -∞, ∞[ and ]t sc -, t sc + [=]z 1 , z 2 [. By using F -1 twop (x) = p • z 1 + (1 -p) • z 2 • e (z2-z1)•x p + (1 -p) • e (z2-z1)•x , x ∈] -∞, ∞[,
we derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF])

Λ twop (z) := Λ (0) twop (z) := z 0 F -1 twop (u)du = log p • e z1•z + (1 -p) • e z2•z , z ∈] -∞, ∞[, (191) 
which has the properties

Λ twop (0) = 0, Λ twop (-∞) = ∞ • 1 ]-∞,0[ (z 1 ) -∞ • 1 ]0,∞[ (z 1 ) + log p • 1 {0} (z 1 ), Λ twop (∞) = ∞, Λ twop (-∞) = z 1 and Λ twop (∞) = z 2 .
Furthermore, from formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we deduce

ϕ twop (t) := ϕ (0) twop (t) :=              t-z1 z2-z1 • log (t-z1)•(z2-1) (z2-t)•(1-z1) -log z2-1 z2-t ∈ [0, ∞[, if t ∈ ]0, ∞[, log z2-z1 z2-1 , if t = z 1 , log z2-z1 1-z1 , if t = z 2 , ∞, if t ∈ ] -∞, z 1 [ ∪ ]z 2 , ∞[; (192) 
the first line in [START_REF] Klar | A note on gamma difference distributions[END_REF] can be proved by

ϕ twop (t) := ϕ (0) twop (t) := t • F twop (t) - Ftwop(t) 0 F -1 twop (u)du = t z 2 -z 1 • log (t -z 1 ) • p (z 2 -t) • (1 -p) -log p • (t -z 1 ) • p (z 2 -t) • (1 -p) z 1 z 2 -z 1 + (1 -p) • (t -z 1 ) • p (z 2 -t) • (1 -p) z 2 z 2 -z 1 = t -z 1 z 2 -z 1 • log (t -z 1 ) • p (z 2 -t) • (1 -p) -log (z 2 -z 1 ) • p z 2 -t (193) 
= t -z 1 z 2 -z 1 • log (t -z 1 ) • (z 2 -1) (z 2 -t) • (1 -z 1 ) -log z 2 -1 z 2 -t , t ∈ ]z 1 , z 2 [ ,
where for the last equality we have used the above constraint (to obtain a two-parameter representation). Straightforwardly, one has ϕ twop (1) = 0, ϕ twop (1) = 0, ϕ twop (z 1 ) = -∞ and ϕ twop (z 2 ) = ∞.

From the generator ϕ twop given in [START_REF] Klar | A note on gamma difference distributions[END_REF], we build the corresponding divergence (cf. ( 4))

D ϕtwop (Q, P) = K k=1 q k -z 1 • p k z 2 -z 1 • log (z 2 -1) • (q k -z 1 • p k ) (1 -z 1 ) • (z 2 • p k -q k ) - K k=1 p k • log (z 2 -1) • p k z 2 • p k -q k . (194) 
It is known that some types of robustness properties of minimum-divergence estimators are connected with the boundedness of the derivative ϕ of the divergence generator ϕ; this property is satisfied for the next Example 46 (and its W -concerning continuation in Example 55), which leads to the new classes of divergences [START_REF] Ku | Testing for stochastic independence: application to blind source separation[END_REF], ( 203) and ( 208):

Example 46: (a) For any parameter-quadrupel α, β 1 , β 2 , c ∈ ]0, ∞[ with β 1 < β 2 , we choose ]a F , b F [ := ]a F α,β 1 ,β 2 , c , b F α,β 1 ,β 2 , c [ := 1 -α • (β 1 -β 2 ) 2 + β 2 1 + β 1 • β 2 2β 1 • β 2 • (β 2 -β 1 )
, ∞ 1

and define with θ : 

= 1 + α • 1 β2 -1 β1 < 1 F α,β1,β2, c (t) :=            c • β1-β2 2 + c 1-t α + 1 β 2 -1 β 1 • 1 -1 2 • 4 + 1-t α + 1 β2 -1 β1 2 • (β 1 + β 2 ) 2 , if t ∈ ]a F , b F [\{ θ}, c • β1-β2 2 , if t = θ ∈ ]a F , b F [, -c • β 1 , if t = a F , -∞, if t ∈ ] -∞, a F [. (195) 
F α,β1,β2, c (t) = c • β1-β2 2 . For β 1 ≤ β2 3 one gets ]a F , b F [\{ θ} = ]a F , b F [.
Returning to the general case, one can see in a straightforward way that F α,β1,β2, c (•) is strictly increasing and that R(

F α,β1,β2, c ) = [-c • β 1 , c • β 1 [. Furthermore, F α,β1,β2, c (•) is smooth on ]a F , b F [,
and thus F α,β1,β2, c ∈ F. Since F α,β1,β2, c (1) = 0, let us choose the natural anchor point c := 0, which leads to ]λ -, λ [START_REF] Kotelina | Exponential convexity and total positivity[END_REF] from this, we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF]) for all z ∈ Λ α,β1,β2, c (z

+ [ = int(R(F α,β1,β2, c ) = ] -c • β 1 , c • β 1 [ and ]t sc -, t sc + [= ]a F , b F [. Moreover, it is straightforward to see that the corresponding inverse is F -1 α,β1,β2, c (x) = 1 + α • 1 β 2 - 1 β 1 -α • 1 β2 -1 β1 -2x c•β1•β2 1 + x c • 1 β2 -1 β1 -x 2 c 2 •β1•β2 , x ∈ int(R(F α,β1,β2, c )); ( 
) := Λ (0) α,β1,β2, c (z) =        θ • z -c • α • log 1 + z c • 1 β2 -1 β1 -z 2 c 2 •β1•β2 , if z ∈ ] -c • β 1 , c • β 1 [, -c • θ • β 1 -c • α • log 2 -2 β1 β2 , if z = -c • β 1 , ∞, else. (197) 
Notice that Λ α,β1,β2, c (0) = 0 and lim z→ c•β1 Λ α,β1,β2, c (z) = ∞. Moreover, Λ α,β1,β2, c (-c • β 1 ) = a F and Λ -c•β1 ( c • β 1 ) = ∞ = b F (which have to be interpreted as limits, as usual). To proceed, from formula [START_REF] Jaksetic | Exponential convexity method[END_REF] (see also [START_REF] Jaynes | Information theory and statistical mechanics I[END_REF]) we can deduce for all t ∈ ϕ α,β1,β2, c (t) := ϕ

(0) α,β1,β2, c (t) =              c • α • 4+(β1+β2) 2 •( 1-t α + 1 β 2 -1 β 1 ) 2 -( 1-t α + 1 β 2 -1 β 1 )•(β1-β2) -2 2 + log 4+(β1+β2) 2 •( 1-t α + 1 β 2 -1 β 1 ) 2 -2 β1β2•( 1-t α + 1 β 2 -1 β 1 ) 2 ∈ [0, ∞[, if t ∈ ]a F , ∞[, c • α • 3β1-β2 2(β2-β1) + log 2(β2-β1) β2 -c • β 1 • (t -a F ) ∈ ]0, ∞[, if t ∈] -∞, a F ]. (198) 
The first subcase in [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF] can be proved by

ϕ α,β1,β2, c (t) := ϕ (0) α,β1,β2, c (t) := t • F α,β1,β2, c (t) - F α,β 1 ,β 2 , c (t) 0 F -1 α,β1,β2, c (u) du = (t -θ) • F α,β1,β2, c (t) + c • α • log 1 + F α,β1,β2, c (t) c • 1 β 2 - 1 β 1 - (F α,β1,β2, c (t)) 2 c 2 • β 1 • β 2 = c • α • 4 + (β 1 + β 2 ) 2 • ( 1-t α + 1 β2 -1 β1 ) 2 -( 1-t α + 1 β2 -1 β1 ) • (β 1 -β 2 ) -2 2 + c • α • log 1 + β 1 -β 2 2 + 1 1-t α + 1 β2 -1 β1 • 1 - 1 2 • 4 + 1 -t α + 1 β 2 - 1 β 1 2 • (β 1 + β 2 ) 2 • β 1 -β 2 β 1 • β 2 - β 1 -β 2 2 + 1 1-t α + 1 β2 -1 β1 • 1 - 1 2 • 4 + 1 -t α + 1 β 2 - 1 β 1 2 • (β 1 + β 2 ) 2 2 • 1 β 1 • β 2
and some straightforward calculations. The second line in [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF] follows by computing ϕ α,β1,β2, c (a

F ) = c • α • 3β1-β2 2(β2-β1) + log 2(β2-β1) β2
. Notice that ϕ α,β1,β2, c (1) = 0, ϕ α,β1,β2, c (1) = 0, ϕ α,β1,β2, c (-∞) = ∞ and ϕ α,β1,β2, c (∞) = ∞. Moreover, ϕ α,β1,β2, c (-∞) = ϕ α,β1,β2, c (a F ) = -c • β 1 and ϕ α,β1,β2, c (∞) = c • β 1 . From the generator ϕ α,β1,β2, c given in [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF], we construct the corresponding divergence (cf. ( 4))

D ϕ α,β 1 ,β 2 , c (Q, P) = K k=1 p k • ϕ α,β1,β2, c q k p k = K k=1 p k • 1 ]a F ,∞[ ( q k p k ) • c • α • 4 + (β 1 + β 2 ) 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 -( 1- q k p k α + 1 β2 -1 β1 ) • (β 1 -β 2 ) -2 2 + log 4 + (β 1 + β 2 ) 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 -2 β 1 β 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 + 1 ]-∞,a F ] ( q k p k ) • c • α • 3β 1 -β 2 2(β 2 -β 1 ) + log 2(β 2 -β 1 ) β 2 -β 1 • ( q k p k -a F ) , P ∈ K ≥0 , Q ∈ K . ( 199 
)
Notice that we can particularly include the case where p k = 0 in combination with q k = 0, since lim t→0+ t•ϕ α,β1,β2, c 

( 1 t ) = c•β 1 and lim t→0-t • ϕ α,β1,β2, c ( 1 t ) = -c • β 1 are both finite, and hence p k • ϕ α,β1,β2, c ( q k p k ) = q k • p k q k • ϕ α,β1,β2, c ( q k p k )
[ := ]a F α,β 1 ,β 2 , c , b F α,β 1 ,β 2 , c [ := -∞, 1 + α • (β 1 -β 2 ) 2 + β 1 • β 2 + β 2 2 2β 1 • β 2 • (β 1 -β 2 ) , 1 
and defining with the same θ : 

= 1 + α • 1 β2 -1 β1 > 1 F α,β1,β2, c (t) :=            c • β1-β2 2 + c 1-t α + 1 β 2 -1 β 1 • 1 -1 2 • 4 + 1-t α + 1 β2 -1 β1 2 • (β 1 + β 2 ) 2 , if t ∈ ]a F , b F [\{ θ}, c • β1-β2 2 , if t = θ ∈ ]a F , b F [, c • β 2 , if t = b F , ∞, if t ∈ ]b F , ∞[. (200) 
Λ α,β1,β2, c (z) := Λ (0) α,β1,β2, c (z) =        θ • z -c • α • log 1 + z c • 1 β2 -1 β1 -z 2 c 2 •β1•β2 , if z ∈ ] -c • β 2 , c • β 2 [, c • θ • β 2 -c • α • log 2 -2 β2 β1 , if z = c • β 2 , ∞, else. (201) 
Notice that Λ α,β1,β2, c (0) = 0 and

lim z→-c•β2 Λ α,β1,β2, c (z) = -∞. Furthermore, Λ α,β1,β2, c (-c • β 2 ) = -∞ = a F and Λ -c•β1 ( c • β 2 ) = b F .
To proceed, from formula (163) (see also (165)) we can derive -analogously to (198) -for all t ∈ ϕ α,β1,β2, c (t) := ϕ

(0) α,β1,β2, c (t) =              c • α • 4+(β1+β2) 2 •( 1-t α + 1 β 2 -1 β 1 ) 2 -( 1-t α + 1 β 2 -1 β 1 )•(β1-β2) -2 2 + log 4+(β1+β2) 2 •( 1-t α + 1 β 2 -1 β 1 ) 2 -2 β1β2•( 1-t α + 1 β 2 -1 β 1 ) 2 ∈ [0, ∞[, if t ∈ ] -∞, b F [, c • α • 3β2-β1 2(β1-β2) + log 2(β1-β2) β1 + c • β 2 • (t -b F ) ∈ ]0, ∞[, if t ∈ [b F , ∞[, (202) 
where the last line in [START_REF] Kumar | Projection theorems for the Renyi divergence on α-convex sets[END_REF] follows by calculating ϕ α,β1,β2, c (b

F ) = c•α• 3β2-β1 2(β1-β2) +log 2(β1-β2) β1
. Notice that ϕ α,β1,β2, c (1) = 0, ϕ α,β1,β2, c (1) = 0, ϕ α,β1,β2, c (-∞) = ∞ and ϕ α,β1,β2, c (∞) = ∞. Furthermore, ϕ α,β1,β2, c (-∞) = -c•β 2 and ϕ α,β1,β2, c (∞) = ϕ α,β1,β2, c (b

F ) = c • β 2 .
From the generator ϕ α,β1,β2, c given in [START_REF] Kumar | Projection theorems for the Renyi divergence on α-convex sets[END_REF], we construct the corresponding divergence (cf. ( 4))

D ϕ α,β 1 ,β 2 , c (Q, P) = K k=1 p k • ϕ α,β1,β2, c q k p k = K k=1 p k • 1 ]-∞,b F [ ( q k p k ) • c • α • 4 + (β 1 + β 2 ) 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 -( 1- q k p k α + 1 β2 -1 β1 ) • (β 1 -β 2 ) -2 2 + log 4 + (β 1 + β 2 ) 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 -2 β 1 β 2 • ( 1- q k p k α + 1 β2 -1 β1 ) 2 + 1 [b F ,∞[ ( q k p k ) • c • α • 3β 2 -β 1 2(β 1 -β 2 ) + log 2(β 1 -β 2 ) β 1 + β 2 • ( q k p k -b F ) , P ∈ K ≥0 , Q ∈ K . ( 203 
)
As above, we can particularly include the case where p k = 0 in combination with q k = 0, since lim t→0+ t•ϕ α,β1,β2, c

( 1 t ) = c•β 2 and lim t→0-t • ϕ α,β1,β2, c ( 1 t ) = -c • β 2 are both finite.
(c) The analysis for the case β 1 = β 2 =: β can be obtained by taking lim β1→β2 in (a) respectively (b). Alternatively, one can start afresh. Due to its importance and its particularities, we nevertheless state the corresponding results explicitly. To begin with, for any parameter-triple α, β, c ∈ ]0, ∞[ we choose

]a F , b F [ := ]a F α,β, c , b F α,β, c [ := ] -∞, ∞ [
and define with θ := 1

F α,β, c (t) :=    c•α 1-t • 1 -1 + 1-t α 2 • β 2 , if t ∈ ]a F , b F [\{ θ}, 0, if t = θ. (204) 
Clearly, one has the continuity lim t→ θ F α,β, c (t) = 0. Moreover, one can see in a straightforward way that F α,β, c (•) is strictly increasing and that R(

F α,β, c ) =] -c • β, c • β[. Furthermore, F α,β, c (•) is smooth on ]a F , b F [, and thus F α,β, c ∈ F. Since F α,β, c (1) 
= 0, let us choose the natural anchor point c := 0, which leads to the choice ]λ -, λ [START_REF] Kotelina | Exponential convexity and total positivity[END_REF] collapses to

+ [ = int(R(F α,β, c ) = ]-c•β, c•β[ and ]t sc -, t sc + [= ]a F , b F [= ] -∞, ∞[. The inverse in
F -1 α,β, c (x) = 1 + α • 2x c•β 2 1 -x 2 c 2 •β 2 , x ∈ int(R(F α,β, c )); (205) 
from this, we can derive from formula [START_REF] Jain | EMUCF: enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems[END_REF] (see also [START_REF] Jasinska | Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution[END_REF]) for all z ∈

Λ α,β, c (z) := Λ (0) α,β, c (z) = θ • z -c • α • log 1 -z 2 c 2 •β 2 , if z ∈ ] -c • β, c • β[, ∞, else. (206) 
Notice that Λ α,β, c (0

) = 0, lim z→-c•β Λ α,β, c (z) = -∞ =, and lim z→ c•β Λ α,β, c (z) = ∞. Furthermore, lim z→-c•β Λ α,β, c (z) = -∞ = a F , and lim z→ c•β Λ α,β, c (z) = ∞ = b F .
To proceed, the formula [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF] (respectively, ( 202)) collapses to

ϕ α,β, c (t) := ϕ (0) α,β, c (t) = c•α• 1 + β 2 • 1 -t α 2 -1+log 2 • 1 + β 2 • 1-t α 2 -1 β 2 • 1-t α 2 ∈ [0, ∞[, t ∈ ]-∞, ∞[ = ]a F , b F [. (207) Notice that ϕ α,β, c (1) = 0, ϕ α,β (1) = 0, ϕ α,β, c (-∞) = ∞ and ϕ α,β, c (∞) = ∞. Moreover, ϕ α,β, c (-∞) = ϕ α,β, c (a F ) = -c•β and ϕ α,β, c (∞) = ϕ α,β, c (b F ) = c • β.
From the generator ϕ α,β1,β2, c given in [START_REF] Kumbhakar | Mathematical modelling of streamwise velocity profile in open channels using Tsallis entropy[END_REF], we construct the corresponding divergence (cf. ( 4))

D ϕ α,β, c (Q, P) = K k=1 p k • ϕ α,β, c q k p k = c • α • K k=1 p k • 1 + β 2 • 1 -q k p k α 2 -1 + log 2 • 1 + β 2 • 1- q k p k α 2 -1 β 2 • 1- q k p k α 2 , P ∈ K ≥0 , Q ∈ K . ( 208 
)
As above, we can particularly include the case where p k = 0 in combination with q k = 0, since 

lim t→0+ t • ϕ α,β, c ( 1 t ) = c • β and lim t→0-t • ϕ α,β, c ( 1 t ) = -c

Remark 47:

The characterization of the probability distribution in (6) which may result from Theorem 36 -as seen through the above examples -considerably improves other approaches which make use of their identification through the concept of power variance functions of Natural Exponential Families, as developed by Tweedie [START_REF] Tweedie | Functions of a statistical variate with given means, with special reference to Laplacian distributions[END_REF], Morris [START_REF] Morris | Natural exponential families with quadratic variance functions[END_REF], Letac & Mora [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF], and others. This approach has been used in Broniatowski [58] in a similar perspective as developed here, but can not be extended outside the range of power divergences, in contrast with the Examples 41, 43, 45 and 46 which can only be handled as a consequence of Theorem 36.

