Giovanni Mongardi 
  
Gianluca Pacienza 
  
DENSITY OF NOETHER-LEFSCHETZ LOCI OF POLARIZED IRREDUCIBLE HOLOMORPHIC SYMPLECTIC VARIETIES AND APPLICATIONS

In this note we derive from deep results due to Clozel-Ullmo a sharp density result of Noether-Lefschetz loci inside the moduli space of marked (polarized) irreducible holomorphic symplectic (IHS) varieties. In particular we obtain the density of Hilbert schemes of points on projective K3 surfaces and of projective generalized Kummer varieties in their moduli spaces. We present applications to the existence of rational curves on projective deformations of such varieties, to the study of the Mori cone of curves and of the associated extremal birational contractions, and a refinement of Hassett's result on cubic fourfolds whose Fano variety of lines is isomorphic to a Hilbert scheme of 2 points on a K3 surface. We also discuss Voisin's conjecture on the existence of coisotropic subvarieties on IHS varieties and relate it to a stronger statement on Noether-Lefschetz loci in their moduli spaces.

Introduction

Recently Markman and Mehrotra [START_REF] Markman | Hilbert schemes of K3 surfaces are dense in moduli[END_REF]Theorems 1.1 and 4.1] and Anan'in and Verbitsky [AnV] have shown the density, in the corresponding moduli spaces, of Hilbert schemes of points on a K3 surface and of generalized Kummer varieties. The first purpose of this note is to check that the corresponding statement in the polarized case holds true. It turns out that a more general polarized density statement can be deduced without much effort from deep results contained in [CU]. Precisely, we have the following (see Section 2 for all the relevant definitions and Section 3, Theorem 3.15, for a slightly more general statement).

Theorem 1.1. Let X be an irreducible holomorphic symplectic variety with Λ = H 2 (X, Z) and H a primitive ample line bundle on it. Let M 0 Λ be a connected component of the moduli space of M Λ marked polarized deformations of (X, H). Let N ⊂ Λ be a sub-lattice of signature (m, n), with m ≤ 1. Let us denote by D N the Noether-Lefschetz locus of points t ∈ M 0 Λ such that N ⊂ Pic(X t ). Suppose that b 2 (X) ≥ max{5, rank(N ) + 3}. Then, if not empty, the locus D N is dense in M 0 Λ with respect to the euclidean topology.

Notice that as we require N ⊂ Pic(X) and the signature of the Beauville-Bogomolov quadratic form on Pic(X) is (1, rk Pic(X) -1), the condition on the signature of N is a necessary one. Also the hypothesis on the rank of N is necessary: indeed, again by the fact N ⊂ Pic(X), if H / ∈ N we deduce b 2 (X) -rank(N ) ≥ 3. The condition b 2 (X) ≥ 5 comes from a technical lattice-theoretic result (cf. proof of Claim 3.11). Notice however that for the known deformation types b 2 (X) ≥ 7.

By taking the sub-lattice generated by the exceptional class we immediately deduce the following.
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Corollary 1.2. Let Λ be a K3 [n] lattice (respectively a generalized Kummer lattice). Let M 0 Λ be a connected component of M Λ containing a marked Hilbert scheme of n-points on a K3 surface (respectively a marked generalized Kummer variety). Let h ∈ Λ be a class with square (h, h) > 0 and consider the locus M + h ⊥ ⊂ M 0 Λ of points where the class h remains algebraic and belongs to the positive cone. The locus in M + h ⊥ consisting of marked pairs (X, ϕ) such that X is isomorphic to the Hilbert scheme S [n] for some projective K3 surface S (respectively to a generalized Kummer variety K n (A), for some abelian surface A) is dense in M + h ⊥ (in the euclidean topology).

Although largely expected to be true we believe that these density statements can be very useful in practice. For this reason we think it is convenient to have a general density result such as Theorem 3.15 that can be easily applied in very different geometrically meaningful contexts. As an illustration of this we present several applications and hope that others will follow. The first one concerns the existence of special subvarieties of IHS varieties. Precisely we discuss the existence of coisotropic subvariety with constant cycle orbits (see Section 4 for the definitions and the motivation), predicted by a conjecture due to Voisin [START_REF] Voisin | Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, "K3 Surfaces and Their Moduli[END_REF]. Using Theorem 1.1 we observe that to prove a strengthtening of this conjecture it is sufficient to check it on a Noether-Lefschetz sublocus in the moduli space (see again Section 4, and in particular Theorem 4.12, for the precise statements).

Let M = ∪ d>0 M 2d be the union of the moduli spaces M 2d of projective irreducible holomorphic symplectic varieties of K3 [n] -type (resp. generalized Kummer type) polarized by a line bundle of degree 2d. In [CMP, MP, MPcorr] it is proven that for all (X, H) ∈ M, outside at most a finite number of connected components determined by the monodromy orbit of H, the linear system |mH|, for a certain m ≥ 1, contains a uniruled divisor covered by rational curves of primitive class.

In the cases left out by such results counterexamples were provided in [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF]Corollary A.3] in the K3 [n] -type case. As an application of a density statement we provide a proof of the existence of families of the expected dimension of primitive rational curves whose Beauville-Bogomolov dual lies in (a multiple of) any ample linear system on deformations of Hilbert schemes of points on a K3 surface, respectively of generalized Kummer varieties, for all components of M. It has been observed in [MO] that this implies the integral Hodge conjecture for 1-cycles on such varieties.

We further prove that the density statement obtained in Theorem 3.15 yields a refinement of a result due to Hassett. Namely we show the density, among special cubic fourfolds of any discriminant d, of those whose Fano varieties of lines are birational to an Hilbert square of a K3 of fixed degree (see [START_REF] Debarre | Unexpected isomorphisms between hyperkähler fourfolds[END_REF]Proposition 5.18] for a similar result).

Then we turn to cones of nef divisors on IHS varieties (of K3 [n] or of generalized Kummer type) and deduce from the shape of these cones on certain dense subloci in the moduli space the same information on the whole moduli space. This was first observed in [START_REF] Bayer | Mori cones of holomorphic symplectic varieties of K3 type[END_REF] for deformations of Hilbert schemes of points on K3's and works the same for deformations of generalized Kummer varieties. Moreover, in these cases, we deduce similarly that the general fibers of the contractions associated to an extremal class are isomorphic to the projective space (see Theorem 3.21, item 2)), thus answering in the affirmative to [START_REF] Bakker | A global Torelli theorem for singular symplectic varieties[END_REF]Question 6.9]. For a slightly weaker conclusion see [START_REF] Amerik | Contraction centers in families of hyperkähler manifolds[END_REF]Theorem 1.8] and Remark 3.23.

Corollary 1.3. Let X be a projective IHS of K3 [n] -type or of generalized Kummer type. Then the general fibres of a birational morphism associated to an extremal curve are isomorphic to a projective space.

Finally as a by-product of our Theorem 3.15 (see Corollary 3.18 for the precise statement) we obtain the density of moduli spaces of sheaves on a K3 (or on an abelian surface) inside the Noether-Lefschetz locus of IHS of K3 [n] (or generalized Kummer)-type possessing a non-zero isotropic class. This is one of the key steps in [START_REF] Matsushita | Now available in "Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro Kawamata?s 60th Birthday[END_REF] where Matsushita proves a famous conjecture about the numerical characterization of the existence of a (rational) lagrangian fibration for IHS manifolds of K3 [n] (or generalized Kummer)-type.

We would like to mention that after the completion of the paper we discovered that similar questions were studied by S. Tayou in [Ta]. He proves equidistribution results for variations of Hodge structures of weight 2 and of K3-type. In particular he derives some applications to elliptic K3 surfaces and IHS manifolds with isotropic line bundles, see [START_REF] Tayou | On the equidistribution of some Hodge loci[END_REF]Section 4].
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Preliminaries

For the basic theory of irreducible holomorphic symplectic (IHS) manifolds we refer the reader to [START_REF] Beauville | Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF][START_REF] Huybrechts | Compact hyperkähler manifolds: Basic results[END_REF]. Let X be an IHS manifold and let Λ be a lattice such that

H 2 (X, Z) ∼ = Λ. A marking ϕ of X is an isometry ϕ : H 2 (X, Z) ∼ = Λ. A marked IHS manifold is a pair (X, ϕ)
, where X is a IHS manifold and ϕ a marking of X. A symplectic form on X will be denoted by σ X . The square of a class a ∈ H 2 (X, Z) with respect to the Beauville-Bogomolov quadratic form on X will be denoted by a 2 .

Recall that the the positive cone C X is the connected component of the cone of positive classes (with respect to the Beauville-Bogomolov quadratic form) containing a Kähler class. Let M 0 Λ be the connected component of the moduli space of marked IHS manifolds containing (X, ϕ). Let Ω Λ ∼ = Gr or ++ (Λ ⊗ R) be the period domain parametrising positive oriented two planes inside Λ ⊗ R. Let p : M 0 Λ → Ω Λ be the period map, sending (X, ϕ) to the positive oriented plane generated by ϕ(σ X + σ X ) and iϕ(σ X -σ X ). Let h ∈ Λ be a class of positive square and consider the sublattice h ⊥ . Let Ω h ⊥ ⊂ Ω Λ be the set of periods orthogonal to h, which is isomorphic to Gr or [START_REF] Huybrechts | Compact hyperkähler manifolds: Basic results[END_REF] and generically injective (this is a direct consequence of Verbitski's global Torelli theorem [Ver], as the positive cone C Y coincides with the cone of Kähler classes for very general (Y, ψ) ∈ M + h ⊥ , see [START_REF] Markman | A survey of Torelli and monodromy results for holomorphic-symplectic varieties[END_REF]Theorem 2.2,item (2) and (4)], [START_REF] Markman | A survey of Torelli and monodromy results for holomorphic-symplectic varieties[END_REF]Proposition 5.3] and [START_REF] Huybrechts | Compact hyperkähler manifolds: Basic results[END_REF]Corollaries 5.7 and 7.2]). A version of Verbitsky's global Torelli that we will use is the following.

