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The Faraday instability arising in distinct miscible fluid layers, when the parametric
forcing is parallel to the gravity vector, is analysed. A time-dependent density
gradient is established from the moment the fluid layers are placed in contact
with one another. The operating parameters in a miscible Faraday system are the
frequency of parametric forcing and the wait time between the initial contact of
fluids and the commencement of oscillations. Using a linearized theory that in-
vokes a quasi-steady approximation, the vibrational threshold required for the onset
of Faraday instability is evaluated for these parameters and several observations
are made. First, the criticality is observed to occur at a sub-harmonic frequency.
Second, the large magnitude of the concentration gradient at early wait times is
found to make the thin layers highly unstable. Third, the stability increases with
forcing frequency, owing to the increased dissipation of the resulting choppy waves.
All these observations qualitatively agree with experiments. Finally, a calculation
reveals that an increase in gravity increases the critical wavelength of flow onset and
results in the reduction of critical input acceleration. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4929401]

I. INTRODUCTION

The onset of flow patterns in density-stratified fluid layers, subject to parametric forcing, is
known as the Faraday instability phenomenon.1,2 Ordinarily, for this onset to occur from an erst-
while quiescent state, the forcing must act parallel to the density stratification. While the Faraday
instabilities can generally occur in both miscible and immiscible fluid layers, the phenomena owe
their origins to different hydrodynamic and transport mechanisms. In the case of immiscible liquids,
the destabilization of the static layers is manifested by the transverse variation in interfacial eleva-
tion and occurs due to the resonance between the imposed frequency and the natural frequency of
the system. The latter depends on the density difference as well as the surface tension and viscosities
of the layers. The surface tension and viscous dissipation effects stabilize all the perturbations below
a critical limit of the oscillation parameter. Beyond this limit, interfacial deformation takes the
shape of a standing wave with a defined wavelength.

The density stratification in miscible fluid systems is generally caused by either temperature
or solutal gradients. Where temperature differences are imposed, the temperature gradient, and
therefore, density gradients, may either be steady or unsteady in time. However, in the case of
solutal mass transfer, the solutal concentration differences are typically not constant in time and the
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density gradients are thus transient. The Faraday instability in such miscible fluid layers is distinct
from the immiscible fluid layer case, as it is triggered by the transverse variation of fluid density
and is countered by the stabilizing viscous and diffusion processes. Here too, the instability is a
consequence of the resonance between the imposed and natural frequencies of the system. The
mixing of fluids generated during the evolution of the instability gradually reduces the gradients
of concentration in the layers and even results in the eventual “quenching” of the instability.3,4

Thus, the Faraday instability in miscible systems has a definite lifespan which is determined by the
different fluid properties and operating parameters and it sows the seeds of its own destruction.

The inherent transient nature of the diffusion process implies that the critical parameters for
flow onset depend on the time delay between the commencement of oscillations and the moment
the two fluid layers are brought into contact with one another—this is the so-called “wait–time,” t0.
As the thickness of the diffusion layer is determined by the value of t0, a smaller t0 would generally
imply large solutal gradients and thin layers. The former is destabilizing and the latter is stabilizing.
Large values of t0 lead to the reverse situation. Understanding the effect of the initiation time is
therefore an important focal point of the current study. Notwithstanding the transient base state,
the mechanisms of instability in the miscible Faraday problem are similar to those of the stably
stratified vibrational Rayleigh-Bénard system.5,6 For example, the frequency of system response is
observed to be half of the imposed excitation frequency, a fact that is supported by the experimental
observations of Zoueshtiagh et al.3 Despite this similarity, the miscible Faraday system has not
received as much theoretical scrutiny as its Bénard counterpart or as miscible systems with oscilla-
tions parallel to the interface.7,8 The current work thus focusses on predicting the threshold for the
onset of instability through a linear analysis. Aside of the scientific interest, the present work is also
motivated by the profound impact which Faraday instabilities have on practical applications such as
atomization and mixing of liquids.9

