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Abstract

Boundary conditions for Bismut’s hypoelliptic Laplacian which naturally
correspond to Dirichlet and Neumann boundary conditions for Hodge Lapla-
cians are considered. Those are related with specific boundary conditions for
the differential and its various adjoints. Once the closed realizations of those
operators are well understood, the commutation of the differential with the
resolvent of the hypoelliptic Laplacian is checked with other properties like
the PT-symmetry, which are important for the spectral analysis.
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1 Introduction

This text is devoted to boundary conditions which extend naturally to Bismut’s
hypoelliptic Laplacians, Dirichlet and Neumann’s boundary conditions for Hodge
and Witten Laplacians. Actually such boundary conditions were proposed in [Nie]
and the functional analysis was carried out, essentially relying on the scalar prin-
cipal parts while neglecting the complicated lower order terms related with curva-
ture tensors. While considering the commutation of the resolvent of this operator
with the differential, with the suitable boundary conditions, a good understanding



of the geometrical content of the whole operators cannot be skipped. This article
answers one of the questions asked at the end of [[Nie] about the proper boundary
conditions for the differential and Bismut’s codifferential, which ensure the com-
mutation with the resolvent of Bismut’s hypoelliptic Laplacian. A motivation for
this comes from the accurate spectral analysis of the low-lying spectrum which
is now well understood for Witten Laplacian in the low temperature limits, for
possibly non Morse potential functions. An instrumental tool in [ I 1,
was the introduction of artificial Dirichlet and Neumann realizations of Witten
Laplacians, as a localization technique. Although it is a first step, ignoring for the
moment the asymptotic analysis issues, the results of this article pave the way to
such an analysis for Bismut’s hypoelliptic Laplacian.

This introduction rapidly presents the objects, the main results, some notations
and conventions. It ends by pointing out the problems to be solved and the fol-
lowed strategy. The outline of the article is given in this last paragraph.

1.1 Bismut hypoelliptic Laplacian

When @ is a closed (compact) riemannian manifold endowed with the metric
g=gT@ =g, i(@)d g'dq’ , the hypoelliptic Laplacian introduced by J-M. Bismut in
[ 1 lisal H0<_ige type Laplacian defined on the cotangent space X =T* @,
1x: X =T"Q — @ , of which we briefly recall the construction here. Details will be
given in the text and may be found in [ I I I I 1 1.
The Levi-Civita connection associated with g7 gives rise to the decomposition
into horizontal and vertical space

TX = TX" & TXV |
S—— S——
:n;‘((TQ) =n§((T*Q)

and by duality to
T°X=T'X" o7*X" .
S—— N——
=n§((T*Q) 73 (TQ)

By using the dual metric g7 @ = gi/ (q) one may define metrics on 7X and

Bq‘ 6 J
T*X which make the horizontal vertical decomposition orthogonal. By tensoriza-
tion this provides metrics on the vector bundles E' = ATX and E = AT*X . Tt is
convenient to introduce from the begining a p-dependent weight where an ele-
ment of X = T*Q is locally written x =(q, p), by setting

plg=V 2t “p.p)=\/gi(@pip; , PYg=\/1+2L *p,p)=1/1+&(@pip;.

The metric g¥ and g? ", dual to each other, are given by

F=ipyg Mz e g | g = (0" kg Ve g9,

where Ny and Ny are the vertical and horizontal number operators. The volume
associated with g% coincides with the symplectic volume on X and it is simply



written dvy .

Additionally we may add a hermitian vector bundle structure by starting from
(f, v, gh) where 75 . f — @ is a complex vector bundle, endowed with a flat con-
nection V', and g' is a hermitian metric. While identifying the anti-dual vector
bundle with § via the metric g, the anti-dual metric remains g’ but the anti-dual
flat connection differ and will be denoted by v, By setting

oV, gh = (g Vighe €°(Q;T*Q o L()
we get
V' =V + (v, gh)

and we can introduce the unitary connection on (§, g")
b — i 4 Lol o
Vh* =V +§w(V ,g)
Simple examples of such vector bundles on @ are given by
e f=Q@xC, V' is the trivial connection V , gf(z) =e 2V @72, w(Vf,gf) =-2dV(q),

* the orientation bundle f = (org x C)/Zy where org — @ is the orientation
double cover of @ . The trivial connection and trivial metric on org xC induce
the connection V' and g'.

The total vector bundles F' = E® 7 (f) = 13, (AT*Q @ ATQ ®f) (resp. F' = E'® % (f))
endowed with the metrics
g =g"onyg = (p)y" nx(g"" Yo g ey
F

resp. g' =g” enkg = ()" Mg e g Ve gh).

When V@€ is connection on AT*Q ® ATQ induced by the Levi-Civita connection
on TQ , and after the identification of TX = TX” ¢ TXV with nx(TQeT*Q), the
connection VZ-€ on E is nothing but n;‘((VQ’g ). When VI, V' = Vi + w(V, g) and
viu = vf %w(Vf,gf) are the three above connections on f, the connections on F
and F' are given by

VEE = 13 (V€ + V)

Ve = 13 (vE 1 VF)

VEEU = 3 (V€ 4 V),
When there is no ambiguity with a fixed metric g79, the exponent ¢ will be
dropped and the above connections will be simply written VZ |, V¥ | vF v U

The L2(X;F) (resp. L?(X;F')) space is the space of L2-sections for the Hilbert
scalar product

(s,8")p2= fX (s(x), s'(x)) gr dvx(x)

resp. (t,t')e :f (t(x), t'(x)>gpr dvx(x).
X



From those structures one could define a Hodge Laplacian for sections of F'. How-
ever this is not the way to introduce Bismut’s hypoelliptic Laplacian. Instead
one works with the non degenerate bilinear form ¢; on 7'X combining the met-
ric and the symplectic form o = d6, where 0 = p;dq’ is the tautological one-form
on X, with X =T7*Q . For b # 0, the isomorphism ¢ : TX — T*X extended to
¢p:E'= ATX — E = AT*X is the one given by the non degenerate form

Ny U, V) = gTx o (U), 1% . (V) +bo(U,V)=U.V, U,VeTX.

When (e,,...,e,) is a local frame of TQ , with the dual frame (gl,...,gd) inT*Q,
we denote by e; € TXH and é/ € TXV , the corresponding vectors obtained via
TXH ~ 1y (TQ) and TXV ~ n;}(XV) and we notice that (e;,é/) is a symplectic
frame of TX . The dual basis is e’ € T*XH and é; € T*XV . Then the matrix of
Ng, Or ¢p : TX — T*X in those bases is given by

_[gT? -bld
P=lpa o |

The dual bilinear form on AT*X is then given by
N, (@,0) =y )0 , 0,0 AT*X.

Where the matrix of n(";b

roxxrex Or of {9y 1 : T*X — TX equals

N 0 -b'Id
by = :
b b—lId b—2gTQ

The tensorization with § is done by writing n(’;)b P = Mg, ® m%(g") on F = E ® n5(f) so
that the non-degenerate sesquilinear form on sections of F' = E ® ny () is given by

/ _ * !
(s,80¢;, = fX Mg, 1(8(x),s'(x)) dvx(x).
By introducing the kinetic energy

ply  &Y()pip,
2 2

bh(q,p) =
and the deformed differential
dy=e"de" =d +dhn

Bismut’s codifferential d(é)” is the formal adjoint of the differential dy, for the above
duality product , )4, . Bismut’s hypoelliptic Laplacian is nothing but

1 1
O _ ~( 3P 2 _ ~ (39 b
B _4(dh +dp) —4(al[J db"'dbdh ).

b
In[ ] Bismut proved the following Weitzenbock formula
1 1 N .
B‘é’” = o7 ~AV +pl2 - 5<113T"?(ei,ej)ek ,epye eligye + 2Ny — dim Q]

1 1 1.
5% [xyb + 5w(vf,gf)(m,)+ 5eliéjvfiw(vf,gf)(ej)

1
- f oo YWF
+2w(V g )(el)Véi



—AV +|p|2

where AV is the vertical Laplacian and @ = 5— the scalar harmonic oscillator
in the vertical direction while Yy = g (q)p;ie; is the Hamilton vector field for the
Ipl2

kinetic energy h = % . The other terms, which involve various curvatures, like
RTQ the riemann curvature tensor of g7€ pulled-back by Ty, and o(Vf,gh, are
actually lower order terms controlled in the analysis by the scalar principal part.
For the analysis of those operators G. Lebeau introduced in [ ] the scale of
Sobolev spaces # (X ;E), u€ R, modelled on the fact that horizontal derivations
Vfi’u and aiqi are of order 1 while vertical derivations iju , %j and multiplica-
tion p;x are of order % , with #%(X;F) = L>(X;F). They satisfy Nuer WH(X;F) =
S(X;F) the space of ¢ vertically rapidly decaying sections while U, cp # *(X;F) =
S'(X;F) is the space of tempered distributional sections. The maximal subelliptic

estimates were proved in [ 1. They say the following things:

* There exists a constant Cp >0 and for any p € R a constant Cp ;, > 0 such
that

F .
1Oslwn + ¥y sllws + 80,4V 2 llsllyn + sl yuszs < Cp I (Cop +By? = i80,u Ms

for all s € S'(X;F) and all A € R such that (Cy +Bg’b —i6ouM)s e WHX;F).

* The operator C + B’ with domain D(B?") = {s e LAX;F),B}'s € L2(X;F)}

is maximal accretive in L2(X;F).

The reason for the factor 6o, which says that the A-dependent case holds here
only for p =0 is due to the fact that the more general A-dependent estimates of
[ ] require A-dependent #*-norms for u # 0 which won’t be considered in this
text.

1.2 Boundary conditions and results

Let @ =Q_UQ', @ =94Q_, be a compact riemannian manifold with boundary.
The cotangent bundle is a manifold with boundary: X =X_uX,X =T*Q_,
X' =0X_= T*Q| Q. - A collar neighborhood Q(_. ) of @  can be chosen such
that Q.01 = (-¢,0]1 x @' and the metric gTQ equals (dgl)z + mTQ/(gl,q_') with
mTQ/(ql,q' ) is a g'-dependent metric on Q’. Although the following construc-
tions will be checked to make sense geometrically, we follow here the shortest
presentation in terms of coordinates. The decomposition

0 L N Lo
TQ(—E,O]:ROqu@TQ, T Q(—E,O] =Rdgl®T Q,a

provides coordinates x = (¢',q’,p1,p’) where (¢',p’) = (qi,,Pj’)2si’,j'sd are local
coordinates on T*Q’, ¢! = ql(nx(x)) and p; = %.p. Take e, = a%i and gi =
dq'. The construction given in Subsection 1.1, rglying on TX =TXH e TXV ~

njf(TQ ® T*Q), provides the basis (ei,éj)lsi,jsdimQ of TX and the dual basis



(e',6)1=i j=dim @ of T*X .
A section s of E = AT* X (or F = E ® n5(f)) reads in those coordinates

s—s,(q ,q',p1,p)elé.

When s is a smooth enough section to admit the following traces we consider

sly =57(0,q',p1,p)e’ ey,

ic,e! As|y =5700,¢, pupel ey,

é1 N igis|y = SBI}UJ 0,9, p1,pNe éqyua-
Note that s| x+ 1s not the classical pull back to X'.
When v is a flat unitary involution of f|Q, , VEE(Q' ;L(f|Q,)) such that its covari-
ant derivative along @' vanishes vEilely = 0 (the simplest and essential example
being v = +1dy), the transformation S, acting on sections of F | x 18 given by

(_1)|{1}01|+|{1}0J|

Sy(s(0,q',p1,pNelé) = vs7(0,q*,—p1,p)elé s,

where we use the same notation v for the pulled-backed unitary map 7%,(v). Note

that (S,)2 =1d an
We shall prove the followmg results for closed realizations of the differential op-
erators P =dy, P = d?]bb and P = B?)bb , Where an important step consists in proving
trace theorems for sections s € L2(X_;F) such that Ps € L3 X_;F), so that the

definition of the domains makes sense.

Theorem 1.1. The operator (Eg,h,D(gg,h)) in L2(X_;F) defined by

- 1-8
D(dgp) = {s eLAX_;F), dyseL*X_;F), ——ice'As|y= 0}

VseD(dgyp), dgps=dps,

is closed and satisfies dgpodgp =0.
The set <€°°()_(_;F) ND(dgp) is a core for dgp .

Theorem 1.2. The operator (d D(ng’h)) in L2(X_;F) defined by

gh’

-5

D@L = {s eLXXF), dy’seLAX_;F), ~61 Nigis|y = 0}

Vs ED(E?%), d hS = d(pb
is closed and satisfies E h© d

=0.
8 h
The set C60"()_(_;F) ﬂD(d h) is a core for EZ%

Theorem 1.3. The operator (B D(Eﬁf’h)) defined in L2(X_;F) by

g,h

A

_ 1-S
D(Bgf)h) = {s e LX(X_;F), VI;S and B;)bbs e LAX;F), TVS|X B O}

VseD(BY,), Bihs= Bl"s,



is closed and there exists a constant Cp € R such that Cy, +§Zf’h is maximal accretive.
The set C6(‘)"’()_(_;F) ﬂD(ng’h) is a core for ng’f.
There exists a constant C ;) > 0 such that the estimates

11+ &) %5l 2 + sl s
+(/1>1/4||S lzz+ |l <p>¢;13|Xr ||L2(X',|P1|dUX’)

I(1+6) sl 2 < Cy Re(s, (1+Cp + By H)s)

} <C}l(1+Cy+BY—iMsllp2,

hold for all s e DBY) and all A€ R.
. ~tB% — —Ps .
The semigroup (e "~&9);>o preserves D(dg ) and D(d, ) with
— — 7% % —
VseD(dgy),Vt=0, dgpe Behs=e th’hdg,hs,

. _ _p _R% —
VseD(dyy), ¥t 20, dype Pans=e Pandins.

Forall zeC \Spec(Eﬁf’h) the resolvent (z —ng’b)_l preserves D(Eg,h) and D(EZ%)
with

Vse€D(dgy), dgnz—Boy) 's=(z-Boy) "dgps,

VseD(dyy), dgye-Bgy)'s=@-Byy) dgs.

1.3 Some notations and conventions

Although we already introduced some notations, let us fix some conventions and
notations used throughout the article.

Coordinates: Local coordinates systems on @ or 6_ will be underlined and writ-
ten (gl,...,gd) , d =dim @ . While working in a neighborhood of @' = 0@ _ , they
will be chosen such that g7® = (algl)2 + mTQ,(gl).

Primed exponents (or indices) like in qi' or dqll = dqi’1 A A dqi} , mean that the
value 1is excluded, i’ #1or1¢I'. B B B

On X = T*Q local coordinates will be denoted (ql,...,qd,pl,...,pd) with qi =
gi(nx(x)) and p; = (%i.p , with the same convention for primed exponents and

indices. Different local coordinate systems on X, which will be specified later, will
be used and then they will be written (q”l,...,(jd,ﬁl,...,ﬁd).

Local frames: We use ¢, = a%i and e’ = dgi and the notations (e;,é’/) and (ei,éj)
refer to the associated frames of TX = TXH & TXV ~ ny(TQeT*@) and T*X =
T*XHeTXV = ny(T*Q ®TQ). Similar frames constructed near X " for the met-
ric gt @ = (dg")? + mT'(0) will be denoted by (f;,f’) and (f%,f;). Those frames
will be abreviated by (e,é) or (f,f). Finally while using a symmetry argument on
the double copy @ = Q@_ U Q'L we will use the frames (ez,é5) on X5 = T*Q+ .
They will be glued in a suitable way along X' and we will use the writing (e, é) =



1x.(x)(ez,é=) for their global definition on X =X, uX'LX, .

Fiber bundles, metrics and connections: A general vector bundle being writ-
ten 73 : § — M with its natural projection ng. The restricted fiber bundle to
M' < M will be written § | e

A metric on § will be written g% . A connection will be written V¥ and V‘g for U €
T M will denote the covariant derivative w.r.t U . One exception is the Levi-Civita
connection acting on tensors above the riemannian manifold (M, g7™) which will
be denoted by VM or VM:& o , the latter being used when it is necessary to specify
the metric dependence. Other exponents or indices may be used for specifying the
connection and we already made the difference between the flat connection V/ on
75 :f — @ and the unitary connection for the metric gh, vhe,

When the vector bundle 73 : § — M is endowed with the connection V3 | the exte-
rior covariant derivative acting on €*°(M;AT*M ® §), as an exterior derivative,
will be denoted dV° , instead of the sometimes used notation V5. We recall that
V3 is a flat connection when d¥° od"" = 0.

Functional spaces: We shall use the notation & (M;§) for sections of a vector
bundle 73 :§ — M with the regularity specified by & . Example given: We may
take & = €°, & :L%OC, F = L? once a metric gS is fixed, ¥ = 6;°, F =9,
In particular €°°(M; AT* M) stands for Q(M) usually denoting the set of smooth
differential forms on M .

The local spaces €°(M;F), €°(M;3F), L2 (M;F) and L2, (M,5) do not depend
on the chosen metric on §. When §’ denotes the dual vector bundle with a duality
product denoted by u.v (possibly right-antilinear and left-linear for complex vec-
tor bundles), remember the duality between L2 (M;3) and L2 (M;3)

loc comp comp loc

given by
(5,8 = f 5(2).5'(x) dvp(x)
M

where dvjs is any given smooth volume measure on M , which can be specified in
local charts.

Accordingly the local spaces Wl‘; f comp (M;F), peR, saying that there are u deriva-
tives in L?OC comp
Wemp (M) is W, 1 2(M;3).

Once metrics are fixed on TM and § the global Sobolev space is denoted W*2(M;F)
or WH2(M;F,8™ , g%).

When M =X and § =F or § =F, the Sobolev scale introduced by G. Lebeau in
[ ] will be denoted by # “(X;E) or W (X ;F).

when p €N, do not depend on the chosen metric and the dual of

Manifolds with boundaries: All the manifolds with boundaries M = M LM,
namely §¢ or X+, will have a €* boundary. By following the general €¢*-
reflection principle (see [ 1) modeled on half-space problems, ¢°° functions,
vector bundle structures, and sections of vector bundles are well defined on M
as restriction of €™ objects on an extended neighborhood M of M . Accordingly
ngo(ﬂ;g) will denote the space of €° sections of the vector bundle §, which have



(M;3),

a compact support in M . The same thing applies to the local spaces L? Toc
(M; %) which must not be confused with L oM §) and Lcomp(M,S) .

comp
The definition of local Sobolev spaces Wl’; ; comp(M ;5), 1€ R, follows the presen-
tation of [ 1, as the set of restrictions to M of elements of Wll":)’c Comp M;3).

When p > 1/2, any element of W” ’f(ﬂ;%) admits a trace in Wl’f) 01/2 2(aM 5 | om) >
while 65°(M;35) is dense in w2 (M;J) iff 1 < 1/2. Remember also that for

loc comp )
- ﬂ
uz0, W, **(41;3) is the dual of W2, (M:3) =600 5) ™ .

The definition of the global Sobolev scale introduced by Lebeau on the manifold
with boundary X_, WHX<;F), follows the same scheme and we refer to Subsec-
tion 3.3.2 for details.

Operators: On a € vector bundle 7z : § — M, on a closed manifold M, and
when g% is a metric on §, a differential operator P with €°°(M;L(F)) will not be
distinguished by notations from its maximal closed realization with domain

D(P)={seL*(M;3), PseL*(M;3)}.

This will be the case for the the differentials d , dj, d‘é’b and Bismut’s hypoelliptic

Laplacian B(é)b acting on sections of F = E ® ().

The situation is different on a manifold with boundary where closed realizations
are related with a choice of boundary conditions. Then we will use the notation
P, for the closed realization where « is a parameter which specifies the boundary
conditions among an admissible family. In our case the parameter a will essen-
tially be g = gT@.

Matched piecewise ¢ structures: While using symmetry arguments on the
glued double copies @_ LUQ LUQ, or X_LUX' UX,, Xz =T*Q+, we are led to
use piecewise €° objects, continuous or not. In order to remember the possible
discontinuities we shall use the notation § ¢ for matched fiber bundles, the index
g recalling when it is the case, that the matching along X’ depends on the chosen
metric g = g7 . Accordingly closed realizations of a differential operators P with
piecewise € coefficients and interface conditions along X' which may depend
on gT9 will be denoted by ﬁ Redundant "~ notations will be avoided. Example

&b gh
the piecewise €*°-versions of ¢y , g TQ and p.

given in B® will be used instead of szb despite B is actually associated with

1.4 Issues and strategy

As a first remark, Bismut’s hypoelliptic Laplacian, the differential d, and Bis-
mut’s codifferential d(é)b are all first order differential operators in the position
variable ¢. Boundary conditions must only involve first, and possibly partial
first, traces along the boundary X’ = 0X_. Although the general geometry of
Q' =0Q_ and X' = 0X_ depends on curvature terms and in particular the second
fundamental form of @' < (@, gT?), those curvatures should have a limited effect

10



on the analysis of those operators. The analysis carried out in [[Nie] worked di-
rectly on Geometric Kramers-Fokker-Planck operators as defined by G. Lebeau in
[ 1, which is a larger class of operators including Bismut’s hypoelliptic Lapla-
cian and where lower order curvature dependent terms can be neglected. Follow-
ing the dyadic partition unity in the vertical variable already used by G. Lebeau
in [ I 1, it was possible to consider terms like Aj.k(q)p A pi% as param-

_ 2
eter dependent perturbations of “% 1P 2nd to absorb the large p contribution

of the second fundamental form of @' in (6_, 2gT9) . This led to subelliptic esti-
mates where the curvature of the boundary nevertheless deteriorates the expo-
nents (compare the maximal hypoellipticity result of G. Lebeau recalled at the
end of Subsection 1.1 with Theorem 1.3). It is not known for the moment whether
the subelliptic estimates of Theorem 1.3 which are the same as the ones of [Nie]
are optimal.

However while considering the exact commutation of d g, Eg’b with (z —EZ%)_I
stated in Theorem 1.3, a careful treatment the geometry involved by all the terms
of B(é)b , dp and d(é)g cannot be skipped.

The heuristic leading to the boundary conditions of Eg,h , ng’h and Esz given in
Theorems 1.1-1.2-1.3, relies on the doubling of the manifold Q_intoQ@_UQ LUQ.
and then to associate Dirichlet (resp. Neumann) boundary condition to odd (resp.
even) sections in the symmetry (¢, q’) — (—¢',¢’) between @_ and Q.. . By work-
ingin X=X uXuX,, with a tT)tally g_eod_esic boundary @', namely when
gT@ = (dq)? + m7TQ'(0), this leads naturally to the boundary conditions given in
Theorems 1.1-1.2-1.3. The analysis comes from a straightforward translation of
G. Lebeau’s maximal hypoelliptic results on a closed manifold, because the sym-
metrization preserves in this case all the € structures. When @' has a non
trivial second fundamental form, this is no more possible, e.g. the symmetrized
metric (dg')? + mTQ’(Iqll) is no more ¢! and only piecewise €®-structures are
preserved_on X. B

Another unusual thing comes from the fact that the boundary conditions for Eg,b
in Theorem 1.1 actually depend on the chosen metric g7 on Q_ . This is not the
case in the elliptic framework of Hodge or Witten Laplacian and this is again a
side effect on the cotangent space X = T*@ of the non trivial second fundamental
form of Q' < (@, gT?Q) which requires a g7?-dependent matching along X’ in order
to speak of continuity and traces along X' .

However the followed strategy is reminiscent of what we learned from the carefull
analysis of Witten and Hodge Laplacians: Avoid as long as possible the compli-
cated curvature terms, while focussing firstly on the differential dy and secondly

translate the result on codifferentials dg)” by duality. This does not ends the game
because it is not possible to write Eﬁf’h as a square of %(Ezf’b +Eg,h) . This has to be
combined with the results of [Nie], with specific trace theorems for Bg)” , and with
an explicit commutation result for a dense set of smooth sections, where the latter

cannot be the same for the commutations with Eg,b or with Ez’l’h . A consequence of
the pseudospectral subelliptic estimates (with respect to the imaginary spectral
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_('bb
—tB .
&b is bounded as soon as ¢ > 0 for

parameter i1) ensures that (1 + Cy +§Z,bb Ve
any n € N. A bootstrap regularity argument where Lebeau’s maximal subelliptic
estimates play again a crucial role, shows that taking n € N large enough implies
(1+Cp+BY) ™ : LAX_;F) — W X _; F)ND(ByYy) e Dy )\ D(dory) . Actually all
this analysis, and especially the use of Lebeau’s maximal subelliptic estimates for
closed manifold, is carried out on the symmetrized phase space X =X_uX'uX,

but for the piecewise €* and continuous vector bundles E g or ﬁ'g .

Below is the outline of the article:

* Section 2 specifies the geometry of the cotangent bundle X = T*Q when
(@,gT?) is a riemannian manifold. Several aspects of the parallel trans-
port for the Levi-Civita connections V@€ and the pulled-back connection
n}k((VQ’g ) will be specified. This leads to a natural definition of the piecewise
¢ and continuous vector bundles E 4, £/, Fg,F'

* In Section 3, details are given for various functional spaces. In particu-
lar the independence of Lebeau’s spaces with respect to the chosen met-
ric gT9 is recalled. Functional spaces on the piecewise € vector bundles
E g,E' ;,,ﬁ'g,ﬁ'é, are specified with the help of parallel transport introduced in
Section 2. Isomorphisms and invariances of those functional spaces induced
by vector bundle isomorphisms are reviewed.

* Section 4 is devoted to the definition of Eg,h and its symmetrized version d 2.
after proving the suitable trace theorems. A specific paragraph is devoted
to checking d 2.h° d 2.h = 0 coming from a ¢*°-interpretation of E g,ﬁ'g .

e After defining the F' adjoint of Eg,;] , and the ﬁ;, adjoint of d g.h» Section 5
specifies the symplectic codifferential E;h for ¢ = o0 and finally Bismut’s

codifferential EZ?,) for ¢ = ¢ . This follows the scheme of J. M. Bismut in
[ 1. However for the boundary or interface value problem, the choice
of coordinates or €*°-structures differ for those three steps and can be put
together only at the level of piecewise ¥ and continuous vector bundles.

¢ Section 6 after recalling details about Bismut’s hypoelliptic Laplacians and

general Geometric Kramers-Fokker-Planck operators, pr0v1des a trace the-
gh , Theorem 1.3 is
proved with additional properties concerning bootraped regularity, for pow-

ers of the resolvent and the semigroup, and the (formal) PT-symmetry. Note

orem for local versions of ng After the definition of B

that the commutation (z —E(é)b )‘1Eg h= _g p(z —E(é)b )~!is rather proved in the
_‘Pb — — 7%
spirit of [ 1 by making use of the semigroup with e 0 dgp=dgpe By

fort=0.
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2 Geometry of the cotangent bundle

This section gathers all the geometric information concerned with : a) the decom-
position TX = TXH ¢ TXV associated with g = g9 ; b) more generally parallel
transport for V&€ and n;{(VQ’g ), VE vF VE' VF'. ¢) the doubled manifolds
@ =Q_uUQ'uQ,, and the doubled cotangent X = X_ X' UX,. The piecewise
€ vector bundles E g,EA:g,ﬁ'g,If" ¢ are introduced and some specific vector bundle
isomorphisms are studied. All those presentations are done in a coordinate free
way and they ensure the independence w.r.t a choice of coordinates. The reader
willing to grasp a concrete realization, can first look at the final paragraph where
those constructions are expressed in terms of local coordinates.

2.1 The cotangent bundle of a manifold without boundary

Let @ be a smooth manifold (without boundary at the moment). Denote by X
the total space of the cotangent bundle 7*® endowed with the natural projection
1x: X=T"'Q —-Q.

The vertical subbundle of the tangent vector bundle on X, npx : TX — X, is
nothing but

TXV =73(T*Q). (1)
It is a subbundle of T'X with the exact sequence of smooth vector bundles on X
0—TXY - TX — 13(TQ)— 0. (2)

By duality T;C"XH = {a eT;X Vte T.XV, at= O} identifies T*X™ as the sub-
bundle

T*X" = n3%(T*Q), 3)
with the exact sequence of smooth vector bundles on X
0—T*X" - T*X — n3(TQ)— 0. (4)

Those constructions do not involve any metric.

Now when g = gT? is a riemannian metric on @ , the Levi-Civita connection V@8
induces a connection on tensor algebras written simply V€, in particular on
X =T7*Q . This defines a horizontal vector subbundle of TX

TX" =~ 13.(TQ), (5)

with the g-dependent direct sum decomposition

TXETXH o TXV £ 13(TQ e T*Q). (6)
The duality defines

T*XV = 1%(TQ) (7

T'XET' X% eT* XV £ 13, (T"Qe TQ). (8)
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Let 75 : f — @ be a smooth vector bundle on & endowed with a flat connection
Vi and a smooth hermitian metric g'. It is identified via the metric with the
antidual flat connection V/' . If oV, g" = (g 1Vigl then v =vi+ o(f, V). The
vector bundles § =E,F,E' F', 15 :§ — @, are defined by

E=AT*X , E'=ATX
and F=Eony(f) , F'=E'enyx(),

with the g-dependent identifications

EEnL(AT*QeATQ) , E'£1L,(ATQ®AT*Q)
FERLAT*QeATQ®f) , F' £a(ATQ®AT*Q&f)

The metrics on those vector bundles involve the weight

(Plg=1\/ 1+gq 9 (p,p) 9)

and are defined by

g = Y Y s (TR o gATQ), (10)
g = Nk (g" T e g"T'Q), (11)
g = YNV (gM T @ g g g, (12)

<p>NH NV * (gATQ ®gAT Q ®gf) (13)

The Levi-Civita connection on ATQ ® AT*Q associated with g = g7® being de-
noted by V®¢ there is a natural connection on § = E,F,E',F' simply given by

VEE =g (VeE) |, VEE = (vO8), (14)
Ve =y (VOB LV, VS = (vRE ), (15)

Remark 2.1. Discerning what depends on the metric g = gT9 is of outmost im-
portance when boundary value problems are considered in particular because gT?
does not have a product structure near the boundary, in particular when the second
fundamental form of the boundary does not vanish.