++ (h ⊥ ⊗ R). Let M + h ⊥ be the set {(Y, ψ) ∈ M 0 Λ , such that ψ -1 (h) ∈ C Y }. The restricted period map from M + h ⊥ to Ω h ⊥ is surjective, by
Theorem 2.1 ([Huy11], Corollary 6.2). Two IHS manifolds X and X are bimeromorphic if and only if there exists a Hodge isometry ϕ : H 2 (X, Z) → H 2 (X , Z) which is composition of maps induced by isomorphisms and parallel transport.

The local complex structure of M +

h ⊥ is given by the local deformation space Def(Y, ψ -1 (h)) which parametrizes deformations of Y where the class ψ -1 (h) remains algebraic. We have a natural quotient map Ω h ⊥ → Ω h ⊥ / Mon 2 (Λ, h) := F h , where Mon 2 (Λ, h) is the subgroup of the monodromy group Mon 2 (Λ) ⊂ O(Λ) of parallel transport operators fixing the class h ∈ Λ. Such groups have been determined for manifolds of K3 [n] or Kummer type in [START_REF] Markman | Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections[END_REF] and [START_REF] Mongardi | On the monodromy of irreducible symplectic manifolds[END_REF]. In general Mon 2 (Λ) ⊂ O(Λ) has finite index, cf. [START_REF] Verbitsky | A global Torelli theorem for hyperkahler manifolds[END_REF]Theorem 1.16], see also [START_REF] Huybrechts | A global Torelli theorem for hyperkähler manifolds[END_REF]Remark 6.7]. This quotient map induces a quotient map M + h ⊥ → F h and moreover the space F h is quasi-projective by [BB].

Remark 2.2. In the following, we will sometimes work with the local deformation space Def(X, ψ -1 (h)).

Using the Torelli theorems above, plus the study of the monodromy group one gets (cf. [START_REF] Markman | A survey of Torelli and monodromy results for holomorphic-symplectic varieties[END_REF]Theorem 1.10]) that its quotient by the group Mon 2 (X, h) can be considered as an euclidean open subset of the algebraic space F h . Therefore algebraic families like the Hilbert scheme are well defined in this local setting.

For our purposes it will be relevant also to use deformations of pairs (X, [C]), where X is IHS and C is a curve on it, therefore we will make frequent use of the following duality, induced by the quadratic form on H 2 (X): we embed H 2 (X, Z) into H 2 (X, Z) by the usual embedding of lattices Λ ∨ → Λ ⊗ Q (that is, we use the intersection pairing between H 2 and H 2 to see an element [C] of the latter as the form [C] • -). We call D the dual divisor to a primitive curve C ∈ H 2 (X, Q) if D = aC for a positive integer a and D is primitive. Conversely, we call C the dual curve to a primitive divisor D if C = D/div(D), where div(D) is the positive generator of the ideal D • H 2 (X, Z).

Density of Noether-Lefschetz loci

Let Λ be a lattice of signature (3, n), n ≥ 1 and let h ∈ Λ be an element of positive square. To fix ideas let L be h ⊥ and t ∈ L be an element of negative square. Let G ⊂ O(Λ) be a subgroup of finite index of the orthogonal group O(Λ). Let Ω L := Gr or ++ (2, L ⊗ R) be the Grassmannian of positive oriented two planes, which is the period domain associated to the lattice L. Notice that [START_REF] Verbitsky | A global Torelli theorem for hyperkahler manifolds[END_REF]Sections 1.7 and 2.4]). In this section, we will prove in particular that the set of periods orthogonal to an element in the G orbit of t is dense. In particular, we will apply this result when Λ ∼ = H 2 (X, Z) for some IHS manifold X. This density result in the non polarized setting (that is, inside Ω Λ := Gr or ++ (2, Λ ⊗ R)), was proved by Anan'in and Verbitsky: Proposition 3.1 (Proposition 3.2 and Remark 3.12 [AnV]). Let T be a lattice of signature (m, r), m ≥ 3 and r ≥ 1. Let Γ be a group of finite index in O(T ) and let τ be an element of T . Let Gr or ++ (2, T ⊗ R) be the Grassmannian of positive oriented two planes. The set of elements in Gr or ++ (2, T ⊗R) orthogonal to an element in the orbit of τ by the group Γ is dense in Gr or ++ (2, T ⊗R).

Gr or ++ (2, L ⊗ R) = SO(2, n) /SO(2)×SO(n) (see e.g.
In our situation, one could work with this result and try to extend it to the polarized case as it is done in a special case in [START_REF] Matsushita | Now available in "Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro Kawamata?s 60th Birthday[END_REF]Lemma 3.6], however it is more convenient for us to adopt an algebraic approach using powerful results of Clozel and Ullmo [CU]. As a reward we will obtain a more general statement. Instead of working with the period domain Ω L , let us work with a quotient of it by an arithmetic subgroup Γ (which, in practice, will be the group of isometries of Λ fixing h or a finite index subgroup of it like the monodromy group). This variety is isomorphic to

Γ\ SO(2, n) /SO(2)×SO(n) .
The appropriate language to use the aforementioned results is that of Shimura varieties, which is rather separate from the subject of this paper, therefore we will keep it as simple as possible. For the interested reader, a good reference on the topic is [Mil]. We will deal with semisimple algebraic groups G defined over Q such that for all Q-simple factors G of G the groups of real points G (R) are not compact. We call such a G of non-compact type. By [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF]Ch. V,Theorem 1.1] all Lie algebras G with an orthogonal form decompose (orthogonally) into 3 factors G 0 , G -, G + which are orthogonal symmetric Lie algebras of Euclidean, compact and non-compact type. Via the exponential map this gives a corresponding decomposition into factors G(R) 0 , G(R) -, G(R) + of the connected component of G(R) containing the identity. Using the same notation, by our hypotheses G(R) + will simply coincide with the connected component of G(R) containing the identity.

A Shimura variety is obtained from a Shimura datum, which amounts to the following by [START_REF] Milne | Introduction to Shimura varieties[END_REF]Proposition 4.8]: Definition 3.2. A Shimura datum (G, D) consists of the following:

• A semisimple algebraic group G defined over Q of non-compact type, • A Hermitian symmetric domain D,

• An action of G(R) + on D defined by a surjective homomorphism G(R) + → Hol(D) + with compact kernel.

Here Hol(D) + is again the factor defined by [He, Ch. V, Theorem 1.1] inside the group Hol(D) of biholomorphisms of D.

In our setting the Shimura datum is

(SO(2, n), SO(2, n) /(SO(2)×SO(n))
) and the action is the quotient of the adjoint action

SO(2, n)(R) + → Hol(SO(2, n))(R) + , g → (ϕ g : γ → g • γ • g -1 ),
so that the kernel is SO(2) × SO(n).

Definition 3.3. A connected Shimura variety is defined by the projective system of quotients {Γ\D}, where Γ runs over the arithmetic subgroups of the adjoint G ad (Q) + whose pre-image in G(Q) + is a congruence subgroup.

Remark 3.4. For Γ small enough, the projective system of quotients {Γ\D} has transition morphisms f : V := Γ \D → Γ\D =: V which are surjective and finite (see [START_REF] Deligne | Travaux de Shimura[END_REF]equation (1.8.1)]), for all Γ ≤ Γ. Therefore the projective limit exists and coincides with the spectrum of the direct limit of the inductive system of quasi-coherent O V -algebras {f * O V } (which exists e.g. by [START_REF]The Stack project[END_REF]Lemma 31.2.2,Ch. 31.2 "Directed limits of schemes with affine transition maps"]).

Remark 3.5. Notice that a density statement on the Shimura variety S associated to D then works, by continuity of the quotient maps giving the projective system, on all quotients of D by commensurable arithmetic subgroups. Indeed, if π : S Γ\D is the projection and Z ⊂ Γ\D is a subvariety such that its preimage π -1 (Z) is dense, then by continuity of π we have

S = π -1 (Z) ⊂ π -1 (Z).
Therefore Z is dense in Γ\D. If now Γ ≤ Γ is a commensurable subgroup, then the finite surjective morphism f : Γ \D → Γ\D yields the density of f -1 (Z) in Γ \D.

We will be interested in special subvarieties, which are those usually called of Shimura type and are related to variations of Hodge substructures, see [START_REF] Moonen | Linearity properties of Shimura varieties, I[END_REF]Proposition 2.8].

Definition 3.6. Given a Shimura datum (G, D), consider another Shimura datum (H, D H ) such that:

• H ⊂ G and D H ⊂ D;
• there is a closed immersion between the Shimura varieties associated to the above Shimura data.