A general linear stability analysis of miscible systems is complicated by two significant chal-
lenges. First, the base state of the problem is transient and the corresponding linear system ceases
to be of classical Floquet type. However, consideration of a frozen-time approximation wherein
the base concentration profile is assumed to remain frozen during the evolution of the instability
allows the resulting linear stability analysis to become fully amenable to the Floquet theory. The
frozen-time approximation has been previously used for other hydrodynamic instability problems
(cf. Riaz et al.10 and Gresho and Sani5). Second, the spatial discretization of variables through
Lagrangian interpolation polynomials at the Gauss-Lobatto-Chebyshev (G-L-C) points leads to an
undesirable distribution of nodal points in the diffusion layer. Owing to its distribution pattern
(finer near the extremities and coarser at the center), the G-L-C points do not properly resolve the
mixing region present in the domain. This consequently leads to large errors in the predicted critical
parameters as the sharp gradients in the diffusion region are poorly approximated. As a remedy, a
mapping procedure is adopted here that allows for clustering of nodes around the diffuse interface in
the physical domain. Spectrally accurate solutions are then obtained by mapping the clustered nodes
onto the G–L–C points in the computational domain. The aim of the current work is to predict the
threshold of the miscible Faraday instability for different operating conditions. To this end, we now
describe the mathematical model and its implementation.

II. MATHEMATICAL MODEL

Consider two layers of miscible fluids, enclosed between two infinite horizontal plates, as
shown in Fig. 1, with gravity acting in the downward vertical direction. When the layers first come
into contact, a transiently growing diffuse region of thickness L(t) is formed along their location
of initial contact owing to the continuous mass diffusion process in the vertical y-direction. We
shall hereafter refer to this transient diffuse region as the “mixing region” and the initial contact
location as the “diffuse interface”. The general unscaled equation governing the evolution of fluid
concentration in the domain under non-flow conditions is given by(

∂C0

∂t

)
= D


∂2C0

∂ y2


, (1)
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FIG. 1. Schematic of the fluid configuration.

where D is the mass diffusion coefficient. Invoking a semi-infinite approximation, i.e., when
H/L(t) >> 1, with H being the total depth, the concentration field at early times is given as

C0(y, t) − C2

∆C
=

1 + erf
((y − yF)/2

√
D t

)
2

, (2)

where ∆C = C1 − C2; C1 and C2 are the concentrations of fluid “1” and fluid “2” and yF is the
ordinate of the center of diffusion layer.

The primary objective of the current work is to characterise the stability of the mixing region
for an imposed oscillation of angular frequency “Ω” (period T = 2π/Ω) and amplitude “b”. For
this purpose, a Floquet-based linear stability analysis is carried out by invoking the Boussinesq
approximation. In fact, the stability of the mixing layer is determined here by evaluating its response
to the imposed oscillations at different time instants, t0, of the quiescent base-state evolution. At
each time, t0, the base state for the linear analysis is given as V0 = {u0, v0, w0} = 0 and C0, where
C0 is obtained via Eq. (2). The difficulty in this approach arises from the temporal variation of
concentration gradient in the base state making the resulting linear system of equations unsuitable
for a classical Floquet type of analysis.

The current work remedies the above issue by using a quasi-static (frozen-field) approach,
wherein the evolving base concentration field at time, t0, is considered to remain frozen during the
growth/decay of perturbations, i.e., ∂C0/∂t = 0, noting that t is not the same as t0. Such an approach
effectively eliminates all the non-harmonic components of evolution from the linear analysis and is
justifiable when the time constant of mass transfer, t0, is much greater than the period of parametric
forcing, T . As the rate of species diffusion is inversely related to the time, t0, the term ∂C0/∂t can
be considered insignificant at higher t0. Nevertheless, it would be beneficial to bring out plausible
results at t0 values as low as possible, i.e., for thin diffusion layers. As the concentration gradient,
∂C0/∂ y , is the driving force behind the evolution of miscible Faraday instability, it is essential to
consider thin layers as they provide enhanced mixing at lower threshold values.

