
HAL Id: hal-03278163
https://hal.science/hal-03278163v2

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Does Comma Selection Help To Cope With Local
Optima?

Benjamin Doerr

To cite this version:
Benjamin Doerr. Does Comma Selection Help To Cope With Local Optima?. Genetic and Evolution-
ary Computation Conference (GECCO ’20), 2020, Online, Mexico. pp.1304-1313. �hal-03278163v2�

https://hal.science/hal-03278163v2
https://hal.archives-ouvertes.fr

Does Comma Selection Help To Cope With Local Optima?
Benjamin Doerr

Laboratoire d’Informatique (LIX)

École Polytechnique, CNRS

Institut Polytechnique de Paris

Palaiseau, France

ABSTRACT
One hope of using non-elitism in evolutionary computation is that

it aids leaving local optima. We perform a rigorous runtime analysis

of a basic non-elitist evolutionary algorithm (EA), the (𝜇, 𝜆) EA, on
the most basic benchmark function with a local optimum, the jump

function. We prove that for all reasonable values of the parameters

and the problem, the expected runtime of the (𝜇, 𝜆) EA is, apart

from lower order terms, at least as large as the expected runtime

of its elitist counterpart, the (𝜇 + 𝜆) EA (for which we conduct the

first runtime analysis to allow this comparison). Consequently, the

ability of the (𝜇, 𝜆) EA to leave local optima to inferior solutions

does not lead to a runtime advantage.

We complement this lower bound with an upper bound that, for

broad ranges of the parameters, is identical to our lower bound

apart from lower order terms. This is the first runtime result for a

non-elitist algorithm on a multi-modal problem that is tight apart

from lower order terms.

CCS CONCEPTS
• Theory of computation� Theory and algorithms for ap-
plication domains; Theory of randomized search heuristics;

KEYWORDS
Comma selection; runtime analysis; theory

ACM Reference Format:
Benjamin Doerr. 2020. Does Comma Selection Help To Cope With Local

Optima?. In Genetic and Evolutionary Computation Conference (GECCO

’20), July 8–12, 2020, Cancn, Mexico. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3377930.3389823

1 INTRODUCTION
The mathematical runtime analysis of evolutionary algorithms

(EAs) and other randomized search heuristics is a young but

established subfield of the general research area of heuristic

For reasons of space, many details and all proofs had to be omitted from this paper.

An extended version with all details and proofs has been posted to the arxiv preprint

server [20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’20, July 8–12, 2020, Cancn, Mexico

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00

https://doi.org/10.1145/3377930.3389823

search [6, 27, 37, 48]. This field, naturally, has started with regard-

ing the performance of simple algorithms on simple test problems:

The problems usually were unimodal, that is, without local optima

different from the global optimum, the algorithms were elitist and

often had trivial populations, and the runtime guarantees only esti-

mated the asymptotic order of magnitude, that is, gave 𝑂 (·) upper
bounds or Ω(·) lower bounds.

Despite this restricted scope, many fundamental results have

been obtained and our understanding of the working principles of

EAs has significantly increased with these works. In this work, we

go a step further with a tight (apart from lower order terms) analysis

of how a non-elitist evolutionary algorithm with both non-trivial

parent and offspring populations optimizes a multimodal problem.

In contrast to the practical use of evolutionary algorithms, where

non-elitism is often employed, the mathematical analysis of evo-

lutionary algorithms so far could find only little evidence for the

use of non-elitism. The few existing works, very roughly speaking

(see Section 2.1 for more details) indicate that when the selection

pressure is large, then the non-elitist algorithm simulates an elit-

ist one, and when the selection pressure is low, then no function

with unique global optimum can be optimized efficiently. The gap

between these two regimes is typically very small. Consequently, a

possible profit from non-elitism would require a careful parameter

choice.

One often named advantage of non-elitist algorithms is their

ability to leave local optima to inferior solutions, which can re-

duce the time spent uselessly in local optima. To obtain a rigorous

view on this possible advantage, we analyze the performance of the

(𝜇, 𝜆) EA on the multimodal jump function benchmark. We note

that, apart from some sporadic results on custom-tailored example

problems and the corollaries from very general results (see Theo-

rems 2.1 and 2.2 further below), this is the first in-depth study of

how a non-elitist algorithm optimizes a classic non-trivial class of

benchmarks with local optima.

Our main result (see Section 4) is that in this setting, the small

middle range between a too small and a too high selection pressure,

which could be envisaged from previous works, does not exist.

Rather, the two undesired regimes overlap significantly. We note

that for the (𝜇, 𝜆) EA, the selection pressure is reasonably well

described by the ratio of the offspring population size 𝜆 to the parent

population size 𝜇. If the selection pressure is low, more precisely, if

𝜆 ≤ (1 − 𝜀)𝑒𝜇 for some constant 𝜀 > 0, then the (𝜇, 𝜆) EA needs an

exponential time to optimize any function 𝑓 : {0, 1}𝑛 → R with at

most a polynomial number of global optima [41]. If the selection

pressure is high, more precisely, if 𝜆 ≥ (1 + 𝜀)𝑒𝜇 for some constant

𝜀 > 0 and 𝜆 is at least logarithmic in the envisaged runtime, then

the (𝜇, 𝜆) EA can optimize many classic benchmark functions in a

https://doi.org/10.1145/3377930.3389823
https://doi.org/10.1145/3377930.3389823

GECCO ’20, July 8–12, 2020, Cancn, Mexico Benjamin Doerr

runtime at most a constant factor slower than, say, the (𝜇 + 𝜆) EA,
see [42] and follow-up works.

Our main result implies (Corollary 4.2) that already when 𝜆 ≥ 2𝜇,

𝜆 is super-constant, and 𝜆 = 𝑜 (𝑛𝑘−1), the runtime of the (𝜇, 𝜆) EA
on all jump functions with jump size 𝑘 ≤ 𝑛1−𝜀 is at least the run-
time of the (𝜇 + 𝜆) EA (apart from lower order terms; to prove this

statement, we also conduct the first so far and sufficiently tight run-

time analysis of the (𝜇 + 𝜆) EA on jump functions (Theorem 3.1)).

Consequently, the two regimes of a too low selection pressure and

of no advantage over the elitist algorithm overlap in the range

𝜆 ∈ [2𝜇, (1 − 𝜀)𝑒𝜇], leaving no space for a possible middle regime

with runtime advantages from non-elitism. We note that our result,

while natural, is not obvious. In particular, as a comparison of the

(1, 1) EA and the (1 + 1) EA on highly deceptive functions shows,

it is not always true that the elitist algorithm is at least as good as

its non-elitist counterpart.

Our result does not generally disrecommend to use non-elitism,

in particular, it does not say anything about possible other advan-

tages from using non-elitism. Our result, however, does indicate

that the ability to leave local optima to inferior solutions is hard

to turn into a runtime advantage (whereas at the same time, as ob-

served in previous works, there a significant risk that the selection

pressure is too low to admit any reasonable progress).

We also prove an upper bound for the runtime of the (𝜇, 𝜆) EA
on jump functions (Theorem 5.1), which shows that our lower

bound for large ranges of the parameters (but, of course, only for

𝜆 ≥ (1 + 𝜀)𝑒𝜇) is tight including the leading constant. This appears

to be the first precise
1
on runtime result for a non-trivial non-elitist

algorithm on a non-trivial problem.

From the technical perspective, it is noteworthy that we obtain

precise bounds in settings where the previously used methods (neg-

ative drift for lower bounds, level-based analyses of non-elitist pop-

ulation processes for upper bounds) could not give precise analyses,

and in the case of negative drift could usually not even determine

the right asymptotic order of the runtime. We are optimistic that

our methods will be profitable for other runtime analyses as well.

2 STATE OF THE ART AND OUR RESULTS
This work progresses the state of the art in three directions with

active research in the recent past, namely non-elitist evolutionary

algorithms, precise runtime analyses, and methods to prove lower

bounds in the presence of negative drift and upper bounds for non-

elitist population processes. We now describe these previous states

of the art and detail what is the particular progress made in this

work. We concentrate ourselves on classic evolutionary algorithms

(also called genetic algorithms) for the optimization in discrete

search spaces. We note that non-elitism has been used in other

randomized search heuristics such as the Metropolis algorithms,

simulated annealing, strong-selection-weak-mutation (SSWM), and

memetic algorithms. Letting the selection decisions not only depend

on the fitness, e.g., in tabu search or when using fitness sharing,

also introduces some form of non-elitism. From a broader perspec-

tive, also many probabilistic model building algorithms such as ant

1
We use the term precise to denote runtime estimates that are asymptotically tight

including the leading constant, that is, where the estimated runtime𝑇 (𝑛) and the true
runtime𝑇 (𝑛) satisfy lim

𝑛→∞
𝑇 (𝑛)/𝑇 (𝑛) = 1.

colony optimizers or estimation-of-distribution algorithms can be

seen as non-elitist, since they often allow moves to inferior models.