All the connected components of the closed immersion above are called subvarieties of Shimura type of the Shimura variety associated to (G, D). Moreover, such a subvariety of Shimura type will be called strongly special if there is no intermediate parabolic subgroup between H and G.

Remark 3.7. In our situation, we will consider a lattice Λ of signature (3, n ≥ 1) and a positive element h ∈ Λ . We want to study the moduli space M + h ⊥ (introduced in Section 2). Therefore we will consider the Shimura variety associated to the datum

(SO(2, n), SO(2, n) /(SO(2)×SO(n)) )
corresponding to the periods of projective IHS varieties landing in Ω h ⊥ := Gr or ++ (h ⊥ ⊗ R). Then we will consider the divisors where a specific class λ ∈ Λ is kept algebraic, which are associated to the datum

(Stab(λ), SO(2, n -1) /(SO(2)×SO(n-1)) ),
where the symmetric domain is given by the orthogonal to h and λ. Notice that by the Hodge index theorem we must require that the orthogonal projection of λ in h ⊥ is negative. Finally observe that the group Stab(λ) is actually maximal in SO(2, n), so that these divisors of Shimura type are actually strongly special.

The main result we want to use is the following:

Theorem 3.8. [CU, see Theorem 4.6] Let S be a Shimura variety and let S n be a sequence of strongly special subvarieties of Shimura type. Then there exists a subsequence S n k and a strongly special subvariety M of Shimura type which contains every S n k and coincides with their euclidean closure.

Remark 3.9. The Clozel-Ullmo result is stronger and provides an equidistribution of the strongly special subvarieties with respect to a canonically defined measure. Therefore the same will hold for all the density statements we deduce below from it. However, since in the applications we present this stronger equidistribution statement plays no role, we decided to avoid working in this more general framework.

As a consequence of this we have the following.

Proposition 3.10. Let Λ be a lattice of signature (3, n), n ≥ 2 and let h ∈ Λ be a class of positive square. Let L := h ⊥ and let λ ∈ Λ be a non-zero class which is not in the O(Λ )-orbit of h. Let Ω L := Gr or ++ (2, L ⊗ R) be its period domain. Let G ⊂ O(Λ ) be a group of finite index. Then the set D G,λ of periods orthogonal to an element in the orbit Gλ is dense in Ω L .

Proof. Let Γ be the subgroup of G fixing h, then we have a continuos map

π : Ω L → F h,Γ := Γ\ Ω L . Notice that D G,λ is saturated in the fibres of this map, that is π -1 (π(D G,λ )) = D G,λ . Therefore, it is enough to prove the density of π(D G,λ ) in F h,Γ . For every class [g] ∈ G/Γ,
we can define a Γorbit of an element π gλ , where π gλ is the orthogonal projection of gλ in L for some representative g ∈ G of [g]. Notice that π gλ depends on the choice of a representative g of [g], but we will be considering all possible representatives. We can consider the associated divisors D Γ,π gλ . Their pre-images in the Shimura variety associated to the Shimura datum (Γ, Ω L ) are strongly special subvarieties of Shimura type as observed in Remark 3.7. All points of them correspond to hpolarized Hodge structures such that the period is orthogonal to an element in the G orbit of λ, hence their union is the locus we are considering. Notice that G/Γ is an infinite set. Indeed by hypothesis

G is commensurable to O(3, n)(Z), hence G/Γ is commensurable to O(3, n)(Z)/Γ which contains (O(3, n)/O(2, n))(Z). The latter is infinite, thus G/Γ is.
Claim 3.11. The pairing q(π gλ ), g ∈ O(Λ ), takes infinitely many values and there are infinitely many pairwise non proportional projections π gλ .

Proof of Claim 3.11. Recall that any lattice of rank at least 5 contains an isotropic element e. Therefore, by our hypothesis, such an isotropic element e ∈ Λ exists. To such an e and to any a ∈ e ⊥ we can associate the so-called Eichler's transvection t(e, a) as below (see [START_REF] Gritsenko | Abelianisation of orthogonal groups and the fundamental group of modular varieties[END_REF]Section 3]). For the purpose of the proof we also need to choose a ∈ e ⊥ such that its projection p h ⊥ (a) is not proportional to p h ⊥ (e). Notice that this is possible because the projections p h ⊥ (a) and p h ⊥ (e) are proportional if and only if a belongs to the span of h and e, whereas we can choose a in e ⊥ which, by hypothesis, has rank ≥ 4.

To define Eichler's transvections first one considers the map v → v -q(a, v)e which belongs to O(e ⊥ ) and then checks (again cf. [GriHS09, Section 3] for the details) that there exists a unique extension t(e, a) belonging to the full orthogonal group given by t(e, a)(v) := v -q(a, v)e + q(e, v)a -1 2 q(a)q(e, v)e.

It is immediate to check that t(e, a)•t(e, b) = t(e, a+b). In particular t(e, a) determines an infinite cyclic subgroup of the orthogonal group and we will show that it suffices to consider the action of this subgroup on λ to obtain the Claim. Notice that for any integer m we have the following

p h ⊥ (t(e, m • a)(λ)) = p h ⊥ (λ) -mq(a, λ) + 1 2 m 2 q(a)q(e, λ) • p h ⊥ (e) + mq(e, λ) • p h ⊥ (a).
By the choice of a, the projections p h ⊥ (a) and p h ⊥ (e) are not proportional. Therefore, by letting m vary, the projections p h ⊥ (t(e, m • a)(λ)) are not all proportional and their squares with respect to the quadratic form take infinitely many values.

The Claim implies that we have infinitely many non proportional divisors of the form D Γ,π gλ . By Theorem 3.8 (and Remark 3.5) the closure of the infinite union of all the divisors D Γ,π gλ can only be contained in a (strongly special) subvariety of Shimura type. By dimension reasons it has to coincide with the whole space, and the proposition follows.

Proposition 3.10 can then be applied to prove density of the Noether-Lefschetz loci, whose definition is recalled below.

Definition 3.12. Let X be an IHS manifold, with ϕ : H 2 (X, Z) ∼ = Λ an isometry, and H a primitive ample line bundle on X. Let L ⊂ Λ be a sub-lattice of signature (2, m) with m ≥ 1 such that H ∈ L ⊥ . Let M Λ be the moduli space of marked deformations of (X, ϕ). Let M 0 L ⊂ M Λ be a connected component of the moduli space parametrizing marked polarized IHS deformations (X t , H t , ϕ t ) of (X, H, ϕ) such that the period of X t lies in L. Let N ⊂ Λ be a sub-lattice of signature (a, b) with a ≤ 1 and let us denote by D N the locus of t ∈ M 0 L such that there exists a primitive embedding N ⊂ Pic(X t ). Then D N is called a Noether-Lefschetz locus.

Remark 3.13. Let Λ be the K3 lattice. Consider L ⊥ := 2d , for some integer d ≥ 2 and N := -2 . Then D N parametrizes projective K3 surfaces of degree 2d possessing a -2-curve (without requiring a given intersection between the -2-curve and the polarization).

Remark 3.14. The existence of a primitive embedding

N ⊂ Pic(X t ) is equivalent to the existence of a g ∈ O(Λ) (or in a finite index subgroup G ⊂ O(Λ)) such that ϕ -1 t (g • N ) ⊂ Pic(X t ).
We are now ready to state and prove our main density result.

Theorem 3.15. Keep notation as in Definition 3.12. Suppose that rank(Λ) ≥ max{5, rank(N ) + 3}.

Then, if not empty, the Noether-Lefschetz locus D N is dense in M 0 L .

As noticed in the Introduction, the conditions on the signature and the rank of N are necessary.

Proof of Theorem 3.15. Let N ⊗ Q = l 1 , . . . , l a+b , where l i ⊥ l j for i = j, l i ∈ Λ. Moreover, we can suppose that all l i apart for l 1 have negative square. By the condition on the rank of N and its signature, notice that N ⊥ ⊂ Λ has signature at least (2, 1). Let G be any group of finite index inside O(Λ). We will prove the result by induction on a + b. For a + b = 1, this is precisely the content of Proposition 3.10. Let us consider the lattices M r = l 1 , . . . , l r and let G r be the stabilizer in G of M r . For every class [α] of G/G r and every representative α ∈ [α], we have a different projection π αMr of αM r inside L. Notice again (as in the proof of Proposition 3.10) that the π αMr 's depend on the choice of the representative but we will consider all possible choices. Let Λ αMr := (π αMr ) ⊥ ⊂ L. By the inductive step, periods in the union

∪ α∈G Λ αMr
are dense in Ω L , therefore it suffices to prove that, for any α, periods in Λ αMr orthogonal to an element in the G/G r+1 orbit of M r+1 are dense. Let [β] ∈ G/G r+1 . What we are considering is the union of loci of the form

D r+1,β := {P ∈ Ω Λ αMr , P ⊥ βM r+1 for some representative β ∈ G of [β]}.
These loci are either divisors in Ω Λ αMr or they are empty if π βM r+1 is not negative definite. As l r+1 = M ⊥ r ∩ M r+1 is negative definite, this locus is empty if and only if Ω Λ αMr was already empty. Let Λ be the orthogonal complement to π αMr inside Λ, which has therefore signature (3, rank(Λ ) -3) and let L = Λ αMr ⊂ L, which has signature (2, rank(L ) -2). Let G ⊂ O(Λ ) be the subgroup of isometries of Λ which can be trivially extended to isometries of Λ and such that their extension is an element of G. Notice that G is a finite index subgroup of isometries acting trivially on the discriminant group of Λ , hence it has finite index in O(Λ ). Therefore the density statement we want is precisely the content of Proposition 3.10 with Λ and L as above and λ = l r+1 and group G and we are done.

