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Approximate viscosity solutions of path-dependent PDEs and Dupire's vertical differentiability

We introduce a notion of approximate viscosity solution for a class of nonlinear path-dependent PDEs (PPDEs), including the Hamilton-Jacobi-Bellman type equations. Existence, comparaison and stability results have been established under fairly general conditions. It is also consistent with the notion of smooth solution when the dimension is less or equal to two, or the non-linearity is concave in the second order space derivative. We finally investigate the regularity (in the sense of Dupire) of the solution to the PPDE.

Introduction

The main objective of the paper is to study nonlinear path-dependent PDEs (PPDEs) of the form -∂ t v(t, x) -F t, x, v(t, x), ∇ x v(t, x), ∇ 2 x v(t, x) = 0, (t, x) ∈ Θ, (1.1) where Θ = [0, T ] × C([0, T ]) or Θ = [0, T ] × D([0, T ]), C([0, T ]) being the space of all R dvalued continuous paths on [0, T ], and D([0, T ]) being the Skorokhod space of all R d -valued càdlàg paths on [0, T ]. In the above, ∂ t v (resp. ∇ x v and ∇ 2 x v) represents the horizontal derivative (resp. first and second order vertical derivatives) of v in the sense of Dupire [START_REF] Dupire | Functional Itô calculus[END_REF], see also Section 2.4 below.

Extending classical PDEs, PPDEs have various applications in the study of dynamic stochastic systems in non-Markovian settings (hedging/super-hedging of path-dependent options [START_REF] Dupire | Functional Itô calculus[END_REF], path-dependent optimal control problems and stochastic differential games [START_REF] Pham | Two person zero-sum game in weak formulation and path dependent bellman-isaacs equation[END_REF], etc.). Pioneering works, such as [START_REF] Dupire | Functional Itô calculus[END_REF][START_REF] Cont | Functional Itô calculus and stochastic integral representation of martingales[END_REF][START_REF] Peng | Bsde, path-dependent pde and nonlinear feynman-kac formula[END_REF], investigated the existence of classical solutions, but it is generally very hard to obtain the required regularity of solutions, even for the most simple path-dependent heat equation. For this reason, much effort has been devoted to introduce appropriate weak notions of solution.

In a first stream of literature, see e.g. [START_REF] Ekren | On viscosity solutions of path dependent pdes[END_REF][START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part i[END_REF][START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part ii[END_REF][START_REF] Ren | Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent pdes[END_REF], the authors investigate a relaxed notion of viscosity solutions for PPDEs. As for the classical notion of viscosity solutions for PDEs on R d , see e.g. [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], they consider families of smooth test functions and use the derivatives of the test functions to define the viscosity supersolution and subsolution properties. However, in contrast to the pointwise tangent property used in the classical setting, their definition appeals to an optimality property with respect to a stopping problem under a nonlinear expectation. For fully nonlinear equations, they require F to be non-degenerate as well as a strong uniform continuity conditions (which for instance are not satisfied in the case of linear equations with path-dependent coefficients). In [START_REF] Ren | Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent pdes[END_REF], the non-degeneracy condition has been removed, but more restrictive continuity conditions on F are needed. More recently, [START_REF] Cosso | Crandall-lions viscosity solutions for pathdependent pdes: The case of heat equation[END_REF], followed by [START_REF] Zhou | Viscosity solutions to second order path-dependent Hamilton-Jacobi-Bellman equations and applications[END_REF][START_REF] Cosso | Pathdependent Hamilton-Jacobi-Bellman equation: Uniqueness of Crandall-Lions viscosity solutions[END_REF], introduced a notion of Crandall-Lions viscosity solutions, and investigated the use of Gauge functions for HJB equations.

Another approach consists in approximating the generator F of the PPDE by a sequence (F n ) n≥1 , for which strong existence holds, and then define the limit of the corresponding sequence of solutions (v n ) n≥1 as a solution of the original PPDE. This is the case of the notion of strong viscosity solution studied in [START_REF] Cosso | A regularization approach to functional itô calculus and strong-viscosity solutions to path-dependent pdes[END_REF], according to which a function v is called a strong viscosity solution of the PPDE with generator F if there exists a sequence (v n , F n ) n≥1 that converges to (v, F ) pointwise, and each v n is a smooth solution to the PPDE with generator F n . Existence and uniqueness of strong viscosity solutions was proved for a class of parabolic semilinear PPDEs, which can be expected because of their link with BSDEs and the associated stability results. Finally, in [START_REF] Ekren | Pseudo-markovian viscosity solutions of fully nonlinear degenerate ppdes[END_REF], the authors introduced a notion of pseudo-Markovian viscosity solutions for fully nonlinear PPDEs by considering a sequence of PPDEs with generators F n associated to paths frozen up to the exit time of certain domains. In their case, existence in the fully nonlinear setting relies on the convergence of a suitable sequence of functions, which is a-priori not trivial.

Let us also mention the notion of Sobolev solutions investigated in [START_REF] Peng | G-expectation weighted sobolev spaces, backward sde and path dependent pde[END_REF] for a class of PPDEs, which uses global properties to define a solution, in contrast to the local property required in the definition of classical solutions or viscosity solutions.

In this paper, we introduce a novel weak notion of solutions in the same vein as the strong viscosity solutions of [START_REF] Cosso | A regularization approach to functional itô calculus and strong-viscosity solutions to path-dependent pdes[END_REF] and the pseudo-Markovian viscosity solutions of [START_REF] Ekren | Pseudo-markovian viscosity solutions of fully nonlinear degenerate ppdes[END_REF], in the sense that it is defined by an approximation argument. Similar to [START_REF] Ekren | Pseudo-markovian viscosity solutions of fully nonlinear degenerate ppdes[END_REF], we consider PPDEs with fully nonlinear, and possibly degenerate, generator F , which can exhibit a non-uniformly continuous linear part. As in [START_REF] Ekren | Pseudo-markovian viscosity solutions of fully nonlinear degenerate ppdes[END_REF], our construction is based on a finite dimensional approximation of paths, that are frozen on some time intervals. The difference is that we do not consider a sequence of (possible infinitely many) hitting times to define the frozen-path PPDE, but use a simple sequence π = (π n ) n≥1 of discrete time grids on [0, T ], with π n = (0 = t n 0 < • • • < t n n = T ), and then freeze the path argument on each time interval [t n i , t n i+1 ) to obtain our sequence of generators F n , see (2.7) below. Importantly, the path argument is not only frozen, it is also approximated by a piecewise constant or a piecewise linear approximation. For PPDEs having a probabilistic interpretation in terms of BSDEs or optimal control problems, this amounts to replacing in the coefficients the original diffusion process by the corresponding piecewise constant or piecewise linear approximation. From this point of view, this definition is very natural and simple. The fact of freezing the path allows us to reduce to a finite dimensional setting, on which standard viscosity solution techniques can be applied. The fact of making an additional approximation of the original path allows us to view the corresponding PDEs as PDEs with a finite number of parameters on which a-priori regularity estimates can be obtained.

In this setting, we say that a function v is a π-approximate viscosity solution of the PPDE if it is the limit of the (classical) viscosity solutions (v n ) n≥1 associated to the sequence (F n ) n≥1 , see Definition 2.6 for a precise statement. Without defining explicitly a notion of solution, this approximation approach was already used successfully in [START_REF] Bouchard | A C 0,1 -functional Itô's formula and its applications in mathematical finance[END_REF] to obtain C 1+αtype estimates on the candidate solution of a specific class of fully nonlinear PPDEs. We show in this paper that it can actually allow one to consider fairly general situations.

Using this definition, the uniqueness and comparison are direct consequences of the comparison principle of classical PDEs. As for the existence, it is easy to obtain for a class of semilinear PPDE or HJB type equations, where the solution has a probabilistic representation by the path-dependent BSDEs or optimal control problems. In fact, it is generally enough to assume some uniform continuity conditions on the coefficient functions, and then to apply the standard stability results of the BSDEs and SDEs, c.f. Proposition 2.9. However, it becomes more challenging to prove existence in the general nonlinear case, without the help of a probabilistic representation. This is our main result, Theorem 2.12. It is proved in a rather general setting ensuring that comparison and existence holds at the level of the path-frozen finite dimensional PDEs, and only uses viscosity solution techniques. In particular, the generator can be degenerate and does not need to be concave when d > 2, an assumption made in [START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent pdes: Part ii[END_REF]. Notice also that existence of Crandall-Lions solutions is proved in [START_REF] Cosso | Crandall-lions viscosity solutions for pathdependent pdes: The case of heat equation[END_REF][START_REF] Cosso | Pathdependent Hamilton-Jacobi-Bellman equation: Uniqueness of Crandall-Lions viscosity solutions[END_REF][START_REF] Zhou | Viscosity solutions to second order path-dependent Hamilton-Jacobi-Bellman equations and applications[END_REF] only for path-dependent HJB equations.

At the same time, we are able to show that a classical solution of the PPDE is an approximate viscosity solution, when d ≤ 2 or the non-linearity is concave (or convex) in the second order spatial derivative. In particular, our result could induce natural numerical schemes for the class of nonlinear PPDEs, with an explicit convergence rate, see Remark 2.13.

Finally, another advantage of our approximation technique is that it allows one to obtain C β,1+α -type regularity estimates (in the sense of Dupire) for solutions to PPDEs, a subject which does not seem to have been investigated so far. In particular, this enables to use the C 0,1 -functional Itô's formula of [START_REF] Bouchard | A C 0,1 -functional Itô's formula and its applications in mathematical finance[END_REF], see this reference for a specific application in mathematical finance. In this paper, we show that the solution inherits the C 1+α -regularity of the coefficients and the terminal condition. For semi-linear equations, the results can actually be proved by purely probabilistic arguments. For fully nonlinear equations, the approximation approach is fully exploited. In this case, we need to assume additional structure conditions, and stay in the context where the generator is concave with respect to the Hessian matrix or the dimension does not exceed 2. The (very difficult) question of whether a uniform ellipticity condition can regularize the solution is left for future research.

The rest of the paper is organized as follows. In Section 2, we introduce our notion of π-approximate viscosity solutions to the PPDE, and provide some comparison, existence and stability results, in a fairly general fully nonlinear setting. Then, in Section 3, we provide some first regularity results on the solutions to the PPDE.

Approximate viscosity solution of path-dependent PDEs

In this section, we first define our notion of approximate viscosity solution, after introducing some general notations. Its very definition implies that comparison holds under standard assumptions. We next show how it is naturally connected to optimal control problems, and then provide an existence result as well as a first stability result in a fully nonlinear setting. Finally, we show that the notion of approximate viscosity solution is consistent with the notion of classical solution.

Preliminaries

By the parabolic and local nature of the PPDE (1.1), it is natural to consider the case where its coefficients are defined on the space C([0, T ]) of R d -valued continuous paths on [0, T ]. A solution should then be defined on [0, T ] × C([0, T ]). On the other hand, when one investigates the vertical regularity of this solution in the sense of Dupire, one needs to consider paths with jumps, and hence it is more convenient to define it on the space D([0, T ]) of R d -valued càdlàg paths on [0, T ]. For this reason, we will consider two cases Ω = C([0, T ]) or Ω = D([0, T ]) equipped with two different metrics.

For both cases of Ω, given x ∈ Ω, we define its uniform norm by x := sup s∈[0,T ] |x s |, and

x t∧ := (x t∧s ) s≤T for t ≤ T , [x] n i := (x t n j ) j=0,••• ,i for i ≤ n, in which the later is defined with respect to a given increasing sequence of discrete time grids π = (π n ) n≥1 , i.e.