From an even broader point of view, even restart strategies can be

seen as a form of non-elitism. While all these research directions

are interesting, it seems to us that the results obtained there, to the

extend that we understand them, are not too closely related to our

results and therefore not really comparable.

2.1 Non-elitist Algorithms
While non-elitist evolutionary algorithms are used a lot in practice,

the mathematical theory of EAs so far was not very successful in

providing convincing evidences for the usefulness of non-elitism.

This might be due to the fact that rigorous research on non-elitist

algorithms has started only relatively late, caused among others

by the fact that many non-elitist algorithms require non-trivial

populations, which form another challenge for mathematical anal-

yses. Another reason, naturally, could be that non-elitism is not as

profitable as generally thought. Our work rather points into the

latter direction.

The previous works on non-elitist algorithms can roughly be

clustered as follows.

(i) Exponential runtimes when the selection pressure is
low: By definition, non-elitist algorithms may lose good solutions.

When this happens too frequently (low selection pressure), then

the EA finds it hard to converge to good solutions, resulting in a

poor performance

The first to make this empirical observation mathematically

precise in a very general manner was Lehre in his remarkable

work [41]. For a broad class of non-elitist population-based EAs, he

gives conditions on the parameters that imply that the EA cannot

optimize any pseudo-Boolean function 𝑓 : {0, 1}𝑛 → R with at

most a polynomial number of optima in time sub-exponential in

𝑛. Due to their general nature, we have to restrict ourselves here

to what Lehre’s results imply for the (𝜇, 𝜆) EA, but we note that
analogous results hold for a much wider class of algorithms. For

the (𝜇, 𝜆) EA using the usual mutation rate
1

𝑛 , Lehre shows that

when 𝜆 ≤ (1 − 𝜀)𝑒𝜇, where 𝜀 > 0 is any positive constant, then the

time to find a (global) optimum of any pseudo-Boolean function

with at most a polynomial number of optima is exponential in 𝑛

with high probability.

We note that more specific results showing the danger of a too

low selection pressure have appeared earlier. For example, already

in 2007 Jägersküpper and Storch [36, Theorem 1] showed that the

(1, 𝜆) EA with 𝜆 ≤ 1

14
ln(𝑛) is inefficient on any pseudo-Boolean

function with a unique optimum. The range of 𝜆 for which such a

negative performance is observed was later extended to the asymp-

totically tight value 𝜆 ≤ (1 − 𝜀) log 𝑒
𝑒−1

𝑛 by Rowe and Sudholt [53].

Happ, Johannsen, Klein, and Neumann [33] showed that two simple

(1+1)-type hillclimbers using fitness proportionate selection in the

choice of the surviving individual are not efficient on any linear

function with positive weights. Neumann, Oliveto, and Witt [47]

showed that a mutation-only variant of the Simple Genetic Al-

gorithm with fitness proportionate selection is inefficient on the

OneMax function when the population size 𝜇 is at most polynomial,

and it is inefficient on any pseudo-Boolean function with unique

global optimum when 𝜇 ≤ 1

4
ln(𝑛). Oliveto and Witt [51] showed

Does Comma Selection Help To Cope With Local Optima? GECCO ’20, July 8–12, 2020, Cancn, Mexico

that the true Simple Genetic Algorithm (using crossover) cannot

optimize OneMax efficiently when 𝜇 ≤ 𝑛
1

4
−𝜀
.

We note that the methods in [41] were also used to prove lower

bounds for particular objective functions. The following result was

given for jump functions [41, Theorem 5]. To be precise, a similar

result was proven for a tournament-selection algorithm and it was

stated that an analogous statement, which we believe to be the

following, holds for the (𝜇, 𝜆) EA as well.

Theorem 2.1. Let 𝑛 ∈ Z≥1, 𝜀 > 0 a constant, 𝑘 ≤ (0.5 − 𝜀)𝑛, and
𝑘 = 𝜔 (log𝑛). The expected runtime of the (𝜇, 𝜆) EA with polynomial

𝜆 on Jump𝑛𝑘 is at least exp(Ω(𝑘)), where all asymptotics is for 𝑛

tending to infinity.

(ii) Pseudo-elitism when the selection pressure is high:
When a non-elitist algorithm has the property that, despite the

theoretical chance of losing good solutions, it very rarely does so,

then its optimization behavior becomes very similar to the one of

an elitist algorithm. Again the first to make this effect precise for a

broad class of algorithms was Lehre in his first paper on level-based

arguments for non-elitist populations [42].

Lehre’s level-based theorem assumes that the search space can be

partitioned into levels such that (i) the non-elitist population-based

algorithm has a reasonable chance to sample a solution in some

level 𝑗 or higher once a constant fraction of the population is at least

on level 𝑗 − 1 (“base level”) and (ii) there is an exponential growth

of the number of individuals on levels higher than the base level;

more precisely (but still simplified), if there are 𝜇0 < 𝛾0𝜇 individuals

above the base level, then in the next generation the number of

individuals above the base level follows a binomial distribution with

parameters 𝜇 and 𝑝 = (1 + 𝛿) 𝜇0𝜇 . If in addition the population sizes

involved are large enough, then (again very roughly speaking) the

runtime of the algorithm is at most a constant factor larger than the

runtime guarantee which could be obtained for an elitist analogue

of the non-elitist EA. From the assumptions made here, it cannot

be excluded that the non-elitist EA loses a best-so-far solution;

however, due to the exponential growth of condition (ii) and the

sufficiently large population size, this can only happen if there are

few individuals above the base level. Hence the assumptions of

the level-based method, roughly speaking, impose that that the EA

behaves like an elitist algorithm except when it just has found a new

best solution. In this case, with positive probability (usually at most

some constant less than one) the new solution is lost. This constant

probability for losing a new best individual (and the resulting need

to re-generate one) may lead to a constant-factor loss in the runtime,

but not more. Very roughly speaking, one can say that such non-

elitist EAs, while formally non-elitist algorithms, do nothing else

than a slightly slowed-down emulation of an elitist algorithm. That

said, it has to be remarked that both proving level-based theorems

(see [8, 13, 22, 42]) and applying them (see also [14]) is technical

and much less trivial than what the rule of thumb “high selection

pressure imitates elitism” suggests.

For the optimization of jump functions via the (𝜇, 𝜆) EA, the
work [8] shows the following result. We note that it uses a slightly

different definition of jump functions (the fitness in the gap region

is uniformly zero), but from the proofs it is clear that the result also

holds for the standard definition (going back to [29]) used in this

work.

Theorem 2.2 ([8]). Let 𝑘 ∈ [1..𝑛]. Let 𝜀 > 0 be a constant and let

𝑐 be a sufficiently large constant (depending on 𝜀). Let 𝜆 ≥ 𝑐𝑘 ln(𝑛)
and 𝜇 ≤ 𝜆

(1+𝜀)𝑒 . Then runtime 𝑇 of the (𝜇, 𝜆) EA on Jump𝑛𝑘 satisfies

𝐸 [𝑇] = 𝑂 (𝑛𝑘 + 𝑛𝜆 + 𝜆 log 𝜆).

For the particular case of the (1, 𝜆) EA and the (1 + 𝜆) EA, Jäger-
sküpper and Storch in an earlier work also gave fitness-level theo-

rems [36, Lemma 6 and 7]. They also showed that both algorithms

essentially behave identical for 𝑡 iterations when 𝜆 is at least log-

arithmic in 𝑡 [36, Theorem 4]. This effect, without quantifying 𝜆

and without proof, was already proposed in [38, p. 415]. Jägersküp-

per and Storch show in particular that when 𝜆 ≥ 3 ln𝑛, then the

(1, 𝜆) EA optimizes OneMax in asymptotically the same time as

the (1 + 𝜆) EA. The actual runtimes given for the (1, 𝜆) EA in [36]

are not tight since at that time a tight analysis of the (1 + 𝜆) EA
on OneMax was still missing; however, it is clear that the argu-

ments given in [36] also allow to transfer the tight upper bound of

𝑂 (𝑛 log𝑛+𝜆𝑛 log log𝑛

log𝑛
) for the (1 + 𝜆) EA from [24] to the (1, 𝜆) EA.