Remark 3.16. As made clear in the proof the statement of the theorem holds for G = O(Λ), but the analogous density statement holds for any finite index subgroup of it, like the group of monodromy operators.

The above theorem has some nice consequences also in the K3 case, as an example it can be used to prove that Kummer K3 surfaces obtained from an abelian surface of polarisation (1, d) are dense in the moduli space of degree 2e polarized K3 surfaces, for any d and e. Notice the following simpler case.

Example 3.17. Let F 4 be the moduli space of degree 4 K3 surfaces. We denote its elements by (S, H), where H is a nef divisor. By the above theorem, the subset of polarized K3 surfaces (S , L ) with a nef class H of square 4, and an additional -2 curve R such that H •R = 0 are dense in F 4 . However, notice that the polarization H might not be a combination of H and R, as the proof of 3.10 uses rational periods. Here,

N = 4 ⊕ -2 , L ⊥ = 4 and L = U 2 ⊕E 8 (-1) 2 ⊕ -4 .
For all the known deformation types of holomorphic symplectic varieties we have several interesting dense Noether-Lefschetz subloci. We start with Hilbert scheme of points on K3 surfaces and generalized Kummer varieties:

Proof of Corollary 1.2. Let (X, H) be a polarized manifold of K3 [n] -type. Let N := -2(n -1) be a rank one lattice. Then, by Theorem 3.15 the Noether-Lefschetz locus D N of N is dense in the deformation of (X, H) (of course this follows also immediately from [CU]). We now claim that all points in D N correspond to IHS varieties birational to Hilbert schemes of points. We can choose a specific embedding of N into Λ := H 2 (X, Z) such that N ⊥ is unimodular. With such a choice, elements in the Noether-Lefschetz locus have the same Hodge structure of an Hilbert scheme of points on a K3 surface S, where S is the only K3 with the Hodge structure of N ⊥ . Thus, if instead of the O(Λ)-orbit of N we take the Mon 2 (Λ)-orbit of it, by Remark 3.16 and the version of Global Torelli given in Theorem 2.1, elements in D N are birational to K3 [n] 's. By Huybrechts' result [Huy99,Theorem 4.6] we know that birational IHS correspond to inseparable points in the moduli space. Hence the density of D N yields the density of K3 [n] 's.

The same proof works, mutatis mutandis, also for generalized Kummer varieties.

The above result, in the non polarized case, is the content of [MaMe]. The following result can be proven with the use of Theorem 3.15 in a way analogous to Corollary 1.2, unless the moduli spaces considered are zero dimensional. We also present a different proof.

Corollary 3.18. Let Λ be a lattice either isomorphic to the second cohomology group of a Hilbert scheme of n points on a K3 or to a that of generalized Kummer. Let L ⊂ Λ a sub-lattice of signature (2, m) with m ≥ 1 and let M L be the moduli space of manifolds deformation equivalent to the Hilbert scheme of n points on a K3 or a generalized Kummer which contain primitively L ⊥ inside their Picard lattice. Suppose M L is not empty. Then the locus of M L corresponding to moduli spaces of sheaves (or their Albanese fibre) on a K3 surface (respectively abelian) is dense.

Proof. By [Fuj] (see also [Ca]) points M proj L corresponding to projective IHS are dense in M L . Now let M 0 L ⊂ M proj L be a connected component corresponding to marked projective IHS (X, ϕ, h X ) such that ϕ(h X ) = h, for a given positive class h ∈ Λ. Apply Theorem 3.15 to L := L ⊥ , h ⊥ , and N := -2(n -1) (as in Corollary 1.2). This proves the density of Hilbert schemes and a fortiori that of moduli spaces of sheaves on K3 surfaces. As usual the same proof works for generalized Kummer varieties.

Alternative proof of Corollary 3.18. Let us consider the period domain Ω L . We have a natural (surjective) period map from M L to Ω L . By a classical results [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe[END_REF]Proposition 17.20] the locus corresponding to manifolds with maximal Picard rank is dense in Ω L and so is its preimage in M L . Let Y be any of these maximal Picard rank manifolds. Regardless of the deformation class, the Picard lattice N := Pic(Y ) has rank at least 5 and the discriminant group N ∨ /N is a finite group with length at most three by elementary lattice theory (its complement in Λ has a discriminant group with at most two generators). Therefore, by [START_REF] Nikulin | Integral symmetric bilinear forms and some of their applications[END_REF]Corollary 1.13.5], we have that N = U ⊕ N for some N . By [START_REF] Addington | On two rationality conjectures for cubic fourfolds[END_REF]Proposition 4] and [START_REF] Mongardi | Induced automorphisms on irreducible symplectic manifolds[END_REF]Proposition 2.3], this actually implies that these manifolds are moduli spaces of sheaves (or Albanese fibres of them) on a surface. Indeed, the condition in the above cited result is that a specific lattice containing Pic(Y ) contains a copy of U , and clearly this is our case.

Remark 3.19. Unfortunately an analogous proof via classical results (e.g. using [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe[END_REF]Proposition 17.20]) does not seem to lead to our general density theorem because on the one hand there is no evident way for us to show that any possible lattice N (with the only constraint b 2 (X) -rk(N ) ≥ 3) is in the Picard group of a IHS variety having maximal Picard number.

On the other hand [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe[END_REF]Proposition 17.20] shows that (we use here Voisin's notation) the union over all non zero Hodge classes λ of type (1, 1) of the Hodge loci U 1 λ is dense. Nevertheless our result, even letting apart the stronger equidistribution conclusion that can be drawn from [CU], yields more, namely the density of the union of the U 1 g•λ 0 for a fixed Hodge class λ 0 of type (1, 1) and letting g ∈ Mon 2 (Λ) vary.

Example 3.20. Let X be a manifold deformation equivalent to O'Grady's ten dimensional manifold. Let H ⊂ Pic(X) be a primitive positive class. Then the locus of manifolds birational to a moduli space of sheaves on a K3 surface is dense in the deformations of (X, H). This holds because such resolutions have an extra algebraic class given by the exceptional divisors, hence Proposition 3.10 applies to the parallel transport of this class on X. The equivalent statement holds for the six dimensional O'Grady's manifold, i.e. the Albanese fibers of the (right) moduli spaces of sheaves on an abelian surface are dense in the moduli space of IHS deformation equivalent to O'Grady's 6 dimensional manifold. Here, N = -6 (for a specific choice of an embedding in Λ = U 3 ⊕ E 8 (-1) 2 ⊕ A 2 (-1).

Corollary 3.18 is interesting in its own, as many of the applications of density results so far only use it (or at least, can work with it). In the following paragraphs we present two such examples which seem particularly important to us.

3.1. Mori cones. The goal of the section is to provide an alternative proof of the main result of [BHT], namely the description of the Mori cone of any projective deformation of a K3 [n] . Notice that the strategy we follow here was already presented in [START_REF] Bayer | Mori cones of holomorphic symplectic varieties of K3 type[END_REF]. This strategy could not work due to the lack of the suitable density result. We find it interesting to describe it again, as it can analogously lead to the description of the Mori cone of the projective deformations of the O'Grady examples as soon as the Mori cone is known for these (see [MZ] for important progress in this direction). We take the occasion to remark that an analogous statement holds for deformations of generalized Kummers.

The precise result is the following.

Theorem 3.21. Let (X, h X ) be a polarized IHS of K3 [n] -type (respectively of generalized Kummer type). Then:

1) [BHT, Theorem 1, for the K3 [n] -type], The Mori cone of X has the same description of the Mori cone of a K3 [n] (resp. of a generalized Kummer), namely the Mori cone of Xin H 2 (X, R) alg is generated by classes in the positive cone and the image under θ ∨ of the following

{a ∈ Λ alg : a 2 ≥ -2 (respectively a 2 ≥ 0), |(a, v)| ≤ v 2 /2, (h X , a) > 0}.
2) The general positive dimension fibres of an extremal birational contraction associated to an extremal curve have the same description of those in a K3 [n] (resp. of a generalized Kummer), namely they are isomorphic to P k for some k ≤ n.

We refer the reader to [BHT] for the relevant definition for item 1). Here we want only to stress the rôle of density in the proof. We recall the following important deformation theoretic result.

Proposition 3.22 ([BHTv2], Proposition 5). Let X be a projective IHS. Let R ⊂ X be an extremal rational curve of negative square. Consider a projective family π : X → B over a connected curve B with π -1 (b) = X, for a certain b ∈ B, such that the class [R] remains algebraic in the fibers of π. The the specialization of R in π -1 (b 0 ) remains extremal for all but finitely many b 0 ∈ B.

Proof of Theorem 3.21. For item 1) the fact that the above classes are actually in the Mori cone does not depend on density. See [START_REF] Bayer | Mori cones of holomorphic symplectic varieties of K3 type[END_REF]p. 948] for its proof. For the other inclusion, consider the rank 2 sublattice P ⊂ H 2 ((K3) [n] , Z) generated by h and by the dual class R ∨ (or rather its saturation). As in Definition 3.12 let L ⊂ P ⊥ be a rank 3 sublattice of signature (2, 1). As a consequence the moduli space M L is one-dimensional.

