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In this study, we introduce two numerical methods to reconstruct, from posterior measurements of the solutions, the initial conditions in the one-dimensional heat conduction problem and the wave propagation. The methods use a wavelet based Galerkin method for the spatial discretization and a spectral decomposition of the basis stiffness matrix to get the numerical solution without time discretization as in classical approches. In fact, according to the proposed methods, setting an error bound and properly selecting the eigenvalues of the discretization system, we are able to reconstruct the initial conditions without exceeding the required error. The applicability and computational efficiency of the methods are investigated by solving some numerical examples with toy solutions and the experimental results confirm their accuracy.

Introduction

Initial condition reconstruction from the solution posterior measurements is part of inverse problems associated to system governed by partial differential equations [START_REF] Payne | Improperly Posed Problems in Partial Differential Equations[END_REF]. In the recent decades, plenty of works have been devoted to this problem due to its importance in many applications in engineering, see [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Komornik | Fourier series in control theory[END_REF]. Most often, this question arises in practice in the non-destructive testing of materials, the development of the transient elastography technique, river pollution, population dynamics [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Imperiale | Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains[END_REF], etc. Particularly, in the case of parabolic or hyperbolic model equations, the problem is ill posed and very difficult to tackle [START_REF] Lattès | Méthode de quasi-réversibilité et applications[END_REF][START_REF] Payne | Improperly Posed Problems in Partial Differential Equations[END_REF]. In this work, we aim to study the initial condition reconstruction 10 problem from a numerical point of view.

Although the problem is very old, among many others, Seidman's work [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF] is one of the pioneers in the numerical recovery of the initial temperature from measurements made at later times. In [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF], for the backwards heat equation stabilized by an a priori initial bound, which is a frequency filtering, an estimator is determined for the time intermediate values of the solution. This estimator is optimal with respect to the filtering bound and the observation accuracy. However, to construct this estimator observations in the whole spatial domain are needed and its limit when the time tends to zeros may not always exist.

Recently, using impulse control techniques, again by frequency filtering, Phung et al. [START_REF] Phung | Impulse output rapid stabilization for heat equations[END_REF] have provided a new optimal estimator that compensates the zeros limits problem. Moreover, in [START_REF] Phung | Impulse output rapid stabilization for heat equations[END_REF] observations are only made in a subdomain where the impulses act.

Another approche presented in [START_REF] Devore | Recovery of an Initial Temperature from Discrete Sampling[END_REF] uses measurements at a fixed position. Judiciously positioning the thermometer, DeVore and Zuazua [START_REF] Devore | Recovery of an Initial Temperature from Discrete Sampling[END_REF] show that the initial temperature profile can be completely determined by later time measurements.They also show that with sufficient number of measurements, the initial profile can be reconstructed up to a prescribed accuracy and they provide an optimal reconstruction algorithm under the assumption that the initial profile is in a Sobolev class.

In the context of wave equations and the initial profile recovery, a well documented study can be funded in [START_REF] Komornik | Fourier series in control theory[END_REF], especially in the continuous case and in the Hilbertian framework. For the numerical approaches, we refer to [START_REF] Imperiale | Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains[END_REF] and references therein. The particularity of the method presented in [START_REF] Imperiale | Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains[END_REF] is the use of an iterative back-and-forth nudging algorithm, which is a data assimilation technique [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF]. Without using gradient descent to minimize a cost function, the method allows to reconstruct the initial condition of a wave equation in an unbounded domain configuration from measurements available in time on a subdomain. Globally, the algorithm converges with perfect measurements and remains robust to noise. But, the initial condition reconstruction on a bounded domain is possible only using artificial transparent boundary conditions for the exterior domain. Such an issue is necessary for many other methods [START_REF] Imperiale | Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains[END_REF].

The approaches of [START_REF] Devore | Recovery of an Initial Temperature from Discrete Sampling[END_REF][START_REF] Komornik | Fourier series in control theory[END_REF][START_REF] Phung | Impulse output rapid stabilization for heat equations[END_REF][START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF] use Fourier basis or the laplacian operator eigenfunction basis with physical boundary conditions. Then, for the numerical computation, it is very difficult to design an efficient numerical method that handle easily the non periodic boundary conditions. Finite element basis was suggested in [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF], but it is known that the condition number of the discretization matrice on this basis increases with the number of the points of the mesh.

Due to their localization both in space and frequency domains, wavelet basis is a good choice for the spatial discretization of partial differential equations.

Moreover, the two scale relation satisfied by the wavelet generator allows to compute the coefficients of the mass and the stiffness matrices of the basis without using a quadrature formula. Numerically, this is done by solving an eigenvalue problem [START_REF] Beylkin | On the representation of operator in bases of compactly supported wavelets[END_REF] and the spectrum of these matrices are bounded according to the resolution j. Thus, an explicit optimal conditioners for the stiffness matrix at each scale is known [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF]. Furthermore, wavelet based method has the advantage of improving the discretization accuracy by increasing the number of wavelet vanishing moments [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF]. To deal with physical boundary conditions, edge wavelets are used and this leads also to fast algorithms as in the periodic, see [START_REF] Harouna | Homogeneous Dirichlet wavelets on the interval diagonalizing the derivative operator, and related applications[END_REF][START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF].

Then, using a wavelet based Galerkin discretization, the model equations are transformed in ordinary differential equations systems and an exponential integrator method is used for their resolution [START_REF] Hochbruck | Exponential integrators[END_REF]. To compute the matrices exponential, a singular value decomposition (SDV) is applied [START_REF] Strang | Introduction to linear algebra[END_REF]. Therefore, the analytic expression of the solution is known and this avoids the use of an iterative procedure with is often constrained by a CFL condition [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF]. From the solution formula, to reconstruct the initial data, it is only necessary to observed the wavelet coefficients of the solution at a certain time. This amounts to know the solution values at the spatial discretization grid points which is supposed to be provided in advance. Then, classical algorithms are used to project the observed solution onto the wavelet basis in order to get these coefficients [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF].