2.2 Manifold with boundary

From now on, we will assume that @_ = Q_uU@Q’, is a compact manifold with
boundary @' = 0Q_ . Before considering the metric aspects, @_ can be consid-
ered as a domain of the doubled manifold @ = @_ LUQ' L Q. where Q. (resp.
Q+ Q'LUQ.) is a copy of @_ (resp. @_) and the €®-structures are matched
along @'. By following the €¢°-reflection principle (see [ 1-I-7), there is a
canonical € structure on @ which is unique modulo diffeomorphims preserving
Q' . However its concrete realization may depend on the choice of a normal bun-
dle with its differential structure, which is equivalent to the choice of a tubular
neighborhood of @' = 0Q_ in @ _ according to [Lan]-Chap IV-6. This may lead to

14



different realizations of the doubled manifold @ which are all diffeomorphic. Ac-
tually our analysis is done with a family of metrics for which the normal bundle
NQIQ_ is not changed. So both approaches, starting from an abstract definition
of @ or from its construction after fixing the normal bundle, are equivalent. The
metric g_ = g7T% € €°(Q_;T*Q_ o T*Q_) can thus be thought as the restric-
tion of a €™ metric g = g7% on @ (another metric will be put on @ in the next
paragraph). All the objects, smooth vector bundles and functional spaces (see the
¢ °-reflection principle in [ ]-I-7) which are related to the € structure of @ _
can be thought as restrictions to a_ (or to @-) of objects on @ . Those objects will
be specified later when necessary.

Hence we can consider the case of a closed hypersurface @' = @, of the compact

riemannian manifold (Q,g7?) , which admits a global unit normal vector [
— 70 & (- TQ _
TQlg =TQ' ®Re;, e, €67Q;Ng@), g “(ej,e)=1,

where Ng/Q is the normal vector bundle of @' (@,gT?). For the manifold Q_
with boundary @', e , is the outward unit normal vector.

For ¢’ € Q' , let (expg,’g(tgl))te(_g,g) be the geodesic curve on @ starting from g’
in the direction e, which is well defined for ¢ € (—¢,¢), where € > 0 can be chosen
uniform w.r.t ¢’ € @' by compactness. This provides diffeomorphisms

(_87£)XQ/ - {qu,dg(q,Q/)<€} :Q(—£,£)7
(¢'.q) — expg,’g(glgl)

(-£,00xQ — {g€@_,dy(q,Q)<e}=Qcc0,
(ah¢) — expi(ge))

(16)

17

In the sequel, we will not distinguish the global coordinate (¢ L g') with the natu-
ral projections

¢ :Qr—1, q':Qr— Q' for I=(—¢,)or I =(-¢,0]. (18)
By (16)(17), we have
TQr=q"TIoq"TQ'. (19)
Gauss Lemma, over @7, says
g79=(dg"?+m"(gh), (20)

where m = m7? is a q L_dependent metric on @’ .
By following Bismut-Lebeau in [ ]-VIII, for (¢ L g’ ) € Q(—¢,01, we can identify
T,Q' with T4 4HQ1 by the parallel transport with respect to the Levi-Civita con-

nection V@€ | along the geodesic exp?,’g (te;) fromt=0to t = g'. This gives over

@1, a smooth identification of vector bundles,

TQ = g'*(lﬂzg1 o TQ'). (21)
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Contrarily to (19) the latter decomposition defined as the pull-back of an abstract
vector bundle with (¢!, q’) — ¢’ does not give rise in general to an integrable de-
composition of T'Q 1._ The extrinsic curvature of Q' < (Q1,8) when 0,m(0) # 0
prevents from integrability.

Since the parallel transport is an isometry, via (21), the metric g = g7 becomes

g"?=(dg"?+q" m(0). (22)

Note that the identification (21) depends on ¢!, while the right hand side of (22)
is independent of g1 . B

More generally, if_ng 1§ — Q is a vector bundle on @ endowed with a connection
V3 | the fiber ¢ above g’ € Q' can be identified with S(q{q,) , gl € (—¢,€), by using

the parallel transport along (exp?,’g (te1))te(—e,¢) associated with VS

Hence over Q¢ ),
§=q"3lq"- (23)
Under this identification, the covariant derivatives equals

1
5 _ li S'Q”Q
Ve, oy =Y ol | Vi

) (24)

1
where V3@Z s a q 1_dependent connection on § I The exterior covariant deriva-
tive dV° is then ; )
Slpr.a
dV =dg'n—+d" " . (25)
More precisely, for gl € (—¢,¢), there is a section A 1 € C®(Q',T*Q’ ®End(S|Q,))
which depends smoothly on ¢ 1 such that

vilod' :VS|Q”O+Aq1. (26)

In Aql there is no component of dgl , because the identification (24) is obtained
by parallel transport.
This general construction will be applied with the following vector bundles:

e F=X=T*Q, VS = V%2 which is actually obtained by duality from the case
§ =TQ (¢, treated above;

* § =7, where § is endowed with the hermitian metric gf , the flat connection
v/, or its antidual flat connection v , after identifying § with its antidual
via the metric;

¢ F=ATQeAT*Qof, VS =VeE+Viand F= AT*QeATQaf, VS = V& +V

16



2.3 The doubled riemannian manifold (@, g)

Like in the previous paragraph consider 6_ c®Q_UQ U@, and use the iden-
tification via the exponential map for a smooth metric g = g7, gTQ|§7 =g,
Q7 =1 x@Q' for an interval I c(—¢,¢).

With this isomorphism the map Sq

So: _ — _
Q Q(1 s,f) Q( 51,5), 27
(¢,.q9) — (-9°,9)
is an involutive diffeomorphism. The push-forward and pull-back maps coincide.

They are given by,

SQ,* = Sa TQ(-) > TQ(-ce)
Sq,«(ae,,t") =(—aey,t) e T g @ for (aeq,t) € T Q> (28)

Sq« = Sa T Qee) > T Qee) >
Sq.«(ael,0))=(~ae',0)e T(*_gl’g,)Q for (ael,0") € T(*g 1’2,)Q, (29)

and they have a natural action on tensors.
In particular we can define the metric g, =Sq .g- on TQ . ) with

g+(@',¢)=(dg"? +m(-¢*,q).

Because g, = g_ on @', we can define the continuous metric g = 19 c08-+
1Q[0,5)g+ on TQ(—E,E) by
1y2

8(q",q)=g-(-1g",¢)=(dg" Y +m(-Ig"l,¢".

In general when d,1m(0, g’ ) # 0, which corresponds to a non vanishing second

fundamental form of @' < (Q,g_), the metric g is only piecewise € on 6_ and
Q. and continuous (with a discontinuous 041 derivative along ®'). As noticed
before, g = g_ and g, induce the same identification (16), the same involutions
(27)(28)(29) and the same vector field e; obtained via (21). Nevertheless the iden-
fications of ¢"*(T'Q") in (21) depends on the chosen metric g = g79 .

When g_: g- =(dqg")?+m(0,q') = go the metric g¢ = go is the initial smooth
metric on Q¢ ). The identifications Q-ee)=(—6,6)xQ" and TQ (¢ ¢) = q"* (Re; &
TQ'), made for the metric g = (dq')?+m(—|q'|;q’) and for the metric g :_(dq1)2+
m(0, g' ) provide a piecewise € d_iffeomorph_ims_ continously coinciding with I_dQ(_g,g>
and a piecewise € and continuous isometry ‘T’gg *from (TQ(—¢.c), ggQ) t0 (TQ(-c.¢),879)
such that the following diagram commutes

\’i,g,go

(TQ(-e.6)8L?) —2 (TQ(c.0),8TY) (30)

Sq,« Sq,«
‘:I:’g’go

Q A
(TQ(-e,6),80%) — (TQ(-c,00,8T?)

TTQ TTQ

Q(—z-:,z-:) Idg Q(—E,E)

(=¢€,€)
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with PE#°|o, = 1d
Q

TQ| . A similar result holds for 7" Q. ) endowed with the
Q!

dual metrics ggw and 87" @ | with natural tensorial extensions.
The situation already encountered with a piecewise €“*°-identification, above @(— £.0]
and 6[0,5) , of 17 : TQ(—¢¢) — Q(—¢,¢) can be generalized for a general vector bun-
dle 75 : § — Q(—¢ ) endowed with a connection A
When 73 :§ — @ is a vector bundle on @ endowed with a connection V3, formula
(23) remains valid

5=g’*3lQ/- (31)

In order to complete the picture we spectify the double of the flat vector bun-

dle 75 : f — Q_ endowed with the flat connection VI and the hermitian metric g’ .
Q.8
2/

in particular the treatment of Dirichlet and Neumann boundary conditions, re-

Because it is flat the parallel transport along exp®® is trivial but applications,
quires an additional modification along @'. As mentionned in the introduction
vV EEXQ ;L(f| Q,)) is an involutive isometry of (f| Q" gf) such that the covariant
derivative vanishes VX0le)y =0,

Actually this is equivalent to f|Q/ =, |Q, ol f_ with v|f+ = +Id;, and all the theory

can be done by assuming v = J_rIdf | , which is also our main concern.
QI

Definition 2.2. The double, with respect to v, of mj: f — 6_ endowed with the
smooth flat connection V' € €°(Q;T*Q ® L(f)) and the metric g', is the double
copy, still denoted by, 75 : f — @ using @ = Q- U R uU., §+ ~ Q_ endowed with
the flat connection Vf|§¢ = V% , with the metric gf(gl,q_’) = gf(—lgll,g’) and the

continuity condition
f(0+’2/) E) (0+,g/’vv) — (0—,2’,1)) € f(o—,g/) .

Since v is flat, when (vl,...,vdf) is a local flat frame of 7 : f — a_ around
qo€Q’, [1(—5,0](q1) + 1(0,8)(q1)v]vi , 1=1,...,dy is a local flat frame of 7;: f — @ .
Thus 7; : f — @ has a natural € structure associated with V1. The involution Sq
lifts to §f and therefore to ATQ ® AT*Q ®f . This lifting on f or ATQ @ AT*Q ®f will
be denoted by Sg , in order to recall that the symetric extension of § to € depends
on v. With the symmetric metric g7, S Q,v 1s an isometry of (f, g and the diagram
(30) can be completed by replacing TQ (¢ ¢) with

S= ATQ(—E,E) ® AT*Q(—E,E) ® f,

p8-80

3,879 0 gMT'Q 0 51) 2 (3,500 @ g o ) (32)

Sqv Sqv
880

* ‘{] *
3,827 e g0 Ve o) —2- (3,879 0 g9 0 4f)

Ty T

Q(—e,e) Id Q(—e,e)

(=¢€,€)
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Because the flat connection V' differs from the unitary connection VF* it is im-
portant to keep the g!-dependent metric g in gé\TQ ® gé\T*Q ® g while gZ;Q =
dg)?em(0,q¢).

Since the metric g is only piecewise € and continuous, attention must be paid
to the identification with f of the antidual ' via the metric. The double 7y : f — @
can be thought as ¢°°-vector bundle on @ with the flat connection v/ antidual to
Vi but the identification with § gives a new €*-structure on f. This construction

yields the following statement.

Proposition 2.3. The identification of my : f' — Q the antidual to the € flat
hermitian vector bundle (f,V',8") can be identified via the metric g5 with my:f —
Q in the class of piecewise €°° and continous vector bundle. The antidual flat
connection VI on i : f — Q differs from V! in general and gives rise to a different
€ structure on | (remember v =vi+ w(f, 8" = Vi +(gh~1vigh),

Remark 2.4. Since @ is smooth or when @ is endowed with the smooth metric
g such that g| Q. =8> all the differential geometric constructions make sense on
Q. However, all the constructions which involve the Riemannian structure with
the symmetric metric g, will be only piecewise smooth, and even sometimes not
continuous, extending the subtlety already appearing in Proposition 2.3 with the
metric 7. In particular on the total space X = T*Q : the tangent and cotangent
space TX and T*X are smooth vector bundles but the horizontal subbundle TX"
and vertical subbundle TXV , TX" , which rely on the chosen metric g9 will lead
to piecewise € and a priori discontinuous structures for the non smooth metric

A

8TQ . The continuity issue is discussed in the next Subsection.

2.4 The doubled cotangent and its vector bundles

The manifold X is the total space of the cotangent T*Q, @ =@_UQ L@, and
X_ =X_uX'is the boundary manifold X _ = T*Q |§_ with boundary X' = T*Q |Q’ .
So X (resp. X_) can be considered as €*-vector bundles on Q (resp. @_) with
projections 7x : X — @ (resp. g _ X_— a_) and as a symplectic manifold (resp.
the domain of a symplectic manifold). We follow the two steps approach of Sub-
sections 2.2 and 2.3 by first considering the smooth case with a smooth metric
g- =g =g79 and then the symmetric non smooth metric 79on Q(-c¢), With

§|Q<—s,01 - g|Q(—£,O] =8- |Q(—g,0] and ng[O,e) =8+ |Q[o,s] )

Definition 2.5. For an interval I c (—¢,¢), X1 will denote X\QI = T*Q|QI.

The map Sq « : T*Q(-¢,e) = T*Q(—¢,¢) Will be denoted X : X(_¢ o) — X(—¢,¢) as @ Sym-
plectic smooth involution of X, ¢) with push-forward and pull-back ~. = X" act-
ingon ATX ;¢ and AT*X(_¢y).

On F = AT*X @ nx(f) or F' = ATX ® n%(f), where n; : f — Q given of Definition 2.2
depends on the isometric smooth involution v, the involution X, ®my(Sq ) will be
denoted by X, .
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By using the decomposition (19) we can write

X(—g,g) :gl,*(Rgl)'i'g*(T*Q,)

gl %=¢ ®e ot mT*Q(gl)

so that X; = T*I @ T*Q'. Hence we can write x € X(_. ) as x = (¢},q,p1,p) with
(@Y, p1) eI xR=T*I and (¢',p") e T*Q’, (¢*,q") = nx(x) and

2(q',q',p1.0")=(-¢",¢',—p1,p")
and  2h(x) =g, %p,p)=p2+mT VL¢P, D).

The domain X(_, o] is a natural collar neighborhood of X' in X_.
Additionally, this shows that the kinetic energy fj is not invariant by 2 , in general.
The latter point is solved by introducing the metric 7€ of Subsection 2.3 and the
kinetic energy

20(x) = pi+m" U-Ig"1,¢"(p.p".
But this leads to a discontinuous Levi-Civita connection V9 and therefore to
discontinuous horizontal-vertical decomposition. This discontinuity must be han-
dled in the vector bundles E = AT*X ,E' = ATX ,F = E®ny(f) and F' = E'®n5(f),
where we recall that (f, V!, ") used for F and (f, v, gf’) used for F’ are two €*°-flat
vector bundles on @ , with antidual flat connections identified via g’ and possibly
different €*°-structures (see Definition 2.2 and Proposition 2.3).
However such a discontinuity as well as the isometry with the case when g_ = gy,
80 =280, and all the constructions are smooth, can be solved by a repeated appli-
cation of § = g’*S|Q, written in (31).
A)F=Xre)=T"Qrp) :| With F =X, ) = T*"Q(¢¢) (31) provides the vector

8,80
Q

bundle isomorphism y (see diagrams (30) and (32)) which is piecewise €

and continuous.

Definition 2.6. On X(_, ;) = T*Q—¢¢) the piecewise € and continuous vector
bundle isomorphism (@g,go) will be denoted $p3° and the coordinates (q,p) =
(G1,d',p1,p") of x € TX(_¢ ¢) will be given by

g=q , p1=pil@5E)7 @] , p'=p %) .
With those new coordinates

2h(x) = p2+m”T 90,5, 5",

D

the parallel transport in X(_; ;) = T Q(—¢¢) along the geodesic (exp ,’g (te1))te(-¢,6))

1

in Q(_¢¢) is nothing but (¢,§’, p1, 5 te(-c¢) and eg = 0%*1 € TXH|X_UX+ . Finally the
diagrams (30) and (32) and Definition 2.5 ensure

G, ¢, p1,p) = (=G4 ,-p1,p)- (33)

However this change of variables does not preserve the symplectic form o on
X(—¢¢) . We won't use the coordinates (¢, p) when the symplectic structure of X is
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required.

B)F=AT"Qr ) ® ATQ(_¢r)®f :| We focus on F = AT*X ® 7% (f) but the con-
structions have obvious translations in F' = ATX ® 7%(f).

Although the horizontal-vertical decomposition 7*X = T*XH ¢ T* XV made on X _
with g_ = §| x_and on X, with g, = §| X, first appears discontinous, with

8- 8+
F|y_ = H;(Sb_) , F|)—(+ = ﬂ}k((§|§+),
we may define a continuous vector bundle after taking a quotient via the map
71'X7* .

Definition 2.7. The vector bundle F ¢ s defined is defined as the quotient vector
bundle

o= (Fle_uFl )i~
Flg Sn3GBlg) » Flg, ©7x@lg), F=AT"QeATQef,
(-, 0-) ~ (x4,04) | x-=xy €X' =0X5

(xs,05) € F |5 x4 (0-) =% (V1) € Fry ().

The same definition is used for the continuous vector bundles E g,E:g,ﬁ’é by using
respectively § = AT*Q @ ATQ, ATQ ® AT*Q and ATQ @ AT*Q ®fF.

By construction £ 2> E Fg and F' are piecewise € and continuous vector
bundles. Additionally because g |Q’ g+ |Q’ the horizontal vertical decomposition
coincide in ﬁ'g|X, (resp. E'g|X, , EAl’g|X, , F';,|X,) and the metric glf|X, (resp. gl_'7|X, ,
g§/|X, , glf/|X,) and gﬂX, (resp. g}f|X, , g€l|X, , glf:/|X,) coincide. Therefore we can

write
B L (AT Qo ATQ), (34)
7 S (AT* Qe ATQ ®F), (35)
o 1 1x(ATQ & AT*Q), (36)
o £ (AT AT Qs ), (37)

where the identification holds in the class of piecewise ¥*° and continuous vector
bundles. Remember that the doubled fiber bundle 75 : f — @ is the one of Defini-
tion 2.2 with the flat connection V' for Fg while its antidual version of Proposi-
tion 2.3 is used for ﬁ’é .

The complexification of § = E,E’ is of course a particular case of § = F,F’ with
f =@ ® C endowed with the trivial metric and flat connection and v=1. But it is

sE.E'F'

convenient to have a specific notation.
EE F' EE' F’)

The metric ¥ = 1x (x)gf +1x, (x)g¥ (resp. & =1x (0gBEF +1x (g
is a piecewise €*° and continuous metric on Fg (resp. E 2> E (’g , Fé) .

When gT@ = ggQ , the quotient vector bundle ﬁ’go is nothing but F'.

The diagram (32) is associated with § = g’ “(§ |Q’) . Actually this can be lifted to X
as follows:
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e By A), the exponential map expg,’é(tgl) is lifted to X(_.,) as (¢,¢',p1,0")
and this defines the map &’ :X(_E;) — X' with (G, ¢',p1,p)=(0,§',p1,5").
Hence we get ﬁ’g =i *(Fg| x1), where the parallel transport for the con-
nection V9-€ + V' along (exp?,’g(tgl))te(_g,g) is lifted to the parallel trans-
port along ¢t — (¢,&%') for V/8 . When ﬁ'g| Xeeo is endowed with the metric
n;‘((gAT*Q 2T @ g gl), pulling back (32) to X(_e ¢ says i'*(ﬁ'g|X,) is isomet-

ric to F| Xeen endowed with the metric n;}(gé\T*Q ® gé\TQ ®gl).

* The weight (p), s involved in the metrics SF and g¥ satisfies

(Prgq = \/1 +p2+mi7(0,§"pi D,

and it is constant along the curve ¢ — (¢,%'). With the identification Fg =

" (Fg|y) the weight (p)fg’z’_NV is thus sent to (p)g)ff;NV

¢ It will appear with the explicit coordinate writing (59)(60) or with the €*°-
structure associated with ﬁ'g in Subsection 4.2 that the isometric involution
on Fg| xx =F | x\x 18 well defined on the quotient vector bundle Fg .

Definition 2.8. The identification Fo = &' *(F| x1) provides a piecewise € and
continuous vector bundle isometry from (F | X en’ gfg = gg ® g1 to (ﬁ'g| Xen’ &)

which is denoted by ‘T’i’go. The same notation is used for ‘/I\’i’go L (F| Xeoo gg =

g‘g/ ®gh— (FélX(,E E),ng') and when F,F' are replaced by E,E'.
The diagram (32) is now lifted to

\’I)gago

(F|X(—e,6)’gg ® gf) = (ﬁ‘g |X(—s,s)’§F) (38)

Zo,v Zy
§&80

E o sf\ X _ (f ~F
(Flx .80 08)——Fql|x .89

,€)

ay TF

X(—E,E) =20 X(—E,E)
Px

i i

!/ !/
X Idx X

with similar diagrams when F is replaced by E,E', F’ .

Remark 2.9. The €°°-structure of ﬁ’g is based on the non symplectic coordinates
(g, p) with the collar neighborhood G' € (—¢,0] and an additional twist presented
in Subsection 4.2. However many different structures have to be considered in this
analysis: the differential structure, the symplectic structure and the riemannian
structure. The presentation of ﬁ'g as a piecewise € and continuous vector bun-
dle, defined as a quotient, is actually the one where all those different aspects are
simply formulated.
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2.5 The geometric constructions in local coordinates

The previous sections ensure that the various changes of variables or isomor-
phisms of vector bundles have a natural geometric meaning independent of a
coordinate system. However it is instructive for the analysis to explain them in
terms of some specific local coodinates systems. Let us first recall a few facts
about the smooth case and then we will shift to the description of piecewise €
isometries associated with the possibly non smooth metric g.

2.5.1 The smooth case

Let us start with a smooth riemannian manifold (@, g) and a local coordinate sys-
tem (q1,...,¢%) in an open neighborhood U of ¢¢ € @ . The Levi-Civita connection
V@2 associated with g = g7 = gij(q)dqidqj and the dual metric g7 9(p,p) =
g (Q)pip j can be specified with the Christoffel symbols

1 0 0g;p 0gi;
Fk( )__ ke | 98j¢  08ic  O8ij (39)
dg'  0q’ 0g’
It is given by
p) , .
Ewalt (@, V4l =T @)dd".
dqi q oq’
Because it is torsion free we have the symmetry Tfj = Ffi .
An horizontal curve t — (q(¢),p(¢)) on X =T*Q being characterized by V?(’;g) p(t) =
0, a basis of TXH | ¢; € TXH such that x, «(e; )= 2 3 and é' e TXV, nx,*(éi) =
dg , is thus given by
0 k 0 H j_ 0 4
e; = aql +FLJ(Q)pka € T(q,p)X , e’ = a € T(q,p)X . (40)
Its dual basis on T X is
el=dq'e T(q,p)XH , é;=dp,—- rk (@prdq' €T, p)XV. (41)
Due to the possible curvature of (Q,gT?)
_ pTQ¢ 0 %
[ezye]] RLJk (q)pﬂap[ eTX (42)

where the Riemann curvature tensor RT9 = RiTjQ dq ‘Ad gj is the End(T'Q) valued
two-form given

TQ _vIQ.eyTQ.g  yTQ.eyTR.g TQ.g
R (S’T)_vs P Vo VS v[S,T]

when S = §? (q) - and T(q) = TJ(q)

However (e;, é/ ) is a symplectlc bas1s of TX =T(T*Q) endowed with its canonical

symplectic form o loe g pindq’ and

o=dp;ndq' =é;ne’.
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General elements of E = AT*X and E' = AT X will be written locally

J I, I neJ
wre ey , Uujgese ,

with repeated summation convention w.r.t I,J c{1,...,d}.
The vertical, total and horizontal number operators, Ny,Nz and N, are given on
AT*X and ATX by

Ny(wieléy) =1Jlwfe’é; , Nwie'e)=(Il+|JDwielé; , Ny=N-Ny

Np(ulere?)=Tluhers? , N(lere?)=(Il+|JDuleré” , Ny=N-Ng.

Because the Levi-Civita connection preserves the metric on X = T*@ the horizon-
tal vector fields are tangent to | plg =Cte:

eif(pl2)=0 , IplZ=g"(Qpipj=2h(g,p) , feC ®R).

When necessary we will specify the metric g in the notation with an additional
index by writing |p|2 = p|2 , and (p)g q = (p)q -

The metric gE — (p);NHJ’NVn;}(gAT*Q@gATQ) and gE’ — (p)é\rH—NVﬂX(gATQ ®gAT*Q)
on E = AT*X and E' = ATX already introduced in (10) and (11) are such that

leliq.) = 144 liq.) = (B3 %/ &7(a), (43)

o P81l =0ple’ g, (44)
(ei,éJ')gE = 0, (45)

Iéjl(q,p) = dpj - F?ipkdqi

; 0 _ .
Clam =577 = ()% g/ (q), (46)
J g,p)
0 0 o
leilgp) = |77+ F?jpk_. = (p)é& VEiil@)=0Up) & lqpy  (47)
0q op; @0
(e;, &) =0. (48)

With this choice the riemannian volume on X , vol gE' 5 is nothing but the symplec-
tic volume 1
dvol w =|dgdp|l=—=lc% , d=dim@Q,
8 d!
and coincides with the standard Lebesgue measure in any symplectic coordinates
system. Note that X is orientable with the non vanishing volume form %O'd .
The connections VE and VE introduced in (14) satisfy

Veieg = —ka(Q)ek , Veiej = rf’](q)ek , véj ¢ — Véjek _ 0’

Remember that they are defined as pull-backed connections and do not coincide

exactly with the Levi-Civita connection associated with gE' due to the weight
Npg—-Ny

(P)yq .

Let us finish with the flat vector bundle § endowed with the flat connection V/
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and the hermitian metric g'. Locally above U 3 qg, there is a frame (v1,...,v%)

of { such that Vfivk =0 and (f,V') = (U x C%,V) with the trivial connection
Ogi

V and the covariant derivative V L = %

All(q) = gIw',v7), Alg) = A(g)* and (A(g)™)ij = Aij(g). The antidual (f,V")

is also isomorphic to (U x C%,V) but identifying f with f via gl 2V vk = 6k says

v, = 1(g)v Ag,k(g)v . With

. The metric is given by the matrix

0=V, v;=V', (4" N 1= @A +A” f, ot

0q 6q aq

we deduce
Vol = Viv! = —~A(dA (g’ = (dA)A g’
=0 o o
Hence we obtain

w(g, V)=V -V =(dA)A (g).

fa IxC

v =yis 1 5(dAATH(Q) V+%(dA)A‘1(g).

We are especially interested in the line bundle f = @ ® C with VI =V and gf(z) =

e 2V @|z|2 Then VI' = V-2(dV(g)) and VI* = V-dV(q).

By conjugating with e~V@ | we can actually consider f = @ x C with gl(z’) = |2'|?

with the flat connection VI = V+dV(q) and its dual flat connection v =v- dVi(qg).

2.5.2 The non smooth doubles with the metric g7¢

With @ = @_ U Q' U@, local coordinates in a neighborhood U of q¢ € @', (U c
Q(-¢,¢)) are chosen such that:

o gTQ — (dgl)z @J_ ml’Jl(gl’g/)dzl/dg]/ .

o gTQ = (dql)2 oL miV' (- Iq g )dq qu , m = mTQ’( q) and the corre-
sponding Christoffel symbols are denoted by Fk We Wlll keep the notation
l“f for g79 = g79 .

J

* The associated symplectic coordinates on n_l(U) U xR? are written (g, p) =
(¢',p)1<i j<a and X' N1 M) = {(¢*,¢',p1,p") €U xR ,¢* = 0}

Remember the convention that i’ (resp. I' = {1,...d}) denotes an index i’ # 1 (resp.
1¢1).

Three things must be noticed with those coordinates

* From (39) a Christoffel symbol Ff’j(g) vanishes if 1 appears more than once
ini,jk.
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* For the metric g, the Christoffel symbols fi.“,,j, (g) are continuous but not ¢
on Q(—¢,¢) while the possibly non continuous Christoffel symbols fk;, = ff,ll =
om Iyl ral . ALl Al _ A
—2'3‘2’{’ and I“il,j, = satisfy Fki,(0+,g’) = —F’fi,(O ,q') and F},J.,(Oﬂg’) -
-1, g’ ).

anA’Lirj/
- 2dq1

* When g7¢ = gOTQ =gTe = (dg1)2+mTQ,(0,g') everything is smooth and Ffj =
0 when 1 appearsin i, j,k.

Definition 2.10. Work with the local coordinates (¢,p) =(q?,...,q%,p1,...,pq) in
17 (U), 0 €Q'NU C Q).

The frame (40) and (41) associated with gL (resp. ng) are denoted by (e_,i,é{ )
and (e',é_ ;) (resp. (e ;,67) and (e ,é_ ;).

The abbreviated version is simply (e,é%).

The notations (e;,é’) and (e, é ;) now refer to the metric § with (e,é) = 19 _(q)e_,é_)+
1g.(g)e+,é4)on n)_(l(U)\X’, while working in E'g, E';,, ﬁ’g, Fé, means that (e_,é_)
and (e, ,é.) are identified along X' and (e,é) makes sense on n)}l(U).
When gTQ = ggQ those frames are simply denoted (fi,f7) and (fi,fj).