• π n = (t n i ) 0≤i≤n with 0 = t n 0 < • • • < t n n = T , for each n ≥ 1, • π n ⊂ π n+1 , for each n ≥ 1, • |π n | := max i<n |t n i+1 -t n i | -→ 0 as n -→ ∞.
For each n ≥ 1, we introduce 

η n : [0, T ] -→ [0, T ] and η + n : [0, T ] -→ [0, T ] defined by η n (t) := n-1 i=0 t n i 1 {[t n i ,t n i+1 )} (t) + T 1 {T } (t) and η + n (t) := n-1 i=0 t n i+1 1 {(t n i ,t n i+1 ]} (t). ( 2 
:= ρ T , ρ t (x, x ′ ) := x t∧ -x ′ t∧ . (2.2) Further, for each n ≥ 1, t ∈ (t n k , t n k+1 ], k = 0, • • • , n -1, we define Π n t : Ω -→ Ω by Π n t [x] s := k-1 i=0 1 {s∈[t n i ,t n i+1 )} t n i+1 -s t n i+1 -t n i x t n i + s -t n i t n i+1 -t n i x t n i+1 + 1 {s∈[t n k ,t)} t -s t -t n k x t n k + s -t n k t -t n k x t + 1 {s∈[t,T ]} x t , s ∈ [0, T ].
Namely, Π n t [x] is the linear interpolation of the points (x

t n 0 , • • • , x t n k , x t ). By convention, let Π n [•] := Π n T [•].
Case II: Ω = D([0, T ]). Let Λ t denote the collection of all strictly increasing and continuous bijections from [0, t] to [0, t], I t : [0, t] -→ [0, t] be the identity function, and µ be a finite positive measure on [0, T ] with atoms at finitely number of points in π n for some n ≥ 1. We next define the metric ρ and pseudometrics (ρ t ) t∈[0,T ] on Ω by

ρ := ρ T , ρ t (x, x ′ ) := inf λ∈Λt λ -I t + x t∧ -(x ′ • λ) t∧ + t 0 x s -x ′ s µ(ds). (2.3) 
For each n ≥ 1, t ∈ (t n k , t n k+1 ], k = 0, • • • , n -1, we define Π n t : x ∈ Ω -→ Π n t [x]
∈ Ω as the piecewise constant approximation of x:

Π n t [x] s := k-1 i=0 1 {s∈[t n i ,t n i+1 )} x t n i + 1 {s∈[t n k ,t)} x t n k + 1 {s∈[t,T ]} x t , for all s ∈ [0, T ],
and by convention Π n [•] := Π n T [•]. Hereafter, we shall consider the two cases simultaneously and only write (Ω, ρ), unless we need to specialize to Ω = D([0, T ]) as in Section 2.4 and Section 3 below. Remark 2.1. (i) In the case that Ω = D([0, T ]) and without the integral term w.r.t. µ in (2.3), the metric ρ is exactly the Skorokhod metric. Since the map x -→ T 0 x t dt is not uniformly continuous under the Skorokhod metric, we add the integral term in (2.3) to make it more general for later uses. At the same time, to ensure that Ω is a separable space under ρ, the measure µ is assumed to have finitely many atoms. Moreover, the atoms are assumed to be in π n , for some n ≥ 1, because of our approximation procedure. This is a constraint on the choice of µ, or on the choice of the discrete time grids π. We also notice that, in this case,

ρ(x t∧ , x ′ t∧ ) ≤ ρ t (x t∧ , x ′ t∧ ) = ρ t (x, x ′ ) ≤ 1 + µ([0, t]) x t∧ -x ′ t∧ .
(ii) In both cases of the definitions of (Ω, ρ, Π[•]), it is easy to see that

ρ t Π n t [x],
x t∧ -→ 0 as n -→ ∞, for all x ∈ Ω t := {x ∈ Ω : x = x t∧ }.

In particular, the space (Ω t , ρ t ) is separable.

Definition of approximate viscosity solutions

Let S d denote the space of all symmetric d×d-dimensional matrices, and Θ := [0, T ]×Ω. We say that a functional u : Θ -→ R is non-anticipative if u(t, x) = u(t, x t∧ ) for all (t, x) ∈ Θ. We are given a generator function F : [0, T ]×Ω×R×R d ×S d -→ R, which is non-anticipative in the sense that F (t, x, y, z, γ) = F (t, x t∧ , y, z, γ) for all (t, x, y, z, γ) ∈ [0, T ]×Ω×R×R d ×S d , and a terminal data g : Ω -→ R. Throughout the paper, we study the following PPDE:

-∂ t v(t, x) -F t, x, v(t, x), ∇ x v(t, x), ∇ 2 x v(t, x) = 0, (t, x) ∈ [0, T ) × Ω, (2.4) 
with terminal condition v(T, x) = g(x), x ∈ Ω.

(2.5)

Our definition of approximate viscosity solutions is based on the approximations of the path x, through the operator Π n defined above, which allows us to reduce to a finite dimensional setting. Let us first introduce some functional spaces. Given L > 0, let

C L := g : Ω -→ R : g is continuous w.r.t. • and satisfies sup x∈Ω |g(x)| 1 + x ≤ L ,
and let LSC n L (resp. U SC n L ) denote the collection of non-anticipative functions f :

Θ×R d -→ R satisfying, for all (t, x, x) ∈ [0, T ] × Ω × R d , |f (t, x, x)| ≤ L 1 + x + |x| and f (t, x, x) = f t, Π n ηn(t) [x], x ,
and such that (t, x) -→ f (t, x, x) is lower-semicontinuous (resp. upper-semicontinuous) on each domain [

t n i , t n i+1 ) × R d , i = 0, • • • , n -1. Then, it is clear that a functional f ∈ LSC n L ∪ U SC n L can be represented in the form f (t, x, x) = n-1 i=0 f i t, [x] n i , x 1 [t n i ,t n i+1 ) (t) + f n [x] n n , x 1 {t n n } (t). (2.6)
for a sequence of functions

f i : [t n i , t n i+1 ) × (R d ) i+1 × R d -→ R, i = 0, • • • , n -1, together with a map f n : (R d ) n+1 × R d -→ R. Let C n L := LSC n L ∩ U SC n L .
Finally, we define

F n (t, x, y, z, γ) := F t, Π n ηn(t) [x], y, z, γ , for all (t, x, y, z, γ) ∈ [0, T )×Ω×R×R d ×S d . (2.7)
Definition 2.2 (π n -viscosity solution). We say that u n ∈ LSC n L (resp. U SC n L ) of the form (2.6) is a π n -viscosity supersolution (resp. subsolution) of (2.4) if, for all x ∈ Ω and i = 0, • • • , n-1, the map (t, x) -→ u n (t, x, x) is a viscosity supersolution (resp. subsolution) of

-∂ t ϕ(t, x) -F n t, x, ϕ(t, x), Dϕ(t, x), D 2 ϕ(t, x) = 0, on [t n i , t n i+1 ) × R d , (2.8) 
satisfying the boundary condition lim inf

tրt n i+1 ,x ′ →x δ ϕ(t, x ′ ) -u n t n i+1 , Π n [x]⊞ t n i+1 x, x ≥ 0, for all x ∈ R d ,
with δ = 1 (resp. δ = -1) and

1 x⊞ t x ′ := x1 [0,t) + x ′ 1 [t,T ]
, for all t ≤ T and x, x ′ ∈ Ω.

Moreover, we say that u n is a π n -viscosity solution of (2.4) if it is both a π n -viscosity supersolution and subsolution of (2.4).

In order to ensure the existence and uniqueness of a π n -viscosity solution in ∪ L ′ >0 C n L ′ , we make the following standard assumption throughout the paper, in which the continuity or Lipschitz continuity property of a functional x ∈ Ω -→ f (x) is defined w.r.t. the metric ρ.

Assumption 2.3. Let L > 0 be a fixed positive constant.

(i) The functional F is non-anticipative, continuous in time, and for all K > 0 and (t, x) ∈ Θ such that x ≤ K there exists

C K > 0 such that the map (y, z, γ) ∈ R × R d × S d -→ F (t, x, y, z, γ) is C K -Lipschitz continuous. Moreover, |F (t, x, 0, 0, 0)| ≤ L(1 + x ).
(ii) For all K > 0, there exists a continuous map ̟ K : R + -→ R + such that ̟ K (0) = 0 and

-F t, x, y, α(z -z ′ ), Γ 1 + F t, x, y, α(z -z ′ ), Γ 2 ≤ ̟ K α|z -z ′ | 2 + |z -z ′ | , (2.9) for all (t, x, y, z, z ′ ) ∈ Θ × R × R d × R d , Γ 1 , Γ 2 ∈ S d and α > 0 such that x ≤ K and -3α I d 0 0 I d ≤ Γ 1 0 0 -Γ 2 ≤ 3α I d -I d -I d I d ,
in which I d denotes the d × d-dimensional identity matrix.

(iii) The map γ -→ F (•, γ) is non-decreasing (for the natural partial order on S d ).

(iv) There exists a compact subset

A of R d ′ , d ′ ≥ 1, non-anticipative continuous maps σ, σ : Θ × A -→ M d and L-Lipschitz non-anticipative continuous maps F , F : Θ × R × R d -→ R such that (a) x ∈ Ω -→ (σ, σ)(t, x, a) is L-Lipschitz continuous, uniformly in (t, a) ∈ [0, T ] × A. (b) For all γ ∈ S d , F + inf a∈A 1 2 Tr σ σ ⊤ (•, a) γ ≤ F (•, γ) ≤ F + sup a∈A 1 2 Tr σ σ ⊤ (•, a) γ .
Remark 2.4. Notice that for PDE (2.8) on [t n i , t n i+1 ), the path x is frozen up to t n i , so that F n does not depend on the space variable x. Item (i) of Assumption 2.3 enables us to work on an unbounded domain by exhibiting a suitable penalty function to obtain a comparison principle, see the proof of Proposition 2.5 below. The Lipschitz continuity in (y, z, γ) is local in x, which is not an issue here as the path is frozen in F n . Items (ii)-(iii) of Assumption 2.3 are standard to ensure the well-posedness of the PDE as well as the comparison principle (see e.g. [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]). In particular, Item (ii) is essentially used to verify conditions in Ishii's Lemma. Nevertheless, since x is frozen up to time t n i for PDE (2.8) on [t n i , t n i+1 ), our condition in (2.9) is slightly simpler than that in [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], and can be trivially made local in x with constants C K . We also refer to [START_REF] Hairer | Loss of regularity for Kolmogorov equations[END_REF]Corollaries 4.11 and 4.14] for a relaxation of this condition.

Item (iv) of Assumption 2.3 will be used to exhibit a π n -viscosity supersolution and a π n -viscosity subsolution of (2.4) with terminal condition g ∈ C L , having linear growth, uniformly in n ≥ 1, see (2.11) below. It is essentially induced by the Lipschitz continuity of F , and could be replaced by other conditions leading to similar a-priori estimates.

Proposition 2.5. Let Assumption 2.3 hold true.

(i) Fix n ≥ 1, let u n ∈ LSC n L and v n ∈ U SC n L be respectively π n -viscosity supersolution and subsolution of (2.4) such that u n (t n n , •) ≥ v n (t n n , •). Then, u n ≥ v n on Θ × R d . (ii) Fix g ∈ C L and n ≥ 1. Then, (2.4) has a unique π n -viscosity solution v n ∈ ∪ L ′ >0 C n L ′ satisfying the terminal condition v n t n n , x, x t n n = v n t n n , Π n [x], x t n n = g Π n [x]
, for all x ∈ Ω.

(2.10) (iii) Fix g ∈ C L and let (v n ) n≥1 be defined as in (ii) above. Then, there exists C > 0, that depends only on L, such that

sup n≥1 |v n (t, x, x)| ≤ C(1 + x + |x|), for all (t, x, x) ∈ Θ × R d . (2.11) Proof. (i) Let us n ≥ 1, 0 ≤ i ≤ n -1, x ∈ Ω. If w is a viscosity subsolution of (2.8) on [t n i , t n i+1 ) × R d , then Assumption 2.3.(i) ensures that (t, x) ∈ [t n i , t n i+1 ) × R d -→ w(t, x) -ε(1 + |x| 2 )e 4Lt is a viscosity subsolution of (2.8) on [t n i , t n i+1 ) × R d for all ε > 0.
Combined with Assumption 2.3.(ii), it follows by standard arguments that (2.8) admits a comparison principle among functions having linear growth (see e.g. [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]Section 8]). Item (i) of Proposition 2.5 is then proved by backward induction.

(ii) -(iii) For each n ≥ 1, the uniqueness of the π n -viscosity solution v n of (2.4) with terminal condition (2.10) follows from Item (i). It remains to construct a solution having the (uniform) linear growth property (2.11).

