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Abstract

In this article, we construct samples of SLE-like curves out of samples of
CLE and Poisson point process of Brownian excursions. We show that the law
of these curves depends continuously on the intensity measure of the Brownian
excursions. Using such construction of curves, we extend the notion of level
lines of GFF to the case when the boundary condition is measure-valued.
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1 Introduction

The goal of the present paper is to construct samples of variants of Schramm Loewner Evolution (SLE)
curves out of samples of Conformal Loop Ensemble (CLE) and Poisson point process of Brownian excur-
sions. The intensity of Brownian excursions is parametrized by a non-negative Radon measure ν supported
on a boundary arc. Our construction generalizes that of [WW13], where instead of the measure ν one
had a constant. We further show the continuity in law of the curve with respect to the boundary measure
ν. For the parameter κ = 4 of the CLE, we show that the curve we construct is actually distributed
as a level line of a Gaussian free field (GFF) with boundary condition ν. This is related to random
walk/Brownian motion representations of the GFF, known as isomorphism theorems, and in particular
relies on a construction in [ALS20]. In [PW17], the authors constructed the level lines of a GFF with reg-
ulated boundary conditions and satisfying an additional condition related to the continuation threshold.
The construction of our paper allows both to go beyond the regulated setting and to drop the continuation
threshold condition.

In order to state our main conclusions properly, let us first introduce the CLE and the Brownian
excursions. We denote by D the unit disc and by H the upper half-plane:

D := {z ∈ C : |z| < 1}, H := {z ∈ C : Im(z) > 0}.

We first introduce the CLE. Consider probability measures on collections of countably many con-
tinuous simple loops in simply connected domains such that these loops are two-by-two disjoint and
non-surrounding. In [SW12], the authors prove that there exists a one-parameter family of such probabil-
ity measures satisfying conformal invariance, a certain domain Markov property and an extra regularity
assumption “local finiteness”. This family is denoted by CLEκ with κ ∈ (8/3, 4]. In a CLEκ sample, the
loops all locally look like SLEκ curves.

We next introduce the Brownian excursion measure. In this paper, “Brownian” will refer to the
standard Brownian motion in C. Given x, y ∈ ∂D, denote by µDx,y the non-normalized measure on
Brownian excursions from x to y in D (see Section 2.2). Let σ∂D denote the arc-length measure on ∂D,
with σ∂D(∂D) = 2π. Let AL and AR denote the left and right half-circles in ∂D:

AL = {z ∈ ∂D : Re(z) < 0}, AR = {z ∈ ∂D : Re(z) > 0}. (1.1)

Let ν be a finite non-negative Radon measure on AL. The Brownian excursion measure µDν is defined as
follows:

µDν (·) =
1

2

∫∫
AL×AL

d(ν ⊗ ν)(x, y)µDx,y(·). (1.2)

Now, we are ready to state our construction. Fix κ ∈ (8/3, 4] and let Cκ be a CLEκ loop ensemble in
D. Fix ν a finite non-negative Radon measure on AL and let Ξν be a Poisson point process of intensity
µDν , independent of Cκ. For γ ∈ Ξν , let Sκ(γ) be the union of γ and all loops in Cκ intersecting γ. Let
Sκ,ν be the union of all Sκ(γ) with γ ∈ Ξν . In the limit case κ = 8/3, we just set S8/3,ν to be the union

of all γ ∈ Ξν . By construction, Sκ,ν ∩AR = ∅. Let DR,κ,ν be the connected component of D \ (Sκ,ν ∪AL)
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that contains AR. The set DR,κ,ν is of form Oκ,ν ∪AR, where Oκ,ν is an open simply connected domain.
Let ψκ,ν be the conformal transformation from D to Oκ,ν , uniquely defined by the normalization

ψκ,ν(−i) = −i, ψκ,ν(1) = 1, ψκ,ν(i) = i and ψκ,ν(AR) = AR. (1.3)

Set
ηκ,ν := (∂DR,κ,ν) \AR. (1.4)

Informally, ηκ,ν is constructed as the envelop from the right of the set Sκ,ν ∪AL. See Figure 1.1.

Figure 1.1: In the left panel, the curves indicate a Poisson point process of Brownian excursions with
intensity µDν . In the middle panel, the loops indicate a CLEκ loop ensemble. In the right panel, the curve
in red indicates ηκ,ν .

1.1 Continuity of the envelop

The first goal of this paper is to derive continuity properties of ηκ,ν .

Proposition 1.1. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL.

(1) The law of ηκ,ν is conformal covariant in the following sense: given ψ a Möbius transformation of
D, with ψ(−i) = −i and ψ(i) = i, the set ψ(ηκ,ν) is distributed as ηκ,νψ , where

dνψ(x) = |ψ′ ◦ ψ−1(x)|d(ψ∗ν)(x).

(2) The set C \ Oκ,ν is locally connected. The conformal map ψκ,ν extends continuously to D and
(ψκ,ν(x))x∈AL

parameterizes ηκ,ν as a continuous curve in D from −i to i.

Theorem 1.2. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Let (νn)n≥0 be a
sequence of finite non-negative Radon measures on AL, converging weakly to ν. Then the sequence of

curves
(

(ψκ,νn(x))x∈AL

)
n≥0

converges in law to (ψκ,ν(x))x∈AL
for the uniform topology.