For all situations considered in this study, the frozen thickness L(t0) of the mixing region is
much smaller than the actual fluid depths (H). Thus, it becomes an apt reference length scale for
the miscible fluid systems under consideration, i.e., Lref =

√
Dt0. While T is chosen as the refer-

ence time scale here, i.e., tref = T , the other relevant scales are given as follows: velocity scale,
vref =

√
Dt0/T ; pressure scale, pref = ρ0D ν/L2

ref ; concentration scale, ∆C. The density distribution
in the domain is given as ρ = ρ0 − ρ0βc (C − C2), where βc is the solutal expansion coefficient,
βc > 0. Owing to the Boussinesq approximation, the effect of density non-homogeneity is consid-
ered to be significant only in the buoyancy term of the Navier-Stokes equation. The scaled dimen-
sionless mass, momentum, and species conservation equations in the oscillating reference frame are
written as

∇ · V = 0,

1
Sc


∂V
∂t
+ (V · ∇)V


= − 1

t∗20

∇p +
1
t∗0
∇2V +

1
t∗20

Ra (t) C j, and

∂C
∂t
+ (V · ∇)C =

1
t∗0
∇2C.

(3)
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Here, t∗0 is the ratio t0/T , Ra (t) = βc aeff ∆C L3
ref/D ν is the solutal Rayleigh number, and Sc =

ν/D is the Schmidt number. The effective acceleration
�
aeff

�
acting on the fluids is given as�

g + bΩ2sin(W0t)	 j, where W0 is the Womersley number defined as W0 = Ω tref = 2π. No slip
boundary conditions are imposed at the top and bottom plates, cf. Fig. 1.

With the temporal freezing of the base state, i.e., V0 = 0 and C0, the evolution of any imposed
infinitesimal perturbation, (V′; C ′), is governed by the linearised form of Eq. (3) written as

∇ · V′ = 0, (4)
1
Sc

∂V′

∂t
= − 1

t∗20

∇p′ +
1
t∗0
∇2V′ +

1
t∗20

Ra (t)C ′j, and (5)

∂C ′

∂t
+ v ′

∂C0

∂ y
=

1
t∗0
∇2C ′. (6)

The base concentration derivative, ∂C0/∂ y , in the above equation is obtained by differentiating
Eq. (2) and scaling it with Lref corresponding to each chosen t0, i.e.,

∂C0

∂ y
=

1
2
√
π

e{−(y−yF)2/4}. (7)

Now, on eliminating the horizontal components of velocities and pressure by operating Eq. (5) with
j · ∇ × ∇× and then by recombining with Eq. (4), we obtain(

1
Sc

∂

∂t
− 1

t∗0
∇2

)
∇2v ′ =

1
t∗20

Ra (t)∇2
HC ′ and (8)(

∂

∂t
− 1

t∗0
∇2

)
C ′ = −v ′∂C0

∂ y
. (9)

Here, ∇2
H = ∂2/∂x2 + ∂2/∂z2. With suitable manipulations, it can be shown that Eqs. (8) and (9) can

be written in a simplified form as

dX′

dt
= A(t) X′, (10)

where X′ = {v ′,C ′}T and A(t) is the T-periodic linear operator corresponding to Eqs. (8) and (9). It
is only due to the assumption of a frozen base state that the matrix A(t) is T-periodic and the system
of equations given by Eq. (10) is of the Floquet type. Its solution is represented as X′ = eµtX̃, where
µ = σ + iα is the Floquet exponent and X̃ is the T-periodic Floquet mode. Here, σ is assumed to be
real and the value of α is either “0” for harmonic responses or “π” for sub-harmonic responses.11

Upon further expansion of X̃ in terms of a periodic series with fundamental frequency 2π, X′ may
be written as

X′ = eµt
∞

n=−∞

Xnei2nπt . (11)

In the current problem where the geometry is of infinite horizontal extent, X can be re-expanded in
horizontal Fourier modes to give

{v ′,C ′} = eµt
∞

n=−∞
{vn(y), Cn(y)}ei(kxx+kzz)ei2nπt, (12)

where kx and kz are the wavenumbers in the horizontal directions x and z, respectively. The so-
lutal Rayleigh number, Ra(t), is decomposed into static and vibrational components as Ra (t) =
Ras + Ravsin (2πt), where Ras = βc g ∆C L3

ref/D ν and Rav = βc bΩ2∆C L3
ref/D ν. Substituting the

expansions of v ′ and C ′ from Eq. (12) into Eqs. (8) and (9), the perturbation equations for each
periodic mode “n” are written as follows:

Bn

Sc

(
d2

dy2 − k2
)
vn −

1
t∗0

(
d2

dy2 − k2
)2

vn = −
k2Ras

t∗20

Cn −
i Ravk2

2 t∗20

(Cn+1 − Cn−1

)
and (13)
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Bn
Cn −

1
t∗0

(
d2

dy2 − k2
)
Cn = −

∂C0

∂ y
vn. (14)

Here, Bn = i (α + 2nπ) and k2 = k2
x + k2

z. Since the current focus is to primarily predict the neutral
behaviour, σ is set to be zero. The reality conditions associated with the harmonic and sub-
harmonic modes are given as

C−1 = C∗1 (harmonic mode,α = 0), (15)

C−1 = C∗0 (sub-harmonic mode,α = π), (16)

where “*” indicates complex conjugate.
The boundary conditions corresponding to no-slip plates at the impermeable top and bottom

walls are as follows:

vn = 0,
dvn
dy
= 0,

d Cn

dy
= 0. (17)

Note that the concentration perturbations at the top and bottom walls are specified here with
Neumann conditions. Under the present semi-infinite distance approximation for the base-state,
i.e., Lref/H << 1, the results are not very sensitive to the type of boundary conditions applied at the
walls.

The last step before the factorization of Eqs. (13) and (14) is the spatial discretization of variables
in the y-direction for evaluating their respective derivatives. In this regard, a very accurate represen-
tation is generally possible with the use of Lagrangian interpolation polynomials defined over the
G-L-C points. The distribution of G-L-C points is given by y j = cos

(
π j
N

) { j = 0,1, . . . ,N}, where N
is the number of collocation points considered along the y direction. Whence, any unknown variable
ϕ is interpolated from its nodal values as

ϕN(y) =
N
j=0

h j(y) ϕ(y j), (18)

where the function h j(y) is defined over the G–L–C points as follows:

h j(y) = (−1) j+1 �1 − y2�T ′N (y)
c̄jN2

�
y − y j

� , j = 0,1, . . . ,N. (19)

Here, T ′N (y) corresponds to the first derivative of the N th Chebyshev polynomial of the first kind.
The constant c̄j is unity for all j except at the extremities ( j = 0 & N) where its value is 2. Any
spatial derivative of ϕ at the G-L-C points is subsequently obtained by differentiating Eq. (18) with
the additional consideration of discrete orthogonality, i.e., hi(y j) = δi j.

Unfortunately, a direct implementation of the above procedure does not suffice for the config-
uration of miscible fluid systems under study. Owing to the distribution pattern of G-L-C points
(finer in the extremities and coarser in the center), the diffusion region in the middle of the domain
is not well-resolved. In fact, in most situations, the thin diffusion layer is populated only by a
single G-L-C point at its center and so, the actual error function profile of the species concentration
is very poorly approximated. The resulting error in evaluating the corresponding sharp gradient
leads to inaccurate predictions of the criticality. Any remedial clustering of nodes, using arbitrary
points other than G-L-C points around the mixing region does not actually improve the accuracy of
predictions, as the polynomial interpolation using such nodes results in the Runge phenomenon.12

One of the possible ways of overcoming this issue, i.e., the Runge phenomenon, involves a
mapping strategy, wherein the actual polynomial interpolation is carried out only in the transformed
coordinates (η). In the physical domain (y), the nodes are conveniently clustered around the diffu-
sion region for an effective representation. Subsequently, these nodes are mapped onto the G-L-C
points in the transformed domain (η) using suitable conformal mapping relations, y = g(η). A
candidate13 that has been used in the present work for the purpose of transformation, cf. Fig. 2, is

y = g(η) = ϵ sinh
�
η sinh−1 (1/ϵ)	 , (20)
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FIG. 2. Mapping of clustered node points (y) onto G-L-C points (η) in the transformed domain.

where ϵ is a scaling factor which determines the redistribution pattern of nodes in the physical
domain. As evident from Fig. 2, the nodes are more densely packed around the central region as the
value of ϵ gets lower. In view of the above mapping (Eq. (20)), the resulting transformations of all
the spatial derivatives in Eqs. (13) and (14) are listed in the Appendix.