In the present work, two observation strategies are considered. The first one consists to observe a noiseless solution at all the grid points, similar to [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF] and the second one supposed that noisily wavelet coefficients of the solution are accessible. For the heat equation, one can uses the morse pseudo inversion method to get the backward exponential of the arising matrices, however, a lot of attention must be paid to the accuracy to recover the spatial discretization precision. In the present work, according to the fast decay of the exponential of negative numbers, to have an error in 0 < ϵ << 1, it is only necessary to keep the N greatest first eigenvalues of the system, with N ≈ -log(ϵ)/(νt) where ν is the diffusion coefficient and t is the observation time. Otherwise, to reconstruct the wave initial profile and speed, observation at two different times t 1 ̸ = t 2 are required and to overcome the problem of indetermination when t 1 and t 2 are very close, again the morse pseudo inversion method is used to solve the two systems. Although the approach is well known for the heat equation, to best of our knowledge, there is no an efficient numerical method that allows the reconstruction of the wave initial profile using Galerkin discretization and that is not based on the use of Fourier basis. Therefore, one of the contributions of this work is to provide an efficient and stable numerical method for initial conditions reconstruction, easy to implement taking into account non-periodic boundary conditions. The magnitude of the numerical error of the method is the same as the Galerkin discretization error on the exact solution. This error has polynomial decay that depends of the data smoothness and the wavelet basis number of vanishing moments: it is in O(N -s ) with N the number of grid points and s > 0 is at most the used wavelet number of vanishing moments.

The reminder of the paper is as follows. In Section 2, we introduce the wavelet basis construction and then we specify its properties useful to prove some error estimations. Section 3 is dedicated to the wavelet based Galerkin discretization. Following [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF] and using the Jackson and Bernstein inequalities, we give classical a priori error estimates on the wavelet based method for the heat and wave equations. The bounds are the same as for the finite element method, but easier to prove in this context. In Section 4 we present our numerical algorithm for the initial conditions reconstruction. Section 5 illustrates numerical experiments that support the theoretical results of the previous sections.

Wavelet basis

One simpler way to define the wavelet basis is to use the multiresolution analysis framework [START_REF] Daubechies | Ten lectures on Wavelets[END_REF][START_REF] Mallat | A Wavelet Tour of Signal Processing: The Sparse Way[END_REF]. Precisely, by definition a multiresolution analysis of L 2 (R) is a sequence of closed nested subspaces {V j } j∈Z that satisfy:

(i) V j ⊂ V j+1 , ∩ j∈Z V j = {0} and ∪ j∈Z V j = L 2 (R). (ii) ∀f ∈ L 2 (R) : f (x) ∈ V j ⇔ f (2x) ∈ V j+1 and f (x) ∈ V 0 ⇔ f (x -k) ∈ V 0 . (iii)There exists a function φ such that {φ(. -k)} k∈Z is a Riesz basis of V 0 .
The function φ is called scaling function and the refinement relation (ii) leads to:

φ(x) = k∈Z h k √ 2φ(2x -k), h k ∈ R. (1) 
The mask {h k } k∈Z is called scaling function filter, its support coincides with the support of φ [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] and the parameter j defines the resolution.

Relation (i) allows to write:

V j+1 = V j ⊕ W j , (2) 
where W j denotes the complement of V j in V j+1 in a topological sense, thus it is not unique. Then, wavelet basis is defined as a basis of W j and using (ii), the wavelet generator ψ ∈ W 0 can be defined by its two-scale relation in V 1 :

ψ(x) = k∈Z g k √ 2φ(2x -k), g k ∈ R. (3) 
Similarly, the mask {g k } k∈Z is called the wavelet filter and setting φ j,k = 2 j/2 φ(2 j x -k) and ψ j,k = 2 j/2 ψ(2 j x -k), we have:

V j = span{φ j,k : k ∈ Z} and W j = span{ψ j,k : k ∈ Z}.
To have an orthogonal wavelet basis, it suffices to set W j as the orthogonal complement of V j :

V j+1 = V j ⊕ W j , W j = V j+1 ∩ (V j ) ⊥ . (4) 
In general, the space W j is defined as:

V j+1 = V j ⊕ W j and W j = V j+1 ∩ ( Ṽj ) ⊥ , (5) 
where { Ṽj } j∈Z is another multiresolution analysis of L 2 (R) with scaling function φ and wavelet ψ. In this case, (V j , Ṽj ) j∈Z is referred as a biorthogonal multiresolution analysis of L 2 (R) [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF][START_REF] Daubechies | Ten lectures on Wavelets[END_REF].

The multiscale projection of a function f ∈ L 2 (R) onto V j and W j are defined respectively by:

P j (f ) = k∈Z ⟨f, φj,k ⟩φ j,k and Q j (f ) = k∈Z ⟨f, ψj,k ⟩ψ j,k . (6) 
From ( 4) and ( 5), we have Q j (f ) = P j+1 (f ) -P j (f ) and the multiscale decomposition of f ∈ L 2 (R) reads:

f = P j (f ) + ℓ≥j Q ℓ (f ).
To compute numerically these projections, one uses the fast wavelet transform algorithm and only the masks {h k } k∈Z and {g k } k∈Z are needed [START_REF] Mallat | A Wavelet Tour of Signal Processing: The Sparse Way[END_REF]. Moreover, if the scaling function generator is smooth enough, for f ∈ H s (R) we have the following Jackson and Bernstein inequalities [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF][START_REF] Daubechies | Ten lectures on Wavelets[END_REF]:

∥P j (f ) -f ∥ L 2 (0,1) ≤ C2 -js ∥f ∥ H s (0,1) and ∥P j (f )∥ H s (0,1) ≤ C2 js ∥P j (f )∥ L 2 (0,1) , s > 0. ( 7 
)
This wavelet basis construction extends easily to higher dimension using tensor product of the one-dimensional wavelet basis [START_REF] Daubechies | Ten lectures on Wavelets[END_REF]. In this work, we use the construction on the interval [0, 1] satisfying physical boundary conditions [START_REF] Harouna | Homogeneous Dirichlet wavelets on the interval diagonalizing the derivative operator, and related applications[END_REF][START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF]. Then, compactly support generators are used and due to the dilatation factor, a minimum resolution j min > 0 is fixed to ensure that the supports of all analyzing functions are contained in [0, 1], see [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF]. We can also impose interpolation property in the basis construction [START_REF] Daubechies | Ten lectures on Wavelets[END_REF][START_REF] Deslauriers | Symmetric iterative interpolation processes[END_REF][START_REF] Dubuc | Interpolation through an iterative scheme[END_REF], this will facilitate the initialization step of the fast wavelet transform algorithm and if not, quadrature formulas are used [START_REF] Harouna | Homogeneous Dirichlet wavelets on the interval diagonalizing the derivative operator, and related applications[END_REF][START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF].

Wavelet based Galerkin method for the heat and wave equations

In this section we briefly present the wavelet based Galerkin method for the spatial discretization of the wave and heat equations. The approach is similar to the finite element method [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF] and our objective is to show that we have at worst the same order of accuracy. For the sake of easy understanding, onedimensional equations are considered. The generalization to higher dimensions is straightforward.

Wavelet based Galerkin method for the wave equation

The initial-boundary value problem for the one-dimensional waves propagation that we considered is expressed as:

∂ 2 t u(t, x) = ν∂ 2 x u(t, x), u(0, x) = u 0 (x) and ∂ t u(0, x) = u 1 (x), (8) 
where x ∈ [0, 1] and t ∈]0, T ] with T > 0. The wave is supposed to be fixed at boundaries and this implies homogeneous Dirichlet boundary condition: u(t, 0) = u(t, 1) = 0, see [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF].

Fourier's basis allows to compute an explicit numerical solution of ( 8), but such a basis is not compactly supported and the fast Fourier transform algorithm exists only for periodic function. To overcome this, instead of using the finite element method [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF], we will use a wavelet based Galerkin method and we won't need a time discretization. Moreover, the first equation of ( 8) is a linear hyperbolic equation and in the works of the literature, there is a lot of studies on the finite element based method applied to hyperbolic equations [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF]. We aim here to recall some well known results on error estimations in the particular case of wavelet based method. Then, we assume that the wavelet basis and the exact solution have the required smoothness in space.

According to the boundary conditions, we also suppose that the approximation spaces (V j ) j≥jmin is a multi-resolution analysis of H 1 0 (0, 1) [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF]. Then, the wavelet based Galerkin method consists in looking for a solution u j ∈ V j of (8) in the following discrete form:

u j (t, x) = Nj k=1 ⟨u, ψj,k ⟩ψ j,k (x) = Nj k=1 d j,k (t)ψ j,k (x). (9) 
Inserting 9 into (8) and using integration by part and the boundary condition, we get:

Nj k=1 d ′′ j,k (t) 1 0 ψ j,k (x)ψ j,m (x)dx + νd j,k (t) 1 0 ψ ′ j,k (x)ψ ′ j,m (x)dx = 0, ( 10 
)
for m = 1, . . . , N j . Thus, the coefficients [d j,k ] solve this linear system:

A j d ′′ j,k (t) + R j [d j,k (t)] = 0, (11) 
where A j and R j denote respectively the mass matrix and the stiffness matrix of the used wavelet basis:

[A j ] k,m = 1 0 ψ j,k (x)ψ j,m (x)dx and [R j ] k,m = ν 1 0 ψ ′ j,k (x)ψ ′ j,m (x)dx. ( 12 
)
These matrices are symmetric and positive definite. In practice, one can compute their elements without numerical quadrature by solving an eigenvalue problem [START_REF] Beylkin | On the representation of operator in bases of compactly supported wavelets[END_REF] and optimal diagonal preconditioners exist for these matrices [START_REF] Cohen | Numerical analysis of wavelet methods[END_REF].

One main property of the Galerkin method is that a priori error estimates exist and this allows to prove its convergence. Precisely, in the case of wavelet based method, we have the following proposition: Proposition 1. Let u j and u be solutions of (10) and (8), respectively. If the initial conditions u 0 (x) and u 1 (x) and the wavelet basis are regular enough, then we have:

∥u j -u∥ L 2 (0,1) ≤ C2 -js , (13) 
for all j ≥ j min and s > 0.

Proof. Let e j (t, x) = u(t, x) -u j (t, x) be the spatial discretization error. By definition, we have:

∥e j ∥ L 2 (0,1) = ∥u -u j ∥ L 2 (0,1) ≤ ∥P j (u) -u j ∥ L 2 (0,1) + ∥P j (u) -u∥ L 2 (0,1) . ( 14 
)
If the solution u ∈ H s (0, 1), using the Jackson inequality [START_REF] Daubechies | Ten lectures on Wavelets[END_REF], the second term of ( 14) is bounded as:

∥P j (u) -u∥ L 2 (0,1) ≤ C2 -js ∥u∥ H s (0,1) .
For the first term, we will use classical a posteriori error estimates for hyperbolic equations [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF]. Indeed, let θ j = u j -P j (u) and taking ∂ t [u j -P j (u)] = ∂ t θ j as test function in ( 8) and [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF], we obtain:

⟨∂ 2 t u -ν∂ 2 x u, ∂ t θ j ⟩ = ⟨∂ 2 t u j -ν∂ 2
x u j , ∂ t θ j ⟩, and this rewrites in:

⟨∂ 2 t [u -P j (u)] -ν∂ 2 x [u -P j (u)], ∂ t θ j ⟩ = ⟨∂ 2 t θ j -ν∂ 2 x θ j , ∂ t θ j ⟩. Integration by part gives: 1 2 d dt ∥∂ t θ j ∥ 2 L 2 (0,1) + ν∥∂ x θ j ∥ 2 L 2 (0,1) = ⟨∂ 2 t [u-P j (u)], ∂ t θ j ⟩+ν⟨∂ x [u-P j (u)], ∂ x ∂ t θ j ⟩ ≤ ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) ∥∂ t θ j ∥ L 2 (0,1) + ν∥∂ x [u -P j (u)]∥ L 2 (0,1) ∥∂ x ∂ t θ j ∥ L 2 (0,1) . (15 
) After integration in t, we get:

∥∂ t θ j (t)∥ 2 L 2 (0,1) + ν∥∂ x θ j (t)∥ 2 L 2 (0,1) ≤ ∥∂ t θ j (0)∥ 2 L 2 (0,1) + ν∥∂ x θ j (0)∥ 2 L 2 (0,1) (16) 
+ 2 t 0 ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) ∥∂ t θ j ∥ L 2 (0,1) + 2 t 0 ν∥∂ x [u -P j (u)]∥ L 2 (0,1) ∥∂ x ∂ t θ j ∥ L 2 (0,1) . Since 2 t 0 ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) ∥∂ t θ j ∥ L 2 (0,1) ≤ 2 t 0 ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) 2 + 1 2 max h∈[0,t] ∥∂ t θ j (h)∥ L 2 (0,1) 2 and 2 t 0 ν∥∂ x [u -P j (u)]∥ L 2 (0,1) ∥∂ x ∂ t θ j ∥ L 2 (0,1) ≤ 2 t 0 ν∥∂ x [u -P j (u)]∥ L 2 (0,1) 2 + ν 2 max h∈[0,t] ∥∂ x ∂ t θ j (h)∥ L 2 (0,1) 2 ,
we deduce that:

1 2 max h∈[0,t] ∥∂ t θ j (h)∥ 2 L 2 (0,1) + ν max h∈[0,t] ∥∂ x ∂ t θ j (h)∥ 2 L 2 (0,1) ≤ ∥∂ t θ j (0)∥ 2 L 2 (0,1) + ν∥∂ x θ j (0)∥ 2 L 2 (0,1) + 2 t 0 ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) 2 + 2 t 0 ν∥∂ x [u -P j (u)]∥ L 2 (0, 1) 2 . 
From ( 16) we get:

∥∂ t θ j (t)∥ 2 L 2 (0,1) + ν∥∂ x θ j (t)∥ 2 L 2 (0,1) ≤ 2∥∂ t θ j (0)∥ 2 L 2 (0,1) + 2ν∥∂ x θ j (0)∥ 2 L 2 (0,1) + 4 t 0 ∥∂ 2 t [u -P j (u)]∥ L 2 (0,1) 2 + 4 t 0 ν∥∂ x [u -P j (u)]∥ L 2 (0,1) 2 .
Again using the Jackson estimation [START_REF] Daubechies | Ten lectures on Wavelets[END_REF], we get:

∥∂ t θ j (t)∥ 2 L 2 (0,1) + ν∥∂ x θ j (t)∥ 2 L 2 (0,1) ≤ 2∥∂ t θ j (0)∥ 2 L 2 (0,1) + 2ν∥∂ x θ j (0)∥ 2 L 2 (0,1) + C2 -2js t 0 ∥∂ 2 t u∥ H s (0,1) 2 + t 0 ∥u∥ H s+1 2 .
Poincaré's inequality and the previous estimates give:

∥θ j (t)∥ 2 L 2 (0,1) ≤ C∥∂ x θ j (t)∥ 2 L 2 (0,1) ≤ 2∥∂ t θ j (0)∥ 2 L 2 (0,1) +2ν∥∂ x θ j (0)∥ 2 L 2 (0,1) +C2 -2js . ( 17 
) Finally, we have:

∥e j (t)∥ 2 L 2 (0,1) ≤ C ∥∂ t θ j (0)∥ 2 L 2 (0,1) + ν∥∂ x θ j (0)∥ 2 L 2 (0,1) + 2 -2js . ( 18 
)
and

∥∂ t e j (t)∥ 2 L 2 (0,1) ≤ C ∥∂ t θ j (0)∥ 2 L 2 (0,1) + ν∥∂ x θ j (0)∥ 2 L 2 (0,1) + 2 -2js . (19) 
Then, to have the desired order on the errors e j and ∂ t e j , which is in O(2 -js ), it suffices to take u j (0, x) = P j (u(0, x)) and ∂ t u j (0, x) = P j (∂ t u(0, x)). This will be assumed in the sequel.

Proposition 1 shows that the wavelet based method has the same error as the finite element method [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF] if the mesh size is about h ≈ 2 -j . Then, the objective in the next sections is to build a numerical method that preserves this order of accuracy in the reconstruction and identification of the initial condition u(0, x) and speed ∂ t u(0, x) associated to [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF]. Before going to this, we will also summarize our spatial discretization of the heat equation.

Wavelet based Galerkin method for the heat equation

As done for the wave equation in previous section, the Cauchy's problem for the heat conduction that we deal with is:

∂ t u(t, x) = ν∂ 2 x u(t, x), u(0, x) = u 0 (x), (20) 
where x ∈ [0, 1] and t ∈ [0, T ]. Again, homogeneous Dirichlet boundary conditions are assumed: u(t, 0) = u(t, 1) = 0. Other boundary conditions can be used without impacting the method as we will see.

Similarly, the wavelet based Galerkin method for the heat equation consists in searching a solution of (20) denotes u j ∈ V j in the following form:

u j (t, x) = Nj k=1 d j,k (t)ψ j,k (x). (21) 
Then, it is easy to see that u j is a solution for the following variational problem:

Nj k=1 d ′ j,k (t) 1 0 ψ j,k (x)ψ j,m (x)dx + νd j,k (t) 1 0 ψ ′ j,k (x)ψ ′ j,m (x)dx = 0, ( 22 
)
for m = 1, . . . , N j .