Next, we will consider ηκ,ν as a Loewner chain. To this end, it is more convenient to work in H. Let
ψ0 be the Möbius transformation from D to H with ψ0(0) = i, ψ0(−i) = 0, and hence ψ0(i) =∞:

ψ0(z) = −iz + i

z − i
. (1.5)

Define
η̃κ,ν := ψ0(ηκ,ν).
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Proposition 1.3. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Suppose the support
of ν equals AL. Then we can parameterize η̃κ,ν (up to its first hitting time of ∞) by the half-plane capacity
(η̃κ,ν(t))0≤t<Tmax, with Tmax ∈ (0,+∞], such that

η̃κ,ν(0) = 0, lim
t→Tmax

η̃κ,ν(t) =∞; hcap(η̃κ,ν([0, t])) = 2t, ∀t ∈ [0, Tmax). (1.6)

When parameterized by the half-plane capacity, η̃κ,ν is a continuous curve with continuous driving function.

Proposition 1.4. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Let (νn)n≥0 be a
sequence of finite non-negative Radon measures on AL, converging weakly to ν. Suppose the supports of ν
and of νn equal AL. When parameterized by the half-plane capacity, η̃κ,νn converges in law to η̃κ,ν and the
driving function of η̃κ,νn converges in law to the driving function of η̃κ,ν for the local uniform topology.

We will complete the proof of Propositions 1.1 and 1.3 in Section 3. We will complete the proof of
Theorem 1.2 and Proposition 1.4 in Section 4. For the proof of Theorem 1.2 we rely on a strong coupling
between the Poisson point processes with intensity µDν , respectively µDνn (see Proposition 4.1) and on the
notion of uniform local connectedness (see Definition 2.1).

In [WW13], the authors construct the same process ηκ,ν as in our construction except that they focus
on the case when ν is a constant a > 0 times the arc-length measure σ∂D restricted to AL. In such case,
they prove that ηκ,ν has the same law as SLEκ(ρ) process where ρ > −2 is uniquely determined by κ
and a > 0, see Theorem 3.7. Readers may wonder whether the law of ηκ,ν for general ν is the same as
SLEκ(ρ) process with multiple force points. We will show that ηκ,ν is absolutely continuous with respect
to SLEκ process away from the boundary, see Proposition 3.9. However, ηκ,ν is not in the family of
SLEκ(ρ) processes with multiple force points in general. Here is a preciser answer.

• The answer is negative for κ ∈ [8/3, 4). By construction, ηκ,ν enjoys “reversibility”: the time-reversal
of ηκ,ν has the same law as ηκ,ν̄ , where ν̄ is the image of ν by the reflection z 7→ z̄. However, SLEκ(ρ)
with multiple force points does not have such reversibility in general, see discussion in [Dub07,
MS16b].

• The answer is positive for κ = 4 and this is related to the second goal of this paper, see Section 5.3.

1.2 Identification of the envelop when κ = 4

The (zero-boundary) Gaussian free field (GFF) in the unit disc D is a centered Gaussian process Φ indexed
by the set of smooth functions with compact support in D where the covariance is given by the Green’s
function (see Section 2.2):

E[(Φ, f)(Φ, g)] =

∫∫
D×D

f(z)GD(z, w)g(w)dzdw.

Suppose ν is a finite Radon measure on ∂D. We will again denote by ν the harmonic extension of ν
in D:

ν(z) :=

∫
∂D

HD(z, x)dν(x), ∀z ∈ D,

where HD(z, x) is the Poisson kernel (see Section 2.2). Note also that any non-negative harmonic function
on D is a harmonic extension of a finite Radon measure on ∂D; see Appendix A. The GFF in D with
boundary condition ν is Φ + ν where Φ is a zero-boundary GFF. The definition for GFF in a general
simply connected domain can be passed by conformal invariance.

Next, we introduce level lines of GFF. Fix λ =
√
π/8. Suppose (η(t))t≥0 is a continuous simple curve

in D from −i to i and ψ0(η) has continuous driving function. Define νt to be the harmonic extension of
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the following boundary data on D \ η[0, t]: it is 2λ on the left side of η[0, t] and is 0 on the right side of
η[0, t], and it coincides with ν on ∂D. That is

νt(z) =

∫
∂D
HD\η[0,t](z, x)dν(x) + 2λHD\η[0,t](z,L(η[0, t])), z ∈ D \ η[0, t], (1.7)

where L(η[0, t]) denotes the left side of η[0, t].

Definition 1.5. Suppose Φ is zero-boundary GFF in D and ν is a finite non-negative Radon measure on
AL. Suppose η is a continuous simple curve in D from −i to i. We say that η is a level line of Φ+ν if there
exists a coupling (Φ, η) such that the following domain Markov property holds: for any finite η-stopping
time τ , the conditional law of (Φ + ν)|D\η[0,τ ] given η[0, τ ] is equal to the law of GFF in D \ η[0, τ ] with
boundary condition ντ as defined in (1.7).

The definition in simply connected domains is given via conformal image.
The notion of level lines of GFF originally appears in [Dub09, SS09, SS13]. In particular, the authors

of [SS13] prove that, in D, the coupling exists when ν = 2λ1AL
σ∂D, and the law of the level line is

an SLE4 in D from −i to +i. In [WW17], the authors give a survey on level lines of GFF when the
boundary condition is piecewise constant; later, in [PW17], the authors construct level lines of GFF when
the boundary condition is regulated. In this article, we provide a more general coupling.