Below are the detailed expressions of those frames in the coordinates (q, p):

d d d ;0
= —_— =—+1I7 0, ! I J:_a 49
fl Oql fl aql/ v,] ( q )pk ap], f ap] ( )
fioo= dd', fi=dp1 , fy=dpy-Th,0,¢prdd”,  (50)

0 ap/ 0 onX' YA / 0

_ - —+T . j— = +T . 0, r— 51
ex1 FPTRERY (@)pr op; f1£17;(0,9)pp 3y (51)

a /\k, a Ak/ 6 ~1 6
— = —_+r.,., r—+r~, /—+F~,~, ~ 52
er.i o7 "L (@)pr opy T 1(@pr apy i (q)plapj, (52)

on X’ 7 / 0 1 ! 0
= "ir-/ 0, /_ir~/ .y 0, - N 53
fir£T7,(0,9)py 1 i€ q)plapj, (53)
. 0 A
oL = —=f (54)
el = dq'=f" (55)
R Al .y X' a _ li -/
éz1 = dp1-T%(@ppdq" "= AFTE,00,¢)prdq” (56)
éry = dpy—-T (@Qppde” -1 (@Qprdg' -1}, (@pidg” (57
X! 1 !

"= fp 0, )prdg FT5,(0,)p1dg" . (58)

We see in particular on (51)(53)(54) for E' = ATX and on (55)(56)(58) for E =
AT*X that

Sileo g =Dey |y o Zu@)|g = (-1%18 |y, (59)
Z.eD)|g =D |y, Za@ )|y = (D26 |y (60)

The coordinates (§,p) introduced in Definition 2.6, and the expression of the

frame (e,é) in those new coordinates can be specified locally. They are charac-
terized by

q:q ’ elﬁ:O ’ ﬁ|X’:pa
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or

g (ld o o0 q
p1|=]|0 1 0 p1
P 0 0 wighgh)\p'
with £—1Wf/ - _F{/j’(ql’q,)wl;:
k' ! k
1,,]( q') =07
We deduce
0 0 0 _ 0 0 0 0 _ 0
=57 | wg 1]gfpk ) = ’ —=ly 1];'
0q 0q 0q Opy 0p1 Op1 apJ Opyr
dg’=dq’ , dpi=dp1 , f—[W(Q)]k dpp +[a Z]erk dq’
This leads to
d 0 .y 0 , 0
—=——4T . — = , o= —— 61
3G aq 1Pk 3y el é 71 (61)
' 0 i’ 0 onx 0
¢/ = =y (@Q— "= —, (62)
opj K7 0pw ap
oy 0 ) w. 0
o= —\, r— 4+ I, 5 !
€= 55 [waql] Prgs [yl v pka~
B FA % S B L (63)
1% "I Do 35, LERTS Jplaﬁj
10 0 0
ex on X —+Fk (0,q )pk/—+T 1(0 q )pk—+T 0,9 )pIT (64)
and to
=dq' =dg"' (65)
é1=dp1 -,y 1" prdg’ (66)
6 onX dp1+F1J/(0 Q)pk’dq (67)
ey =ty 1 dpy —Ty lawﬂ# "W pwdg -~ 10 w1 prdg”
~[f 11 prdgt- J,l/pldq (68)
6z "= dpy-T%,0,¢)prdd” FT:(0,¢)p1dg" . (69)

Remember that the map X :(¢',q’, p1,p") — (—q',q’,—p1,p’) of Definition 2.5 keeps
the same form 2(§',§’,p1,p") = (-G, §’,—p1,p’) in the new coordinates (g,5). In
particular (59)(60) can be deduced from (61)(62)(64) and (65)(67)(69).

The continuous matching along X’ vector bundles E ¢ and Eé simply says that
(e_,é_)|aX_ and (e+,é+)|aX+ are identified.

The lifting to X N U of the geodesic curve exp?,’*é (te;) is nothing but the curve
t— (¢,g', p) and the map &’ : X x U — X' is nothing but

~/

G, q",p)=00,G",p;).
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Using the lifted connection V€ and vE'§ , the frames (e,é)| x' = (e_,é_)| ox. =
(e+,é+)|aX+ are lifted to the new frames &' [(e,é)|y,]. The piecewise €™ and
continuous vector bundle isometry ‘f’i’g % of diagram (38) is nothing but

Y (q,p,f, ) — (4,5,% (e, )| x ).

For the continuity properties in E ¢ and Efg we can work more simply with the
frame (e, é) = 1g_(q)(es,é5) than with the frame x'* [(e,é)|X,] .
Let us conclude with the vector bundle 75 : f — @ of Definition 2.2 endowed with
the metric g’ and the two connections V/ and V' (see also Proposition 2.3) with
now:

v -Vl = w(vl, g5).

With the example of | = Q_xC and with VI = V the trivial connection, and gf(z) =
g(2)=e " P1z% we get §1(2) = 72?22 with V(g) = V(~Ig'|,¢) and

w(V1,87) = -2dV = -2 |sign(-g")d ;1 A (‘% +dg V| (-lg'l,g")
with a discontinuity along ¢! = 0 when aqlV(O,q’ )#0. Then VI’ and V" become
piecewise €°° and not continuous for the initial €*-structure of QxC.
Note that if we take | = Q_ x C with the metric gf(z) = |z|2 but with the connec-
tion VI = V+dV(q), the connection on the doubled vector bundle m;:f — @ of
Definition 2.2 is now V/ = V+dV(q) and while vi=v- dV(g) and VF* = V. Re-
member also that the continuity in 75 : f — @ means a change of sign across Q'
when v=-1.

Remark 2.11. The relations (59)(60) suggest another interpretation of E g and E :g
as the exterior algebras of the cotangent and tangent bundle of a smooth manifold,
X_ and X, being glued by identifying (0~,§',p1,p) and (0*,§',—p1,p"). This will
be used in Subsection 4.2. However for most of the analysis the above presentation
of E g and E ;, as piecewise €°° and continuous vector bundles on X is safer and
more convenient.

3 Functional spaces and invariances

We review the functional spaces that we will use. First we start with local spaces
in the smooth case, which do not depend on any chosen riemannian metric, then
we discuss the case of sections in § g for §=E,E' F,F', where the metric enters in
the game only in the continuity or jump condition along X' . Finally we study how
global spaces depend on the chosen metric g7 . In particular, global spaces of sec-
tions of § ¢ are characterized after considering the restrictions s = s |)—($ like in the
smooth case with a boundary and then possibly adding the local continuity con-
dition s_\ x = s+\ x in § g| x - Invariances and isomorphisms of those functional
spaces via the change of variables or vector bundle isomorphisms introduced in
Section 2 are discussed.
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3.1 Local spaces for smooth vector bundles

Let M be a ¢°° manifold and 75 : § — M a €°°-vector bundle. A smooth manifold
with boundary is denoted M = M LM and accordingly ng i — M is a €°(M)-
vector bundle endowed with any smooth connection. The cases that we have in
mind are M =Q,X,Q_,Q.,X_, X, and M = 6_,§+,)_(_,)_(+ . By following [ ]
all the spaces F(M;F) or F(M;F) are defined independently of any riemannian
structures or metricon § : & =€, F =€6;°, F = L?OC , F = L%O,np , F = Wl‘f)f

and & = Wé”ﬁ,,zn p> MER, where “WH2 counts p-derivatives in L2” when peN.

When M is a smooth manifold (no boundary), taking § the dual bundle of F
and fixing any smooth volume element dvjs on M provide a duality product

(s, 5"y = f (5,85 5(0) dop(x),
M

and we will use without distinction real or sesquilinear (left-anti linear and right
C-linear) duality products.

The set of distributional sections 2'(M;J’) is defined as the dual of €5°(M;F) and
this duality holds between Wie-  (M;§)and W,/ | (M;§') for peR.

A smooth manifold with boundary M, can be considered as a domain of a
smooth closed manifold M and §=F |H where My § — M is a €-vector bundle.
According to [ 1, the above functional space F(M;J) is defined as the set of
restrictions to M of elements of Z(M;3):

FM;) = {ue 2" (M;3), 3 € FIM;F), u=ily}

endowed with the quotient topology. On a manifold with boundary M = M LdM ,
compact sets of M and M differ and the spaces F(M,F) and F(M;F) are distin-
guished, the later specifying the information up to the boundary oM . Finally

when dvy a €°(M) volume element, the duality holds between L?OC comp(ﬁ; %)
and Lzom ] (M:F).
p loc

A section s € ZF(M;3) (resp. s € F(M;F)) if for any locally finite partition of unity
Yiesxj =1, xj € 6€°(M;R) (resp. y; € €°(M;R) one has yjs € F(M;3F) for all
J € J, the latter being checked in any local coordinate system. Those spaces are
invariant by € diffeomorphisms on M (resp M) and € vector bundle isomor-
phisms of §.

When M =X =T*Q or M = X+, any given riemannian metric g7? provides
the function |p|3 =2b(q,p) = gij(q)pipj ands € Wl’f)’f(X;S) (resp. s€ W;;f(f;;&)) if
and only if for any y € <€(‘)’°_(R;[R) , X(Iplg)s € WL’Iﬁ;zmp(M;S) (resp. X(Iplg)s € WL’Iﬁ;zmp(M;S)).
Note also that on X and X ; the symplectic volume dvx = |dqdp| is fixed indepen-
dently of any chosen metric.

On M = X (resp. M = X=), considered as a vector bundle, we will consider the
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space Wl(gcl’fj:r’;(M;S), |l = |p1l, pipg =0, (resp. Wl(fé’fji;i(ﬁ;g)) where the reg-
ularity with respect to ¢ and p are distinguished: In particular when p1,pus € N,

U2 =iy, SE Wl(gcl’uz)’z(M;S) (resp. s € WHLH2:2(Mf; ¥)) means
Vjed Va,peN?, lal < pi,lal+1pl < pz,0200(x,8) € L20,(M;F),  (70)

where }_ ;s x; =1 is a smooth partition of unity and (¢, p) € U x R? with supp Xj <
U, x RY ~ X |UJ~' The conditions |ug| = |u1| and piue = 0 ensure that the spaces

WKL H2).2 (X;%) and WHLK2)2(X _: F) are defined geometrically because a change

loc comp
of variable on g — ¢(q) on @ (or U;) induces a change of variable

(q,p)=(p(q),Cdp(g)™1p) on X=T*Q

and transforms (aiqi’ %) into
0 0 ; 0
L — , Bl(g)—.
oqt LJ(q)pk Gpj k(q)apk

We now define spaces associated with a continuous operator P : 2'(M) — 2'(M),
which will be in practice a differential operator with smooth coefficients.

Definition 3.1. Let 3 : § — M be a smooth vector bundle on M (resp M=Mu
O0M) and let P be a differential operator with smooth coefficients P : 2'(M;§) —
2'(M; ). The spaces E1oc(P,§) and Ecomp(P,T) are defined as

8.(P,3)={we LAM;F), PweL*(M;%)}, e=locorcomp.
resp. g.(P,g):{weL%(M;g), PweL%(M;g)}, e =loc or comp.

3.2 Local spaces for Eg,Eé,Fg,Fé

The vector bundles Eg , E:g , F'g = Eg ® n&l(f) and ﬁ’é = E’g ® n)‘(l(f) of Definition 2.7
are defined as piecewise € ° vector bundles, with some matching conditions along
X'=0X_=0X,. Local functional spaces Z(X;3,), with §g = Eg,E},,Fg,F, will
be specified accordingly by using & (X ;§) with the corresponding continuity con-
dition along X' when it makes sense. Remember that 7; : f — @ may have different
¢ structures according to Proposition 2.3 in § = E ® n5(f) and § = E' ® w%(f).

The space L%OC is defined piecewise and the distinction between 3 ¢ and § can

comp
be forgotten according to

L2 (X;83)=L% X ;®el? X.;H=L2 (X;3.

loc loc loc loc

Definition 3.2. When X : X(_. ) — X(_¢r) and X, are the maps of Definition 2.5
and S = E,E’,F,F’ with v =+1 when 3 :E,El’ the set Ofeven and odd sections O]c
L?oc(X(—e,eﬁg), is defined by

Liv odd,loc(X(—E,E);g) = {S EL?OC(X(—&E);S)’ ZVS = is} . (71)

ForseL? (X (—¢,01;8) we define

loc

Sev = 1x_(x)s +1x, (x)Zys). (72)
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Note that the spaces of even and odd sections are interchanged by a simple
change of the unitary flat involution v : f|Q, - f|Q, into —v.

We will make an extensive use of the set of smooth compactly supported sections,
60.4(T¢) defined below.

Definition 3.3. For §=E,E',F,F' possibly restricted to X(_ ), the space Cgo,g@g)
is defined as
G0.4(Fe) = {5 6°X:Te), slx, €6} (73)

The set of even elements is defined by

Co,6,e0@g) = Co,6F ) NL2, compX—e,00;F)- (74)

Finally the space %o,g(L(§ g)) is defined like (73) by
Gog(LF) = {s € °XLGeN), slg, € 6 X5 L@} -

Definition 2.7 actually provides a € structure for 3 ¢ by taking the one of the
right-hand side in the equalities (34)(35)(36)(37), depending on the case. The local
Sobolev spaces Wl”O’f(X;Sg) , LER, and Wl(gg’”Q)Q(X;Sg) , lpel = p1l, pipe =0, can
be defined for this ¥*°-structure. We recall the standard result concerning the
existence of traces (see e.g. [ D:

* The tracemapy: Wl(sg’uz)’g()_(;@g) = Wl(gj’uzm()_(x;%') - Wl(g‘j‘l/z’“Q)’z(aX¢;s) ,
Ys = SlaX; , is well defined for pg = u; > % .

e For py €[0,1/2[, lpgl = lul, pips = 0, s € WX 5 ) if and only if s =

loc

S|X; € W(u1,u2),2(yi;§g) — W(u1,p2),2()_(¢;3) .

* For py €11/2,3/2[, p2 = 1, s € WHHDA(X ;T ) if and only if s = [ € WD 2(X 1 Fp) =
WHLHDZ(F .=y and the traces along X' = dX_ = 0X, coincide s_|ox. =

loc .
S+|6X+ in Sg}X'-

In all the analysis we will avoid trace issues for half-integer exponents u; = % +n,

n € N, which as it is well known (see [ ]-Chap 11) is a subtle critical case.

The equality of traces in § g| x» for uy €]1/2,3/2[ means that the frames (e_,é_)
and (e,,é,) are identified along X' = 0X_ = 0X, and this is actually a jump condi-
tion with the usual €*°-structure of E = AT*X and E' = ATX , which also corre-

sponds to the case when g7 = ggQ = (dgl)2 + mTQ(O,g’). For such a metric ggQ ,

we write simply W H22(x . % 20) = WHLHD2(x %) For a general metric g79 , the

loc loc

spaces Wl(’: ;’” 22(x T ¢) will be considered with pq =[0,1]1\{1/2}. Since differen-
tial operators with possibly discontinuous coefficients along X’ and non obvious
effects on the jump condition will be studied, it is better to split the analysis on
X _ and X, and check separately the matching condition along X' .

We keep of course the notation Wl( 5 ;’” 22(X %) when g79 = gOTQ for any u1,us € R
such that |ua| = |u1l, p1p2 = 0 but for a general gTQ , we take the following defini-

tion equivalent to the previous construction.
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Definition 3.4. For § = E,E',F,F', u; €[0,11\{1/2} and iz > 1, the space W,""#2*(X ;)
is defined as the space of sections s € L%OC(X ;8) such that:

( b )’2 v
o s =s|y WX LT,

* ifup €]1/2,1], 3—|aX_ = S+|@X+ in §g|X'-

The set of even sections of Wl(g ;’“ 22X g) is defined as

Wo b2 §) = Wbt P (X § ) N L2, 1, (X3 ).

ev,loc loc ev,loc

Definition 3.5. In X' = 0X_ the map S1 = Z|y, is given by

$100,9',p1,p)=(0,9',—p1,p". (75)
For §=F (resp. §=F') the map Sy:2'(X';§|x) — 2'(§|x) is given by

Sywi@hele_ ) = vl TS (" ele_y  (76)

resp. SA'V(uCI,(x’)e_,]é{) = v(—l)l{l}mllﬂ{lm‘”uS(Sl(x'))e_,Ié{. (77)

Proposition 3.6. For a section s € L%OC(}_(_;S) and pi1 €[0,11\{1/2}, ug = u1 and
§=F,F', there is an equivalence between:

a) Sep € 60 g(Sg) (resp. sep € WHHHIAX;FL) 5

b) se <€§°(}_(_;S) (resp. s€ WHLE)2(X %) and (resp. when py > 1/2)
Svslax =slox_ -

Proof. Simply write that s, = 1x_(x)s + 1x,(Z,s) satisfies sev| x = s| x_ and ad-

mits a trace in @’(X';§g|X,) when s,, € c€0,g(X;§g) Or Sy € Wl(g;’MZ)’z(X;§g) , Ug =
w1 >1/2, with:

* X|x =51,

o T.(el,é_;)=((-101e,(~1)%16, ;) tensorized with v in n;‘_( M,

e and (e_,é_)|X, = (e+,é+)|X, in §g|X, .

3.3 Global functional spaces
3.3.1 Global L2-spaces, duality and adjoints
Like for L? (X;3¢)=L% (X;§)=L2 X_;®)eL? (X;§) for §=E,E F,F we

loc loc loc

can simply work with the vector bundles E = AT*X ,E' = ATX ,F = E®ny(f) and
F' =E'® 7 (f) and forget the distinction between @ gand §.

The cotangent space X is endowed with the symplectic volume

1 .
(e' néj)T = dqdpl

1 4
dUX—|aU |—|z
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where |dqdp| stands for the Lebesgue measure in the local coordinates (q,p) =

q',....q%.p1,....Pa).
The local coordinates (¢, p) = (cjl,...,cjd,ﬁl,...,ﬁd) of Definition 2.6 are not sym-
plectic coordinates and (65)(66)(68) lead to

1 1 .
dvy = |Ead| =I5(e' A )% = |dety X@)lIdGdpl. (78)

Remember that the metrics g%, g%, gF,g" on E,E',F,F' given by (10)(11)(12)(13)

include the weight (p)jNH NV and the same is done for g%, g% gF g7 with g79

replaced by g7€¢ .
Definition 3.7. Let § = E,E',F ,F' be endowed with the metric 35 = g% or g5 = g°.
The space L*(X;J), or L*(X;3, g~g) when we want to specify the metric, is

L*(X;3) = {s eL? (X;3), fX Is(q, P35 ldgdpl < +oo} :

The scalar product and the duality product between L*(X;F) and L*(X;F') are
given by

(s,8"2=1(s,8) 1255 = (s,s')gg ldqdp|=(s',s) 2 (79)
X (g,p)
(t,s) = fX €95, s 1dadpl =D (80)

for any s,s' e LA(X;%), t e L% X;F)).
Finally the set L? 4 &5, %) equals

ev od
L2, 00aX:5.6%) = LAGF.EDN L2, 010D,

Proposition 3.8. Let § = E,E',F,F’ be endowed with the metric g5 = g% or g%
and let (§', %) its antidual, § = E',E,F',F respectively.

a) With the duality product (80), the dual of L*(X; 3, g~3) is nothing but LZ(X;S’,gSI) .

b) When ¢ :Q — Q is a € (resp. piecewise €° on §¢) diffeomorphism, the
the push-forward v = ¢, : X = T*Q — X viewed as (resp. piecewise) dif-
feomorphism in X defines a continuous isomorphism v, : LA%(X;§, &%) —
LX(X;3,8%).

) If V. ATRIAT*"Q — ATQRAT*Q be a € (or piecewise € on 6;) vector
bundle isomorphism, then [n5(¥)]. L2(X;5,8%) — L%(X,5,8%) is a contin-
uous isomorphism.

d) The vector bundle isomorphism Z, : § — § defines a unitary involution of
L%X;3,8%) when § = E,E'. The same holds for X, when § = F,F' and
L2(X;3,8%) =L2(X,5;8%) e L2 (X,3;8%).
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e) When ggQ = (algl)2 + mTQ,(O,g’) and gT9 = (olgl)2 + mTQ’(gl,g'), the vector
bundle isomorphim ‘T’i’g % of Definition 2.8 defines a continuous isomorphism
(PRE. from LX(X (c.0:8.87) to L*(X(-c.5.8%), with &5 = g§ @ &1 when
F=Fand g =gt ® 8 when F=F'.

Proof. a)lt is simply the pointwise duality.
b) When ¢ : @ — Q is a (piecewise) €°°-diffeomorphism

(@,P)=w(q,p)=¢.(q,p) = (9(q),'Dy, (q)p) = (p(q),A(q)p)
the frames (e, &) are transformed according to
dQ' =[Dg,l:dq’ +IDA}Iprdg’ , dP;j=[A(@)idps,

where all the g-dependent coefficients are uniformly bounded.
The weight (p);‘rNH Ny depending on the case for §, ensures

||1//*3||L2(§S) <Cls Iz2¢5%)

and the same can be done for v, = (™ 1)* = (p*)*.

¢) When § = E,E’ this comes from the identification of TX = TX" oL TXV =
1%(TQeT*Q)and T*X =TXV o' T*XV =73 (T*Q &> TQ). When §=F ,F’ we
set ¢ = mATQoAT*q and we first extend W to (ATQ ® AT*Q)®§ and to (AT*Q ®
ATQ)®f as ¥ ® ¢. and then pull it back via 7% .

d) =, : (3,85 — (F, 2% is an isometry and X : X — X is a symplectic map.

e) We already know that ‘/I\’fg’go : (&é’g) - (§g, 2%) is an isometry projected to
nX(\/I\’ff’gO) = p3%%°, while the map ¢$° is given locally by ¢$%°(¢,p) = x with
g(x) = q and p(x) = p according to the Definition 2.6 of the coordinates (¢, p) . With
(78) the map | det y(§)|V2(¥55°). is unitary from L2(X(_¢0); 3, 85) to LAX e, 8°)

while the multiplication by |det w(cj)lﬂ/ 2 is an isomorphism. O

For traces along X' = 0X_ = X, we also need global L2-spaces. It actually
suffices to specify the volume element along X’

Definition 3.9. On X' the volume element denoted dvx' = |dq'dp| equals

The volume element |p1ldvx = |p1lldp1dq'dp’| equals |(in(cTz_(!i)|TX/| where Yy is the
Hamiltonian vector field associated with .

The above definition does not rely on a coordinate system. However with the
local coordinates (g, p) and (g, p) with (cj,ﬁ)|X, = (q,p)|X, , we get

dvx' =|dq'dpl=1dq'dp| and |pildvx: =Ipilldq¢'dpidp'l=1p1lldG'dp1dp'|.

Because L2(X;§') is the dual of L2(X;F) via the duality product (80), the adjoints
of operators acting in L2(X;§) can be defined in L%(X;J’).
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Definition 3.10. The vector bundle § = E,E',F,F" with dual §' = E',E,F,F' is
endowed with the metric g5 = g% or g5 = g%.

Let Q be an open set in X and let (P,D(P)) be a densely defined operator in
LZ(Q;S,gg). The adjoint denoted (P,D(P) in L2(Q;$’,g5') is defined by

(te D(P)) & (3C;20,Ys € D(P),|{t,Ps")| < CylIs'll2)
Vte D(P),Vs' e D(P), (Pt,s')=(t,Ps).

Since (79) and (80) give a unitary mapping U : L2(Q;§,8%) — L%(Q;F,8%),
there is a simple relation with the usual adjoint (P*,D(P*)) for the L2(X;§,5°)
scalar product, (P,D(P)) = (U~ 'P*U, U 'D(P*)).

However Bismut constructions of adjoint in L2(Q;F, 8%) involves a non symmetric
(resp. non hermitian) non degenerate bilinear (resp. sesquilinear) on E (resp. F').
For an isomorphism ¢ : E' — E with adjoint !¢p: E' — E we keep the same notation
for ¢ =p®Idy: y: F' — F . Let the vector bundle isomorphism ¢ : E’ — E be such
that

3C >0,Vx € X, Vi€ Ty, c—1|¢>t|§§ <Itl 5 <Clotl s, (81)

This gives two sesquilinear forms on §’ and § dual to each other
U V)=WU,¢Vigs » npw,0)=(¢"'0),05 ;.

For sections s,s’ € L2(X,F) we set
(5,879 = an(”;(s,S') dux. (82)

Because ¢, 17y and 17(’;) are not assumed to be neither symmetric (or hermitian) nor
anti-symmetric (or anti-hermitian), left and right adjoints must be distinguished.

Definition 3.11. The vector bundle § = E,E',F,F" with dual §' = E',E,F,F' is
endowed with the metric g5 = g% or g5 = g%.

We assume that ¢ : F' — F satisfies (81) and Q is an open subset of X .

The left ¢-adjoint of a densely defined operator (P,D(P)) in L%(Q;5), denoted by
(P?,D(P?)) is defined by

(se D(P?)) & (3Cs=0,Vs' € D(P),|(s, Ps'yyl < Cslls'll 12)
VseD(P?),¥s' e D(P), (P?s,s')y=(s,Ps).

The right ¢p-adjoint is defined similarly by considering the continuity of s'-dependent
anti-linear form D(P)3s— (Ps,s") .

Proposition 3.12. The left ¢p-adjoint (P?,D(P?)) equals (pPp~1,¢pD(P)) while the
right ¢-adjoint equals (P'?,D(P'?)) = (¢pP'¢p~1;'¢pD(P)).

As adjoints of densely defined operators, the operators (P?,D(P?)) and (Pt‘l’,D(Pt‘/’))
are closed in L%(Q,F). When (P,D(P)) is closed and densely defined then the same
holds for (P?,D(P?)) and (P?)¢ =P

When (P,D(P)) is densely defined and closable, (P?)'® =P the closure of P.
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Proof. Just write
(@ 1P, sy =(P?s,s")y=(s,Ps")y=(p"'s,Ps)=(P¢p's,s")
and use the definitions to get P? = ¢pP¢p1.
With (s, s')¢ = (s', s)1,, write for the right ¢-adjoint pre
(Ps,s'yy=(s,P""s")
in the form
(s', Ps)iy = (P?s' 81y,
so that P™¢ = P'¢ = tpPtp1.
The relation (P?)¢ = P comes from the standard theory of adjoints in Hilbert

(therefore reflexive Banach) spaces, according to

(P(P)t(p:t(pﬁpt(p—l , P‘l’:gbf’(/)_l , ﬁ{p:t¢—1ﬁt¢:t¢—1pt¢_

3.3.2 Global Sobolev scale

In[ 1, G. Lebeau introduced the Sobolev scale #(X;AT*X ®f), p€ R, when
(@, gT?) is a smooth closed compact riemannian manifold, which is adapted to the
geometry of X = T*@ and to the analysis of Bismut’s hypoelliptic Laplacian. We
adapt those definitions to our case with our notations.

Definition 3.13. Let §=E,E',F,F' be endowed with the smooth metric g°.
For n €N, the space W™(X;3) is the set of sections s € L2(X;§, gg ) for which there
exists Cs > 0 such that
ni ne ni
[ (V5T V305 ] e, = o LT 10w

when  2ni1+ng+n3<2n, Upe€™@Q;TQ),V;e €™ @Q;T"Q)
with  Upx) e T X7 nx (O =U, , Vi) eTXV,nx . V)=V’

n

2
IV lIwneo@:1q))
/=1

The space W™(X;T) can be given a Hilbert space structure (see (85) below) and
WHX;S) for neR, is then defined by duality and interpolation.
ForQ=X:, 7//”(5;3), HER, is defined as

WHOQF) = {u e 2'(4F), I e WHX;P),u =iy} .

Here are some explanations and we refer the reader to [ 1 ] for details.
For u=neN, se #™(X;§) can be checked by introducing a partition of unity on
Q, Y. )(%l(g) = 1 subordinate to an atlas and by taking the Uy, V¢ in the local
frame (-& dgj ) with

agi ’
order 1 order 1/2
’ N order 1/2 "6'\
Up=ei= — +T%(q) Drn — 83
BSOS 50 i(@ "Pr on, (83)
order 1/2
0
yl=6/= — (84)
op;
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By setting for a € N, V3% = Vf{al .. fo‘d and Vg’a = Vg;al .. Vg}“d a Hilbert norm
on #"™(X,§) is given by

Islyn =2 X KPSV (@I (85)

m 2|a|+|Bl+ns<2n

Although the multiplication by (p)"3 and the covariant derivatives themselves
do not commute, changing the order in the above expression gives an equivalent
norm because:

e V3 is the pull-back of a connection of the fiber bundle ATQ ® AT*Q ®f (resp.

* . 3 3 _ 3 S — S *
ATQ e AT*Q ®f) on @ with vﬁlvﬁz vﬁzvﬁl V[U17U2]+JTXR(U1,U2)Where

R(U+,Us) is a smooth endomorphim valued section on @, therefore uni-

formly bounded w.r.t p.

¢ The above additional term V°

[U1,U2

is estimated with (42).

¢ The covariant vertical derivatives are the trivial ones.

¢ Changing the position of the weight multiplication brings lower order cor-
rections owing to

AR < ¢ 0 vt 0 -1
elfO)=0 (Pl =)y = 5 +0Up)Y

for any f € €1(R;R), (prg=Q1 +20)12 and any teR.

The abstract definition of #'*(X;§) by duality and interpolation can be specified as
follows (see [ 1): Once the localisation in q is made, assume s = y,,(q)s, take
a dyadic partition of unity Gg(lplg) + z;j,:lef@mmq) = Z(r)no’:O )an,(|p|q) =1 then
s € WHMX;F) can be replaced by 2m/-dependent estimates of 2m,d/2(jmrs)(q,2m/p)
in Wéff;,zlg)’z(X ,&), with a fixed compact support in (¢, p) € R2¢ . And this can be
characterized by standard pseudodifferential calculus.