In this case, the computation of u j is thus reduced to the computation of the wavelet coefficients (d j,k ). According to [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF], these coefficients are solution of the following one order differential system:

A j d ′ j,k (t) + R j [d j,k (t)] = 0, (23) 
where A j and R j are respectively the mass matrix and the stiffness matrix of the used wavelet basis. Moreover, the spatial discretization error satisfies:

Proposition 2. Let u j and u be solutions of (20) and [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF], respectively. If the initial conditions u 0 (x) and the wavelet basis are regular enough, then we have:

∥u j -u∥ L 2 (0,1) ≤ C2 -js , (24) 
for all j ≥ j min and s > 0.

Proof. Let e j (t, x) = u(t, x) -u j (t, x) be the discretization error. Then, we 195 have:

∥e j ∥ L 2 (0,1) = ∥u -u j ∥ L 2 (0,1) ≤ ∥P j (u) -u j ∥ L 2 (0,1) + ∥P j (u) -u∥ L 2 (0,1) . ( 25 
)
Using the Jackson inequality [START_REF] Daubechies | Ten lectures on Wavelets[END_REF], we see that the second term in the right hand of ( 25) is bounded by C2 -js for a solution u ∈ H s (0, 1). On the other hand, since:

⟨∂ t u -ν∂ 2 x u, ψ j,m ⟩ = ⟨∂ t u j -ν∂ 2 x u j , ψ j,m ⟩, ∀ ψ j,m ∈ V j , (26) 
we have:

⟨∂ t [u -P j (u)] -ν∂ 2 x [u -P j (u)], ψ j,m ⟩ = ⟨∂ t [u j -P j (u)] -ν∂ 2 x [u j -P j (u)], ψ j,m ⟩, ∀ ψ j,m ∈ V j . Denoting θ j (t, x) = u j (t, x) -P j (u(t, x)
) and replacing ψ j,m by θ j in 26, we get:

1 2 d dt ∥θ j (t)∥ 2 L 2 (0,1) + ν 1 0 |∂ x θ j | 2 = ⟨∂ t [u -P j (u)] -ν∂ 2 x [u -P j (u)], θ j ⟩ ≤ ∥∂ t [u -P j (u)]∥ L 2 (0,1) ∥θ j ∥ L 2 (0,1) + ν∥∂ x [u -P j (u)]∥ L 2 (0,1) ∥∂ x θ j ∥ L 2 (0,1) ≤ C∥∂ t [u-P j (u)]∥ L 2 (0,1) ∥∂ x θ j ∥ L 2 (0,1) +ν∥∂ x [u-P j (u)]∥ 2 L 2 (0,1) + ν 4 ∥∂ x θ j ∥ 2 L 2 (0,1) ≤ C 2 ν ∥∂ t [u -P j (u)]∥ 2 L 2 (0,1) + ν∥∂ x [u -P j (u)]∥ 2 L 2 (0,1) + ν 2 ∥∂ x θ j ∥ 2 L 2 (0,1)
, by using the Cauchy-Schwarz inequality and Poincaré's inequality. Therefore:

1 2 d dt ∥θ j (t)∥ 2 L 2 (0,1) + ν 2 ∥∂ x θ j ∥ 2 L 2 (0,1) ≤ C 2 ν ∥∂ t [u -P j (u)]∥ 2 L 2 (0,1) + ν∥∂ x u -∂ x P j (u)∥ 2 L 2 (0,1) ≤ C2 -2js ∥∂ t u∥ 2 H s (0,1) + C2 -2js ∥u∥ 2 H s+1 .
Integration over time gives:

∥θ j (t)∥ 2 L 2 (0,1) + ν t 0 ∥∂ x θ j ∥ 2 L 2 (0,1) ≤ ∥θ j (0)∥ 2 L 2 (0,1) + C2 -2js t 0 ∥∂ t u∥ 2 H s (0,1) + ∥u∥ 2 H s+1 . (27) 
Finally, we have:

∥e j (t)∥ L 2 (0,1) ≤ C ∥θ j (0)∥ L 2 (0,1) + 2 -js . ( 28 
)
Thus to have e j in O(2 -js ), it suffices to take u j (0, x) = P j (u(0, x)) and this will be assumed in the sequel.

Likewise, the error bound given by Proposition 2 is the same as the finite element method [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF]. We will now focus on the reconstruction and identification of initial conditions, with the main objective of having methods whose errors do not exceed those given by Proposition 1 and Proposition 2.

Initial conditions reconstruction

In this section, we present our approach for identifying the initial conditions and then study its numerical accuracy. We start with the wave equation problem.

Wave equation initial conditions identification

Most often, the problem encountered in the wave propagation control is to know the initial conditions. Thus we propose in this section a method that allows to identify the wavelet coefficients of the initial conditions u j (0, x) = P j (u(0, x)) and ∂ t u j (0, x) = P j (∂ t u(0, x)), where u j is the numerical solution of the wavelet based Galerkin method system defined in [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF]. To do this, we assume that we have as data, measurements of the solution on the sptatial grid points and at two different moments 0 < t 1 < t 2 .

In the common approaches, the numerical resolution of (11) uses a time discretization schemes [START_REF] Larsson | Partial Differential Equations with Numerical Methods[END_REF]. This is necessary only in the nonlinear case or if the system cannot be diagonalized easily. Then, as we have a linear equations, we will use here a singular value decomposition (SVD) [START_REF] Strang | Introduction to linear algebra[END_REF] in order to transform the system in a diagonal one and thus to compute its solution as in Fourier domain. In the general case, where biorthogonal wavelet basis is used, the A j is not the identity matrix. Thus, the first step of the method consists in transforming [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF] 

in d ′′ j,k (t) + A -1 j R j [d j,k (t)] = 0. ( 29 
)
The matrix M j = A -1 j R j is symmetric and positive (product of two symmetric and positive matrices). Using the SVD, we obtain D j = C -1 j M j C j , where D j is a diagonal matrix of eigen values of M j and C j is an orthogonal change of basis matrix. Then, setting :

dj,k = C -1 j [d j,k ], (30) 
it easy to transform (29) in:

d′′ j,k (t) + D j dj,k (t) = 0. ( 31 
)
System (31) is diagonal, then for each k, we have:

d′′ j,k (t) + D j,k dj,k (t) = 0, with D j,k = [D j ] k,k > 0. ( 32 
)
According to the differential equations theory, the solution of ( 31) is given by:

dj,k (t) = cos(t D j,k ) dj,k (0) + 1 D j,k sin(t D j,k ) d′ j,k (0). ( 33 
)
Relation (33) gives the wavelet coefficients of the Galerkin method solution u j without using a time discretization. Moreover, if we know the value of dj,k (t) at two different times, from (33) we can identify the initial conditions coefficients. Precisely, let us suppose that we have two solutions of (33