First, we recall the result of [ALS20] which relates some level lines of the GFF to envelops η4,ν in the
case of ν being a piecewise constant function; see [ALS20, Proposition 5.11].

Theorem 1.6 (Aru-Lupu-Sepúlveda [ALS20]). Fix κ = 4. Let u be a strictly positive piecewise constant
function on AL assuming finitely many values. Denote η4,u := η4,u1AL

σ∂D. In this case, there exists a
coupling (Φ, η4,u) such that η4,u is a level line of Φ + u.

We extend the result of [ALS20] beyond the piecewise constant case. Suppose ν is a finite non-negative
Radon measure on AL. Denote by Atom(ν) the set of atoms of ν, if any. Denote

Atoml
conv(ν) :=

{
x ∈ Atom(ν) :

∫
y∈AL

Im(y)>Im(x)

1

|y − x|2
dν(y) < +∞

}
,

Atomr
conv(ν) :=

{
x ∈ Atom(ν) :

∫
y∈AL

Im(y)<Im(x)

1

|y − x|2
dν(y) < +∞

}
.

(1.8)

Set
Atom∗conv(ν) := Atoml

conv(ν) ∪Atomr
conv(ν). (1.9)

Theorem 1.7. Fix κ = 4 and ν a finite non-negative Radon measure on AL such that the support of ν
equals AL and Atom∗conv(ν) = ∅. Then we have the followings.

• The curve η4,ν is a continuous simple curve with continuous driving function.

• Suppose Φ is zero-boundary GFF in D. There exists a coupling (Φ, η4,ν) such that η4,ν is a level line
of Φ + ν.

The condition Atom∗conv(ν) = ∅ above is only to ensure that η4,ν a.s. does not hit an atom of ν. See
Lemma 3.6.

Theorem 1.8. If (Φ, η4,ν) are coupled as in Theorem 1.7, then η4,ν is almost surely determined by Φ.

We will complete the proof of Theorems 1.7 and 1.8 in Section 5. These two theorems are gen-
eralizations of [PW17, Theorems 1.2 and 1.3] where the authors prove the same conclusion under the
assumption that ν is a regulated function and is bounded away from 0, i.e. the assumption (2.7). Let
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us briefly summarize the proof in [PW17]. The idea is to approximate uniformly the regulated function
by piecewise constant functions and then show that the level lines corresponding to piecewise constant
boundary functions are convergent. For that one shows that the limit of the level lines gives the desired
coupling. However, the limiting process is not automatically a continuous curve with continuous driving
function. In order to guarantee that the limiting process can be encoded as a Loewner chain with continu-
ous driving function, the authors use the conclusions from [KS17]. The technical assumption from [KS17],
related to the probabilities of crossings of quadrilaterals, restricts the method in [PW17] and the authors
are only able to show the above conclusion under the assumption (2.7). We will see in Section 5 that our
construction improves the conclusion from [PW17]. The continuity result of Theorem 1.2, which replaces
the technical tool from [KS17], allows to replace the uniform convergence of the boundary data by the
weak convergence of measures, and does not require the assumption (2.7). The above method works for
any finite non-negative Radon measure ν whose support equals AL and such that Atom∗conv(ν) = ∅.

We end the introduction with a few interesting open questions. Our construction of level lines of thr
GFF is a significant generalization of previous constructions, but there is still an interesting scenario that
we do not understand. For instance, we do not know what happens to the coupling between the GFF
and η4,ν when the curve hits an atom of ν with positive probability, see open questions in Section 6.

Let us come back to the question at the end of Section 1.1. Fix κ = 4 and ν a finite non-negative
Radon measure on AL as in Theorem 1.7. We parameterize the curve η4,ν by the half-plane capacity.
Then η4,ν can be encoded as a generalization of SLE4(ρ) process on the time interval when it is away
from the boundary, see Section 5.3. However, as it is possible for η4,ν to intersect the boundary with a
positive Lebesgue measure (see Section 3.3), we do not know what happens to the driving function when
the curve hits the boundary, see open questions in Section 6.

2 Preliminaries

2.1 Local connectedness and cut points

We will introduce the notions of local connectedness and uniform local connectedness, and cite and derive
a few elementary properties which will be useful later. We refer interested readers to [Pom92, Section 2.2]
for more detail.

Definition 2.1. Given C a closed non-empty subset of C, and z, z′ ∈ C, we say that z and z′ are
ε-connected in C if there is K a compact connected subset of C with diam(K) < ε such that z, z′ ∈ K.

A closed non-empty subset C ⊂ C is locally connected if for every ε > 0, there is δ > 0 such that for
every z, z′ ∈ C with |z′ − z| < δ, the points z and z′ are ε-connected in C.

A family of closed non-empty subsets (Cn)n≥0 of C is uniformly locally connected if for every ε > 0,
there is δ > 0 such that for every n ≥ 0 and every z, z′ ∈ Cn with |z′ − z| < δ, the points z and z′ are
ε-connected in Cn.

Lemma 2.2. (1) If γ : [0, 1] → C is a continuous parametrized curve, then Range(γ) is locally con-
nected.