Bismut and Lebeau in [ 1 I ] work actually with the metrics

g% =)y (e e g N =(p);Ng® onE'=ATX,

and g_E — (p)gNVH;((gAT*Q ®gATQ) — <p>éVgE' onE = AT*X,

with the corresponding metric g% = gE’ ® gl and g¥ = g ® g'. But this is a par-
ticular case of the weighted ##-spaces which is discussed below.

Proposition 3.14. Let §=E E',F,F' be endowed with the smooth metric g5 .
The spaces WH(X;5), ueR, have the following properties:

a) They do not depend on the chosen metric gT@ .

b) When ¢ : @ — Q is a diffeomorphism and the vector bundle isomorphisms
v =¢,:X=T"Q — X is viewed as as diffeomorphism of X, defines an
isomorphism v, : WHX;§) — WHX;F).
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c) IfVY:ATQIANT*Q — ATQ ® AT*Q be a € vector bundle isomorphism, then
[y (V)] : WHX;8) — #WH(X,TS) is a continuous isomorphism.

d) The space Wlﬁ AX;8) is nothing but Wl( 5 0’2“ )’z(X ;8). In particular the trace s| X
is well defined as soon as s € WH(X;§) with u> 1/2. Additionally for u e
11/2,1], s € WHMX;F) is equivalent to sz = s|X¢ € Wﬂ()_(¢;3) and s—|aX_ =
St | 0X, > while the trace condition is dropped when u€[0,1/2[.

e) Let G be vector bundle isomorphism, G € €°(X;L(¥)), such that

(VEONG,¢HVEDG) e WX 53w X F))
VAING T, VG e 2 X T WX,

then the norm of GW"™(X;§) = {s € Wl(gc’zn)’2(X;3),G_ls € W"(X;S)} can be
given by the same expression as (85) where only the metric, g5, and L2-norm,
I | 2(g%), are replaced respectively by 85,v)=g%(G1v,G lv) and | Iz2(z%)-
The weighted spaces GWH(X;T), p€R, can thus be characterized withouth
changing the connection VS .

Proof. a) It suffices to consider the case #"(X;§) for n € N, where the result is
already known for n = 0, and to work locally with the coordinates (q,p) € U x
R, U open set of R? . We take the euclidean metric g, = gZU = Z‘ii:l(dgi)z as a
reference metric for which the local frame in 77X and 7T*X are simply (% , %
and dq’,dp j» while V3:8e can be chosen as the trivial connection. The weights
which are powers of (p)g’q =1 +gij(q)pipj) and (p)ée,q =1+ Z;.i p? are uniformly
equivalent with all the derivatives

uniformly bounded. It thus suffices to compare the covariant derivatives:

0 0
vgi,g _ vSége — (V’S,g —yS:8e )e; +€i— — = nX,*(vQ,g _ VQ,ge)ei + r?j(q)_ ,
o dq op;
V= vSEe s

op;j opj 6pj

Since V@8 — V@8 € €°°(Q; LIANTQ ® AT*Q)), we deduce that the local expression
of the norm of #"(X;§), for y,,s with the metric g and g, a neighborhood of the
support of y,, are uniformly equivalent. This provides the local result for two dif-
ferent metric g1, g2 and taking the full finite sum in (85) ends the proof.

b) Again we can work locally and by a) we can take the euclidean metric g7 =
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279 on U and ¢(U). Write (,P) = w(q, p) = (¢(q),'[Dg,1 1 p) = (¢(q),A(q)p) and

order 1 order 1 order 1/2
e L S
= / _—_ 1[DA,. P —
[ (Pq]l aQ [ q]l] k OPJ
1/2 order 1/2
0 ; 0
— =A’ —
on,; (@) o,

Since locally with g = g, , the connection V'8¢ becomes a trivial one, the equiva-
lence of the norm (85) of y,,s and v.[yn,s] follows. By a) this equivalence holds
for the metric g% put on U o> suppyms and ¢@(U), and we conclude by summing
with respect to m in (85).

c) By b) the problem is reduced to the case when ¢ = mA7qeaT*@(¥) = Idg and
¥ e €°(Q;LIANTQ ® AT*Q)) and the result comes from VS = n}"((VQ’g @ ViorT)
while we already know the result for n = 0 by Proposition 3.8-c).

d) Locally, that is while considering ys with y € €;°(X;R), the weight (p)Z3
can be forgotten and %" (X;%) is nothing but Wl(gc’zn)’2(X ;). Choosing y with
a small enough support we can even consider the map s — ys as a continuous
map from #™(X;g) to W2W-2(R24;CNaf) and the continuity from #*(X;J) to
W*2m2(R24, CNaf) for any p € R holds true by duality and interpolation. This
proves #; (X;§) = WX 3) for all peR.

e)The norm of s € G#™(X,§) equals ||sllgy» = |G Lslly» while G (p)® = (p)gG .
The expression (85) gives

IslEyn=Y > KoV Lm@s o s

m 2|a|+|fl+nz<2n

with

VS =GVvSG 1=V + gVE®G 1 = v —(vE® )1
VS =G WG =V + G L(VI®q),
and  35(v,v)=g5(G 1v,G ).

The assumptions are exactly the ones which ensure the equivalence with the
squared norm

YooY eIV (@8] g

m 2|a|+|pBl+ns3<2n
where the initial connection V¥ is used. O

The result e) will be used with two types of weights.

+NV+NH

={Dp)q 2 : The sign depends on the case §=E' or §=E:

e It changes the metric g& (p)NH NV 5 (ghTe 227" @) into ¥ (p)q2NV + (g%
gAT"Q)
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e It changes the metric g% = (p>;NH+NVn;((gAT*Q ®g7?) into gF = (p)zNV n;}(gAT*Qob

g9,
Proposition 3.14-e) applies because
OrMG, G 0rG) € LWHX;E))

for T =e; and T = é/ and for any p € N (and therefore for any u € R) because
aqi((p)é) = @’(<p>fl) and ap,(<p>i,) = @’((p)é_l) for teR.

This choice allows to transfer at once the estimates of [ 1 I ] where
the metrics ¥ and ngl were chosen. The advantage of our choice is that the
tensorized map ¢ =0 : TX — T*X sends isometrically (E’, gE') to (E, g¥) while it
sends isometrically (E', ) to (E, (p)(;ZN ).

G =@V | I [Bile][Bis05] the L2 norm on F = E = AT*X & 1()), is
given by

2 -2h(g,p) a2
| 15@.p)ee 0P tdqdpl = sl , o

Additionally the metric on f = @ ® C is given by g?(z) = ¢ 2V(@|z2 while the flat
connection is the trivial one VI = V. Taking 2z’ = eV @z gives z = ¢V @2/ . It is
thus the same as choosing f = Q®C, VI = V+dV(q) and g'(2') = |2'|? and the above
squared norm equals

2 a2
”S ”eth(gF') - ||S||eb+VL2(gF) .
while its dual norm satisfies
2 a2
”t”e‘hLz(gF’) - ||s”e_((]+V)L2(gF/)’

withf =QeC=f, g/ =g/, but VI' =V -dV(q).

With
0,G ' =G10,G) = iW(q,m e LWHXE); W' H(XGE))
q
and  (9,,G)G™' =G 71(0,,G) = inp) € LWHGER W (X E).
J

the result of Proposition 3.14-e) ensures that the regularity estimates are equiv-
alent after simply applying the weight to the L2-space.

Definition 3.15. When u € [0,1]\ {%} we define W”(X;ﬁg) as the set of sections
s € L%(X;3J) such that

° Sy = S|X; belongs to W“(y$75)1

o if uell/2, 1], s_|,x = 8+|ox in ey -

Finally for pe[0,11, #Wh(X;Ts) = WHX; T NL2,(X;3).
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We already noticed that Wl(: f“ ) X ;§ g0) = Wl(f ;2“ )(X ;5) . Since the definition of
wWHX ;§ 20) simply adds the global estimates which can be checked separated on
both sides we get W“(X;§g0) =wWHX;F).

Proposition 3.16. The isomorphism ($5°), : LAX (_¢.;T,85) — LAX (c.0;5,8%),
of Definition 2.8 and Proposition 3.8-e), is actually an continuous isomorphism
from W“(X(—e,e);g) to W“(X(—e,e);gg) for nel0,1].

Proof. For u=0, (‘I’i’go)* :L2(X;S,g§) — L2(X;$,g3) is an isomorphism.
Consider now u = 1. The vector bundle morphism (\I’i’g %), is a piecewise € vec-
tor bundle isomorphism from § to §; which transforms the continuity condition
S_ | x' =S+ | x In§ | x into the same continuity condition in § g| x - Additionally by
Proposition 3.14-b)c) applied on both sides (or more exactly for the €°°-metrics
2T and ger and then restricted to Xz), we obtain

—1 Fo.
C M Isellyrx,) < IS ) eslyaz.) < Cllssllyz,)-

This proves that (‘T’ﬁ’;’g N, WIX;F) - wIX;F ¢) s an isomorphism. Interpolation
yields the result for p €[0,1]. O

Finally, Proposition 3.14-e) works for GwH(X ;§ ¢), p€[0,1], with the weights
G described in the three examples, after replacing the smooth metric g7¢ by g79 ,

namely .
HNy

A _ o \E e 5 _ ,+(h(g,p)+V(9)
G_<p>§,q and G=e ,

because those weights are continuous w.r.t ¢! .

4 Closed realizations of the differential

In this section trace theorems and boundary conditions for the differential, more
generally the exterior covariant derivative, are considered. No riemannian metric
is really required here and all the analysis is made by using the proper € struc-
ture of manifolds made of the two pieces X_ and X, glued in the proper way. In
particular, the new manifold M, is introduced in Subsection 4.2. Its construction
relies on the coordinates (g, p) related with the parallel transport in X = T*@ for
the Levi-Civita connection associated with §79 . It depends on the metric gZ® ini-
tially chosen on @ _ and accordingly the boundary conditions for the differential
finally depend on g7€ .

4.1 General partial trace results

Let M (resp. M = M L M’) be a smooth oriented manifold (resp. with boundary
OM =M’) and let g : § — M (resp. n5:§ — M) be a € vector bundle on M (resp.
on M) endowed with the non necessarily smooth connection

VS € (M;F) — LS (M;T* M ®F) (86)
resp. V3: %w(M;S)ﬁL%C(M;T*M®3"). (87)
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The exterior covariant derivatives d¥° acting on sections of AT*M ® § is written
in local coordinates

.0 .
d"’ = (dx' N — @ 1ds +(dx'A) & VS, .
ox? Py
dxt
Remember the Definition 3.1 of &, Comp(dvg,AT*MQDS) in the two cases M' = @
and M' #¢.

Proposition 4.1. a) If § is a smooth vector bundle on M (resp. the manifold with
boundary M = MuM') and Vg, Vg are two connections on § which fulfill (86)
(resp. (86)), then

8.dY AT*Me3) =6.(dY , AT*M&F) =locorcomp.

b)When M’ ¢ M a smooth hypersurface of M (resp. a manifold with boundary M =
M uM') with the natural embedding jyp : M' — M, the tangential trace map s —
J 38 is well defined an continuous from gzoc(dvg,AT*M®§) to 2'(M';(AT*M' ®
8l B

¢) The space €;°(M; AT* M ®3F) (resp. 65°(M; AT* M ®3F)) is dense in the two spaces
Ecomp(@d™’ ,AT*M ©F) and &10(d"" ,AT*M & F).

d) In the case M = MUM' and § = M x C with the trivial connection, Stokes for-
mula

d§/\s'+(—1)degs§/\(ds’):f ¥ sAjins
J, 30 N

holds s € E1oc(d,AT* M ®C) and all s’ € Ecomp(d, AT*M ®C), where the right-hand
side is the unique sesquilinear continuous extension from %SO(M;AT*M ®C).

e) When M = M_uM'UM . and M, are smooth domains of M, se é"loc(dvg, AT*M®
) iff sx = sy belongs to Eroe(d”" (AT*M @ F)|37.) and

Jips-=Jipss in @' (M AT M ©F|,,)

Proof. We work with a complex vector bundle §. It does not change anything

here.
a) The equality is due to Vf — Vg €L (M;T*M ® L(3)) and

5 T .
dV1 —dVz :dxlA[Vfl—Vgi],

’ b
ox? oxt

in local coordinates. The result is then a consequence of the equivalences for
s€L? (M;AT*M®F) (resp. s€ L2 (M;AT*M ®3)):

(dvlgs eL?

loc

M AT MeF) < (dvgs eL?

loc

(M;AT" M@ F)),

3
resp. (dvl S€E L%OC

(AT MeF) < (dvgs e L2

loc

(M;AT*M®3)) .

b) For the existence of a trace, the case with a boundary 3 : § — M is contained
in the case without boundary with M’ ¢ M, by writing M as a smooth domain of
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the smooth manifold M and §=§ |M'

Because dvg)( = )(dv3 +dyA for y € 65°(M;R), s € é"loc(dvg,AT*MQDS) is equiv-
alent to y;s € é?comp(dvg,AT*M®S|Uj) for all j, when } ;x; =1 is a locally fi-
nite partition of unity subordinate to a trivializing atlas M = U;U; for §, § |Uj =~
U; x C? . With a), the connection V3 can be replaced by the trivial connection on
U; x C% . By possibly refining the atlas we can assume U i =(=¢,€)™ in a local
coordinate system (x!,...,x™) such that U;nM' ={0} x (—¢,e)™ 1 for UnM#¢.
We now have to verify that

1S € Ecomp(d; AT*(—€,€)™ ® CYr)

has a trace along {x! = 0} . Finally the local L2-estimates of ¥ ;s € Eomp(d; AT*U,;®
C?) can be expressed with the euclidean metric on (—¢,e)™. Working separtely
on components in C?/ reduces the problem to the scalar case.

In U; = (—¢,e)™ with the euclidean metric, x ;s = srdx! € Ecomp(d; AT*(—€,6)™ ® C)
means

Xjs = six)dx! e L?  ((—¢,€)™;AC™) and dyjse L?  (d;AC™)

comp comp
gives
Osp . 4 I 0sy . i I_72 1,2 m-1, A m
—ldx ANdx =ds——=dx" Adx" e L°((—¢,e); W “((—¢,e)" 7, AC™)).
0x Oox?

Therefore every sy, 1¢ I, belongs to Wl2((—¢,e); W 12((—¢,e)™ 1, AC™ 1) and
admits a trace in

W L2((—¢,e)" L, AC™ Y c D/ ((—¢,)™ L, AC™ Y.

Hence, j}kw,(sldxl) = S[/dxll is well defined in 2'((—¢,e)™ L AR 1®C).
By summing the locally finite different pieces of s = }_; x ;s where all the y ;s belong
to é”comp(dvg,(AT*M®3')|Uj) , we conclude that

Jip 6o @ AT* M ®F) — @' (M'; AT* Motimes| )

is well defined and continuous.

c) For the density and with the local reduction to U; = (—¢,e)™ used in b), it
suffices to approximate ¥ ;s € Ecomp(d; AT*(—€,6)™ ® cér) by ¢n * (x;s) asn— 0%,
with ¢,(x) = " mp1(n"1x), @1 € ELR™), [gmep1 =1. From dlp, * (x;5)] = @y *
d(y;s) we deduce

77113(151+ lxjs—@n*(x;)lpe +Idlxjs —@p*(x;8)]lL2 =0,

while ¢, * (;8) € €5°((—¢,)"; AR™ ® C?). On a fixed compact set K < M , only a
finite number of j’s in }_; x ;s have to be considered and this proves the density of
EM;AT* M ®F) in Eloe comp(d” , AT* M 8F).

d) Consider the case M = M UM’ and § =M x C. When s € Ecomp(d, AT*M ®F)
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and s’ € §1,.(d, AT* M ®F) there exists y € <€5’°(M;R) such that sAs' = ysAys'. We
thus assume s,8" € Ecomp(d; AT*" M ®F).
But the sesquilinear map

(5,58 € Ecomp(d, AT* M 8 F) — ds As' +(~1)*8 55 nds' € LY, (M;AT* M ®F)

comp
=d(sns’)

is continuous. By ¢), for any s,s’ € Ecomp(d, AT* M ®F) there exists two sequences
(wn)nen and (O,)nen In C66’°(H;AT”‘M ® §) which converge respectively to s and s’
in Eomp(d, AT*M ®F). For any such sequence w, A0, € €;°(M; AT*M ®§) and
Stokes formula says

(@ A O] :f (@A) =f G @) A G0,
fM M M I

The left-hand side converges to [;ds A s’ +(~1)3%8 55 A ds’ which is a continuous
sesquilinear form on &;opmp(d, AT*M ® §) and this ends the proof of the extended
Stokes formula.

e) One implication is trivial by restriction to Mz .

So assume s3 € é)loc(dvg,(AT*an&')w?) and jy,s- = jy,8+ in D' (M5 (AT*M
§)| ) - With a locally finite partition of unity 3 ;x; =1 in M, we want to prove
XjS € <£"comp(dvg,AT*Uj ®S|Uj) for all j. By following the scheme of b) it suf-
fices to consider U; = (-¢,6)™ and § |Uj = U;j x C endowed with the trivial con-
nection V and d¥ = d. The Stokes formula of d) is applied with XJS|H; and
s' € 65°((—¢,e)™; AC™):

Jice0ix(-eem-1 AT A"+ (DTG5 A (ds))+

—_— kT 7 ok /
= /[ iS4+ — 'S_]/\ ,S
Jo.e)x(e,em-1 AXTS NS+ (~1)*E755 A (ds) } f(—s,s)mle XiS+=Xj Im

where the right-hand is 0 for all s’ € 6, ((—¢,6)™; AC™). This implies the existence
of a constant C, such that

Vs’e%go((—e,e)m;ACm),'f( TS5 Ads'| < Cslis'lle.

—g,e)m

But the linear form

s' € 65°((—¢,&)™; AC™) — —(—1)des Sf 1;snds'

(—g,e)™

is the definition of d(y;s) as a current, i.e. an element of 2'((—¢,€)™, AC™), which
therefore belongs to L2 ((—¢,e)™; AT*(—¢,e)" ®C).

comp
Doing this for all components in cér proves x ;s € ébcomp(dvg,(AT*M ®3)|Uj) and

therefore s € &,(d"" ,AT*" M ®3F). O

Remark 4.2. Locally with coordinates such that M' = {(x',x') € M ,x! = 0} the par-
. . . 1 _ I _ I
tial trace j),s can be replaced by 1@21 dx A s|M, =spdx |M, when s =srdx’ .
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Remark 4.3. Although the differential d defines an elliptic complex (see [ 1),
the operator d is not elliptic. In particular the partial trace defined in 2'(M'; AT* M)
does not have neither the 7/1(1)/62’2 nor the L?OC regularity associated with order 1

elliptic differential operators, as shows the example r~*dr = d’ll_—_z, a €]1/2,1[,
M’ =R x {0}, in R2 with polar coordinates (r,0).

For Proposition 4.1 we used the (local) duality between €5°(M; A?T*M) and
9'(M; A M=PT* M) and made integration by parts via Stokes theorem. We may
instead use the duality between €5°(M;AT*M) and 2'(M; ATM) given by the
natural duality between ATM and AT*M . 1t is not necessary to assume M ori-
ented here but let us keep this assumption which is fulfilled in our applications.
We put a volume element dvys and by assuming that the hypersurface M’ admits
a global defining function x! € €°(M;R), M’ = (x1)71({0}), dx?|,, # 0, this defines
a volume element dvyy on M’ by writing dvp(x) = |dxt|dvyp(x") with local coor-
dinates x = (x1,x'). Let § be the anti-dual € vector bundle and let V3 be the
anti-dual connection of V3 characterized by

—(ts)—(VS .s+t(VS ) |, te€P(M;F),s e €M7,

a axl Bxl

where ¢.s(x) stands for the natural §, — §, duality . It satisfies
VS e°WM;F) —

resp. V% :€®°(M;F)—

X M;T*MoF) (88)
© (M;T*MegF). (89)

loc

loc

. . . PR vc A . . . .
The interior covariant derivative dV° acting on sections of ATM ®§' is written in

local coordinates 3
C,-ng = _ldxl a - ® Id%’/ - lde ® VS

oxt

and when dvy(x) = A(x)|dx|

!
&Vg UM —

0 oA
_ldxl ol - ® Idgl - ldx‘ ® VS ldx‘ o ; ﬂ_l ® Idgl

ol

The operator avsou D' M;ATM ©F')— 2'(M; ATM ®§') is characterized by
Vs € €°(M;AT* M o), f @M e)s doy = f t(d""s) dvy.
M M

The following result will be used in Section 5.

Proposition 4.4. a) If § is a smooth vector bundle on M (resp. the manifold with
boundary M = M uM') and VS, Vg are two connections on § which fulfill (86)
(resp. (86) with antidual versions § , V31 and V32 and if duy,1 and dvy g are two
Lipschitz continuous volume elements, then

é’(dvl UM,1 ATM@S)—é?(dVZ M2 ATM®F') o=locor comp.

b)When M' < M a smooth hypersurface of M (resp. a manifold with boundary
M =M uM') with a global defining function x', the partial trace map t — idx1t| u
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is well defined an continuous from é"loc(dvy’”M, ATM®F") to 2'(M'; ATM'®F'|,,).
c¢) The space €5°(M; ATM ®F') (resp. %SO(M;ATM ®F')) is dense in the two spaces

Eeomp( @™ M ATM ®F) and &poe(d”" M, ATM ©F).
d) In the case M = M UM’ and x' <0 in M, the integration by parts

f £.(d""s) dvys - f @ M t).5 doys = f (igg1t).s dvp
M M M’

holds for all t € E1o(d,ATM ®F') and all € Ecomp(d, AT*M ®F), where the right-
hand side is the unique sesquilinear continuous extension from 6°(M; AT M ®F')x
G (M;AT* M ®73F).

e) When M = M_uM'uM , and Mi are smooth domainsof M, t € gloc(de',vM S NATM®
Iifftz= t|M¥ belongs to £loc(dvgl’”M,(ATM®S")|M?) and

it |y =igats in @' (MATM @F|,,0.

Proof. The proofs of a)b)c) are essentially the same as for a)b)c) in Proposition 4.1.
The statement e) is a consequence of d). The proof of d) simply relies on the fol-
lowing computation for ¢ € C@‘;"(H; ATM®F')and s e %SO(M; AT*M ®F) supported
in a chart open domain, Xl € (—¢,€), x1 €(—¢,0] :

0
—I(G,,it).s) x Al |dx|
‘[(—E,OJX(—S,S)dl doxi - 9%

f (gy1t).s A0,x")dx'| = f (g,1t).s doyp.
(—¢,6)d-1 W

f t(d" )= (@ £).5) Mx)ldx|
M

The sign of the final right-hand side is changed if we assume x' >0in M. O

4.2 The differential structure of £ ¢ and Fg

The vector bundle E ¢ was introduced in Definition 2.7 as a piecewise ¢ and
continuous vector bundle above X = T*@ where E g |Y; =AT*X |)—G & ny (AT @ ®
ATQ |§_) with the matching condition

ei—|6X,:ei|6X+ ’ é—J|aX,:é+,j|aX+ 0X_=0X,=X".

We used the frame (e, é=) of Definition 2.10.

It can be given another interpretation. In the manifold X - = X_ U X', the coordi-

nates (§, p) = (G',%') of Definition 2.6 identify X(—¢,01 as the tubular neighborhood

(—£,0] x X' . Meanwhile S; : X’ — X' of Definition 3.5,
$100,¢",p1,p)=(0,9',~p1,p") (0,9',p1,p")=(0,G",51,p),

is a diffeomorphism of X'. By following Milnor in [Mil]-Theorem 1.4 there is a
% *°-manifold, unique modulo diffeomorphism,

Mg;=X_uX'uX, such that (90)
((0_>q~l’ﬁ1’ﬁl) = (0+’Q~/’p1’pl)) < ((Q~/9P1apl) = Sl((j/,ﬁlyﬁl) = (q,’ _ﬁl7ﬁ/))' (91
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The subscripted notation M, keeps track of the fact that the construction of the
coordinates (g, p) actually depend on the chosen metric g_ = g = g79 on Q_, sym-
metrized as 379

We recall the Definition 2.2 of the double copy 7;:f— @, when @ =Q_LUQ LR,
given with (0+,g',vv) = (0',2’, v) and ”Zlg(f) is a flat € vector bundle on the €

manifold M, . The exterior covariant derivative denoted by dX,;g satisfies:
. dX;g : E(Mg;AT*Mg®n]"{4g(f)) - Q(Mg;AT*Mg®nX4g(f)) for # = 6;° and for
F=9,;
o dyy ody =0in 6 (Mg; AT* M,y @ 1() and in @'(Mg; AT* Mg @ ()

* in particular dX,[fg : éa.(dX;g,AT*Mg ® n;[g(f)) - g.(d;;g,AT*Mg ® n;‘ug(f)) re-
spectively for e =/oc or comp ;

* the trace map s — jx/s or s — i, el A s| x after Remark 4.2, where we recall

% and e! =dg', is well defined and continuous from éoloc(dﬁg AT*"Mge

n}kwg(f)) to 2'(X'; AT* M, ®7t;;4g(f)|X,);

e1=

* 65’ (Mg;AT*Mg® n;{g(f)) is dense in &}, Comp(sz;g’ AT*Mg® Jt]*ug(f)) ;

* if Xy, : Mg — Mg is the natural symmetry specified locally by ZMg(dl, q',p)=
(=q1,4',p) with its push-forward Xy, . acting on 2'(Mg; AT* M, ®ﬂ;4g(f)),

then deZMg,* = ZMg,*de and dV' preserves the parity with respect to Zpy, » .

For the smooth manifold M, it is convenient to introduce the following notations
which have already introduced counterparts on E ¢ and ﬁ’g .

Definition 4.5. Let Mg be the manifold defined by (90)(91). The manifold Mg (_¢ ¢)
is the open domain characterized by |g1| < €.

On Mg (¢ ) the symmetry 2y, is simply given by ZMg(cjl,ic’) =(-g1,%).

Theset L2 (Mg (—ce; AT*M ® 7y, () is defined by

loc,ev

loc,ev

L} oe Mg ecy NT*Mamy () ={s € L}, (Mg co; AT*M®my (D), Zu,.s=vs},

and L%OC odd ras the same definition with the condition Xy, «s = —Vs.

For §=AT"M,® ”Z/Ig(f)|Mg,<_g,g)’ the set 6o(%) equals
C Mg (0T NEL Mg F)NE My —ee;F) with F=AT*My® 73, (D

and cgo,ev odd(g) = (50(3) nL%oc,ev Odd(Mg,(—e,e);§)~

Lemma 4.6. Let M, (_. ) be the neighboorhood of X' given by |G 1 < ¢ and let the
map S1: Mg (¢ ) = X(-e,) Slven by

(ql7q,7ﬁ17ﬁ,) ifQISOa

S1G,d,p1,pN=4 2 o0,
G',q',-p1,p") ifg->0.
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When ZMg(fjl,ic') =(-¢L,x') on Mg (¢ we get S1 Xy, = ToS1: Mg (ee)— Xi—e)-
Moreover St : AT*M, ®”1*wg(f)| Myen Fgl X 18 @ piecewise € and con-
tinuous vector bundle isomorphism such that S1 . sends L?OC(Mg,(_E,E);AT*M@D
n}‘“,[g(f)) into L?OC(X(_E,E);Fg), Go(ANT* Mg ”Z/Ig(f)|Mg,<_g,g)) into 6o(Fg |X(_£’E)) of Def-
inition 3.3 and transforms the parity with respect to Zp1, » ® v into the parity with
respect to X, .

Proof. We can forget the vector bundle n}*ug(f). We focus on AT*M g| Moo and
E g| Xeen The equality Sio I, =2 0S1 is obvious. Meanwhile the push-forward
S Lxs ZMg,x and X, are €™ vector bundle isomorphisms when ! is restricted to

(—€,0] or [0,+00). Tt thus suffices to check that S . : T*Myg|,, - T*"X(—ep)

_ g,(~¢,)
is continuous along X'. Restricted to Mg (0] = X(—¢,01, S1,+ is the identity and

a smooth local frame of T Mg (. o is given by (e',é j,=). On the €°° manifold
Mg (—cs), it is the restriction of a smooth frame (éi,éj) such that éi,éj)|(jl=0+ =

(ei_,éj’_)|(71:0_ . By using
Sislpco=1d , ZuS1.:Zy,s=S1.
we deduce from (65)(67)(69)

S1,4(8",8))| 1o = (1,65, 1_o-

Sl,*(élyéj)|qlzo+ = (ei,éj,+)|q1:0+ ,

and the continuous local frame of (¢%,é )of T*M g| My en is sent to the continuous
. ~ _ ~1 . ~ A ’ ’E
local frame (e,é;) = 1g. (g7 )(e%, € 5) ong|)5(_w -
The parity properties then come from 2,087 . =S1.0Zp, . O
The trace properties of Proposition 4.1 have been used with the closed mani-
fold M, > X' to review the properties of the exterior covariant derivative dX,;g A

separate use in the manifolds with boundaries X ; = X+ LU X’ provides a definition
of the differential acting on sections of £ and F, .