To continue with our general procedure, suppose now that for a divergence generator ϕ of interest we have concretely/explicitly found (e.g. by direct calculations or via our F -connection in Theorem 36, see also Remark 37) its Fenchel-Legendre transform Λ = ϕ * ; for this "candidate", in order to achieve the desired representability (6) it remains to verify that

exp(Λ(z)) = e z•y d(y), z ∈ , (209) 
for some probability distribution/measure on the real line (the light-tailedness in the sense of finiteness on some open interval containing zero, will be typically guaranteed automatically by the assumptions on ϕ); of course, this is equivalent to "the existence " of a random variable W whose moment generating function is equal to exp(Λ) (and thus, its cumulant generating function (log moment generating function) is Λ), i.e.

exp(Λ(z)) = E ¥ [exp(z • W )] z ∈ , (210) 
with ¥[W • Prominent special case c = 1: = GAM (1, 1) = EXP (1) is the exponential distribution with mean 1.

• Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density f (y

) := c c •y c-1 •e -c•y Γ( c) • 1 ]0,∞[ (y) (y ∈ ). • Behaviour at zero: [ ]0, ∞[ ] = ¥[W > 0] = 1.
• Corresponding generator: ϕ 0, c = c•ϕ 0 (cf. ( 173), ( 43)) of the c-fold of the reversed Kullback-Leibler divergence (reversed relative entropy) given in the second line of (44). • Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of 

W := i∈I (n) k W i (cf. Remark 11(ii)) is GAM ( c, c • card(I (n) k )). (b) Case γ ∈ ]0, 1[, c > 0: Λ (0) γ, c (z) = c γ • γ-1 c • z + 1 γ γ-1 -1 (cf. ( 167 
-θ) y • ∞ k=1 θ k • (αy) kβ k! • Γ(kβ) • 1 ]0,∞[ (y) (211) 
= 1 y • exp -c • y 1 -γ + 1 γ • ∞ k=1 a k k! • c k/(1-γ) • γ -k • (1 -γ) -kγ/(1-γ) • y kγ/(1-γ) • 1 [0,∞[ (y) =: f c,γ (y), y ∈ ,
where a k := 1/Γ( k•γ 1-γ ) (see e.g. Aalen [START_REF] Aalen | Modeling the heterogeneity in survival analysis by the compound Poisson distribution[END_REF] with a different parametrization).

• Behaviour at zero:

[ [0, ∞[ ] = ¥[W ≥ 0] = 1, [ {0} ] = ¥[W = 0] = e -θ .
• Corresponding generator: 168), ( 43)) of the power divergence given in the third line of [START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]; recall that the special case γ = 1 2 corresponds to the prominent (multiple of the squared) Hellinger distance. ), 168), [START_REF] Bertrand | Logical indetermination coupling: a method to minimize drawing mathces and its applications[END_REF]) is the generator of the c-fold of the half Pearson-chisquare divergence given in the sixth line of (44).

ϕ (0) γ, c = c • ϕ γ (cf. (
• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) is C(P OI( θ), GAM (α, β)) with θ = c•card(I (n) k ) γ > 0, α = c 1-γ > 0, β = γ 1-γ > 0. (c) Case γ = 2, c > 0: Λ (0) 2, c (z) = z 2 2 c +z (cf. ( 170 
(y ∈ ). • Behaviour at zero: [ ]0, ∞[ ] = ¥[W > 0] = ∞ 0 f N (1, 1 c ) (u) du ∈ ]0, 1[, [ {0} ] = ¥[W = 0] = 0. • Corresponding generator: ϕ (0) 2, c = c • ϕ 2 (cf. (
• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W := i∈I (n)

k W i (cf. Remark 11(ii)) is N (card(I (n) k ), card(I (n) k ) c
). 33 with the usual convention 0 i=1 W i := 0 

(d) Case γ < 0, c > 0: Λ (0) γ, c (z) = c γ • γ-1 c • z + 1 γ γ-1 -1 (cf. ( 167 
( -γ 1-γ , 1, 0, -c 1/(1-γ) •(1-γ) -γ/(1-γ) γ
) in terms of the "form-B notation" on p.12 in Zolotarev [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF]; by applying a general Laplace-transform result on p.112 of the same text we can deduce

M Z (z) := E ¥ [exp(z • Z)] = ∞ 0 exp(z • y) • f Z (y) dy = exp c 1/(1-γ) •(1-γ) -γ/(1-γ) γ • (-z) α , if z ∈] -∞, 0], ∞, if z ∈ ]0, ∞[, (212) 
where α := -γ 1-γ ∈ ]0, 1[. Since 0 / ∈ int(dom(M Z )) (and thus, Z does not have light-tails) we have to tilt (dampen) the density in order to extend the effective domain. Accordingly, let W be a random variable having density

f W (y) := exp{-y• c 1-γ } exp{ c/γ} • f Z (y) • 1 ]0,∞[ (y),
y ∈ , (cf. ( 82)).

Then one can straightforwardly deduce from ( 212) that ∞ 0 f W (y) dy = 1 and that

M W (z) := E ¥ [exp(z • W )] = ∞ 0 exp(z • y) • f W (y) dy = exp c γ • γ-1 c • z + 1 γ γ-1 -1 , if z ∈] -∞, c 1-γ ], ∞, if z ∈ ] c 1-γ , ∞[. Hence, ϕ γ, c ∈ Υ(]0, ∞[).
• Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density f W .

• Behaviour at zero:

[ ]0, ∞[ ] = ¥[W > 0] = 1.
• Corresponding generator: ϕ 168), ( 43)) of the power divergence given in the first line of (44).

(0) γ, c = c • ϕ γ (cf. (
• Sums: for i.i.d. copies

(W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) has density f W (y) := exp{-y• c 1-γ } exp{ c • card(I (n) k )/γ} • f Z (y) • 1 ]0,∞[ (y), y ∈ , ( 213 
)
where Z is a random variable with density f Z of a stable law with parameter-quadruple ( -γ 1-γ , 1, 0, -card(I

(n) k ) • c 1/(1-γ) •(1-γ) -γ/(1-γ) γ
).

(e) Case γ > 2, c > 0: Λ

(0) γ, c (z) = c γ • γ-1 c • z + 1 γ γ-1 -1 (cf. ( 167 
)
) is the cumulant generating function of a "distorted stable distribution" [ • ] = ¥[W ∈ • ] of a random variable W , which can be constructed as follows: let Z be an auxiliary random variable (having density f Z and support supp(Z) =] -∞, ∞]) of a stable law with parameter-quadruple

( γ γ-1 , 1, 0, c 1/(1-γ) •(γ-1) γ/(γ-1)

γ

) in terms of the above-mentioned "form-B notation" ; by applying a general Laplace-transform result on p. 112 of Zolotarev [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF], we can derive

M Z (z) := E ¥ [exp(z • Z)] = ∞ 0 exp(z • y) • f Z (y) dy = exp c 1/(1-γ) •(γ-1) γ/(γ-1) γ • (-z) α , if z ∈] -∞, 0], ∞, if z ∈ ]0, ∞[, (214) 
where α := γ γ-1 ∈ ]1, 2[. Since 0 / ∈ int(dom(M Z )) (and thus, Z does not have light-tails) we have to distort the density in order to extend the effective domain. Accordingly, let W be a random variable having density

f W (y) := exp{ y• c γ-1 } exp{ c/γ} • f Z (-y),
y ∈ , (cf. ( 115)).

Then one can straightforwardly deduce from (214) that ∞ -∞ f W (y) dy = 1 and that

M W (z) := E ¥ [exp(z • W )] = ∞ -∞ exp(z • y) • f W (y) dy = exp c γ • γ-1 c • z + 1 γ γ-1 -1 , if z ∈ [-c γ-1 , ∞[, ∞, if z ∈ ] -∞, -c γ-1 [. Thus, ϕ γ, c ∈ Υ(] -∞, ∞[).
• Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density f W .

• Behaviour at zero:

[ ]0, ∞[ ] = ¥[W > 0] = ∞ 0 f W (u) du ∈ ]0, 1[, [ {0} ] = ¥[W = 0] = 0.
• Corresponding generator: 168), ( 43)) of the power divergence given in the seventh line of (44).

ϕ (0) γ, c = c • ϕ γ (cf. (
• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of

W := i∈I (n) k W i (cf. Remark 11(ii)) has density f W (y) := exp{ y• c γ-1 } exp{ c • card(I (n) k )/γ} • f Z (-y), y ∈ ,
where Z is a random variable with density f Z of a stable law with parameter-quadruple ( γ γ-1 , 1, 0, card(I

(n) k ) • c 1/(1-γ) •(γ-1) γ/(γ-1)

γ

).

(f) Case γ ∈]1, 2[, c > 0: one still has the (cumulant-generating-function) candidate [START_REF] Jena | Maximum 3D Tsallis entropy based multilevel thresholding of brain MR image using attacking Manta Ray foraging optimization[END_REF]), but for the crucial exponent there holds γ γ-1 > 2. From this, we conjecture that becomes a signed finite measure with total mass 1, i.e. it has a density (with respect to some dominating measure) with positive and negative values which "integrates to 1" ; accordingly, our BS method can not be applied to this situation. • Prominent special case c = 1: = P OI(1) is the Poisson distribution with mean 1.

Λ (0) γ, c (z) = c γ • γ-1 c • z + 1 γ γ-1 -1 (cf.
• Type: is an infinitely divisible (cf. Proposition 34) discrete distribution with frequencies:

¥[W = • 1 c ] = exp(-c) • c
! for all nonnegative integers ∈ x 0 (and zero elsewhere). 176), ( 43)) of the c-fold of the Kullback-Leibler divergence (relative entropy)

• Behaviour at zero: ¥[W ≥ 0] = 1, ¥[W = 0] = exp(-c). • Corresponding generator: ϕ 1, c = c•ϕ 1 (cf. (
given in the fourth line of (44). • Sums: for i.i.d. copies ! for all ∈ x 0 (and zero elsewhere).

(W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) is 1 c • P OI( c • card(I (n) k )).
• Behaviour at zero: ¥[W > 0] = 1 iff c < 0, ¥[W < 0] > 0 iff c > 0, ¥[W = 0] = 0 iff "c = log(1 + k) for some k ∈ x 0 " . • Corresponding generator: ϕ (c) 1,1 (cf. ( 179 
)) of the divergence D ϕ (c) 1,1 (Q, P) := K k=1 q k + p k • (e c -1) • log q k p k + e c -1 -c - K k=1 q k + K k=1 p k , if P ∈ K =0 and Q ∈ K with Q ∈ [(1 -e c ) • P, ∞[ component-wise, ( 215 
)
which for c = 0 coincides with the Kullback-Leibler divergence (relative entropy) given in the fourth line of (44). • Sums: for i.i.d. copies β 2 (recall that W has a tilted stable distribution). In other words, is a special kind of modified tilted stable distribution.

(W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) is P OI(card(I (n) k ) • e c ) + (1 -e c ) • card(I (n) k ).
(z) = -( 1 β -1) • z + c β 2 • 1 -1 -2β c • z (cf. ( 181 
• Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density f W (u) : [START_REF] Chen | A generalized asymmetric dual-front model for active contours and image segmentation[END_REF] with γ = -1 and with c replaced by c β 2 .

= β • f W (β • u + 1 - β) • 1 ]-( 1 β -1),∞[ (u) (u ∈ ), where f W (•) is given in
• Behaviour at zero

: [ ]0, ∞[ ] = ¥[ W > 0] > 0.
• Corresponding generator: ϕ (0) bw,β, c (cf. ( 182)) of the -"non-probability version" of -the well-known blended weight chi-square divergence given in [START_REF] Kapur | Four families of measures of entropy[END_REF].

• Sums: for i.i.d. copies ( Wi ) i∈x of W , the probability distribution of W : 

= i∈I (n) k Wi = 1 β • i∈I (n) k W i -n k • ( 1 β -1) (cf. Remark 11(ii)) has density f W (u) := β • f W (β • u + (1 -β) • n k ) • 1 ]-n k •( 1 β -1),∞[ (u) (u ∈ ), where f W (•) is given
∈ ]0, ∞[, c > 0, anchor point c = 0: Λ gKL,α, c (z) = -c α • log((1 + α) -α • e z/ c ) (cf. ( 184 
)) is the cumulant generating function of = 1 c • N B( c α , 1 1+α ) being the " 1 c -fold Negative-Binomial distribution with parameters c α and 1 1+α " which means that W = 1 c • Z for a N B( c α , 1 1+α )-distributed random variable Z. Thus, ϕ gKL,α, c ∈ Υ(]0, ∞[). • Prominent special case c = 1, α = 1 (see below): = N B(1, 1 
2 ) is the Negative-Binomial distribution with parameters 1 and 1 2 .

• Type: is an infinitely divisible (cf. Proposition 34) discrete distribution with frequencies:

¥[W = • 1 c ] = (-1) • -c α • α • (1 + α) --c/α
for all nonnegative integers ∈ x 0 (and zero elsewhere).

• Behaviour at zero: ¥[W ≥ 0] = 1, ¥[W = 0] = 1 (1+a) c/α .
• Corresponding generator: ϕ gKL,α, c (cf. ( 185)) of the divergence (187); the special case c = 1, α = 1 -i.e. ϕ gKL,1,1 =: ϕ snKL,1 (cf. ( 188)) -corresponds to the generator of the -"non-probability version" of the -Jensen-Shannon divergence (symmetrized and normalized Kullback-Leibler divergence, symmetrized and normalized relative entropy) given in (189). • Type: is a non-infinitely divisible discrete distribution with frequencies:

• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) is 1 c • N B( c α • card(I (n) k ), 1 1+α ). 
¥[W = • 1 c ] = m • ( c m ) • (1 -c m ) m-for ∈ {0, 1 
, . . . , m} (and zero elsewhere).

• Behaviour at zero: ¥

[W ≥ 0] = 1, ¥[W = 0] = (1 -c m ) m . • Corresponding generator: ϕ gKL,α, c (cf. ( 185 
)) of the divergence (187).

• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W : 

= i∈I (n) k W i (cf. Remark 11(ii)) is 1 c • BIN (m • card(I (n) k ), c m ).
= p • δ z1 + (1 -p) • δ z2 , where z 1 < 1 < z 2 and p = z2-1 z2-z1 . Hence, ϕ twop ∈ Υ(]z 1 , z 2 [).
• Type: is a discrete distribution with frequencies: ¥

[W = z 1 ] = p, ¥[W = z 2 ] = 1 -p (and zero elsewhere). • Behaviour at zero: ¥[W > 0] = 1 iff z 1 > 0, ¥[W = 0] = 0 iff z 1 = 0.
• Corresponding generator: ϕ twop (cf. [START_REF] Klar | A note on gamma difference distributions[END_REF]) of the divergence given in [START_REF]Quantum Random Number Generation[END_REF].

• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W :=

i∈I (n) k W i (cf. Remark 11(ii)) is the distribution of the card(I (n)
k )-th step of a generalized random walk starting at zero; this has a nice explicit ("binomialtype" ) expression in the special case z 1 = -z 2 , namely

card(I (n) k ) =0 card(I (n) k ) •p card(I (n) k )-•(1-p) •δ z2•(2 -card(I (n) k )) .
Example 55: for the context of Example 46 we obtain: Case α, β 1 , β 2 , c ∈ ]0, ∞[, anchor point c = 0: by using θ : [START_REF] Kotz | The Laplace Distribution and Generalizations[END_REF],( 201),( 206)) -is the cumulant generating function of a generalized asymmetric Laplace distribution

= 1 + α • 1 β2 -1 β1 one can see that Λ α,β1,β2, c (z) = θ • z -c • α • log 1 + z c • 1 β2 -1 β1 -z 2 c 2 •β1•β2 for z ∈ ] -c • min{β 1 , β 2 }, c • min{β 1 , β 2 }[ -with different boundary behaviour for the three subcases β 1 < β 2 resp. β 1 > β 2 resp. β 1 = β 2 (cf.
[ • ] = ¥[W ∈ • ] of a random variable W := θ + Z 1 -Z 2 ,
where Z 1 respectively Z 2 are auxiliary random variables which are independent and

GAM ( c • β 1 , c • α)-distributed respectively GAM ( c • β 2 , c • α)-distributed. In particular, E ¥ [W ] = θ + c•α c•β1 -c•α c•β2 = 1 (as required). Thus, ϕ α,β1,β2, c ∈ Υ(] -∞, ∞[).
• Prominent special case c = 1, α = 1, β 1 = β 2 =: β (and hence, θ = 1): is a classical Laplace distribution (two-tailed exponential distribution, bilateral exponential law) with location parameter 1 and scale parameter 1 β .

• Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density

f (u) := √ 2 • exp{ 1 σ• √ 2 • ( 1 κ -κ) • (u -θ)} √ π • σ τ +1/2 • Γ(τ ) • √ 2 • |u -θ| κ + 1 κ τ -1/2 • K τ -1/2 1 σ • √ 2 • κ + 1 κ • |u -θ| , u = θ, (216) 
where (θ, κ, σ, τ ) is given in Remark 56 below and K λ is the modified Bessel function of the third kind with index λ. For the above-mentioned special case of the classical Laplace distribution, this considerably simplifies to

f (u) := β 2 exp{-β • |u -1|}. • Behaviour at zero: [ ]0, ∞[ ] = ¥[W > 0] = ∞ 0 f (u) du ∈ ]0, 1[, [ {0} ] = ¥[W = 0] = 0.
• Corresponding generator: ϕ α,β1,β2, c (cf. [START_REF] Krömer | A new toolkit for mortality data analytics[END_REF] respectively ( 202) respectively ( 207)) of the divergence given in [START_REF] Ku | Testing for stochastic independence: application to blind source separation[END_REF] respectively ( 203) respectively ( 208).

• Sums: for i.i.d. copies (W i ) i∈x of W , the probability distribution of W := i∈I (n) k W i (cf. Remark 11(ii)) is the same as that of a random variable ˘ W := θ • card(I (n) k ) + Z1 -Z2
, where Z1 respectively Z2 are auxiliary random variables which are independent and GAM ( c

• β 1 , c • α • card(I (n) k ))-distributed respectively GAM ( c • β 2 , c • α • card(I (n) k ))-distributed.
Remark 56: In the book of Kotz et al. [START_REF] Kotz | The Laplace Distribution and Generalizations[END_REF] one can find a very comprehensive study on generalized asymmetric Laplace distributions (also known as Bessel function distributions, McKay distributions), their close relatives (such as e.g. the financialeconometric variance gamma model of Madan & Seneta [START_REF] Madan | The variance gamma (V.G.) model for share market returns[END_REF]) as well as their applications; see also e.g. Klar [START_REF] Klar | A note on gamma difference distributions[END_REF] for connections with some other Gamma difference distributions. [START_REF] Kotz | The Laplace Distribution and Generalizations[END_REF] use a different parametrization (θ, κ, σ, τ ) which is one-toone with our parametrization ( θ, α, β 1 , β 2 , c = 1), as follows:

θ = θ, τ = c•α, σ = 1 c • 2 β1•β2 , κ = 4 c 2 +(β1-β2) 2 +β2-β1 2• √ β1•β2
> 0. In particular, this implies that we cover all generalized asymmetric Laplace distributions with mean 1. For better comparability, we have used the parametrization (θ, κ, σ, τ ) in the above-mentioned representation [START_REF] Liese | Statistical Decision Theory: Estimation, Testing, and Selection[END_REF] of the density (due to [START_REF] Kotz | The Laplace Distribution and Generalizations[END_REF]).

Let us end this section by giving some further comments on the task of finding concretely the probability distribution (if

existent) [ • ] = ¥[W ∈ • ] from the Fenchel-Legendre transform Λ = ϕ * of a pregiven divergence generator ϕ, which should satisfy exp(Λ(z)) = e z•y d(y) = E ¥ [exp(z • W )],
z ∈ , (cf. ( 209), ( 210)).

Recall that this is used for the simulation of the weights (W i ) i∈x which are i.i.d. copies of W and which are the crucial building ingredients of ξ W n in Theorem 10, respectively, of ξ wW n,X in Theorem 14. The search for can be done e.g. by inversion of the moment generating function MGF, or by search in tables or computer software which list distributions and their MGF. As already indicated above, we have eased/narrowed down this task by giving (additional) sufficient conditions for some deriving principal properties of . Also notice that needs not necessarily to be explicitly known in full detail (e.g. in terms of a computationally tractable density or frequency); for instance, as well known from insurance applications, for -comfortably straightforwardly simulable -doubly-random sums W :=

N i=1 A i of nonnegative i.i.d. random variables (A i ) i∈x with known law Π A [ • ] := Π[A ∈ • ]
being independent of a counting-type random variable N with known law Π N , one can mostly compute explicitly M GF (z) = P GF Π N (M GF Π A (z)) in terms of := Π W and the probability generating function P GF Π N of Π N , but the corresponding density/frequency of may not be known explicitly in a tractable form. The above-mentioned Example 48(b) of power divergences with generator ϕ γ (γ ∈]0, 1[) manifests such a situation.

In the end, if no explicit distribution and no comfortably simulable W -construction are available, one can still try to simulate an i.i.d. sequence (W i ) i∈x from the pregiven moment generating function (which is exp(Λ(z)) here); see e.g. McLeish [START_REF] Mcleish | Simulating random variables using moment-generating functions and the saddlepoint approximation[END_REF] and references therein which also contains saddle point methods approximation techniques.

VI. ESTIMATORS

In the following, we demonstrate how one can principally implement our BS approach; a further, deeper analysis will be given in a follow-up paper.

A. Estimators for the deterministic minimization problem

We address the minimization problem

D ϕ (Ω, P) := inf Q∈Ω D ϕ (Q, P) = inf Q∈ Ω D ϕ ( Q, P) =: D ϕ ( Ω, P)
with Ω := Ω/M P (cf. ( 8) and ( 13)),

whose numerical solution is based on Theorem 10 which basically states that for large integer n ∈ x one has

inf Q∈Ω D ϕ (Q, P) ≈ - 1 n log ¥ ξ W n ∈ Ω (218) 
in terms of ϕ := M P • ϕ and the random vectors

ξ W n = 1 n i∈I (n) 1 W i , . . . , 1 n i∈I (n) K W i (cf. ( 23 
))
with n k := n • p k leading to the disjoint index blocks

I (n) 1 := {1, . . . , n 1 }, I (n) 2 := {n 1 + 1, . . . , n 1 + n 2 }, . . ., I (n) 
K := { K-1 k=1 n k + 1, . . . , n}. Recall that W := ( W 1 , . . . , W n ) is a random vector consisting of components W i which are i.i.d. copies of the random variable W whose distribution is ¥[ W ∈ • ] = [ • ] obeying the representation ϕ(t) = sup z∈   z • t -log e zy d (y)   , t ∈ , (cf. (21)).
Hence, the estimation of D ϕ (Ω, P) amounts to the estimation of ¥ ξ W n ∈ Ω . For the rest of this subsection, we assume that P ∈ K >0 , that n is chosen such that all n • p k are integers (and hence, n = K k=1 n k ), and that Ω ⊂ K satisfies the regularity property cl( Ω) = cl int Ω , int Ω = ∅ which implies that the same condition holds for Ω; moreover, we suppose that D ϕ ( Ω, P) is finite. For the ease of the following discussions, we introduce the notations

T (x) :=    1 n 1 i∈I (n) 1 x i , . . . , 1 n K i∈I (n) K x i    for any x := (x 1 , .., x n ) ∈ n ,
as well as D for the diagonal matrix with diagonal entries 1/ p 1 , . . . , 1/ p K and null entries off the diagonal. Accordingly, the probability in [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF] becomes

¥ ξ W n ∈ Ω = ¥ T ( W) ∈ Λ where Λ := D • Ω is a set of vectors in K which is known/derived from the concrete context. The naive estimator Π naive L of ¥ ξ W
n ∈ Ω is constructed through the following procedure: simulate independently L copies W 1 , . . . , W L of the vector W := W 1 , . . . , W n , with independent entries under , and define (with a slight abuse of notation)

Π naive L := 1 L L =1 1 Λ T W ;
however this procedure is time costly, since this estimate has a very bad hit rate. Thus, in the following, a so-called "efficient Importance Sampling (IS)" scheme -in the sense of Sadowsky & Bucklew [START_REF] Sadowsky | On Large Deviations Theory and Asymptotically Efficient Monte Carlo Estimation[END_REF] (denoted [SB] hereunder) -is adapted for the sophisticated (i.e. non-naive) estimation of ¥[ξ W n ∈ Ω]. The main property of IS schemes lays in the fact that the runtime for an estimate with a controlled relative error does not increase at exponential rate as n increases, in contrast to Π naive L which has exponential increase. In detail, let δ > 0 be a given relative precision for an estimator P Ln S of ¥[ξ W n ∈ Ω], based on a number L n of simulated samples generated under some distribution S, so that

δ := var S P Ln S ¥ ξ W n ∈ Ω 2 .
Then L n will grow exponentially as n tends to infinity if and only if S is not "asymptotically optimal" , the derivation of which is the scope of the current section.

To start with the details, for the sake of brevity (to avoid certain substantial discussions on potential technical relaxations) we shall employ the following additional Assumption (OM) on the set Ω:

(OM) For any ω ∈ cl( Ω) there exists a vector x = (x 1 , . . . , x n ) ∈ t sc -, t sc

+ n such that ω = 1 n i∈I (n) 1 x i , . . . , 1 n i∈I (n) K x i ,
or equivalently, for any λ ∈ cl(Λ) there exists a vector x = (x 1 , . . . , x n ) ∈ t sc -, t sc + n such that λ = T (x).

For instance, in the common case dom( ϕ) = dom(ϕ) = ]a, b[ = t sc -, t sc + = ]0, ∞[ (e.g. for the power-divergence generators ϕ = c • ϕ γ , γ ≤ 0, cf. Example 39) the Assumption (OM) is always feasible.

To proceed, for any distribution S on n with support included in the support of the product measure ⊗n it holds

¥ ξ W n ∈ Ω = E ⊗n 1 Λ (T ( W)) = E S 1 Λ T V • d ⊗n d S V
from where the improved IS estimator of ¥ ξ W n ∈ Ω is obtained by sampling L i.i.d. replications V 1 , . . . , V L of the random vector V with distribution S and by defining

Π improved L := 1 L L =1 1 Λ (T ( V ( ) )) • d ⊗n d S V ( ) . (219) 
The precise form of the efficient IS distribution S opt relies on the definition of a "dominating point" of Λ, which we recall now. For x := (x 1 , .., x n ) in n we define

I W (x) := sup z∈ n z, x -log E [ exp( z, W )] ,
and for λ in Λ we let I(λ) := inf I W (x) : T (x) = λ .

Let λ := (λ 1 , . . . , λ K ) ∈ ∂Λ. We call λ a minimal rate point (mrp) of Λ if

I(λ) ≤ I(λ) for all λ ∈ Λ.
A minimal rate point λ is called a dominating point of Λ if a) λ ∈ ∂Λ, and b) I (λ) ≤ I(λ) for all λ ∈ Λ with attainment, namely there exists a vector x ∈ t sc -, t sc + n such that I W (x) = I (λ) with λ = T (x). The characterization of the dominating point λ is settled in the following Lemma 57: Let λ be a mrp of Λ. Then, under Assumption (OM), λ is a dominating point, and inf I W (x) , T (x) = λ is reached at some vector x in t sc -, t sc + n such that for all k ∈ {1, . . . , K} and all i ∈ I

(n) k there holds x i = λ k and I W (x) = n • K k=1 p k • ϕ (λ k ).
The proof Lemma 57 is given in Appendix G. Notice that (OM) implies the existence of a dominating point λ, but uniqueness may not hold. In the latter case, one can try to proceed as in Theorem 2 of [SB] and the discussion thereafter. However, we assume now uniqueness of λ; this allows for the identification of S opt . By Theorem 1 of [SB] and Theorem 3.1 of Csiszar [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF], the asymptotically optimal IS distribution S opt is obtained as the Kullback-Leibler projection of n⊗ on the set of all probability distributions on n centered at point x, whose coordinates are -according to Lemma 57 -functions of the coordinates of Q := D -1 λ such that T (x) = D Q.

The above definition of S opt presumes the knowledge of λ, which cannot be assumed (otherwise the minimization problem is solved in advance). The aim of the following construction is to provide a proxy S to S opt , where S is the Kullback-Leibler projection of ⊗n on the set of all probability distributions on n centered at some point x * which is close to x. For this sake, we need to have at hand a proxy of λ or, equivalently, a preliminary guess

Q * of Q := arg inf Q∈ Ω K k=1 p k • ϕ( q k / p k ). This W ( ) k rather than the n • L random variables V ( )
i ; notice that according to the right-hand side of [START_REF] Liu | Alpha-divergence minimization with mixed variational posterior for Bayesian neural networks and its robustness against adversarial examples[END_REF], one can explicitly compute ISF k (•) which can be interpreted as Importance Sampling Factor pertaining to the block k. In the case that is infinitely divisible, simulation issues may become especially comfortable. In the following, we exemplarily demonstrate the tractability of this reduction effect, for the BS minimization of the important power divergences (for which the infinite divisibility holds):

Example 58: Let ϕ γ (γ ∈ \]1, 2[) be the power divergence generator from the Examples 39 and 40, P ∈ K >0 , M P := K i=1 p i > 0 and n k = n • p k ∈ x where we have employed our notation n k = n • p k ∈ x for all k ∈ {1, . . . , K}. Moreover, let Q * := ( q * 1 , . . . , q * K ) be a proxy obtained by either proxy method 1 or 2.

Case 1: Example 48(a): γ = 0, c > 0. There holds

U * n k k = GAM ( c • M P -τ k , n k • c • M P ), with τ k = c • M P • (1 -p k M P • q * k ) for q * k > 0 (the latter is equivalent to τ k < c • M P ). Moreover, for all x > 0 one gets ISF k (x) = c•M P c•M P -τ k n k • c•M P • e -τ k •x . Case 2: 48(b): γ ∈ (0, 1) , c > 0. We derive U * n k k = C P OI(n k • θ), GAM c•M P 1-γ -τ k , γ 1-γ with θ := c•M P γ • (γ-1)•τ k c•M P + 1 γ/(γ-1) and τ k = c • M P • 1- q * k •M P p k γ-1 1-γ for q * k > 0. Furthermore, ISF k (x) = e -τ k x • exp n k • c • M P γ • 1 + γ -1 c • M P • τ k γ γ-1 -1 , x ≥ 0, 
(where x = 0 covers the atom at zero).