Recall that A is a compact subset of R d ′ for some d ′ ≥ 1, in Assumption 2.3. Let us consider a probability space equipped with a standard d-dimensional Brownian motion W and the corresponding Brownian filtration, and denote by A the collection of all predictable processes taking values in A. Then, given θ :

= (t, x, x) ∈ Θ × R d and a ∈ A, let (X θ,a , Y θ,a , Z θ,a ) be the unique triplet of R d × R × R d -adapted processes satisfying E X θ,a 2 + Y θ,a 2 + T t Z θ,a s 2 ds < ∞ and that solves the (decoupled) forward-backward SDE X θ,a s = 1 {s∈[0,t)} x s + 1 {s∈[t,T ]} x + s t σ r, Π n ηn(r) [X θ,a ], a r dW r , s ∈ [0, T ], Y θ,a s = g Π n [X θ,a ] + T s F r, Π n ηn(r) [X θ,a ], Y θ,a r , Z θ,a r dr - T s Z θ,a r dW r , s ∈ [t, T ],
where we recall that η n (r

) := t n i for all r ∈ [t n i , t n i+1 ), i = 0, • • • , n -1.
It follows then from standard arguments (see e.g. [START_REF] Halil | Wellposedness of second order backward sdes[END_REF]), combined with Item (iv) of Assumption 2.3, that

(t, x, x) ∈ Θ × R d -→ u n (t, x, x) := inf{Y θ,a
t , a ∈ A} is a π n -viscosity subsolution (actually solution) of (2.4) with terminal condition (2.10). At the same time, using the Lipschitz continuity condition in Item (iv) of Assumption 2.3, it follows by standard estimates on the BSDEs (see e.g. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]) that we can find C > 0, that depends only on L, such that

|Y θ,a t | ≤ C(1 + x + |x|), ∀ a ∈ A.
Therefore, u n satisfies the linear growth estimate, uniformly in n ≥ 1. Similarly, we can exhibit a π n -viscosity supersolution u n of (2.4) with terminal condition (2.10) that satisfies the same growth estimate. Then, the existence of a π n -viscosity solution v n and the estimate (2.11) follow from Perron's method, see e.g. [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF].

Given the existence result of Proposition 2.5, we can now provide our definition of πapproximate viscosity solutions. Definition 2.6 (π-approximate viscosity solution). Given g ∈ C L , let v n be the unique π n -viscosity solution of (2.4) satisfying the terminal condition (2.10), for each n ≥ 1. We say that v is a π-approximate viscosity solution of (2.4)-(2.5) if (v n ) n≥1 admits a pointwise limit and v(t, x) = lim n→∞ v n (t, x, x t ), for all (t, x) ∈ Θ.

Remark 2.7. For the class of nonlinear PPDE which will be studied below, we will be able to show that the π-approximate viscosity solution v does not depend on the choice of the sequence π = (π n ) n≥1 of discrete time grids. Nevertheless, we keep π in Definition 2.6 to leave some flexibility on this notion of solution that could be useful for larger classes of PPDEs.

When Ω = D([0, T ]), the definition of the metric ρ depends on a finite measure µ which is implicitly related to π. This is another reason for keeping π in the definition of our notion of solution.

Comparison principle, existence and stability properties

We provide here some results on the comparison, existence and stability of π-approximate viscosity solutions. For a π n -viscosity solution solution v n : Θ × R d -→ R, we will consider it as a functional on Θ with v n (t, x) := v n (t, x, x t ), for all (t, x) ∈ Θ.

For later uses, we also consider a modulus of continuity ̟ • : R + -→ R + (i.e. a nondecreasing function satisfying ̟ • (0) = 0), which is concave and satisfies that, for some constant c > 0, ̟ • (x) ≥ cx for all x ≥ 0. We further define ̟ ′

• : R + -→ R + by

̟ ′ • (x) := ̟ • (x 2
), for all x ≥ 0.

(2.12)

Comparison of solutions

By the comparison principle results for π n -viscosity solutions of Proposition 2.5, it follows immediately a comparison principle for the π-approximate viscosity solutions, by Definition 2.6. We state the result below and omit its proof.

Proposition 2.8.

For k = 1, 2, let g k ∈ C L , F k : Θ × R × R d × S d -→ R satisfy Assumption 2.
3, and v k be a π-approximate viscosity solution of (2.4)-(2.5) associated to (F k , g k ) in place of (F, g). Assume that F 1 ≥ F 2 and that g 1 ≥ g 2 . Then, v 1 ≥ v 2 on Θ.

A first existence result for Hamilton-Jacobi-Bellman equations

When PPDE (2.4) is in form of a path-dependent Hamilton-Jacobi-Bellman (HJB) equation, then, for each n ≥ 1, its π n -viscosity solution v n is the solution to a classical HJB equation, which corresponds to the value function of a controlled diffusion processes problem in which the path of the controlled forward process X is replaced by its approximation Π n [X] in the coefficients. In this case, the convergence of (v n ) n≥1 follows from the convergence of Π n [X] to X. Let us provide the following example to illustrate the idea, where the continuity or Lipschitz continuity of a functional w.r.t. x is under ρ. Another general case will be studied later in Theorem 2.12.

Proposition 2.9. Let g ∈ C L , and for all (t, x, y, z, γ)

∈ Θ × R × R d × S d , F (t, x, y, z, γ) = sup a∈A F • (t, x, y, z, a) + 1 2 Tr[σσ ⊤ (t, x, a)γ] ,
for some Borel set A ⊂ R d ′ , d ′ ≥ 1, and continuous functionals

F • : Θ × R × R d × A -→ R and σ : Θ × A -→ R such that sup (t,a)∈[0,T ]×A F (t, 0, 0, 0, a) < ∞ and sup (t,x,a)∈Θ×A |σ(t, x, a)| 1 + |x| < ∞, x -→ σ(t, x, a) is Lipschitz, uniformly in (t, a) ∈ [0, T ] × A.
Moreover, assume that, for all (t, x, x ′ , y, y

′ , z, z ′ , a) ∈ [0, T ] × Ω 2 × R 2 × (R d ) 2 × A, F • (t, x, y, z, a) -F • (t, x, y ′ , z ′ , a) ≤ L |y -y ′ | + |z -z ′ | , and g(x) -g(x ′ ) + F • (t, x, y, z, a) -F • (t, x ′ , y, z, a) ≤ L̟ ′ • ρ t (x, x ′ ) .
Then, PPDE (2.4)-(2.5) has a unique π n -viscosity solution v n for each n ≥ 1, and v n -→ v pointwise for some non-anticipative map v : Θ -→ R. In particular, v is a π-approximate viscosity solution of (2.4)-(2.5).

Proof. Let us fix (t, x) ∈ Θ. First, by Proposition 2.5, there exists a unique π n -viscosity solution v n to (2.4) with linear growth. Moreover, by the representation theorem of Markovian 2BSDE (see e.g. [START_REF] Halil | Wellposedness of second order backward sdes[END_REF]), one has v n (t, x) = sup a∈A Y n,a t , where (X n,a , Y n,a , Z n,a ) is the unique solution to the FBSDE

X n,a s = x s∧t + s∨t t σ r, Π n ηn(r) X n,a , a r dW r , s ∈ [0, T ], Y n,a s = g Π n X n,a + T s F • r, Π n ηn(r) X n,a , Y n,a r , Z n,a r dr - T s Z n,a r dW r , s ∈ [t, T ],
and A, W are as in Step (ii)-(iii) of the proof of Proposition 2.5. Let X a be the controlled diffusion process defined by

X a s = x s∧t + s∨t t σ r, X a , a r dW r , s ∈ [0, T ].
It follows from standard stability result for SDEs that

sup a∈A E X n,a -X a 2 -→ 0, as n -→ ∞.
Using the concavity of the continuity modulus function ̟ • , one can deduce that

sup a∈A E T t F • r, Π n ηn(r) [X n,a ], 0, 0 -F • r, X a , 0, 0 2 dr + g Π n X n,a -g X a 2 -→ 0.
Let (Y a , Z a ) be the unique solution of the BSDE

Y a s = g X a + T s F • r, X a , Y a r , Z a r dr - T s Z a r dW r , s ∈ [t, T ].
It follows then by standard stability result for BSDEs (see e.g. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]) that

sup a∈A Y n,a t -Y a t -→ 0.
Therefore, one has

v n (t, x) = v n (t, x, x t ) = sup a∈A Y n,a t -→ v(t, x) := sup a∈A Y a t ,
and hence v is a π-approximate viscosity solution of (2.4)-(2.5) by Definition 2.6.

Remark 2.10. (i) Similarly, one can consider Hamilton-Jacobi-Bellman-Isaac equations associated to zero-sum games. The critical point is the uniform convergence of the approximation of the controlled diffusion processes as well as the stability of the related BSDEs.

(ii) Notice that, in the proof of Proposition 2.9, convergence holds (to the same function) for any sequence π of time grids, and the limit does not depends on π. In other words, the exact sequence π of time grids entering in Definition 2.6 does not play any role. This will also be the case for our general existence result in Theorem 2.12 below.

Existence and stability for fully nonlinear equations

In this part, we prove the existence of a unique π-approximate viscosity solution as well as a stability result for a general class of fully nonlinear equations satisfying the following structure condition. Recall that ρ is defined in (2.2) and (2.3) for the two cases of Ω, the modulus of continuity

̟ • : R + -→ R + is concave and ̟ ′ • (x) := ̟ • (x 2
), for all x ≥ 0.

Assumption 2.11. There exists a continuous non-anticipative function

H : Θ × R × R d × S d -→ R, together with non-anticipative maps r : Θ -→ R, µ : Θ -→ R and σ : Θ -→ S d , such that γ -→ H(•, γ
) is increasing, and for all (t, x, y, z, γ)

∈ [0, T ] × Ω × R × R d × S d , F (t, x, y, z, γ) = H(t, x, y, z, γ) + r(t, x)y + µ(t, x) • z + 1 2 Tr σσ ⊤ (t, x)γ .
Moreover, there is a constant L > 0 such that for all t ∈ [0, T ] and (x, y, z, γ),

(x ′ , y ′ , z ′ , γ ′ ) ∈ Ω × R × R d × S d , one has |r(t, x)| ≤ L and r(t, x) -r(t, x ′ ) + µ(t, x) -µ(t, x ′ ) + σ(t, x) -σ(t, x ′ ) ≤ Lρ t (x, x ′ ), (2.13) 
H(t, x, y, z, γ) -H(t, x, y ′ , z ′ , γ ′ ) ≤ L |y -y ′ | + |z -z ′ | + |γ -γ ′ | , (2.14) g(x) -g(x ′ ) + H(t, x, y, z, γ) -H(t, x ′ , y, z, γ) ≤ L̟ ′ • ρ(x, x ′ ) . (2.15)
The above turns out to be enough not only to prove existence and uniqueness but also that the solution does not depend on the particular sequence π = (π n ) n≥1 of time grids used in Definition 2.6 (see also Remark 2.10).

Theorem 2.12. Let Assumptions 2.3 and 2.11 hold true. Then:

(i) PPDE (2.4)-(2.5) has a unique π-approximate viscosity solution v.

(ii) For all K > 0, there exists a constant C K > 0, that depends only on K and L, such that

|v(t, x ′ ) -v(t, x)| ≤ C K ̟ ′ • ρ t x, x ′ and |v(t ′ , x t∧ ) -v(t, x)| ≤ C K ̟ ′ • |t ′ -t| 1 2 , (2.16 
)

for all 0 ≤ t ≤ t ′ ≤ T and x, x ′ ∈ Ω satisfying x ∨ x ′ ≤ K. (iii) If π ′ is another increasing sequence of discrete time grids and v ′ is the π ′ -approximate viscosity solution of (2.4)-(2.5), then v ′ = v on [0, T ] × Ω.
Remark 2.13. In the context of Theorem 2.12, let v be the π-approximate viscosity solution and v n be the π n -viscosity solution of (2.4)-(2.5). As a by-product of (2.36) in the proof below, for all K > 0, there exists a constant C K > 0 such that

v n (t, x, x t ) -v(t, x) ≤ C K ̟ ′ • ρ η + n (t) Π n [x⊞ η + n (t) x t ], x + |π n | 1 4 , (2.17 
)

whenever x ≤ K (recall that η + n (t) is defined in (2.1)
). Before to prove the above, let us state immediately the following stability result. Proposition 2.14. Let (F k , g k ) k≥0 be a sequence satisfying the assumptions in Theorem 2.12, uniformly in k ≥ 0, and such that

F k (t k , x k , y k , z k , γ k ), g k (x k ) -→ F 0 (t, x, y, z, γ), g 0 (x) as k -→ ∞, whenever (t k , x k , y k , z k , γ k ) -→ (t, x, y, z, γ) ∈ Θ × R × R d × S d . Let v k
be a π-approximate viscosity solution associated to (F k , g k ) for each k ≥ 0. Then, there exists a subsequence (k m ) m≥1 such that (v km ) m≥1 converges pointwise to v 0 .