Consider the connected component B := M 0 L containing (X, h X ).

By Proposition 3.22 an extremal rational curve with negative square remains extremal on the generic point of B. The generic point of B corresponds to a moduli space of sheaves on a projective K3 surface, as by Theorem 3.15 moduli spaces of sheaves on projective K3 surfaces are dense in M 0 L .By [START_REF] Bayer | MMP for moduli spaces of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations[END_REF]Theorem 12.2], the statement holds for moduli spaces of sheaves on projective K3 surfaces and the desired inclusion follows. The proof works verbatim if X is a projective deformation of a generalized Kummer by replacing [START_REF] Bayer | MMP for moduli spaces of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations[END_REF]Theorem 12.2] with [START_REF] Yoshioka | Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an abelian surface[END_REF]Proposition 3.36].

For item 2), let R be such a curve. Consider the associated contraction ϕ R : X → X .

By construction X is a sympletic variety admitting a symplectic resolution. By [START_REF] Bakker | A global Torelli theorem for singular symplectic varieties[END_REF]Theorem 4.1] the Kuranishi space Def lt (X ) of locally trivial deformations of X is smooth of dimension h 1,1 (X) -1 = b 2 (X) -3, which is strictly positive under our hypotheses. Let T be an irreducible component of the locus of projective deformations of X containing [X] ∈ Def (X). Consider its intersection T ∩ Hdg [R] with the Hodge locus of the class of R. By [START_REF] Bakker | A global Torelli theorem for singular symplectic varieties[END_REF]Proposition 4.5] there exists a relative contraction Φ : X → X over the base B := T ∩ Hdg [R] yielding ϕ R over the central fiber. Notice that, by definition of Def lt (X ), for all t ∈ B the varieties X t are diffeomorphic. We claim that the (general) nontrivial fibers of Φ are also diffeomorphic. To see this we want to apply [START_REF] Amerik | Contraction centers in families of hyperkähler manifolds[END_REF]Proposition 6.2]. To do that we need to check that any vector field on the smooth part of X can be lifted to a vector field on X2 . We want to use the 2-form σ X on X which yields the symplectic form fiberwise, but we need to avoid killing vector fields in the "horizontal directions". Therefore we embed B as the zero section in the total space Ω(B) → B of its cotangent bundle, which is endowed with a symplectic form σ B . Then we consider the fiber product family

X × B Ω(B) ⊃ X
together with the symplectic form σ X + σ B . Now coupling any vector field on the smooth part of X × B Ω(B) with the symplectic form σ X + σ B we obtain a reflexive differential which can be extended to X × B Ω(B) by [START_REF] Greb | Differential Forms on Log Canonical Spaces[END_REF]Theorem 1.4], and yields, via the analogous procedure with a symplectic form on X × B Ω(B), a lifting of the initial vector field. By restricting to vector fields which are tangent to (the smooth part of) X we get the desired lifting statement for Φ : X → X . Hence [AmV, Proposition 6.2] applies and the (general) non-trivial fibers of Φ are also diffeomorphic. By Corollary 3.18 over a dense subset of T ∩ Hdg [R] these fibers are isomorphic to a projective space, thanks to [BMb, Theorem 1.1 and Theorem 1.4 (a)] (resp. [START_REF] Yoshioka | Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an abelian surface[END_REF]Corollary 3.16]). Indeed these results imply that the fibers of extremal contractions are S-equivalence classes of stable objects and the general such equivalence class correspond to the projectivization of the Ext 1 between stable objects.

Therefore the same conclusion holds on an open subset. By [Siu, Main Theorem], if the general fiber of a smooth proper morphism between connected complex analytic manifolds is isomorphic to P k , then every fiber, and in particular the central one, is isomorphic to P k . Remark 3.23. In relation with Theorem 3.21, item 2), let us point out that a slightely weaker conclusion can be deduced from [AmV]. Indeed in [START_REF] Amerik | Contraction centers in families of hyperkähler manifolds[END_REF]Theorem 1.8] the authors show that if L is the locus in the moduli space of IHS manifolds with b 2 > 5 where a negative extremal class R remains algebraic and extremal, for any two points [X], [X ] ∈ L the general fibers F ⊂ X, F ⊂ X of the associated contractions are bimeromorphic. As in the K3 [n] and the the generalized Kummer cases these general fibers are a projective space one can then deduce that F must be rational.

3.2. Lagrangian fibrations. It is conjectured that a non-trivial integral and primitive movable (resp. nef) line bundle L on a 2n-dimensional IHS manifold X with q X (L) = 0 induces a rational (resp. regular) Lagrangian fibration. Precisely we should have that L is base-point-free, h 0 (X, L) = n + 1 and the morphism X → PH 0 (X, L) ∨ is surjective, with connected Lagrangian fibers. Several important results have been obtained in recent years on this problem. Matsushita [START_REF] Matsushita | On fibre space structures of a projective irreducible symplectic manifold[END_REF][START_REF] Matsushita | Addendum to: On fibre space structures of a projective irreducible symplectic manifold[END_REF] first proved that the image B of a morphism f from such an X must be a Q-factorial, klt n-dimensional Fano variety of Picard number 1 and f is a Lagrangian fibration, as soon as B is normal and 0 < dim(B) < 2n. The fact that B must be the projective space was proved later by Hwang, under the stronger assumption that B is smooth. Bayer-Macrì [START_REF] Bayer | MMP for moduli spaces of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations[END_REF]Theorem 1.5] (resp. Yoshioka [START_REF] Yoshioka | Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an abelian surface[END_REF]Proposition 3.36]) proved the conjecture for moduli spaces of Gieseker stable sheaves on a projective K3 (respectively abelian) surface. Independently Markman [START_REF] Markman | Lagrangian fibrations of holomorphic-symplectic varieties of K3 [n] -type[END_REF]Theorem 1.3] proved the conjecture for a general deformation X of a (K3) [n] . Markman's result can be extended to any deformation of a (K3) [n] thanks to a result due to Matsushita [START_REF] Matsushita | On deformations of Lagrangian fibrations[END_REF] ensuring that if an irreducible holomorphic symplectic manifold X admits a Lagrangian fibration, then X can be deformed preserving the Lagrangian fibration. Later Matsushita [START_REF] Matsushita | Now available in "Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro Kawamata?s 60th Birthday[END_REF]Corollary 1.1] proved that if X is a deformation of (K3) [n] or of a generalized Kummer, any non-trivial integral and primitive line bundle L with q X (L) = 0 such that c 1 (L) belongs to the birational Kähler cone of X, induces a rational Lagrangian fibration over the projective space. His proof uses, among other things three main ingredients: Lagrangian fibrations deform well in moduli [START_REF] Matsushita | On deformations of Lagrangian fibrations[END_REF]; the conjecture holds on moduli spaces (by [START_REF] Bayer | MMP for moduli spaces of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations[END_REF]Theorem 1.5] and [START_REF] Yoshioka | Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an abelian surface[END_REF]Proposition 3.36]); moduli spaces are dense in the Hodge locus of [c 1 (L)]. The latter is now proved in [START_REF] Matsushita | Now available in "Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro Kawamata?s 60th Birthday[END_REF]Lemma 3.6] and can as well be obtained as a particular case of our Corollary 3.18. Notice that the non-emptyness follows from Markman [START_REF] Markman | Lagrangian fibrations of holomorphic-symplectic varieties of K3 [n] -type[END_REF] for deformations of K3 [n] and Wieneck [Wie] for deformations of generalized Kummers.

Equivalent conjectures

Let X be a 2n-dimensional IHS projective variety. The Chow group CH 0 (X) of 0-cycles is non representable by Mumford's theorem (cf. [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe[END_REF]Chapitre 22]). Nevertheless, by the Bloch-Beilinson conjecture, the CH 0 (X) should have an inner structure under the form of a decreasing filtration F • BB := F • BB CH 0 (X) satisfying some axioms (see [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe[END_REF]Chapitre 23]). While this conjecture appears to be out of reach, Beauville, inspired by the multiplicative splitting on the Chow ring of abelian varieties [START_REF] Beauville | Sur l'anneau de Chow d'une variété abélienne[END_REF] and by the case of K3 surfaces [BV], suggested in [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF] to investigate an interesting consequence of a (conjectural) splitting of this filtration, called "weak splitting property". This property consists in the injectivity of the cycle-class map when restricted to the sub-algebra generated by classes of divisors. This conjecture of Beauville gave rise to several works in the last years [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF][START_REF] Voisin | Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O'Grady[END_REF][START_REF] Ferretti | The Chow ring of double EPW sextics[END_REF][START_REF] Fu | Beauville-Voisin conjecture for generalized Kummer varieties[END_REF][START_REF] Riess | On Beauville's Conjectural Weak Splitting Property[END_REF][START_REF] Laterveer | A remark on Beauville's splitting property[END_REF][START_REF] Fu | The generalized Franchetta conjecture for some hyper-Kähler varieties[END_REF][START_REF] Shen | Zhao Derived categories of K3 surfaces, O'Grady's filtration, and zero-cycles on holomorphic symplectic varieties[END_REF][START_REF] Shen | K3 categories, one-cycles on cubic fourfolds, and the Beauville-Voisin filtration[END_REF][START_REF] Yin | Finite-dimensionality and cycles on powers of K3 surfaces[END_REF]. Very recently cf. [START_REF] Voisin | Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, "K3 Surfaces and Their Moduli[END_REF], Voisin developed a different approach to the study of the filtration F • BB and its conjectural splitting. For any integer 1 ≤ i ≤ n, she considers

S i (X) : {x ∈ X : dim O x ≥ i},
where O x is the orbit of x under rational equivalence. Notice that a subvariety Y of such an orbit is a constant cycle subvariety of X (cf. [START_REF] Huybrechts | Curves and cycles on K3 surfaces[END_REF]), i.e. a subvariety whose points are all rationally equivalent in X. Using Mumford's theorem, one can show that any of the (possibly countably many) irreducible components of S i (X) has dimension ≤ 2n -i. Then Voisin defines S i CH 0 (X) ⊂ CH 0 (X) to be the subgroup generated by classes of points in S i (X). In this way she obtains a descending filtration S • CH 0 (X) on CH 0 (X) and she conjectures that it should be opposite to the Bloch-Beilinson filtration and thus provides a splitting of it, in the sense that, for any i = 1, . . . , n S i CH 0 (X) ∼ = CH 0 (X)/F 2n-2i+1 BB CH 0 (X).