The minimum value of 𝜆 that ensures an efficient optimization

was lowered to the asymptotically tight value of 𝜆 ≥ log 𝑒
𝑒−1

𝑛 ≈
2.18 ln𝑛 in [53]. Again, only the bound of 𝑂 (𝑛 log𝑛 + 𝑛𝜆) was
shown. We would not be surprised if with similar arguments also

a bound of 𝑂 (𝑛 log𝑛 + 𝜆𝑛 log log𝑛

log𝑛
) could be shown, but this is less

obvious here than for the result of [36]. For the benchmark function

LeadingOnes, the threshold between a superpolynomial runtime

of the (1, 𝜆) EA and a runtime asymptotically equal to the one of

the (1 + 𝜆) EA was shown to be at 𝜆 = (1 ± 𝜀)2 log 𝑒
𝑒−1

𝑛 [53].

(iii) Examples where non-elitism is helpful: The dichotomy

described in the previous two subsections suggests that it is not

easy to find examples where non-elitism is useful. This is indeed

true apart from two exceptions.

Jägersküpper and Storch [36] constructed an artificial example

function that is easier to optimize for the (1, 𝜆) EA than for the

(1 + 𝜆) EA. The Cliff function Cliff : {0, 1}𝑛 → N is defined

by Cliff(𝑥) = OM(𝑥) if OM(𝑥) < 𝑛 − ⌊𝑛/3⌋ and Cliff(𝑥) =

OM(𝑥)− ⌊𝑛/3⌋ otherwise. Jägersküpper and Storch showed that the
(1, 𝜆) EA with 𝜆 ≥ 5 ln𝑛 optimizes Cliff in an expected number

of 𝑂 (exp(5𝜆)) fitness evaluations, whereas the (1 + 𝜆) EA with

high probability needs at least 𝑛𝑛/4 fitness evaluations. While this

runtime difference is enormous, it has be noted that even for the

best value of 𝜆 = 5 ln𝑛, the runtime guarantee for the (1, 𝜆) EA is

only 𝑂 (𝑛25). Also, we remark that the local optimum of the Cliff

function has a particular structure which helps to leave the local

optimum: Each point on the local optimum has ⌊𝑛/3⌋ neighbors
from which it is easy to hill-climb to the global optimum (as long

as one does not use a steepest ascent strategy). Also, for each point

on the local optimum there are Ω(𝑛2) search points in Hamming

distance two from which any local search within less than 𝑛/3
improvements finds the global optimum. This is a notable difference

to the Jump𝑛𝑘 function, where hill-climbing from any point of the

search space that is not the global optimum or one of its𝑛 neighbors

surely leads to the local optimum.Wewould suspect that such larger

radii of attraction are closer to the structure of difficult real-world

problems, but we leave it to the reader to decide which model is

most relevant for their applications.

GECCO ’20, July 8–12, 2020, Cancn, Mexico Benjamin Doerr

We note that a second, albeit extreme and rather academic, exam-

ple for an advantage of non-elitism is implicit in the early work [31]

by Garnier, Kallel, and Schoenauer. They showed that the (1, 1) EA
on any function 𝑓 : {0, 1}𝑛 → R with unique global optimum

has an expected optimization time of (1 + 𝑜 (1)) 𝑒
𝑒−12

𝑛
; this follows

from Proposition 3.1 in their work. When taking a highly deceptive

function like the trap function, this runtime is significantly better

than the ones of elitist algorithms, which typically are 𝑛Θ(𝑛)
. Of

course, this is not overly surprising – the (1, 1) EA uses no form

of selection and hence just performs a random walk in the search

space (where the one-step distribution is given by the mutation

operator). Therefore, this algorithm does not suffer from the de-

ceptiveness of the trap function as do elitist algorithms. Also, a

runtime reduction from 𝑛Θ(𝑛)
to exp(Θ(𝑛)) clearly is not breath-

taking. Nevertheless, this is a second example where a (𝜇, 𝜆) EA
significantly outperforms the corresponding (𝜇 + 𝜆) EA.

Since in this work we are only interested in how non-elitism

(and more specifically, comma selection) helps to leave local optima

and by this improve runtimes, we do not discuss in detail other

motivations for employing non-elitist algorithms. We note briefly,

though, that comma selection is usually employed in self-adaptive

algorithms. Self-adaptation means that some algorithm parameters

are stored as part of the genome of the individuals and are sub-

ject to variation together with the original individual. The hope

is that this constitutes a generic way to adjust algorithm parame-

ters. When using plus selection together with self-adaptation, there

would be the risk that the population at some point only contains

individuals with unsuitable parameter values. Now variation will

only generate inferior offspring. These will not be accepted and,

consequently, the parameter values encoded in the genome of the

individuals cannot be changed. When using comma selection, it is

possible to accept individuals with inferior fitness, and these may

have superior parameter values. We are not aware of a rigorous

demonstration of this effect, but we note that the two runtime analy-

sis papers [15, 28] on self-adaptation both use comma selection. We

further note that comma selection is very common in continuous

optimization, in particular, in evolution strategies, but since it is

generally difficult to use insights from continuous optimization in

discrete optimization and vice-versa we do not discuss results from

continuous optimization here.

(iv) Our contribution: In Section 4, we show that for all inter-

esting values of the parameters of the problem and the algorithm,

the expected runtime of the (𝜇, 𝜆) EA on jump functions is, apart

from possibly lower order terms, at least the expected runtime of

the (𝜇 + 𝜆) EA. This shows that for this problem, there can be no sig-

nificant advantage of using comma selection. This result improves

over the exp(Ω(𝑘)) lower bound in [41] (Theorem 2.1 above).

Our upper bound in Theorem 5.1, provided mostly to show that

our analysis is tight including the leading constant, improves Theo-

rem 2.2 by making the leading constant precise and being applicable

for all offspring population sizes 𝜆 ≥ 𝐶 ln(𝑛),𝐶 a constant indepen-

dent of the jump size 𝑘 . To the best of our knowledge, this is the

first time that the runtime of a non-elitist algorithm was proven

with this precision.

2.2 Precise Runtime Analyses
Traditionally, algorithm analysis aims at gaining a rough under-

standing how the runtime of an algorithm depends on the problem

size. As such, most result only show statements on the asymptotic

order of magnitude of the runtime, that is, results in big-Oh no-

tation. For classic algorithmics, this is justified among others by

the fact that the predominant performance measure, the number of

elementary operations, already ignores constant factor differences

in the execution times of the elementary operations.

In evolutionary computation, where the classic performance

measure is the number of fitness evaluations, this excuse for ig-

noring constant factors is not valid, and in fact, in the last few

years more and more precise runtime results have appeared, that is,

results which determine the runtime asymptotically precise apart

from lower order terms. Such results are useful, obviously because

constant factors matter in practice, but also because many effects

are visible only at constant-factor scales. For example, is was shown

in [21] that all Θ(1𝑛) mutation rates lead to a Θ(𝑛 log𝑛) runtime

of the (1 + 1) EA on all pseudo-Boolean linear functions, but only

Witt’s seminal result [58] that the runtime is (1 + 𝑜 (1)) 𝑒𝑐𝑐 𝑛 ln𝑛 for

the mutation rate
𝑐
𝑛 , 𝑐 > 0 a constant, allows to derive that

1

𝑛 is the

asymptotically best mutation rate.

Overall, not too many non-trivial precise runtime results are

known. In a very early work [31], it was shown that the (1 + 1) EA
with mutation rate

𝑐
𝑛 optimize the OneMax function in an ex-

pected time of (1 + 𝑜 (1)) 𝑒𝑐𝑐 𝑛 ln𝑛 and the Needle function in

time (1 + 𝑜 (1)) 1

1−𝑒𝑐 2
𝑛
. More than ten years later, in independent

works [7, 55] the precise runtime of the (1 + 1) EA on Leading-

Oneswas determined; here [7] also regarded general mutation rates

and deduced from their result that the optimal mutation rate of

approximately
1.59
𝑛 is higher than the usual recommendation

1

𝑛 , and

that a fitness dependent mutation rate gives again slightly better

results (this was also the first time that a fitness dependent param-

eter choice was proven to be superior to static rates by at least a

constant factor difference in the runtime). More precise runtime

results for LeadingOnes have recently appeared in [16]. A series of

recent works [1, 26, 45] obtained precise runtimes of different hyper-

heuristics on LeadingOnes and thus allowed to discriminate them

by their runtime. The precise expected runtime of the (1 + 1) EA
with general unbiased mutation operator on the Plateau𝑘 func-

tion was determined [2] to be (1 + 𝑜 (1))
(𝑛
𝑘

)
𝑝−1
1:𝑘

, where 𝑝
1:𝑘 is the

probability that the mutation operator flips between one and 𝑘 bits.