Proof. For each k ≥ 0, let v n k be the π n -viscosity solution associated to (F k , g k ). Then, for each fixed n ≥ 1, it follows by stability of the viscosity solutions of classical PDEs that v n k -→ v n 0 pointwise as k -→ ∞. In view of Remark 2.1, one can find a countable subset Θ • of Θ such that, for any (t, x) ∈ Θ, there exists a sequence (t i , x i ) i≥1 ⊂ Θ • satisfying

ρ t i x i , x + |t i -t| 1/2 -→ 0. (2.18)
Then, by a standard diagonalization argument, we can find a subsequence (k n ) n≥1 such that |v n kn -v n 0 | -→ 0 pointwise on the countable set Θ • . On the other hand, (2.17) implies that, for each (t, x) ∈ Θ • , there is some constant C K > 0 such that, for all n ≥ 1,

|v kn -v 0 |(t, x) ≤ |v n kn -v n 0 |(t, x, x t ) + 2C K ̟ ′ • ρ η + n (t) Π n [x⊞ η + n (t) x t ], x + |π n | 1 4 .
Therefore, by Remark 2.1, one has v kn -→ v 0 pointwise on Θ • . Finally, by (2.16) and (2.18), it follows that v kn -→ v 0 pointwise on Θ.

We now complete the proof of Theorem 2.12. The key ingredient is to provide a uniform estimate on the difference v m -v n when m, n -→ ∞, where v m (resp. v n ) is the π m -(resp. π n -)viscosity solution of (2.4) with terminal condition (2.10). By (2.6) and Definition 2.2, it is clear that v n (t, x, x) depends only on (x t n j ) j=0,••• ,i and x when t ∈ [t n i , t n i+1 ). For this reason, for each n ≥ 1 and t ∈ [t n i , t n i+1 ), we introduce

v n i : [t n i , t n i+1 ) × (R d ) i+1 × R d -→ R defined by v n i t, [x] n i , x := v n t, Π n t n i [x], x , (2.19) 
and

F n i : [t n i , t n i+1 ) × (R d ) i+1 × R d -→ R as well as g n : (R d ) n+1 -→ R defined as F n i t, [x] n i , • := F t, Π n t n i [x], • , g n [x] n n := g Π n [x] . (2.20) 
We similarly define r n i , µ n i , σ n i , i.e.

r n i t, [x] n i := r t, Π n t n i [x] , µ n i t, [x] n i := µ t, Π n t n i [x] , σ n i t, [x] n i := σ t, Π n t n i [x] . Then, by Definition 2.2, (t, x) -→ v n i (t, [x] n i , x) is the unique viscosity solution of the classical PDE -∂ t v n i t, [x] n i , x -F n i t, [x] n i , v n i , Dv n i , D 2 v n i = 0, (t, x) ∈ [t n i , t n i+1 ) ∈ R d , (2.21) 
with terminal condition

v n i t n i+1 , [x] n i , x = v n i+1 t n i+1 , ([x] n i , x), x , i = 0, • • • , n -2, v n n t n n , [x] n n = g n [x] n n ,
where Dv n i (resp. D 2 v n i ) represents the gradient (resp. Hessian matrix) of x -→ v n i (t, [x] n i , x). We first study the stability of (v n ) n≥1 with respect to the space arguments.

Lemma 2.15. Let the conditions of Theorem 2.12 hold, and let v n be the π n -viscosity solution of (2.4) satisfying the terminal condition (2.10) for each n ≥ 1. Then, for all K > 0, there exists a constant C K > 0, such that, for all m, n ≥ 1, t ∈ [0, T ], and x, x ′ ∈ Ω satisfying

x t∧ + x ′ t∧ ≤ K, v m (t, x, x t ) -v n (t, x ′ , x ′ t ) ≤C K ̟ ′ • ρ η + m (t) Π n [x⊞ η + n (t) x t ], Π m [x ′ ⊞ η + m (t) x ′ t ] +|π m | 1 4 +|π n | 1 4 . (2.22)
Proof. We restrict to the one dimensional case d = 1 for ease of notations. Given m ≤ n, as π m ⊂ π n , the vector [x] n n contains all the information of [x] m m . We will then consider a functional of [x] m

• as a functional of [x] n • . For this purpose, let us introduce, for all i ≤ n -

1, t ∈ [t n i , t n i+1 ), x ∈ Ω and x ∈ R, v m,n i t, [x] n i , x := v m I n m (i) t, [x] m I n m (i) , x , (2.23) 
where

I n m (i) := max{j : t m j ≤ t n i } for all i = 0, 1, • • • , n. Similarly, one defines the functionals F m,n i , H m,n i , r m,n i , µ m,n i , σ m,n i , g m,n . (i) Given i < n, (t, x, x ′ ) ∈ [t n i , t n i+1 ) × R 2 and x, x ′ ∈ Ω, set w m,n i t, [x] n i , [x ′ ] n i , x, x ′ := v n i t, [x] n i , x -v m,n i t, [x ′ ] n i , x ′ .
We first show that w m,n i

(•, [x] n i , [x ′ ] n i , •, •) is a viscosity subsolution of some HJB equation. Let φ : [t n i , t n i+1 ] × R 2 -→ R be a smooth function and ( t, x, x′ ) ∈ [t n i , t n i+1 ) × R 2 be such that 0 = max (t,x,x ′ )∈[t n i ,t n i+1 )×R 2 w m,n i t, [x] n i , [x ′ ] n i , x, x ′ -φ(t, x, x ′ ) = w m,n i t, [x] n i , [x ′ ] n i , x, x′ -φ( t, x, x′ ).
Recall that v n i is a viscosity solution (hence supersolution) of (2.8) with generator F n and v m,n i is a viscosity solution (hence subsolution) of (2.8) with generator F m,n . Then, it follows from Ishii's lemma (see e.g. [7, Theorem 3.2]) that, for all ε > 0, one can find

γ ε , γ ′ ε ∈ R such that γ ε 0 0 -γ ′ ε ≤ D 2 φ( t, x, x′ ) + ε D 2 φ( t, x, x′ ) 2 , (2.24) and 0 ≥ -∂ t φ( t, x, x′ ) -F n t, [x] n i , v n i t, [x] n i , x , ∂ x φ( t, x, x′ ), γ ε + F m,n t, [x] n i , v m,n i t, [x ′ ] n i , x′ , -∂ x ′ φ( t, x, x′ ), γ ′ ε .
(2.25)

We now estimate the r.h.s. of (2.25). By (2.14) and (2.24), using the notation θ =

( t, [x] n i , x, x′ , γ ε , γ ′ ε ), ∆H m,n ε := -H n t, [x] n i , v n i t, [x] n i , x , ∂ x φ( t, x, x′ ), γ ε + H m,n t, [x ′ ] n i , v m,n i t, [x ′ ] n i , x′ , -∂ x ′ φ( t, x, x′ ), γ ′ ε ≥ -L ̟ ′ • ρ t Π n t n i [x], Π m t n i [x ′ ] + φ( t, x, x′ ) + ∂ x φ( t, x, x′ ) + ∂ x ′ φ( t, x, x′ ) -∂ γ H n (θ) ∆φ( t, x, x′ ) + ε∆ 2 φ( t, x, x′ ) ,
for some functional ∂ γ H n ≥ 0 bounded by L, and where

∆φ := ∂ 2 xx φ + 2∂ 2 xx ′ φ + ∂ 2 x ′ x ′ φ and ∆ 2 φ := (1, 1) D 2 φ 2 1 1 .
This implies that, with

B := [-L, L] 2 × [0, √ L], lim inf ε↓0 ∆H m,n ε ≥ min (b 1 ,b 2 ,b 3 )∈B -b 1 φ( t, x, x′ ) -b 2 ∂ x φ( t, x, x′ ) + ∂ x ′ φ( t, x, x′ ) -|b 3 | 2 ∆φ( t, x, x′ ) -L̟ ′ • ρ t Π n t n i (x), Π m t n i (x ′ ) . (2.26) 
Similarly, by (2.11) and (2.13),

-

r n i t, [x] n i v n i t, [x] n i , x + r m,n i t, [x ′ ] n i v m,n i t, [x ′ ] n i , x′ ≥ -r n i t, [x ′ ] n i φ t, x, ŷ -∆r m,n i ( t, [x] n i , [x ′ ] n i )v m,n i t, [x ′ ] n i , x′ , where ∆r m,n i ( t, [x] n i , [x ′ ] n i ) := r m,n i ( t, [x ′ ] n i ) -r n i ( t, [x] n i ) satisfies ∆r m,n i ( t, [x] n i , [x ′ ] n i ) ≤ Lρ t Π n t n i [x], Π m t n i [x ′ ] , (2.27) 
Further, one has

-µ n i t, [x] n i ∂ x φ t, x, x′ + µ m,n i t, [x ′ ] n i (-∂ x ′ φ t, x, x′ ) = -µ n i ( t, [x] n i ) ∂ x φ t, x, x′ + ∂ x ′ φ t, x, x′ -∆µ m,n i ( t, [x] n i , [x ′ ] n i )∂ x ′ φ t, x, x′ , where ∆µ m,n i ( t, [x] n i , [x ′ ] n i ) := µ m,n i ( t, [x ′ ] n i ) -µ n i ( t, [x] n i ), satisfies ∆µ m,n i ( t, [x] n i , [x ′ ] n i )) ≤ Lρ t Π n t n i [x], Π m t n i [x ′ ] . (2.28) Finally, by (2.24), lim inf ε↓0 -σ n i t, [x] n i 2 γ ε + σ m,n i t, [x ′ ] n i ) 2 (-γ ′ ε ) ≥ -σ n i t, [x] n i 2 ∂ 2 xx φ t, x, x′ -σ n i t, [x] n i + ∆σ m,n i (t, [x] n i , [x ′ ] n i ) 2 ∂ 2 x ′ x ′ φ t, x, x′ -2σ n i t, [x] n i σ n i t, [x] n i + ∆σ m,n i (t, [x] n i , [x ′ ] n i ) ∂ 2 xx ′ φ t, x, x′ , where ∆σ m,n i ( t, [x] n i , [x ′ ] n i ) := σ m,n i ( t, [x ′ ] n i ) -σ n i ( t, [x] n i ), so that ∆σ m,n i ( t, [x] n i , [x ′ ] n i ) ≤ Lρ t Π n t n i [x], Π m t n i [x ′ ] . (2.29) By arbitrariness of ε > 0, it follows that w m,n i •, [x] n i , [x ′ ] n i , •, • is a viscosity subsolution on [t n i , t n i+1 ) × R 2 of 0 ≥ -∂ t φ(t, x, x ′ ) -max b∈B L b i [t, [x] n i , [x ′ ] n i ]φ(t, x, y) -f n i (t, [x] n i , [x ′ ] n i , x),
in which

f n i (t, [x] n i , [x ′ ] n i , x) := C 1 + x ′ + |x ′ | ̟ ′ • ρ t Π n t n i [x], Π m t n i [x ′ ] , (2.30) 
for some C large enough, and

L b i [t, [x] n i , [x ′ ] n i ]φ(t, x, x ′ ) := (b 1 + r n i ) t, [x] n i φ t, x, x ′ + b 2 + µ n i (t, [x] n i ) ∂ x φ(t, x, x ′ ) + ∂ x ′ φ(t, x, x ′ ) + ∆µ m,n i (t, [x] n i , [x ′ ] n i )∂ x φ t, x, x ′ + 1 2 | √ 2b 3 | 2 ∆φ(t, x, x ′ ) + 1 2 σ n i t, [x] n i 2 ∂ 2 xx φ t, x, x ′ + 1 2 σ n i t, [x] n i + ∆σ m,n i (t, [x] n i , [x ′ ] n i ) 2 ∂ 2 x ′ x ′ φ t, x, x ′ + σ n i t, [x] n i σ n i t, [x] n i + ∆σ m,n i (t, [x] n i , [x ′ ] n i ) ∂ 2 xx ′ φ t, x, x ′ .
Moreover, it satisfies the boundary condition lim

t↑t n i+1 w m,n i t, [x] n i , [x ′ ] n i , x, x ′ = w m,n i+1 t n i+1 , ([x] n i , x), ([x ′ ] n i , x ′ ), x, x ′ .
(ii) Given (t, x, x ′ ) ∈ [t n i , t n i+1 ) × R 2 , i < n, and β ∈ B, the collection of predictable Bvalued processes, on some probability space endowed with the augmented filtration of a two dimensional Brownian motion W = (W 1 , W 2 ), let us now define the two processes X β and X ′β by