In this direction an important rôle is played by the following Conjecture 4.1 ([Voi15], Conjecture 0.4). Let X be a 2n-dimensional holomorphic symplectic variety. For any i = 1, . . . , n there exists a component Z of S i (X) of maximal dimension 2n -i.

She then observed that if Conjecture 4.1 holds (and if of course the Bloch-Beilinson filtration exists), then the map S i CH 0 (X) → CH 0 (X)/F 2n-2i+1 BB CH 0 (X) is surjective. Back to Conjecture 4.1, Voisin observed that if Z ⊂ S i (X) has maximal dimension 2n -i then Z is swept by i-dimensional constant cycle subvarieties, which are the orbits O z of its points z ∈ Z. Conjecture 4.1 has been proved in the following cases: for i = 2 and X a very general double EPW sextic, [START_REF] Ferretti | The Chow ring of double EPW sextics[END_REF]; for i = n and X having a Lagrangian fibration [START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF]); for a generalized Kummer and any i ( [START_REF] Lin | Lagrangian constant cycle subvarieties in Lagrangian fibrations[END_REF]); for the Fano variety of line on a cubic 4fold and the LLSV 8fold and any possible i, [START_REF] Voisin | Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, "K3 Surfaces and Their Moduli[END_REF]; for moduli spaces of stable objects on a K3 surface, [SYZ] (see [SY] for a related work); for i = 1 when X is deformation equivalent to the punctual Hilbert scheme of a K3 surface (respectively when X is deformation equivalent to a generalized Kummer) in [CMP] and [OSY] (resp. in [MP, MPcorr]) it is proven for most of the cases (more precisely if M = ∪ d>0 M 2d is the union of the moduli spaces M 2d of projective irreducible holomorphic symplectic varieties of K3 [n] -type (resp. generalized Kummer type) polarized by a line bundle of degree 2d, it is proven that for all (X, H) ∈ M, outside at most a finite number of connected components determined by the monodromy orbit of H, the linear system |mH|, for a certain m ≥ 1, contains a uniruled divisor covered by rational curves of primitive class). In [LePa] the conjecture is proven in the K3 [n] and generalized Kummer cases for all codimensions i in a (dense) sublocus of codimension one in all components of the moduli space M.

To state our results, let us first define the following: Definition 4.2. Let X be an IHS projective variety, let H be a divisor of positive square on X and let Z ⊂ X be a subvariety of pure codimension i.

(i) Z is called a Voisin coisotropic subvariety if Z ⊂ S i (X). (ii) A Voisin coisotropic subvariety Z ⊂ X is said to have RCC orbits if the orbits O z of its points with respect to rational equivalence are rationally chain connected. (iii) If a Voisin coisotropic subvariety Z ⊂ X has RCC orbits, these are called of type m(H ∨ ), for a certain integer m > 0, if, for a general point z ∈ Z, any two points of O z are connected by a chain of rational curves of class m(H ∨ ).

Here, the curve class H ∨ is the class H/div(H) under the embedding H 2 (X, Z) → H 2 (X, Q) given by lattice duality, and the divisibility div(H) is the positive generator of H • H 2 (X, Z).

The aim of this section is to relate (a strengthening of) Conjecture 4.1 to an existence conjecture on Noether-Lefschetz loci.

The main tools will be Theorem 3.15 and an easy, yet useful density principle which we state and prove below. This principle simply says that to prove the existence of Voisin's coisotropic subvariety with (good) RCC orbits of a given type it is sufficient to have existence on a dense subset of the relevant moduli spaces.

To make things precise we introduce some terminology and notations. Given a polarized IHS variety (X, h) we will consider the moduli space of genus zero stable maps

M 0 (X, [h] ∨ ) of class [h] ∨ ∈ H 2 (X, Z). If M is an irreducible component of M 0 (X, [h] ∨ )
we will denote by C → M the universal curve above it and consider the natural evaluation morphism ev : C → X.

Theorem 4.3. Let 1 ≤ k ≤ n be an integer. Suppose there exists a subset D ⊂ M + h ⊥ which is dense with respect to the euclidean topology and such that for all t ∈ D:

(i) there exists an irreducible component M t of the moduli space of genus zero stable maps M 0 (X t , [h t ] ∨ ) of dimension 2n -2 and (ii) the image of evaluation morphism ev t : C t → X t has dimension 2n -k.

Then any X in M +

h ⊥ contains a Voisin coisotropic subvariety Z of codimension k with RCC orbits of type (a multiple of ) [h X ] ∨ . Definition 4.4. The RCC orbits ruled by rational curves verifying items (i) and (ii) of Theorem 4.3 will be called good.

Remark 4.5. Using e.g. [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF]Proposition 2.1] one can check that the RCC orbits of Voisin's coisotropic subvarieties of type H, where H is a primitive divisor, are good.

Example 4.6. Let (S, H) be a very general K3 surface of degree 4 and let C ∈ |2H| be a general curve with only 5 nodes as singularities (that is, a curve of geometric genus 4). Let R be the rational curve inside S [5] given by a g 1 5 on the normalization of C. Its class is 2H ∨ -8τ 5 and, as we let the curve C and the linear series on it vary, we obtain exactly a 8 dimensional family of such curves, which can be proven analogously to [START_REF] Knutsen | Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds[END_REF]Prop. 3.6] using the fact that, under suitable generality assumptions, the curve normalization of C is a Brill-Noether general curve by [START_REF] Ciliberto | Moduli of nodal curves on K3 surfaces[END_REF]Cor. 8.5]. Therefore, the locus Z they cover is a Voisin's coisotropic subvariety of type 2(H ∨ -4τ 5 ) with good RCC orbits.

In [CMP] the existence of ample uniruled divisors is proven in some cases precisely by passing to non-primitive curves.

Proof of Theorem 4.3. In order to prove the theorem it is sufficient to prove that given any holomorphic symplectic variety X in M + h ⊥ the conclusion holds on (a contractible open subset of) the subset B := Def(X) h ⊥ of the Kuranishi space Def(X) of deformations of X parametrizing those where the class of h remains algebraic. We will first show it on an open subset U ⊂ B and then derive the conclusion on the whole B.

Let π : X → B be the universal family. Consider the relative moduli space of genus zero stable maps M 0 (X /B, [h] ∨ ). By abuse of notation we denote by [h] ∨ the class of the section of the local system R 4n-2 π * Z whose value at the point b ∈ B is the class in H 2 (X t , Z) dual to ϕ -1 t (h). By hypothesis M 0 (X /B, [h] ∨ ) has dense image in the base B. Since it is a scheme of finite type, there exists an irreducible component M dominating the base and such that the restrictions M |b over the points t ∈ D contain the components M t given by the hypothesis of the theorem. Denote by C → M the universal curve and by ev : C → X the evaluation morphism over B.

Consider the set

B bad := {b ∈ B : M |b is reducible}.
By [START_REF] Fantechi | Fundamental algebraic geometry. Grothendieck's FGA explained[END_REF]Théorème 9.7.7] we have either In case (b), one proceeds mutatis mutandis in a similar way.

In both cases by construction any two points of Z b can be joined by a rational curve of the same class.

To conclude the proof of the theorem, let X 0 in Def(X) h ⊥ \ U . Let T ⊂ Def(X) h ⊥ be a curve passing through X 0 and not contained in Def(X) h ⊥ \ U . Up to shrinking T we may suppose that (T \ [X 0 ]) ⊂ U . Define Z 0 ⊂ X 0 to be the limit, for t ∈ (T \ [X 0 ]), of the subvarieties Z t ⊂ X t having dimension 2n -k and covered by k-dimensional RCC subvarieties, whose existence has been shown before. Let x 0 ∈ Z 0 be a point and {x t ∈ X t } t∈(T \[X 0 ]) a set of points converging to it. Let F t ⊂ X t be a k-dimensional RCC subvariety containing x t and let F 0 be the limit of the F t 's. It is RCC, as limit of RCC's. Therefore also X 0 contains a (2n -k)-dimensional subvariety Z 0 ⊂ X 0 which is covered by k-dimensional RCC subvarieties and the theorem is proved.

We state the following conjectures, the first one being a slight strengthening of Voisin's original conjecture.