(2) If K1 and K2 are two locally connected compact subsets of C, then K1 ∪K2 is locally connected.

Proof. For (1), Range(γ) is locally connected since it is the image of the compact locally connected set
[0, 1] by a continuous map; see [New64, Theorem 8.2, Chapter IV] and [Pom92, Section 2.2]. For (2), see
[New64, Theorem 8.1, Chapter IV] and the subsequent corollary, and [Pom92, Section 2.2].

Lemma 2.3. Let (Kn)n≥0 be a sequence of non-empty compact subsets of C. Assume that the following
four conditions hold:

(a) For each n ≥ 0, Kn is locally connected.
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(b) For each n ≥ 1, Kn is connected.

(c) For each n ≥ 1, Kn ∩K0 6= ∅.

(d) diam(Kn)→ 0 as n→ +∞.

Then the union
⋃
n≥0Kn is compact and locally connected.

Proof. The compactness of
⋃
n≥0Kn is ensured by the compactness of each Kn and the conditions (c)

and (d). It remains to check the local connectedness.
For N ≥ 1, denote

K̃N :=
N−1⋃
n=0

Kn.

The condition (a) and Lemma 2.2 (2) ensure that the compact sets K̃N are locally connected. Fix ε > 0.
Since K0 is locally connected (the condition (a)), there is δ0 > 0 such that for every z, z′ ∈ K0 with
|z′ − z| < δ0, z and z′ are ε/3-connected in K0. The condition (d) ensures that there is N0 ≥ 1 such that
for every n ≥ N0, diam(Kn) < (ε ∧ δ0)/3. Further, there is δ1 > 0 such that for every z, z′ ∈ K̃N0 with
|z′ − z| < δ1, z and z′ are ε/2-connected in K̃N0 . Then there is N1 ≥ N0 such that for every n ≥ N1,
diam(Kn) < (ε ∧ δ1)/2. Finally, there is δ2 > 0 such that for every z, z′ ∈ K̃N1 with |z′ − z| < δ2, z and
z′ are ε-connected in K̃N1 . Set

δ :=
δ0

3
∧ δ1

2
∧ δ2 ∧

ε

3
.

Take z, z′ ∈
⋃
j≥0Kj with |z′ − z| < δ. Since z and z′ play symmetric roles, there are three cases to

consider:

• Case 1: z ∈ Kn, z′ ∈ Kn′ , with n, n′ ≥ N0.

• Case 2: z ∈ K̃N0 and z′ ∈ Kn′ with n′ ≤ N1 − 1.

• Case 3: z ∈ K̃N0 and z′ ∈ Kn′ with n′ ≥ N1.

In Case 1, the condition (c) ensures that one can take points z̃ ∈ Kn ∩K0 and z̃′ ∈ Kn′ ∩K0. Then

|z̃′ − z̃| < |z′ − z|+ 2

3
δ0 < δ0.

So there is K a compact connected subset of K0 with diam(K) < ε/3 such that z̃, z̃′ ∈ K. Then
K ∪Kn ∪Kn′ is a compact subset of

⋃
j≥0Kj , by the condition (b), it is connected, it contains z and z′,

and
diam(K ∪Kn ∪Kn′) ≤ diam(K) + diam(Kn) + diam(Kn′) < ε.

In Case 2, we have z, z′ ∈ K̃N1 and |z′ − z| < δ2. So z′ and z are ε-connected in K̃N1 , and thus in⋃
j≥0Kj .

In Case 3, consider z̃′ ∈ Kn′ ∩K0. Then

|z̃′ − z| < |z′ − z|+ 1

2
δ1 < δ1.

Thus, there is K a compact connected subset of K̃N0 with diam(K) < ε/2 such that z, z̃′ ∈ K. Then
K ∪Kn′ is a compact connected subset of

⋃
j≥0Kj containing z and z′, and diam(K ∪Kn′) < ε.

Lemma 2.4. (1) Let C and C̃ be closed non-empty subsets of C, with C̃ ⊂ C. Assume that C \ C̃ is
an open subset of C. Then, if C̃ is locally connected, then so is C.
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(2) Let (Cn)n≥0 and (C̃n)n≥0 be two families of closed non-empty subsets of C. Assume that for every

n ≥ 0, C̃n ⊂ Cn and Cn \ C̃n is an open subset of C. Then, if the family (C̃n)n≥0 is uniformly
locally connected, then so is the family (Cn)n≥0.

Proof. Since (2) clearly implies (1), it suffices to show (2). Fix ε > 0, n ≥ 0 and z, z′ ∈ Cn with
|z′ − z| < ε/2. One can consider the straight line segment Iz,z′ joining z and z′. If Iz,z′ ∩ C̃n = ∅, then

necessarily Iz,z′ ⊂ Cn \ C̃n ⊂ Cn, because Cn \ C̃n is open. Otherwise, one can consider z̃ the point of

Iz,z′ ∩ C̃n which is the closest to z, and z̃′ the point of Iz,z′ ∩ C̃n which is the closest to z′. By construction,
|z̃′ − z̃| ≤ |z′ − z|. Let Iz,z̃, respectively Iz̃′,z′ , be the subsegment joining z and z̃, respectively z′ and z̃′.
We have that Iz,z̃∪Iz̃′,z′ ⊂ Cn. Thus, z and z′ are ε-connected in Cn as soon as z̃ and z̃′ are ε/2-connected

in C̃n.

