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Abstract

Gradient Frequency Neural Networks (GFNNs) have
been applied successfully to detect pulse and meter (hi-
erarchical groupings of pulses) in complex music audio
signals having polyrhythms and syncopation. Here, we
apply GFNNs to the detection of low frequency (LF) and
high frequency (HF) oscillations in cardiovascular sig-
nals, namely the heart rate variations associated with
Mayer waves and with respiration, respectively. The car-
diovascular time series is treated as music audio for anal-
ysis; the electrocardiographic (ECG) signal is processed
as a WAV file, and R-R intervals converted to a MIDI file.
GFNNs are networks of nonlinear neural oscillators that
offer the advantage of high sensitivity at low stimulus am-
plitudes, compared to linear amplitude responses, for weak
signals. The GFNNs entrained with prominent LF peaks at
0.0837 ± 0.0175Hz to R-R intervals of Kundalini medita-
tors from the PhysioBank Exaggerated Heart Rate Oscilla-
tions database. When applied to a 15-hour Holter record-
ing of Paroxysmal Atrial Fibrillation, GFNN entrainment
showed significant LF activity between 0.04−0.14Hz, and
HF activity at ∼ 0.25Hz during sleep. GFNNs present a
novel approach to the detection and study of cardiovascu-
lar oscillations, inspired by auditory rhythm perception.

1. Introduction

Gradient Frequency Neural Networks (GFNNs), devel-
oped to model the neurodynamics of rhythm perception,
have been applied successfully to the tracking of multi-
scale periodicities in complex musical rhythms. Here, we
explore how GFNN models developed to entrain to, and
analyse, complex rhythms in musical audio signals might
be useful in analysing cardiovascular signals. In particular,
we demonstrate the ability for GFNNs to entrain, through
prominent oscillator amplitudes, to low frequency oscilla-
tions between 0.01 and 0.25Hz.

In the realm of auditory perception, GFNNs are moti-
vated by evidence that rhythm perception in music has a

correlate in entrainment of cortical oscillations [1]. Simi-
larly, there are believed to be oscillatory systems in cere-
bral hemodynamics. Yücel et al. [2] categorise cardiovas-
cular oscillations in six forms, including: high frequency
(HF) oscillations relating to respiration,∼0.30Hz; low fre-
quency (LF) oscillations relating to muscle tissue of ves-
sels, ∼0.1Hz; and very low frequency (VLF) oscillations
relating to nervous activity of vessels, ∼0.04Hz. The LF
category is associated with the enigmatic Mayer waves, os-
cillations in arterial pressure that are distinguishable from
respiration and the heartbeat, yet correlated. The heart rate
variability (HRV) spectrum consists of a HF band between
0.15−0.40Hz and a LF band between∼ 0.05−0.14Hz [3].

Hamner et al. [4] suggested that nonlinear methods may
be required to further understand beat-to-beat (R-R inter-
val) oscillations in cardiovascular regulation, as nonlinear
interactions might explain the lack of coherence between
R-R intervals and arterial pressure oscillations. GFNNs are
therefore appealing for preliminary experiments involving
low frequency cardiovascular oscillations.

The remainder of the paper is organised as follows: Sec-
tion 2 describes GFNNs, Section 3 describes the data and
models we used to produce the results in Section 4. In
Section 4.1, we evaluate GFNN entrainment to R-R inter-
vals with exaggerated low frequency oscillations; and, in
Section 4.2, we evaluate GFNN entrainment to a 15-hour
Holter recording. We conclude with some insights and fu-
ture work in Section 5.

2. Gradient Frequency Neural Networks

GFNNs are oscillating neural networks that process
time-varying signals, and describe the dynamics of neu-
ral oscillators hypothesised as a correlate of rhythm per-
ception [1]. GFNNs are composed of (layered) arrays of
neural oscillators, distributed across a range of natural fre-
quencies (the ‘gradient’). Given a stimulus such as an au-
dio signal, the rhythmic frequencies will cause the oscilla-
tors to selectively entrain. This can be likened to a linear
filter bank; however, each oscillator exhibits nonlinear res-
onance. Large et al. [5] derived a canonical model where



each oscillator is based on the Hopf oscillator, configured
close to the critical point of Hopf bifurcation. This is an
unstable point on the brink of spontaneous oscillation, pro-
viding an appealing and extreme sensitivity to weak sig-
nals compared to linear filters [1]. This might prove benefi-
cial in processing cardiovascular signals where oscillatory
patterns of interest may not be prominent.