Definition 4.7. Let E = AT*X and F = E ® ny(f) and let dV' be the covariant
exterior derivative for the flat vector bundle (n}"((f),n;{(vf)). With the notation
(e,é) = 1[R¢(q1)(e¢,é¢) of Definition 2.10, a section w = wIJeIéJ € L?OC(X;Fg) be-
longs to gloc(cAlg,Fg) (resp. éocomp(&g,ﬁ’g)) if its restrictions ws = w|X; = w}]eéé¢,J
belong to E1e(d" ,F|5.) (resp. Ecomp(d”' , F|5.)) with

. 1 . . / I
i, eq /\a)+|6X+ =i, ;e_1 /\w_|6X_ in 2'X';Fglx), (92)

or
w$(0*,)=vwi(07,) in 2 X', w3 (flg)

forallI',J c{1,...,d}, 1¢1I'. The differential 5lg with domain gloc(c?g;ﬁ'g) is then
defined by dw|y. =d" ws.
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The properties of d ¢ and é”loc(& g,ﬁ'g) are deduced from the one of dX;g and
f * *
Sroc(dyy , AT Mg &y, ().

Proposition 4.8. The differential d ¢ defined on Eloold g,Fg) satisfies d gé"loc(él g,ﬁ’g) c
Eloc(dg,Fg)and dgodg=0.

The map Zy :L%OC(X;Fg) — L%OC(X;Fg)preserves é’loc(&g,ﬁ’g) and c?ngv = nglg so
that d g preserves the parity with respect to X, .

The space 6y.g(Fg) of Definition 3.3 is densely and continuously embedded in
Eloc(dg, Fg) and Ecomp(dg,Fy). ) ) A )
Moreover the exists a dense set Dy vi of €0, ¢(Fyg), such that dg@g’vf C 6o,g(Fyg).

Proof. With Lemma 4.6 and with j§,s written according to Remark 4.2 as iele1 A
— 3 ~1 q 2 . * * 2 A
8|y = laq%dq As|x:, the map Sy . sends Lj, (Mg; AT*M e my, () to Lj, (X;Fy)
with dvf‘gl,* |Mg\X, = Sl,*sz/;g|Mg\X' while the trace condition jX’S|aX, = j;('s|ax+
in 2'(X"; AT*X' @ 15(f)| ) is transformed into (92).
. 5 f * * n 3 Q f &

This proves S1,*é°loc(dX,Ig,AT Mg ® nMg(f)) =&loc(d,Fg) and dg = Sl’*dxlgsl .
The property d g od ¢ = 01is thus the consequence of dX,Ifg °sz4; on the € manifold

M, endowed with the flat exterior covariant derivative dX,Ifg .
The dense an continuous embeddings

0o * * * * f * %
Coo(Mg; AT Mg@my () < 6o(AT* Mg®myy () Sloe comp(dyy,, AT Mgy ()
with
d}}g%(?’(Mg;AT*Mg @y, () € GO (Mg AT* Mg @myy () < Go(AT* Mg @y (),

combined with
S1Go(AT* Mg @y () = 6o.4(Fy),

provides the density results by taking @g’vf =S 1,56 (Mg; AT* Mg ® n}kug(f)) . O

4.3 Boundary conditions for d,, and properties of the asso-
ciated closed operator

Remember
sev(®) = 1x (¥)s(x) + 1x, (x)Z,s(x) whenseL? (X_;F),
and 9 e .p o
o plg _ pr+m' (g l,q"pipy _ pI+mii(0,6"pipj

2 2 2

Definition 4.9. When d ¢ denotes the differential on é"loc(fl g,ﬁ'g) introduced in
Definition 4.7 and b’ = 0, the differential d 2,b'h equals

A

dg,b’h = e_brﬁcAigebla = C,\ig + b,da N .
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We keep the same notation for the operator in L>(X;F) defined by

D(dgpy) = {s € L(X;F) N Epoc(dg, Fg), dg s € LA(X;F)}
VseD(dg), dgpps= @' + b'de)/\)(s|X_)+(dvf +b'dhA)s|y ).

The operator Eg,b’h on X _ is given by

D(dgp) ={s € LAX_,F), e €D(dgpn)},
Vse D(ag,b/h), Eg,b’hs = dvfs + b’dh NS.

Proposition 4.10. The operator d g,b'h glven in L2(X;F) by Definition 4.9 is closed,
satisfies &g,b’b ocAlg,brh =0, cAZg,brh oZ, =2, o&g,b,f, . In particular, cAlg,b/h preserves the
parity:

D(dgp) =D(dgpp)NLE(X;F)o D(d g py) N L2, (X F),
with  dgpy:D(dgpy) L2 0 CGF)— L2 . (X;F).

e

The subset C6(),&,(13’@;) of Definition 3.3 is dense in D((;lg,b/b). Additionally the dense
subAset @g,vf of C&Lg(ﬁ’g) given in Proposition 4.8 satisfies &g,b/h@g’vf c C&Lg(ﬁ’g) c
D(dg ). _
The domain of the operator d gy given in L2%(X_;F) by Definition 4.9 equals
> 2 \%i 2 1-8,, 1

D(dgpp)={s€eL(X_;F), db’bs eL“(X_;F), Tlele /\3|X, =0;.
The operator Eg,b’h with this domain is closed and satisfies Eg,b’h Ogg,b’[) =0.
The spaces 65°(X ;F)ND(dgpry), 6y ={s € LAX_;F),s¢0 € 6o 4(F)} and D, y; =
{s €eL2(X_;F),spp € @g,vf} are dense in D(Egybrh) with Eg’b/h@g,vf C6g.

Proof. Let us first consider the operator d 2.b'p - For a sequence (uy)nen of D(d 2.b'h)
such that lim, ..ou, = v and lim, .o cAlg,brhun =v in L%(X;F), the convergence
of un| X: to u| X: holds in é"loc(dvf,F |)—(;). The continuity of the trace map j;‘(,
of Proposition 4.1-b) implies u € Eroeld g,ﬁ'g) and the identification d gb'hlt =V in
I:?OC(X;F). Therefore (&g,brh,D(cAig,bIh) is closed. The property &g,h oalg,brh and
dgppoZy =2Zyodgypy were already proved in Proposition 4.8.

For the density, consider the cut-off function y, = )((%) with y € €5°(R;[0,1])
equal to 1 in a neighborhood of 0. For s € D(cAlg,b/h) , notice y,s € gcomp(c?g,ﬁ'g) c
D(cAig,b/h) and write with s; = s|X¥ ,

A

Vf Vf Vf 1 [] A
db/b[XnS-T—] = Xn(db/h3¥)+ [an A S—T—] = Xn(db’f)s‘_") + m[){l (m) (db A S-T-)] .

With the coordinates (g,p) and the metric g%, we know |d§’| GE = oWpy~1?),
|dpjlzz = 0(p)"?) and

A -y 1 ]
dh=p1dp1+m'’/(0,§")pydp; + §I5i'ﬁj'dq'[ml 700,61
|dblzz = 0y = 0 (5.
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We deduce

Idxn Aszllpe < ———lIs=lL2
Xn FiL (n+1)1/4 +IL

and
,}ggus —xnSlp2 +ldgpp(s — xns)lp2 =0.

We have just proved that gcomp(gi g,ﬁ’g) is dense (and continuously embedded)
in D(Ezg,,,,h). In ProposiAtioAn 4.8 we pr(ived that Cgo,g(ﬁ'g) and @g,vf is dense in
Ecomp(dg,Fg) and that dgD g Vi © %60,¢(Fg). By going back to the € structure

R R 52+mi'7 (0,651
AT*M, ®ﬂ}"ug(f) of F,, it suffices to notice that / = “L— (2 Dbeby s actually

+b'h

a € function on M, preserved by S1 to see that the multiplication by e

preserves € ¢(Fg) = S1..€o(AT* M, ® 7y, (f)) and D, yi =816 (Mg; AT* My ®

ﬂ}k‘,[g(f)).

Finally the properties of (d4 4y, D(d g ) are obvious translations of the proper-

ties of (d g,brh,D(al 2,b'p)) because d 2,0’y Preserves the parity with respect to X, and
1-Sy .

s— % is a unitary map from L%(X_;F) to LgU(X;Fg). The condition —; i, el A

s| x = 0 is simply the partial trace version in 2'(X"; F | x+) of Proposition 3.6-b). [

4.4 Comments

The results of this section requires some specifications and explanations.

4.4.1 Dependence of the boundary condition with respect to g7¢

All the analysis was carried out without using any reference to a riemannian
metric as it should be when one studies the differential. The weight h could be
replaced by another function on X with the suitable assumptions. The map S, de-
fined on X' actually simply depends only on the identification of a normal vector to
Q' . However the boundary condtions for Eg,b’h depend on the chosen metric g7@
because the tangential trace is written i, e As | x - Accordingly the continuity con-
dition in the vector bundles £ 2> ﬁ'g or the differential ¢°° manifold M, introduced
in Subsection 4.2 really depend on the chosen metric g7% . Below is the verifica-
tion that they must not be confused with more usual boundary conditions for the
differential which would correspond to the metric g;";Q where E,  =E = AT*X .
Let g79 = (dq')? @' m(q!) and g;";Q = (dq")? @1 m(0) and use the frames (e’,é;)
for the first case and the frame (f?, f ;) for the second case. We forget the vector
bundle f or simply take v =1. Writing a section w € ngo(}_(_;T*X ) in those two
local frames gives

wie' +w’é;

w
= w1 —rﬁ',lpk/a)J ] fl + [wir —Ff,lpk/wl —F},j,plaﬂ fl +waJ~.
The boundary condition for g7 is

w0 (0,x) = w;(0,S1(x")) , @ (0,x")=(-1)°Vw’(0,S8:(x"))
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while for ggQ it is

Wi — r?fllpk’wl - F},j/ple,] = [wi’ - Ff},lpk/a)l - T},j,ple' (0,S1(x))
@ (0,x)) = (-1’ (0,S1(x")).
They coincide iff
Vi'e(2,...,d}, T%pple'(0,x)+0'(0,S1)N+2r},p10’ (0,2) =0,

which is not true in general.

4.4.2 The flat vector bundle (f, Vi) and the spaces @g,vf » Do vi

Once the flat vector bundle 7% (f) is made from the two pieces f|§7 and f|6—2+ ac-
cording to Definition 2.2, the vector bundle AT*M, ® n;“,[g(f) of Subsection 4.2 can
be considered as a € flat vector bundle on M, . However the € structure de-
pends on VI and this why we keep track of the V/-dependence in the subset @g’vf
and %, yj . Let us consider the simple example where a potential is added to the
energy b, with v=1. According to the end of Subsection 2.5.2 it can be formu-
lated by starting from § = Q_ ®C with the trivial connection Vi = V and the metric
gl(z) = e 20V (@72 op equivalently with the metric g'(z) = |z|2 and the connection
Vi=vV+b/dVig) = e tV@yeb'V@  Take the second choice. The corresponding
differential dz,fb’h on X_ will be

av

gpp =0+ b'd(h+V)A

which is what we expect. Smooth sections § € €°(Mg; AT "Mz ® n;;lg(f)) are ac-

tually sections of AT*M such that V@ ¢ CC(Mg; AT* Mz ® C) with V(g) =
V(-I¢l,g"). The set @g’vf was defined as the image of 65°(Mg; AT* M ® ”Zlg(f))'
The set of its even element is the image of the even elements of 6°(Mg; AT* Mg ®
n}‘;{g(f)) with respect to Zjs, . that is via the symmetry GL, %) — (-gh,&). If we
simply take a function § € 65°(M;C) such that §(=g', %) = §(g',&') it must satisfy
a%l(eblv§)(0,q') = 0. Written in ! = 0~ it means %(O‘,ic’Hb'%s(O‘,oE’) =0. The
corresponding section s € 2 PR belongs to €;°(X -;C) and satisfies

~/ ~

0s ov
S(an,)ﬁ17ﬁ’):S(an,,_ﬁ17ﬁ,) ) 6751(079‘6,)-’_[),67513(0792, =0 , X :(q,7ﬁ17ﬁ,)'

It clearly depends on the flat connection V.

While considering adjoints, like in Proposition 4.4 we must use the anti-adjoint
flat connection V', equal to VI = V—b’dV A here, and the sign in front of % in
the above condition is changed. So the corresponding subset & PR differs from
Dqvi- A similar subtlety must be watched when we go further in the analysis
and play with the extrinsic curvature related with 37;”1(0, g’).

From this point of view working with the vector bundle E ¢ and F ¢ Where only the
continuity is considered along X', not only simplifies the correspondance (07, x’) =
(07,y") into y' = x’, but also prevents from mistakes or confusions.
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4.4.3 The interface condition of d g,b'h @s a jump condition

Again, we forget the vector bundle 7% (f) or take simply f=C with v=1.

The continuity condition for s = s}] elé ;e 6"100(& g,E g) written:

59,(0*,2") = 57,007, %)
can be written
j;},(A+S) = jX’(A_S)
where A+ is the vector bundle isomorphism sending the frame (ef%, éz,j) associated

with grf_:Q to the frame (f%,f /) associated with ggQ , with j5,§ written as if1f LA
s| x =1 o (dg'n s)| x - With basic linear algebra, it can also be written
dq

io (dg' ns)|sy. =Ai o (dg' As)|sy -
Oql + 6q1 -

By using the € natural structure of E = AT*X the continuity conditions for s €
Eroc(d g,E ¢) thus appears as a jump condition in E . In 2'(X;AT*X) an element

seL? (X;AT*X) belongs to &,c(dg,Ey) iff
ds =(ds-)+(ds.) +00(q")dq' ANIA-Id)jx*s-] in D' (X;AT*X)

with sz = s|y_, dsz € L7 (X+;AT*X). Checking dg6loc(dg,Eg) < Eloe(dg,Eg)
with d g° d ¢ = 0 means that the right-hand side of

d(dgs)=0+0+8(gNdq' Aljx(ds.)— jxi(ds-)=8(gHdg' Ad'[jx(A-Td)s_]

can be written 8(¢') Adq[(A —1d)(d'jx's)]. A sufficient condition is: the vector
bundle morphism A satisfies d’A = Ad' in 2'(X";ATX').

This can be checked by computations in terms of local coordinates by using the
expressions (49)(50)(55)(56)(57) of the frames (e;,é;j) and (fi,fj). But this is
not so simple and may involve the differentiation of the Christoffel symbols Ffj(q)
which is irrelevant. From this point of view introducing the proper ¢ structure
of the manifold M, in Subsection 4.2 is much more effective.

However note that it was introduced with the non symplectic coordinates (¢, p).
It is easier to work with the differential structure of X , the coordinates (¢, p), and
the piecewise € and continuous vector bundle E ¢ When the symplectic structure
is required.

5 Symplectic and Bismut codifferential

Now that we have a good definition and properties of the closed operator Eg,b in
L2%(X_;F), the codifferential can be defined as the adjoint operator, for various
duality products. Bismut’s codifferential involves a non-degenerate but non sym-
metric form, which makes a mixture of symplectic and riemannian Hodge duality.
It is therefore simpler to start first from the duality between F = AT*X ® 5(f)
and F' = ATX ® n%(f), f = f’ via the metric g’ or g7, which does not require any
additional information than the symplectic volume measure dvyx on X and then
to transfer the information by various isomorphisms from F' to F.
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5.1 Adjoints for the (F',F) dual pair

The volume measure on X is the symplectic volume

=|dqdpl|

1 4
de—‘aa

and coincides with the Lebesgue measure in any symplectic coordinate system
(¢, p j). However here it is more convenient to work with the non symplectic
coordinates (g, p) of Definition 2.6 where dvx does not have such a simple form
according to (78). However the trace results and the integration by parts of Propo-
sition 4.4 only requires the volume form dvyx and the defining function of the
boundary x! which is here ¢! = ¢! in X(—¢¢) With dg' =dq"' = e'. Therefore the
volume form occuring in the boundary integrals is dvx' = |dq'dp]| .

Although the dual of F = AT*X ® n5(f) can be identified with F' = AT*X ® % (f)
via the metric g/ or g7, which provides the identification at the level of L2-spaces,
the flat €°° connections n;‘((Vf) and n}‘((Vf,) differ and give rise to different €°°-
structures of vector bundles, especially when the metric g/ is used. An example
is the case VI = V+b'dV and VI' = V—b'dV where V(g1,q") = V(=Iq!l,q’) already
discussed in Subsection 4.4.2.

Because the operators Eg,bfb and d 2.’y are densely defined operators respectively
in L2(X_;F) and L%(X;F), we can consider their adjoints via the duality product

(LS)ZL(t,S)F;,Fx dvx(x),

where the duality between F' = ATX ® 7% (f) and F = AT*X ® 7% (f) is made via
the metric g' (or ¢') and for which L2(X_,F) = L3(X_,F') (resp. L%(X;F) =
L3(X;F").
When we work on X_ or X_ U X, with the symplectic coordinates (q,p), dvx =
|dgdp| and without considering boundary or interface conditions, the formal ad-
joint of dyy, = dbvfh =d" +b'dbhA is nothing but

Ay =Y =d% bigy = —ig V') —iap, — b (93

b'h = Ay Lah = —144iV 3 ~1dp; D 14p - )
aq J

The notation glbrh on X_UX, refers to the case when § is replaced by the piece-
wise € and continuous function fj . According to this, the trace results of Propo-
sition 4.4 lead to the following definition.

Definition 5.1. The space éaloc(czig,b/h,ﬁ‘é,) = gloc(glg,o = c:ig,ﬁ’é,) is the set of sections
int=L? (X;F'), tz= t|X; such that

loc

AVt eL? (XoF),

loc
ielt_|0X, = ie1t+|aX+ in @,(AX,;FZg

X’)
or e1niat |yy =erniatylyy  in DX Fylx),

_ ~vf ~Vf/
and dg,b/ht—(db,ﬁt_)+(db,6t+).
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Proposition 5.2. The adjoint dg 1, of (dg 4y, D(dgy)) of Definition 4.9 is closed
and densely defined as

D(:ig,b/h) = {t ELQ(X;F,)ﬁéalOC(CXlg,Fé), ég,b’ht € LZ(X,F,)}

= 4 - f/ ~ f!
VteD(dgpr), dg,b/ht:(dbv,ﬁt_)+(dz,6t+) . tz=ty,

It satisfies ég,b’boglg,b’h =0and ég,b/hozv = Zvc:lgybrh . In particular, czlgybrh preserves
the parity:
D(dg wt) = D(d g o) N L2, (X;F )@D(dg pp)N L2, (XF),
with dg b'h D(dg b’b)ﬂL JXGF)Y—L JGF).

ev od ev od

The subset 6 g(F' ) of Definition 3.3 is dense in D(d 2.b'h) - Addttzonally there exists
a dense subset 9’ P of 6o g(F’ ) such that dg 5/59 o © 6o g(F )CD(dg b'hy)-
The adjoint dg,b’h of (dg,h,D(dg,h)) is densely deﬁned and closed with

A

-8

D(dg,h):{tELz(X_’Fl), dz,fhtELz(X_,F,), Vel/\ielt|X,:O}_

This adjoint operator ((;lg,b/h,D(czg,b/h)) satisfies (;lg,b'b o Elg,brb =0.
The spaces €3°(X _;F')ND(dg ), €y = {t € LAX_,F') tey € 60 g(F))} and D' _, =

g Vi’
{t €eL2X_;F),to € @{’g ” } are dense in D(dg b'y) With dg b’h@ C6Cy-

f/

Proof. For fi g,b'h We use the manifold My = X_uX'uX, introduced in subsec-
tion 4.2 . By Lemma 4.6 the map Sl,* : AT*Mg®7t;Ig(f)|M

—_—
g,(—€,6)

the transpose map S} :F';,|XH , ATMg (@ ”Zlg(f) and TMg (¢ ® n}“ug(f’) =

Fy| Xeeo provides

TMg - g,g)®7rzlg(f) is a €°-vector bundle when the flat connection n;;%(vf’) is used.

The operator glg,b’h was identified with e‘blﬁdzgeb/ﬁ acting on the smooth vec-

tor bundle AT*M, ®7rzlg(f) and where ) is a smooth function on M ¢- We are
thus led to consider the adjoint of the differential on the smooth manifold M,

without boundary, d g.b'h is identified with e’ hdvf 5% and all the properties fol-

low. In particular 9’ is nothing but the 1mage of G°(Mg;ATMg ® nMg(f’ ),

f!
where we write ' to remmd that the €*°-structure is the one given by v, by
S1,«:AMg ®Jr]*yg(f) —»Fé;.

The study of (dg 41, D(dg 1)) then relies on parity arguments with respect to Z,
on ﬁ’é (or with respect to X7, . on AT*Mg®nJ’{4g(f’)) , as we did for (d gy, D(d g p1p)) -
]

5.2 Symplectic codifferential

As a non degenerate two form the symplectic form o on TX, defines a mor-
phism o : TX — T*X by writing o(S,T) = S.(6T) for S,T € TX . By tensoriza-
tion, this defines a morphism still denoted 0 : E' = ATX — E = AT*X and o0 :
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F'=ATX @ 1% (f)) — F = AT* X ® n%(f) which fulfills the condition (81) (see below
for details). We can thus consider the o-adjoint of densely defined operators in
L2(X;F) as closed operators in L2(X;F), according to Definition 3.11 and deduce
their properties from the (F’,F)-adjoint according to Proposition 3.12. Because
the symplectic form is anti-symmetric the left and right adjoints are equal.

Definition 5.3. The operators &g bt and dg by 7€ the symplectic adjoints, that
is the ¢-adjoint Definition 3.11 for ¢ =0 : TX — T* X, of the operators d g.b'h and
d g vy defined in Definition 4.9 and characterized in Proposition 4.10.

Before giving the properties of &g bt and dg bt let us specify some formulas.

Lemma 5.4. For t € L (X;TX) and w € LT, (X;T*X), the symplectic adjoint of
i; (resp. wA) equals d(ot)A (resp. —iyz-1,).

Proof. The general formula of Proposition 3.12 says P’ = oPo~! = {oP!o with
to=—0:TX — T*X . Therefore

()’ = oo =a(tA)o ! = (B)A,

(WA’ =Nt =0i,o ™ =ir,-1, =i_p1, = —ip-1,,.
O

In particular when ¢ is a locally Lipschitz continuous function the o-adjoint
of dpA is
(d(p/\)a = _i0*1d¢ = _iY(p
where Y, is the Hamiltonian vector field characterized by o(¢,Y,,) = t.0Y, = d¢(t)
orY,= o lde.
When we use the symplectic coordinates (g, p) with dvyx = |dgdp| the adjoint of
the covariant derivative Vf is —Vf and the formal symplectic adjoint of

. )
dyy=dq' AV!, +dp;n——+b'db,
i op;

with U(a%i) =dp;, 0(%) =—-dgq’, equals

0 0 0
b= -1 Vf +14 ——b/lyh ——iiVf +is — -1 a)(Vf gf)( ) b'1yh

ap; E 9g) ODp ap; @ o) Opj  p; 0q?

(94)

The same formula holds on both sides X_ and X, , when g’ and ) are replaced by
gland §. 3
The boundary conditions for d 2.b'h > Eg,bfb . d g,b'p and d 2,b'p Were studied with the
non symplectic coordinates (G, 5) but were finally formulated with e! = dg! and

e1= 9 Because (e;,é’) is a symplectic basis with dual basis (e’,€é;), we can use

agT

~ N i —1/ A 1, i o
olep)=¢; , o@)=-e , o (é))=e; , o (e')=-¢

. -1 _ . . -1 _ . —1. . 1. .
and 0Li0 "=l 01,0 "=l 0 i,0=1s 0 iz0=-1,,
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without referring to coordinates. It implies

1/2

jo(e)lgr = 18"z = D)y =leil w10 ge = e/ gr = (p) g2 =167 v,

and the condition (81) is satisfied.
The operator SV of Definition 3.5 and involved in the boundary conditions for
Eg,b’b and dg,bfh satisfies

oS Va_l = SV,
Finally o belongs to <€°°(Y_;L(E’,E))n<€°°(f+;L(E’,E))O%O(X;L(E:g,l@g)) , sends
%g(ﬁé) to ng(ﬁg) and preserves the parity with respect to 2, .

Proposition 5.5. The g-adjoint of (d g,brh,D(d 2.0'h)) equals

DS ) = {s e LAX; F)N0610e(d, By, A5 5 € LAX; )}

VSED(dgbrh) CAlgb/ (dg b'h S_)+(£lb’ S+) , S¢:S|X$,

N 0 0
dgb,bs+— 1ana Sg+io i—1aw(Vf,gf)( )S¢—bly St.
’ dq*

pl Gq 6q-] p,] apl b

. 3 o J0 _ J0 . q0
It satisfies d b © dg by = =0 and dg,b’h 02, =2, Odg,b’h' In particular, dg,b’b pre-

serves the parLty.

D(d°
with d°

¢ ) =D(dY
:D(d¢

7 o) NL2(X; F)@D(dg pi) NLogq(X:F),

)mLev odd(X F)— ev odd(X F).

g,b'h g,b'h

The subset 6 g(F' ) of Definition 3.3 is dense in D(d” ) Additionally there exists
a dense subset 09 off of 6o g(Fg) such that d" (0@ f,) < 6o g(Fg) c D(dg b ).
The adjoint dg bt of (dg,b’h>D(dg,b’b)) is densely deﬁned and closed with

A

-8

D(dg’blh) i {3 eLQ(X_’F)’ dg’hs ELZ(X—,F), 84 /\ié18|Xr = O} .

0 0
VseD(dgbe;) dg,b’hs— -1 Vfa s+1ia —8—1 8 w(Vf gf)( o )s—b iy;s.

Op; qu 6qJ pJ 9p;

This adjoint operator (dg b’h’D(dg b’h)) satisfies dg bh © dg by = =0.

The spaces ‘€0°°(X_;F)r‘|D(d‘7 b ), €y = {s e L2(X_,F),Se Ecgo,g(ﬁg)} and 9

{s €eL%X_;F),s0 € 0@; } are dense in D(d" b'h ) with dg b’h@g g € €Cg-

A
f

Proof. 1tis a straightforward application of the general formula of Proposition 3.12
(P?,D(P°))=(cPo™,0D(P)).

All the properties of P° , P =d gb'por P= gg,b’h , are obtained by conjugating with
o1 the ones of P and the properties of D(P?) are obtained by transporting via o
the ones of D(P). Thus, it is just a translation of Proposition 5.2 combined with
the previous formulas and observations. O
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Remark 5.6. Below are some detailed explanations of the previous result:

a) The sets c&Lg(ﬁ'g) and €4, respectively dense in D(&g b’h) and D(dg b’h)’ are the
same as in Proposition 4.10 where they are shown to be dense respectively in
D(dg ) and D(d g prp).

b) The term —i 2 w(Vf,g )( ) (resp. —1 "R w(V ,8 )( )) in the expression ofdg bt

(resp. dg bt ) comes from the comparzson between V', used for the analysis

in Fé (resp. F,|Y_)’ and the initial connection V on ﬁ’g (resp. F|)—(_)

c) The sets a@ of and 9 R differ from the sets & o vi and Dg i of Proposi-

tion 4.10, mamly because the two flat connections V' and V' are related
with different € structures of mj:f — @ when g1 is only piecewise € and
continuous.

d) While working with the symplectic structure the symplectic coordinates (q,p)
are more natural than the coordinates (§,p) which were used in partic-
ular in Subsection 4.2 for the €>-structure of E g via the manifold M.
When one uses the coordinates (4,p) on X, the symplectic form does not
have a better regularity that the continuity at the interface. An example
is given by the disc Q_ =D(0,r¢) in R% where the metric can be written
2T = d(gV)2+(ro+q1)2dq?, where q' is the radial coordinate and g2 the an-
gular coordinate. Then the coordinates (q, ﬁ) are given by (4,p1) = (q_ p1)and
P2=r +q1p2 with dpg = %dq + ot 0 _dps. For the metric g+Q simply
replace (ro+ql) by (ro —q'). When the coordinates (g, p) are constructed for
2T = 16_(g)g:fQ + 1@(2)ng, the symplectic volume dvx = |dqgdp| equals

Iro;—flllldcjd Pl which is clearly only piecewise €°° and continuous in those
coordinates. Introducing the symplectic form breaks the €° structure inher-
ited from Mg. Again, this is a reason why we prefer to work with piecewise
€ and continuous vector bundles: This is the right framework were all the
structures can be put together.

e) It is possible to express the symplectic codifferential with the frame (e,é) and in
terms of connections. If we work only with E, or equivalently with f=Q ®C,
v=1, and with b' =0, Bismut in [ ] wrote

_ i E | 4. X s
d=e AV, +é; NV +ipra,,
o_ + vE |+ X T
d” =-iuVl +i, V5 +RT®p A

When we work with the non smooth metric 79, the zeroth order term re-
lated with the curvature tensor RT® is not continuous along X' and rather
complicated. It is not obvious to check dod =0 and d° od? =0 or to identify
easily dense domains of smooth sections. From this point of view, the coordi-
nates (4, p) for the €°°-structure of the manifold Mg and then the symplectic
coordinates (q, p) make things more obvious.
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5.3 Bismut codifferential

In the previous section we introduced the parameter b’ = 0 in front of h in or-
der to make the comparison of local properties in the case ' = 0 and b’ = 1 self-
contained. We now fix b’ = 1 and will use the scaling of [ ] recalled in the in-
troduction where the bilinear form 7y, on TX is defined with a parameter b € R*
as

N9, (U,V) = gT9x (U), nx (V) +ba(U,V)=U.¢pV, U VeTX. (95

The bilinear form ¢, is associated with the map ¢ : TX — T* X written, by taking
a symplectic basis compatible with the horizontal-vertical decompositions of T'X
(like (e;,67)) and T*X (like (¢},¢,)), as

e _p1d
by = (g

bId 0 ), b#0. (96)

The dual bilinear form on 7* X is denoted 17(7) :

. . 4 1[0 bld
M, (0,0) = (' @).0 ¢>b1=ﬁ(_bxd gTQ)’

With the local bases (e, é), the map ¢, can be be simply related with the operator
0:TX — T*X associated with the symplectic form. With

No=g; (@ Mg : T°X - T*X (97)

and by assuming (nx .e; = a%i)izl,md orthogonal along qu = T; @ , writing
q = 2o

Y ey

A
shows that ¢y = e bo. In the decomposition
A
tpp =bloed = taeTO(ta_l)(bta) TX -T*'X

)
the factor foe ® to~1: T*X — T*X can also computed with the bases according to

ey

A A
which leads to ‘¢, = e_TO(th) — _e b0,

Here attention must be paid on the scaling with respect to & € R* while tensoriz-

0 1
-1 0

ing bo. Actually the multiplication by & on TX or T*X is tensorized into the
multiplication by b on APTX or APT*X . Therefore it is better to use the nota-
tion

oy =(8%_gbP)o : ATX — AT*X

A
dp=ebap: ATX — AT*X .
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Definition 5.7. The linear maps (Pb and A are respectively given by (96), extended

by tensorization as a map ¢p =e b op: ATX — AT*X, and (97). The same nota-
tion is used for ¢y = ¢p ® Id; and Ao = Ao ®1d; when E = AT*X or E' = ATX are
replaced by F = E® % (f) and F' = E' ® n%(f).