Apparently,here the details of the mutation operator are not very

important – only the probability to flip between one and 𝑘 bits has

an influence on the runtime.

The only precise runtime analysis for an algorithm with a non-

trivial population can be found in [32], where the runtime of the

(1 + 𝜆) EA with mutation rate
𝑐
𝑛 , 𝑐 a constant, on OneMax was

shown to be (1 + 𝑜 (1)) (𝑒𝑐𝑐 𝑛 ln𝑛 + 𝑛𝜆 ln ln𝜆
2 ln𝜆

). This result has the
surprising implication that here the mutation rate is only important

when 𝜆 is small.

The only precise runtime analysis for a multi-modal objective

function was conducted in [25], where the runtime of the (1 + 1) EA
with arbitrary mutation rate was determined for jump functions;

this work led to the development of a heavy-tailed mutation opera-

tor that appears to be very successful.

Does Comma Selection Help To Cope With Local Optima? GECCO ’20, July 8–12, 2020, Cancn, Mexico

In summary, there is only a small number of precise runtime

analyses, but many of them could obtain insights that would not

have been possible with less precise analyses.

Our result, an analysis of the (𝜇, 𝜆) EA on jump functions that is

precise for 𝑘 ≤ 0.1𝑛, 𝜆 = 𝑜 (𝑛𝑘−1), 𝜆 ≥ (1 + 𝜀)𝑒𝜇, and 𝜆 = Ω(log𝑛)
sufficiently large, is the second precise analysis for a population-

based algorithm (after [32]), is the second precise analysis for a

multimodal fitness function (after [25]), and is the first precise anal-

ysis for a non-elitist algorithm (apart from fact that the result [32]

could be transfered to the (1, 𝜆) EA for large 𝜆 via the argument [36]

that in this case the (1 + 𝜆) EA and the (1, 𝜆) EA have essentially

identical performances).

2.3 Methods: Negative Drift and Level-based
Analyses

To obtain our results, we also develop new techniques for two

classic topics, namely the analysis of processes showing a drift

away from the target (“negative drift”) and the analysis of non-

elitist population processes via level-based arguments.

2.3.1 Negative Drift. It is natural that a random process

𝑋0, 𝑋1, . . . finds it hard to reach a certain target when the typi-

cal behavior is taking the process away from the target. Negative

drift theorems are an established tool for the analysis of such situa-

tions. They roughly speaking state the following. Assume that the

process starts at some point 𝑏 or higher, that is,𝑋0 ≥ 𝑏, and that we
aim at reaching a target 𝑎 < 𝑏. Assume that whenever the process

is above the target value, that is, 𝑋𝑡 > 𝑎, we have an expected

progress 𝐸 [𝑋𝑡+1 − 𝑋𝑡] ≥ 𝛿 , 𝛿 some constant, away from the target,

and that this progress satisfies some concentration assumption like

two-sided exponential tails. Then the expected time to reach or

undershoot the target is at least exponential in the distance 𝑏 − 𝑎.
The first such result in the context of evolutionary algorithms

was shown by Oliveto and Witt [49] (note the corrigendum [50]).

Improved versions were subsequently given in [40, 44, 51, 53, 59].

The comprehensive survey [43, Section 2.4.3] gives a complete

coverage of this topic. What is important to note for our purposes

is that (i) all existing negative drift results are quite technical to

use due to the concentration assumptions, that (ii) they all give a

lower bound that is only exponential in the length of the interval

in which the (constant) negative drift is observed, and that (iii) they

all do not give tight bounds, but only bounds of type exp(Ω(𝑏 −𝑎))
with the implicit constant (of the exponent!) not specified.

Earlier than the general negative drift theorem, Lehre [41] proved

a negative drift theorem for population-based processes via multi-

type branching processes. Just as the general negative drift theo-

rems described above, it only gives lower bounds exponential in the

length of the negative drift regime and the base of the exponential

function is not made explicit. Consequently, in [41, Theorem 5]

(Theorem 2.1 in this work), only an exp(Ω(𝑘)) lower bound for the
runtime of the (𝜇, 𝜆) EA on Jump𝑛𝑘 was derived

Since we aim at an Ω(𝑛𝑘) lower bound caused by a negative drift
in the short gap region (of length 𝑘) of the jump function, and since

further we aim at results that give the precise leading constant

of the runtime, we cannot use these tools. We therefore resort to

the additive drift applied to a rescaled process argument first made

explicit in [5]. The basic idea is very simple: For a suitable function

𝑔 : R→ R one regards the process (𝑔(𝑋𝑡))𝑡 instead of the original

process (𝑋𝑡)𝑡 , shows that it makes at most a slow progress towards

the target, say 𝐸 [𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡) | 𝑋𝑡 > 𝑎] ≥ −𝛿 , and concludes

from the classic additive drift theorem [35] that the expected time

to reach or undershoot 𝑎 when starting at 𝑏 is at least
𝑔 (𝑏)−𝑔 (𝑎)

𝛿
.

While the basic approach is simple and natural, the non-trivial part

is finding a rescaling function 𝑔 which both gives at most a slow

progress towards the target and gives a large difference 𝑔(𝑏) −
𝑔(𝑎). The rescalings used in [5] and [17] were both of exponential

type, that is, 𝑔 was roughly speaking an exponential function. By

construction, they only led to lower bounds exponential in 𝑏 − 𝑎,
and in both cases the lower bound was not tight (apart from being

exponential).

Our progress: Hence the technical novelty of this work is that we

devise a rescaling for our problem that (i) leads to a lower bound of

order 𝑛𝑘 for a process having negative drift only is an interval of

length 𝑘 , and (ii) such that these lower bounds are tight including

the leading constant. Clearly, our rescalings (as all rescalings used

previously) are specific to our problem. Nevertheless, they demon-

strate that the rescaling method, different from the classic negative

drift theorems, can give very tight lower bounds and lower bounds

that are super-exponential in the length of the interval in which the

negative drift is observed. We are optimistic that such rescalings

will find other applications in the future.

2.3.2 Level-based Analyses. The level-based analysis first pro-

posed by Lehre [42] is a general method to analyze non-elitist

population-based processes. Since we gave a high-level description

of this method in Section 2.1 (ii), we now explain without further

explanations what is our progress over the state of the art of this

method.

Similar to the state of the art in negative drift theorems, all

existing variants of the level-based method do not give results that

are tight including the leading constant. Also, from the complexity

of the proofs of these results, it appears unlikely that such tight

results can be obtained in the near future.

Our progress: For our problem of optimizing jump functions, we

can exploit the fact that the most difficult, and thus time consuming,

step is generating the global optimum from a population that has

fully converged into the local optimum. To do so, we use the non-

tight level-based methods only up to the point when the population

only consists of local optima (we call this an almost perfect popula-

tion). This can be done via a variation of the existing level-based

results. From that point on, we estimate the remaining runtime by

computing the waiting time for generating the optimum from a

local optimum. Of course, since we are analyzing a non-elitist pro-

cess, we are not guaranteed to keep an almost perfect population.

For that reason, we also need to analyze the probability of losing

an almost perfect population and to set up a restart argument to

regain an almost perfect population. Naturally, this has to be done

in a way that the total runtime spent here is only a lower-order

fraction of the time needed to generate the global optimum from

an almost perfect population.

A side effect of this approach is that we only need a logarithmic

offspring population size, that is, it suffices to have 𝜆 ≥ 𝐶 ln(𝑛) for
some constant 𝐶 that is independent of the jump size 𝑘 . This is dif-

ferent from using the level-based method for the whole process, as

GECCO ’20, July 8–12, 2020, Cancn, Mexico Benjamin Doerr

done in the proof of Theorem 2.2, which would require an offspring

population size at least logarithmic in the envisaged runtime, hence

here Ω(log𝑛𝑘) = 𝑂 (𝑘 log𝑛), which is super-logarithmic when 𝑘 is

super-constant.

While our arguments exploit some characteristics of the jump

functions, we are optimistic that they can be employed for other

problems as well, in particular, when the optimization process typ-

ically contains one step that is more difficult than the remaining

optimization.

3 PRELIMINARIES
In this section, we define the algorithm and the optimization prob-

lem regarded in this paper together with the most relevant works

on these.

3.1 The (𝜇, 𝜆) EA
The (𝜇, 𝜆) EA for the maximization of pseudo-Boolean functions

𝑓 : {0, 1}𝑛 → R is made precise in Algorithm 1. It is a simple non-

elitist algorithm working with a parent population of size 𝜇 and

an offspring population of size 𝜆 ≥ 𝜇. Here and in the remainder

by a population we mean a multiset of individuals (elements from

the search space {0, 1}𝑛). Each offspring is generated by selecting

a random parent (independently and with replacement) from the

parent population and mutating it via standard bit mutation, that

is, by flipping each bit independently with probability 1/𝑛.2 The
next parent population consist of those 𝜇 offspring which have the

highest fitness (breaking ties arbitrarily).