Next, we will introduce the notion of cut points, and cite a few elementary properties which will be
useful later. We refer interested readers to [Pom92, Section 2.3] for more detail.

Definition 2.5. Given C a closed connected non-empty subset of C, a point z ∈ C is said to be a cut
point of C if C \ {z} is not connected.

Next lemma is standard and we state it without proof.

Lemma 2.6. Let K be a compact connected subset of the Riemann sphere Ĉ := C∪ {∞} ∼= S2, such that
K and Ĉ\K are both non-empty. Then for every O connected component of Ĉ\K, O is simply connected,
and in particular there is a conformal transformation from D to O. The boundary ∂O is connected.

Lemma 2.7. Let K be a compact connected non-empty subset of C. Assume that K has no cut points.
Then for every O connected component of C \K, ∂O has no cut points.

Proof. Since we can always consider the Riemann sphere Ĉ = C ∪ {∞}, we assume without loss of
generality that O is bounded. Assume that z is a cut point of ∂O. It follows from the proof of [Pom92,
Proposition 2.5] that there are two points z1, z2 ∈ ∂O that are in two distinct connected components of
(C \ O) \ {z}. Since K ⊂ C \ O, the points z1 and z2 are also in two distinct connected components of
K \ {z}. This contradicts the assumptions.

Next we recall Carathéodory’s theorem on the extension of conformal maps to the boundary; see [Pom92,
Theorem 2.1, Theorem 2.6, Corollary 2.8].

Theorem 2.8. Let D be an open bounded simply connected domain in C. Let ψ be a conformal map from
D to D.

(1) If C\D is locally connected, then ψ extends continuously to D. In particular ∂D can be parametrized
as a continuous closed curve.

(2) If on top of that, ∂D has no cut points, then ∂D is a Jordan curve, i.e. continuous closed simple
curve, and ψ extends to a homeomorphism from D to D.

Next we recall the notion of Carathéodory convergence. See [Pom92, Section 1.4].

Definition 2.9. Let D and (Dn)n≥0 be open non-empty simply connected domains in C, different from
C. Let w ∈ D, respectively wn ∈ Dn. The sequence of marked domains ((Dn, wn))n≥0 is said to converge
to (D,w) in the Carathéodory sense if the following holds:

(1) wn → w;
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(2) for every z ∈ D, there is a neighborhood U of z in D such that

U ⊂
⋂
n≥m

Dn

for m large enough.

(3) for every z ∈ ∂D, there exist zn ∈ Dn such that zn → z as n→ +∞.

Note that the Carathéodory convergence does not imply that Dn converges D for the Hausdorff
distance, even for D bounded.

2.2 Poisson point processes of boundary to boundary excursions

Recall that D denotes the unit disc and AL, AR denote the left and right half-circles in ∂D as in (1.1).
We first introduce Green’s function and Poisson kernel. Denote by GD(z, w) the Green’s function on D
with Dirichlet 0 boundary conditions:

GD(z, w) =
1

2π
log

∣∣∣∣1− z̄wz − w

∣∣∣∣ , z 6= w ∈ D.

For any simply connected domain D, we define Green’s function via conformal image. Let ψ : D→ D be
any conformal map, we have

GD(z, w) =GD(ψ(z), ψ(w)), z 6= w ∈ D.

Denote by HD(z, x) the Poisson kernel on D:

HD(z, x) =
1

2π

1− |z|2

|x− z|2
, z ∈ D, x ∈ ∂D. (2.1)

For any simply connected domain D with a boundary point x ∈ ∂D such that ∂D is analytic in neigh-
borhood of x, we define Poisson kernel via conformal image. Let ψ : D → D be any conformal map, we
have

HD(z, x) =|ψ′ ◦ ψ−1(x)|−1HD(ψ−1(z), ψ−1(x)), z ∈ D,x ∈ ∂D.

Denote by HD(x, y) the boundary Poisson kernel on ∂D (see [Law05, Section 5.2]):

HD(x, y) =
1

π|y − x|2
, x 6= y ∈ ∂D.

For any simply connected domain D with two boundary points x, y such that ∂D is analytic in neighbor-
hoods of x and y, we define the boundary Poisson kernel via conformal image. Let ψ : D → D be any
conformal map, we have

HD(x, y) =|ψ′ ◦ ψ−1(x)|−1|ψ′ ◦ ψ−1(y)|−1HD(ψ−1(x), ψ−1(y)), x 6= y ∈ ∂D.

Next, we describe the measures on Brownian excursions. Given x 6= y ∈ ∂D, denote by µD,#x,y the
normalized probability measure on Brownian excursions from x to y in D; see [Law05, Section 5.2].
Denote by µDx,y the non-normalized measure

µDx,y := HD(x, y)µD,#x,y .

9



For x ∈ ∂D, let µDx,x denote the measure on Brownian excursions from to x to x in D

µDx,x = lim
y→x

y∈∂D\{x}

µDx,y.

Note that µDx,x is up to a constant the Brownian bubble measure of [Law05, Section 5.5]. It has infinite
total mass. However, for every ε > 0,

µDx,x({γ : diam Range(γ) > ε}) < +∞.

