
HAL Id: hal-03277766
https://hal.science/hal-03277766v1

Submitted on 2 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Environmental Effects of the April 2020 Wildfires
and the Cs-137 Re-Suspension in the Chernobyl

Exclusion Zone: A Multi-Hazard Threat
Rocío Baró, Christian Maurer, Jérôme Brioude, Delia Arnold, Marcus Hirtl

To cite this version:
Rocío Baró, Christian Maurer, Jérôme Brioude, Delia Arnold, Marcus Hirtl. The Environmental
Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone:
A Multi-Hazard Threat. Atmosphere, 2021, 12 (4), pp.467. �10.3390/atmos12040467�. �hal-03277766�

https://hal.science/hal-03277766v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


atmosphere

Article

The Environmental Effects of the April 2020 Wildfires and the
Cs-137 Re-Suspension in the Chernobyl Exclusion Zone:
A Multi-Hazard Threat

Rocío Baró 1,*, Christian Maurer 1, Jerome Brioude 2, Delia Arnold 1,3 and Marcus Hirtl 1

����������
�������

Citation: Baró, R.; Maurer, C.;

Brioude, J.; Arnold, D.; Hirtl, M. The

Environmental Effects of the April

2020 Wildfires and the Cs-137

Re-Suspension in the Chernobyl

Exclusion Zone: A Multi-Hazard

Threat. Atmosphere 2021, 12, 467.

https://doi.org/10.3390/

atmos12040467

Academic Editors:

Kathrin Baumann-Stanzer and

Mizuo Kajino

Received: 27 February 2021

Accepted: 1 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Zentralanstalt für Meteorologie und Geodynamik, 1190 Vienna, Austria; christian.maurer@zamg.ac.at (C.M.);
delia.arnold-arias@zamg.ac.at (D.A.); marcus.hirtl@zamg.ac.at (M.H.)

2 Laboratoire de l′Atmosphère et des Cyclones (LACy), UMR8105, Université de la
Réunion-CNRS-Météo-France, 97400 Saint-Denis de La Réunion, France; jerome.brioude@univ-reunion.fr

3 Arnold Scientific Consulting, 08242 Manresa, Spain
* Correspondence: rocio.baro-esteban@zamg.ac.at

Abstract: This paper demonstrates the environmental impacts of the wildfires occurring at the
beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ).
Due to the critical fire location, concerns arose about secondary radioactive contamination potentially
spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume
dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect,
a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument
(TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon
monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported
to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality
over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during
the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse
modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations,
yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only
well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological
point of view even the highest Cs-137 values (average measured or modelled air concentrations and
modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e.,
Kiev, posed no health risk.

Keywords: wildfires; atmospheric transport modelling; Chernobyl; exclusion zone; radionuclides;
Cs-137; TROPOMI

1. Introduction

Over the last decades, there has been an increase in wildfires around the globe [1,2].
Climate change with higher temperatures and lower humidity, due to changing precipita-
tion patterns and higher evaporation, is the main factor raising the fire risk which will be
exacerbated with the years to come. Fire weather seasons have extended globally, across
25.3% of the Earth′s vegetated surface [2], leading to an increase of global burnable area.
Biomass burning (BB) is an important source of greenhouse gases and the emitted aerosols
are a key factor of the global aerosol system [3]. Thus, wildfires may become even more
problematic when a multi-hazard perspective is considered.

Due to the accident that occurred at reactor #4 of the Chernobyl Nuclear Power Plant
(NPP) in 1986, there was a release of gases and aerosols containing an enormous amount of
radioactive material [4]. Consequently, six million hectares of forest lands were polluted
by radionuclides [5]. Kashparov et al. [6] provide a map showing the contamination for
the Chernobyl Exclusion Zone (CEZ). The radionuclides accumulated in the contaminated
areas can be mobilized in the combustion process and further on through the smoke plume
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as a consequence of forest fires [7,8], and can thus not only affect the vicinity of the fires
but also areas over long distances [9].

Evangeliou et al. [10] studied the status of the forested area within the CEZ and
the effect of climate change on the wildfires. The authors stated that the forest area has
increased after 1986 up to more than 70%, related to the absence of any measure for
maintenance of the forests, which can lead to an uncontrolled growth of the vegetation [11].
Due to the lack of measures for maintenance of the forests together with the generally
increased risk of wildfires, especially after the pronounced forest fires of 2010, there is a
potential increase of the likelihood of long-distance transport of re-suspended radionuclides
in smoke plumes [7,8].