X β = x⊞ t x t∧ + • t β 2 s + µ s, Π n ηn(s) [X β ] ds + • t √ 2β 3 s dW 1 s + • t σ s, Π n ηn(s) [X β ] dW 2 s , X ′β = x ′ ⊞ t x ′ t∧ + • t dX β r + • t ∆µ s, Π n ηn(s) [X β ], Π m ηm(s) [X ′β ] ds + • t ∆σ s, Π n ηn(s) [X β ], Π m ηm(s) [X ′β ] dW 2 s . Assume that x ∨ x ′ ∨ |x| ∨ |x ′ | ≤ K. We can find C K , that only depends on L and K, such that E X β 2 + X ′β 2 ≤ C K , E Π n X β η + n (t)∨ -X β η + n (t)∨ 2 + E Π m X ′β η + m (t)∨ -X ′β η + m (t)∨ 2 ≤ C K |π m | 1 2 + |π n | 1 2 , (2.31) and E Π n X β η + m (t)∧ -Π n x⊞ η + n (t) x 2 + Π m X ′β η + m (t)∧ -Π m x ′ ⊞ η + m (t) x ′ 2 ≤ C K |π m |.
Applying Itô formula on (X β -X ′β ) 2 , together with (2.13), (2.28), (2.29) and (2.31), one can deduce that, for some constant

C ′ K > 0, E X β s∧ -X ′β s∧ 2 ≤ |x -x ′ | 2 + C ′ K s η + m (t) E X β r∧ -X ′β r∧ 2 dr + C ′ K ρ η + m (t) Π n [x⊞ η + n (t) x], Π m [x ′ ⊞ η + m (t) x ′ ] 2 + |π m | 1 2 + |π n | 1 2 ,
and it follows by Gronwall's Lemma that, for some C ′′ K > 0,

E X β η + m (t)∨ -X ′β η + m (t)∨ 2 ≤ C ′′ K ρ η + m (t) Π n [x⊞ η + n (t) x], Π m [x ′ ⊞ η + m (t) x ′ ] 2 + |π m | 1 2 + |π n | 1 2 .
(2.32)

By the Feynman-Kac formula, the viscosity subsolution property of w m,n i , together with (2.30), (2.27), (2.15) and the fact that r is bounded by Assumption 2.11, we deduce that

w m,n i t, [x] n i , [x ′ ] n i , x, x ′ ≤ sup β∈B E e T t k β s ds L̟ ′ • ρ Π n [X β ], Π m [X ′β ] + T t e r t k β s ds ζ β r dr ,
where, for all β ∈ B, k β and ζ β are predictable processes such that |k β | ≤ L and

|ζ β r | ≤ L(1 + C K ) ̟ ′ • ρ r Π n ηn(r) [X β ], Π m ηm(r) [X ′β ] 1 + X ′β .
Recalling that ρ(x, x ′ ) ≤ C x -x ′ , (2.32) and that the function

̟ • is concave, one can compute that E ̟ ′ • ρ r Π n [X β ], Π m [X ′β ] 2 ≤ C̟ • ρ η + m (t) Π n [x⊞ η + n (t) x], Π m [x ′ ⊞ η + m (t) x ′ ] 2 + E Π n [X β ] η + m (t)∨ -Π m [X ′β ] η + m (t)∨ 2 ≤ C K ̟ • ρ η + m (t) Π n [x⊞ η + n (t) x], Π m [x ′ ⊞ η + m (t) x ′ ] 2 + |π m | 1 2 + |π n | 1 2 .
It follows that, for some constant C K > 0, depending only on K,

w m,n i t, [x] n i , [x ′ ] n i , x, x ′ ≤ C K ̟ ′ • ρ η + m (t) Π n [x⊞ η + n (t) x], Π m [x ′ ⊞ η + m (t) x ′ ] + |π m | 1 4 + |π n | 1 4 .
(iii) Finally, the corresponding lower-bound is derived similarly after exhibiting a viscosity supersolution property by the same arguments.

Remark 2. [START_REF] Peng | G-expectation weighted sobolev spaces, backward sde and path dependent pde[END_REF].

When m = n, one can bound E Π n [X β ] η + n (t)∨ -Π n [X ′β ] η + n (t)∨ 2 by E X β η + n (t)∨ -X ′β η + n (t)∨ without using (2.31). Letting ̟ ′ • (x) ≡ ̟ • (x) ≡
x for all x ≥ 0, the same argument will yield the estimation: for some constant

C K > 0, v n (t n i , x, x t n i ) -v n (t n i , x ′ , x ′ t n i ) ≤ C K ρ t n i Π n [x], Π n [x ′ ] , when x + x ′ ≤ K.
Moreover, by considering the PDE satisfied by v n on [t n i , t n i+1 ] × R d , one can easily deduce that v n (t, x, x) is locally Lipschitz in x. More precisely, one can deduce that, for some constant

C K > 0, v n (t n i , x, x t n i ) -v n (t n i , x ′ , x ′ t n i ) ≤ C K Π n t [x] -Π n t [x ′ ] , when x + x ′ ≤ K.
We now discuss the stability with respect to the time argument.

Lemma 2.17. Let the conditions of Theorem 2.12 hold and v n be the π n -viscosity solution of (2.4) satisfying the terminal condition (2.10) for each n ≥ 1. Then, for all K > 0, there exists a constant C K > 0, such that, for all n ≥ 1, 0 ≤ t ≤ t ′ ≤ T and x ≤ K,

v n (t ′ , x t∧ , x t ) -v n (t, x, x t ) ≤ C K ̟ ′ • |t ′ -t| 1 2 + |π n | 1 4 .
(2.33)

Proof. We use the notations introduced in the proof of Proposition 2.5. Fix t ′ ≤ T . Given θ := (t, x, x) ∈ [0, t ′ ] × Ω × R d , and a ∈ A, let (X θ,a , Y θ,a , Z θ,a ) be the unique triplet of

R d × R × R d -adapted processes satisfying E X θ,a 2 + Y θ,a 2 + t ′ t |Z θ,a s | 2 ds < ∞
and that solves the (decoupled) forward-backward SDE 

X θ,a s = 1 {s∈[0,t)} x s + 1 {s∈[t,T ]} x + s t σ r, Π n ηn(r) [X θ,a ], a r dW r , Y θ,a s = v n (t ′ , X θ,a + t ′ s F r, Π n ηn(r) [X θ,a ], Y θ,a r , Z θ,a r dr - t ′ s Z θ,a r dW r , for t ≤ s ≤ t ′ .
[-L, L] 2 such that F r, Π n ηn(r) [X θ,a ], Y θ,a r , Z θ,a r = F r, Π n ηn(r) [X θ,a ], 0, 0 + k a r Y θ,a r + ζ a r Z θ,a r , t ≤ r ≤ t ′ . Let Q a ∼ P be such that W a = W - • 0 ζ a r dr is a Q a -Brownian motion. Then, Y θ,a t = E Q a e t ′ t k a s ds v n t ′ , X θ,a + t ′ t e r t k a s ds F r, Π n ηn(r) [X θ,a ], 0, 0 dr .
We can then find C ′ K > 0, that depends only on L and K, such that, for all x ≤ K, one has

E Q a [ X θ,a (t ′ ∨t)∧ -x t 2 ] 1 2 ≤ C ′ K (t ′ -t) 1 2 and Y θ,a t -v n (t ′ , x t∧ ) ≥ E Q a e t ′ t k a s ds v n (t ′ , X θ,a -v n (t ′ , x t∧ ) -(t ′ -t)C ′ K (1 + x ) .
Recall that the function ̟ • (used in the definition of ̟ ′ • in (2.12)) is concave. One can then apply Lemma 2.15 and (2.11) to deduce that there exists a constant C ′′ K > 0, that depends only on L and K, such that, for all x ≤ K,

Y θ,a t -v n (t ′ , x t∧ ) ≥ -C ′′ K t ′ -t + e C ′′ K |t ′ -t| -1 + ̟ ′ • |t ′ -t| 1 2 + |π n | 1 4
.

Recall that, for some constant c > 0, one has ̟ • (x) ≥ cx for all x ≥ 0. Then by (2.34), there exists a constant C K > 0 such that

v n (t, x) -v n (t ′ , x t∧ ) ≥ -C K ̟ ′ • |t ′ -t| 1 2 + |π n | 1 4
, for all x ≤ K.

A similar upper-bound is obtained by using the second inequality in Item (iv)-(b) of Assumption 2.3.

Remark 2.18. When ̟ • (x) := x for all x ≥ 0, in view of Remark 2.16, one can improve the above estimation in (2.33) to be

v n (t ′ , x t∧ , x t ) -v n (t, x, x t ) ≤ C K |t ′ -t| 1 2 .
In particular, in this case, v n is locally Lipschitz in Π n t [x] and 1/2-Hölder in t. We can now conclude the proof of Theorem 2.12.

Proof of Theorem 2.12. (i) Recall that (π n ) n≥1 is a sequence of discrete time grid on [0, T ], let v n be a π n -viscosity solution of (2.4) satisfying the terminal condition (2.10). Moreover, for each (t, x) ∈ [0, T ] × Ω, it follows by Lemma 2.15 that there exists a constant C > 0 such that, for all n ≥ m ≥ 1,

v m (t, x, x t ) -v n (t, x, x t ) ≤ C̟ ′ • ρ η + m (t) Π n [x⊞ η + n (t) x t ], Π m [x⊞ η + m (t) x t ] +|π m | 1 4 +|π n | 1 4 . (2.35)
Therefore, (v n (t, x, x t )) n≥1 is a Cauchy sequence so that v n (t, x, x t ) -→ v(t, x) pointwise for some nonanticipative functional v : [0, T ]×Ω -→ R. By Definition 2.6, v is a π-approximate viscosity solution of (2.4)-(2.5). Further, it is in fact the unique π-approximate viscosity solution, by the comparison principle in Proposition 2.8.

(ii) By the estimation in (2.22) with m = n, together with the estimation in (2.33), the limit function v satisfies (2.16).

(iii) We finally prove that the notion of approximate viscosity solution does not depend on the special choice of the increasing sequence of time grids. Let us fix two increasing sequences of time grids π = (π n ) n≥1 and π ′ = (π ′n ) n≥1 , and let v n be the π n -viscosity solution, v ′n be the π ′n -viscosity solution. We then define π = (π n ) n≥1 by πk := π k for k ≤ n, and πk := π n ∪π ′k-n for k > n, and let ṽk be the corresponding πk -viscosity solution. In particular, one has π2n := π n ∪π ′n , ṽn = v n , and that ṽ2n is the π n ∪π ′n -viscosity solution. Then, it follows from (2.35) that, for some C > 0, independent on n,

v n -ṽ2n (t, x, x t ) = ṽn -ṽ2n (t, x, x t ) ≤ C̟ ′ • ρ η + n (t) Π n [x⊞ η + n (t) x t ], Π 2n [x⊞ η+ 2n (t) x t ] +|π n | 1 4 +|π 2n | 1 4 , (2.36) 
where Π 2n and η+ 2n are defined as Π 2n and η + 2n but with respect to π 2n . By the same arguments, one has

v ′n -ṽ2n (t, x, x t ) ≤ C̟ ′ • ρ η ′+ n (t) Π ′n [x⊞ η ′+ n (t) x t ], Π 2n [x⊞ η+ 2n (t) x t ] +|π ′n | 1 4 +|π 2n | 1 4 ,
where Π ′n and η ′+ n are defined as Π n and η + n but with respect to π ′n . Therefore, the sequences (v n ) n≥1 and (v ′n ) n≥1 have the same limit as n -→ ∞.