Case 3: Example 48(c):

γ = 2, c > 0. One gets U * n k k = N (n k • (1 + τ k c•M P ), n k c•M P ) with τ k = c • M P • ( q * k •M P p k -1) for q * k ∈ . Moreover, for all x ∈ one obtains ISF k (x) = exp n k •τ 2 k 2 c•M P -(x -n k ) • τ k . Case 4: Example 48(d): γ < 0, c > 0. It holds that U * n k k has the (Lebesgue-)density f U * n k k (x) := exp((τ k -c•M P 1-γ ) • x) exp n k • c•M P γ • (1 + γ-1 c•M P • τ k ) γ/(γ-1) • f Z (x) • 1 ]0,∞[ (x), x ∈ , where τ k = c • M P • 1- q * k •M P p k γ-1 1-γ
for q * k > 0, and Z is a random variable with density f Z of a stable law with parameterquadruple

( -γ 1-γ , 1, 0, -n k • ( c•M P ) 1/(1-γ) •(1-γ) -γ/(1-γ) γ
) (analogously to Z of Example 40 (d) but with c replaced by c • M P ). Also,

ISF k (x) = e -τ k x • exp n k • c • M P γ • 1 + γ -1 c • M P • τ k γ γ-1 -1 , x > 0.
Case 5 : Example 48(e): γ > 2, c > 0. We derive that U * n k k has the (Lebesgue-)density

f U * n k k (x) := exp((τ k + c•M P γ-1 ) • x) exp n k • c•M P γ • (1 + γ-1 c•M P • τ k ) γ/(γ-1) • f Z (-x), x ∈ , where τ k = -c•M P γ-1 • 1 - q * k •M P p k γ-1 • 1 ]0,∞[ ( q * k ) for q * k ∈
, and Z is a random variable with density f Z of a stable law with parameter-quadruple

( γ γ-1 , 1, 0, n k • ( c•M P ) 1/(1-γ) •(γ-1) γ/(γ-1) γ 
) (analogously to Z of Example 40 (e) but with c replaced by c • M P ). Furthermore, is the probability distribution

ISF k (x) = e -τ k x • exp n k • c • M P γ • 1 + γ -1 c • M P • τ k γ γ-1 -1 , x ∈ .
1 c•M P • P OI n k • c • M P • exp( τ k c•M P ) with support on the lattice j c•M P , j ∈ x 0 , where τ k = c • log M P • q * k p k for ω k > 0.
Moreover, for all j ∈ x 0 we obtain (by setting x := j c•M P )

ISF k j c • M P = exp n k • c • M P • exp τ k c • M P -1 -m • τ k c • M P . Case 7: Example 50(b): γ = 1, c = 1, anchor point c ∈ . For M P = 1, U * n k k is the shifted Poisson distribution P OI (n k • e c+τ k ) + n k • (1 -e c ) with support on the lattice {j + n k • (1 -e c ), j ∈ x 0 }, where τ k = log q * k p k + e c -1 -c for q * k > p k • (1 -e c ).
Furthermore, for all j ∈ x 0 we obtain (by setting x :

= j + n k • (1 -e c )) ISF k (j + n k • (1 -e c )) = exp (n k • e c • (e τ k -1) -j • τ k ) .
Notice that the mass of U * n k k at zero depends on the value of the anchor point c, since U

* n k k [{0}] > 0 if and only if c = log(1 + n k ) for some ∈ x 0 ; moreover, U * n k k ]0, ∞[ = 1 if c < 0 and U * n k k ] -∞, 0[ > 0 if c > 0.
Remark 59: (a) One can explicitly see in all cases of the above Example 58 that all ingredients for computation are at hand. (b) For both Cases 4 and 5 in the above Example 58, algorithms for simulation can be obtained by adapting e.g. the works of Devroye [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF] and Devroye & James [START_REF] Devroye | On simulation and properties of the stable law[END_REF]. 

ξ W n = 1 n i∈I (n) 1 W i , . . . , 1 n i∈I (n) K W i (cf. ( 23)) 
where W := ( W 1 , . . . , W n ) is a random vector consisting of components W i which are i.i.d. copies of the random variable [START_REF] Aviyente | Characterization of event related potentials using information theoretic distance measures[END_REF].

W whose distribution is ¥[ W ∈ • ] = [ • ] obeying the representation
In contrast, we now proceed as follows: as a first step, we derive an improved estimator Π

improved L of ¥ X n 1 ξ wW n,X ∈ Ω Ω
where Ω Ω ∈ K is a set of probability vectors which satisfies the regularity properties [START_REF] Ahlswede | Identification entropy[END_REF] and the finiteness property [START_REF] Akhiezer | The Classical Moment Problem and Some Related Questions in Analysis[END_REF]. Recall that

ξ wW n,X :=      i∈I (n) 1 Wi K k=1 i∈I (n) k Wi , . . . , i∈I (n) K Wi K k=1 i∈I (n) k Wi , if n j=1 W j = 0, (∞, . . . , ∞) =: ∞, if n j=1 W j = 0, (cf. ( 33 
))
where

(X i ) i∈x is a sequence of random variables with values in Y := {d 1 , • • • , d K } such that lim n→∞ n 1 n , . . . , n K n = (p 1 , . . . , p K ) a.s. cf. ( (30) 
) holds for some probability vector P := (p 1 , . . . , p K ) ∈ K >0 , by employing the notation 

n k := card( i ∈ {1, . . . , n} : X i = d k ) =: card(I (n) k ) (cf. ( 29 
W i ) i∈x is independent of (X i ) i∈x .
As a second step (see Subsubsection VI-B2 below), for the important special case of the power-divergence generators ϕ γ (cf. ( 43)) we employ the Propositions 22 to 27 in order to deduce via the corresponding Π improved L the estimators (e.g. for γ < 0)

D c•ϕγ (Ω Ω, P) := c γ • (γ -1) • 1 + γ c • 1 n • log Π improved L 1-γ -1 , of the minimum power divergences D c•ϕγ (Ω Ω, P) := inf Q∈Ω Ω D c•ϕγ (Q, P)
as well as connected estimators of important deterministic transformations thereof.

As a third step (see Subsubsection VI-B3 below), on the basis of Subsubsection IV-C2 we derive estimators of bounds of D ϕ (Ω Ω, P) for more general divergence generators ϕ.

Let us start with the above-mentioned first step, by remarking that the development of the estimator Π improved L works quite analogously to that of Π improved L in the previous Subsection VI-A. To make this even more transparent, we employ the notation p emp n,k := n k /n (cf. ( 29)) and label all random vectors of length n in the same way as above: we sort the already given and thus fixed data X i 's in such a way that the first n 1 of them share the same value d 1 , and so on, until the last block with length n K in which the data have common value d K .

In the light of the above considerations, we could achieve a naive estimate Π naive L of ¥ X n 1 [ξ wW n,X ∈ Ω Ω] through the following procedure. We simulate independently L replicates W (1) , . . . , W (L) of the vector W := (W 1 , . . . , W n ), with independent entries under (cf. ( 6)); those realizations do not depend on the X i 's. Then we construct

Π naive L := 1 L L =1 1 Ω Ω ξ wW ( ) n,X . (231) 
However, this procedure is time costly, since the estimate given in ( 231) has a very bad hit rate. Hence, analogously to Subsection VI-A we apply again an "efficient Importance Sampling (IS)" scheme in the sense of Sadowsky & Bucklew [313]. This will involve the simulation of L independent n-tuples

V ( ) := V ( ) n , . . . , V ( ) n
with common distribution S on n , such that ⊗n is (measure-)equivalent with respect to S. In fact, we rewrite ¥

X n 1 [ξ wW n,X ∈ Ω Ω] as ¥ X n 1 [ξ wW n,X ∈ Ω Ω] = E S d ⊗n dS (V 1 , . . . , V n ) • 1 Ω Ω (ξ wV n,X ) (232) 
where S designates any IS distribution of the vector V :=(V 1 , . . . , V n ), and E S [ • ] denotes the corresponding expectation operation. Notice that S is a random probability distribution on n ; in fact, S is a conditional probability distribution given X n 1 , and thus it would be more precise to write S|X n 1 instead of S; for the sake of brevity, we omit |X n 1 .

As a consequence of (232), for adequately chosen S, an improved estimator of ¥ X n 1 [ξ wW n,X ∈ Ω Ω] is given by

Π improved L := 1 L L =1 d ⊗n dS (V ( ) 1 , . . . , V ( ) n ) • 1 Ω Ω (ξ wV ( ) n,X ) , (233) 
which also estimates inf Q∈Ω Ω inf m =0 D ϕ (m • Q, P) by the virtue of [START_REF] Basu | Statistical Inference: The Minimum Distance Approach[END_REF].

Let us now deal with the concrete construction of a reasonable S. Given some (typically) large integer M , we start with the realization W * := (W * 1 , . . . , W * M ) such that Q * := ξ wW * M,X ∈ int(Ω Ω). This may be given in advance or it may be achieved by drawing replicates W = (W 1 , . . . , W M ) under ⊗M until the first time where ξ wW M,X belongs to int(Ω Ω). Notice that by the nature of Ω Ω, Q * is a probability vector which has the K components

q * k := M i=1 W * i M j=1 W * j 1 {d k } (X i ), k = 1, . . . , K. (234) 
Before we proceed, let us give the substantial remark that changing (V 1 , . . . , V n ) drawn under S to (c • V 1 , . . . , c • V n ) for any c = 0 yields ξ wV n,X = ξ w c•V n,X so that the distribution S is not uniquely determined. Amongst all candidates, we choose theuniquely determined -S which is the Kullback-Leibler projection of ⊗n on the set of all probability distributions on n such that the K "non-normalized" moment constraints

E S [ξ V n,X ] = ξ W * M,X (235) 
(rather than the normalized E S [ξ wV n,X ] = ξ wW * M,X ) are satisfied, with the non-normalized vectors

ξ W * M,X :=   1 M M j=1 W * j   • Q * =: W * • Q * , ξ V n,X :=   1 n n j=1 V j   • ξ wV n,X .
As already indicated above, this projection S is a well-determined unique distribution on n and -as we shall see in Proposition 60 below -it is such that ξ wV n,X belongs to Ω Ω with probability bounded away from 0 as n increases, when (V 1 , . . . , V n ) are drawn under S. Therefore, this IS distribution produces an estimate of ¥ X n 1 [ξ wW n,X ∈ Ω Ω].

In order to justify the above construction of S, we give the following result, which states that the IS sampling distribution S yields a good hitting rate. Its proof will be given in Appendix H.

Proposition 60: With the above definition of S, lim inf n→∞ S ξ wV n,X ∈ Ω Ω is bounded away from 0.

We now come to the detailed construction of S. The constraints (235) can be written in explicit form as

E S 1 n k i∈I (n) k V i = W * • q * k p emp n,k , k = 1, . . . , K. (236) 
The distribution S can be obtained by blocks. Indeed, let us define S k as the Kullback-Leibler (KL) projection of ⊗n k on the set of all distributions on n k such that (236) holds. We define the resulting S as the product distribution of those S k 's. To obtain the latter, we start by defining U k as the KL projection of on the set of all measures Q on under [START_REF] Lyubushin | Seismic noise wavelet-based entropy in Southern California[END_REF]. Then,

dU k (v) = exp(τ k v -Λ (τ k )) d(v) , (237) 
where τ k ∈ int(dom(M GF )) is the unique solution of the equation

Λ (τ k ) = W * • q * k p emp n,k
and thus -by relation [START_REF] Pardo | Order-α weighted information energy[END_REF] of Appendix F -we can compute explicitly

τ k = ϕ W * • q * k p emp n,k
.

The distribution S k is then defined by

S k := U k ⊗ • • • ⊗ U k n k times
from which we obtain

S := S 1 ⊗ • • • ⊗ S K .
With this construction, it holds

dS d ⊗n (v 1 , . . . , v n ) = exp    K k=1    i∈I (n) k τ k • v i -Λ (τ k )      
which proves that S is indeed the KL projection of ⊗n we aimed at.

Therefore, V is composed of K independent blocks of length n k each, and the k-th subvector V k consists of all the random variables V i whose index i satisfies X i = d k . Within V k , all components are i.i.d. with same distribution U k on defined Let us remark that U k can be interpreted as the distorted distribution of with the distortion parameter τ k (in some cases, this distortion even becomes a tilting/dampening).

The estimator Π improved L defined in [START_REF] Luppino | Unsupervised image regression for heterogeneous change detection[END_REF] can be implemented through the following algorithm:

Step S1 Choose some (typically large) M and simulate repeatedly i. 12)).

It has followed that the solution of ( 8) coincides with the one of the problem of finding

Φ P ( Ω) := inf Q∈ Ω D ϕ ( Q, P),
with Ω := Ω/M P (cf. ( 13)).

So let us continue by tackling [START_REF] Amezquita-Sanchez | Entropy algorithms for detecting incipient damage in high-rise buildings subjected to dynamic vibrations[END_REF]. From the assumptions on ϕ and the requirement (21) one can see that W 1 has moment generating function t → E ¥ [e z• W1 ] = M GF (z) which is finite on a non-void neighborhood of 0, (247) 

E ¥ [ W 1 ] = 1, (248) 
k ) denotes the number of elements therein (k ∈ {1, . . . , K}), i.e. n k is the number of the x i 's which equal d k . We follow the line of proof of Theorem 2.2.30 in Dembo & Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], which states the large deviation principle (LDP) for the vector of partial sums of random vectors in K , where we also use Corollary 6.1.6 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] in relation with condition [START_REF] Marhuenda | Choosing the best Rukhin goodness-of-fit statistics[END_REF]. Indeed, since the k-th component of the vector ξ W n is the 1/n-fold of the sum of the W i 's for which the corresponding x i 's equal d k i.e. there holds

1 n log ¥ ξ W n ∈ B = 1 n log ¥ K k=1 1 n i∈I (n) k W i ∈ B k = 1 n K k=1 log ¥ 1 + o(1) n k i∈I (n) k W i ∈ 1 p k B k , (250) 
and hence lim sup

n→∞ 1 n log ¥ ξ W n ∈ B ≤ K k=1 p k • lim sup n k →∞ 1 n k log ¥ 1 n k i∈I (n) k W i ∈ 1 p k B k ≤ - K k=1 inf x k ∈cl(B k ) p k • ϕ x k p k . ( 251 
)
To deduce ( 251) from ( 250), we have used (i) the fact that for all k the random variables W i are exponentially equivalent in the sense that their difference ∆ n k satisfies lim sup

n k →∞ 1 n k log ¥[ |∆ n k | > η ] = -∞,
making use of the Chernoff inequality for all positive η, as well as (ii) Theorem 4.2.13 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. Now the summation and the inf-operations can be permuted in [START_REF] Martin-Fernandez | Measures of difference for compositional data and hierarchical clustering methods[END_REF] which proves the claim for the rectangle B.

As in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], for a compact set Ω we consider its finite covering by such open sets B and conclude; for Ω being a closed set, a tightness argument holds, following [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] Theorem 2.2.30 verbatim. For the lower bound consider the same rectangle B. The argument which locates the tilted distribution at the center of B, together with the use of the LLN for the corresponding r.v's as in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], in combination with the same approximations as above to handle the approximation of n k by n • p k , complete the proof of Proposition 61. We omit the details.

Let us continue with the proof of Theorem 10, by giving the following two helpful lemmas for Proof of Lemma 63. Assume first that Φ P (A) is finite. Then suppose that A satisfies [START_REF] Ahlswede | Identification entropy[END_REF] and Φ P (cl(A)) < Φ P (int(A)). The latter implies the existence of a point a ∈ cl(A) such that a / ∈ int(A) and Φ P (a) = Φ P (cl(A)). But then, by Lemma 62 and (7) one gets Φ P (int(A)) = Φ P (cl(int(A))) = Φ P (cl(A)) = Φ P (a) which leads to a contradiction. When Φ P (A) = ∞ then Φ P (cl(A)) = Φ P (int(A)) = Φ P (A) = ∞.