Several papers studied the impact of wildfires in the CEZ [6,7,12–14]. In spring and
summer 2015 there were two major wildfires occurring in the CEZ, where effective doses
above 1 mSv/year in the CEZ were found and lower values in the rest of Europe [7].
Kuzmenkova et al. [15] also studied the effect of the 2015 fires over the Bryansk region
(Western Russia) by analyzing the peat fires in the Bryansk region as the source of radioac-
tive contamination. They found that the aerosols transferred horizontally via peat fires
cannot reach beyond 500 m, so the radioactive particles found in the Bryansk region were
not transported though peat fires.

According to information from the Austrian Radioprotection Authority (Federal Ministry
for Climate Protection, Environment, Energy, Mobility, Innovation and Technology (BMK),
Abt. V/8-Strahlenschutz, 8 April, personal communication), on the 4 April a wildfire broke
out near the Chernobyl NPP in Ukraine. The State Emergency Service of Ukraine stated
that a fire had started in the area near Volodumurivka village (Kotovske Forestry), in the
Exclusion Zone of the Chernobyl NPP. Following the event, the State Agency of Ukraine for
the Management of the Exclusion Zone set up a reinforced control of the radiological situation
in the area of the exclusion and mandatory resettlement zone. According to [14], this fire
was the largest one in the history of the CEZ and it therefore raised concerns with respect
to its potential consequences. Although the wildfires were mostly declared extinguished
by the 15 April, they became reactivated under the effect of strong winds which stirred
up the embers of the recent fires [16]. Therefore, on the 17 April 2020, NASA′s Terra
satellite [17] captured new fires breaking out again in the CEZ and also starting outside the
area. The fires lasted until the 20 April, spreading up to 80,000 hectares in the CEZ due to
wind influence [14].

The aim of this work is to better understand the effects related to this significant wild-
fire event from two angles: (a) atmospheric transport modelling of the smoke plume and
(b) estimating the potential radiological consequences following a source term estimation
using inverse modelling techniques also in combination with atmospheric transport mod-
elling. Cs-137 emissions in the present work are estimated using a Bayesian framework.
Thus, this work complements other studies, such as [13] or [14] where Cs-137 emissions
were estimated based on the use of diverse satellite observation products. Specifically, an
improved determination of the burned area and estimation of the biomass combustion
rate as a function of the retrieved fire radiative power (FRP) are key ingredients of such a
satellite-based estimation.

2. Experiments

To assess the environmental impact of the fires, two different experiments were
performed. In the first experiment, we used the Weather Research Forecast (WRF) coupled
with the chemistry model (WRF-Chem) [18] to study the evolution of the smoke plume
and compared it to the TROPOMI instrument total column data. TROPOMI images were
obtained through the TOP platform [19]. In the second experiment, a Cs-137 source term
estimation based on a Bayesian inversion using the FLEXPART [20] atmospheric transport
model and observational data was performed to identify the possible radiological risk of
Cs-137 spread.



Atmosphere 2021, 12, 467 3 of 17

2.1. WRF-Chem Wildfires Simulation
2.1.1. Set-Up of the WRF-Chem Simulation

The online-coupled chemical transport model WRF-Chem [18] simulates the emission,
transport, mixing, and chemical reactions of trace gases and aerosols, as well as meteoro-
logical conditions. The WRF-Chem model (version 3.9.1) was run at a horizontal resolution
of 12 km and at 47 vertical levels for the European domain. The following physical model
options were used: the two-moment cloud microphysics scheme [21], Rapid Radiative
Transfer Method for Global (RRTMG) long-wave and short-wave radiation [22], Grell 3D
cumulus parameterization [23], NOAH land surface model [24], and the Mellor–Yamada–
Nakanishi–Niino (MYNN) level 2.5 planetary boundary-layer (PBL) scheme [25].

WRF-Chem simulations were performed from the 4 to 11 April 2020. In WRF-Chem,
external meteorological data are only used as initial and boundary conditions. For this
study, these data were obtained from the European Centre for Medium-Range Weather
Forecasts-Integrated Forecasting System (ECMWF-IFS) [26] every three hours with 0.25 hor-
izontal resolution and at 137 vertical levels. In order to provide realistic initial conditions,
an 8-day spin-up period was applied. The simulated variables shown in this study are
black carbon (BC) and carbon monoxide (CO).