Proof of Proposition 2.19. Let v n be the π n -viscosity solution of (2.4), or, equivalently, a viscosity solution of (2.8). It is enough to prove that v n -→ w pointwisely as n → ∞.

(i) In a first step, we notice that F n can be considered as a function of a (x t n 0 , • • • , x t n n , y, z, γ), and that one can regularize it (and possibly add a small Laplacian term to guarantee uniform ellipticity) so that there is a sequence (F n,k ) k≥1 satisfying

F n,k (•, y, z, γ) = H n,k (•, y, z, γ) + r n,k (•)y + µ n,k (•) • z + 1 2 Tr σ n,k σ n,k⊤ (•)γ ,
for some smooth functions (H n,k , r n,k , µ n,k , σ n,k ) which converge to (H n , r n , µ n , σ n ) uniformly. Moreover, when d ≤ 2 or F is concave in its last argument, the corresponding PDE (2.8), with generator F n,k , has a classical solution v n,k ∈ C 1,3 b which converges locally uniformly to v n , see e.g. [START_REF] Gary | Second order parabolic differential equations[END_REF]Theorem 14.15] and [START_REF] Pham | Two person zero-sum game in weak formulation and path dependent bellman-isaacs equation[END_REF]Appendix D]. In view of this, we can assume w.l.o.g. that v n is a smooth solution of (2.8) with generator F n .

(ii) Next, we will consider v n as a path-dependent functional and essentially argue as in the proof of Lemma 2.15 with the additional property (recalling the convention (2.37)) that

φ n (t, x, x ′ , x t , x ′ t ) = φ n (t, x, x ′ ) := w(t, x) -v n (t, x ′ )
is a smooth functional. We therefore only sketch the proof. For later use, note that

∇ x φ n (t, x, x ′ ) = ∇ x w(t, x) , ∇ x ′ φ n (t, x, x ′ ) = -∇ x ′ v n (t, x ′ ) and ∇ x ′ ∇ x φ n (t, x, x ′ ) = 0.
For ease of notations, we pursue the proof with d = 1. We first compute that

-H t, x, (w, ∇ x w, ∇ 2 x w)(t, x + H n t, x ′ , (v n , ∇ x v n , ∇ 2 x v n )(t, x ′ ) = -f (t, x, Π n ηn(t) (x ′ )) -κ n (t, x, x ′ )φ n (t, x, x ′ ) -b n (t, x, x ′ )(∇ x φ n (t, x, x ′ ) + ∇ x ′ φ n (t, x, x ′ )) -a n (t, x, x ′ ) ∇ 2 x φ n (t, x, x ′ ) + ∇ 2 x ′ φ n (t, x, x ′ )
for some continuous map a n that is non-negative and bounded by L, a continuous map (κ n , b n ) bounded by 2L, and where f is continuous and satisfies

f (t, x, Π n ηn(t) (x ′ )) ≤ Lρ t (x, Π n ηn(t) (x ′ )),
recall Assumption 2.11. Note that a n , b n , κ n depend on (t, x) through w and v n possibly. Let us set r n (t, x) := r t, Π n ηn(t) [x] , and define µ n and σ n similarly with respect to µ and σ. Next, we compute that

-r(t, x)w(t, x) + µ(t, x)∇ x w(t, x) + 1 2 σ(t, x) 2 ∇ 2 x w(t, x) + r n (t, x ′ )v n (t, x ′ ) + µ n (t, x ′ )∇ x ′ v n (t, x ′ ) + 1 2 σ n (t, x ′ ) 2 ∇ 2 x ′ v n (t, x ′ ) = -r n (t, x ′ )φ n (t, x, x ′ ) -∆r n (t, x, x ′ )w(t, x) -µ n (t, x ′ ) ∇ x φ n (t, x, x ′ ) + ∇ x ′ φ n (t, x, x ′ ) -∆µ n (t, x, x ′ )∇ x φ n (t, x, x ′ ) - 1 2 σ n (t, x ′ ) 2 ∇ 2 x ′ φ n (t, x, x ′ ) - 1 2 (σ n + ∆σ n )(t, x, x ′ ) 2 ∇ 2 x φ n (t, x, x ′ ),

A fully nonlinear case

A particular fully nonlinear operator has already been studied in [1, Section 3.2] in the case d = 1 and for a PPDE of the form -∂ t v -H(∇2 x v) = 0 with a convex function H. We provide here a generalization which is proved by an appropriate modification of the arguments contained in the proof of [START_REF] Bouchard | A C 0,1 -functional Itô's formula and its applications in mathematical finance[END_REF]Proposition 3.13] and by appealing to the apriori estimate of Lemma 2.17 and Remark 2.18. In particular, we allow for more general nonlinearities when the terminal condition is C 1+1 (in the sense of Assumption 3.1 below when α = 1). It fully uses the piecewise constant approximation of the path, embedded in the definition of approximate viscosity solutions, to reduce the analysis to the finite dimensional case which provides uniform estimates on the corresponding sequence of π nviscosity solutions, for all n ≥ 1.

Assumption 3.1. (i) The function g ∈ C L and there exists α ∈ (0, 1] and a finite positive measure λ on [0, T ] such that, for all x,

x ′ ∈ D([0, T ]), B = [s, t) ⊂ [0, T ] and δ ∈ R d , |g(x) -g(x ′ )| ≤ T 0 |x s -x ′ s |λ(ds), (3.1) 
δ ′ ∈ R d -→ g(x + δ ′ 1 B ) is differentiable and 2 dg(x + δ1 B + x ′ ) dδ - dg(x + δ1 B ) dδ ≤ T 0 x ′ s λ(ds) α λ(B). (3.2) 
(ii) For any increasing sequence

0 = t 0 < t 1 < • • • < t n = T with max i<n |t i+1 -t i | small
enough, for all 1 ≤ i < j < n there exists a diagonal matrix p i,j ∈ S d with non-zero diagonal terms such that, for all δ ∈ R d , and

(x ℓ ) 0≤ℓ≤n ⊂ (R d ) n+1 , g n-1 ℓ=0 (x ℓ + δ1 {ℓ=i} )1 [t ℓ ,t ℓ+1 ) + 1 {T } x n = g n-1 ℓ=0 (x ℓ + p i,j δ1 {ℓ≥j} )1 [t ℓ ,t ℓ+1 ) + 1 {T } (x n + p i,j δ) . (3.3) 
(iii) F satisfies the conditions of Theorem 2.12. Moreover,

F is concave 3 in γ or d ≤ 2.
Further, one of the following holds:

(a) Either α ∈ (0, 1) and

F (t, x, y, z, γ) = F 1 (t)y + F 2 (t)z + F 3 (t, γ), (t, x, y, z, γ) ∈ Θ × R × R d × S d , (3.4) 
for some continuous maps F i , i = 1, . . . , 3.

(b) Or α = 1 and

F (t, x, y, z, γ) = F 1 (t, y, γ) + F 2 (t)z (3.5)
for some continuous maps Let us comment on the conditions in Assumption 3.1. In [START_REF] Bouchard | A C 0,1 -functional Itô's formula and its applications in mathematical finance[END_REF], we essentially "differentiate" twice the π n -viscosity solution v n of the regularized version of the PDE, and then derive the uniform boundedness and Hölder type estimates on the corresponding gradients of v n . For this, we interpret the differentiated PDEs in terms of flow equations to propagate backward the regularity of the terminal condition g, see ( 

F i , i = 1, 2, such that y ∈ R -→ F 1 (t,
tրt n i+1 ,x ′ →x v n (t, x, x ′ ) = v n t n i+1 , Π n [x⊞ t n i+1 x], x .
Therefore, it turns, from the next term interval on, into a bump on a parameter of the PDEs. See also (3.10) in the proof below. The structure condition (3.3) allows one to transform a derivative with respect to a past value of the path into a derivative with respect to the end of the path. More precisely, we have the following. 

∂ ℓ v n i (t, [x] n i , x) = p ℓ,i+1 Dv n i (t, [x] n i , x).
Note that this is no more possible if F depends on x.

As for (3.1)-(3.2), it is used to absorb the cumulation of derivatives on different time steps generated by the above mentioned phenomena, see (3.8)-(3.9) below. Notice that (3.1)-(3.2) is a C 1+α -type regularity assumption on g. It actually turns into a C 1+α -regularity in space on the solution v of the PPDE. This translates, as usual, into an Hölder continuity in time, up to an additional term associated to the measure λ. The interior regularity that could be obtained under a uniform ellipticity condition is by far not obvious and remains an open question.

Theorem 3.4. Let Assumption 3.1 hold true. Let v be the unique π-approximate viscosity solution of (2.4)-(2.5). Then, the vertical derivative ∇ x v(t, x) is well defined for all (t, x) ∈ [0, T ] × D([0, T ]), and there exists C > 0 such that |∇ x v(t, x)| ≤ C,

|∇ x v(t, x ′ ) -∇ x v(t, x)| ≤ C t 0 |x ′ s -x s |λ(ds) α + |x ′ t -x t | α , (3.6) 
for all (t, x, x ′ ) ∈ [0, T ] × D([0, T ]) × D([0, T ]). Moreover, for all K > 0, there exists a constant C K > 0 such that

|∇ x v(t ′ , x t∧ ) -∇ x v(t, x)| ≤ C K |t ′ -t| α 2+2α + lim sup ε↓0 λ([t -ε, t ′ + ε)) , (3.7) 
for all t ≤ t ′ ≤ T and x ∈ D([0, T ]) satisfying x ≤ K.

Proof. For ease of notations, we restrict to d = 1. When d > 1, it suffices to derive the following estimates for each dimension separately. By (i) of Assumption 3.1, upon smoothing

g n : (x 0 , . . . , x n ) ∈ R n+1 -→ g n-1 i=0 x i 1 [t n i ,t n i+1 ) + x n 1 {T } ,
we can assume that it is in C ∞ and that

|∂ x i g n (x 0 , . . . , x n )| ≤ λ([t n i , t n i+1 )), i, j ≤ n, if α ∈ (0, 1], (3.8 
)

|∂ 2 x i x j g n (x 0 , . . . , x n )| ≤ λ([t n i , t n i+1 ))λ([t n j , t n j+1 )), i, j ≤ n, if α = 1, (3.9) 
with the convention λ([t n n , t n n+1 )) := λ({t n n }). Let V n be defined by

V n (t, [x] n i , x) = v n (t, x, x), (x, x) ∈ D([0, T ]) × R d , t ∈ [t n i , t n i+1 ), i < n.
(i) Upon smoothing also F and adding a uniform elliptic term, we can assume that V n is C 1,3 b on [0, T ), see e.g. [START_REF] Gary | Second order parabolic differential equations[END_REF]Theorem 14.15] and [START_REF] Pham | Two person zero-sum game in weak formulation and path dependent bellman-isaacs equation[END_REF]Appendix D]. The estimates below will not depend upon this smoothing procedure. Let φ n,j denote the gradient of V n with respect to the j-th space component, and denote by Dφ n,j and D 2 φ n,j the first and second order derivatives of φ n,j with respect to its last space variable. On each [t n i , t n i+1 ), φ n,j ,

j ≤ i + 1, solves 0 = -∂ t φ n,j -∂ y F (Ξ)φ n,j -∂ z F (Ξ)Dφ n,j -∂ γ F (Ξ)D 2 φ n,j
where Ξ := (•, V n , DV n , D 2 V n ), with the boundary condition lim t↑t n i+1 φ n,j (t, y, x) = φ n,j (t n i+1 , (y, x), x) + 1 {j=i+1} φ n,i+2 (t n i+1 , (y, x), x), (y, x) ∈ R i × R.

(3.10)

By Feynman-Kac's formula and Assumption 3.1, for each (t, z) ∈ [t n i , t n i+1 ) × R i+1 , j ≤ i + 1 ≤ n, we can then find a process X and a bounded random variable β, with bound C β > 0 depending only on F , such that

φ n,j (t, z) = E β ∂ j g n (X t n 0 , . . . , X t n n ) + 1 {j=i+1} n j ′ =i+2 ∂ j ′ g n (X t n 0 , . . . , X t n n ) .
By (3.8), it follows that

|φ n,j (t, •)| ≤ C β λ([t n j , t n j+1 )) + 1 {j=i+1} λ([t n i+2 , T ]) , on [t n i , t n i+1 ), j ≤ i + 1 ≤ n. (3.11)
(ii) In the case α < 1, the rest of the proof is exactly the same as the proof of [1, Proposition 3.13] up to some obvious modifications. In fact, it suffices to replace their two first estimates at the very beginning of part 4.c. of their proof by (3.11) and (2.33) (together with Remark 2.18).