Putting things together, the required asymptotic assertion [START_REF] Avsec | Base-resolution models of transcription-factor binding reveal soft motif syntax[END_REF] follows from ( 249), [START_REF] Ahlswede | Identification entropy[END_REF] and Lemma 63. This completes the proof of Theorem 10.

APPENDIX B PROOFS -PART 2

Before we tackle the proof of Theorem 14, let us introduce the following This can be deduced in a straightforward way: the assumption implies that cl(Ω Ω) satisfies [START_REF] Ahlswede | Identification entropy[END_REF], and thus also m • cl(Ω Ω) satisfies [START_REF] Ahlswede | Identification entropy[END_REF]. But this implies the validity of (7) for the "cone"

m =0 m • cl(Ω Ω) which is nothing but m =0 cl(m • Ω Ω).
Proof of Theorem 14. Recall the interpretations of the two vectors ξ W n,X respectively ξ wW n,X given in ( 31) respectively [START_REF] Bashford-Rogers | Analysis of the B cell receptor repertoire in six immune-mediated diseases[END_REF], and that the sum of their k components are

K k=1 1 n i∈I (n) k W i = 1 n n i=1 W i respectively K k=1 i∈I (n) k Wi K k=1 i∈I (n) k
Wi = 1 (in case of n i=1 W i = 0). In the light of these, for Ω Ω ⊂ K one gets the set identification

ξ wW n,X ∈ Ω Ω = m =0 ξ W n,X ∈ m • Ω Ω, 1 n n i=1 W i = m since { n i=1 W i = 0}
amounts to m = 0, which cannot hold when ξ wW n,X ∈ Ω Ω . Now

¥ X n 1 ξ wW n,X ∈ Ω Ω = ¥ X n 1 m =0 ξ W n,X ∈ m • Ω Ω, 1 n n i=1 W i = m = ¥ X n 1 m =0 ξ W n,X ∈ m • Ω Ω = ¥ X n 1 ξ W n,X ∈ m =0 m • Ω Ω since ξ W n,X ∈ m • Ω Ω ⊂ 1 n n i=1 W i = m . Therefore 1 n log ¥ X n 1 ξ wW n,X ∈ Ω Ω = 1 n log ¥ X n 1 ξ W n,X ∈ m =0 m • Ω Ω . ( 253 
)
and thus for the exponential of its Fenchel-Legendre transform 

APPENDIX F PROOFS -PART 6

Proof of Theorem 36. (i) Clearly, on ]λ -, λ + [ the function Λ is differentiable with strictly increasing derivative

Λ (z) = F -1 (z + c) + 1 -F -1 (c), z ∈]λ -, λ + [. (277) 

APPENDIX G FURTHER DETAILS AND PROOFS FOR SUBSECTION VI-A

Proof of Lemma 57. By Assumption (OM), one gets for all λ ∈ cl(Λ) that {x ∈ (dom( ϕ) n : T (x) = λ} ∩ ]t sc -, t sc + [ n = ∅.

Moreover, for any x = (x 1 , .., x n ) in n , by the independence of the components of W as well as ( 265) and ( 270 

x i • z i -Λ (z i ) = n i=1 ϕ(x i ) = K k=1 i∈I (n) k ϕ(x i ) (285) 
which is finite if and only if x ∈ (dom( ϕ)) n (recall that ϕ is a nonnegative function). Hence, for each λ ∈ Λ we obtain I(λ) := inf x i = λ k , and by the strict convexity of ϕ on ]t sc -, t sc + [ (cf. (G5)) the minimum of this generic term is attained when all components x i are equal to λ k , and (ii) the outcoming minimum does not depend on the particular (generally non-unique) choice of the x i 's. Notice that we have used the relation n k = n • p k as well. To proceed, let λ be a minimal rate point of Λ, which means that λ ∈ ∂Λ and I(λ) ≤ I(λ) for all λ ∈ Λ. By Assumption (OM) one can run all the steps in ( 286) and ( 287) with λ instead of λ, and hence

I(λ) = inf x∈ n : T (x)=λ I W (x) = inf x∈]t sc -,t sc + [ n : T (x)=λ I W (x) = n • K k=1 p k • ϕ(λ k ) = n • K k=1 p k • ϕ( q k / p k ) (288) 
where for the last equality we have employed the vector Q := D -1 λ which we have called the "dominating point of Ω". Also we have proved

I(λ) = n • inf Q∈ Ω K k=1 p k • ϕ( q k / p k ). ( 289 
)
On the obtainment of proxies of minimal rate points by proxy method 2:

For the rest of this section, besides (OM) we assume that dom( ϕ) = ]a, b[ = ]t sc -, t sc + [, and that in case of a = -∞ or b = +∞ the divergence generator ϕ is regularly varying at a or b accordingly, with positive index β, i.e. (with a slight abuse of notation)

• if a = -∞, then for all λ > 0 there holds lim this assumption is denoted by (H ϕ).

A proxy of Q can be obtained by sampling from a distribution on K defined through

f ( Q) := C • exp - K k=1 p k • ϕ( q k / p k ) = C • exp -D ϕ Q, P (cf. ( 220 
))
where C is a normalizing constant; strict convexity (cf. (G5)) of ϕ together with (H ϕ) prove that f is a well-defined (Lebesgue-) density for a random variable T on K . We denote by p(•) := ¥[T ∈ • ] the corresponding distribution on K having density f . The distribution of T given T ∈ Ω concentrates on the points in Ω which minimize D ϕ Q, P as Q runs in Ω, when D ϕ ( Ω, P) is large. This can be argued as follows. We will consider the case when Ω is a compact subset in K >0 and ϕ satisfies (H ϕ) with b = +∞. For the case when Ω is not compact, or belongs to K / {0}, see the Remark 67 hereunder.

Consider a compact set Γ in Ω and let Γ t be defined as deduced from Γ in a way that makes D ϕ Γ t , P increase with t for sufficiently large t. For instance, set

Γ t := t • Γ. (290) 
Hence, in case of b = +∞ the divergence D ϕ Γ t , P = inf

g t ∈Γt K k=1 p k • ϕ (g t ) k p k = inf g∈Γ K k=1 p k • ϕ t • g k p k
tends to infinity as t → ∞; the case a = -∞ works analogously with t → -∞. In case of b < ∞ we may consider Γ t := {b -g/t; g ∈ Γ} [START_REF] Peter | Information geometry for landmark shape analysis: unifying shape representation and deformation[END_REF] and indeed D ϕ Γ t , P → ∞ as t → ∞, with a similar statement when a > -∞.

Assume that Γ has a dominating point g. Then Γ t has dominating point g t := t • g. We prove that T with distribution (220) cannot be too far away (depending on t) from g t whenever T belongs to Γ t . This argument is valid in the present description of some asymptotics which makes Γ t as a model for Ω for large t; considering the case when D ϕ Ω, P is large is captured through the asymptotic statement lim Proof of Lemma 66. Let us first remark that according to the geometry of the set A, various combinations for the asymptotics [START_REF] Perera | Toplogical rationality of supply chain networks[END_REF] or (291) may occur; for sake of brevity, we only handle the simplest ones, since all turn to be amenable through the same arguments. Denote for positive r B(r) := v ∈ K :

K k=1 p k ϕ v k p k > r .
It holds, by making the change of variable r = t • α + t • s, whence, assuming without loss of generality that dom( ϕ) = + , we obtain 

A exp -t K k=1 p k • ϕ v k p k dv 1 . . . dv k = • • • 1 + (r) • 1 A (v) • 1 t K k=1 p k ϕ v k p k ,∞ ( 
= -l(t) • D ϕ (Γ, P) • (1 + o(1))

as t tends to infinity. In the above display, (1) follows from ϕ(tx) = (tx) 1)) as t tends to infinity and x lies in a compact subset of ]0, ∞[, where is a slowly varying function. The equality (2) follows from compactness of Γ together with the fact that ϕ is a regularly varying function with index β, so that

β • (tx) = t β • x β • (x) • (tx) (x) = t β • ϕ(x) • (1 + o(
lim t→∞ ϕ(tv) ϕ(t) = v β
uniformly upon v on compact sets in ]0, ∞[. The remaining equalities (3) and (4) follow from classical properties of regularly varying functions, where ˘ := 1/ is a slowly varying function at infinity, together with standard Laplace-Integral approximation.

In the same way we can show

1 ϕ(t) log ¥[ T ∈ Γ t ∩ B c t ] = -l(t) • D ϕ (Γ ∩ B c , P) • (1 + o(1))
as t tends to infinity. Since B is a neighborhood of the unique dominating point g of Γ, one gets that D ϕ (Γ∩B c , P) > D ϕ (Γ, P). This implies that

¥ T ∈ Γ t ∩ B c t T ∈ Γ t → 0 as t → ∞.
Remark 67: Firstly, let us quote that the case when Ω is an unbounded subset in K / {0} is somewhat immaterial for applications. Anyhow, if compactness of Γ is lost, then in order to use the same line of arguments as above, it is necessary to strengthen the assumptions (H ϕ) e.g. as follows: when b = +∞ then ϕ has to be asymptotically homogeneous with degree β > 0, in the sense that ϕ(tx) = t β ϕ(x) • (1 + o(1)) as t → ∞; for the subcase a = -∞ one employs an analogous assumption as t → -∞. The case when Ω is a compact set in K \{0} can be treated as above, by combining the asymptotics in t in the neighborhood of a and b accordingly.

APPENDIX H PROOF FOR SUBSECTION VI-B

Proof of Proposition 60. Recall the weighted empirical measure

ξ V n,X :=    1 n i∈I (n) 1 V i , . . . , 1 n i∈I (n) K V i   
which satisfies the K linear constraints defined in [START_REF] Lysiak | Empirical comparison of the feature evaluation methods based on statistical measures[END_REF] through

E S [ξ V n,X ] = ξ W * M,X = W * • ξ wW * M,X
where Q * := (q * 1 , . . . , q * K ) = ξ wW * M,X ∈ int(Ω Ω) and

W * = 1 M M j=1 W * j .
The probability distribution S defined on n is the Kullback-Leibler projection of ⊗n on the class of all probability distributions on n which satisfy [START_REF] Lysiak | Empirical comparison of the feature evaluation methods based on statistical measures[END_REF]. We prove that lim inf n→∞ S ξ wV n,X ∈ Ω Ω > 0. To start with, we define for strictly positive δ the set where V η W * q * k p k denotes a neighborhood of W * q * k p k with radius η being small when δ is small, for large enough n, making use of the a.s. convergence of n k /n to p k . Now, for any k ∈ {1, . . . , K} one has

S 1 n k i∈I (n) k V i / ∈ V η W * q * k p k ≤ exp -n k • inf x∈Vη W * q * k p k c ϕ (x) (293) 
since any margin of S with index in I -where p emp M,k denotes the fraction of the X i 's (within X 1 , . . . , X M ) which are equal to d k (cf. ( 29)) -and therefore has a moment generating function which is finite in a non-void neighborhood of 0, which yields [START_REF] Pielou | The measurement of diversity in different types of biological Collections[END_REF] by the Markov Inequality. Note that the event ξ wW * M,X ∈ int (Ω Ω) is regenerative, so that M can be chosen large enough to make p emp M,k close to p k for all k ∈ {1, . . . , K}. This proves the claim. ACKNOWLEDGMENT W. Stummer is grateful to the Sorbonne Université Paris for its multiple partial financial support and especially the LPSM for its multiple great hospitality. M. Broniatowski thanks very much the FAU Erlangen-Nürnberg for its partial financial support and hospitality. Moreover, W. Stummer would like to thank Rene Schilling for an interesting discussion on complex-valued foundations of the Bernstein-Widder theorem.

  g. ]a, b[=]0, ∞[ or ]a, b[=] -∞, ∞[. (b) For ϕ ∈ Υ(]a, b[), P := (p 1 , . . . , p K ) ∈ K

  a selection of concrete examples which will be treated in detail below: ]a, b[ ϕ(t) for t ∈]a, b[

  a, b[, (which corresponds to shifting the argument and adding an affine-linear function) should be a member of Υ(]a, b[), and from the corresponding minimization problem

  for any concave function ζ with -ζ ∈ Υ(]a, b[) and any continuous strictly increasing function h : H → with H := -[∞, 0] (or a sufficiently large subset thereof), via

= 1 .

 1 in[START_REF] Bai | Grain scattering noise modeling and its use in the detection and characterization of defects using ultrasonic arrays[END_REF] and their numbers n k = card(I (n) k ) of elements are now random (due to their dependence on the X i 's) and M P emp n In a batch procedure, when D ϕ (Ω Ω, P emp n

n j=1 W

 j=1 j = 0. However, ¥[ξ wW n,X ∈ K >0 ] > 0 since all the (identically distributed) random variables W i have expectation 1 (as a consequence of the assumed representability (6)); in case of ¥[W 1 > 0] = 1 one has even ¥[ξ wW n,X ∈ K >0 ] = 1. In the particular context of Example 48(c), one gets ¥[ξ wW n,X ∈ K >0

  ) and the below-mentioned -concerning Example 48(d). Employing Lemma 16(c) and Example 48(a) instead, one ends up with the following proposition on the reverse Kullback-Leibler divergence: Proposition 23: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ = 0, and let P ∈ K

Example 48 (

 48 b). Employing Lemma 16(b) and Example 50(a) instead, one ends up with the following proposition on the Kullback-Leibler divergence: Proposition 25: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ = 1, and let P ∈ K >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of non-negative real-valued random variables with distribution = 1 c • P OI( c) being the " 1 c -fold Poisson distribution with mean c" , which means that W 1 = 1 c • Z for a Poissonian P OI( c)-distributed random variable Z with mean c (where the subcase c = 1 amounts to = P OI(1)).

  ),[START_REF] Carre | Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics[END_REF] and the below-mentioned -concerning Example 48(c) leads to the following Proposition 26: (a) Consider the context of Remark 15(vi) for ϕ := c • ϕ γ with γ = 2, and let P ∈ K >0 as well as c > 0 be arbitrary but fixed. Furthermore, let W := (W i ) i∈x be an i.i.d. sequence of real-valued random variables with probability distribution = N OR(1, 1 c ) being the Normal (Gaussian) law with mean 1 and variance 1 c . Then for all A > 0 and Ω Ω ⊂ K with (

  ),[START_REF] Bertrand | Independence versus indetermination: basis of two canonical clustering criteria[END_REF]) the optimization inf m =0 D c•ϕγ (m • Q, P) produces an explicit form, which in turn leads to a simple one-to-one correspondence between D c•ϕγ (Ω Ω, P) and inf m =0 D c•ϕγ (m • Ω Ω, P) (cf.Lemma 16). Under[START_REF] Ahlswede | Identification entropy[END_REF] and (139) it clearly holdsinf m =0 D ϕ (m • Ω Ω, P) ≤ D ϕ (Ω Ω, P) ≤ D ϕ (Q, P). (140)For transparency, we first investigate the (widely useable) subsetup where dom(ϕ) =]0, ∞[ (and thus, int(dom(ϕ)) = ]a, b[ = ]0, ∞[) and Ω Ω ⊂ K >0 . Let us start with the lower bound inf m =0 D ϕ (m • Ω Ω, P). It can be proved that the minimizer in m is a well defined constant, which belongs to a compact set in >0 . To see this, let us first observe that, obviously, from (139) one can obtain inf Q∈Ω inf k=1,...,K

  1 , . . . , d K } be a finite set (called the universe (of discourse)), A ⊂ Y and M A : Y → [0, 1] be a corresponding membership function, where M A (d k ) represents the degree/grade of membership of the element d k to the set A; accordingly, the object A * := { x, M A (x) |x ∈ Y} is called a fuzzy set in Y (or fuzzy subset of Y). Moreover, if A ⊂ Y and B ⊂ Y are unequal, then the corresponding membership functions M A and M B should be unequal. Furthermore, we model the vector of membership degrees to A by P A := p A k k=1,...,K := M A (d k ) k=1,...,K which satisfies the key constraint 0 ≤ p A k ≤ 1 for all k ∈ {1, . . . , K} and, consequently, the aggregated key constraint 0 ≤ K k=1 p A k ≤ K (as a side remark, K k=1 M A (d k ) is called power of the fuzzy set A * ). For divergence generators ϕ in Υ(]a, b[) (resp. Υ(]a, b[)) with -say -0 ≤ a < 1 < b and for two sets A, B ⊂ Y we can apply (4) to the corresponding membership functions and define the ϕ-divergence D ϕ (B * , A * ) between the fuzzy sets B * and A * (on the same universe Y) as

K

  k=1 p B k = C with C ≤ K for which Theorem 14 (and its consequences and derived examples) can be employed.