) denoted [ dj,k (t 1 )] ̸ = [ dj,k (t 2 )]: dj,k (t 1 ) = cos(t 1 D j,k ) dj,k (0) + 1 D j,k sin(t 1 D j,k ) d′ j,k (0) and dj,k (t 2 ) = cos(t 2 D j,k ) dj,k (0) + 1 D j,k sin(t 2 D j,k ) d′ j,k (0).
Then, if

|∆| = 1 D j,k cos(t 1 D j,k ) sin(t 2 D j,k ) -cos(t 2 D j,k ) sin(t 1 D j,k ) = 1 D j,k sin (t 2 -t 1 ) D j,k ̸ = 0,
a simple calculation gives:

dj,k (0) = 1 |∆| D j,k sin(t 2 D j,k ) dj,k (t 1 ) -sin(t 1 D j,k ) dj,k (t 2 ) (34) and d′ j,k (0) = 1 |∆| -cos(t 2 D j,k ) dj,k (t 1 ) + cos(t 1 D j,k ) dj,k (t 2 ) . ( 35 
)
Now we define as reconstructed initial conditions, the conditions whose wavelet coefficients are defined by ( 34) and ( 35) where [ dj,k (t 1 )] ̸ = [ dj,k (t 2 )] are the wavelet coefficients of the provided data. Therefore, in terms of numerical error, 220 the reconstructed initial conditions ūj (0) and ū′ j (0) from dj,k (0) and d′ j,k (0) satisfy: Proposition 3. Let ūj (0) and ū′ j (0) be the reconstructed initial conditions from the wavelet coefficients defined by (34) and (35). Then, we have:

∥ū j (0) -u 0 ∥ L 2 (0,1) ≤ C2 -js and ∥ū ′ j (0) -u 1 ∥ L 2 (0,1) ≤ C2 -js . ( 36 
)
Proof. The computation of coefficients dj,k (0) and d′ j,k (0) using ( 34) and ( 35) is a linear system resolution:

dj,k (0) d′ j,k (0) = 1 |∆| 1 √ D j,k sin(t 2 D j,k ) -1 √ D j,k sin(t 1 D j,k ) -cos(t 2 D j,k ) cos(t 1 D j,k ) dj,k (t 1 ) dj,k (t 2 ) .
(37) which can be written as:

dj,k (0) d′ j,k (0) = F (t 1 , t 2 ) u j (t 1 ) u j (t 2 ) , ( 38 
)
where F (t 1 , t 2 ) is the matrix of the operator that maps

(u j (t 1 ), u j (t 2 )) to (d j,k (0), d ′ j,k (0))
as defined by (37). Denoting by

dj,k (0) d′ j,k (0) = F (t 1 , t 2 ) P j (u(t 1 )) P j (u(t 2 ))) , (39) 
we have:

dj,k (0) -dj,k (0) d′ j,k (0) -d′ j,k (0) ℓ2 ≤ ∥F (t 1 , t 2 )∥ P j (u(t 1 )) -u j (t 1 ) P j (u(t 2 ))) -u j (t 2 ) L 2 (0,1) . (40) 
Since from Proposition 1, we have:

∥u j (t) -P j (u(t))∥ L 2 (0,1) ≤ C2 -js , we get: ∥ dj,k (0) -dj,k (0)∥ ℓ2 ≤ C∥F (t 1 , t 2 )∥2 -js and ∥ d′ j,k (0) -d′ j,k (0)∥ ℓ2 ≤ C∥F (t 1 , t 2 )∥2 -js . ( 41 
)
Choosing appropriately the times t 1 and t 2 , one can get ∥F (t 1 , t 2 )∥ bounded independently of j, thus the proposition is proved.

From Proposition 3, we see that our approach allows to reconstruct the initial conditions of the wave propagation problem with a numerical error of the same rate as the spatial discretization error. We will now study the reconstruction error for the heat equation.

Heat conduction initial condition identification

Heat conduction is a diffusion process and reversing a diffusion process is very difficult, most often impossible. For the linear problem [START_REF] Payne | Improperly Posed Problems in Partial Differential Equations[END_REF], we aim in this section to provide a numerical method to reconstruct the values of the coefficients d j,k (0) from measurements of the solution u(t, x) at grid points, up to a prescribed accuracy. For easy understanding, we will use the same notations as in the previous section.

Similarly, to compute the solution u j wavelet coefficients d j,k (t), we consider the Galerkin method ordinary differential equation system [START_REF] Shukla | Spectral graph wavelet regularization and adaptive wavelet for the backward heat conduction problem[END_REF] associated to [START_REF] Payne | Improperly Posed Problems in Partial Differential Equations[END_REF] and started from d j,k (0):

     A j d ′ j,k (t) + R j [d j,k (t)] = 0, [d j,k (0)] = [P j (u(0))] . (42) 
Then, the solution of ( 42) is given by:

d j,k (t) = e -tMj d j,k (0), with M j = A -1 j R j . (43) 
Therefore, using (43) and for all t > 0, it is easy to infer that:

d j,k (0) = e tMj d j,k (t). ( 44 
)
Making the change of variable

dj,k = C -1 j [d j,k ], (45) relation (44) becomes dj,k (0) 
= e tD j,k dj,k (t) with