2.1.2. Wildfire Emissions

To perform a WRF-Chem wildfire simulation, we need to provide an additional input
containing the wildfires emission data. In this study, the data came from the IS4FIRE
Project [27], where emissions are estimated by reanalysis of fire radiative power (FRP) data
obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument
(on board Aqua and Terra satellites). The IS4FIRE project provides emission files with 3D
fluxes in kg/second for the total (primary + secondary) particulate matter (PM) derived
from FRP. Three different particle sizes are considered:

• ems_PM_FRP_m_17: particulate matter with nominal diameter of 0.17 µm
• ems_PM_FRP_m1_1: particulate matter with nominal diameter of 1.1 µm
• ems_PM_FRP_m3_1: particulate matter with nominal diameter of 3 µm

The data are 3-hourly, with 0.1 × 0.1 degree spatial resolution and contain five stacked
vertical layers. We computed the total particulate matter (PM) and interpolated to the
regular grid to the WRF Lambert grid. Then, we calculated the different chemical speciation
for aerosol (PM below 2.5 µm diameter, PM2.5; PM below 10 µm diameter, PM10 and BC)
following [28] and the gas speciation of CO. Figure 1 shows an example for the 8 April,
2020, of the fire emissions used; Figure 1a provides the emission intensity in kg/second
of PM with a diameter of 1.1 µm, derived from the FRP, and Figure 1b the converted BC
emission following the requirements for the NetCDF file that the WRF-Chem model needs
as input.

The WRF-Chem model incorporates an online plume calculation able to compute the
plume rise and release of biomass burning emissions based upon the simulated meteo-
rology [29]. The prepared input data specifies the location of the fire and the amount of
emitted species and the WRF-Chem model computes the plume rise of the wildfire smoke
based upon the environmental wind and temperature profile. The forecast emissions
are then provided as a vertical distribution based upon the results from the plume rise
calculation. For more details, we refer the reader to [29,30].

2.1.3. Qualitative Satellite Analysis

In this study, we compared the simulated smoke plumes with TROPOMI total column
data. This instrument is situated on board the Sentinel-5 Precursor satellite, the first Coper-
nicus satellite dedicated to monitor the troposphere, and provides daily global information
on concentrations of trace gases and aerosols at high spatial resolution (3.5 × 5.5 km).
It carries the TROPOMI instrument with the main objective of performing atmospheric
measurements [31]. TROPOMI was chosen due to its operational availability and high
resolution to assess how well the smoke plume was simulated by the model.



Atmosphere 2021, 12, 467 4 of 17Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 17 
 

 

 

 
Figure 1. (a) Emission intensity of particulate matter (PM) in kg/second per grid with nominal 
diameter of 1.1 µm derived from the IS4FIRE project; (b) Black Carbon (BC) emissions ready to be 
used as input for the WRF-Chem simulation for the 8 April 2020. 

2.1.3. Qualitative Satellite Analysis  
In this study, we compared the simulated smoke plumes with TROPOMI total col-

umn data. This instrument is situated on board the Sentinel-5 Precursor satellite, the first 
Copernicus satellite dedicated to monitor the troposphere, and provides daily global in-
formation on concentrations of trace gases and aerosols at high spatial resolution (3.5 × 5.5 
km). It carries the TROPOMI instrument with the main objective of performing atmos-
pheric measurements [31]. TROPOMI was chosen due to its operational availability and 
high resolution to assess how well the smoke plume was simulated by the model. 

2.2. Cs-137 Source Term Estimation and FLEXPART Simulation 
2.1.1. Source Term Estimation of Re-Suspended Cs-137 
Cs-137 Air Samples from Ukraine 

On the 14 April 2020, the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) re-
leased 25 Cs-137 ambient activity concentration measurements taken at ground level at 
the stationary observation points (see Table 1 and also Figure 6) at Rivne NPP (RNPP), 
Khmelnitsky NPP (KhNPP), South-Ukraine NPP (SUNPP), Zaporizhzhia NPP (ZNPP) 
and at the Ukrainian Hydrometeorological Institute in Kiev. Out of the 25 samples, five 
were neglected because the sampling times mostly covered periods before the reported 
start of the fire and thus hardly the main period of interest (i.e., from the 4 to 11 April). 

  

Figure 1. (a) Emission intensity of particulate matter (PM) in kg/second per grid with nominal
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2.2. Cs-137 Source Term Estimation and FLEXPART Simulation
2.2.1. Source Term Estimation of Re-Suspended Cs-137
Cs-137 Air Samples from Ukraine

On the 14 April 2020, the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU)
released 25 Cs-137 ambient activity concentration measurements taken at ground level at
the stationary observation points (see Table 1 and also Figure 6) at Rivne NPP (RNPP),
Khmelnitsky NPP (KhNPP), South-Ukraine NPP (SUNPP), Zaporizhzhia NPP (ZNPP) and
at the Ukrainian Hydrometeorological Institute in Kiev. Out of the 25 samples, five were
neglected because the sampling times mostly covered periods before the reported start of
the fire and thus hardly the main period of interest (i.e., from the 4 to 11 April).