Conjecture 4.7. Let X be a 2n-dimensional IHS projective variety. For any i = 1, . . . , n there exists a primitive positive divisor H i , a positive integer m i > 0 and a codimension i Voisin's coisotropic subvariety Z i ⊂ X with good RCC orbits of type m i (H i ) ∨ .

The advantage of coisotropic subvarieties with RCC orbits is that we control easily their degenerations, while fixing the type allows to deal with a parameter space (of stable genus zero maps) which will be of finite type.

Remark 4.8. The recent preprint [OSY] shows that in certain cases the integers m i can be strictly greater than one.

Conjecture 4.9. Let M + h ⊥ be the moduli space of polarized deformations of a projective IHS variety X, D N ⊂ M H the Noether-Lefschetz locus corresponding to a lattice N such that b 2 (X)rank(N ) ≥ 3 and U ⊂ D N a dense subset. Then, for every t ∈ U and every 1 ≤ i ≤ dim(X)/2, there exist an integer m > 0 and a codimension i Voisin's coisotropic subvariety Z t,i ⊂ X with good RCC orbits of type m(H t ) ∨ , where H t ∈ Pic(X t ) is the primitive polarization such that ϕ t (H t ) = h. Conjecture 4.10. Let M + h ⊥ be the moduli space of polarized deformations of a projective IHS variety X, D N ⊂ M H the Noether-Lefschetz locus corresponding to a lattice N such that b 2 (X)rank(N ) ≥ 3 and U ⊂ D N a dense subset. Then, for every t ∈ U , for every divisor P t ∈ Pic(X t ) of positive square and every 1 ≤ i ≤ dim(X)/2, there exist an integer m i > 0 and a codimension i Voisin's coisotropic subvariety Z t,i ⊂ X with good RCC orbits of type m i (P t ) ∨ . Conjecture 4.11. Let M + h ⊥ be the moduli space of polarized deformations of a projective IHS variety X. Then, for every t ∈ M + h ⊥ , for every positive divisor P t ∈ Pic(X t ) and every 1 ≤ i ≤ dim(X)/2, there exist an integer m i > 0 and a codimension i Voisin's coisotropic subvariety Z t,i ⊂ X with good RCC orbits of type m i (P t ) ∨ . Theorem 4.12. Let X be a projective IHS variety with b 2 (X) ≥ 4. Then the 4 above conjectures 4.7, 4.9, 4.10 and 4.11 are equivalent.

Proof of Theorem 4.12. Clearly, Conjecture 4.11 implies Conjecture 4.10 which implies Conjecture 4.9. Let us show that Conjecture 4.9 implies Conjecture 4.7. Manifolds in the Noether-Lefschetz locus D N are dense in the moduli space M + h ⊥ by Theorem 3.15. As Conjecture 4.9 holds on D N , we can apply Theorem 4.3 to obtain Conjecture 4.7. Finally, let us prove that the first Conjecture implies the last. Again, this is a simple corollary of Theorem 4.3. Indeed, let H ∈ Pic(X) be any primitive positive class and let (Y, H Y ) be a very general deformation of (X, H). By Conjecture 4.7, we have a rational curve of class mH ∨ which connects any two points in a general fibre of a codimension i coisotropic variety. As (Y, H Y ) is very general, the only curve classes are given by the multiples of H ∨ Y and thus we can apply Theorem 4.3 to obtain the result for (X, H).

Existence of rational curves via density

In this section we will use linear series on surfaces to construct a dense set of points corresponding to IHS containing a rational curve for the moduli spaces of pairs of deformations of K3 [n] type or generalized Kummer varieties type. By Theorem 4.3, this will be enough to prove that all such IHS contain a rational curve whose Beauville-Bogomolov dual class is (a multiple of) the polarization. The result of this section is the following:

Theorem 5.1. Let (X, H) be a 2n-dimensional polarized manifold of K3 [n] type or of generalized Kummer type, with H any ample and primitive divisor. Then there exists a rational curve whose class is dual to |H| and moving in a family of dimension 2n -2.

As it is convenient when working with this deformation classes, we will use the index ∈ {0, 1} to distinguish between them. Therefore in the following S and S [n] will be a K3 surface and its Hilbert scheme of n points when = 0 or an abelian surface and its 2n-dimensional generalized Kummer when = 1 (usually denoted K n (S 1 )). When H ⊂ S is a divisor, we will denote with {H} the connected component of Hilb(S ) containing |H|. We will use nodal curves, therefore we use the following result from [CK, Theorem 0.1] and [START_REF] Knutsen | Severi varieties and Brill-Noether theory of curves on abelian surfaces[END_REF]Theorem 1.6].

Theorem 5.2. Let (S , H) be a general polarized K3 or abelian surface of genus p := p a (H). Let δ and n be integers satisfying 0 ≤ δ ≤ p -2 and n + ≥ 2. Then the following hold:

(i) There exists a g 1 n+ on the normalization of a curve in {H} with δ nodes as singularities if and only if

(5.1) δ ≥ α p -δ --(n -1 + 2 )(α + 1) ,
where

(5.2) α = p -δ - 2(n -1 + 2 ) ;
(ii) whenever nonempty, the scheme of these linear series is equidimensional of dimension min{p -δ, 2(n -1 + )}.

We have a natural map from the g 1 n+ on the curve to the Hilbert scheme S [n+ ] which, up to translation, lands in S [n] . The class of this rational curve R p-δ n in S [n] is computed in [START_REF] Knutsen | Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds[END_REF]Lemma 3.3] and is equal to Let us construct enough curves to obtain a dense subset of all moduli spaces of pairs: Let g = p-δ be the geometric genus and let k = g -modulo 2(n-1+2 ) be in the interval [0, 2(n-1+2 )-1].

H -(p -δ + n -1 + )τ n ,
Let α = (g --k)/(2n -2 + 4 ) and let δ min be (g-ε-k) 2 (α -1) + kα.

Proposition 5.3. Keep notation as above, then for all g ≥ n, all r ∈ N and all pairs (S ε , H) of genus g + r + δ min there exists a curve in {H} with δ min + r nodes, geometric genus g and a g 1 n+ on its normalization such that the associated rational curve R g,δ min +r in S [n] has class

H -((g -) + (n -1 + 2 ))τ n , square (2r -2 + 2 ) -(n-1+2 -k) 2 2(n-1+2 )
and moves in a (2n -2)dimensional family.

Proof. The existence statement is clear, as α is as in (5.2) and δ min is the minimal number of nodes satisfying (5.1), therefore this is a direct consequence of Proposition 5.2. The same Proposition together with [START_REF] Knutsen | Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds[END_REF]Proposition 3.6] insures that the rational curves in S

[n] associated to the linear series belong to a component of the moduli space of genus zero stable maps of the expected dimension 2n -2.

If we write the genus of (S, H) as (g --k) + r + δ min + + k, standard algebraic computations give us that

g + δ min = (g + + n -1) 2 -k 2 4(n -1 + 2 ) - n -1 + 2 -2k 4 + .
Therefore the square of R g,δ min +r is

q(R g,δ min +r ) = (2r -2 + 2 ) - (n -1 + 2 -k) 2 2(n -1 + 2 ) .
From the class of the above curve, it is clear that the divisibility of the dual divisor D g,r,δ min is determined by the integer k: H -

((g -) + (n -1 + 2 ))τ n = H -(α + 1/2)∆ n -kτ n = L -k τ n ,
where L is a class in H 2 (S [n] ) and -n + 1 -2 ≤ k < n -1 + 2 . Hence the dual divisor has divisibility t, where t is the order of k modulo 2n -2 + 4 .

Proposition 5.4. The set of pairs (S [n] , D g,r,δ min ) where D g,r,δ min is dual to the curves R g,δ min +r

given by Proposition 5.3, D 2 g,r,δ min = 2d and div(D g,r,δ min ) = t is dense in all connected components of M 2d,t .

Proof. We wish to consider the curves R g,δ min +r . As proven in [START_REF] Charles | Families of rational curves on holomorphic symplectic varieties and applications to 0-cycles[END_REF]Thm. 2.4] for Hilbert schemes and [START_REF] Mongardi | Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties[END_REF]Thm. 4.2] for Kummers, for every connected component of M 2d,t there exists k ∈ [-n + 1 -2 , n -1 + 2 ] and (S , H ) polarized surface such that (S [n] , tH + k ∆) is in the desired connected component of M 2d,t . Clearly, we can replace tH with tL for any L ∈ H 2 (S [n] , Z) with L 2 = H 2 as tL + k ∆ will have the same monodromy invariant of tH + k δ. Therefore, for any t, d and any connected component of M 2d,t , there are r and S such that (S , D g,r,δmin ) is in the desired component, and this happens for countably many g ≥ n + .

Summing all of these, we are ready to prove Theorem 5.1.

Proof. Let (X, H) be a polarized pair (of the appropriate deformation types) and let M ⊂ M 2d,t be its component of the moduli space of pairs. By Prop. 5.4, there is a dense subset of M whose points have a family of rational curves of class dual to H. As the moduli space of stable rational curves is closed, there are rational curves on every element of M .