D j = C -1 j M j C j . (46) 
Since D j,k are positive and tend to infinity with j, the relation (46) is not useful in practice for large j. Then, to control the instability due to the inversion of the large eigenvalues, we propose here to replace relation (44) by:

[ dj,k (0)] = D ϵ (t)[ dj,k (t)], (47) 
where, for ϵ > 0, the matrix D ϵ (t) is defined by:

D ϵ (t) = D N (t) 1+ϵ ϵ I Nj -N , (48) 
with

D N (t) =    e tDj,1 . . . e tD j, N    and 1 + ϵ ϵ I Nj -N =    1+ϵ ϵ . . . 1+ϵ ϵ    .
Thus, taking ϵ = e -tD j, N , we deduce that:

[ dj,k (0)] -[ dj,k (0)] 2 ℓ2 = [ dj,k (0)] -D ϵ (t)[ dj,k (t)] 2 ℓ2 = Nj k= N +1 1 + ϵ ϵ e -tD j,k -1 2 |d j,k (0)| 2 ,
and since e -tD j,k ≤ ϵ for k ≥ N , we have:

1 + ϵ ϵ e -tD j,k -1 ≤ 1 + ϵ ϵ ϵ -1 = ϵ.
This leads to:

240 ∥[ dj,k (0)] -[ dj,k (0)]∥ 2 ℓ2 ≤ Nj k= N +1 ϵ 2 |d j,k (0)| 2 ≤ ϵ 2 ∥[ dj,k (0)]∥ 2 ℓ2 . (49) 
According to (49), we see that relation ( 47) is an approximation of the coefficients dj,k (0) with an error order close to ϵ.

In practice, the coefficients d j,k (t) are computed from some measurements of the temperature u(t, x). If the Deslauriers-Dubuc interpolating wavelet basis [START_REF] Deslauriers | Symmetric iterative interpolation processes[END_REF][START_REF] Dubuc | Interpolation through an iterative scheme[END_REF] is used in the discretization of the solution u, we have:

u(t, x) = P j (u(t, x)) + ℓ≥j Q ℓ (u(t, x)), (50) 
with

P j (u(t, x)) = Nj k=1 c j,k (t)φ j,k (x). (51) 
Then, for 1 ≤ m ≤ N j , we have:

u(t, m/2 j ) = P j (u(t n , m/2 j )) = Nj k=1 c j,k (t)φ j,k (m/2 j ) = c j,m (t n ), (52) 
From (52), setting d j,k (t) = c j,k (t), one can compute d j,k (0) according to (44) and (47). In all the cases, if the wavelet basis generator is regular, the error on the reconstructed initial condition ūj (0) is the same as the Galerkin method error:

Proposition 4. Let ūj (0) be the initial condition reconstructed from the wavelet coefficients given by (47). Then, we have:

∥ū j (0) -u 0 ∥ L 2 (0,1) ≤ C2 -js . (53) 
Proof. Let us denote by dj,k (0) the wavelet coefficients of the initial condition computed from the data P j (u(t, x)) using (47):

[ dj,k (0)] = D ϵ (t)[P j (u(t, x))].
Then, we have:

∥[ dj,k (0)] -[ dj,k (0)]∥ ℓ2 = ∥[ dj,k (0)] -D ϵ (t)[ dj,k (t)] + D ϵ (t)[ dj,k (t)] -[ dj,k (0)]∥ ℓ2 ≤ ∥[ dj,k (0)] -D ϵ (t)[ dj,k (t)]∥ ℓ2 + ∥D ϵ (t)[ dj,k (t)] -[ dj,k (0)]∥ ℓ2 ,
where [ dj,k (t)] are the coefficients associated to u j (t). Using (49), the term ∥[ dj,k (0)] -D ϵ (t)[ dj,k (t)]∥ ℓ2 is bounded as follows:

∥[ dj,k (0)] -D ϵ (t)[ dj,k (t)]∥ ℓ2 ≤ ϵ∥[ dj,k (0)]∥ ℓ2 .
On the other hand, using the estimation of Proposition 2 we have:

∥D ϵ (t)[ dj,k (t)] -[ dj,k (0)]∥ ℓ2 = ∥D ϵ (t)[u j (t)] -D ϵ (t)[P j (u(t, x))]∥ ℓ2 ≤ ∥D ϵ (t)∥∥u j (t) -P j (u(t, x))∥ L 2 (0,1)
≤ C∥D ϵ (t)∥2 -js .

As 0 < ϵ < 1 and using the definition of D ϵ (t), it is easy to see that:

∥D ϵ (t)∥ ≤ 1 + ϵ ϵ .
Thus, for a suitable constant C 1 > 0, we obtain:

∥[ dj,k (0)] -[ dj,k (0)]∥ ℓ2 ≤ C 1 (ϵ + 1 + ϵ ϵ 2 -js ). (54) 
Therefore, if j ≥ -

log( ϵ 2 C 1 (1+ϵ) ) s log(2)
, from (54) we get:

∥[ dj,k (0)] -[ dj,k (0)]∥ ℓ2 ≤ 2C 1 ϵ. (55) 
Due to (55), to get the statement of the proposition, it suffices to take:

j ≥ max    - log(ϵ) s log(2) , - log( ϵ 2 C1(1+ϵ) ) s log(2)    . ( 56 
)
We will now check, from numerical experiments, if these error bounds are achieved in practice.

Numerical results

This section is devoted to the presentation of numerical results to evaluate the performance and efficiency of the proposed identification methods. All the simulations are executed with MATLAB and the source codes are available on request. The used wavelet basis generator is the Daubechies orthogonal generator with 4 vanishing moments [START_REF] Daubechies | Ten lectures on Wavelets[END_REF]. It is known that the autocorrelation of this generator will give the Deslauriers-Dubuc generator that reproduces polynomials up to degree 4 [START_REF] Deslauriers | Symmetric iterative interpolation processes[END_REF][START_REF] Dubuc | Interpolation through an iterative scheme[END_REF]. Boundary conditions are incorporated in the wavelet basis following [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF].