Accordingly the sesquilinear forms 04, on F' and n(’zb on F are defined by

N f U V)= U, 0V, 1)y, (0,0) =8¢, 0,0).

Finally the same notations ¢p and Ay are used with g = gTQ(gl, g’ ) replaced by
g= gTQ(—Igll,g’) and E = AT*X,E' = ATX F . F' replaced by the piecewise €
and continuous vector bundles Eg,E' Fg, of Definition 2.7

The following lemma gather simple elementary properties of those maps A
and ¢y, .

Lemma 5.8. On F; the map Ao belongs to €°(X _; LIF)NE®(X +; LIF)NE(X; L(F))
with 2, A0 = A2, . In particular it is a continuous endomorphism of Céo,g(ﬁ' ) and
%0 .85 ev(F ).

The maps ¢y : F' |X — F|X and ¢y : F' — F fulfill the condition (81) with ¢p =

Ao
ebaband Py =—e” bUb b-p.
When (P,D(P)) is a densely defined operator in L2(X;13’g) (or L(X+;F)) with a
symplectic adjoint (P%,D(P°?)), its left and right ¢p-adjoints equal

Ao Ao

- fo o«
P% = ¢ Pp,t = eTOGbPagle_T =ed P%%e”

z~|o>"

P'# = p¥-s = ¢~ T Pooe
Ag ¢ Ag
with  DP%)=e 7 D(P’) , D(P ?)=eb D(P%).

Proof. The first properties come from the definition of
Ao =el Aigi = el Aig+mi(—lgtl,g)e’ Ay,

where we use (e,é) = 19 _(q)(e_,é_)+1g, (q)e,é,). The regularity with respect to
x =(q,p) of Ay is inherited from the one of (e,é). The commutation with X, comes
from

— (_1)|Iﬂ{1}|+|Jﬂ{1}|

s7(q*,q',p1,pelé vsi(-q',q',~p1,p)elé.

We know that o, and therefore o when b # 0, fulfills the condition (81). It thus
suffices to check the equivalence

A A
30, >0,¥xeX Yo eF,, Cylledwly<lwlr<Coletwlp.  (98)

With coordinates such that (% ’aqid) is orthonormal above a fixed q¢ € @,

a FYIEN
giJ.Q(qo) =6;j, decompose w € F(g, ) as w = 0 o1 0V € F, = (T; X" o n%(f) ot
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<Q~I|—A

L o +LyV
(T;XV ® y(f)) with x = (qo, p) . Write simply w = WV and ey = w .
The gf norm of w and e*Yw satisfy

% = @) o™ +(p)eV %
8x 8 I

q0 0

Ao _ 1
le*? 0% = (p) T £ -0V + <p>|wV|2f
8x b 4o 8q0
+h 9 ~1,, H\2
e b w|tp <2 ) +(p)(1+ 1) <max2,1+ ol%p,.
| e <2 A 252)' | ( b2)| 2

Applying the last inequality with w = e™

Ton provides the reverse inequality

2 zh
|n|§§ <max(2,1+ ﬁ)IeJ" D1l gr

The equivalence (98) is thus proved with Cp = max(2,1 + %) . O

Proposition 5.9. Take b'=1and b #0.
The ¢y left-adjoint of d g,h,D(d 2.h)) equals

DA% )={seL2(X-F)me%°o— &1oc(d,F) &“’bseLZ(X-F)}

gb/ b b lOC b g b g’b b b
¢ NPy N B

Vs ED(dgf’h), dgf’hs = (dgf’hs_)+(dhbs+) , Sz= 3|X;’

n Ao Ao 1 _% Ao
_20 g, 20 _20 g, 20
d? s.=e 2d%%ebsr=-e 2d’%D s,

g.h h b b t

It sc'ttisﬁes (;lzf’h o cAlgf’b =0and &g,bh oX,=2X,0 &gf)h . In particular, &gf’h preserves the
partty:
D(d ) =D )NL2,(X; F)@D(d“’b INL2 (P,

with D(d“’b ynL? (X;F)— JXGF).

ev od ev od

The subset c&Lg(ﬁ’ ) of Definition 3.3 is dense in D(&gbh). Additionally there exists
A R . R A . .

a dense subset eToab@;’vf, of 6o,¢(Fg) such that dgf’h(eToab@;’vf,) C Goe(Fg)

D).

The adjoint dgf’h of (Eg,h,D(Eg,h)) is densely defined and closed with

A

-8

D)= {s eL*X_,F), d)’seL*(X_,F), ~é1Nigis|y = 0} :

) d(pbs—e deb Aos—le deb /los

Vs e D(d’ 2h® 5 25®

&b'h

bp . bo o _
This adjoint operator (dg h’D(dg,b)) satisfies d, od,\ =0.

~ A
The spaces <€°°(X_;F)mD(d ), € = {s € LAX_,F), seve%g(Fg)} and e? @, oy =
{s €eL2(X_;F),spp€e 73 Ub@ o } are dense in D(dd)b ) with dd)” e 73 D,y ©Cg-

Finally the ¢y right- adjomt is simply the ¢_p left- adJOLnt
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Proof. Most of the properties are derived from the properties of the symplectic

A
adjoints by conjugation with e T , according to Lemma 5.8
One thing to be checked is the simplified writing of the boundary conditions for

A
sE€ D(dg”h) . Actually s € D(d?’h) = eTOD(dgbh) contains the boundary condition

1-8 A
5 é1nize b sy =0. (99)
With
Ao =el Nigi+mii(-lgtl,ge’ iy with AFAY = AGAS

-

11 —
-2 -4,

and é1 Aigidy = 1461 Aig and é1 AinAj =0 we obtain:

>~

0

é1Nigie D s=€1Nize

@loéf—n
SRS

A,
20
5 51

e bs=e bé Algs.

!

Since S, commutes with e™ the boundary condition (99) is equivalent to
]_ - ISA’fV
2

él/\iélS|Xy:O.
O

Remark 5.10. a) No explicit expression was given for the differential operator
d(é)g . It is not really necessary and actually more confusing when properties
along the boundaries are considered. Such an expression may be found in

[ ]
1 . 1 .
dyt = (g —iy,) = —51dg —iy,, Ao]
1, 1. 0 . 1
==l (Vfi’g +w(f,g"(e;)~ Ve, bh) - Elei(api — g™ (q)py) - ERTQp A
=0

1, 0 3
bzlél(api g"(@)pr).

A A
b) Note that the set e® @, oy for the ¢y left-adjoint and e™ 7 D, oy for the §y, right-
adjoint differ. It is not possible to find a same core of smooth sections, which

is sent simultaneously to €4 by dzbh and dz_bb , especially when the second
fundamental form of Q' < (Q,gT?) does not vanish. This is a curvature prob-

lem actually similar to the distinction between 9, yi and 2 o Vi

c¢) However @g,vf is dense in 64 and therefore a core for all the operators Eg,h:

d’ and d® with
g.h g,h

dgh Dy vi CCg D(dgp)n D(Eg?h) N D(ag?h) :

. . . — Ao
Symmetric versions wu;h (dg,h, D vi) replaced by (dgf’h,e b @g,vf/) for the ¢y
left-adjoint or (dg’b , e TP o yf') for the ¢y, right-adjoint hold true.
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6 Closed realizations of the hypoelliptic Lapla-
cian

This section is split in several parts which follow the general scheme for the anal-
ysis of the differential and its adjoints.

* In Subsection 6.1 we review the known results of [ 1 1 1 1
for the hypoelliptic Laplacian when (®,g7?) is a smooth compact rieman-
nian manifold. In particular we recall the class of Geometric Kramers-
Fokker-Planck operators introduced in [ 1 1.

¢ The Subsection 6.2 focuses on trace theorem local forms of Geometric Kramers-
Fokker-Planck operators.

* The definitions of closed realizations of the hypoelliptic Laplacian acting
on sections of ﬁ'g or of F| x_ Wwith boundary conditions are given in Subsec-
tion 6.3. Global subelliptic estimates derived from the one of the scalar case
in [Nie] are reviewed.

* In Subsection 6.4 improved global estimates are given for powers of the
resolvent and the semigroup associated with the maximal accretive closed
realizations of the hypoelliptic Laplacian.

* The commutation of the resolvent of the closed maximal accretive realiza-
tions of the hypoelliptic Laplacian, with the differential and Bismut’s codif-
ferential are proved in Subsection 6.5. Because it concerns commutation of
closed unbounded operators it is better to adapt the strategy of [ ] where
instead of a 6y-group the closed realizations of the hypoelliptic Laplacian
generate “cuspidal” semigroups.

¢ Finally Subsection 6.6 is concerned with PT-symmetry which implies that
the spectrum of the closed realizations of the hypoelliptic Laplacian is sym-
metric with respect to the real axis. This property, which actually holds
only on dense set of the domain or at the formal level, is crucial when the
asymptotic spectral analysis in the specific regimes is considered.

6.1 The hypoelliptic Laplacian in the smooth case

We review here definitions and properties useful for the analysis of Bismut’s hy-
poelliptic Laplacian when X = T*Q and (,gT?) is a smooth closed compact rie-
mannian manifold. The vector bundle F equals AT*X ® 7y (f) where (f, Vi,ghisa
smooth vector bundle on @ endowed with the smooth hermitian metric g, V/ is
a flat connection, § is identified with its antidual via the hermitian metric and Vi
denotes the antidual flat connection. Bismut’s hypoelliptic Laplacian is defined
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as the differential operator
by _  39Pb 2 _ g9 3
Bh _(dh +dp) _dh db"'dbdb

gT(q)pip;
2 b
Ao
¢p=ebop, beER,

with h(q,p) =

where ¢ and 1g were given in the Introduction and in Definition 5.7.
It is a differential operator with €°°(X; L(F)) coefficients, acts naturally on 6€;°(X; F)
and 2'(X;F) and satisfies

by ;3 _ (o73 by 306 _ 3P pdo
Bh dh_deh , Bh db —dh Bb dh-

In [ 1 I ] Bismut and Lebeau developed the functional and spectral

analysis of this differential operator in the L2-space associated with the metric
NH+N

= (p)NE*NV gF and LA(X;F,g") = (p), T L*X;F,5"). With our choice of
NH+NV
metric and the unitary equivalence (p)q . L2(X;F,5F) — L3(X;F,g") their
results concerns
NH+NV _NH+NV N +N NH+NV
<p>q 2 B%bb<p>q 2 _B¢b+<p>q 2 [B('bb <p>q 2 ]
NH+NV

We checked in Proposition 3.14-e) and the following discussion that (p), *
WHX;F,g") — wHX;F,g") is an isomorphism. The results of [ [ ] al-

Nv+NH

2

low to absorb error terms due to the conjugation via (p>§ because they are

concerned with the following general class of operators.

Definition 6.1. The metric y = g&, y = gF <p>NH+NVgF induces a norm | |, on

L(F,F). The associated class of y-symbols of order m € R is defined as the set of
functions M € €*°(X;L(F,F)) such that

Va,peN?,3Ca5>0,Vx=(g,p)eX, (VDUVEYM@)I, <Copip)y ",
with (VD)W = (vE )@ (vF )aa (v )P (vE)Pe.

A geometric Kramers-Fokker-Planck (GKFP) operator for the metric y is a differ-
ential operator acting on €°(X;E) and 2'(X;E) of the following form:

eda’./ﬂ:@'i'vgyvh +./%,
gz,<q>vF V', +gY(@pip;+2Ny-d

2 2
pl2  g(@)pip; \
h(g,p) = 2‘1= 5 7l aeR*,

ViY;, = ag"(q)p;Vy,
M = Mo Ny M p i+ My,

op

where M, j,%g , My are y-symbols of order 0.
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Let us first consider the case f = @ ® C with the trivial connection which, as we
will see below, is not a restriction. Because Vfi (p)g =0 and ng (P = @’((p)fl_l)
for s € R, the same discussion as the one following Proposition 3.14 about the

NH+NV

equivariance of #H-spaces, shows that conjugating by G = (p>;_r 2 transfers

GKFP operators for g¥' to GKFP operators to g7 . Results of [ [ I ]
are formulated with the metric g¥. By working with those weighted metrics g¥
and ¥, the definition of GKFP operators is the same when ngh is replaced by
the Lie derivative :fyah and we refer the reader to [ ]-formula (20) or [Nie]-
(113)(114). The term .4 in <, 4 is actually a perturbation which can be absorbed
by the regularity estimates for </, o. Additionally to the change of metric, error
terms due to partitions of unity which allow to localize the analysis also appear
as type .4 corrections:

¢ Partition of unity in the g-variable: For a partition in unity in g €@ ,
N

is a closed compact manifold, 3>,’_;

1n(q@) =1, the comparison is given by

N
&fa,uﬂ - Z Q{a,dﬂ)(n = -/%a,ﬂ,)(-
n=1
So the analysis can be localized in a ball B(gg,p0) where the coordinates
(q,p) can be used. Additionally changing f| Bqo.0) with the connection V/
by @ ® C% with the trivial connection and replacing g7 by the euclidean

metric in B(qo,p), simply adds a term .#;. For L? or #* estimates one

N

n=1 12(q) = 1 while comparing

rather uses a partition of unity }_

N
2 2
| Lo, e n — Z | Ao, Xn @7y
n=1

but the idea is the same.

¢ Dyadic partition of unity in the p-variable: After the localization in the
g-variable and the reduction to the scalar case, a dyadic partition of unity
X200(p) = x0(lplg) + X321 x1(277plg) = 1 is used with

-Qfar/ﬂ - Z -Q{ay./ﬂe‘](p) :./%;f"/ﬂyx.
Jj=0

Meanwhile using Z;‘;O 0J2.(p) = X%(Iplq) + ijl )(%(2‘j|p|q) =1, lead to compa-

rable error terms for

o)
2 2
||=Q¢a,MuI|Wu - Z ||=Q¢a,ﬂejullyu .
Jj=0

This allowed Lebeau to reduced the global subellipticity estimates to param-
eter dependent local in a fixed ball or shell, and rather standard, subelliptic
estimates uniform with respect to the small parameter A =277 — 0.
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Those use of partition of unity are actually the same as the one used for char-
acterizing the spaces #*(X;F) in terms of standard parameter dependent usual
pseudodifferential calculus.

This led Lebeau in [ ] to the following optimal results, that we translate with
our metric gF and our spaces L% X;F), #W*(X;F) for a GKFP operator Aa, e
a#0:

* For u € R there exist two constants Cy 4 « >0 and Cq 4 > 0, the latter
independent of y, such that the estimate

1Gs ]l + 1V, sllwn + lsllyuzs +60,u (1) 2 sl
= Cu,a,ﬂ”(ca,ﬂ +'Q¢a,ﬂ - i60,,u1)3”7///‘ , (100)

holds true for all A € R and all s € #'(X; F), satifying (Cq s +ly, u—160,uA)s €
WHX;F). Remember that we do not use the A-dependent #*-norms of
[ ] here.

* The above constant C,_, > 0 can be chosen such that C, 4 = Co 4, .« and
Co,u + Ao« With the domain D(sly ) = {s € LAX;F), ey us € LAX;F)}
is maximally accretive in L2(X;F) with

Vs€D(cta.i), IVhslZ,+1IplgsllZs +llul?s < CouRe(s, (Cau + Aaid)s).-
* The subspaces #(X;E) and 6;°(X;E) are dense in D(</, ) endowed with
its graph norm.

* The adjoint d;ﬂ , for the L2%(X;F)-scalar product, of (Ao, 00, D(Ha, 1)) is a
GKFP operator of the form «/_, ,+ and has the same properties as <Z, .

As a consequence of the maximal accretivity of (Co i+ 4, D(Ay, ) in L2%(X;F)
and the lower bound Cy 4 I(Co, i+ Ao, s —iM)slp2 = (A |Islif2,0<r <1 contained
in (100) with py=0and r = % actually implies

Spec(Cy, i+ Lo,.u) {z €C, Rez= C'a’ﬂllmzlr}

and the representation formula of the semigroup

B 1 e—tz
e tda,.ﬂ:ff —dz, t>0,
207 Jy oy 2 — Ao u

with vy, 4 oriented from +ico to —ico and given by
Yau = {z €C,Rez+Cq uy= C;,Mllmag zlr} .

This enters the class of “cuspidal semigroups” for which the relationships with
subelliptic estimates and various functional analytic characterizations have been
explained in [ 1, [ ] and [Nie].

The fact that Bismut’s hypoelliptic Laplacian B¢b, or more exactly 2b2B(é)b =
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Ay« , is a GKFP operator actually comes from the Weitzenbock type formula
given in [ 1

bp _

1 .
b 152 —Ap+ |p|2 — E(RTQ(ei,ej)ek , eg)elejiékéz +2Ny —dim @

1 1 1.
57 [ffyh + 5w(vf,gf)(Yh)+ 5elléjvfj‘iw(vf,gf)(ej)
1
+50(V,gNevg . (101)

We refer the reader to [ ] for the detailed verification that it is a GKFP and
simply recall that the weighted metric (8 or gF') is convenient in the verification
that Zy, — Vg enters in the perturbation term like .4 in Definition 6.1.

Although it is simpler to work with the adjoint associated with the usual L2(X;F)
scalar product, example given when the maximal accretivity is considered, cal-
culations which involve dj, d?]b” and B(é)b are easier by using the ¢y left or right-
adjoint. The comparison of the standard adjoint P* and the adjoints P, P? and
P'¢of a densely defined operator (P,D(P)) in L%(X;F) was explained in Subsec-
tion 3.3.1. Remember also that the ¢ right-adjoint is nothing but P'# = P%-5 |
which is the ¢_; left-adjoint.

In particular the relation

Vs,s' € SOGF), (df’s, s, = (s, dps)p,
leads to
¥s,s' € S(XGF), (By's,s)g, = (d)dy+dyd]")s, s, = (s, B} s,

or

boNd_p _ (nPoN Py _ pP-b b-b \by _ P
By =B =B, (Bl =B,

6.2 Trace properties for local geometric Kramers-Fokker-
Planck operators

Studying the existence of a trace along X' is a local problem. In order to take
advantage of the local flexibility, we introduce a wider class of GKFP-operators
which have a good local behaviour. We consider firstly the action of those opera-
tors on sections of the smooth vector bundle np : F — X and we will in a second
step consider their properties when acting on sections of the restricted vector bun-
dles F |7¢ and sections of the piecewise €*° and continuous vector bundle F'g . For
the latter, a limited regularity of the coefficients is required.

Definition 6.2. Consider the case where the metric g = gT? is a € metric while
the metric g’ on the flat vector bundle (f,Vf) is only Lipschitz continuous as it is for
the metric 7. A local geometric Kramers-Fokker-Planck (shortly LGKFP) operator
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for the metric g = gTQ is an operator of the form

Yij(q)VFi VFi

.. 6 l 6 .
'Q{(i’:;;y = (g_lK)lJ(q)pJVS‘l — P bi +./%
AE — AY _ .
= do‘i’gd’g + M+ +alg” ' (x—1d)Y(q)p,; VL,
A gij(@VF, v,
1d, ij opi o
Ay = aVy - —=ag@p,Vi - SR
with aeR* ./%:-/%j(q,p)vi +.4(q,Dp),
Bpj

and  M; VY, M, Moe LS (X;L(F,F)).
opy,
An element M like above will be called a locally admissible perturbation. Admis-
sible metrics y are Lipschitz continuous metric y € WH®(Q;T*Q o T*Q) and ad-
missible factors x belong to W°(Q;L(T*Q)). Both satisfy Y llwico + Ixllyyreo < R
and ||y — glire + Ik —Idllpo < OR,q,g With 6R q g >0 small enough.

Obviously a GKFP-operator and in particular 2sz(é)b is a LGKFP-operators
(with y=g,x=1d and a = -b).

The condition on the derivatives w.r.t p, V¥, .4 i , implies
7y

M WOVAXF) — L2

loc

(X;F) and L2 (X;F)— W VAX;F)

loc

and by interpolation
0,u2),2 0,u2—-1),2
MWDK F) — WOHETDA(XCR)  for pg €0,1],

where we recall, according to (70), ngc(X;F) = Wl((’jf”)(X;F) forueR.

For any open set U c X, a LGKFP operator dj’féy 165 (U;F) — L%omp(U;F) c
2'(U;F) has a formal adjoint from 65°(U;F) — 2'(U;F) for the usual L2(U;F)
scalar product, which is itself a LGKFP operator 'Q{ig;sz,’ with a changed into —a .
The map ' is nothing but g 'xg. The difference between .#’ and the formal

adjoint . * is due to:
o Vf,/ =vF_ w(f, gf)(nX’*Y) where the terms w(f, gf)(a%i) belong to L*°(Q;R);

e the fact that V¥ is not exactly the Levi-Civita connection for the metric gZ

which includes the weight ( p)fIVV ~Nu n;((gAT*Q ®g\T®@) (remember e;(p), =0

and éj(p)g = @’((p)g_l))-
e the derivatives with respecto to g* of x which belong to L®(Q;R).

With Yy, = gY(q)p je; note that if the connection V¥ is replaced by a smooth con-
nection V given by
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with nx (V) € L®(Q;T*Q ® L(TQ,TQ)), then

AY Yij(Q)v%v%
Voy. — -2 =ag(Q)p iV, — e (102)
aYy 2 ag-\q)p;Ve; 9

is again a LGKFP operator for the metric g7 . The same holds when y # g and
k#1d.

Definition 6.3. Let a € R* and Q=X or Q=X3. Let /5" be a LGKFP operator
for the metric gTQ. The space &ppc(tE") F |5) is defined according to Defini-

a, U’
tion 3.1 by

EroctE) Fl={s € L, (@F), o£%3)seLl} @P)}.

The topology of those spaces é"loc(df ’;;Y;F|§) can be given by the seminorms

py(8) = IxMslg2 + (LS sll 2 and since 57 is continuous from L7 (U;E)
to 2'(U;E) for any open set U < Q, the usual mollifying proves that %SO(E;F) is
dense in é"loc(diféy,ﬂﬁ).

We first consider the smooth case without boundary 2 =X .

Lemma 6.4. In the framework of Definition 6.2 and Definition 6.3 with Q =X
while g = gTQ is a smooth metric on Q, ||lylwio <R and |y — gllL~ < 0R,a,g With
Oa,g >0 small enough, the spaces é"loc(dfj;;’/,F) and é"loc(df’gd’g,F) satisfy:

D) Eloc(AEN F) = B0 A, F) < WX F) n W OPA(XF) with a continuous
embedding. In particular the trace map s — s| x 18 well-defined and contin-
uous from gloc(,szfag’K’y,F) to L%OC(X’;F).

ii) A section s belongs to é"loc(Aii’jZ,E) iff for any x € €5°(R;R), x(h)s and dfj;}y}((b)s
belongs to L*(X;F).

iii) The equalities

Brocl ) F) = Eroc ", F) = Broe( 7%, F)

hold for any other choice of a1 € R* as soon as

Ik —Idllzee + Iy — gllLe <min(br,a,g,0R,a1,8)-

iv) Let dfjjt, be the formal adjoint of df’K’Y, a section s € L?OC

(X;F) belongs
to é"loc(df’;éy,ﬁ’ ) iff, for any compact subset K c X, there exists a constant
Ck > 0 such that

Vs' € 65°(X;F), supps' <K, (457 s, 9) < Cklls' 2.

v) When Z;.Izl x;(q) = 1is a smooth partition of unity on @, then s € El1oc(L5"T F)

a, M’
iff forall j,1<j<d, xjs €8l L") F).
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vi) When supps c n=NU), where U is a chart open set on @ and s = s‘I](q,p)eIéJ

on which f|U =U xC%, s belongs to gzoc(df’;’;,F) iff forall I,Jc{1,...d}

2

J

s7 and agij(q)pjei— S?EL2 (n_l(U);Cdf).

loc

Proof. 0) Before we prove all those statements, let us chek that all those general
results are actually contained in the case x = Id, which will simplify the dis-
cussion. Actually the vector bundle isomorphisms « : (g, p) — (g,x(¢q)p) and k!
induce continuous isomorphisms of the spaces # (X ;F), 7///; JLXGF) for pel-1,1]
because k € Wh(Q;L(T*Q)) and of the spaces W#22(X;F) and W;S:}”Q)’Z(X;F)
for any ug € R. The conjugation

gxy -1 _ ,gldy
K*‘Q{a,uﬂ Ky _‘Q{a,dﬂ’

actually holds with y’ = xy*x which satisfies

Y eW@;T*QoT*®) , IVlww<R' =Cgr , Y -glL~<CgrORrag,

where the last right-hand side 6}% wg = C¢.ROR,a,¢ can be made arbitrarily small
with the choice of 0 o ¢ . So for the rest of the proof, we simply consider the case

x = Id where in particular V;h commutes with any cut-off function y(f).

i) Let dff;}’y be a LGKFP operator with the locally admissible perturbation .# .

For s € L? (X;F) and x,x’ € €5°(R;R) such that supp x < Int((x")1({1})), x(h)s €
L%(X;F) and
A8 —AY A
'df,gd’g_ B X(U)SZX(b)&if”gd’Ys+ —?p,)((f])] s:)((f)).szfi’gd’gs+)('(b)%'s,

M x()s = y ()M s + M, x()]s = y(h).As + x' () A0y, x(D))s,

where /' is a locally admissible perturbation and where y'(h)(.4 (0p,x(H)) be-
longs to L(L%(X;F)).

Hence s € &),.(of C‘f fZSY,F ) for some locally admissible perturbation .4 implies that

for any y € 6;°(R;R) and any locally admissible perturbation .4

y(h)s e L2X;F)cw V2(X;F), (103)

AE — AT _ o, _
ALNE - —5— [ e WO DX, F) c Weon 2™ D2(XF) c wVAX;F). (104)

In particular this holds for a GKFP operator «/ f ,le,g = oy 4 of Definition 6.1 and
in particular &y » = 2b2Bg)” with a = —b. Lebeau’s maximal hypoellipticity re-
sult (100) applied with u € {0,+1} provides a constant C’a, « >0 such that

1A +ENCo i+ Ao i) ullyn <Coylullyn for pe{0,+1},
and therefore
VP Catr + i) Mullpn < Coullullyn for |Bl<2 pe{0,+1}.

p
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Because ||y — gllyio < Cg,g and |y — gllL~ < 6R,g,« We deduce

I(AE — AYNC g+ Hutt)  ullysr < Craglluly,

and (A8 —A")Cog+ Ay i) ullyo <R agCagllulyo.
By interpolation

IAE = AN C g+ i) Ml <CF o (CogBR.a) 0 lully
for all £ €[0,¢t¢], to <1. For any choice of tg € [0, 1[ (here t( = 2/3 suffices) % is
a relatively bounded perturbation with bound less than 1 of the invertible closed
operator (C’a,M +eQ¢a’./%,Dt(éa,ﬂ +Ao, 1)) In WHUX;F),|t|<to,as soon as OR,a,.u >
0 is chosen small enough. Now that ¢y = 2/3 and 6g 4, are fixed, the operator
C a il + Ao u+ % , fulfills the same maximal subelliptic estimates in # *(X;F)
for u € [-2/3,2/3] with a possible different constant C wR,a,« in the inequalities.
We can thus use a bootstrap argument for u = y(h)s with o« i fg’g = o, 4 starting
from (103)(104) with u = —1/2. We deduce firstly y(h)s € # 23" V2(X;F),

se W LSX;F) = W IS VDA X F) c W O ),

loc

and therefore .4 s € WZ(S;_Q/?’)(X ;F)c Wl(o_cl/3’_2/3)(X F) = 71/1;}/ 3(X;F). Successively
we deduce s € #,"3(X;F), then s € #,*(X;F) and finally s € #/*3(X;F). Note that
the intermediate estimate s € 71/1(1)/02(X ;F) c 71/1200’1)’2(X ;F) allows to say that the
right-hand side of (104) belongs to L2(X;F), for which the maximal subelliptic
estimate with p = 0 implies s € 7//1(000’2)’2(X ;F). The property s € 7//1(1)/02(X ;) also

'Q{g’]:d”y

oty ,F) with respect to the local admissible

proves the independence of &,.(
perturbartion .# and

Id J1d,
éoloc(%ag:o ,g,F) = éoloc(df v

T,

as soon as 0g,qg > 0 is chosen small enough. ii) This is a consequence of s €
Wl?)/c 3(X;F) and the already used writing .ssz, ,gd,y x(H) = X(h)di’gd’y +x'(h).4" with
XX € 6C(R;R), suppy © Int((y")~*({1})).

iii) A section s € &, (4507 F) iff s € 810c(26°By",F), a = ~b , where i) is trans-
lated it into

Vy e 6CR;R), (C+ 2szg’b )x(h)s € LA(X;E).