  )), one can straightforwardly show that the outcoming divergence D ϕ1 (B * * , A * * ) coincides with D φ(B * * , A * * ) where φ(t) := t•log t; the latter divergence was used e.g. in Bhandari & Pal

  inf B * * * ∈Ω * * * D ϕ (B * * * , A * * * ) := inf P B ∈Ω D ϕ (P B , P A ) respectively inf B * * * ∈Ω * * * D var ϕ (B * * * , A * * * ) := inf P B ∈Ω D ϕ ( P B ν , P A ν )

2 instead

 2 of p A k ν . By equivalently rewriting (152), we can use (88) with A = 1 together with the Propositions 22, 24, 26 and 27 to tackle for γ ∈ ] -∞, 0[ ∪ ]0, 1[ ∪ [ 2, ∞[ the minimization problem inf B * * * ∈Ω * * * R var,nor γ (B * * * , A * * * ) = inf

  V. FINDING/CONSTRUCTING/ON THE DISTRIBUTION OF THE WEIGHTS Recall first that in Theorem 14, one crucial component is the sequence (W n ) n∈x of weights being i.i.d. copies of a random variable W whose probability distribution is (i.e. ¥[W ∈ • ] = [ • ]), where the latter has to be connected with the divergence generator ϕ ∈ Υ(]a, b[) through the representation ϕ(t) = sup z∈   z • t -log e zy d(y)

Proposition 29 :

 29 starting from a concrete optimization problem (27) -respectively (8) -with pregiven ϕ ∈ Υ(]a, b[) (cf. Definition 3), as a first step one would like to verify whether indeed ϕ ∈ Υ(]a, b[) (i.e. it additionally satisfies (6)) -respectively M P • ϕ ∈ Υ(]a, b[); as a second step, one would like to find the corresponding explicitly. As far as the above-mentioned first step is concerned, let us first present some fundamental properties of all ϕ ∈ Υ(]a, b[): Let ϕ ∈ Υ(]a, b[). Then the following assertions hold:

Theorem 30 :

 30 (a) Let M :] -∞, 0] →]0, ∞[ be continuous on ] -∞, 0] with M (0) = 1. Then one has M is absolutely monotone on ] -∞, 0[ ⇐⇒ ∃ unique prob. distr. on [0, ∞[ s.t. M (z) = ∞ 0 e z•y d (y) for all z ∈] -∞, 0[. (b) Let I be an open interval which contains 0, and M : I → [0, ∞[ be continuous with M (0) = 1. Then one gets M is exponentially convex ⇐⇒ ∃ unique prob. distr. on ] -∞, ∞[ such that M (z) = ∞ -∞ e z•y d (y) for all z ∈ I.

  Υ(]a, b[). More precisely, we obtain Proposition 31: Suppose that ϕ :] -∞, ∞[ → [0, ∞] satisfies (G1) to (G8), and recall the notations in (G9i). Then, ϕ ∈ Υ(]a, b[) if one of the following three conditions holds: (a) a > -∞, λ -= -∞, and the function z → e -a•z+ϕ * (z) is absolutely monotone on ] -∞, 0[, (b) b < ∞, λ + = ∞, and the function z → e b•z+ϕ * (-z) is absolutely monotone on ] -∞, 0[, (c) a = -∞, b = -∞, and the function z → e ϕ * (z) is exponentially convex on ]λ -, λ + [.

  ) (needed e.g. for Theorem 10); this strongly relates to the question, for which constants c > 0 the validity ϕ ∈ Υ(]a, b[) triggers the validity of c • ϕ ∈ Υ(]a, b[). To begin with, it is straightforward to see that ϕ ∈ Υ(]a, b[) always implies c • ϕ ∈ Υ(]a, b[) for all integers c ∈ x; indeed, if ϕ satisfies (6) for some = ¥[W ∈ • ], then for each integer c ∈ x one gets that c • ϕ satisfies (6) for = ¥[ c j=1 Wj c ∈ • ]; in the latter, the W j 's are i.i.d. copies from W . Clearly, M GF is then finite on some open interval containing zero (differing from the one for M GF only by a scaling with 1/ c).

=

  means "have equal probability distributions" and ¥[W

  satisfies (G1) to (G8), and recall the notations in (G9i) as well as a = inf supp(), b = sup supp() (cf. (G10i)). Then, ϕ ∈ Υ(]a, b[) and the associated probability distribution is infinitely divisible, if one of the following three conditions holds: (a) a > -∞, λ -= -∞, and the function z → ϕ * (z) -a = (ϕ ) -1 (z) -a is absolutely monotone on ] -∞, 0[, (b) b < ∞, λ + = ∞, and the function z → -ϕ * (-z) + b = -(ϕ ) -1 (-z) + b is absolutely monotone on ] -∞, 0[, (c) a = -∞, b = -∞, and the function z→ ϕ * (z) ϕ * (0) = ϕ(1)ϕ ((ϕ ) -1 (z)) is exponentially convex on ]λ -, λ + [. In the first case (a) there automatically follows b = ∞, whereas in the second case (b) one automatically gets a = -∞.The proof of Proposition 35 is given in Appendix E.

Example 43 :

 43 Let us give an interesting generalization of the Kullback-Leibler case of Example 40(a). For c > 0 and α

  stays finite as p k tends to zero. (b) For any parameter-quadrupel α, β 1 , β 2 , c ∈ ]0, ∞[ with β 1 > β 2 , one can proceed analogously to (a). Let us start by choosing ]a F , b F

2 . For β 1 ≤

 21 Clearly, θ ∈ ]a F , b F [ if and only if β 1 ∈ ]β 2 , 3β 2 [; if (say) the latter holds, then one gets the continuitylim t→ θ F α,β1,β2, c (t) = c • β1-β2 3β 2 there holds ]a F , b F [\{ θ} = ]a F , b F [. Returning to the general case, one can show comfortably that F α,β1,β2, c (•) is strictly increasing and that R(F α,β1,β2, c ) =] -c • β 2 , c • β 2 ]. Moreover, F α,β1,β2, c (•) is smooth on ]a F , b F [,and hence F α,β1,β2, c ∈ F. In face of the validity of F α,β1,β2, c (1) = 0, let us choose the natural anchor point c := 0, which amounts to ]λ -, λ+ [ = int(R(F α,β1,β2, c ) = ] -c • β 2 , c • β 2 [ and ]t sc -, t sc + [= ]a F , b F [. Since the first line in[START_REF] Kullback | Asymptotic distribution of (h, φ)-entropies[END_REF] coincides formally with that of[START_REF] Korte | Combinatorial Optimization[END_REF] (with different ]a F , b F [), the corresponding inverse is formally the same as[START_REF] Kotelina | Exponential convexity and total positivity[END_REF] (with different ]a F , b F [), and hence

  • β are both finite. This ends the current Example 46. As a side effect in the above-mentioned Example 46, for fixed β 2 , α, c notice the interesting behaviour (e.g. with respect to int(dom(F )) =]a F , b F [ and the range of ϕ ) as β 1 moves from ]0, β 2 [ to β 2 and further to ]β 2 , ∞[.

Example 48 :

 48 for the power-divergence context of Example 39 we obtain:(a) Case γ = 0, c > 0: Λ 0, c (z) = -c • log 1 -z c (cf. (172)) is the cumulant generating function of the Gamma distribution = GAM ( c, c) with rate parameter (inverse scale parameter) c and shape parameter c; hence, ϕ 0, c ∈ Υ(]0, ∞[).

  )) is the cumulant generating function of the Compound-Poisson-Gamma distribution = C(P OI(θ), GAM (α, β)) with θ = c γ > 0, rate parameter (inverse scale parameter) α = c 1-γ > 0, and shape parameter β = γ 1-γ > 0. In other words, W has the comfortably simulable form W = N i=1 W i 33 for some i.i.d. sequence ( W i ) i∈x of Gamma GAM (α, β) distributed random variables (with parameter-pair (α, β)) and some independent P OI(θ)-distributed random variable N . Hence, ϕ γ, c ∈ Υ(]0, ∞[). • Type: is an infinitely divisible distribution (cf. Proposition 34), mixture of a one-point distribution at zero and a continuous distribution on [0, ∞[, with [{0}] = ¥[W = 0] = e -θ and [B] = ¥[W ∈ B] = B f c,γ (u) du for every (measurable) subset of ]0, ∞[ having density f C(P OI(θ),GAM (α,β)) (y) := exp (-α • y

1 c

 1 ) ) is the well-known cumulant generating function of the Normal distribution (Gaussian distribution) = N (1, ) with mean 1 and variance 1 c . Thus, ϕ 2, c ∈ Υ(] -∞, ∞[). • Type: is an infinitely divisible (cf. Proposition 34) continuous distribution with density f N (1, 1 c ) (y) := c 2π •exp(-c•(y-1) 2 2

Remark 49 : 1 c

 491 As a continuation of Remark 38 and the note in the third line after[START_REF] Jiang | Deep neural networks for the evaluation and design of photonic devices[END_REF], we have shown as a side effect thatfor γ ∈ ] -∞, -1] ∪ ]0, 1[ ∪ [2,∞[ the distributions γ and 1-γ of Example 48(b)-(e) are inverse to each other. Example 50: for the power-divergence context of Example 40 we obtain: (a) Case γ = 1, c > 0, anchor point c = 0: Λ 1, c (z) = c • exp( z c ) -1 (cf. (175)) is the cumulant generating function of = • P OI( c) being the " 1 c -fold Poisson distribution with mean c" which means that W = 1 c • Z for a P OI( c)-distributed random variable Z. Thus, ϕ 1, c ∈ Υ(]0, ∞[).

  (b) Case γ = 1, c = 1, anchor point c ∈ : Λ (c) 1,1 (z) = e c • (e z -1) + z • (1 -e c ) (cf. (178)) is the well-known cumulant generating function of the "shifted Poisson distribution" = P OI(e c )+1-e c , i.e. W := Z+1-e c with a P OI(e c )-distributed random variable Z. Hence, ϕ (c) 1,1 ∈ Υ(]1 -e c , ∞[). • Type: is a discrete distribution with frequencies: ¥[W = +1-e c ] = exp(-e c )• e c•

Remark 51 :

 51 (a) One can see from the Examples 48 and 50 the interesting effect that the "homogeneous" class of power-divergence generators (ϕ γ ) γ∈ are connected to a "very inhomogeneous" family ( γ ) γ∈ of W -distributions: discrete, continuous, mixture of discrete and continuous, as the parameter γ varies. Moreover, some cases satisfy ¥[W = 0] = 0 and some ¥[W = 0] > 0, some ¥[W > 0] = 1 and some ¥[W > 0] ∈]0, 1[. (b) As a continuation of Remark 38 and the note in the last line of Example 40(a), we have shown as a side effect that for the the natural-anchor-point choice c = 0, the distributions 1 of of Example 50(a) and 0 of Example 48(a) are inverse to each other. Example 52: for the context of Example 41 we obtain: Case c > 0, anchor point c = 0: Λ bw,β, c

  )) is the cumulant generating function of a probability distribution [ • ] = ¥[ W ∈ • ] of a random variable W , which can be constructed as follows: W := W β -( 1 β -1), where W is the random variable constructed in Example 48(d) with γ = -1 and with c replaced by c

in ( 213 ) 2 .

 2132 (cf. Example 48(d)) with γ = -1 and with c replaced by c β Example 53: for the context of Example 43 we obtain: (a) Case α

( b ) 1 c

 b1 Case α ∈ ] -1, 0[, c > 0, anchor point c = 0: for any integer m ∈ x being strictly larger than c and the choice α = -c m , we obtain Λ gKL,-c/m, c (z) = m • log((1 -c m ) + c m • e z/ c ) (cf. (184)) which is the cumulant generating function of = • BIN (m, c m ) being the " 1 c -fold Binomial distribution with parameters m and c m " which means that W = 1 c • Z for a BIN (m, c m )-distributed random variable Z. Thus, ϕ gKL,-c/m, c ∈ Υ(]0, ∞[).

Example 54 :

 54 for the context of Example 45 we obtain: Case of anchor point c = 0: Λ twop (z) = log p • e z1•z + (1 -p) • e z2•z (cf. (191)) is the well-known cumulant generating function of the two-point probability distribution

Case 6 :

 6 Example 50(a): γ = 1, c > 0, anchor point c = 0. It holds that U * n k k

B. Estimators for the statistical minimization problem 1 )

 1 General case, part 1: In the previous Subsection VI-A, as a first step we have estimated ¥ ξ W n ∈ Ω in terms of the improved IS estimator Π improved L . From this, as a second step, we have derived -on the basis of Theorem 10 -the estimator D ϕ (Ω, P) := -1 n log Π improved L (cf. (228)) of the minimum distance D ϕ (Ω, P) := inf Q∈Ω D ϕ (Q, P), where P ∈ K >0 and Ω ⊂ K . Recall that Ω := Ω/M P with M P := K i=1 p i > 0, and that

  )); hence, on the k-th block of indexes I (n) k all the X i 's share the same value d k . Moreover, recall that (W i ) i∈x is a family of independent and identically distributed -valued random variables with probability distribution [• ] := ¥[W 1 ∈ • ] being connected with the divergence generator ϕ ∈ Υ(]a, b[) via the representability (6), such that (

  = exp {τ k • u -Λ (τ k )} = exp {τ k • u} M GF (τ k ), which leads to the moment generating functiondom(M GF ) -τ k z → M GF U k (z) := e zy dU k (y) = M GF (z + τ k ) M GF (τ k ) .

M

  i.d. vectors (W 1 , .., W M ) -whose independent components have common distribution -until ξ wW M,X belongs to Ω Ω. Call (W * 1 , .., W * M ) the corresponding vector and W * the arithmetic mean a context where the second argument in D ϕ (•, •) is a probability vector, as follows: in terms of M P := K i=1 p i > 0 we normalized P := P/M P , and Q:= Q/M P for Q in Ω. With ϕ ∈ Υ(]a, b[) defined through ϕ := M P • ϕ, we have obtained D ϕ (Q, P) = P • p k • ϕ M P • q k M P • p k M P = D ϕ ( Q, P) (cf. (

since ϕ( 1 )Proposition 61 : 249 )

 161249 = 0 = ϕ[START_REF] Aalen | Modeling the heterogeneity in survival analysis by the compound Poisson distribution[END_REF]. With the help of these, we obtain the following Under the assumptions of Theorem 10, for any set Ω ⊂ M := K with (7) one has-inf Q∈int( Ω) D ϕ Q, P ≤ lim inf n→∞ 1 n log ¥ ξ W n ∈ Ω ≤ lim sup n→∞ 1 n log ¥ ξ W n ∈ Ω ≤ -inf Q∈cl( Ω) D ϕ Q, P . (Proofof Proposition 61. Recall from Remark 15(v) that I (n) k := {i ∈ {1, . . . , n} : x i = d k } and n k := card(I

  proof will follow from a similar treatment as for the standard Cramer LDP in K . The only difference lies in two facts: the number of the summands for the coordinate k is n k , the number of x i 's which equal d k , instead of n in the standard case. Furthermore we will need to substitute n k by its equivalent n • p k , which adds an approximation step. For the upper bound, the proof is based on the corresponding result for B = B 1 × • • • × B K where the B k 's are open bounded intervals on + . Since the sequence ( x 1 , . . .) satisfies lim n→∞ n k n = p k , (cf. (22))

Φ 252 ) 62 :Lemma 63 :

 2526263 P (A) := inf Q∈A D ϕ (Q, P) , A ⊂ M := K , (Lemma For any open set A ⊂ M := K one has Φ P (A) = Φ P (cl(A)).This is clear from the continuity of Φ P . For any A ⊂ M := K satisfying (7) one has Φ P (cl(A)) = Φ P (A) = Φ P (int(A)).