Set-Up of the Lagrangian Particle Dispersion Model FLEXPART

FLEXPART version 10.4 [20] was run driven by operational ECMWF-IFS [26] data
with 0.2◦ horizontal resolution and 137 vertical hybrid levels covering the domain 25◦

W to 65◦ E and 30◦ N to 75◦ N. In order to largely suppress the forecast error, 12-hourly
short-term forecasts launched at 00 and 12 UTC each day were concatenated. 20 Cs-137
samples with collection stops between the 6 April, 03:21 UTC, and 13 April, 06:00 UTC,
were backtracked individually until the 4 April, 00:00 UTC using unit emissions and two
million computational particles per sample (in total 40 million particles for the whole
simulation) with species characteristics of aerosol bound Cs-137. FLEXPART synchro-
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nization interval and output sampling rate was set to 900 s and averaging as well as the
output time interval to 3600 s. Subgrid terrain effect and convection parameterization were
enabled. A standard single aerosol particle diameter of 0.4 µm size was used to simulate
medium range transport. In reality, a bimodal activity size distribution is likely to be found
with one mode at 10 µm and another one at 0.4–0.7 µm, but an exact quantification of
the aerosol activity size distribution is difficult to achieve [13] given that it depends on
the burning conditions (the type of fire) and the radionuclide contamination in different
parts of the ecosystem [14]. The FLEXPART hourly output was set to contain two separate
source-receptor sensitivity (SRS) layers of 0–1000 and 1000–3000 m a.g.l for all time steps
and grid boxes to capture the sensitivity to elevated emissions (see also next paragraphs.
The output domain was chosen to be identical to the one of the computational domain,
(the meteorological domain, respectively) with a horizontal resolution of 0.1◦. For forward
modelling of the dispersion of the emissions from the Chernobyl wood fire, a very similar
set-up was used. The only difference was that the output was confined to one layer of
0–100 m a.g.l. where measurements were taken, and that the inverted emission profile with
6-hourly resolution (see Figure 5) was selected for the time period from the 4 April, 00:00
UTC, to the 12 April, 00:00 UTC. Due to the slightly varying sampling beginning and end
times (see Table 1), the start and stop times were rounded up and down by at maximum
2.5 h when evaluating the forward run.

Table 1. List of 20 measured and modelled samples considered in the study. Sub-set of 13 samples is marked with asterisks.
Largest (Kiev) measurements are marked in bold.

Site Sampling Begin
[UTC]

Sampling End
[UTC]

Measured
Activity

Concentration
[µBq/m3]

Modelled Activity
Concentration
[µBq/m3]—LS-

APC
Ref.

Modelled Activity
Concentration

[µBq/m3]—
Lognormal

Ref.

RNPP (51.34◦ N,
25.86◦ E)

20200405 05:10 * 20200406 03:21 * 13.5 0.0 0.0
20200406 03:21 20200407 03:05 61.1 5.7 5.8

20200407 03:05 * 20200408 03:05 * 15.8 5.0 5.1
20200408 03:05 * 20200409 03:11 * 12.7 0.2 1.4
20200409 03:11 20200410 03:09 4.7 0.4 2.5

KhNPP (50.34◦ N,
26.64◦ E)

20200405 07:10 * 20200406 05:40 * 14.5 0.0 0.0
20200406 05:40 * 20200407 07:00 * 42.5 37.8 49.7
20200407 07:00 20200408 07:00 <3.2 10.3 9.5

20200408 07:00 * 20200409 07:00 * <1.7 0.2 0.8
20200409 07:00 * 20200410 07:00 * <1.7 0.5 3.2
20200410 07:00 * 20200411 07:00 * <2.7 0.0 0.0
20200411 07:00 20200412 07:00 13.5 0.0 0.0

SUNPP (47.81◦ N,
31.22◦ E)

20200406 04:00 * 20200410 04:00 * 14.5 41.4 12.0
20200407 04:00 20200413 04:00 49.5 26.3 32.7

ZNPP (47.51◦ N,
34.58◦ E)

20204007 03:20 * 20200410 08:11 * <6.1 1.4 1.2
20200409 07:40 20200410 07:41 <16 6.0 2.4

20200406 05:31 * 20200413 06:00 * 8.5 3.2 3.8

Kiev (50.39◦ N,
30.53◦ E)

20200406 04:00 * 20200408 04:00 * 65 52 46
20200408 04:00 20200409 04:00 220 118 52

20200409 04:00 * 20200410 04:00 * 470 556 408

Source Term Inversion Applying Different Methods

Two well established source term inversion approaches were tested in the frame of this
work. For both approaches FLEXPART SRS fields were used as a linearized model between
emissions and related measurements. Given that zero measurements are important for dis-
criminating periods of zero and non-zero emissions, measured values were set to zero in the
subsequent inversion procedure if falling below the Minimum Detectable Concentration.
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The first approach is a least-squares algorithm with adaptive prior covariance (LS-
APC) [32]. The LS-APC is based on a Gaussian distribution of transport and emission
flux errors. The LS-APC, however, does not require an error covariance matrix for the
prior estimate to be defined. It calculates the unknown prior covariance within an iterative
method adhering to the following constraints: (i) non-negativeness of all elements of the
unknown emission, (ii) sparsity, i.e., the elements of the unknown emission are zero unless
there is sufficient information, and (iii) smoothness, i.e., that rapid changes in the temporal
profile are possible but rare.