Following the transformation of all the spatial derivatives, the resulting set of equations can
be written as a generalized eigenvalue problem of the form M X = RavN X . In an experiment, the
input parameters are the thermo-physical properties, layer heights, the initial waiting time, t0, and
the frequency of shaking. In dimensionless terms, the input parameters are Ras, Sc, t∗0, and yF. The
key output parameter is the critical amplitude of shaking and in dimensionless terms, it is the critical
value of Rav.

Before obtaining the critical conditions for the problem under study, the numerical method is
verified by solving the vibrational Rayleigh-Bénard problem where the base-state profile is linear
and the solutal problem is replaced by its thermal analog. Figure 3 shows the comparison of
neutral curves obtained from the current implementation with the work of Shukla and Narayanan.6

The present results have been obtained using the parameters nmax = 8 (total number of periodic
modes considered), N = 64, and ϵ = 0.01. Owing to the constant gradient of the base-state temper-
ature, the results obtained are not very sensitive to these parameters. However, it will be soon
shown that their values are important in obtaining accurate solutions for miscible Faraday systems.
As evident from Fig. 3, an excellent match of our results with those of Shukla and Narayanan
is observed for different Rayleigh numbers and heating configurations. The fundamental mode
of excitation for the bottom heating case is harmonic, whereas for the top heating case, it is
sub-harmonic.

Having verified the procedure with the special case of a constant gradient, it is now important to
determine the optimum values of parameters, N and ϵ , that must be used for all the current compu-
tations related to miscible Faraday instability. As the goal of the mapping procedure is to accurately
resolve the mixing region between the two fluids, these optimum values are best determined at
the moment when the diffusion layer is the thinnest. It may be noted that the thinnest layer that
can be considered in the current analysis is limited by the quasi-steady approximation according
to which t0 should be greater than T , i.e., t∗0 >> 1 and hence, an optimization study is carried out
for t0 = 100 s. The set of parameters thus identified would be even more appropriate at higher t0
as the corresponding diffusion layer will be proportionally thicker. Here, the critical parameter of
instability onset is represented by the ratio between the vibrational and static Rayleigh numbers,
Rav/Ras or simply bΩ2/g. This group ensures that the results are independent of the various fluid
properties involved.

Figure 4(a) shows the variation of calculated bΩ2/g values for different combinations of N and
ϵ , for other relevant properties being Ras = 105, D = 10−9 m2/s, Sc = 1000, t∗0 = 400 (t0 = 100 s
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FIG. 3. Comparison of neutral curves obtained for thermo-vibrational convection: (a) bottom heating and (b) top heating
(Ref* - Shukla and Narayanan6). Here, Ra= β g ∆θ L3

ref/κ ν is the thermal Rayleigh number and Pr=ν/κ is the Prandtl
number, with β and κ being thermal expansion coefficient and thermal diffusivity, respectively.

and T = 0.25 s), and k2 = π2/2. As seen, the bΩ2/g values are observed to be strongly depen-
dent on the scaling factor ϵ which determines the amount of grid-point clustering around the
diffuse interface. For values of ϵ greater than 1/1000, the convergence rate of bΩ2/g with N is
observed to vary inversely with ϵ . At values of ϵ lesser than or equal to 1/1000, the predicted
bΩ2/g converges at nominal ranges of N , as the diffuse interface is now well resolved. However,
with the further reduction of ϵ say to 1/10 000, the variation of bΩ2/g with N is observed to be
initially oscillatory. Such behavior is not surprising as the condition number of the fourth-order
differentiation matrix worsens with the increased proximity of the grid points around the mixing
region.14 In this regard, a value of ϵ = 1/2000 is chosen here as it allows for a proper convergence
at moderate values of N . In order to aid in deciding the optimum N value, the distances of the
first, second, and third grid points from the domain center for each of the mapping parameters
are plotted in Figs. 4(b)–4(d). The horizontal guideline in these figures corresponds to Lref which
in turn represents the thickness of the diffusion layer. The utility of this guideline is to facilitate
the estimation of number of grid points that will populate the diffuse interface for each parametric
case. As seen, at ϵ = 1/2000, the diffuse interface is well resolved for values of N upward of 72
and so an accurate estimate of gradients can be expected beyond N = 72. However, for the sake
of optimizing the associated computational effort, all the computations in the present work have
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FIG. 4. Influence of parameters ϵ and N on (a) acceleration ratio, (b) first, (c) second, and (d) third grid points from the
center. Ras = 105, t∗0 = 400, Sc= 1000, D = 10−9 m2/s, and k2= π2/2.

been carried out at N = 72 and ϵ = 1/2000. The value of parameter, nmax, has been chosen to be
6 for all computations as any further increase in its value does not result in a tangible change of
critical Rav.