(iii) In the following, we consider the case α = 1, where the argument is slightly different and we only sketch the proof.

(a) Let us set ψ n,j,ℓ := ∂ x ℓ φ n,j , which solves the PDE

0 = -∂ t ψ n,j,ℓ -∂ y F (Ξ)ψ n,j,ℓ -∂ z F (Ξ)Dψ n,j,ℓ -∂ γ F (Ξ)D 2 ψ n,j,ℓ -φ n,j ∂ 2 yy F (Ξ)φ n,ℓ + ∂ 2 yz F (Ξ)Dφ n,ℓ + ∂ 2 yγ F (Ξ)D 2 φ n,ℓ (3.12 
)

-Dφ n,j ∂ 2 zy F (Ξ)φ n,ℓ + ∂ 2 zz F (Ξ)Dφ n,ℓ + ∂ 2 zγ F (Ξ)D 2 φ n,ℓ -D 2 φ n,j ∂ 2 γy F (Ξ)φ n,ℓ + ∂ 2 γz F (Ξ)Dφ n,ℓ + ∂ 2 γγ F (Ξ)D 2 φ n,ℓ .
By (3.5) and Remark 3.3, we can then find q ℓ,i+1 ∈ R, that depends on n, such that

0 = -∂ t ψ n,j,ℓ -∂ y F (Ξ)ψ n,j,ℓ -∂ z F (Ξ) + q ℓ,i+1 φ n,j ∂ 2 yγ F (Ξ) + q ℓ,i+1 Dφ n,j ∂ 2 zγ F (Ξ) Dψ n,j,ℓ -q ℓ,i+1 ∂ 2 γy F (Ξ)φ n,ℓ + ∂ 2 γz F (Ξ)Dφ n,ℓ + ∂ 2 γγ F (Ξ)D 2 φ n,ℓ Dψ n,j,ℓ -∂ γ F (Ξ)D 2 ψ n,j,ℓ -φ n,j ∂ 2 yy F (Ξ)φ n,ℓ .
Moreover, lim t↑t n i+1 ψ n,j,ℓ (t, y, x) =1 {ℓ<i+1} ψ n,j,ℓ + 1 {j=i+1} ψ n,i+2,ℓ (t n i+1 , (y, x), x)

+ 1 {ℓ=i+1} ψ n,j,i+2 + 1 {j=i+1} ψ n,i+2,i+2 (t n i+1 , (y, x), x), for (y, x) ∈ R i ×R. Then, by (iii) of Assumption 3.1 and (3.11), one can apply the Feynman-Kac's formula again to find, for given (t, z) ∈ [t n i , t n i+1 )×R i+1 , i < n, and j, ℓ ≤ i+1, adapted processes X, β 1 and β 2 , that depend on n but such that |(β 1 , β 2 )| ≤ Cβ for some Cβ > 0 that only depend on F and g, for which

ψ n,j,ℓ (t, z) =1 {ℓ<i+1} E β 1 T ∂ 2 x j x ℓ g n + 1 {j=i+1} n j ′ =i+2 ∂ 2 x j ′ x ℓ g n Π n [X] + 1 {ℓ=i+1} n k=ℓ+2 E β 1 T ∂ 2 x j x k g n + 1 {j=i+1} n-1 j ′ =i+2 ∂ 2 x j ′ x k g n Π n [X] + E T t β 2 s ds .
Thus, by (3.9), 

|ψ n,j,ℓ (t, z)| ≤ Cβ λ([0, T ]) 2 + Cβ T. ( 3 
n (t + h 4 , x t∧ , x t ) -Dv n (t, x, x t ) ≤ h -1 v n (t + h 4 , x t∧ , x t + h) -v n (t + h 4 , x t∧ , x t ) -v n (t, x, x t + h) + v n (t, x, x t ) + 2C K h ≤ h -1 v n (t + h 4 , (x + 1 {t} h) t∧ , x t + h) -v n (t, x, x t + h) + h -1 v n (t, x, x t ) -v n (t + h 4 , x t∧ , x t ) + h -1 v n (t + h 4 , x t∧ , x t + h) -v n (t + h 4 , (x + 1 {t} h) t∧ , x t + h) + 2C K h ≤ 2C ′ K h + C β λ([t -|π n |, t + h 4 + |π n |)),
for all x ∈ D([0, T ]) and t < t + h ≤ T .

The rest of the proof is similar to the one of [1, Proposition 3.13]: (i) implies that ∇ x v is well-defined on a dense subset of Θ, including the (countably many) atoms of λ, while (a) and (b) allow to extend it in a continuous way and imply that the extension is actually the pointwise limit of Dv n on Θ. The required estimates are deduced from (a) and (b) .

A semi-linear case

We now consider a semi-linear PPDE with generator of the form

F (t, x, y, z, γ) = f (t, x, y, σ ⊤ z) + µ(t, x) • z + 1 2 Tr σσ ⊤ γ , (3.14) 
for some non-anticipative functionals f : Θ × R × R d -→ R and (µ, σ) : Θ -→ R d × S d . In this case, we can remove the structure condition (3.3). We make the following assumption on the coefficients.

Assumption 3.5. (i) The functionals µ and σ are continuous. For each t ∈ [0, T ], the map

x ∈ D([0, T ]) -→ (µ(t, x), σ(t, x)) is Fréchet differentiable with derivative 4 (λ µ , λ σ )(•; t, x) at x ∈ D([0, T ]). (ii) The functional g is Fréchet differentiable with derivative λ g (•; x) at x ∈ D([0, T ]).
The functional f is continuous and non-anticipative, and for each (t, y, z)

∈ [0, T ] × R × R d , the map x -→ f (t, x, y, z) is Fréchet differentiable with derivative λ f (•; t, x, y, z) at x ∈ D([0, T ]). Further, (y, z)∈ R × R d -→ f (t, x, y, z) is differentiable with derivatives (∂ y f, ∂ z f
) which are bounded and continuous in (t, x, y, z).

(iii) There exists some finite positive measure λ on [0, T ], such that, for all (t, x, y, z) ∈

[0, T ] × D([0, T ]) × R × R d , λ µ (•; t, x) + λ σ (•; t, x) + λ f (•; t, x, y, z) + λ g (•; x) ≪ λ(•).
(iv) There exist constants α ∈ [0, 1] and C α > 0 such that

T 0 xr λ g (dr; x) - T 0 xr λ g (dr; x ′ ) ≤ C α x -x ′ α x , T 0 xr λ ℓ (dr; s, x) - T 0 xr λ ℓ (dr; s, x ′ ) ≤ C α x -x ′ α x , ℓ ∈ {b, σ}, T 0 xr λ f (dr; s, x, y, z) - T 0 xr λ f (dr; s, x ′ , y ′ , z ′ ) ≤ C α x -x ′ + |y -y ′ | + |z -z ′ | α x , (∂ y , ∂ z )f (s, x, y, z) -(∂ y , ∂ z )f (s, x ′ , y ′ , z ′ ) ≤ C α x -x ′ + |y -y ′ | + |z -z ′ | α , for all x, x ′ , x ∈ D([0, T ]) and (s, y, z) ∈ [0, T ] × R × R d .
Under Assumption 3.5, (2.4)-(2.5) has a unique π-approximate viscosity solution v (see Proposition 2.9), which corresponds to the solution of a BSDE. We will then show that v has a Dupire's vertical derivative which enjoys further continuity conditions. In the following, we assume that we are given a fixed complete probability space, equipped with a Brownian motion W together with the Brownian filtration. Let S

2 ([t, T ]) denote the space of R d -valued predictable processes X = (X s ) s∈[t,T ] such that E sup t≤s≤T |X s | 2 < ∞, and H 2 ([t, T ]) denote the space of R d -valued predictable processes Z = (Z s ) s∈[t,T ] such that E T t |Z s | 2 ds < ∞.
Theorem 3.6. (i) Let F be given by (3.14), and let Assumption 3.5 hold true. Let v be the unique π-approximate viscosity solution of (2.4)-(2.5). Then, it admits a Dupire's vertical derivative ∇ x v on [0, T ) × D([0, T ]) and there exists C > 0 such that

|∇ x v(t, x ′ ) -∇ x v(t, x)| ≤ C x ′ -x α , and 
|∇ x v(t ′ , x t∧ ) -∇ x v(t, x)| ≤ C |t ′ -t| α 2+2α (1 + x ) + λ([t, t ′ )) , for all t ≤ t ′ ≤ T and x, x ′ ∈ D([0, T ]).
(ii) Moreover, if λ has finitely many atoms, then v solves the stochastic path-dependent equation

v(•, X t,x ) = g X t,x + T • f (u, X t,x , v(u, X t,x ), [σ ⊤ ∇ x v](u, X t,x ))du - T • [∇ x vσ](u, X t,x )dW u , in which X t,x ∈ S 2 ([0, T ]) is the unique solution of X t,x s = x t∧s + t∨s t µ(u, X t,x )du + t∨s t σ(u, X t,x )dW u , t ≤ s ≤ T.
We split the proof in different steps. First, we will use the probabilistic representation of the PPDE (with generator F in (3.14)) in terms of forward-backward SDE to deduce the regularity of the π-approximate viscosity solution. Namely, under Assumption 3.5, it follows from Proposition 2.9 that the approximate viscosity solution v is given by v

(t, x) = Y t,x t , (3.15) 
where (Y t,x , Z

t,x ) ∈ S 2 ([t, T ]) × H 2 ([t, T ]) solves the BSDE Y t,x s = g X t,x + T t∨s f (u, X t,x , Y t,x u , Z t,x u )du - T t∨s Z t,x u • dW u , s ∈ [t, T ].
Next, let us fix a path x ∈ D([0, T ]), and then define a process ∇ t x X 

Under Assumption 3.5, and by standard arguments (based on Burkholder-Davis-Gundy's inequality and Gronwall's lemma, see e.g. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]), one has the following estimates on the processes X t,x , Y t,x , Z t,x and ∇ t x X t,x , ∇ t x Y t,x , ∇ t x Z t,x , whose proof is ommited.

Lemma 3.7. Let Assumption 3.5 hold true. Then, for all p ≥ 1, there exists a constant C p > 0, such that, for all t, t ′ ∈ [0, T ] and x, x ′ ∈ D([0, T ]), Proof. For ease of notation, let us omit the superscript (t, x) in the notations of the processes X t,x+δx , X t,x , ∇ t,δ x X t,x , ∇ t x X t,x and write them as (X δ , X, ∇ t,δ x X, ∇ t x X). (i) We first notice that (∇ where I d is the identity matrix and, as δ ց 0, λ δ µ (•, u), λ δ σ (•, u) -→ λ µ (dr; u), λ σ (dr; u) := λ µ (dr; u, X), λ σ (dr; u, X) .

E
(3.21)

Applying Itô formula on ∇ t,δ x X s -∇ t x X s 2 and then taking expectation, it follows by standard arguments that, for some constant C > 0 independent of δ, and a constant C δ > 0,

E ∇ t,δ x X s∧ -∇ t x X s∧ 2 ≤ C s t E ∇ t,δ x X r∧ -∇ t x X r∧ 2 dr + C δ ,
where, by the moment estimation in (3.17) and the convergence in (3.21), Further, using Assumption 3.5 and Grownwall's lemma, one can find a constant C > 0 such that

C δ ≤ C T t E ∇ t,δ x X u -∇ t x X u T t |∇ t x X r | λ δ µ -λ µ (
E ∇ t x X t,x -∇ t x X t,x ′ 2 1 2 + ∆(t, x, x ′ ) 1 2 ≤ C x -x ′ α .
It follows that ∇ x v is α-Hölder in space.