But the maximal hypoellipticity result (100) with u =0 implies

lx®)sly2s + 195, x(O)slz2 + 101 ®)sl2 < Co I(Cp +26°By )y ()sll 2,
and therefore Zb%B;)bbl)((f))s € L2(X;F) for any other b; = —a; € R* . The argument
is symmetric in @ #0, a1 # 0 if one takes ||y — gllzc <min(dg ¢,¢,0R,a1,¢) -

iv) As a differential operator «f f f;’y is the formal adjoint of the LGKFP operator

df;ig, . Soforse L%OC(X ;F') the condition of iv) is nothing but the weak formu-

lation of Ai’zﬂs el? (X;F).

loc
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v)When ZJ 1 Xj(q@) = 1 the difference
df’ Jdy Z .Qfng’YXJ(Q) = gik(q)pk(aqi)(j)(Q)

is a continuous endomorphism of L; (X;F). This yields the equivalence

(s € Bloclat®y7, ) & (vJ' € (L., d},2j8 € Erocl Ay F))

vi) Assume supps < 7y L(U)and s € é"loc(Ag ,E) (we know that we can take y =
g). We replace the connection V¥ by a smooth connection V which is trivial in the

frame (e;, é’) on 3} (U) while the flat vector bundle is trivialized into f|,; =~ U xC%,

namely Ve' =Vé; =0in y L(U), and the above remark about (102) implies

T 8ij(@)0p,0p; Ap 1d
ag(@pjej———5——=Var, ~ 5 =L 4

where ./’ is a locally admissible perturbation. So s = s‘I] elé e &, (A8 1d.g F)=

a,
loe AL 1 F) iff for all I,J < {1,....,d},

8ij(q)0p;0p; J e 12

5 2 (N U);C).

s}’ and agij(q)pjei -
O

Remark 6.5. Actually we could have used in the proof the local maximal hypoel-
lipticity of the scalar operator g/ (q)piaq i— A2—p instead of Lebeau’s global result,
which is actually derived from this local result via the dyadic partition of unity in
p. Our writing is more straightorward.

The previous result is concerned with the case without boundary with the
smooth vector bundle 7y : FF — X . It relies on the control of terms which contain
0p,-derivatives by the main part. We used the maximal hypoellipticity because
the 7l/l§/c 3(X;E)-regularity will be required later. It could have been done by using
intregration by parts with 2{(u, (C+0)u) = Z;l:l 10p,;u |Ii2 +lp,u IIi2 . None of those
techniques are relevant for the case 2 = X+ or (2 =X and F replaced by ﬁ’g) as
long as boundary or interface conditions are not specified.

On one side there is a natural way to define the gloc(d‘f’Id’g ,ﬁ'g) by using the
isometry W&:£0 of diagram (38) and this is where the perturbative terms x — Id
and y — g enter in the game. On the other side it is possible to write a trace theo-
rem for elements of é’loc(.szf 8.1d.g F| X )N Eppe(VE 6 ,F| X, ) by following the approach

presented in [Nie]. We check below that the two different approaches are actu-
ally coherent and that the additional required regularity for V¥ ; When Q=Xxzis

9p1
actually provided by the symmetrization technique.

Lemma 6.6. Consider the case Q) = X+, where all the data for the vector bundle
F|5 are €°(Q). Let dffZ’g be a LGKFP operator with x =1d, y = g and a € R*
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and let &oc(Ag ld.g ,F |§) be given as in Definition 6.3. We assume additionally that
the coefficients %J,%o of M = ./%j(q,p)VFL + .Uy(q,p) belong to €>(Q;L(F,F)).

6pj

Any element of gloc(dff;l’g, | )N Eppe(VF a ,F|Q) admits a trace along X' = 0Q).
p1
More precisely for any x € 6;°(R;R) the map s — )((f))s| x 18 well defined an con-

tmuousfrom&ocwfj’g,F|ﬂ)n&oc(v Flg)to LAR, Ip1ldp1; # " TQ;ATQ'
9p1
TGl

When dg Idg , 18 the formal adjoint of .sz¢ g € the integration by parts

Id Id
(s, ey /58" — (A% s, s’>:ifX,<s,8’>gF pildpidq'dp'.

holds for all s € C60"(X+,F) and s’ € éazoc(dg 1d.g F|X )N & (VE i ,F|X ).

Gp]_
Proof. We focus on Q2 = X_, 0X_ = X’ while the other case Q = X, is symmet-
ric. With a partition of unity Z}]:l x;(@) =1 on Q_ we get like in Lemma 6.4 the
equivalence

(s € gloc(dfjj{’gﬂz)) N (v Jell,...,d}, xS € &ocw(ff;}’g,Fl)—()) :

while the same equivalence is obvious when d 8.l ’g is replaced by VF

6171
Since the existence of trace is a local problem, we may assume that s = s?el éje

Eroc(A j’i ’jj’g JF | n;(l(U)) is supported in JT;(I(U) , U open chart set in X_ surrounding

go € 0X_ = X', and replace the connection V¥ by a connection V which is trivial
in the frame (ei,éj) in n;(l(U) with f|U ~ U x C% . We did not, and we actually
cannot, get rid of the term .4 and we obtain for all I,/ c{1,...,d}

M s/ e w012

eL2
2 loc

Toc T @;C) and  |gY(q)pjei - (R U);C),
The existence of a trace in 2'(X’ F| X,) , is a local problem and let us focus on
§= s{eleJ compactly supported in 75 L(U) where U = (-¢,01xU', U' c Q' =4Q_,
is an open chart neighborhood of q¢ € GQ_ and where the metricis g7 = (dg1)2e"t

m(q?') for which:

0 k 0
=5 Fij(q)pka-
Meanwhile the condition s € &,0(VF s »F) says
ap1
0s J
301 Lel? (5'U;c?) and (1+6)Y%s) eL? (a3} (U),F),
_ 2_
where 07 = % is the vertical one dimensional harmonic hamiltonian in the

variable p1 .
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By introducing an arbitrary cut-off y(h) y € €;°(R;R), and setting §‘I] = )((f))s}] , We
end with the essentially scalar problem

§ € 1+01) LA U);CY) < (1 +61) 2LAR- xR, Idp1d g™ [;F),

—Ap, +p2+1

(1+0) " [p19s+ §7 e(1+07) 2LAR_ xR, |dp1dq"|;F),

with  §F=WL22T*Q';c).

This is exactly the situation studied in [Nie]-Chap 2) with the for the §-valued, §
a Hilbert space, section on T*R_ for which a trace at ¢! = 0 is defined as

§7 |10 € L*®, Ip1lldp1l;3).
We deduce
8|1 €L’ R, Ip1lldp1 ;W PA(T Q' AT Q' @ ! (7))
The compact support of § and

Weomp AT QAT Q' @ 1 (] 0) = Wigmp(T* Qs AT* Q' © (7 )
yields the trace result.
The integration by part is the standard one for s,s’ € c66"’()_(_;F). The density of
€O(X 3 F) in &1(A578  F |5 )N E10e(VE, ,F |5 ) ends the proof. O

p1

We aim at providing a good domain definition for Bismut’s hypoelliptic Lapla-

cian Eg’b acting on sections of the piecewise ¥°° and continuous vector bundle F'g

associated with the metric g7¢ = 1Q7(q)gTQ +1g.(q)g .TF‘Q . This means that as a dif-
ferential operator B(é)b is defined like B(gb on X_ and X, with the metric g¥ on X_
and the metric g¥ on X, andAaccordingly the energy b replaced by § = % .
The continuity of sections of Fy is expressed in the frame (e,é) = 1x_(e3,€é3) with
the identification ei| X, = ei_| ?X_Aand éJ+|aX+ =6/ sx_ - More generally we may
consider LGKFP operators «f ag ’}Z’g defined on X_ U X, associated with the metric
279 with the suitable interface condition along X' = 0X_ = dX ., . As a differential
operator on X_ U X, it is written

i gl](q)apiapj N

2 1d.4
dg;ﬂ’g:av ” ,
@ b 2

F
Y
where the coefficients .4, j € {0,1,...,d} of the perturbation .4 = ./ ijég + M

. . »;
belong to €°(Xz;L(F)) and therefore to L}° (X;L(Fg)). With the coordinates
(g, p) of Definition 2.6 the energy h satisfies

2h=p2+m'7(0,4)pip
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while formulas, p’ = w(q',q")p’, (61)(62)(63) imply

Y; = prer+mi* (-1g", ¢y G4, d V] b e (105)
. d o . . d
with el = OTiI , €j = @ +Mi,j(CI)pk§5j (106)
0 i i 6
A1 _ N ~
e =— , & =y, (@)— (107)
0p1 Vi 0pp

where the coefficients Mf,j , 1//{, and mi/j/(—lcjll,cj) = gi/j/(cj) are € on §¢ with
the additional property
£70,4)=g¢0.q) ., vh©.¢)=6".
By using the isometry ¥&£0 : F — F'g which induces a isomorphism (‘i’i’go)* :
L2(X(_£,£);F|X(_g,€),grg) - L2(X_5,5;F|X(_g’£),§F) according to Proposition 3.8-e), we
deduce that
p8.80y-1_,8,1d.8 \y8.80y _ _, 80K
(\IJX )* d&,./% (\P * )* _'Q{a’ﬂ/

is a LGKFP operator for the metric g0 @ = (dg")? + m;17(0,q")dg" dg’ , for which
we recall that ﬁ’go = F is a smooth vector bundle. More precisely the perturbations
x and y satisfy

* KEEPQuLITQ)y.), Y 6@ TQOTQ|,),
¢ xeFUQ;L(T*Q)), ye€AUQ;T*QoT*Q),

o K|Q, :Id, YlQr :gO|Q/ .

For trace problems along X' = n}_(l(Q’ ), restricting the analysis to X(_¢ ¢) = n)}l(Q(_g,g))
with £ > 0 small enough is possible by using a finite partition of unity ijl xi(q) =
1Lemma 6.4-v) . But on X, ;) those coefficients x and y satisfy I|x|lyy1co+ Yy <
R, , independent of £ > 0 and

Ix —Idlize + Iy — ol = O(e).
This leads to the following natural definition.

Definition 6.7. Let a € R* and let <f f fg,g a LGKFP operator for the metric g, the

gld.g
space é"loc(da’/% ,Fg|X(7”))equals

18,80 £0,K,Y _ (\J8:80 &o,1d,go
(\PX )*gloc(-gfa"/ﬂ/ ,F|X(_&g))—(\I]X )*ébloc(-da’o ,F|X(_£’£))

for € <egq and €44 >0 small enough.

The following statement specifies the relationship between this definition and
the previous trace results.

Proposition 6.8. Let a € R* and let ,szif fZ’g be a LGKFP operator for the metric

g. A section s € L?OC(X;F) belongs to é"zOc(.szfifZ’g,ﬁ'ﬂXH s)) with € <é€gq, €ga>0

small enough, iff one of the following condition is satisfied:
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o G880 1d, C e A
i) (‘Pi.go)* lge é?loc(df,% gO,F|(_E,E)), which implies s € 7//1(2)/(23(X(_£,£);Fg|X(_5’8)) and
(0,2),2 n .
€ Wloc (X(_g’g),Fg|X(_£’£)),

ii) the restrictions sz = s| X: belong respectively to

Broc(AET 57, Fly., ))mg’loc(v : Fly

+[o0, é)

and the traces s_ | ox. and s, | X, of Lemma 6.6 coincide after the identifica-
tion (e_,é_)=(e,,é,)along X' =0X_=0X,.

iii) If &/° g ’Id’g denotes the formal adjoint of <f, & Id’g (defined on the open set X _
X+), for all s’ € Cgo,g(Fg|X(_‘E E)), the equalzty

g Idg ;Id, g
<s’,,efjjs> <,Q¢g )

holds with for any compact set K c X, the existence of a constant Cg > 0 such
that

dg Jd,g s

!
8108 ) = Ckls 2.

vs'e C50,19(13‘454)((_5’5)) ,supps' cK,

Proof. The statement i) is essentially the definition of &},.(</ f E,g ,F | lx. )) with
the additional information s € #;23(X(¢,03F% |y, ) YNWOPA(X . ;8| Koo

loc
Actually (¥%2°);1s € gloc(AgO’Id’gO,) implies

)

—£,€)

£ 8,80 2/3 . (0,2),2
(\PX ) S€E %oc (X(—£,£)7F|X(_£, Wloc (X(—g,e);F|X(

by Lemma 6.4. Since (‘i’i’go)* : 7//1?)/63(X;F) — 7#1(2)/03(X;13’g) is a continuous iso-
morphism by the local version of Proposition 3.16, this implies s € Wl(z)/c 3(XF o) -
Remember that u € %%QS(X;F’g) means uz = u|X$ € 71/1%/(33()_(¢[0,€);F|¢[0’8)) with the
equality of the traces u_|aX_ = u+|6X+ (always with (e_,é_) = (e,,é,) along X').
The vertical regularity s € Wl(gf)’z(X (—e,e) | X(_w) is even simpler.

i) implies ii): The previous characterization including the WZ/ 3(X( £,6) 2 g} X 55)

regularity clearly implies s+ :s|X_[0 , loc(dg+,1d,g+ Flx. roe NGV F.gx Flx.
¥[0,e 0171
and the equality of the traces s_| ox. = s+| X, = s| ox' € loc(X ''F). This ends the

+l0, e)

proof of i) = ii).

By assuming ii) the integration by part of Lemma 6.6, where the sum of boundary
terms along 0X_ = X'=0X + vanishes, implies iii) .

iii) implies i): Let .szfg f1d.g ® be the formal adjoint of dg’ 4¢ defined on X0 U
X(0,+¢) - Although ‘~I’g 80 (F sF 0)— (F ,8F)is an isometry, the isomorphism (‘i’?}’go)* :
L%X;F, ) — L2(X,F,g) is not unitary because dvy = |det(y~1(§))||dGdp| ac-
cording to (78). However it can be made unitary by multiplying by the piecewise
%6 and continuous function of ¢, |det(y1(¢))|"2. When (‘i’f(’go)* is replaced
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by the unitary map P840 = Idet(w_l(q))|1/2(‘i’g’g°)* , it simply modifies the ad-
missible perturbation term .# in the action by conJugatlon on LGKFP-operators.
Therefore the operator szf 81 ’g and its formal adjoint «/° 81 J’ﬂ, can be written

gId,g , go, ,Y , 1 &1d.8 _ \yg, 80,XY \irg,80y-1
d \ngod (\ngO) , o 7 \ngo‘d—a,ﬂl’(wggo) ,

where dgo,ﬂ,/ is the formal adjoint of .sszi’;l’y in X_UX,. When w € 6;°(X;F)

with suppw < K, K compact subset of X, then s’ = P850y € cgo’g(ﬁ‘g) and the
condition iii) implies that

Ywe chOO(X;F)’ suppwc K, |(=Q¢iéi(if,\i1g’gow, s) < Ckllwllzz.
which is equivalent to
Vo € 6°(XGF), suppwcK, (5 w, (F880) Ls) < Cxllwll.
*r1
With Lemma 6.4- iv) this implies
$78,.80\-1 80,K,Y
(P8-80) SEgloc(da,o X ’F|X( )—éaloc( aO’F|X( EE)
and therefore

(‘i’ffgo)lls € é"zoc(ﬂfi’; ",F)n 7//12/3(X(—5’5);F|X<—e o)

This last property is nothing but the definition of s € é"loc(.szi 8.1d.¢ JF | glx., 5)) with

2/3
S€ %OC (X(—g,g), ng(—s,s) ° D

We now use gloc(,quo’ T F)= é”loc(dgo’ ’Y;F) stated in Lemma 6.4-iii) when
lk —Idllzeo + Ix" = Idl|zoo + Iy — gllizoe < MIN(SR a,6,0R,—a,g)

and the fact that the formal adjoint in L2(X+;F) of VE is =VE = —-VE —w(f, g/ )(nx . Y)
in order to prove an integration by part. This W111 aV01d the use of the #?%3- 3
regularity which is problematic when we work globally.

Proposition 6.9. For a LGKFP operator < f fg,g the space &j,.(f gldg p } glx., E))

a,
equals 6”100(A§’11i;f,,ﬁ’g|x(_6 6)) for any other a1 € R*, any other admissible local per-

turbation M' as soon as € < €q,q,,g With €44, >0 small enough. .
With M = Mi(q,p)V", X8 + y(q,p), and the adjoints M* of M;, the integration

6pj
part formula

14 1
Re(s, #2085y = ~(s,~ASs)+Re(s, MV Es) +Re (s, Mos)

2 apj

-5 Re (s, 0(f, gN0rx, . Yp)s)

v

d 1
Zg IIV 3||L2_||'/% SIIL2IIV o SIILz +Re (s, Mys)

0}7] p]
-5 ~ Re(s, w(f,gNnx,. Y )s),

dg 1d,8

holds true for any compactly supported section s € &j,c( adl

(0,€4,0), €a,g > 0 small enough.

FgIXH’E)) and € €
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Remark 6.10. Note that the term —% Re(s, w(f, gf)(nx,*YG)s) is due to the fact that

we used the flat and possibly non unitary connection V' on i f—@.

Proof. The first result is simply a consequence of

gloc('gff’ﬂ,ﬁ‘g) = (\i]i"go)*gloc(-dgo

o F) = (WEE). 8oL’ ), F)
for any a1 e R*.
When s € cg"loc(d(xg Jﬂ,E g) is compactly supported there exists y € 6;°(R;R) such

that s = y(h)s. It suffices to consider the case 4 =0 and 7, f 0= an,h + _TA” with
the formal adjoint restricted to X_u X, ,

! _A _A ’
AL 0=~V + =5 = =aVy + —E — a8 )rx . Vy)

with the local expression in coordinates
. N
' =~ag"-1g"|.qp .85 ).

. ¢ Id,g A s Id,g A
The compactly supported section s € &}, (</ j o 5L F| XH‘,E)) = &oclA _g% jj,,Fg | XH,E))
is such that w = (‘iff(’g N lse & (A8 (;E’Y,F | X(_w) is compactly supported and can

be approximated by s, € €5°(X (- 8,8);F| X, E)) such that

go.x'

lim Jlo, - o2+ 157 (0n - @)z =0.

By taking s, = (‘Pi’go)*wn € 6o g(F <l X(_g,g)) Proposition 6.8-iii) gives
¢ Id,g g,Id,g
(%, sny8) = (sn, 50 “%s).

and the limit as n — oo says

AyId7A A5Id7,\
(A8 gs,s) = (s,df,o £3).

—a, '
We finally obtain
Re s, o 5) = = (s, (of 5, + ot >>—1<invF’§ 12,)- 5 Re (s, 0}, 8N . Yp)s)
e(s, a,03—23’ 2.0 —a,M’S_z,l %st 2 e(s,w(f,8g nx,«Yp)s),
j= j
and this ends the proof. O

6.3 Boundary conditions and closed realizations of the hy-
poelliptic Laplacian

As a differential operator B(gb is defined as the Bismut hypoelliptic Laplacian on
the open set X_ UX, = X \ X’ for the metric g = g7 = lQ_gTQ + 1Q+gZQ , beR”

and the energy 6(q, p)= m . Using the fact that 2b2B(é)b is a local geometric
Kramers-Fokker-Planck operator with @ = —b, we can define its closed realization
in L2X ;ﬁ’g). By mimicking the symmetry argument used for gg,h , and ng’h ,
one deduces boundary conditions and a closed realization of B‘é’b in L2X_;F).

Additional properties for both operators are specified afterwards.
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Proposition 6.11. Let E(gb be the Bismut hypoelliptic Laplacian defined as a dif-
ferential operator on X_UX, =X \ X' for the metric $ = gT9 = lQ_gTQ + 1Q+g{Q s

b e R* and the energy G(q,p) = w. In L3(X;F) it is defined with the domain
APbY _ 20y . APs f ) 20y F
D(Bhb)_{seL (X3F)N810BY Fyly ), B sel (X,Fg)},

where gloc(B:b’FﬂX(,s’s)) is given by Definition 6.7 with € < egp, €gp > 0 small
enough.
The operator (B;bb,D(E(gb )) satisfies the following properties:

a) With D(B?]bb) c éoloc(é‘/’b,ﬁ‘g) c Wl%/f(X;I:‘g), any element s € D(ngb) admits a
trace in L?OC(X’;F|X,).

b) The operator (B ,D(E%bb)) is closed with a dense domain.

c) There exists a constant Cy, g > 0 such that the inequality
Re s, (Cpg+BI)s) = —s(s, (1+0)s)
e(s, (Co g+ B ")s) = 5 ¢s, S

holds for all s € D(BY).
d) The space 6, g(ﬁ’g) is dense in D(é‘é’b) endowed with its graph norm.
e) The '¢y = ¢ left-adjoint of B})" is nothing but (B, DB} ™).

f) The operator B’%b” commutes with X, and

D(B}") =[L%,(X;E)n DBy @ [L2,,(X;E)n D(B}")]

By L%, ,qaXGE)NDBY) = L2, 1y (X;E).

Proof. a) The definition of D(Eg)b) c éaloc(l-?(é)b,ﬁ'g| X(_“)) , while the graph norm of
S€ D(B(é’b) is nothing but [|s|l;2 + IIE(gbsll 12, combined with Proposition 6.8 which
says éoloc(ég’b,ﬁ'g| Xeew) © W23(X;Fy) implies that s — s|y, is continuous from

loc

D(B(é’b) to L2 (X';E) (with the identification (e,é) = 1)—(¥(e¢,é 7)). Therefore any

loc
element s € D(E(gb) admits a trace in L?OC(X "\F).
b) Let us check that (E¢b,D(l§(gb )) is closed. According to Definition 6.7, 2b2(]§?)bb)
is a LGKFP operator dﬁfgé with @ = —b with a formal adjoint &ififz;g . For a
sequence (Up)pen In D(B:b) such that lim, . lu, —ull;2 =0 and lim,, ||B§)bb Uy —
vllz2 =0, Proposition 6.8-iii) after a partition of unity in q, leads to

Vs € Gog(X;Fy), (s, Byun) = (267 A5 uy).
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The right-hand side converges to (2b2%)~ 1dbeg Y ,u) while the left-hand side
converges to (s’, v) . We deduce

Vs' € 6o (X 5Fy), (s, 0)=(@2b) 5 s w),
Vs' € 6o g(X;Fy), %58 u)l < Iollells e,

and Proposition 6.8-iii) implies u € &oc(éﬁb,ﬁ'g) and B(é)gu =vin L%OC(X;F) while
v e L2(X;F). This proves that (B‘/”’,D(B‘P”)) is closed.
c) For a finite partition of unity ZK 92(q) =1 we have:

By = 3 Ok()B}" 0r(q)
k=1
and we reduce the problem to supp s < X, ).
Consider the dyadic partition of unity }.7° 13 2(t) = %(t) + 22117(2(2%) =1lonR
with yo € 6;°(R) xo =1 in a neighborhood of 0 a y € €*°(Ir1,r2[) . Because B isa

b
GKFP operator we get for s € D(E‘é’b):

© L. 1 b b
—kgo @B 11 (5) = - ) Z 8i/(@) O, 15 Op; 1e (37

89(Qpjp;\, 89 (qp. y y
92k )] - 92k (zﬁ) for k=1,

1, b bbb

with 8, [x(0)1=V, [x(

=02 =0(p)P).

Hence there exists Ci ¢ 0 such that

Re (s, B‘Ps) > Z Re (r(h)s, By? xx(0)s) | = Cy lsI®.
The operator 2b2]§?)bb is a LGKFP operator for the metric g according to Defini-
tion 6.7, we can use Proposition 6.9 with

8Y(Q)pp;

M(q,p) = Moj(q,p) , Mo(q,p)=A(q,P)p;+ Moo(q,p)+ b2

and 4, j,/%g , M0 are uniformly bounded. Proposition 6.9 applied to the com-
pactly supported sz = xz(h)s of é’loc(é(gb,ﬁg) leads to

Re (s ,B(é)bsk>

v

2 2
— | IV, o Skl +1pjselys
Pj

F
IV7s sellpz +lpjselize + lskllz2
6pj

2
~C2 lIskll2

vV

2 2 3 2
IV skliZe +lpjsla | = C3 fllsilZe.,

P j

1 d
&2 &
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for any 6 > 0 and some Cg g,Ci ¢ 0. By putting all together and absorbing in a

similar way the error terms, there is a constant Cj ;> 0 such that

Re (s, (Cp g+ B"’b>s>>8b2 Zuv s12, +1pssl2, + lsI2, | 2 =5 s, (1+0)s).

GPJ 4b2

d) Let us first consider the effect of a truncation on s € D(B(é)” ): Take y € 6;°(R;R),
x =1 in a neighborhood of 0 and set y,(¢) = y(¢/n). When s € D(B(é)b), )(n(ﬁ)s €
D(B}") while

B xu(B)s = xa(0)B]" - —[Ag, PROIE
Re (s, (Cb,g+3(é)b)s)

Z IVF, slizs

k=1 Orr

[ICRRCINIEE <Cy,

n

implies that )(n(f])s converges to s in D(B?)bb) endowed with its graph norm. Now
for sy = yn(h)s the problem is reduced to the approximation of the compactly
supported element of é"loc(é(gb,ﬁ’g) by elements of Cgo’g(ﬁ‘g). By using a partition

of unity in ¢, ch{:l@k(q) =1 with

00,
0qt

|B2,0:(0)| = (0)p;
the problem is reduced to a compactly supported element sy of
gloc(é(gb7ﬁg|X( )_(\Pg,go) gloc(=52¢g0 J[”F|X( EE)

But the compactly supported element wx = ((‘Pg 80y ) lsy of éoloc(dgo M,,F|X( . E)
can be approximated by a sequence (WN n)nen € 6;°(X; F) such that

. gO’ >
lim lloy - onalizz + 1257 (N —on )2 =0

,gO)*

Then the sequence given by sy , = (‘Pg wN,, belongs to 6y, g(ﬁ'g) and converges

to sy in D(B(é)”) endowed with its graph norm.
e) By construction the isomorphism Jj ¢ :L?(X;F) — L*(X,F) given by

vs' €L2(X;F), (Jp gS, syr2=<s, S,>¢—b

and its inverse preserve €y, g(ﬁ'g) which is a core for (B ,D(ﬁ‘g”) and its L?-adjoint
(B(é)b)* . The L2-adjoint is the closure of the operator defined on €0, g(ﬁ’g) by

¥s,s' € 6og(Fg), (s,Bp"s) =(B")"s,s).
This gives

¥s,s' € 6o g(Fg), (Jy5s, B )g =y a(BY) s, 8.,
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We deduce that the ¢_; left-adjoint, (Bz”’ )P-b of ﬁ(gb satisfies
2 APb\P-b o — T-1PRPbY*
Vs € Gog(Fy), (B")P0s=dy o (B") Jpes.

Taking a test function s’ € €5°(X_ U X ;F) allows to make the integration by part
for s € 6y 4(Fy),

A ¢7 _
(s,B%s'y, , = (s, (d‘é’"dﬁ +d6d%”")s’>¢_b = ((df")d; +d6d‘é’ ®)s, 5"V,
without any boundary term. This gives
> _ -1,H * AP— .
By")'bs = J, L(BY") Jpgs =By s in D' (X_UX.,F)
while the left-hand side belongs to L2(X;F). With s € c&Lg(l—:‘g) c D(E;f’b) this

gives

(é(gb )P-bg = E(g‘bs ,

and, because €6, g(ﬁ'g) is a core for both operators, the ¢p_; left-adjoint of (]§¢b ,D(E(gb )

equals (E‘é’"’ ,D(Eg’"’ ).

f) By construction B(é)b commutes with X, as a differential operator on X_u X, =

X\X', thatisin 2'(X_uX,;F). Meanwhile Cgo,g(ﬁ'g) is left invariant by X, . This
proves

Vs € 6og(Fy), Zvlg’(gbs = B(gb 8.

Since 6 ¢(F'g) is a core for (E‘é’b ,D(B’(é)b)) , the equality holds for all s € D(E%bb) s
Definition 6.12. In L*(X_;F| x_), the operator E;a s 18 defined with the domain
DBy o) = {s € LXXF|y ), 500 € DB}

Theorem 6.13. For b € R* the operator (E%bb,D(E(é)b )) satisfies the following prop-
erties

a) It is closed and a section s € D(E(gb) has trace s|X, € L%OC(X’;F|X,), X' =0X_,
such that Sys|g) =s|x (Sv)

b) The space
6 (X 3 F)NDBy) = {s e €°X ;F), Sys|y=s|y}
is dense in D(E(é)b) endowed with its graph norm.

c) The ¢_p left-adjoint of (E(gb,D(Ez)b )) equals (E(é)_b,D(E(é)_b)).

d) There exists a constant Cyp g > 0 such that
Re (s, (Cyp +§¢b)s)2i(s,(1+@’)s)

holds for all s € D(By").
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e) The operator (Cyp 4 +§(gb ,D(E(é)b) is maximal accretive and estimate

Y94 UIVE, slize +1pjslle]

6pj
+lsllyus + |l (p);lle/||L2(X',|p1|de,)
V45|

<C} IB}" +Cp , +iMsle

holds for some C;) g 0,allAeRandall s€ D(E(é)b). In particular (E(é)b ,D(Eg)b))
has a compact resolvent.

f) Finally the domain D(E(é)b) equals

D(E(gb)={seL2(X_;F), vl s,BPse LAX_;F) S'v3|X’:S|X'}'

opy b

Proof. The statements a),b),c),d) are straightforward consequences of Proposi-
tion 6.11 and Definition 6.12 after recalling that L2(X_;F)3 s — 27 V2s,, € L2 (X;F)
is unitary.