For a general simply connected domain D with two boundary points x, y such that ∂D is analytic in
neighborhoods of x, y, we may extend the definition of Brownian excursion measure via conformal image:
Let ψ : D→ D be any conformal map,

µDx,y = |ψ′ ◦ ψ−1(x)|−1|ψ′ ◦ ψ−1(y)|−1ψ∗µ
D
ψ−1(x),ψ−1(y).

The total mass of µDx,y is given by HD(x, y).

Suppose ν is a finite non-negative Radon measure on AL, we separate its atomic and non-atomic parts:

Atom(ν) := {x ∈ AL : ν({x}) > 0}, ν̂ := ν −
∑

x∈Atom(ν)

ν({x})δx.

Note that Atom(ν) is at most countable. We define µDν as in (1.2) and we see that

µDν (·) =
1

2

∫∫
AL×AL

d(ν ⊗ ν)(x, y)µDx,y(·)

=
1

2

∫∫
AL×AL

dν̂(x)dν̂(y)µDx,y(·) +
1

2

∑
x∈Atom(ν)

ν({x})
∫
AL

dν̂(y)µDx,y(·)

+
1

2

∑
y∈Atom(ν)

ν({y})
∫
AL

dν̂(x)µDx,y(·) +
1

2

∑
(x,y)∈Atom(ν)2

ν({x})ν({y})µDx,y(·).

Note that the last of the four terms above also involves measures µDx,x. All other terms only involve

measures µDx,y for y 6= x. The measure µDν is conformally covariant in the following sense. If D ( C is
an open simply connected domain with piecewise analytic boundary and ψ is a conformal transformation
from D to D, then the image of µDν by ψ is the measure∫∫

ψ(AL)×ψ(AL)
d((ψ∗ν)⊗ (ψ∗ν))(x, y)|ψ′ ◦ ψ−1(x)||ψ′ ◦ ψ−1(y)|µDx,y(dγ)

up to a change of time in excursions ds = |(ψ−1)′(γ(t))|2dt.
Denote by Ξν the Poisson point process of intensity µDν . We see it as a random at most countable

collection of time-parametrized Brownian boundary-to-boundary excursions in D. Given ε > 0, denote

Ξν,ε := {γ ∈ Ξν : diam Range(γ) > ε}. (2.2)

Lemma 2.10. Let ν be a finite non-negative non-zero Radon measure on AL. Then Ξν satisfies the
following.

(1) A.s. for every ε > 0, the subset Ξν,ε is finite.

(2) A.s. for every subarc A of AL such that ν(A) > 0, the subset {γ ∈ Ξν : γ has both ends in A} is
infinite.
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Proof. The first point comes from that

sup
x,y∈∂D

µDx,y({γ : diam Range(γ) > ε}) < +∞.

See [Law05, Section 5.2].
For the second point it is enough to restrict to a countable collection of subarcs. If such a subarc

A contains an atom x0 of ν, then µDν ≥ 1
2ν{x0}2µDx0,x0 , and the measure µDx0,x0 on excursions with both

endpoints in x0 has infinite total mass. If A ∩Atom(ν) = ∅, then one needs to check that∫∫
A×A

1

|y − x|2
dν(x)dν(y) = +∞.

The integral above is the two-dimensional energy of the measure 1Aν; see [BP16, Definition 3.4.1]. Since
the Hausdorff dimension of A is 1, and in particular smaller than 2, the two-dimensional energy equals
+∞; see [BP16, Theorem 3.4.2].

x

y

x

y

γm

γf

γl

Figure 2.1: In the left panel, the dashed line indicates ∂Dε∩D and the curve indicates a continuous path
γ intersecting Dε. In the right panel, the path γ is decomposed into three pieces. The first piece is γf (in
blue): it is the part of γ from 0 to T f

γ,ε. The second piece is γm (in red): it is the part of γ from T f
γ,ε to

T l
γ,ε. The last piece is γl (in blue): it is the part of γ from T l

γ,ε to Tγ .

Next we describe the Markovian decomposition of the measures on Brownian excursions. Given
z 6= w ∈ D, denote by µD,#z,w the normalized probability measure on Brownian excursions from z to w in
D; see [Law05, Section 5.2]. Denote by µDz,w the non-normalized measure

µDz,w := GD(z, w)µD,#z,w .

For ε ∈ (0, 1), denote

Dε := {z ∈ D : dist(z,AL) > ε}, D̂ε := {z ∈ D : dist(z,AL) < ε}. (2.3)

The domain D̂ε is open and simply connected, with piecewise analytic boundary. Recall that µD̂εx,y denotes

the non-normalized measure on Brownian excursions from x to y in D̂ε. Denote by σ
∂D̂ε the arc-length

measure on ∂D̂ε. Denote by Tγ the total duration of a generic element γ of Ξν . Given (γ(t))0≤t≤Tγ a
continuous path intersecting Dε, denote

T f
γ,ε := inf{t ∈ (0, Tγ) : γ(t) ∈ Dε}, T l

γ,ε := sup{t ∈ (0, Tγ) : γ(t) ∈ Dε}. (2.4)

The Markovian decomposition is as follows. For details, see [Law05, Section 5.2] and [ALS20, Proposi-
tion 3.7]. See also Figure 2.1 for illustration.
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Proposition 2.11. Fix ε ∈ (0, 1). We will denote by F an arbitrary bounded measurable functional on
the appropriate space. For x, y ∈ AL,∫

γ s.t.
Range(γ)∩Dε 6=∅

F
(
γ(T f

γ,ε), γ(T l
γ,ε), (γ(t))0≤t≤T f

γ,ε
, (γ(T f

γ,ε + t))0≤t≤T l
γ,ε−T f

γ,ε
, (γ(T l

γ,ε + t))0≤t≤Tγ−T l
γ,ε

)
µDx,y(dγ)

=

∫∫
(∂D̂ε∩D)2

σ
∂D̂ε(dz)σ∂D̂ε(dw)

∫∫∫
µD̂εx,z(dγf)µ

D
z,w(dγm)µD̂εw,y(dγl)F (z, w, γf , γm, γl).