We now repeat the argument used at the end of the proof of Theorem 3.4. In view of (3.18), we can find C, C ′ such that ∇ x v(t + h 2+2α , x t∧ ) -∇ x v(t, x, x t ) ≤ h -1 v(t + h 2+2α , x t∧ + 1 {t+h 2+2α } h) -v(t + h 2+2α , x t∧ ) -v(t, x ⊕ t h) + v(t, x) + 2Ch α ≤ h -1 v(t + h 2+2α , (x + 1 {t} h) t∧ ) -v(t, x ⊕ t h) + h -1 v(t, x) -v(t + h 2+2α , x t∧ ) + h -1 v(t + h 2+2α , x t∧ + 1 {t+h 2+2α } h) -v(t + h 2+2α , (x + 1 {t} h) t∧ ) + 2Ch α ≤ C ′ (h α (1 + x + h) + λ([t, t + h))) , for all x ∈ D([0, T ]) and t < t + h ≤ T .

(ii) Assume now that λ has finitely many atoms at times (s i ) i≤I ⊂ [0, T ] with s i < s i+1 for i + 1 ≤ I. Then, [1, Theorem 2.5] can be applied on each time interval [s i , s i+1 ). Since v(•, X t,x ) and • t [∇ x vσ](s, X t,x )dW s are continuous, this implies that we can find a continuous (and therefore predictable) orthogonal process A, see [1, Definition 2.3] such that v(•, X t,x ) = v(t, X t,x ) +

• t [∇ x vσ](s, X t,x )dW s + A .

In particular [A, W ] = 0. Thus, the fact that Y t,x = v(•, X t,x ) implies that (Z t,x ) ⊤ = [∇ x vσ](•, X t,x ) dt × dP on [t, T ] by uniqueness of the co-quadratic variation of semimartingales.

. 1 )

 1 We next define different metrics ρ : Ω × Ω -→ R + as well as different projection operators Π n : Ω -→ Ω, depending whether Ω = C([0, T ]) or Ω = D([0, T ]).Case I: Ω = C([0, T ]). Let us define the metric ρ and a family of pseudometrics (ρ t ) t∈[0,T ] on Ω by ρ

Example 3 . 2 .

 32 y, γ) is C 1 with bounded and Lipschitz first order derivative, uniformly in γ ∈ R d and t ≤ T . Let d = 1, g 0 : R -→ R be in C 1+α , and λ be a finite positive measure on [0, T ] such that λ([T -ε, T ]) > 0 for any ε > 0. Then the following g : D([0, T ]) -→ R defined by g(x) := g 0 T 0 x t λ(dt) satisfies the conditions of Assumption 3.1.

  Remark 3.3. Assume that v n is a smooth π n -viscosity solution of (2.4)-(2.5) and that Assumption 3.1 holds. Then, a backward induction argument based on (ii) of Assumption 3.1 and the fact that F does not depend on the path x imply that v n (t, • + δ1 [t ℓ ,t ℓ+1 ) , •) =

	v n (t, •, • + p ℓ,i+1 δ) for t ∈ [t n i , t n i+1 ), ℓ < i + 1 ≤ n, for some p ℓ,i+1 . Letting v n i be defined as in (2.19) and denoting by ∂ ℓ v n i (t, [x] n i , x) the gradient of v n i (t, [x] n i , x) with respect to the ℓ-th component of [x] n i , we deduce that

  .13) (b) Recall that α = 1. It follows from (2.33) (by setting ̟ • (x) := x for all x ≥ 0, see Remark 2.18), (3.11) and (3.13) that we can find C K and C ′ K , independent of n, such that

	Dv

  (dr; u, X t,x )dW u .Namely, ∇ tx X t,x s is the tangent process of X t,x in the direction of x. We also define the processes ∇ t x Y t,x s , ∇ t x Z t,x s s∈[t,T ] as the solution to the linear BSDE

				t,x s	s∈[0,T ] as the
	solution to the SDE
	∇ t x X t,x s = xs∧t + r λ σ ∇ t s∨t t u t ∇ t x X t,x r λ µ (dr; u, X t,x )du + s t u t ∇ t x X t,x x Y t,x s = T 0 ∇ t x X t,x r λ g (dr; X t,x ) + T s u t ∇ t x X t,x r λ f (dr; Θ t,x u ) + A t,x u • (∇ t x Y t,x u , ∇ t x Z t,x u ) du
	-	s	T	∇ t x Z t,x u dW u ,
	in which			
		Θ t,x

s := s, X t,x , Y t,x s , Z t,x s , and A t,x s := ∂ y f (Θ t,x s ), ∂ z f (Θ t,x s ) .

  X t,x p + sup |x s -x ′ s |λ(ds) + (1 + x + x ′ )|t -t ′ | ∇ t,δ x Y t,x , ∇ t,δ x Z t,x := δ -1 X t,x+δx s -X t,x s , Y t,x+δx -Y t,x , Z t,x+δx -Z t,x .

			s∈[0,T ]	E Y t,x s	p + E	0	T	|Z t,x s | 2
										1 p + E	0	T	Z t,x s -Z t ′ ,x ′ s	2 ds	p 2	1 p
	≤ C p	0	t∨t ′								1 2 ,	(3.18)
	and									
	E ∇ t x X t,x p	1 p + E ∇ t x Y t,x p	1 p + E	0	T	∇ t x Z t,x s	2 ds	p 2	≤ C p .	(3.19)
	Next, for each δ > 0, we denote				
	∇ t,δ x X t,x s , δց0	∇ t,δ x Y t,x t	-∇ t x Y t,x t	= 0.	(3.20)

p 2 ds ≤ C p 1 + x t∧ p , (3.17)

E X t,x -X t ′ ,x ′ p 1 p + E Y t,x -Y t ′ ,x ′ p

Lemma 3.8. Let Assumption 3.5 hold true. Then, for all (t, x)

∈ [0, T ] × C([0, T ]), lim δց0 E ∇ t,δ

x X t,x -∇ t x X t,x 2 = 0 and lim

  t,δ x X s ) s∈[t,T ] satisfies ∇ t,δx X s = I d +

	= I d +	t t	s s	µ(u, X δ ) -µ(u, X) du + u t ∇ t,δ x X r λ δ µ (dr; u)du +	t	t∨s s t	σ(u, X δ ) -σ(u, X) dW u u t ∇ t,δ x X r λ δ σ (dr; u)dW u ,

  dr, u) du -→ λ f (dr; u), λ g (dr) := λ f (dr; u, X, Y, Z), λ g (dr; X) , as δ ց 0, andA δ u • ∇ t,δ x Y u , ∇ t,δ x Z u := δ -1 f u, X δ , Y δ u , Z δ u -f u, X δ , Y, Z .Proof of Theorem 3.6. (i) Let us first fix x := 1 {[t,T ]} . By (3.15) and (3.18), we observe that v is locally 1/2-Hölder in time and Lipschitz in space. Moreover, by Lemma 3.8, ∇ x v(t, x) = ∇ t x Y t,x t . Thus, it is enough to study the regularity of ∇ t x Y t,x

	+ C ∇ t,δ x X r λ δ T t g (dr) + E T s ∇ t,δ x Z u dW u , g (•) Recalling (3.16), it follows that, for all p ≥ 1, T t ∇ t x X r λ δ = T t T s u t ∇ t,δ x X r λ δ f (dr; u) + A δ u • ∇ t,δ x Y u , ∇ t,δ T s ∇ t,δ x Z u dW u x Z u du -where λ δ f (•, u), λ δ E T t |A δ in (t, x). By direct computation, one has (using the notation (3.16)) ∆(t, x, x ′ ) := ∇ t x Y t,x t -∇ t x Y t,x ′ t 2 ≤ E T t ∇ t x X t,x r λ g (dr; X t,x ) -T t ∇ t x X t,x ′ r λ g (dr; X t,x ′ ) 2 + E T t s t ∇ t x X t,x r λ f (dr; Θ t,x s ) -s t ∇ t x X t,x ′ r λ f (dr; Θ t,x ′ s ) 2 ds u -A t + E T t (A t,x s -A t,x ′ s ) • (∇ t x Y t,x s , ∇ t x Z t,x s )

µ -λ µ (dr, u) 2 du -→ 0. By Gronwall's lemma, it follows that the first convergence result in (3.20) holds true.

(ii) We notice that ∇ t,δ

x Y, ∇ t,δ x Z satisfies

∇ t,δ x Y s = g(X δ ) -g(X) + T s f (u, X δ , Y δ u , Z δ u ) -f (u, X, Y u , Z u ) duu | p du -→ 0, as δ ց 0.

One can then conclude by the stability result for BSDEs (see e.g. [13, Proposition 2.1] or [2, Theorem 4.1 and Remark 4.1]).

2 ds .

Hereafter, we identify a constant x ∈ R d to the constant process x1 [0,T ] .

We abuse notations to write dg(• + δ1B + •)/dδ for the corresponding derivative with respect to δ.

or convex, which is equivalent up to replacing F (x, •) by -F (x, -•).

We identify the Fréchet derivatives with the associated measures on [0, T ].
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A classical solution is an approximate viscosity solution

We prove in this section that our notion of approximate solution is consistent with the notion of smooth solution (in the sense of Dupire). For this, we will have to restrict to the case where either d ≤ 2 or γ ∈ S d → F (•, γ) is concave (or convex, by a change of variables). Note that Proposition 2.19 below combined with Remark 2.13 actually provides a numerical algorithm for computing the smooth solution of a PPDE, if it exists.

Let us set for this subsection

and recall the definition of derivatives of path-dependent functionals in the sense of Dupire [START_REF] Dupire | Functional Itô calculus[END_REF]. Let u : Θ -→ R be a non-anticipative function, and let us write

The function u : Θ -→ R is said to be horizontally differentiable if, for all (t, x) ∈ [0, T ) × D([0, T ]), the horizontal derivative

Next, u is said to be vertically differentiable if, for all (t, x) ∈ Θ, the function

whose derivative at y = x t is called the vertical derivative of u at (t, x), denoted by ∇ x u(t, x). Similarly, one can define the second-order vertical derivative ∇ 2 x u(t, x). We say that u is locally bounded if sup t∈[0,T ], x ≤K |u(t, x)| < ∞ for all K > 0. We denote by C loc b (Θ) the class of all non-anticipative, continuous, and locally bounded functions on Θ, and by C 1,2 (Θ) the collection of elements u ∈ C loc b (Θ) such that ∂ t u, ∇ x u and ∇ 2 x u are all well defined, continuous and locally bounded on [0, T ) × D([0, T ]).

We then say that u ∈ C 1,2 (Θ) is a classical solution of (2.4)-(2.5) if Remark 2.20. Note that the condition d ≤ 2 or γ ∈ S d → F (•, γ) is concave is typically required for the existence of smooth solutions in the finite dimensional setting, see e.g. [START_REF] Gary | Second order parabolic differential equations[END_REF]. We shall actually use it in the proof below. Any other assumption ensuring the existence of smooth solutions in the finite dimensional setting (up to regularizing the coefficients) could be used in place of this one.

where ∆r n (t, x, x ′ ) := r(t, x) -r n (t, x ′ ) satisfies

and ∆µ n (t, x, x ′ ) := µ(t, x) -µ n (t, x ′ ), ∆σ n (t, x, x ′ ) := σ(t, x) -σ n (t, x ′ ) satisfy also

φ n (t, x, x) = 0, for all (t, x) ∈ Θ, by the same arguments as in (ii) of the proof of Lemma 2.15 by using [START_REF] Possamaï | Zero-sum path-dependent stochastic differential games in weak formulation[END_REF]Theorem 3.16], the functional Itô's formula of [START_REF] Cont | Functional Itô calculus and stochastic integral representation of martingales[END_REF] and the corresponding Feynman-Kac's formula (recall that v n and w have polynomial growth).

Regularity of approximate viscosity solutions

In this section, we discuss the regularity of π-approximate viscosity solutions for a fully nonlinear PPDE and a semi-linear PPDE. Namely, we provide in this section some conditions under which the Dupire's vertical derivative exists and is continuous. One of the motivations to study such a regularity property is the fact that it allows to apply the functional Itô formula in [START_REF] Bouchard | A C 0,1 -functional Itô's formula and its applications in mathematical finance[END_REF]. The study of further regularity of the solution, in particular the potential regularization effect of a uniform ellipticity condition, is left for future researches.

All over this section, we set Ω = D([0, T ]) so that Θ = [0, T ] × D([0, T ]).

We also recall that, for a functional defined on Θ, its derivatives in the sense of Dupire is recalled in Section 2.4.