Algorithm 1: The (𝜇, 𝜆) EA to maximize a function 𝑓 :

{0, 1}𝑛 → R.
1 Initialize 𝑃0 with 𝜇 individuals chosen independently and

uniformly at random from {0, 1}𝑛 ;
2 for 𝑡 = 1, 2, . . . do
3 for 𝑖 ∈ [1..𝜆] do
4 Select 𝑥𝑖 ∈ 𝑃𝑡−1 uniformly at random;

5 Generate 𝑦𝑖 from 𝑥𝑖 via standard bit mutation;

6 Select 𝑃𝑡 from the multi-set {𝑦1, . . . , 𝑦𝜆} by choosing 𝜇

best individuals (breaking ties arbitrarily);

The (𝜇 + 𝜆) EA, to which we compare the (𝜇, 𝜆) EA, differs from
the (𝜇, 𝜆) EA only in the selection of the next generation. Whereas

the (𝜇, 𝜆) EA selects the next generation only from the offspring

population (comma selection), the (𝜇 + 𝜆) EA selects it from the

parent and offspring population (plus selection). In other words, to

obtain the (𝜇 + 𝜆) EA from Algorithm 1, we only have to replace

the selection by “select 𝑃𝑡 from the multi-set 𝑃𝑡−1 ∪ {𝑦1, . . . , 𝑦𝜆} by
choosing 𝜇 best individuals (breaking ties arbitrarily)”. Often, the

tie breaking is done by giving preference to offspring, but for all

our purposes there is no difference.

2
To ease the presentation, we only consider the standard mutation rate 1/𝑛, but we
are confident that our results in an analogous fashion hold for general mutation rates

𝜒/𝑛, 𝜒 a constant. Previous works have shown that the constant 𝜒 has an influence

(again by constant factors) on where the boundary between the “imitating elitism” and

“no efficient progress” regimes is located. Since our result is that the (𝜇, 𝜆) EA for no

realistic parameter settings beats the (𝜇 + 𝜆) EA, we do not expect that a constant

factor change of the mutation rate leads to substantially different findings.

When talking about the performance of the (𝜇, 𝜆) EA or the

(𝜇 + 𝜆) EA, as usual in runtime analysis [6, 27, 37, 48], we count

the number of fitness evaluations until for the first time an optimal

solution is evaluated. We assume that each individual is evaluated

immediately after being generated. Consequently, if an optimum is

generated in iteration 𝑡 , then the runtime 𝑇 satisfies

𝜇 + (𝑡 − 1)𝜆 + 1 ≤ 𝑇 ≤ 𝜇 + 𝑡𝜆. (1)

Since we described the most important results on the (𝜇, 𝜆) EA
already in Section 2.1, let us briefly mention the most relevant

results for the (𝜇 + 𝜆) EA. Again, due to the difficulties in analyzing

population-based algorithms, not too much is known. The runtimes

of the (1 + 𝜆) EA, among others on OneMax and LeadingOnes,

were first analyzed in [38]. The asymptotically tight runtime on

OneMax for all polynomial 𝜆 was determined in [24], together

with an analysis on general linear functions. In [57], the runtime

of the (𝜇 + 1) EA on OneMax and LeadingOnes, among others,

was studied. The runtime of the (𝜇 + 𝜆) EA with both non-trivial

parent and offspring population sizes was determined in [3].

3.2 The Jump Function Class
To define the jump functions, we first recall that the 𝑛-dimensional

OneMax function is defined by

OM(𝑥) = ∥𝑥 ∥1 =
𝑛∑︁
𝑖=1

𝑥𝑖

for all 𝑥 ∈ {0, 1}𝑛
Now the 𝑛-dimensional jump function with jump parameter

(jump size) 𝑘 ∈ [1..𝑛] is defined by

Jump𝑛𝑘 (𝑥) =
{
∥𝑥 ∥1 + 𝑘 if ∥𝑥 ∥1 ∈ [0..𝑛 − 𝑘] ∪ {𝑛},
𝑛 − ∥𝑥 ∥1 if ∥𝑥 ∥1 ∈ [𝑛 − 𝑘 + 1 .. 𝑛 − 1] .

Hence for 𝑘 = 1, we have a fitness landscape isomorphic to the

one of OneMax, but for larger values of 𝑘 there is a fitness valley

(“gap”)

𝐺𝑛𝑘 B {𝑥 ∈ {0, 1}𝑛 | 𝑛 − 𝑘 < ∥𝑥 ∥1 < 𝑛}
consisting of the 𝑘 − 1 highest sub-optimal fitness levels of the

OneMax function. This valley is hard to cross for evolutionary

algorithms using standard bit mutation. When using the common

mutation rate
1

𝑛 , the probability to generate the optimum from a

parent on the local optimum is only 𝑝𝑘 := (1 − 1

𝑛)
𝑛−𝑘𝑛−𝑘 < 𝑛−𝑘 .

For this reason, e.g., the classic (𝜇 + 𝜆) EA has a runtime of at

least 𝑛𝑘 when 𝑘 is not excessively large. This was proven formally

for the (1 + 1) EA in the classic paper [29], but the argument can

easily be extended to all (𝜇 + 𝜆) EAs (as we do now for reasons

of completeness). We also prove an upper bound, which will later

turn out to agree with our lower bound for the (𝜇, 𝜆) EA for large

ranges of the parameters.

Theorem 3.1. Let 𝜇, 𝜆 ∈ Z≥1. Let 𝑛 ∈ Z≥2 and 𝑘 ∈ [2..𝑛]. Let
𝑝𝑘 := (1 − 1

𝑛)
𝑛−𝑘𝑛−𝑘 . Let 𝑇 denote the runtime, measured by the

number of fitness evaluations until the optimum is found, of the (𝜇+𝜆)
EA on the Jump𝑛𝑘 function.

Lower bound: Let ℎ(𝑛) :=
√︁
2𝑛 log(𝜇𝑛)). If 𝑘 ≤ 𝑛

2
− ℎ(𝑛), then

𝐸 [𝑇] ≥
(
1 − 1

𝑛

) (
𝜇 + 1

𝑝𝑘

)
,

Does Comma Selection Help To Cope With Local Optima? GECCO ’20, July 8–12, 2020, Cancn, Mexico

otherwise 𝐸 [𝑇] ≥ (1 − 1

𝑛)
(
𝜇 + 1

𝑝𝑘′

)
with 𝑘 ′ := 𝑛

2
− ℎ(𝑛).

Upper bound: For all 𝑘 ∈ [2..𝑛], we have 𝐸 [𝑇] ≤ 1

𝑝𝑘
+

𝑂

(
𝑛 log𝑛 + 𝑛𝜇 + 𝑛𝜆 log

+
log

+ (𝜆/𝜇)
log

+ (𝜆/𝜇) + (𝜇 + 𝜆) log 𝜇
)
, where we write

log
+ 𝑥 := max{1, ln𝑥} for all 𝑥 > 0. If 𝜇 ≤ 𝜆, 𝜆 ≤ 10

𝑛
, and

𝜆 = 𝑜 (1

𝑛𝑝𝑘
), then 𝐸 [𝑇] ≤ (1 + 𝑜 (1)) 1

𝑝𝑘
.

For the upper bound, and assuming 𝑘 ≤ 𝑛
2
− ℎ(𝑛) in this short

sketch, we simply argue that with high probability, none of the

initial individuals lies in the gap or is the optimum (Chernoff bound,

union bound). Consequently, none of the parents ever lies in the gap,

and thus the optimum can only be generated from an individual

below the gap, which happens with probability at most 𝑝𝑘 . For the

lower bound, we invoke the recent analysis of how the (𝜇 + 𝜆) EA
optimizes OneMax [3] to estimate the time to find the first individ-

ual on the local optimum. With an estimate of the takeover time

from [54], we estimate the time to have the whole population on

the local optimum. Then again each new offspring is the optimum

with probability 𝑝𝑘 .

The above result supports our claim that 1/𝑝𝑘 is a typical runtime

of an elitist mutation-based EA using standard bit mutation with

mutation rate
1

𝑛 . By using larger mutation rates or a heavy-tailed

mutation operator, the runtime of the (1 + 1) EA can be improved

by a factor of 𝑘Θ(𝑘)
[25], but the runtime remains Ω(𝑛𝑘) for 𝑘

constant. Asymptotically better runtimes can be achieved when

using crossover, though this is not as easy as onemight expect. Since

these results and runtime analyses for even more distant algorithms

are less relevant for this work, for reasons of space we direct the

reader to the original works [4, 9–12, 19, 30, 34, 39, 46, 52, 56] or

the more detailed overview in [18, Section 2.3].