III. RESULTS

The determination of the Faraday instability threshold in miscible fluid systems involves
several dimensionless groups. In order to understand the physics of the instability from the calcu-
lations, we shall contain ourselves to a specific fluid system, in this case, the brine/water system.
This miscible fluid pair is chosen because the thermophysical properties are well documented and
the system was experimentally investigated by Zoueshtiagh et al.3 As noted earlier, once the fluid
system and layer heights have been chosen in an experiment, the other two input variables are the
waiting time and the frequency of parametric forcing. The output is the critical amplitude at which
the flow commences with a discernible wavelength. With this in mind, we shall proceed to show
the dependence of the output amplitude, b, on the input frequency for fixed waiting times as well
as the dependence of b on the waiting time for fixed frequencies. An important by-product of the
calculations is the critical wavenumber at which the instability manifests itself. The values of the
kinematic viscosity and diffusion coefficient for the brine/water system give a Schmidt number, Sc,
of the order of 103. In all our calculations, we assume that the contact point between the two fluids is
at the mid plane, i.e., yF (unscaled) = H/2, the concentration difference ∆C is taken to be 1, and the
solutal expansion coefficient is of the order 1/10.

Our first calculation depicts the harmonic and the sub-harmonic responses of the scaled critical
amplitude with respect to the scaled wavenumber. As seen from Fig. 5, the fundamental excitation
of the system here is sub-harmonic because the respective critical parameters are lower than the
harmonic mode for all the values of wavenumber, k, considered. This behavior agrees with the
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FIG. 5. Fundamental harmonic and sub-harmonic neutral curves obtained at t0= 500 s for a fluid system with Ras = 105,
Sc= 1000, yF = 707, and t∗0 = 2000.

experimental observations of Zoueshtiagh et al.3 where the actual frequency of instability was found
to be one half of the excitation frequency.

The criticality of the sub-harmonic mode also confirms the analogy between the miscible
Faraday and the top-heated vibrational R-B systems. Similar to the latter, the minimum in the
acceleration ratio occurs on account of distinct features observed at lower and higher values of
wavenumbers. At low values of k2, the transverse perturbations imposed on the layers are far apart
and, hence, the density variations that drive the instability are also far apart. This necessitates a
larger amplitude of oscillations for the onset of instability in the layers. At the same time, the
predominance of viscous dissipation effects owing to choppy waves at large wavenumbers once
again results in a higher critical amplitude of the imposed oscillations. Thus, a trade-off between
these effects leads to a minimum in the acceleration ratio. For the fluid configuration under consid-
eration, the critical values of acceleration ratio, (bΩ2/g)cr, and wavenumber, k2

cr, are 2.2 and 1.56,
respectively. Observe that the critical wavelength is roughly the thickness of the solutal boundary
layer, which is about five times Lref or

√
D t0, a physically plausible result for the transient diffusion

problem. It may be noted that for all the computations to follow, only the results corresponding to
the fundamental sub-harmonic mode are presented.

Proceeding further, we shall now explain the variation of the critical amplitude with the fre-
quency, both in unscaled and scaled terms. Figure 6(a) shows a rising value of b with respect to t∗0
for various waiting times. It may be noted here that an increase in t∗0 for a fixed waiting time implies
an increase in the forcing frequency. As the frequency approaches zero, the figure appears to show
values of decreasing critical amplitude. However, we believe that at extremely small values of input
frequencies, the critical amplitudes ought to rise and become unbounded. This region is not shown
in the figure and, in fact, is a region where the frozen-time approach is invalid. The early rise of b
with t∗0 can be understood from the fact that the critical wavenumber also increases with frequency
or t∗0, cf. Fig. 6(b). This implies that decreasing wavelengths or choppy modes are obtained with
increasing frequency and this, of course, leads to viscous stabilization. The ultimate leveling-off
of the amplitude is due to the fact that increasing input frequencies also imply increasing forcing
acceleration and a decrease in the critical amplitude is necessary to thwart the destabilization that
is caused by the increased acceleration. The last figure, Fig. 6(c), shows the variation of scaled
amplitude change with t∗0. For each t0, though the unscaled critical amplitude actually begins to
decay slowly beyond a t∗0 value, a monotonic increase of the scaled amplitude occurs on account of
increasingΩ2.