Lemma 64 :

 64 If Ω Ω ⊂ K satisfies condition[START_REF] Ahlswede | Identification entropy[END_REF], then Ω Ω := m =0 cl(m • Ω Ω) has the property[START_REF] Ahlswede | Identification entropy[END_REF].

e

  z•y d(y), z ∈]λ -, λ + [. (272) Now, let ϕ := c • ϕ ∈ Υ(]a, b[) for arbitrarily fixed c > 0. From the application of (6) to ϕ we obtain ϕ(t) = sup z∈] λ-, λ+[   z • t -log e z• y d c ( y) probability distribution c on . Here, according to (G9i) for ϕ we have used λ -:= inf t∈]a,b[ ϕ (t) = c • λ - and λ + := sup t∈]a,b[ ϕ (t) = c • λ + . Dividing (273) by c, we arrive at t -log e z• y• c d c ( y) hence for the exponential of its Fenchel-Legendre transforme ϕ * (z) = e z• y• c d c ( y) 1/ c , z ∈]λ -, λ + [.(275)Here, according to (G9i) for ϕ we have used λ-:= inf t∈]a,b[ ϕ (t) = c • λ -and λ + := sup t∈]a,b[ ϕ (t) = c • λ + .From (272) and (275) we deduce for c := 1 n the relation M GF (z) = (M GF 1/n ( z n )) n for all n ∈ x which (with the help of (ii)) implies the infinitely divisibility of . For the reverse direction, let us assume that ϕ ∈ Υ(]a, b[) and that the corresponding is infinitely divisible. Recall that ]a, b[= int(dom(ϕ)). Moreover, we fix an arbitrary constant c > 0. Of course, there holds c • ϕ ∈ Υ(]a, b[) and dom( c • ϕ) = dom(ϕ). Furthermore, by multiplying (271) with c > 0 and by employing (i), (ii) we getc • ϕ(t) = sup z∈]λ-,λ+[   c • z • t -log e c•z• y c d(y) •λ-, c•λ+[   z • t -log e z•y d c (y)   , t ∈]a, b[;(276)for some probability distribution c on .Proof of Proposition 35.It is well known that a candidate functionM :] -∞, 0[ →]0,∞[ is the moment-generating function of an infinitely divisible probability distribution if and only if (log M ) is absolutely monotone (see e.g. Theorem 5.11 of Schilling et al. [322]). By applying this to M (z) := e -a•z+ϕ * (z) respectively M (z) := e b•z+ϕ * (-z) , one gets straightforwardly the assertion (a) respectively (b); notice that the light-tailedness follows then from (G1) to (G8), and b = ∞ respectively a = -∞ can be deduced from the fact that the support of an infinitely distribution is always (one-sided or two-sided) unbounded. For the third case a = -∞, b = ∞ one can use the assertion (cf. e.g. Morris [267], p.73) that a candidate function M : ]λ -, λ + [ → ]0, ∞[ is the momentgenerating function of an infinitely divisible probability distribution if the connected function z → (log M ) (z)/(log M ) (0) is the moment-generating function of some auxiliary probability distribution; but the latter is equivalent to exponentially convexity (cf. Theorem 30(b)). By applying this to M (z) := e ϕ * (z) , one ends up with (c).

n

  x∈ n : T (x)=λI W (x) = inf x∈(dom( ϕ)) n : T (x)=λ I W (x) = inf x∈(dom( ϕ)) n : T (x)=λ k • ϕ(λ k ) = n • K k=1 p k • ϕ(λ k ) = inf x∈]t sc -,t sc + [ n : T (x)=λ I W (x) ;(287)here, we have employed the following facts: (i) the right-most infimum in (286) is achieved by minimizing each of the Kterms i∈I (n) k ϕ(x i ) under the linear constraint 1 n k • i∈I (n) k

•

  if b = +∞, then for all λ > 0 there holds lim u→+∞ ϕ (λu) ϕ (u) = λ β ;

p k • ϕ v k p k dv 1

 1 t→∞ D ϕ Γ t , P = +∞.There holds the following Proposition 65: With the above notation and under condition (H ϕ), denote by B a neighborhood of g andB t := t • B. Then p[Γ t ∩ B c t | Γ t ] = ¥ [ T ∈ Γ t ∩ B c t | T ∈ Γ t ] → 0 as t → ∞,which proves that simulations under[START_REF] Lin | A new probabilistic representation of color image pixels and its applications[END_REF] produce proxies of the dominating points g t in Γ t .Before we start with the proof of Proposition 65, we first quote the following Lemma 66: Let ϕ satisfy (H ϕ) with b = +∞. Then for all A in K such that α := D ϕ (A, P) . . . dv k = -D ϕ A, P .

  r) • e -r dr dv 1 . . . dv K = te -t α • • • 1 ]-α,∞[ (s) • 1 A (v) • 1 B c ( α+s) (v) • e -ts ds dv 1 . . . dv K = te -t α ∞ -α V ol (A ∩ B c (α + s)) • e -ts ds. Let I t := t • ∞ 0 V ol (A ∩ B c ( α + s)) e -ts ds. We prove that lim t→∞ 1 t log I t = 0.(292)When a = -∞ or b = +∞, since ϕ satisfies (H ϕ) there exists a polynomial P such that V ol (A ∩ B c (α + s)) ≤ P (s) ;

VV

  i -W * ≤ δ and write S ξ wV n,X ∈ Ω Ω = S {ξ wV n,X ∈ Ω Ω} ∩ A n,δ + S {ξ wV n,X ∈ Ω Ω} ∩ A c n,δ =: I + II.By the law of large numbers, the second term II tends to 0 as n tends to infinity. Moreover, one can rewriteI = S m∈[W * -δ,W * +δ] i ∈ V η W * q * k p kfor all k ∈ {1, . . . , K} ,

  Kullback-Leibler projection of on the set of all distributions on with expectation W * • q *

  X n ] and obtain the followingTheorem 14: Suppose that (X i ) i∈x is a sequence of random variables with values in Y := {d 1 , • • • , d K } such that (26) holdsfor some probability measure [• ] on Y having no zero-mass frequencies (or equivalently, (30) holds for some probability vector P ∈ K >0 ). Moreover, let (W i ) i∈x be a family of independent and identically distributed -valued random variables with probability distribution [•

  Notice that θ ∈ ]a F , b F [ if and only if β 1 ∈ ] β23 , β 2 [; if (say) the latter holds, then one has the continuity lim t→ θ

  ∈ • ] = [ • ]); recall that from this, we need to simulate a sequence (W i ) i∈x of i.i.d. copies of W which are the crucial building ingredients of ξ W n in Theorem 10, respectively, of ξ wW n,X in Theorem 14.

	For the above-mentioned Examples 39 to 46, we can give explicit solutions to the representabilities (209) respectively (210);
	this is achieved in the following Examples 48 to 55 (notice that the corresponding supports of are explicitly mentioned in
	the summarizing Table 1 above):

  )) is the cumulant generating function of a "tilted (i.e. negatively distorted) stable distribution" [ • ] = ¥[W ∈ • ] of a random variable W , which can be constructed as follows: let Z be an auxiliary random variable (having density f Z and support supp(Z) = [0, ∞[) of a stable law with parameterquadruple

  When dealing with a context where a or b have finite value and the corresponding sets Γ t are "far away" from Γ in terms of the distance measure D ϕ •, P , then V ol(A ∩ B c (α + s)) is bounded. Hence, lim sup t→∞ 1 t log I t ≤ 0. Now fix ε > 0. Then, since V ol (A ∩ B c (a + s)) is increasing in s, we get I t ≥ t ∞ ε V ol (A ∩ B c (α + s)) e -ts ds ≥ V ol (A ∩ B c (α + ε)) e -tε. Therefore (292) holds, which concludes the proof.We now turn to the Proof of Proposition 65. Without loss of generality, let b = +∞, Γ t as in[START_REF] Perera | Toplogical rationality of supply chain networks[END_REF] and Condition (H ϕ) hold. Moreover, consider an arbitrary neighborhood B of g and the corresponding neighborhoods B t := t • B of g t = t • g. There holds

												∞		
						1 t	log I t ≤	1 t	log	P	u t	te -u du
												0		
	which yields that for large t									1 t	log I t < 0.
	Hence log V ol (A ∩ B 1 1 t log I t ≥ 1 t ϕ(t) log ¥ [T ∈ Γ t ] = C ϕ(t) log Γt exp -K k=1 p k • ϕ w k p k dw 1 . . . dw K
	(1) =	CK ϕ(t)	log t +	C ϕ(t)	log							K k=1	p k • ϕ	v k p k	• (1 + o(1))	dv 1 . . . dv K
	(2) =	CK ϕ(t)	log t +	C ( ϕ(t)/t β )	•	1 t β log	  (1 + o(1)) •	Γ	exp -t β	K k=1	p k • ϕ	v k p k	dv 1 . . . dv K	 
	(3) = -	Ct β ϕ(t)	• D									

c (α + ε)) -ε which yields lim inf t→∞ 1 t log I t ≥ 0. Γ exp -t β • ϕ (Γ, P) • (1 + o(1))

i.e. Ω ∈ T

in order to emphasize the dependence on Φ, one should use the notations (ξ Φ,n ) n∈x , ¥ Φ,n , etc.; this is avoided for the sake of a better readability.

in particular, this implies that has light tails.

recall that an alternative naming also used in literature is to call Ω a model class (rather than model), and each P ∈ Ω a model (rather than model element)

on the common underlying probability space (X, A, ¥)

in some literature, the (square root of the) Hellinger divergence (HD) is misleadingly called Bhattacharyya distance; however, the latter is basically some rescaled logarithm of HD, namely R 1/2 (Q, P) (cf. (69) with γ = 1/2)

because in this case there are some indications that the representation (6) only holds for some signed probability distribution (e.g. having a density with positive and negative values).

in the usual sense that D hγ (Q, P) ≥ 0 with equality iff Q = P.

and analogously power divergences D c•ϕγ (Q, P) := D c•ϕγ (T 1 (Q), T 2 (P)) etc.

in the classical sense, with respect to Lebesgue measure

in the classical sense, with respect to Lebesgue measure

here and analogously henceforth, by this we mean the condition (85) as it appears in the Proposition 26(a) respectively Proposition

27(a) 

see e.g. Applegate et al.[START_REF] Applegate | The Traveling Salesman Problem[END_REF], Gutin & Punnen[START_REF]The Traveling Salesman Problem and Its Variations[END_REF], Cook[START_REF] Cook | Pursuit of the Traveling Salesman[END_REF] for comprehensive books on TSP, its variations and its applications to logistics, machine scheduling, printed circuit board drilling, communication-network frequencing, genome sequencing, data clustering, and many others.

for the relevant conversion between the involved Riemann-Stieltjes integral with nondecreasing (but not necessarily right-continuous) integrator into a measure integral, one can apply the general theory in e.g. Chapter 6 of Chow & Teicher[START_REF] Chow | Probability Theory[END_REF].

basically by Theorem 30 with M (•) defined in G9(ii),(iii) or (iv); see Appendix D.

e.g. the uniform distribution P unif on {1, . . . , K}

since we assume 0 ∈]λ -, λ + [, we have already used the meaningful abbreviation M GF (rather than LST) in[START_REF] Mcleish | Simulating random variables using moment-generating functions and the saddlepoint approximation[END_REF] 

(G7) if a > -∞, then a = t sc -; if a = -∞, then either t sc -= -∞ or ϕ(t) = ϕ(t sc -) + ϕ (t sc -) • (t -t sc -) for all t ∈] -∞, t sc -[ (affine-linearity); notice that ϕ (t sc -) < 0; (G8) if b < ∞, then b = t sc + ; if b = ∞, then either t sc + = ∞ or ϕ(t) = ϕ(t sc + ) + ϕ (t sc + ) • (t -t sc + ) for all t ∈]t sc + , ∞[ (affine-linearity); notice that ϕ (t sc + ) > 0; (G9) the Fenchel-Legendre transform (also called convex conjugate) of ϕ ϕ * (z) = sup (G9ii) if a > -∞, then

• λ -= -∞;

• the function z → e -a•z+ϕ * (z) =: M (z) is absolutely monotone on ] -∞, 0[, i.e. all derivatives exist and satisfy ∂ k ∂z k M (z) ≥ 0 (k ∈ x 0 , z ∈] -∞, 0[);

• the function z → e ϕ * (z) =: M (z) is exponentially convex on ]λ -, λ + [, i.e. M (•) is continuous and satisfies n i,j=1

for all n ∈ x, c i , c j ∈ and z i , z j ∈]λ -, λ + [;

• lim z→0-M (z) = 1; as a side remark, notice the well-known fact that exponential-convexity is stronger than the usual log-convexity. (G10) the endpoints of int(dom(ϕ)) =]a, b[ have the following important "functioning" for the underlying probability distribution (cf. [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF]) respectively of an associated random variable W with b ∈ dom(ϕ). (G11) the first two derivatives of ϕ at the point 1 have the following important "functioning" for the underlying probability distribution (cf. [START_REF] Aghamohammadi | Thermodynamics of random number generation[END_REF]) respectively of an associated random variable W : (G11i) 1 = ϕ -1 (0) = y d(y) = E ¥ [W ] where ϕ -1 (•) denotes the inverse of the first derivative ϕ (•) of ϕ(•), (G11ii)

in particular, scaling c • ϕ ( c > 0) does not change the mean 1 but the variance of W .

The corresponding proof of Proposition 29 will be given in Appendix D, except for the second items of (G9ii) and (G9iii) as well as the first item of (G9iv). Those will be treated in the second next paragraph below, because the corresponding line of argumentation builds an insightful start for subsequently performed procedures to further track down the weight distribution .

The properties (G1) to (G9iv) constitute necessary conditions for a pregiven function ϕ to belong to Υ(]a, b[)); accordingly, these should be verified first, in concrete situations where one aims to apply the BS approach. An important role is played by guess is by no means produced in order to provide a direct estimate of D ϕ ( Ω, P) but merely to provide the IS distribution S which in turn leads to a sharp estimate of D ϕ ( Ω, P).

Proxy method 1: in some cases we might have at hand some particular point Q * := ( q * 1 , .., q * K ) in Ω; the resulting IS distribution S with Q substituted by Q * is not optimal in the sense of [SB], but anyhow produces an estimator with good hitting rate, possibly with a loss in the variance. A simple way to obtain such a point Q * in Ω is to simulate runs of (say) M -variate i.i.d. vectors W under ⊗M until the first time where ξ W M belongs to Ω; then we set Q * := ξ W M for the succeeding realization W. Before we proceed, it is useful to mention that the need for a drastic fall in the number of simulation runs pertains for cases when D ϕ ( Ω, P) is large. The following construction is suited to this case, which is of relevance in applications both in optimization and in statistics when choosing between competing models none of which is assumed to represent the true one, but merely less inadequate ones.

Proxy method 2: when D ϕ ( Ω, P) is presumably large, we make use of asymptotic approximation to get a proxy of Q. For this, we define a sampling distribution on K fitted to the divergence through

where C is a normalizing constant. Let T be a K-variate random variable with density f . The distribution of T given

where Q is the "dominating point of Ω " in the sense that Q := D -1 λ is the above-defined transform of the dominating point λ (assuming uniqueness); a precise argumentation under adequate conditions is postponed to Appendix G. Accordingly, we obtain a proxy Q * of Q by simulating a sequence of independent K-variate random variables T 1 , . . . with distribution ( 220) until (say) T m belongs to Ω and set Q * := T m .

To proceed with the derivation of the IS sampling distribution S on n , we fix Q * := ( q * 1 , .., q * K ) to be a proxy of Q or an initial guess in Ω. As an intermediate step, we construct the probability distribution U k on given by

where τ k ∈ int(dom(M GF )) is the unique solution of the equation Λ (τ k ) = q * k p k and thus -by relation [START_REF] Pardo | Order-α weighted information energy[END_REF] of Appendix F -we can compute explicitly

Therefore, U k is the Kullback-Leibler projection of on the class of all probability distributions on whose expectation is q * k . As a side remark, notice that one possible way of obtaining an explicit form of the probability distribution U k may be by identification through its moment generating function

of which all ingredients are principally available. For instance, this will be used in Example 58 below. From [START_REF] Lindsay | Efficiency versus robustness: the case for minimum Hellinger distance and related methods[END_REF], we define

which manifests S k as the Kullback-Leibler projection of

on the class of all probability distributions on k whose expectation vector is

which therefore satisfies (recall that

(226) The same procedure with all q * k substituted by the coordinates q k of Q produces S opt . Therefore, S is a substitute for S opt with the change in the centering from the unknown vector Q to its proxy Q * .