4 A LOWER BOUND FOR THE RUNTIME OF
THE (𝜇, 𝜆) EA ON JUMP FUNCTIONS

In this section, we show our main result, a lower bound for the

runtime of the (𝜇, 𝜆) EA on jump functions which shows that for

a large range of parameter values, the (𝜇, 𝜆) EA cannot even gain

a constant factor speed-up over the (𝜇 + 𝜆) EA. With its Ω(𝑛𝑘)
order of magnitude, our result improves significantly over the only

previous result on this problem, the exp(Ω(𝑘)) lower bound in [41]

(Theorem 2.1 in this work).

Before stating the precise result, we quickly discuss two situa-

tions which, in the light of previous results, do not appear overly

interesting and for which we therefore did not make an effort to

fully cover them by our result.

(i) When 𝜆 ≤ (1 − 𝜀)𝑒𝜇 for some constant 𝜀 ≥ 0 and 𝜆 is at most

polynomial in 𝑛, the results of Lehre [41] imply that the (𝜇, 𝜆) EA
has an exponential runtime on any function with a polynomial

number of optima (and consequently, also on jump functions). We

guess that the restriction to polynomial-size 𝜆 was made in [41,

Corollary 1] only for reasons of mathematical convenience (to-

gether with the fact that super-polynomial population sizes raise

some doubts on the implementability and practicability of the al-

gorithm). We do not see any reason why Lehre’s result, at least

in the case of the (𝜇, 𝜆) EA, should not be true for any value of 𝜆

(possibly with a sub-exponential number of iterations, but still an

exponential number of fitness evaluations).

(ii) Rowe and Sudholt [53, Theorem 10] showed that for all con-

stants 𝜀 > 0 the (1, 𝜆) EA with population size 𝜆 ≤ (1 − 𝜀) log 𝑒
𝑒−1

𝑛

has an expected optimization time of at least exp(Ω(𝑛𝜀/2)) on any

function 𝑓 : {0, 1}𝑛 → R with a unique optimum. From inspecting

the proof given in [53], we strongly believe that the same result

also holds for the (𝜇, 𝜆) EA.
Let us declare the parameter settings just discussed as not so

interesting since previous works show or strongly indicate that the

(𝜇, 𝜆) EA is highly inefficient on any objective function with unique

optimum. Let us further declare exponential population sizes as

not so interesting. With this language, our following result shows

that the runtime of the (𝜇, 𝜆) EA on jump functions with jump size

𝑘 ≤ 0.1𝑛 for all interesting parameter choices is, apart from lower

order terms, at least the one of the (𝜇 + 𝜆) EA. For 𝑘 > 0.1𝑛, this

runtime is at least 𝑛Ω (𝑛)
.

Theorem 4.1. Let 𝑐 ≤ 0.1 and 𝐶 be large enough such that

(4𝑐)𝐶/2 ≤ 𝑒−2. Let 𝑛 ≥ 2

𝑐 . Let 𝐶 ln(𝑛) ≤ 𝜆 ≤ 2

3
exp(0.16𝑛) and

𝜇 ≤ 𝜆
2
. Let 𝑐 ′ = 1

𝑒 + 𝑐 and ℎ(𝑛, 𝜆) := exp(− (1−2𝑐′)2
2

𝜆) + 2𝑛−1
𝑛2−𝑛 . Let

𝑘 ∈ [2..𝑛] and 𝑝𝑘 := (1 − 1

𝑛)
𝑛−𝑘𝑛−𝑘 .

If 𝑘 ≤ 𝑐𝑛, then the expected runtime, measured by the number of

fitness evaluations until the optimum is evaluated, of the (𝜇, 𝜆) EA
on jump functions with jump size 𝑘 is at least

𝑇𝑘 := (1−exp(−0.16𝑛))
(
𝜇 + (1 − ℎ(𝑛, 𝜆)) 1

𝑝𝑘

)
= (1−𝑜 (1)) (𝜇+ 1

𝑝𝑘
),

where the asymptotic expression is for 𝑛 → ∞.

For 𝑘 > 𝑐𝑛, the expected runtime is at least 𝑇⌊𝑐𝑛⌋ .

We phrased our result in the above form since we felt that it

captures best the most interesting aspect, namely a runtime of

essentially
1

𝑝𝑘
when 𝑘 ≤ 0.1𝑛 and 𝜆 = Ω(log𝑛) suitably large.

Since our result is non-asymptotic, both 𝑐 and 𝐶 do not have to be

constants. Hence if we are interested in the smallest possible value

for 𝜆 that gives an (1 − 𝑜 (1)) 1

𝑝𝑘
runtime, then by taking 𝑐 = 𝑘

𝑛 and

𝐶 = 4/ln(𝑛/(4𝑘)), we obtain the following result.

Corollary 4.2. Let 𝑘 ≥ 2. Let 𝑛 ≥ 10𝑘 and

4

ln(𝑛
4𝑘
) ln(𝑛) ≤ 𝜆 ≤ 2

3
exp(0.16𝑛).

Let 𝜇 ≤ 𝜆
2
. Let 𝑐 ′ = 1

𝑒 + 𝑘
𝑛 . With ℎ(𝑛, 𝜆) := exp(− (1−2𝑐′)2

2
𝜆) + 2𝑛−1

𝑛2−𝑛
and 𝑝𝑘 := (1 − 1

𝑛)
𝑛−𝑘𝑛−𝑘 , the expected runtime of the (𝜇, 𝜆) EA on

Jump𝑛𝑘 is at least

𝑇𝑘 := (1−exp(−0.16𝑛))
(
𝜇 + (1 − ℎ(𝑛, 𝜆)) 1

𝑝𝑘

)
= (1−𝑜 (1)) (𝜇+ 1

𝑝𝑘
),

where the asymptotic expression holds for 𝑛 → ∞ and 𝜆 = 𝜔 (1).
In particular, if 𝑘 = 𝑂 (𝑛1−𝜀) for a constant 𝜀 > 0, then it suffices

to have 𝜆 = 𝜔 (1) for the lower bound (1 − 𝑜 (1)) (𝜇 + 1

𝑝𝑘
) to hold.

We briefly explain the main ideas of the proof of Theorem 4.1. As

discussed earlier, this proof is an example for proving lower bounds

by applying the additive drift theorem to a suitable rescaling of

a natural potential function. The heart, and art, of this method is

defining a suitable potential function. The observation that the

difficult part of the optimization process is traversing the region

{𝑥 ∈ {0, 1}𝑛 | OM(𝑥) ∈ [𝑛 − 𝑘..𝑛]} together with the fact that the

GECCO ’20, July 8–12, 2020, Cancn, Mexico Benjamin Doerr

lower bound given by the additive drift theorem depends on the dif-

ference in potential of starting point and target suggested to us the

following potential function. For a population 𝑃 , let OM(𝑃) denote
the maximumOneMax value in the population. ForOM(𝑃) > 𝑛−𝑘 ,
the potential of 𝑃 will, ignoring some technical details, essentially

bemin{𝑛OM(𝑃)−(𝑛−𝑘) , 1

𝜆𝑝𝑘
}. All other populations have a potential

of zero. This definition gives the desired large potential range of

1

𝜆𝑝𝑘
and, after proving that the expected potential gain is at most

one and the initial potential is zero with high probability, gives the

desired lower bound on the runtime.

5 A TIGHT UPPER BOUND
While our main target in this work was showing a lower bound that

demonstrates that the (𝜇, 𝜆) EA has little advantage in leaving the

local optima of the jump functions, we now also present an upper

bound on the runtime. It shows that our lower bound for large

parts of the parameter space is tight including the leading constant.

This might be the first non-trivial upper bound for a non-elitist

evolutionary algorithm that is tight including the leading constant.

This result also shows that our way to exploit negative drift in

the lower bound analysis, namely not via the classic negative drift

theorems, but via additive drift applied to an exponential rescaling,

can give very precise results, unlike the previously used methods.

Theorem 5.1. Let𝐾 be a sufficiently large constant and 𝜆 ≥ 𝐾 ln𝑛.