In order to see the dependence of the critical “b” with the wait time, the frequency is now
held fixed and the wait time is varied. This dependence is depicted in Fig. 7. In such a calculation,
parameters such as Ras and scaled yF have to be varied as t∗0 varies, because they directly depend on
the wait time. It is thus convenient to write Ras as RaT(t∗0)3/2, where RaT = βc g ∆C (D T)3/2/D ν.
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FIG. 6. Influence of T for a fluid system with properties D = 10−9 m2/s and Sc= 1000 at t0= 300 s, 650 s, and t0= 1000 s.
Ras for each t0 is given as Ras = 105× (t0/300)3/2. (a) Unscaled amplitude. (b) Critical wavenumber. (c) Critical acceleration
ratio.
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FIG. 7. Influence of t0 for a fluid system with properties D = 10−9 m2/s, Sc= 1000, and T = 0.25 s. (a) Critical acceleration
ratio. (b) Critical wavenumber. (c) Unscaled wavelength.

Figure 7 correspondingly shows the predicted variations of critical acceleration ratio and wavenum-
ber with t∗0 for two different values of RaT . The RaT here brings in the effects of thermo-physical
properties and also the fixed frequency of the imposed oscillation. In the present physical situation
where both the layer thickness and ∂C0/∂ y are dependent on t0, they have opposing influences
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FIG. 8. Predicted influence of gravity on a fluid system with properties D = 10−9 m2/s and Sc= 1000. The time period of
the imposed oscillation is T = 0.25 s. (a) Critical acceleration ratio. (b) Critical wavenumber.

on the stability of the layer. While the former is stabilizing at lower t0, the latter is destabilizing
owing to its large magnitude and the large value of the solutal expansion coefficient. With an
increase in t0, the magnitude of both these effects decreases. The monotonic increase of the neutral
curve in Fig. 7(a) implies that the stabilizing effect brought in by the decreasing concentration
gradient overwhelms the loss of stability due to increasing layer thickness. In other words, the
reduction in vertical concentration gradient at higher values of t0 matters more, so that an increase
in the vibrational acceleration is required to induce the Faraday instability. This behavior has been
experimentally observed by Zoueshtiagh et al.3 for both their water/brine and oil/oil systems. It
is be noted that the present variable t0 has the same physical meaning as their experimental wait
time.

As evident from Fig. 7(b), the critical wave number (k) of excitation monotonically increases
with the increase of t∗0. This might give an initial impression that the critical wavelength (λ = 2π/k)
also decreases monotonically with t0. However, as the reference length is a function of t0 in the pres-
ent case, the unscaled critical wavelength (λu = λLref ), as shown in Fig. 7(c), has a different pattern
of variation as opposed to λ. As evident, the decrease or increase of critical wavelength, for the
range of time duration studied, is determined by the thermo-physical properties of the fluid layers.
For RaT = 0.24, a gradual increase is observed as opposed to a monotonic decrease for RaT = 2.4.
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The latter behavior is similar to the experimental observation of Zoueshtiagh et al.3 where a slow
monotonic decrease has been observed for their brine/water system.