For the wave propagation problem [START_REF] Devore | Recovery of an Initial Temperature from Discrete Sampling[END_REF], as analytical solution we took the function u defined by: u(t, x) = cos(2πt + 2) sin(2πx).

(57)

The initial conditions of this solution are:

u 0 (x) = cos(2) sin(2πx), u 1 (x) = -2π sin(2) sin(2πx)
and the diffusion coefficient is set to ν = 1. Likewise, the exact solution of (20) that we used is defined by:

u(t, x) = e -t sin(2πx), (58) 
with the initial condition u 0 (x) = sin(2πx) and diffusion coefficient set to ν = 1/4π 2 . These solutions have the advantage to be considered with homogeneous Dirichlet boundary condition or with periodic boundary condition.

The simulation final time is T = π for the two experiments.

We first investigate the decaying rate of the numerical error of the wavelet based Galerkin method that provides schemes (31) and (43). Since the theoretical order are given by the Proposition 1 and Proposition 2, our objective is to verify if these orders are the same for the numerical solution. Figure 1 shows the plot of the norm of the relative errors on the solutions (57) and (58), according to the number of grid points dim(V j ) = N j ≈ 2 j , where j is the maximal space resolution. The solutions (57) and (58) are C ∞ , then the slopes of the curves obtained correspond to the maximum regularity of the wavelet basis, here we have s = r = 4. This is in good agreement with the theoretical results of Section 3.

Next, we we study the initial conditions reconstruction errors in the case of noiseless data. As given data, measurements of the solution at grid points, we used solution (57) taken at the times t 1 = T /2 and t 2 = T for the wave propagation problem and solution (58) taken at the simulation final time for the heat equation. In both cases, we take the solutions provided by the Galerkin method. This makes that only the error of our reconstruction algorithm is dominant. The parameter ϵ defined in (48) has been set to ϵ = 10 -5 and since s = 4, this requires j ≥ 4.1524 to satisfy the bound given by (56). Thus, the smaller epsilon is, the larger j min must be: we used j min = 5 in all the simulations. For comparison purpose, we plot the same relative errors norm as done to evaluate the Galerkin discretization performance. Figure 2 and Figure 3 show these errors in the case of wave equation and Figure 4 and Figure 2 show these errors in the case of heat equation. Again, the expected decay rates are achieved, which confirms the results of Proposition 3 and Proposition 4. In addition, the choice of ϵ allows to prevent the limited floating point precision in the numerical computation of the matrices exponential for large j. Figure 3 and Figure 5 show the residual errors on the reconstructed initial conditions at grid points k/2 j for k = 0 : 2 j . Due to the non-symmetry of the Daubechies's filters, this error are much bigger at boundary x = 1 than at x = 0. This is a known drawback [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF].

Remark 1.

As can be seen, adding terms that not depending on the wavelets coefficients cannot affect the steps of the resolution of the systems (34), ( 35) and (42).

Then our approach works for equations with a second member of type:

∂ 2 t u(t, x) = ν∂ 2 x u(t, x) + f (t, x) and ∂ t u(t, x) = ν∂ 2 x u(t, x) + g(t, x).
In this case, we will have a time discretization error of the used numerical method to computed the integral of the added new terms.

Finally, we tested the method on noisy data. Precisely, we added to our data an artificial white Gaussian noise with an amplitude 1000 times greater than the MATLAB floating-point relative accuracy which is around 2 × 10 -16 for the double precision floating point format. Similarly, Figure 6 and Figure 7 show these errors in the case of wave equation and Figure 8 and Figure 6 show these errors in the case of heat equation. The residual errors at grid point are plotted on Figure 7 and Figure 9, respectively. As the numerical experiments point out, these errors are much larger with high amplitude noise, especially for the reversion of the diffusion problem. Then, the method converges only if the noise amplitude is of the order the machine floating-point precision as predicted 310 by [START_REF] Seidman | Optimal Filtering for the Backward Heat Equation[END_REF].

Conclusion

We have presented a numerical method to reconstruct the initial conditions of systems arising from the Galerkin method applied to the wave equation and the heat equation. Singular value decomposition is applied to diagonalize this 315 system and thus solve the equation without time discretization errors. The approach does not generate more errors than a classical Galerkin method and it is simple and easy to implement. The extension to higher dimensions is immediate. However, the method is limited only to the linear case. In the general non linear case, we do not have the exact expression of the solutions.

The method assumes that the data for the reconstruction are given on all the grid points. It would then be interesting to see if we can do the reconstruction with sparse measurements at selected positions or using the non-linear approximation of dense measurements. This will be the subject of future work.
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 1 Figure 1: Norms of the relative errors on the exact solution (57) (upper two figures) and on the exact solution (58) (bottom two figures). Daubechies orthogonal generator with r = 4.
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 2 Figure 2: Relative errors norm on the reconstructed initial conditions u0 and u1 associated to (57). Daubechies orthogonal generator with r = 4.
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 3 Figure 3: Residual errors at grid points for the reconstructed initial conditions u0 and u1 associated to (57). Daubechies orthogonal generator with r = 4.
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 4 Figure 4: Relative errors norms on the reconstructed initial conditions u0 associated to (58). Daubechies orthogonal generator with r = 4.
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 5 Figure 5: Residual errors at grid points for the reconstructed initial conditions u0 associated to (58). Daubechies orthogonal generator with r = 4.
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 6 Figure 6: Relative errors norm on the reconstructed initial conditions u0 and u1 associated to (57) and from noisy data. Daubechies orthogonal generator with r = 4.
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 7 Figure 7: Residual errors at grid points on the reconstructed initial conditions u0 and u1 associated to (57) and from noisy data. Daubechies orthogonal generator with r = 4.
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 879 Figure 8: Relative errors norms on the reconstructed initial conditions u0 associated to (58) and from noisy data. Daubechies orthogonal generator with r = 4.