Let 0 < 𝛿 < 1 be a constant and 𝜇 ≤ 1

(1+𝛿)𝑒 𝜆. Let 𝑘 ∈ [2..𝑛] and 𝑝𝑘 =

(1 − 1

𝑛)
𝑛−𝑘𝑛−𝑘 . Then runtime 𝑇 of the (𝜇, 𝜆) EA on Jump𝑛𝑘 satisfies

𝐸 [𝑇] ≤ 𝜆

1−𝑛−1/2

(
8𝐶𝑛 + 1 + 9

√︃
𝐶𝑛
𝑝𝑘𝜆

+ 8𝐶𝑛

𝑝𝑘𝜆 ⌊𝑛3/2 ⌋ +
1

𝑝𝑘𝜆

)
, where𝐶 is a

constant depending on 𝛿 only.

Consequently, for 𝜆 = 𝑜 (1/𝑛𝑝𝑘) = 𝑜 (𝑛𝑘−1), we have 𝐸 [𝑇] ≤ (1 +
𝑜 (1)) 1

𝑝𝑘
, and for 𝜆 = Ω(1/𝑛𝑝𝑘) = Ω(𝑛𝑘−1), we have 𝐸 [𝑇] = 𝑂 (𝜆𝑛).

We note that when 𝜆 = 𝑜 (𝑛𝑘−1), 𝜆 ≥ 𝐾 ln𝑛 with 𝐾 a sufficiently

large constant, 𝜇 ≤ 1

(1+𝛿)𝑒 𝜆, and 𝑘 ≤ 0.1𝑛, our upper bound and our

lower bound of Theorem 4.1 agree including the leading constant.

So we have a precise runtime analysis in this regime.

The result in Theorem 5.1 above improves over the 𝑂 (𝑛𝑘 + 𝑛𝜆 +
𝜆 log 𝜆) upper bound for the runtime of the (𝜇, 𝜆) EA on Jump𝑛𝑘

proven in [8] (see Theorem 2.2) in three ways. First, as discussed

above, we make the leading constant precise (and tight for large

ranges of the parameters). Second, we obtain a better, namely at

most linear, dependence of the runtime on 𝜆. Third, we reduce the

minimum offspring population size required for the result to hold,

which is Ω(𝑘 log𝑛) in [8] and Ω(log𝑛) in our result.

We give a brief outline of the proof of Theorem 5.1. A central

step in our proof is an analysis of how the (𝜇, 𝜆) EA progresses

to a parent population consisting only of individuals on the local

optimum. Since the (𝜇, 𝜆) EA is a non-elitist algorithm, this asks

for tools like the level-based theorem first introduced by Lehre [42]

and then improved by various authors [8, 13, 22, 23]. Unfortunately,

all these results are formulated for the problem of finding one

individual of a certain minimum quality. Consequently, they all

cannot be directly employed to analyze the time needed to have

the full parent population consist of individuals of at least a certain

quality. Fortunately, in their proofs all previous level-based analyses

proceed by analyzing the time until a certain number of individuals

of a certain quality have been obtained and then building on this

with an analysis on how better individuals are generated. Possibly

being the one most explicit, we extend the level-based theorem

of [23] to show that after 𝑂 (𝑛) iterations, the whole population
consists of individuals on the local optimum. We call this an almost

perfect population. From this point on, we cannot use the level-

based method anymore, since the small probability for going from

the local to the global optimum would require a large value of 𝜆,

a requirement we try to avoid. This requirement is necessary in

the level-based method because there one tries to ensure that once

a decent number of individuals are on at least a certain level, this

state is never lost. When 𝜆 is only logarithmic in 𝑛, there is an

inverse-polynomial probability to completely lose a level. Since for,

say, 𝑘 = Θ(𝑛), we expect a runtime of roughly 𝑛𝑘/𝜆, in this time it

will regularly happen that we lose a level, including the cases that

we lose a level in each of several iterations or that we lose several

levels at once.

We overcome this difficulty with a restart argument. Since the

probability for such an undesirable event is only inverse-polynomial

in 𝑛, we see that we keep an almost perfect population for at least

𝑛2 iterations (with high probability). Since it took us only 𝑂 (𝑛)
iterations to reach (or regain) an almost perfect population, we

obtain that in all but a lower order fraction of the iterations we

have an almost perfect parent population. Hence apart from this

lower order performance loss, we can assume that we are always

in an almost perfect population. From such a state, we reach the

optimum in one iteration with probability 1 − (1 − 𝑝𝑘)𝜆 , which
quickly leads to the claimed result.

6 CONCLUSION
We observed that for all reasonable parameter values, the (𝜇, 𝜆) EA
cannot optimize jump functions faster than the (𝜇 + 𝜆) EA. The
(𝜇, 𝜆) EA thus fails to profit from its ability to leave local optima

to inferior solutions. While we prove this absence of advantage

formally only for the basic (𝜇, 𝜆) EA and jump functions, we feel

that our proofs do not suggest that this result is caused by very

special characteristics of the (𝜇, 𝜆) EA or the jump functions, but

that it rather follows from the fact that if leaving a local optimum

via comma selection is easy, then reaching the local optimum in the

first place is very difficult. Hence this work indicates that the role

of comma selection in evolutionary computation deserves some

clarification. Interesting directions for future research could be to

try to find convincing examples where comma selection is helpful

or a general result going beyond particular examples that shows in

which situations comma selection cannot speed up the optimiza-

tion of multimodal objective functions. From a broader perspective,

any result giving a mildly general advice which of the existing

approaches to cope with local optima are preferable in which sit-

uations, would be highly desirable.
3
The new analysis methods

developed in this work, which can yield precise runtime bounds for

non-elitist population processes and negative drift situations, could

be helpful as they now allow to prove or disprove constant-factor

advantages.

3
We note that a reviewer of this work, based on informal considerations, suggests that

tournament selection should give superior results on jump functions. This would be a

highly interesting result.

Does Comma Selection Help To Cope With Local Optima? GECCO ’20, July 8–12, 2020, Cancn, Mexico

REFERENCES
[1] Fawaz Alanazi and Per Kristian Lehre. 2014. Runtime analysis of selection

hyper-heuristics with classical learning mechanisms. In Congress on Evolutionary

Computation, CEC 2104. IEEE, 2515–2523.

[2] Denis Antipov and Benjamin Doerr. 2018. Precise runtime analysis for plateaus.

In Parallel Problem Solving From Nature, PPSN 2018, Part II. Springer, 117–128.

[3] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. 2018. Runtime

analysis for the (𝜇 + 𝜆) EA optimizing OneMax. In Genetic and Evolutionary

Computation Conference, GECCO 2018. ACM, 1459–1466.

[4] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2020. The (1 + (𝜆, 𝜆)) GA
is even faster on multimodal problems. In Genetic and Evolutionary Computation

Conference, GECCO 2020. ACM. To appear.

[5] Denis Antipov, Benjamin Doerr, and Quentin Yang. 2019. The efficiency threshold

for the offspring population size of the (𝜇, 𝜆) EA. In Genetic and Evolutionary

Computation Conference, GECCO 2019. ACM, 1461–1469.

[6] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search

Heuristics. World Scientific Publishing.

[7] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal fixed and

adaptive mutation rates for the LeadingOnes problem. In Parallel Problem Solving

from Nature, PPSN 2010. Springer, 1–10.

[8] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. 2018.

Level-based analysis of genetic algorithms and other search processes. IEEE

Transactions on Evolutionary Computation 22 (2018), 707–719.

[9] Dogan Corus, Pietro Simone Oliveto, and Donya Yazdani. 2017. On the runtime

analysis of the Opt-IA artificial immune system. In Genetic and Evolutionary

Computation Conference, GECCO 2017. ACM, 83–90.

[10] Dogan Corus, Pietro Simone Oliveto, and Donya Yazdani. 2018. Fast artificial

immune systems. In Parallel Problem Solving from Nature, PPSN 2018, Part II.

Springer, 67–78.

[11] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kris-

tian Lehre, Pietro Simone Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2016.

Escaping local optima with diversity mechanisms and crossover. In Genetic and

Evolutionary Computation Conference, GECCO 2016. ACM, 645–652.

[12] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian

Lehre, Pietro SimoneOliveto, Dirk Sudholt, andAndrewM. Sutton. 2018. Escaping

local optima using crossover with emergent diversity. IEEE Transactions on

Evolutionary Computation 22 (2018), 484–497.

[13] Duc-Cuong Dang and Per Kristian Lehre. 2016. Runtime analysis of non-elitist

populations: from classical optimisation to partial information. Algorithmica 75

(2016), 428–461.

[14] Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai Nguyen. 2019. Level-

based analysis of the univariate marginal distribution algorithm. Algorithmica

81 (2019), 668–702.

[15] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of mutation rates

in non-elitist populations. In Parallel Problem Solving from Nature, PPSN 2016.

Springer, 803–813.