The second approach is based on a least square algorithm assuming a lognormal
distribution for transport and prior errors [33]. The assumption of lognormal distributions
for any observations and surface fluxes is in closer agreement with reality than a Gaussian
profile and implicitly prevents negative fluxes in the posterior estimates. The covariance
matrix for the transport model error was assumed to be diagonal, with an error estimate
of 40% of the observed activity concentration for the diagonal elements, reflecting the
transport model error [34]. In addition, no prior information on emission fluxes was
given also for this method and only the observations and related emission time periods
with significant sensitivity values (SRS > 0.01% of the total SRS) were conserved. Thus,
large peaks that compensate for time periods with very low SRSs are prevented by this
constraint, which is introduced since there is no smoothness or sparsity constraint in the
lognormal algorithm.

It is known that the posterior error covariance matrix from a least square method is
unrealistically low [35]. To calculate the error in the posterior emission estimates, we ap-
plied a Montecarlo approach on the LS-APC and lognormal inversions. A random term
that follows a Gaussian distribution with a standard deviation of 40% was applied for
each SRS value to simulate the error in the transport model. This transport model error
estimate is based on the results of an inter-comparison of Eulerian and Lagrangian mod-
els [36]. The posterior emission estimate error for the LS-APC approach was calculated
using the standard deviation around the mean value of the posterior emission estimates
from 300 inversions. The uncertainty for the lognormal inversion was based on a 68%
posterior density interval between percentile 16 and 84, with the best estimate being the
median of the distribution.

The main sources of uncertainties in the present inverse modelling approach are the
transport model itself including the driving meteorological data and the exact emission
location. In the case of the Chernobyl fire, the stack of the BB plume was lifted by the
buoyancy of the heated air masses. Hence, it can be assumed that a surface emission will
a priori generate an error in the atmospheric transport modelled between the source and
the stations as it is known that the maximum likelihood of the BB plumes injection height
is found near the local PBL height [37,38]. To estimate the injection height, the results of
the global near-real-time Copernicus Atmospheric Monitoring Service (CAMS-NRT) [39]
were employed which implemented BB emissions in 2019 using FRP observations from the
NASA MODIS satellites [40] to quantify BB emissions as well as heat for the Global Fire
Assimilation System (GFAS) inventory [41]. The daily injection heights for the Chernobyl
fire were thus derived based on CAMS information. The bottom and top of the BB plumes
were on average between 1000 and 3000 m a.g.l. for the whole period.

Hence, in order to study the sensitivity on different injection heights, the height was
constrained (1) by calculating the SRS average between 0 and 3000 m a.g.l. and (2) by using
the immediate FLEXPART output for 1000 to 3000 m. In both cases a well-mixed BB stack
within those layers was assumed.

In addition, a precise location of the fire, at a resolution of 0.1◦ × 0.1◦, was retrieved
from CAMS-NRT. However, uncertainties in the wind speed and direction can shift the BB
plume in space and time in the model compared to the reality and will likely generate a
bias in the inverse model posterior estimate. Hence, the source location was constrained
as (1) a single grid cell centered over the fire detected in CAMS-NRT and (2) nine grid
cells centered over the fire, to take into account a spatial uncertainty in the source location
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provided by the CAMS model. The latter also takes better into account the spread of fires
across the CEZ.

Given the above considerations, LS-APC and lognormal results based on 1000–3000 m
injection height and nine grid cells in the horizontal are considered as the reference runs
(marked in italics in Table 2) The temporal resolution of the posterior emission estimates
was finally reduced from one (temporal resolution of the FLEXPART run) to 6 h.

Table 2. Emission estimates together with errors in Gigabequerel (GBq) (1 GBq = 1× 109 Bq) for the two different approaches,
different assumed source locations, and a different number of involved samples. The LS-APC and lognormal reference
results are marked in italics.