Finally, the effect of gravitational acceleration on the onset of miscible Faraday instability is
now analyzed. This is achieved by gradually varying the Ras of the fluid layer (Sc = 1000 and
D = 10−9 m2/s) at fixed values of t0 and T (=0.25 s). Considering a reference value of gravity,
gref , for which the static Rayleigh number is Raref at a given t0, the effect of gravity change,
g/gref , can be measured through the ratio Ras/Raref . The ratio of bΩ2/g can be multiplied with
g/gref to obtain an independent output parameter, bΩ2/gref , for the problem. Figure 8(a) shows
the corresponding neutral curves obtained for three different values of t0 = 300 s, 650 s, and
1000 s. Surprisingly, for all the t0 values considered, the critical acceleration ratio decreases with
an increase in gravity. This destabilizing influence of gravity is counter-intuitive, as it is normal
to expect an enhanced stratification, hence more stability, when the gravity acting on the layers is
increased. The observed behavior can be reasoned by considering the analog of a simple pendulum,
whose natural frequency is proportional to


g/l. Imagine that the whole pendulum along with

its pivot is now subjected to vertical vibrations of a constant frequency. Consequently, the motion
of the pendulum will be in tune with the frequency of the imposed oscillation. At this stage, any
change in the gravitational acceleration acting on the pendulum mass must come attended with a
corresponding change in the value of l, in order for the system to be in dynamic equilibrium with
the imposed vibrations. Similarly, the act of changing the magnitude of gravity in the miscible
Faraday problem must be accompanied with a change in critical wavelength of instability onset,
for its response to be in-tune with the imposed oscillations. This behavior is exactly observed in
Fig. 8(b) where the critical wavenumber undergoes a monotonic decrease with the increase in grav-
ity. Since the dissipation effects associated with the long wavelength patterns are insignificant, the
vibrational acceleration required for the onset of instability, in reality, reduces with the increase in
gravity.

IV. SUMMARY

A linear analysis of Faraday instability in miscible fluids has been carried out in the current
work using Floquet theory in conjunction with a quasi-steady approximation. The field variables
have been spatially discretised using spectral collocation, while the thin diffusion region between
the layers has been well-resolved through a mapping strategy. The resulting eigenvalue problem
yields the critical vibrational amplitude for different input parameters like wait time, frequency, and
gravitational conditions.

The neutral behavior of the miscible Faraday system has been observed to be similar to that
of the top-heated vibrational Rayleigh-Bénard problem. In all the cases considered, the criticality
was observed to be sub-harmonic. The unscaled critical amplitude of vibration was found to initially
increase with the imposed frequency. This is due to the stability brought in by the viscous dissipa-
tion associated with choppy waves. On account of increasing acceleration, the critical amplitude is
observed to level-off at a particular frequency and slowly diminish thereafter. In situations where
the imposed frequency is fixed and wait time is varied, the system is found to possess more stability
at longer wait times. Though the effect of thin-layers is stabilizing, the associated concentration
gradients make them highly vulnerable to instability. With an increase in layer thickness, the
concentration gradient decreases and so, an enhanced stability is predicted. An analogy with a
simple pendulum is used to explain why the predicted wavelength of the flow patterns increases
with gravity. The associated reduction in viscous dissipation causes the layers to lose stability with
an increase in gravity level.

A noteworthy aspect of the current work is that the analysis will not work at very low
frequencies and low wait times. This may be overcome with the use of other methods involving
“non-normal approach,”15 which have the capability of resolving problems with an unsteady base
state16 like the present one. Notwithstanding this fact, the range of parameters studied in the work
is valid for many practical purposes and hence, the present results are of immense value. Moreover,
many of the results agree qualitatively with those of Zoueshthiagh et al.3
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APPENDIX: TRANSFORMATION OF SPATIAL DERIVATIVES

With regard to the conformal mapping procedure adopted in Eq. (20), the spatial derivatives of
any variable φ such asv or C are obtained through the following transformations:

dφ
dy
=

1
g′

dφ
dη

, (A1)

d2φ

dy2 =
1

(g′)2
d2φ

dη2 −
g′′

(g′)3
dφ
dη

, (A2)

d3φ

dy3 =
1

(g′)3
d3φ

dη3 −
3g′′

(g′)4
d2φ

dη2 −
g′g′′′ − 3(g′′)2

(g′)5
dφ
dη

,and (A3)

d4φ

dy4 =
1

(g′)4
d4φ

dη4 −
6g′′

(g′)5
d3φ

dη3 −
4g′g′′′ − 15(g′′)2

(g′)6
d2φ

dη2 (A4)

− (g′)2g′′′′ − 10g′g′′g′′′ + 15(g′′)3
(g′)7

dφ
dη
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