[16] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic

domination. Theoretical Computer Science 773 (2019), 115–137.

[17] BenjaminDoerr. 2019. An exponential lower bound for the runtime of the compact

genetic algorithm on jump functions. In Foundations of Genetic Algorithms, FOGA

2019. ACM, 25–33.

[18] Benjamin Doerr. 2019. The Runtime of the Compact Genetic Algorithm on Jump

Functions. CoRR abs/1908.06527 (2019). arXiv:1908.06527

[19] Benjamin Doerr. 2019. A tight runtime analysis for the cGA on jump functions:

EDAs can cross fitness valleys at no extra cost. In Genetic and Evolutionary

Computation Conference, GECCO 2019. ACM, 1488–1496.

[20] Benjamin Doerr. 2020. Does comma selection help to cope with local optima?

CoRR abs/2004.01274 (2020). arXiv:2004.01274

[21] Benjamin Doerr and Leslie A. Goldberg. 2013. Adaptive drift analysis. Algorith-

mica 65 (2013), 224–250.

[22] Benjamin Doerr and Timo Kötzing. 2019. Multiplicative up-drift. In Genetic and

Evolutionary Computation Conference, GECCO 2019. ACM, 1470–1478.

[23] Benjamin Doerr and Timo Kötzing. 2019. Multiplicative Up-Drift. CoRR

abs/1806.01331 (2019). arXiv:1806.01331

[24] Benjamin Doerr and Marvin Künnemann. 2015. Optimizing linear functions with

the (1 + 𝜆) evolutionary algorithm—different asymptotic runtimes for different

instances. Theoretical Computer Science 561 (2015), 3–23.

[25] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.

Fast genetic algorithms. In Genetic and Evolutionary Computation Conference,

GECCO 2017. ACM, 777–784.

[26] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.

2018. On the runtime analysis of selection hyper-heuristics with adaptive learning

periods. In Genetic and Evolutionary Computation Conference, GECCO 2018. ACM,

1015–1022.

[27] Benjamin Doerr and Frank Neumann (Eds.). 2020. Theory of Evolutionary

Computation—Recent Developments in Discrete Optimization. Springer.

[28] Benjamin Doerr, Carsten Witt, and Jing Yang. 2018. Runtime analysis for self-

adaptive mutation rates. In Genetic and Evolutionary Computation Conference,

GECCO 2018. ACM, 1475–1482.

[29] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.

[30] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank

Neumann, and Martin Schirneck. 2016. Fast building block assembly by majority

vote crossover. In Genetic and Evolutionary Computation Conference, GECCO 2016.

ACM, 661–668.

[31] Josselin Garnier, Leila Kallel, and Marc Schoenauer. 1999. Rigorous hitting times

for binary mutations. Evolutionary Computation 7 (1999), 173–203.

[32] Christian Gießen and Carsten Witt. 2017. The interplay of population size and

mutation probability in the (1 + 𝜆) EA on OneMax. Algorithmica 78 (2017),

587–609.

[33] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. 2008. Rigor-

ous analyses of fitness-proportional selection for optimizing linear functions. In

Genetic and Evolutionary Computation Conference, GECCO 2008. ACM, 953–960.

[34] Václav Hasenöhrl and Andrew M. Sutton. 2018. On the runtime dynamics of

the compact genetic algorithm on jump functions. In Genetic and Evolutionary

Computation Conference, GECCO 2018. ACM, 967–974.

[35] Jun He and Xin Yao. 2001. Drift analysis and average time complexity of evolu-

tionary algorithms. Artificial Intelligence 127 (2001), 51–81.

[36] Jens Jägersküpper and Tobias Storch. 2007. When the plus strategy outperforms

the comma strategy and when not. In Foundations of Computational Intelligence,

FOCI 2007. IEEE, 25–32.

[37] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Science

Perspective. Springer.

[38] Thomas Jansen, Kenneth A. De Jong, and IngoWegener. 2005. On the choice of the

offspring population size in evolutionary algorithms. Evolutionary Computation

13 (2005), 413–440.

[39] Thomas Jansen and IngoWegener. 2002. The analysis of evolutionary algorithms—

a proof that crossover really can help. Algorithmica 34 (2002), 47–66.

[40] Timo Kötzing. 2016. Concentration of first hitting times under additive drift.

Algorithmica 75 (2016), 490–506.

[41] Per Kristian Lehre. 2010. Negative drift in populations. In Parallel Problem Solving

from Nature, PPSN 2010. Springer, 244–253.

[42] Per Kristian Lehre. 2011. Fitness-levels for non-elitist populations. In Genetic and

Evolutionary Computation Conference, GECCO 2011. ACM, 2075–2082.

[43] Johannes Lengler. 2020. Drift analysis. In Theory of Evolutionary Computation: Re-

cent Developments in Discrete Optimization, Benjamin Doerr and Frank Neumann

(Eds.). Springer, 89–131. Also available at https://arxiv.org/abs/1712.00964.

[44] Johannes Lengler and Angelika Steger. 2018. Drift analysis and evolutionary

algorithms revisited. Combinatorics, Probability & Computing 27 (2018), 643–666.

[45] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair Warwicker. 2017. On

the runtime analysis of generalised selection hyper-heuristics for pseudo-Boolean

optimisation. In Genetic and Evolutionary Computation Conference, GECCO 2017.

ACM, 849–856.

[46] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair Warwicker. 2019.

On the time complexity of algorithm selection hyper-heuristics for multimodal

optimisation. In Conference on Artificial Intelligence, AAAI 2019. AAAI Press,

2322–2329.

[47] Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. 2009. Theoretical

analysis of fitness-proportional selection: landscapes and efficiency. In Genetic

and Evolutionary Computation Conference, GECCO 2009. ACM, 835–842.

[48] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinato-

rial Optimization – Algorithms and Their Computational Complexity. Springer.

[49] Pietro Simone Oliveto and CarstenWitt. 2011. Simplified drift analysis for proving

lower bounds in evolutionary computation. Algorithmica 59 (2011), 369–386.

[50] Pietro Simone Oliveto and Carsten Witt. 2012. Erratum: Simplified Drift Analysis

for Proving Lower Bounds in Evolutionary Computation. CoRR abs/1211.7184

(2012). arXiv:1211.7184

[51] Pietro Simone Oliveto and CarstenWitt. 2015. Improved time complexity analysis

of the Simple Genetic Algorithm. Theoretical Computer Science 605 (2015), 21–41.

[52] Jonathan E. Rowe and Aishwaryaprajna. 2019. The benefits and limitations

of voting mechanisms in evolutionary optimisation. In Foundations of Genetic

Algorithms, FOGA 2019. ACM, 34–42.

[53] Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population

size in the (1, 𝜆) evolutionary algorithm. Theoretical Computer Science 545 (2014),

20–38.

[54] Dirk Sudholt. 2009. The impact of parametrization in memetic evolutionary

algorithms. Theoretical Computer Science 410 (2009), 2511–2528.

[55] Dirk Sudholt. 2013. A new method for lower bounds on the running time of

evolutionary algorithms. IEEE Transactions on Evolutionary Computation 17

(2013), 418–435.

[56] DarrellWhitley, Swetha Varadarajan, Rachel Hirsch, and AnirbanMukhopadhyay.

2018. Exploration and exploitation without mutation: solving the jump function

inΘ(𝑛) time. In Parallel Problem Solving from Nature, PPSN 2018, Part II. Springer,

55–66.

http://arxiv.org/abs/1908.06527
http://arxiv.org/abs/2004.01274
http://arxiv.org/abs/1806.01331
https://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1211.7184

GECCO ’20, July 8–12, 2020, Cancn, Mexico Benjamin Doerr

[57] Carsten Witt. 2006. Runtime analysis of the (𝜇 + 1) EA on simple pseudo-Boolean

functions. Evolutionary Computation 14 (2006), 65–86.

[58] Carsten Witt. 2013. Tight bounds on the optimization time of a randomized

search heuristic on linear functions. Combinatorics, Probability & Computing 22

(2013), 294–318.

[59] Carsten Witt. 2019. Upper bounds on the running time of the univariate marginal

distribution algorithm on OneMax. Algorithmica 81 (2019), 632–667.

	Abstract
	1 Introduction
	2 State of the Art and Our Results
	2.1 Non-elitist Algorithms
	2.2 Precise Runtime Analyses
	2.3 Methods: Negative Drift and Level-based Analyses

	3 Preliminaries
	3.1 The (,) EA
	3.2 The Jump Function Class

	4 A Lower Bound for the Runtime of the (,) EA on Jump Functions
	5 A Tight Upper Bound
	6 Conclusion
	References