Total
Emission
Estimate

(GBq)

1 Grid Cell,
1000–3000 m,
13 Samples

9 Grid Cells,
1000–3000 m,
13 Samples

9 Grid Cells,
1000–3000 m,
All Samples

9 Grid Cells,
0–3000 m,

All Samples

1 Grid Cell,
1000–3000 m,
All Samples

1 Grid Cell,
0–3000 m,

All Samples
Average

LS-APC 576 ± 139 472 ± 192 635 ± 198 959 ± 310 548 ± 188 713 ± 273 651 ± 217
lognormal 531 ± 169 519 ± 165 527 ± 117 763 ± 171 550 ± 141 742 ± 198 605 ± 160

3. Results
3.1. Results from WRF-Chem Simulation

The WRF-Chem simulation was compared with the Aerosol Index (AI) and CO from
TROPOMI data. Figure 2 shows the comparison between the total column aerosol BC
simulated by the WRF-Chem model (left column) and the AI from TROPOMI (right col-
umn). Figure 3 shows the comparison between the total CO column simulated by the
WRF-Chem model (left column) and the total CO column from TROPOMI (right column).
Regarding BC, during the 7 April (Figure 2a,d), due to the wind direction, the smoke
plume could reach Belarus. On the next day (Figure 2b,e), due to the wind, a change in
the plume direction is observed, in agreement with the satellite observations. Moreover,
there seem to be two fire sources, however, in the TROPOMI images, only one main smoke
plume is observed. On the 9 April (Figure 2c,f), the smoke plume direction changed again,
and the two major fire sources remain. In this case, TROPOMI AI also shows the two fire
sources combined, with an expanded smoke plume in an easterly direction. Concerning
CO, we were able to compare directly the total column values and to use the same color bar
(Figure 3). We can see that the total CO column simulated by WRF-Chem shows lower val-
ues over the non-fire pixels (0.025 mol/m2 compared to around 0.035 mol/m2). However,
the values over fire pixels are in good agreement with the TROPOMI values, as in both
cases we can see the dark red pixels (0.09 to 0.1 mol/m2). The transport direction was also
well captured for this pollutant, showing the same pattern as for BC. Several fire sources
can be seen as well for the simulated CO (Figure 3a–c) and in this case, especially for the
8 and 9 April, most of the fire sources are reflected by the TROPOMI images.

Health

UNIAN [11] reported extremely poor air quality over the city of Kiev after the first
wildfire outbreak. However, to the authors′ knowledge, there is no Ukrainian daily data
available publicly for air pollutant concentrations to be compared to our WRF-Chem results.
However, we show in Figure 4 the mean values of Particulate Matter below 2.5 µm (PM2.5)
of diameter in the near surface layer over the studied period, as an indicator of the poor air
quality observed after the first outbreak of the wildfires. Values greater than 300 µg/m3

are found in the CEZ, but also greater than 50 µg/m3 outside the CEZ.
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3.2. Results for Cs-137 Source Term Inversion

The posterior estimates from the LS-APC and the lognormal approach (see Figure 5),
for the different BB injection heights, surface area extensions of the source region, and num-
ber of involved samples all agree on a maximum release on the 9 April, between 00:00
and 06:00 UTC (403 and 309 GBq/6 h for the LS-ACP and lognormal reference runs).
Figure 6a–c, showing the integrated Cs-137 activity concentration from the 4 until 9, 10,
and 13 April, based on the reference LS-APC result (total emission of 635 GBq) reflects
the major increase in emissions on the 9 April (magenta area north of Kiev). In fact, Kiev
reported the highest measured activity concentrations on that day. Integrated concentra-
tions (Figure 6) for the Kiev area are in good agreement with numbers recently published
by [14] based on their atmospheric transport model LEDI (i.e., 250–350 Bqs/m3 for the
time frame 4 to 13 April). The emission profiles between the LS-APC and the lognormal
approach differ with a smoother temporal variability in the LS-APC posterior than in the
lognormal posterior due to the constraints in the iterative approach of the LS-APC method.
Larger gaps in the lognormal posterior estimates are found due to the removal of time
periods with very small SRSs at the assumed source location.

Although a validation with independent data should be performed in any study
like this, this was not possible due to measurement data sparseness. It is evident from
Figure 5 that when reducing the involved samples down to ~2/3 (13 instead of originally
20, marked with asterisks in Table 1), the number of gaps increases due to a lack of essential
information (compare dashed and solid line in Figure 5). Thus, no independent samples
could be explained with the inverted source term.

To make a crude, independent assessment of the estimated timing of the main emission,
the emission profiles were compared to the daily CO flux product from the CAMS GFAS at
30.1◦ E/51.4◦ N for 8 to 11 April in the exclusion zone of the Chernobyl nuclear power plant.
GFAS [41] assimilates fire radiative power (FRP) observations from satellite-based sensors
to produce daily estimates of wildfire and biomass burning emissions and particularly CO.
The CO flux shows an increase from the 8 to 9 April with a maximum on the 9 April 2020,
which is in good agreement with the temporal trend of the estimated profiles of both the
lognormal and LS-APC approach.
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Dependent simulated observations based on both reference a posteriori estimates
demonstrate that the LS-ACP algorithm, due to using Gaussian distributions, is dominated
by the largest Kiev samples and thus reproduces them slightly better than the lognormal
algorithm (see bold numbers in Table 1). The bias adds up to 6.7 and 17.6 µBq/m3 for
the LS-APC and the lognormal approach. Differences can also be found in the posterior
total emission estimates (see Table 2). The emission estimates are ~7% lower for the
lognormal approach than for the LS-APC approach (see last column with average values
in Table 2). Error intervals overlap for every single inversion (see Table 2). The emission
estimates increase by ~30 to 50% when an injection height of 0–3000 m is used instead of
the reference interval of 1000–3000 m. The reason is that the plume injected below 1000 m
will not efficiently affect the stations situated away from the source. Hence, the inversion
compensates by increasing the emission flux at the source.