In particular, ∫
γ s.t.

Range(γ)∩Dε 6=∅

F
(
γ(T f

γ,ε), γ(T l
γ,ε), (γ(T f

γ,ε + t))0≤t≤T l
γ,ε−T f

γ,ε

)
µDx,y(dγ)

=

∫∫
(∂D̂ε∩D)2

σ
∂D̂ε(dz)σ∂D̂ε(dw)HD̂ε(x, z)HD̂ε(w, y)

∫
µDz,w(dγm)F (z, w, γm).

2.3 Loewner chain and SLE

Recall that ψ0 is the Möbius transformation from D to H as in (1.5). Since we will deal with conformally
invariant objects, working in D or in H will be equivalent, but it will be more convenient to handle
Brownian excursions in D, and to work with Loewner chains in H.

An H-hull is a compact subset K of H such that H \K is simply connected. By Riemann’s mapping
theorem, there exists a unique conformal map gK from H\K onto H with the hydrodynamic normalization
limz→∞ |gK(z)− z| = 0. The quantity

hcap(K) := lim
z→∞

z(gK(z)− z)

is non-negative and we call it the half-plane capacity of K (seen from ∞). For background on the
half-plane capacity, see see [Law05, Section 3.4] and [BN16, Section 6.2].

Loewner chain is a collection of H-hulls (Kt)t≥0 associated to the family of conformal maps (gt)t≥0

which solves the following Loewner equation: for each z ∈ H,

∂tgt(z) =
2

gt(z)− ξt
, g0(z) = z, (2.5)

where (ξt)t≥0 is a one-dimensional continuous function which we call the driving function. For z ∈ H,
the swallowing time of z is defined to be sup

{
t ≥ 0 : mins∈[0,t] |gs(z)− ξs| > 0

}
. Let Kt be the closure of

{z ∈ H : Tz ≤ t}. It turns out that gt is the unique conformal map from H\Kt onto H with normalization
limz→∞ |gt(z) − z| = 0. Since hcap(Kt) = limz→∞ z(gt(z) − z) = 2t, we say that the process (Kt)t≥0

is parameterized by the half-plane capacity. We say that (Kt)t≥0 can be generated by continuous curve
(η(t))t≥0 if, for any t, the unbounded connected component of H \ η[0, t] is the same as H \Kt.

The following proposition explains which kind of continuous curve enjoys continuous driving function.

Proposition 2.12. Suppose T ∈ (0,∞]. Let η : [0, T )→ H be a continuous curve with η(0) = 0. Assume
the following hold: for every t ∈ (0, T ),

(a) η(t, T ) is contained in the closure of the unbounded connected component of H \ η[0, t],

(b) η−1(η[0, t] ∪ R) has empty interior in (t, T ).
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For each t > 0, let gt be the conformal map from the unbounded connected component of H\η[0, t] onto H
with normalization limz→∞ |gt(z)− z| = 0. After reparameterization, (gt)t≥0 solves (2.5) with continuous
driving function (ξt)t≥0.

Proof. See [Pom66], [Kin15, Theorem 1.2], [Law05, Section 4] and [MS16a, Proposition 6.12].

Schramm Loewner evolution (SLE) is a Loewner chain with driving function equal a multiple of
Brownian motion. For κ > 0, SLEκ is the Loewner chain with driving function ξt =

√
κBt where (Bt)t≥0

is a standard one-dimensional Brownian motion. It is known that SLEκ is almost surely generated by a
continuous curve for all κ; see [RS05]. In particular, when κ ∈ (0, 4], it is a simple curve.

2.4 Gaussian free field and level lines

In this section, we will collect some known results on level lines of GFF from [Dub09, SS09, SS13, WW17,
PW17] and relate the level lines to variants of SLE4 process. To this end, it is more convenient to work
in H.

We first consider the case when GFF has piecewise constant boundary data. Suppose xn < · · · < x1 <
0 and ρn, . . . , ρ1 ∈ R. Denote

ρ̄k :=

k∑
j=1

ρj , for all k ∈ {1, . . . , n}.

Consider GFF on H with the following boundary data:

ζ(x) = 2λ1(x1,0)(x) +
n∑
k=1

λ(2 + ρ̄k)1(xk+1,xk](x), x < 0; ζ(x) = 0, x > 0, (2.6)

where we use the convention that xn+1 = −∞. Suppose Φ is zero-boundary GFF in H and suppose
ρ̄k > −2 for all k ∈ {1, . . . , n}. Then the level line of Φ + ζ exists and is uniquely determined by Φ.
Furthermore, it is a continuous curve with continuous driving function (ξt)t≥0 which is the solution to the
following SDE:

dξt = 2dBt +
n∑
j=1

ρjdt

ξt − V j
t

, dV k
t =

2dt

V k
t − ξt

, for k ∈ {1, . . . , n},

with initial values ξ(0) = 0 and V k
0 = xk for k ∈ {1, . . . , n}. Note that the Lowener chain with the

above driving function is called SLE4(ρn, . . . , ρ1) process with force points (xn, . . . , x1). For more detail
on SLEκ(ρ) with multiple force points, see [MS16a, Section 2.2].