The canonical model has a complex valued output z,
where real and imaginary components denote excitation
and inhibition. In the model configuration, there is a lin-
ear damping parameter, α, frequency detuning parameters,
δ1,2, amplitude compressing parameters, β1,2, and a non-
linearity parameter, ε. The model definition is given by

dz

dt
= z(α+ iω + (β1 + iδ1)|z|2

+
(β2 + iδ2)ε|z|4

1− ε|z|2
) + cP (ε, x(t))A(ε, z), (1)

where P (ε, x(t)) and A(ε, z) respectively denote the pas-
sive and activate components of the nonlinear stimulus
coupling to a stimulus. The fully expanded definition can
be found in [5].

As proposed by Lambert et al. [6], the weighted phase
of the GFNN can be calculated as follows:

Φ =

N∑
i=0

|zi| arg(zi). (2)

The weighted phase can be used to illustrate the sensi-
tive response of a GFNN to irregular heartbeats such as
ectopics or atrial fibrillation. Figure 1 demonstrates distur-
bances to the model’s weighted phase during the onset of
atrial fibrillation, using a segment of R-R intervals from the
Physiobank MIT-BIH Arrhythmia Database [7, 8] (record
201). This example does not demonstrate any long-term
interaction between oscillators and rhythms (entrainment),
but simply the immediate effect of successive R-R inter-
vals as stimulus. However, for the remainder of this work,
we examine only GFNN entrainment.

3. Method

We apply Large et al. [9]’s reference implementation of
GFNNs to cardiovascular signals transformed to compati-
ble audio formats: R-R intervals were converted to MIDI
pulse trains, and continuous electrocardiographic (ECG)
signals were converted to audio WAV files.

As a preliminary investigation, we applied the GFNN
to two datasets, namely, (1) the Physiobank Exagger-
ated Oscillations (ExOs) database [7, 10] and (2) a ∼15
hour (15hr5m49s) proprietary paroxysmal atrial fibrilla-
tion (PAF) ECG Holter monitor recording. The ExOs

Figure 1. Weighted phase response of GFNN to R-R in-
tervals from record 201 of the MIT-BIH database. Note
the irregular and unstable phase response to irregular beats
preceding atrial fibrillation (AFIB).

database provided a benchmark in detecting LF oscilla-
tions (related to respiration), containing heart rate record-
ings of advanced Kundalini Yoga meditators (2 men, 2
women, mean age of 33 years) in pre-meditation and med-
itation states. The PAF Holter recording provided a specu-
lative opportunity for evaluating LF and HF oscillations in
the presence of PAF.

For both datasets, two-layer networks with local affer-
ent/efferent/internal connections were used. 100 oscilla-
tors were used per layer, with a logarithmic gradient of
0.04 − 0.4Hz for the ExOs database and 0.02 − 0.4Hz
for the Holter recording. In the first (sensory) layer: α =
1e−5, β1 = 0, β2 = −2, δ1 = 0, δ2 = 0, ε = 1. In the
second (motor) layer: α = −0.4, β1 = 1.75, β2 = −1.25,
δ1 = 0, δ2 = 0, ε = 1. This configuration is similar to that
used by Velasco & Large [11] for pulse detection in syn-
copated rhythms—rhythms with accents in abnormal time
locations—where the second layer is configured to exhibit
double-limit-cycle bifurcation behaviour.

This double-limit-cycle oscillator regime is charac-
terised by thresholding and memory; where stable states
of oscillation (rest and limit cycle) are separated by an un-
stable limit cycle, demanding a strong stimulus to cross be-
tween the stable states. Memory refers to the fact that the
oscillator can remain in the stable limit cycle for longer
than the oscillating stimulus. Thresholding refers to the
need for a suitably strong oscillating stimulus to activate
the stable oscillation. Additionally, the oscillators benefit
from high sensitivity: under a low amplitude stimulus they
exhibit large amplitude oscillations (a nonlinear response),
and sensitivity deteriorates as stimulus amplitude rises (the
amplitude curve is compressed).



4. Results

Here, we summarise the results of the GFNN on the
ExOs dataset and the PAF Holter recording.

4.1. Exaggerated Oscillations

In accordance with the observations by Peng et al. [10],
we were able to clearly identify low-frequency heart rate
oscillations in the advanced meditators through prominent
spectral peaks in the 0.025 − 0.35Hz range for the heart
rate time series. Figure 2 demonstrates this for one of the
Kundalini Yoga meditators, contrasting 300s of the heart
rate series during preparatory baseline breathing and then
meditation. Notably, this depicts entrainment of the second
(motor) layer. Across Kundalini meditators for this period,
the frequency at the most prominent peak had a mean of
0.0837Hz and standard deviation 0.0175Hz.