Finally, a simple consistency check was performed. Scaling of the three largest mea-
surements from Kiev with the average above zero SRSs with respect to the Chernobyl NPP
location yields a total release of 867 GBq for the time period from the 6 to the 10 April,
which is in overall agreement with the results from the inversion. However, no time profile
can be obtained with this simple approach.
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4. Discussion
4.1. Discussion of the WRF-Chem Smoke Plume Simulation

In general, the WRF-Chem model can simulate the smoke plume since the results are
in line with the data observed by TROPOMI. The aerosol BC was compared to the AI from
TROPOMI, a direct value comparison was not possible to be done. Nevertheless, the highest
BC values at and around the fire pixels coincide well with the satellite observations. On the
other hand, CO values could be compared directly to the TROPOMI CO column values.
As seen in Figure 3, the simulated WRF-Chem total column CO shows slightly lower
values over the non-fire pixels, nevertheless, the fire pixels are in good agreement with the
TROPOMI values. This has to be related to the fact that for the WRF-Chem simulation,
only fire emissions were considered and not additional anthropogenic emissions. Therefore,
the model shows lower CO levels where there is no fire. However, the WRF-Chem model
run includes background contents for different chemical species, so the model does not start
the run with zero background values. Regarding CO, there is a base value of 0.07 ppmv.
The differences found in the background CO compared to TROPOMI data are around
0.01 µg/m3 (35% difference). Nevertheless, the model captured the shift in wind direction,
as seen in the evolution of the smoke plume (also for BC).

From an air quality point of view, several press releases [42–44] warned about the
poor air quality due to the effects of the smoke plume after the first fire outbreak. The press
releases reflected the Swiss monitoring group (IQAir) reporting information for the 17 April,
where an Air Quality Index (AQI) of 380 for the city of Kiev can be found. This value can
be compared to the levels in major polluted cities such a Shenyang in China, where the
AQI was 180 on 17 April [42]. According to the United States Environmental Protection
Agency (EPA) [45], values in the range of 151–200 are considered unhealthy. Therefore,
the population was expected to be affected negatively by the AQI found in Kiev. There was
no precipitation in the following days over Ukraine, leading to dry conditions, which may
have kept the AQI levels high. Unfortunately, to the authors’ knowledge, there is no
daily data available publicly from air pollutant concentrations over the Kiev area to be
compared with the present WRF-Chem results. The State Statics Service of Ukraine [46]
provides environmental data, such as pollutant concentration, but currently, only data until
2019 is released. However, Figure 4 shows the modelled PM2.5 mean values, indicating
significantly high values. According to the European Air Quality Directive (2008/EC/50) [47]
for the protection of human health, the PM10 (which includes the PM2.5) daily mean value
may not exceed the 50 µg/m3 limit more than 35 times a calendar year. Therefore, the fires
may have contributed significantly to exceed this threshold, due to their duration, exposing
a health impact to the population.

4.2. Discussion of Source Term Estimation Using Inverse Modelling and Radiological Exposures

Overall, the two inversion methods yield fairly consistent results. No conclusion
can be drawn as to whether the LS-ACP method or the lognormal method performs
better. The largest Kiev samples may be reproduced slightly better based on the LS-ACP
method, but better reproduction of the largest samples does not necessarily mean that
the LS-APC based overall source term is more reliable than the lognormal based overall
source term. The overall source terms compare well to the total Cs-137 emission provided
by [48] for the period 4 to 12 April and by [13] for the period 1 to 22 April (~380 GBq and
~341 GBq, respectively, of Cs-137 were emitted according to these authors). The French
Institute for Radioprotection (IRSN), however, states a range of 200 to 700 GBq according
to [13]. In agreement with our study, the latter authors found a peak emission on the
9 April. This does not come unexpectedly. As can be seen from Figure 2 the focus of the
fires evidently shifted to the Chernobyl NPP from 7 to 9 April thus affecting the most
contaminated area (see also [14]).