Remark 5.5. In [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF]Corollary A.3] the authors discovered a numerical condition ensuring, for projective deformations of K3 [n] s, the existence of a uniruled divisor ruled by rational curves having primitive class. The condition is also necessary if the curves are irreducible (e.g. at the general point in the corresponding moduli space). Nevertheless the numerical condition holds at most in a finite number of cases in each dimension 2n (even letting the degree of the polarization vary). Therefore in these sporadic cases, the primitive rational curves that we construct in Theorem 5.1 must then cover coisotropic sub-varieties of codimension > 1. In some cases, treated in [CMP] it is possible to show that this codimension is 2.

For higher-dimensional subvarieties the deformation theory can either be understood in the smooth case (cf. [LePa] which generalizes the Lagrangian case, done in [START_REF] Voisin | Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes. Complex projective geometry[END_REF]), but it is not sufficient to conclude the existence for a general X, or it is very difficult to control in the singular case (see [Le] for some partial results in this direction). Our hope is that, with some further work, this new approach via density can be successfully used to obtain the existence of constant cycle isotropic subvarieties of dimension ≥ 2, a problem which seems to be a challenging one. A little evidence for this is obtained by coupling our approach with the results contained in [OSY] Corollary 5.6. Let (X, H) be a polarized IHS of (K3) [8] -type and H a primitive polarization of square 42 and divisibility 14. Then X contains a Voisin coisotropic subvariety of codimension ≥ 2 with good RCC orbits of type H ∨ .

Proof. By Theorem 5.1 there exists a rational curve of class H ∨ moving a (2n -2)-dimensional component of the moduli of genus zero stable map of class H ∨ . By [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF]Corollary A.3] such a curve cannot cover a (uniruled) divisor but only a subvariety of codimension ≥ 2. Of course the proof works the same for all the sporadic cases discovered in [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF]Corollary A.3] when primitive rational curves cannot rule a divisor.

An application of the existence of rational curves with ample dual class concerns the conjectural filtration on the CH 0 .

Corollary 5.7. Let X be a polarized IHS of (K3) [n] or of generalized Kummer type of dimension 2n. Then, the image of is given by a linear combination of points supported on rational curves. Hence for each of these points the rational orbit is positive dimensional, and the conclusion follows.

Fano varieties of lines of special cubic fourfolds

The goal of the section is to observe that it is possible to deduce immediately from Theorem 3.15 a generalization of some results obtained by Hassett on the Fano variety of lines of special cubic fourfolds. We need to recall the basic definitions and results.

A cubic fourfold is smooth cubic fourfold hypersurface in P 5 . We consider the coarse moduli space C parametrizing cubic fourfolds. Following Hassett [Hass00] a cubic fourfold X is said to be special if it contains an algebraic surface not homologous to a complete intersection. We collect many of Hassett's result in the following statement. Theorem 6.1.

(i) (see [START_REF] Hassett | Special cubic fourfolds[END_REF]Theorem 3.1.2 and Proposition 3.2.4]) A cubic fourfold X is special (of discriminant d) if and only if the lattice H 4 (X, Z) ∩ H 2,2 (X) contains a primitive lattice of rank 2 and discriminant d, which contains the class h 2 , where h denotes the hyperplane class. (ii) (see [START_REF] Hassett | Special cubic fourfolds[END_REF]Theorem 4.3.1]) Let d ≥ 8 be an integer. The set C d of special cubic fourfolds of discriminant d is not empty iff d ≡ 0, 2(mod 6), (iii) (see [START_REF] Hassett | Special cubic fourfolds[END_REF]Theorem 3.2.3]) Assume d ≥ 8 is an integer : d ≡ 0, 2(mod 6). Then the set C d is an irreducible algebraic divisor of C .

On the other hand it is well known, thanks to Beauville and Donagi [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]Proposition 2], that the Fano variety of lines F (X) on a cubic fourfold X is an IHS variety deformation equivalent to the Hilbert scheme of two points on a K3 surface. Varying the cubic fourfold we get a complete family of such deformations, i.e. a whole connected component of the relevant moduli space.

Moreover they showed (see [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]Proposition 4]) that the natural Abel-Jacobi map yields an isomorphism of Hodge structures H 4 (X, Z) → H 2 (F (X), Z).

More precisely (see [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]Proposition 6]) we have an isomorphism of polarized Hodge structures (6.1) H 4 (X, Z)(-1) h 2 → H 2 (F (X), Z) g where g is the class of the hyperplane section of F (X) in the Plücker embedding and H 2 (F (X), Z) g (respectively H 4 (X, Z)(-1) h 2 ) denotes the classes orthogonal to g (respectively the classes orthogonal to h 2 in H 4 (X, Z) endowed with the opposite sign of the intersection form). Finally recall that by Voisin [START_REF] Voisin | Théorème de Torelli pour les cubiques de P 5[END_REF] we know that the natural period map for cubic fourfold is a open immersion.

The question is to understand when F (X) is isomorphic to (and not only deformation of) the Hilbert scheme of 2 points on a K3. Hassett proved the following necessary condition.

Proposition 6.2 (Proposition 6.1.3, [START_REF] Hassett | Special cubic fourfolds[END_REF]). Assume that the Fano variety of a generic special cubic fourfold of discriminant d is isomorphic to S [2] for some K3 surface S. Then there exist positive integers m and a such that d = 2 m 2 +m+1 a 2

.

Then he also obtained the following sufficient condition.

Theorem 6.3 (Theorem 6.1.4, [START_REF] Hassett | Special cubic fourfolds[END_REF]). Assume that d = 2(m 2 + m + 1) where m is an integer ≥ 2. Then the Fano variety of a generic special cubic fourfold X of discriminant d is isomorphic to S [2] , where S is a K3 surface.

Our main result is the following.

Theorem 6.4. For every integer d such that the set C d of special cubic fourfolds of discriminant d is not empty, those whose Fano variety of lines is isomorphic to a K3 [2] , of a fixed degree 2e 0 , are dense in the euclidean topology.

Proof. By Voisin's Torelli theorem and the isomorphism of polarized Hodge structures (6.1) we can see C d as a divisor in the period domain Ω Λ , where Λ ∼ = H 2 ((K3) [2] , Z). By [Hass00, Proposition 3.2.4], up to automorphisms fixing h 2 , there exists a unique primitive sublattice K ⊂ H 4 (X, Z) of rank 2 and discriminant d, which contains the class h 2 . Let K ⊂ H 2 (F (X), Z) be its image via the isomorphism (6.1). By Theorem 6.1, items (ii) and (iii), C d corresponds, via the period map M Λ → Ω Λ , to the image of a connected component M 0 L , where L is ( K) ⊥ . Now take N ⊂ H 2 ((K3) [2] , Z) to be the rank 2 sublattice generated by the exceptional class e and by a class h S orthogonal to e and of square 2e 0 . Notice that D N is the locus of manifolds birational to S [2] , where S is a K3 surface having a positive class of degree 2e 0 . Then by Theorem 3.15 the (non-empty) set D N is dense in M 0 L . Using again Huybrechts non-separability of birational IHS manifolds as we have done in the proof of Corollary 1.2 we deduce the density of K3 [2] 's inside M 0 L and we are done. Remark 6.5. In [START_REF] Debarre | Unexpected isomorphisms between hyperkähler fourfolds[END_REF]Proposition 5.18], a similar density statement was proved, namely that there are countable degrees 2e for a general K3 surface S such that S [2] ∼ = F (X) for some cubic fourfold X and these cubic fourfolds are dense in the euclidean topology. This result is slightly weaker than ours in the sense that we can obtain density also by fixing a degree 2e 0 for the K3 without letting it vary. Remark 6.6. By Proposition 6.2, for all integers d = 2 m 2 +m+1 a 2 the euclidian density given by Theorem 6.4 is the best result one can obtain.

  (a) B \ B bad contains an open subset ; or (b) B bad contains an open subset. In case (a), let U ⊂ (B \ B bad ) be the open subset. By definition for all b ∈ U we have that M |b is irreducible. Inside U consider the open sublocus U of points b where the rank of the evaluation morphism ev b restricted to C |b is maximal and the dimension of M |b is constant. By density U ∩ D = ∅. Therefore we have that dim(M |b ) = dim(M |b ) = 2n -2 and rk(ev b ) = 2n -k. Set Z b := ev b (C |b ). By dimension count, for all b ∈ U , through the general point of Z b we have a k-dimensional RCC subvariety (contained in Z b ) and the theorem is proved over U in this case.

  where τ n is the class of a fibre of the exceptional divisor 2∆ n of the Hilbert-Chow morphism. Let e = GCD(2n-2+4 , p-δ +n-1+ ), f = (p -δ + n -1 + )/e and d = (2n -2 + 4 )/e. Then the class dH -f ∆ n is the class of a divisor whose dual curve is R p-δ n .

  Pic(X) ⊗2n → CH 0 (X), D 1 ⊗ . . . ⊗ D 2n → D 1 • . . . • D 2n is contained in S 1 CH 0 (X) Q .Proof. Take D j ∈ Pic(X), j = 1, . . . , 2n. Without loss of generality we may assume all the D j are very ample. Then the curve C := D 1 ∩ . . . D 2n-1 may be written, up to rational equivalence, asC ≡ rat m a m C m with a m ≥ 0 and C m rational curves such that C ∨ m is ample. Therefore the intersection C • D 2n = (D 1 • . . . • D 2n-1 ) • D 2n

For the convenience of the reader we give here a detailed argument which seems to be implicit in[START_REF] Amerik | Contraction centers in families of hyperkähler manifolds[END_REF] Theorem 6.4] 
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