The results of e) are deduced from the results of [Nie] for scalar Kramers-Fokker-
Planck operators. After localization in g after partition of unity and a possible
change of connection, one can write

Bl (s7e’e,) = (g (@)pjei +Ols] |ere” + ut(s]elé,)
where ./ is a global admissible perturbation (see Definition 6.1), such that
sz <CRe {s,B(é)bs).
Meanwhile the boundary conditions written
s7(0,q", p1,p) = v(~1)INIHILNTI (0 o b1 by

where v can be replaced by +1 are the ones considered in [Nie]-Theorem 1.1.

Finally note that the a priori condition, V¥ s s‘II D jsf € L2(X_;C%) is actually pro-
;

vided by the integration by part d). The s]ubelliptic estimates and the maximal
accretivity proved in [Nie] for scalar Kramers-Fokker-Planck operators, which is
stable under admissible global perturbations .# while adapting the constants in
the inequalities, are thus valid for (B? ,D(B(é)b ).

f) Clearly

D(Egb)c{seLz(X_;F), Vi, s, BYse LAX_;F) SAvs|X’:s|X'}'

opq h

For the reverse inclusion, the condition s € gloc(Bg’b ,F| X, 0]) N Erpe(VF s ,F| X, 0])
—¢, m —¢€,

and Lemma 6.6 imply that s admits a trace along X' =dX _ .
By using

78:80\—-1HPb \§y8:80\ _ 80K
(PEE B (PE20), = 50"
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and the fact that </ fg’(l)d’g % is a differential operator with € coefficients acting on

sections of the €*° vector bundle F', the jump formula says that w., = (‘i’i’g Mg
satisfies
I I .
AL ey = AL W |y g in DX,

while the right-hand side belongs to L2

loc

X(-ee);Flx,_, ). With € < €4 small
enough Lemma 6.4 implies ’

go,1d,g0 _ 80,K,Y
Wey € gloc('gf_b,() ’F|X(_E’E)) - éal()c(&z{—b F|X(—s,£))

P
or
Sev € BlocBY’ Fylx )+ By'sev=(By")ev € LAX;F).
Finally s, € DB{") is the definition of s € D(B}"). O

The result of Theorem 6.13-e) can be translated for the operator E’%bb after
recalling A
D@B}") =L, (X;E)nDB) e L2, (X;E)nD(B")

o

and writing s = S, +S,44. Although only s,, has been treated, s,44 actually enters
in the same framework after replacing the unitary involution v of f|g: with —v.

Corollary 6.14. The results of Theorem 6.13-e) hold, mutatis mutandis, for the
operator (B(é)b ,D(E(é)b ).

The summary about “cuspidal semigroups” (terminology introduced in [Nie])
in Subsection 6.1 applies now to (E(gb,D(E(gb)) and to (B(pb,D(B(gb)) with the expo-
nent r=1/4.

Corollary 6.15. For b € R* and Cp g > 0 large enough, the operators (A = Cp g +
Egbb ,D(E(é)b )and (A =Cpg +B% ,D(B(gb )) are maximal accretive and their resolvent
are compact.

Their spectrum is contained in

{z €C,Rez= Cg,lgdm 2)1/4} .

If vy g is the contour {z eC,Rez= ﬁ <Imz >1/4} oriented from +ioco to —ioco,
8

the semigroups are given by

e—tz

1
Vt>0,e_tA:f dz.
2inJy,,z-A

Those semigroups satisfy in particular e *4 € D(AN) for any t > 0.
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6.4 Bootstrapped regularity for the powers of the resolvent
and the semigroup

The #3(X_;F) (resp. W1/3(X;ﬁ'g)) global regularity estimate of 6.13-e) (resp.
Corollary 6.14) for s € D(Eb) (resp. s € D(B(é)b)) does not correspond to the max-
imal hypoellipticity result, s € #%3(X;F) obtained by Lebeau in [ ] in the
smooth case without boundary. As pointed out in [Nie] it is related to the extrin-
sic curvature of 0@ and it is not yet known whether it can be improved. However
the estimates of Theorem 6.13 and Corollary 6.14 suffice to get higher regularity
estimates for high enough powers of the resolvent and subsequently for the semi-
group.

We start with weighted estimates which do not use any other regularity proper-
ties than the one stated in Theorem 6.13 and Corollary 6.14.

Lemma 6.16. Let b € R* and set A = E(gb or A= B‘é’b . For any n € N, there exists a

constant Cy, p o > 0 such that

O C+A YD, A+OVHP)TC+A) N p)"
and  (P)P(C+A) (1+0)*pyC+A)!

are bounded forallm,0<m=<nandall C=C,p 4.
Finally for any t >0 and any n €N, (1+6)"? (p)Ze'tA is a bounded operator.

Proof. We focus on the case A = Eg’b and the case A = E‘é’” can be recovered by

symmetrization like Corollary 6.14.

2
With 1+6 = 2% and

n—-1
PUC+A) " = [[(p) M(C + A H(py, M1
k=0

all the results are consequences of the boundedness of (1+0 )V2¢ pg'(C +A)1 (g™
for C = ém,b,g = C'm—l,b,g .
Take u € €°(X_;F)nD(B}"), and write with (C + A)u = f

A
(C+AYP) " u = ()" f + 1= (p)g " Tu.

It becomes
(C+A+ M, j(q,p)Vop, + M) D)™ =DV f

where ./, j, My, are symbols of order 0 according to Definition 6.1. With the
integration by part of Theorem 6.13-d), the operator ., = Mm, j(q,p)Vop; + Mm
is a relatively bounded perturbation of A with infinitesimal bound. Therefore for
C:= C’m,b,g < C’m_l,b,g with C’m,b,glarge enough, (C + A + /) is maximal accretive
and we get the uniform bound

1
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Approaching any u € (p)¢'D(A) by elements u, in C6(‘)’°(Y_;F) ND(A) proves the
boundedness of (1 +@’)1/2(p)m(C +A)_1(p)_m for C = C’m,b,g .
The final statement about the semigroup is a consequence of

(1+0) % (pyge ™ = (1+0)*(p)g(Cra+A) " HCra +A)" e

O]

We will use Lebeau’s maximal hypoellipticity estimate (100) with various val-
ues of s € [0,1]. We already used the fact that E¢b = ,dg’ld’g or more precisely

(‘i’i’go);lé(gb(‘i’i’g )y = ,szigg ’ MY, is a LGKFP operator in order to the existence of
traces and local regularity properties in Propositions 6.8 and 6.9. Let us look
globally at those transformations. Remember that (‘I’g 80y,

isomorphism from #¢ (X(_g’g),F|X(_£’£),g0) to #¥(X (—¢e) g,g) for s € [-1,1] while

provides a continuous

a change of coordinates (g, p) — (g,x(q)p), x,x 1 € Wh(Q;L(T*Q)), induces as
well a continuous automorphism of #*(X_; ¢); F | Xeo8 o) for s € [-1,1] (see Sub-
section 3.3.2): ’

¢ Firstly the vector field Yﬁ remains expressed with the vector fiels (e;)1<j<d

which differ from the vector fields (f;)1<;< associated with the metric ggQ .

From (106) we can write

) . 0
7 = —+M -
€ aq (q)pka,,
o 4w . .. 0 " d
= 6q,l.+1“i,,j,(0,q)p FHM (@) —(1-61)(1- 51k)1“u(0 q)]p;ea~ ,

.

4

Vv~

R,

with (P88 1P, = f;, (&) 1R N(PE). = Ry and R; behaves
like p x % . Hence we deduce that

0
(\P(g gO)) l(Y )(\Pg gO)* _plaq +(g01<)” p]'fu +(g01<)” p],R

Conjugating with the change of variable K : (q, p) — (q,x(q)p) gives
-1n3s(g,80)\-1 8, _
K, (‘Pj? £ (Yg)(‘l’igo)*K* =Yy, +R

where b = %)’”p/ and R is an operator with terms like M{ k(q)p Pk a%k .
 The Levi-Civita connections for the metrics g7% and ggQ differ but we al-
ready noticed that such a change of connection adds a perturbative term
MI(q)p j+ 4y when expressed in the basis (e,é). The change of frame to
(f,f) will lead to a perturbative term /%jk(q)pjpk +J%j(q)pj +.4°4q).

* The conjugation by K :(q, p) — (q,x(q)p) changes the term A}’, into AY' with
Y/ — tK_1)/K_1
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e All the coefficients belong to €*°(X ;R) and may be discontinuous, except
the metric Y’ which coincides with ggQ along @' on both sides.

Hence we can write

R R R N80 _AY,
K PGB (V0K = bV 0 4 050+ 2P 4 p)y (M (108)
|
®0

-b,0

with

0
M =144, ) + 1o, (@A q, P = +14°(q, P) + 1a. (¢1)40q, P,
J

where .%JQ,./%B,J-,./% 0,.%_9 are symbols of order 0 on X(_.,) for the metric g(q;Q ,

and all the superscript ° recall that the GKFP operator </ ‘_gg o and the connection

vF.80 are the ones associated with the metric g(j;Q .
If o« f"g o 1 @ GKFP operator in the smooth case, the additional term

AgO _ AY,

g Do
. . . . .. £0_pY
is not an admissible perturbation according to Definition 6.1. The term —*-—*

will be absorbed by a relative boundedness with bound less than 1 argument. For
(p)?ﬂ% we have two difficulties:

¢ The weight (p) is too high but this will be handled via Lemma 6.16.

2

80,9

* The discontinuity along X’ prevent for high regularity estimates. This will
be handled by using the one dimensional product rule for Sobolev spaces

P1e WSLAR) , g e WS22(R)
$1,82 =83 = (P12 € WH(R)), (109)

s1+s2>s3+1

while noticing 1g, (¢") € W2 **(R) for all § > 0.

) NS0 _AY )
Lemma 6.17. Consider the operator P = g{(i% + Lo+ ()2, g in X () for

€ > 0 small enough. If u € W”(X(_g,g);F|X(_£ 8)) satisfies suppu < X(_¢/2,¢/2) and
(1+08) ()" ?u € WHX (e F |y, ) and (p)yg, ((Pu) € WHXF) for pe(0,1/2)
and m €N, then (p)g, uE€ W“’(X(_E,E);F|X(_g g)) for all (' €0, u+ 2/3) with

1Y el < Co gyt m [ 1L+ OV 2 (Y 2+ 1) (Pl |

Proof. Write simply (p) =(p)g,,q » O = 05° and compute

,Y/

m m Ab 2 m -m-2 m+2
P(p)"u)=<(p)"(Pu)+ —7+<p> ML) | (P) o u.
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This gives

gO_AY

5 (pY™u) = (p)™Pu) + (p)2. ' ((p)™u)

where /' has the same structure as 4 :

%/

0
[47'(q,P)+ 1a. (g AL (g, PV 5=+ 1A (g, p) + 1 (g )4 (q, )]
J

M+ 1g, (gh)

But we know
Y2t (pY™ullyn < Ch gy at,m 1L+ O 2 D)™ 2ullyn.
For u =0 this gives
I1pY> M DY ullyo < Cpy o 1y I+ (Y™ Pully0,

while for p€]10,1/2[, " < u, 1g, € W12 0w 2(R) Oppr 12—, =0y, > ", the
multiplication rule (109) leads to

Y2l Y™ ull i < Cogory ot iy 1L+ OV V2 (DY ull

In all cases (p)"u € W“(X(_g,g),F|X(_E’E)) with suppu © X(_g/2 ¢/2) solves

P-a) :
Ao+ —a (pY"w)=f
with
£y < Cogyr it [||(1 +0) 2 (D)™ 2ullyu + | <p)m(Pu)||7f/u]
for all y’ < p. But the maximal subelliptic result of Lebeau in [ 1, recalled in
(100) implies

1ODY™ )y +14DY ™ 5 < Cy g [ 1955 (DY Wl yr + D)™ |

while
Y A0
||%(<p>mu)nw < Cgoy€lOUPY™ Wl
Taking € > 0 small enough implies (p)™u € 71/”"+2/3(X(_g,8);F | X E)) for all u" < p
with the inequality written for u' = u" +2/3. ’ O

By using a partition of unity in g , while the result for u with suppu < Xp\(~¢/2.¢/2)
comes from the maximal subelliptic estimate (100), we deduce the
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Lemma 6.18. Let (E¢b,D(ﬁ(€b)) be the Bismut hypoelliptic Laplacian studied in
Proposition 6.11 for be R*. Ifu € W“(X;F'g)mD(é(é)b) satisfies (1+@’g)1/2(p)’qn+2u €
WHX;F) and (p);”(B(gbu) € W“(X;ﬁ'g) for pel0,1/2) and m € N, then (p)™u €
WD e Fx, ) for all i €10, p+2/3) with

1/2 2 >
KDY tlyminctir < C g g [ 1L+ G2 (DY 21y + 1Y BL w)lgn|

In particular (1+0%)Y2 (p)guce W'UH(X;Fg) forall u" €[0,u+ %).

Proof. As said before it is a consequence of Lemma 6.17 and the interior maximal
subelliptic estimate (100) after using a partition of unity in q .

The only thing to be recalled is the fact that (‘i’i’;’g %), and K are isomorphism of
W H-spaces only for ue[—1,1]. This explains the exponent min(1,u'). O

Proposition 6.19. For b e R* and C = Cp 4 >0, Cy 4 large enough, the operators
(ﬁ’z’b,D(ngb)) of Proposition 6.11 and the operator (E(é)b,D(E(é)b )) of Definition 6.12
the maps

(C+B")*: L2(XF) — WX Fy),

(C+B) W X Fy) — LAXF),

(C+By")*: LAX_;F) — WX ;)
are all bounded.
Proof. For m € N to be fixed later we call u = (C+Eﬁb)_m_3u0 and f = (C+B~é’b)_’”—2
and 1 = (C +1§‘é’b)—m—1uo for ug € L2(X;F) so that u,f € D(B;fb) satisfy

C+BMu=f , (C+B"f=f1.
From Lemma 6.16 we know
A+ P)ruew*X:;Fg) , (oY f e W (X;Fy).

But Lemma 6.18 applied to the pair (u, f) then implies

A+ )y PuewH (X;F,) (110)

for y' €[0,1/6) and m' = m —2. Applied to the pair (f, f1) with m replaced by m —1
it says
P e WO (xR ) for 1" €10,2/3),
and this implies
(Y™ f eWH(X;F). (111)

for m'=m -2 and y' €[0,1/6). From (110)(111) with u’ € [0,1/6), we can apply
again Lemma 6.18 with any u € [0,1/6) with m replaced by m —2. This leads
to (110)(111) with u’ € [0,1/3) and m' = m —4. By doing it once more we obtain
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(110)(111) for any u’' €[0,1/2) and m' = m —6. Applying Lemma 6.18 a last time
gives
O Suew(X;Fy).

Taking m = 6 proves that
(C+B") 573 LX(X;F) — W (X Fy)

is continuous.
The continuity of (C +BZ)” )2 UX ;ﬁ'g) — L%(X;F) is deduced by duality after
recalling that the L2-adjoint (B(é)b )* is a GKFP operator with the same properties

as E;bb )

The property for E(gb is deduce from the fact that (C +B‘é’b )1 L2 (X;F)— L2, (X;F).
O

Corollary 6.20. For b e R*, k € N and t > 0 the following operators are well de-
fined and continuous:

QB B LA F) — LAXGF),
ar B Vo By . L2(XF) — LAX:F),
e (BUYre Py LAX_iF) — LAX_:F),
2" BYe B LAX )~ LAX_;F).

By taking the ¢y left-adjoints the reverse products, initially defined on D(d a.h)

D(&lgl’h), D(ng’h) or D(ng)h), extend as bounded operators in L2(X;F) and L2(X_;F).

Proof. It suffices to write for A = B‘é’b Ake A — (C+A) AR (C+A) *(C+A)H9e A =
ARC+A)H(C + A9 tA(C + A)? owing to Corollary 6.15, and to notice that

WHX;Fg) = D(d, z)n D@’ ),

while Elajg and d(ﬁjg are continuous from L2(X;E) to 7//_1(X;Fg).

The result for Fé’b , Eg,h , ng}h are again deduced from the general construction
with the parity with respect to Z,, . O

6.5 Commutation property

We now prove the commutation of the differential and Bismut codifferential with
the resolvent of the hypoelliptic Laplacian.

Proposition 6.21. Let (E:b,D(E(gb)) be the operator of Definition 6.12 and Theo-

rem 6.13 for b e R*. Let (Eg,h’D(gg,h) and (E%

g,b’D(EZ,bb))’ be the closed realizations
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of the differential and Bismut codifferential studied in Proposition 4.10 and Propo-
sition 5.9.

7% — -
The semigroup (e_tBh )¢=0 preserves on D(dg ) (resp. D(dzf’h)) with

— — 7% 7P —
VseD(dgyp), dgpe By s=e By dgps

_ . 7% % —,
resp. Vse D(d(é)b), dgf’he By’ g = ¢ By d:f’hs ,
forall t =0.
Hence for any z € C\ Spec(Fé)b) the following holds
— By -1 —
VseD(dgy), (z —Bgf’h) s€D(dgp)
and Eg’h(z —E(gb)_ls =(z —E(é)b)_lgg,hs ,
resp. Vse D(Ez,bh) , (z —E(é)b ) lse D(Eﬁf’h)
and EZ%(Z —Eg)b)_ls =(z —E(gb)_lgz’bbs.
Although we seek properties of Fé)b , it is again more convenient to work with

ﬁ(é)b and then to translate the results via the parity w.r.t X,. We start with a
lemma.

N R A R
Lemma 6.22. Let 6y 4(Fg), 9, yi and eTOUb@; of be the spaces introduced re-
spectively in Definition 3.3, Proposition 4.10 and Proposition 5.9. For all w € @g,vf

A N
(resp w € eTOGb@Zg of ) the following properties hold.:

3 514 3 Hb 21 3
weD(dg,b)ﬂD(Bbb) dg,bweD(Bh”) Bh”weD(dg,h)
and B:b&g,hw = &g,héﬁbw,
Db Adb 3bb by Adb ybb
resp. a)ED(dg’h)ﬁD(Bh ) dg’hweD(Bh ) Bh weD(dg, )
and B? d%w=a" B% .
gh’h ghgb

Proof. By definition @g,vb c ‘éo,g(ﬁ’g) c D(oAlg,h) ﬂD(B(gb) while Proposition 4.10

ensures dpw = dyw € 6o.4(Fg) < D(B(é’b) when w € D g.vh - Additionally as differ-

ential operators on X_UX, =X\ X', we know
PP _ 3 (7. 3P P 7.\ _ Dby 7.
thb _dh(dhdﬁ +d6 dh)_Bh dh‘

b

The question to be answered is Bb

w € D(c?lg,b) when w € @g’vf. For w € @g’vf ,
write

APb _1: 1 Ao _ AP
(t', By dgpw) = Hm(Ie\—e,e1(q ), B dyw) = (', dg,Bhbw|X\X/>
eL2(X;F)

for t' € 6 o(X ;ﬁ'é) , by using the duality product

<t,8>=f (¢, 9 F, dox(x).
X
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It implies
Vi e Gog(XiFy), [t dyBLw)] g x| < ClIENze.

In particular when we take t' € €5°(X5;F'), it says that uz = B(é)bw| x, belongs to
é"loc(dG;F) and jax. us is well defined.

By working in M, as we did in the proof of Proposition and taking test sections in
G (Mg (—ce); AT* Mg ®my(f')) which make a subset of %o,g(ﬁé) , we finally obtain

that u :B(gbw =1x_u-+1x, u, belongs to D(&g,h)-

A ~ ~ A N
When w € eToab@; oy We know dgbhw € €og(Fg) C D(B(é’b) and we want to prove

f

ﬁ(é)bw € D(&lgbh) . By taking o’ € .lA)g’vf we write

(w’,B%bb &Zf’hwd,_b = (&g,hég’bw’, W, = (ﬁg’b&g’bw’, W, = @g,bw” E‘é’bw)gb_b

where all the identity make sense for the closed operators by the first result. But

the left-hand side implies that v = ﬁ(gbw e L%(X ;ﬁ’g) satisfies

V(U/ € @g,vf 5 \(C,\ig,[]w,, v>¢—b| = C'”('U,”L2 .

But since @g,vf is a core for d 2,h and the ¢_; right-adjoint of d 2.h 18 &gbb we deduce
v=B"eDd’,)and
Ady JPb . 396 HPb
B dg,hw —dg,th w
]

Proof of Proposition 6.21. We work with ﬁg’b ,d g, and &be . For sg € LA X;F),

A _:B% A
Corollary 6.20 says that dgpe "0 so = dgps; is a €1(10,+ool; LA(X; F)) function
with 4 ) )
N _+R%b A N _+R%b A

b g’f).BA(é)bSt.

A R
For w € e—_?na_b@; of and ¢ >0, Lemma 6.22 allows to write

W, dgnBys)g = BP0 sy, =0 PBY W s, = By dgpside
This implies in particular

B0, dgps)| < Cillo'lz2.

b

Ao ~
/ = !

Y ~b
weEe-bo_pP Vi’

A " A .
But &' g9 is dense in %o,g(Fé) while e—_(l)va_b is continuous from % 4(F';) to
60.¢(Fg) and 6y o(F,) is continuously and densely embedded in D(B(é)‘b). Since

B? is the ¢_, right-adjoint of BY~* we deduce
b b

A

N A d by A
¥t>0, dgns;eD(B)") and aalg,f,st:B;)”bdg,hst.

Since for tg >0, élg,hsto € L?(X;F) by Corollary 6.20, this implies

N —(+—+VBPP
Vt>tg>0, dgpsi=e (t=t0)B,, dgpStos
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or
rPb 234 234
~ —tB —(t—t0)B? A —toB
Vt>tg>0, dgpe " sp=e (t=to)B, dgple 0 s0).

N _+-p%
Let us assume now sg € D(dg ) and take the limit as £ — 0" . From lim; .o+ e toBy, S0 =

soin L2 X:F), Corollary 6.20 yields
APb

A(pb A¢b
. —(t—tg)B ~ —toB —tB
lim e (t=to)B,, dg,h(e 05 sp)=e b dg’[)S()
to—0*

We have proved that for s € D(d )

A0 A0
A —tB —tB % A
Vi>0, dg,he b sp=e 9 dg,bS(),

while the result is obvious for £ = 0.
By Ay 1 Ay —tB)? . - 7 By
Becausee Y dg b and dg he b are the ¢, left-adjoints respectively of dgpe ™9

. pP-b A N N
ande P d g.h » the same result holds when d , is replaced with dgbh .

Finally the commutation with the resolvent are proved after writing for Re z <
—C with C > 0 large enough

(E(gb —2)7 L :f
0

and by analytic continuation for the extension to any z € C\ Spec(B(é)b ). O

+00

_#B% _
e HB,"~2) dt,

6.6 PT-symmetry

While working with the metric 7% ( gM Qg gATR g gT) without the weight ( p)fIVV ~Nu
Bismut in [ ] establishes an important property for the spectral analysis of
the hypoelliptic Laplacian: the PT-symmetry or more precisely a formal version

of it. Let us first recall Bismut’s construction in the smooth case and then we

will show how this can be adapted easily to our case with interface or boundary

conditions. Remember

¢b:gTQ -bld) (g -bId o1 O ) (o Y
bld 0 pld 0 | 0 Yo 7|1 LTQ)T( 1 Lo

The tangent bundle is endowed with the new metric

gT®  pId g bld
TX
_ = 112
8 (bId 2b2gT Q) (bId 2b2g71 (112)

or by calling pU the vertical component of U
U, U>ggx = (nx,+U,7x,:U) grq +2b(nx U, pU) 117 + 20%(pU, pU) greq -
Meanwhile the dual metric is given by

R 9g-1 _Ud
EZ ©= ( gId P ) . (113)
b 2
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This defines a new metric 92 = g;)\T*X ® n;‘((gf) which is uniformly equivalent to

n}}(gAT*Q ® gATQ ® gf) . In particular the sesquilinear form
(s8) ZfXQZ(S,S') dvx(x) (114)
b

is continuous on L%(X ;F,n;‘((gAT*Q ® g9 @ gf) and it is neither continuous nor
everywhere defined on L%(X;F,gF). However it is well defined on G, (X F)
which is dense in all the considered L2-spaces, in the smooth case. An additional
modification is used by introducing the maps Fp : TX — TX and its transpose
Fy, :T*X — T*X given by the matrix

Id7g 2bg~! - Id7+g 0
B = B = . 11
k ( 0 -Idpeg) ° "° (208! -lIdpg (115)

We need also the maps H : TX — TX and its transpose H : T*X — T*X and
r:X — X given by

Idrg 0 . [ldpvg O
H = H = = — .
( 0 _IdT*Q) ’ ( 0 _IdTQ) ’ r(q’p) (q, p)

After tensorization of F, , H , the map uy : G, (X;F) — 65°(X; F) is defined by
ups(q,p) = Fps)q,—p)=r.HFps. (116)
Then the hermitian form $), is defined on 6€;°(X; F) by

(s,8"g, = <ubs,8'>gz. (117)

From r*H(QZ)_1 = (gZ)‘lr*FI, and the relation

1s [1d 0 \[2g7t ¥\ W o o ¥}
H(gl) 'y = b = b=y
(g,) " Fs (0 —Id) ( “1 g Jlgpet —1a) T (-1 £ ¢

we deduce

(s, s')ﬁb = (s,r*s')(pb.
Finally since dyr. = r.dy, the $; formal adjoint of dj is d(é’” and since $)j is
hermitian, (dy + dg’b) and its square B;)b” are formally self-ajoint for £, .

The piecewise €*° and continuous version for the vector bundle ﬁ'g for the metric
279 is defined as follows.

Definition 6.23. The map 4, and hermitian form $ g on Cgo’g(ﬁ’ ¢) are given by
the same formula as (116)(117) after replacing gT@ by 7@ = la_gTQ + 1Q+gZQ in
(112)(113)(114)(115).

By construction i : Cgo,b(ﬁ'g) — Céo,b(ﬁ'b) and it preserves the parity with re-
spect to X, , while 9 ¢ well defined on ‘go,g(ﬁ’b) and the direct sum %o,g,ev(ﬁ'g) @
6o, g,odd(ﬁ'g) is 9 ¢ orthogonal. We deduce the following proposition.

94



Proposition 6.24. The hermitian form f)g is well-defined and continuous on
(p)gPLAX;F).

The identity

(118)

By's,sg, = (s, By,

holds for all s,s' € (p);‘mD(B(é)b) c D(Bg)b) N (p);‘mLz(X;F).
As a consequence Spec(éfb) is symmetric with respect to the real axis.

Finally the same results hold for (E(gb,D(E(gb )) after using the restriction $y of f)b
to Flx_.

Proof. The map (p);d/2 is continuous from L2(X;F,g%) to LZ(X;F,n}*((gAT*Q ®
gATQ ®gf)) while $; is continuous on L2(X;F,n;}(gAT*Q ®gATQ ®gf). All those
spaces contain 6o g(X ;ﬁ’g) as a dense subspace.

The set 6p (X ;ﬁ’g) is dense in (p)'d/ZD(Bz’b). The continuous embedding of

(p);d/zD(B(é)b) comes from the fact that (p)‘mB(é)b (p);d/z is a relatively bounded
perturbation of (B®* ,D(E‘é”’) with infinitesimal bound . The identity (118) is valid
for s,s' € 6o o(F) and by density extends to s,s’ € (p);d/zD(B(é’b).

Let us consider the spectral problem. We know that Spec(B(é)b) is discrete. Ad-
ditionally because (Cy +B(é)b) is maximal accretive we know that for all z € C,

(é‘é’b -2)(1+C, +Bg’b )~! is a Fredholm operator with index 0 and A € Spec(é%b”) iff

ker(B% — 1) # {0}. When A is an eigenvalue of ﬁ(gb there exists s) € D(B(é)b) such
that
(C +B;§’b)s;t =(C +A)s;.

By chosing C > 0 such that (C +BZ)”) is invertible, we obtain s € (C +B~é’” ) "L2%(X;F)c
(p);”D(B(é)b) for any n € N by Lemma 6.16. Hence we can use (118) which implies

Vs'€ 6o g(Fg), (s1,(B? —Dshg =0.

But ), is also continuous on (p) “¢L3(X;F)xL*(X;F) while s, € (p) ?L?(X;F) and
the density of Cgo,g(ﬁ' ) in D(E’(é)b) . Finally as a non zero element of (p) ¢L2(X;F)

there exists s} € L?(X;F) such that (s, sh) 6, 2 0- Therefore (Bg)b — 1) is not onto

and A€ Spec(B:b) . O
Remark 6.25. The symmetry with respect to the real axis of Spec(B’?]bb) and Specﬁ(gb
are not the only issues of Proposition 6.24. Actually the relation (118) is a crucial
point while studying the spectrum in a neighborhood of 0 in various asymptotic
regimese.g. b — 0% (see [She][ 1/ J). In particular those asymptotic regimes
correspond to cases where the spectral spaces concentrate asymptotically to the ker-
nel of the scalar vertical harmonic oscillator hamiltonian, multiples of a scaled
gaussian function in p, on which the restricted hermitian form )4 is positive def-
inite. This property with (118) helps to reduce the asymptotic spectral analysis
of the hypoelliptic Laplacian on X = T*Q to the the more standard asymptotic
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spectral analysis of the Hodge or Witten Laplacian on @ . We refer the reader to
[ J-Proposition 15.2 for a short abstract version of those arguments.
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