The emission numbers can also be compared with an upper bound estimate based on
the area of the CEZ and levels of contamination. According to a United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) report [4] Cs-137 deposition levels
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in the exclusion zone added up to 1500–3700 kBq/m2. Taking into account that half of the
Cs-137 has decayed after 30 years, assuming a fire covering the whole exclusion zone with
30 km radius around the NPP corresponding to 2.8 × 109 m2 (282,743 ha) and an average
deposition of 2 × 106 Bq/m2 (2000 kBq/m2), the total activity is equal to 2.8 × 1015 Bq.
Assuming further a re-suspension rate of 1% [9] for Cs-137, the maximum source term
would be 2.8 × 1013 Bq, i.e., 28000 GBq. Results of this study clearly fall far below this
upper bound.

From a radiological point of view, the highest 24 h average measurement of 470 µBq/m3

Cs-137 at the measurement site closest to the Chernobyl NPP (i.e., Kiev) poses no health
risk even if it would have occurred over a period of several days. Using an inhalation
rate for adults of 2.6 × 10−4 m3/s, an effective inhalation dose coefficient for Cs-137 for
adults of 4.6 × 10−9 Sv/Bq and an effective cloud shine dose coefficient for Cs-137 for
adults of 2.55 × 10−14 Sv m3/Bq s [49], yields 2 × 10−6 µSv/h or 4.5 × 10−4 µSv, i.e.,
0.45 nSv, over nine days (from the 4 to the 13 April) of the fire event. A dose equivalent
to an arm X-ray (1 µSv) would require roughly an activity concentration level of 1 Bq/m3

over the nine days if only Cs-137 is involved. Comprehensive dose calculations based on
atmospheric transport modelling results and including ground shine dose contributions
vary largely for the 2020 forest fires in the CEZ as recently demonstrated by [13] and [14].
The main reason is likely the discrepancy in transuranic isotope (Pu-238 to 240 and Am-241)
emission parameterizations, but uncertainties may also arise due to the size distribution
of radioactive aerosols. They, in turn, determine deposition estimates (which vary for Cs-
137 between 2.25 Bq/m2 and 0.3 mBq/m2 as estimated in the two publications mentioned
above based on the atmospheric transport models LEDI and FLEXPART for the Kiev area).
According to our FLEXPART simulation an overall total Cs-137 effective dose of 0.1 nSv at
Kiev has to be expected, with 56 mBq/m2 total deposition and an effective ground shine
dose coefficient for Cs-137 for adults of 5.51 × 10−16 Sv m2/Bq s.

The increases in both smoke plume and Cs-137 emissions are only well correlated on
the 9 April. The increase in smoke emissions on 7 and 8 April, is not reflected in Cs-137
releases, which may be related to the position of the fires gradually affecting different
parts of the CEZ. However, Cs-137 air samples are confined to five sampling sites and
to Ukrainian territory, which implies that only part of the Cs-137 emissions may have
been captured by any inversion approach. It is evident from the smoke plume (Figure 2,
upper panel) that the smoke was also transported to Belarus.

5. Conclusions

In this paper, we studied the effects of the first outbreak of the most recent wildfires
that occurred over the CEZ in April 2020, considering the spread of re-suspended Cs-137
and the smoke plume of the wildfires, and whether they posed a health threat, from a
radiological view and due to the smoke plume. Cs-137 emissions in the present work were
estimated using a Bayesian framework, thus this work complements other recent studies,
such as [13] or [14] where Cs-137 emissions were estimated based on the use of diverse
satellite observation products.

To assess the smoke plume impact, a WRF-Chem simulation was performed and
qualitatively compared to TROPOMI data. Simulated BC and CO are in agreement with
the plume as observed by TROPOMI, and during the 7 April it was transported to Belarus.
Moreover, the model captured the shift in wind direction, as seen in the evolution of
the smoke plume compared to the observed satellite total column values. Since only fire
emissions were taken into account in the simulation, the non-fire pixels of the modelled
CO showed lower values compared to TROPOMI. However, the fire pixels are in good
agreement with the TROPOMI values. From an air quality perspective, the wildfires caused
extremely bad air quality, with Kiev being one of the most polluted cities (after the first
fire outbreak), compared to other major polluted world cities. The modelled PM2.5 values
showed a high concentration of this pollutant that led to very poor air quality and may
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have contributed to exceeding the PM10 daily mean value limit of 50 µm/m3, over several
days, due to the duration of the fires, exposing a health impact to the population.

Re-suspension of Cs-137 was assessed by a FLEXPART inverse modelling approach.
A total emission of about 600 ± 200 GBq was estimated with 350 GBq being emitted within
a six-hour interval on early 9 April. However, since Cs-137 air samples are limited to
sampling sites in the Ukraine, only part of the Cs-137 emissions may have been captured
by any inversion approach. From a radiological point of view neither measurements nor
modelled values of Cs-137 at the measurement site closest to the Chernobyl NPP, i.e., Kiev,
posed a health risk. In contrast to radiation, air pollution was health relevant, which is in
clear contrast to the general public perception.
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