Figure 2. Amplitude spectrum of GFNN motor layer (sec-
ond layer) from ExOs database for Kundalini Yoga med-
itator 1. The 200.22 to 499.56-second segment of pre-
meditation and meditation recording is shown. From an
early stage of the meditation spectra, a prominent∼0.06Hz
frequency component can be identified.

Figure 3 demonstrates the final amplitude spectrum of
the GFNN across both layers, before and then during med-
itation for the same meditator. The first (sensory) layer
does not exhibit prominent oscillations at the slow breath-
ing pulse frequency.

This reflects the thresholding and memory properties of
the double-limit cycle bifurcation, which is configured in
the second layer. During preparatory breathing, the second
layer exhibited a certain level of noise which would re-
quire filtering in some practical application. Existing stud-
ies of musical rhythms identify active frequencies using
the threshold implicit in oscillatory dynamics under dou-
ble limit cycle tuning [11], which may form the basis of
a strategy to disregard irrelevant oscillatory frequencies in
clinical applications.

Figure 3. Final GFNN amplitude spectrum for Kundalini
Yoga meditator 1 from ExOs database, using the 200.22 to
499.56-second segment of pre-meditation and meditation
recording. The second layer during meditation entrains
with a prominent frequency component at ∼0.06Hz.

4.2. Non-Exaggerated Oscillations

Whereas musical rhythmic patterns or rhythm streams
do not typically exceed the order of seconds or minutes,
we attempted to assess GFNN entrainment for a 15-hour
Holter recording. Unlike the meditative dataset, this af-
forded an open investigation of the presence of LF and HF
oscillations. We extracted an ECG baseline and removed
high frequency noise using median filters and 1D linear in-
terpolation.

For the full 15-hour ECG sequence, we ran into issues
configuring a single GFNN which would both remain sen-
sitive to weak signals of interest and resilient to transient
noise. Despite attempts to configure the amplitude com-

Figure 4. Amplitude spectrum of GFNN motor layer
(second layer) for a 15-hour extract of the PAF Holter
recording. There is significant activity between 0.02Hz
and 0.1Hz, but the most consistent entrainment occurred
closer to ∼0.25Hz between 00:30am and 4:30am (this pe-
riod is bounded by a red box above).



pressing parameter, α, to improve network stability, tran-
sient noise would cause the first layer to reach significant
amplitudes and the model would not behave as expected.
Therefore, we chose to use windows of 100 seconds with
hop sizes of 25 seconds. This is obviously problematic in
that GFNN entrainment is lost between intervals, and this
drawback will be a high priority focus of future work.

Throughout the recording there was LF activity (be-
tween∼0.04−0.14Hz), but it dropped off between 00:30am
and 4:30am. During this period, there was a notable rise in
HF energy around exactly 0.25Hz, as shown in Figure 4.
The HF component, related to respiration, is sometimes
used as an indicator of parasympathetic activity. Sympa-
thetic activity might contribute to the LF component, but
LF oscillations remain a contentious measure of sympa-
thetic activity [3]. In future work this LF component might
be re-examined in tandem with blood pressure oscillations,
after improving long-term GFNN stability.

5. Conclusion

We have described GFNNs, a method developed for
tracking periodicities in complex musical rhythms, and
demonstrated its use in ECG sequences of exaggerated
oscillations during meditation and of a 15-hour Holter
recording of PAF.

Prominent entrainment to LF and HF heart rate oscil-
lations was achieved by configuring GFNNs to exhibit
thresholding, memory, and sensitivity. These properties
are largely not exhibited by linear filtering techniques, sug-
gesting nonlinear models of rhythm perception developed
for music audio might be useful for cardiovascular signals.

It became evident that future work must carefully con-
sider how these models might be configured for long-
running monitoring of cardiovascular signals, ensuring sta-
bility without compromising sensitivity.

GFNNs can also be integrated with other artificial neural
networks. Lambert et al. [12] demonstrated that a Long-
Short Term Recurrent Neural Network (LSTM) could
learn long-term entrainment patterns in a GFNN, in order
to predict rhythmic events. Hybrid architectures such as
these could prove useful in modelling problems outside of
music, where the complex interactions between multiple
rhythmic signals are evaluated. For example, the interac-
tions between arterial pressure and R-R interval oscilla-
tions, as proposed by Hamner et al. [4].
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