As a straightforward consequence of ( 219) and [START_REF] Liu | Renyi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory[END_REF], we obtain the improved IS estimator of ¥ ξ W n ∈ Ω as

where V ( )

is the k-th block of the -th replication V ( ) of V under S, and the k-th importance-sampling factor is

Summing up things, we arrive at the following algorithm in case that Ω has a unique dominating point (in the above-defined sense):

Step D1 Exemplarily, we start with proxy method 2 (the other proxy method 1 works analogously): get a proxy Q * of Q by simulating a sequence of independent K-variate random variables T 1 , . . . with distribution ( 220) until (say) T m belongs to Ω and set

Step D2 For all k in {1, . . . , K} compute

Step D3 For all in {1, . . . , L} perform a run of V ( ) under S as follows: For all k in {1, . . . , K} simulate

) to be the corresponding row vector. Construct V ( ) as the row vector obtained by concatenating the V ( )

, and make use of

given in [START_REF] Liu | Learning to Detect a Salient Object[END_REF] with the τ k 's obtained in Step D2 above to define (in the light of ( 217), ( 218)) the BS minimum-distance estimator

For many cases, the simulation burden needed for the computation of Π improved L -and thus of D ϕ (Ω, P) -can be drastically reduced, especially for high dimensions K and large sample size n • L. In fact, in terms of the notations n k := card(I

(where * n k is the n k -convolution of the measure ), one can rewrite [START_REF] Liu | Learning to Detect a Salient Object[END_REF] as

it suffices to simulate the K • L random variables of its components. Moreover, denote by ξ wW * M,X the corresponding normalized weighted empirical measure, identified with the K-component vector Q * := (q * 1 , .., q * K ) with q * k defined in [START_REF] Lutwak | Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information[END_REF].

Step S3 For all ∈ {1, . . . , L} simulate independently for all k ∈ {1, . . . , K} a row vector V ( )

with independent components with common distribution U k defined in [START_REF] Lindsay | Efficiency versus robustness: the case for minimum Hellinger distance and related methods[END_REF]. Concatenate these vectors to define the row vector V ( ) .

Step S4 Compute the estimator Π improved L by making use of the formula [START_REF] Luppino | Unsupervised image regression for heterogeneous change detection[END_REF] which turns into the explicit form

Analogously to the paragraph right after [START_REF] Liu | Fast true random number generator based on chaotic oscillation in self-feedback weakly coupled superlattices[END_REF] of the previous Subsection VI-A, in many cases we may improve the simulation burden needed for the computation of the estimator Π improved L . In fact, in terms of the notations W

we can rewrite [START_REF] Ma | Defining individual-level genetic diversity and similarity profiles[END_REF] as

with

and

Clearly, the random variable W ,p K ) is a pregiven known probability vector 34 (rather than the limit of the vector of empirical frequencies/masses of a sequence of random variables X i , cf. ( 30)), then we proceed analogously as above by replacing p emp n,k with p k ; correspondingly, we obtain improved estimators of all the infimum-quantities respectively supremum-quantities (e.g. Renyi entropies, diversity indices) in the parts (a) of the Propositions 22, 23, 24, 25, 26 and 27 with A = 1.

For the sake of brevity, in the following we only present explicitly the outcoming improved estimators for the power divergences (in the "X i -context" ). Indeed, we simply replace the ¥ X n 1 [ξ wW n ∈ Ω Ω] in the formulas (84), ( 92), (99) (with A = 1) by the improved estimator Π improved L obtained through (i) to (iii); for arbitrarily fixed c > 0, this leads to the improved powerdivergence estimators (BS estimators of power divergences)

Let us finally remark that from the above-mentioned Steps S1 to S4 (and analogously D1 to D4) one can see that for our BS method we basically need only a fast and accurate -pseudo, true, natural, quantum -random number generator. The corresponding computations can be principally run in parallel, and require relatively moderate computer memory/storage; a detailed discussion is beyond the scope of this paper, given its current length.

3) General case, part 2: The algorithm which is presented in this section aims at the evaluation of the bounds

obtained in Section IV-C2, where Q * satisfies the above equality (1). The estimator of the lower bound in ( 245) is

defined in [START_REF] Ma | Defining individual-level genetic diversity and similarity profiles[END_REF].

We now turn to an estimate of the upper bound. Consider for any fixed

where P emp n was defined in the course of [START_REF] Bai | Grain scattering noise modeling and its use in the detection and characterization of defects using ultrasonic arrays[END_REF]. Such m n (Q) is well defined for all Q since it satisfies the equation (in m)

Since the mapping m → D ϕ (m • Q, P) is convex and differentiable, existence and uniqueness of m n (Q) hold; furthermore,

) is negative when m = min k p emp n,k /q k and positive when m = max k p emp n,k /q k .

An estimate of the distribution Q * is required. This can be achieved as follows:

• Get some Q i := (q i,1 , . . . , q i,K ) in Ω Ω; this can be obtained by simulating runs of vectors (W 1 , .., W n ) through i.i.d. sampling under . Evaluate m n (Q i ) by solving (246) (with q i,k instead of q k ) for m, which is a fast calculation by the bisection method.

That this algorithm converges in the sense that it produces some Q * is clear. Since by ( 245)

we have obtained both estimated lower and upper bounds for D ϕ (Ω Ω, P).

That the upper bound is somehow optimal can be seen from the power case developed in Section VI-B2. Indeed, in this case the solution of equation ( 246) is explicit and produces m(Q) as a function of D ϕ (Q, P) through a Hellinger integral, and the mapping

APPENDIX A PROOFS -PART 1

Proof of Theorem 10. This is a straightforward application of the classical Cramer-type Large Deviation Theorem in the vector case (see Theorem 2.2.30 and Corollary 6.1.6 in Dembo & Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). Recall that above we have transformed the original problem into

APPENDIX C PROOFS -PART 3

Proof of Lemma 16. From (44) one gets straightforwardly for arbitrary c > 0

where we have used the three m-independent abbreviations

)

) 

. Hence, ( 48) is established. The assertions ( 49) and ( 50) follow immediately by monotonicity inspection of x → c γ • 1 -

The subcase γ ∈]0, 1[ (cf. the third line of ( 258)) works analogously if H γ > 0; furthermore, if H γ = 0 -which can only appear when P, Q have disjoint supports (singularity)-then

γ which is (the corresponding special case of) [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF]. (ic) In the subcase γ ∈]1, ∞[ (cf. the fifth, sixth and seventh line of ( 258)) it is straightforward to see that the desired infimum can not be achieved for m < 0. Hence, one can proceed analogously to subcase (ia). (id) The assertions [START_REF] Bi | The role of the Bhattacharyya distance in stochastic model updating[END_REF] to [START_REF] Bilik | Minimum divergence approaches for robust classification of ground moving targets[END_REF] are straightforward. (ii) Case γ = 1. From the fourth line of ( 258), one obtains the unique minimizer m min = exp{-I/A} and the minimum [START_REF] Blanchet | On distributionally robust extreme value analysis[END_REF]. The monotonicity of x → c • (1 -exp{-x/ c}) for x ≥ 0 implies immediately ( 56) and ( 57); moreover, ( 58) and ( 59 (M2) the effective domain dom(M GF ) is an interval which contains 0 and which may be degenerated or even the whole real line; correspondingly, we denote its interior by ]λ -, λ + [:= int(dom(M GF )) which may be the empty set (in case that dom(M GF ) = {0}, i.e. λ -= λ + = 0); clearly, there holds λ -∈ [-∞, 0] and λ + ∈ [0, ∞];

(M3) M GF is continuous on dom(M GF ) and lower semicontinuous on ;

(M4) if λ -= λ + , then M GF is real analytic and thus infinitely differentiable on ]λ -, λ + [;

W exists and is finite and can be computed in terms of the k-th derivative M GF

which, by the way, then allows the interpretation of M GF as "moment generating function of resp. W " 35 ;

Hence, the logarithm of the Laplace-Stieltjes transform

(which in case of 0 ∈]λ -, λ + [ can be interpreted as cumulant generating function) "carries over" (M1) to (M6), which partially can be even refined: (C1) Λ takes values in ] -∞, ∞]; (C2) dom(Λ ) = dom(M GF ) and thus int(dom(Λ )) = ]λ -, λ + [;

(C3) Λ is continuous on dom(Λ ) and lower semicontinuous on ;

(C6) under the assumption λ -= λ + there holds: Λ is strictly convex on ]λ -, λ + [ if and only if is not a one-point distribution (Dirac mass) if and only if W is not a.s. constant; otherwise, Λ is linear;

(C7) under the assumption that is not a one-point distribution (Dirac mass) -with the notations a := inf supp()

Notice that (C7ii) to (C7ix) cover all possible constellations. For a proof of (C7ii) to (C7vii) as well as further details, see e.g. Section 9.1 in Borovkov [START_REF] Borovkov | Probability Theory[END_REF]. By contradiction, (C7viii) follows from (C7ii) and (C7ix) follows from (C7iii). Moreover, (C7i) is a consequence (C7ii) to (C7ix). As a side remark, notice that (C6) refines (M6).

According to the representability requirement (6), one has

(i.e. the divergence generator ϕ must be equal to the Fenchel-Legendre transform Λ * of a cumulant generating function Λ ) of some probability distribution , such that λ -< 0 < λ + holds. Moreover, ϕ should satisfy ϕ(1) = 0, and should be finite as well as strictly convex in a non-empty neighborhood ]t sc -, t sc

. The latter rules out that is any one-point distribution (Dirac distribution), say = δ y0 for some y 0 ∈ , since in such a situation one gets Λ (z) = z • y 0 , and thus ϕ(t) = Λ * (t) = 0 for t = y 0 and ϕ(t) = Λ * (t) = ∞ for all t ∈ \{y 0 } (even in the case y 0 = 1 for which ϕ(1) = 0 is satisfied). Consequently, Λ is strictly convex on ]λ -, λ + [ = int(dom(Λ )) (cf. (C6)) and (C7) applies. Clearly, by continuity one gets

For t ∈]t sc -, t sc + [, the optimization problem ( 265) can be solved explicitly by the well-known "pure/original" Legendre transform, namely

Let us inspect the further cases t ≤ t sc -. In the contexts of (C7iv) and (C7viii), this is obsolete since t sc -= a = -∞. For (C7ii), where t sc -= a > -∞, one can show Λ * (a) = -log [{a}] = -log ¥[W = a ] which together with ( 264) proves (G10ii); moreover, Λ * (t) = ∞ for all t < a (see e.g. Section 9.1 of Borovkov [56]). In the setup (C7vi), where t sc

As far as the cases t ≥ t sc + is concerned, in the situations of (C7v) and (C7ix), this is obsolete since

] which together with ( 264) proves (G10iii); moreover, Λ * (t) = ∞ for all t > b (see e.g. Section 9.1 of Borovkov [56]). In the setup (C7vii), where t sc

As a side effect, we have thus also proved (G10i) and (G3) (notice that in (G3) we have started with a, b to be the endpoints of the support of respectively W , in contrast to Definition 3 where a, b are defined as the endpoints of the effective domain of ϕ).

To proceed, from ( 264) and ( 266) we obtain

which -together with the investigations below (266) -provides (G4) and (G5); moreover, (G6) is immediate since the infinite differentiability is straightforward and ϕ (1) = 0 because we have required both the nonnegativity of ϕ and (G2) (cf. the definition of Υ(]a, b[)). The property (G7) follows from (C7ii), (C7iv), (C7viii), ( 264), [START_REF] Morris | Natural exponential families with quadratic variance functions[END_REF] and ϕ (t sc -) = Λ -1 (t sc -) = λ -. Analogously, we get (G8) from (C7iii), (C7v), (C7ix), [START_REF] Morales | Asymptotic properties of divergence statistics in a stratified random sampling and its applications to test statistical hypotheses[END_REF], [START_REF] Mühlroth | Artificial intelligence in innovation: how to spot emerging trends and technologies[END_REF] and ϕ (t sc + ) = Λ -1 (t sc + ) = λ + . Let us continue with (G9). By applying the general theory of double Fenchel-Legendre transforms (bi-conjugates), [START_REF] Harremoes | On the Bahadur-efficient testing of uniformity by means of the entropy[END_REF] 

which deduces (G9i). The properties (G9ii), (G9iii) and (G9iv) follow from Theorem 30 (cf. the discussion thereafter). Finally, we obtain (G11i) and (G11ii) from ( 269), ( 262) and [START_REF] Momeni | An information theory-inspired strategy for design of reprogrammable encrypted graphenebased coding metasurfaces at terahertz frequencies[END_REF].

Proof of Proposition 31. The assertions follow immediately from ( 157), ( 158), ( 159), Theorem 30, (269) (and the discussion thereafter) as well as (M5).

APPENDIX E PROOFS -PART 5

Proof of Proposition 34. The assertion follows straightforwardly from the following two facts: (i) a moment generating function M GF is infinitely divisible if and only if M GF c is a moment generating function for all c > 0 (cf. 

Hence, Λ is strictly convex and smooth (because of the smoothness of F -1 ), and satisfies Λ(0) = 0 as well as Λ (0) = 1. Also, the corresponding extensions of Λ to z = λ -and z = λ + are continuous.

(ii) It is straightforward to see that on ]t sc -, t sc + [ the function ϕ is differentiable with strictly increasing derivative ϕ

Hence, ϕ is strictly convex and smooth (because of the smoothness of F ), and satisfies ϕ(1) = 0 as well as ϕ (1) = 0. Also, the corresponding extensions of ϕ to t = t sc -and t = t sc -are continuous. Hence (G1), (G2), (G5) and (G6) hold. To prove (G3) (and hence (G1)), let us first notice that obviously there holds a ≤ t sc -and t sc + ≤ b. Moreover, the validity of ϕ(t) < ∞ for all t ∈]t sc -, t sc + [ is clear from (163

and the involved integral over the continuous function F -1 is taken over a compact interval.

For the subcase t sc -= -∞ = a we have thus shown dom(ϕ)∩] -∞, 1] =] -∞, 1] =]a, 1], whereas for the subcase

In the subcase "t sc -> -∞ and ϕ(t sc -) = ∞", due to the strict convexity of ϕ one always has lim t↓t sc -ϕ (t) = -∞; this implies, by the below-mentioned [START_REF] Onn | Nonlinear Discrete Optimization[END_REF], that λ -= -∞ and thus a = t sc -; from [START_REF] Jaksetic | Exponential convexity method[END_REF] In the subcase "t sc + < +∞ and ϕ(t sc + ) = ∞", due to the strict convexity of ϕ one always gets lim t↑t sc + ϕ (t) = ∞; this implies, by the below-mentioned [START_REF] Pandey | Renyi entropy as a measure of cosmic homogeneity[END_REF], that λ + = ∞ and thus b = t sc + ; from [START_REF] Jaksetic | Exponential convexity method[END_REF] we deduce ϕ(t) = ϕ(t sc + )+λ + •(t-t sc + ) = ∞ for all t ∈ ]t sc + , ∞[=]b, ∞[, which leads to dom(ϕ) ∩ [1, ∞[= [1, b[. Putting things together, we have proved (G3). The property (G4) follows straightforwardly from [START_REF] Onicescu | Energie informationnelle[END_REF], the continuity of F and from lim t↓t sc -ϕ (t) = λ -, lim t↑t sc + ϕ (t) = λ + . To see the latter two, from [START_REF] Onicescu | Energie informationnelle[END_REF] we obtain lim The two properties (G7) and (G8) are clear form the above considerations.

(iii) From ( 277) and ( 278) one gets easily

as well as Λ -1 (1) = 0. From this, we derive

and hence, with the help of (281) in combination with (279), ( 280)

i.e. on ]t sc -, t sc + [ the divergence generator ϕ is the classical Legendre transform of the restriction of Λ to ]λ -, λ + [. If "λ -> -∞, Λ(λ -) ∈] -∞, ∞[ and Λ (λ -) ∈] -∞, ∞[" respectively "λ + < -∞, Λ(λ + ) ∈] -∞, ∞[ and Λ (λ + ) ∈] -∞, ∞[", then one can apply classical facts of Fenchel-Legendre transformation to get the corresponding left-hand respectively right-hand linear extensions of ϕ on the complement of ]t sc -, t sc + [, in order to obtain the desired ϕ(t) = sup z∈]-∞,∞[ (z • t -Λ(z)) , t ∈ ; [START_REF] Pardo | About distances of discrete distributions satisfying the data processing theorem of information theory[END_REF] notice that t sc -= lim z↓λ-Λ (z) and t sc + = lim z↑λ+ Λ (z). (iv) This is just the inverse of (iii), by applying standard Fenchel-Legendre-transformation theory.