Next, we consider GFF with regulated boundary conditions. Suppose the boundary condition is a
regulated function ζ on R. Assume that there exists ε > 0 such that

ζ(x) ≥ ε, x < 0; ζ(x) = 0, x > 0. (2.7)

The authors in [PW17] prove that there exists a coupling (Φ, η) as in Definition 1.5 with boundary data
ζ and η is a continuous simple curve with continuous driving function. Furthermore, they identify the
law of η when ζ is of bounded variation.

Suppose ζ is of bounded variation and ζ = 0 on R+. Such function can be described almost every as
the integral of a finite signed Radon measure ρ on (−∞, 0]:

ζ(x+) = 2λ+ λρ((x, 0]), x < 0. (2.8)

Suppose that there exists ε > 0 such that

ρ((x, 0]) ≥ −2 + ε/λ, x < 0. (2.9)

Under the assumption (2.9), the authors in [PW17] prove that the law of η is an SLE4(ρ) process defined
as follows.
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Definition 2.13. Suppose (Bt)t≥0 is one-dimensional Brownian motion. We say that the process

(ξt, (Vt(x))x≤0)t≥0

describes an SLE4(ρ) process if it is adapted to the filtration of B and the following hold:

• We have ξ0 = 0 and V0(x) = x for x ≤ 0.

• The processes Bt, ξt, (Vt(x))x≤0 satisfy the following SDE on time intervals where ξt does not collide
with any of the Vt(x):

dξt = 2dBt +

(∫
(−∞,0]

dρ(x)

ξt − Vt(x)

)
dt, dVt(x) =

2dt

Vt(x)− ξt
, x ≤ 0. (2.10)

• We have instantaneous reflection of ξt off the Vt(x), i.e. it is almost surely the case that for Lebesgue
almost all times t we have that ξt 6= Vt(x) for each x ≤ 0.

The SLE4(ρ) process is then defined to be the Loewner chain with driving function (ξt)t≥0.

Note that the existence of SLE4(ρ) is not clear from the above definition. It is part of the conclusion
from [PW17] that there exists an SLE4(ρ) process under the assumption (2.9) and it is a continuous
simple curve with continuous driving function. We emphasize that [PW17] only provides the existence of
SLE4(ρ), and it does not give the uniqueness in law.

3 Construction of chordal curves

3.1 Proof of Propositions 1.1 and 1.3

Let us recall the construction of ηκ,ν given in the introduction and provide more detail. Our construction
of chordal curves in D from −i to i involves two ingredients: Brownian excursions introduced in Section 2.2
and conformal loop ensembles CLEκ with κ ∈ (8/3, 4]. For the construction of the CLE, see [She09, SW12].
Note that according to [SW12], a CLEκ is also the set of outermost boundaries of clusters in Brownian
loop-soups that were introduced in [LW04]. Here we emphasize that CLEκ satisfies a local finiteness
property: a.s., for every ε > 0, there are only finitely many loops of diameter greater than ε.

Here is our construction. Fix κ ∈ (8/3, 4] and let Cκ denote a CLEκ loop ensemble. Fix ν a finite
non-negative Radon measure on AL and let Ξν be a Poisson point process of excursions of intensity µDν ,
independent of Cκ. For γ ∈ Ξν , denote

C̃κ(γ) := {γ̃ ∈ Cκ : Range(γ̃) ∩ Range(γ) 6= ∅}, Sκ(γ) :=
( ⋃
γ̃∈C̃κ(γ)

Range(γ̃)
)
∪ Range(γ). (3.1)

Define
C̃κ,ν :=

⋃
γ∈Ξν

C̃κ(γ) = {γ̃ ∈ Cκ : ∃γ ∈ Ξν ,Range(γ̃) ∩ Range(γ) 6= ∅}. (3.2)

Let Sκ,ν be the following random subset of D:

Sκ,ν :=
⋃
γ∈Ξν

Sκ(γ) =
( ⋃
γ̃∈C̃κ,ν

Range(γ̃)
)
∪
( ⋃
γ∈Ξν

Range(γ)
)
.

In the limit case κ = 8/3, we set

S8/3,ν :=
⋃
γ∈Ξν

Range(γ).
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By construction, Sκ,ν ∩ AR = ∅. Let DR,κ,ν be the connected component of D \ (Sκ,ν ∪ AL) that
contains AR. Then DR,κ,ν is of form Oκ,ν ∪AR, where Oκ,ν is an open simply connected domain. Set

ηκ,ν := (∂DR,κ,ν) \AR.

Informally, ηκ,ν is constructed as the envelop from the right of the set Sκ,ν ∪AL. First of all, we will show
that ηκ,ν is a continuous curve and satisfies conformal covariance.

Proof of Proposition 1.1. The conformal covariance in law of ηκ,ν follows form the conformal invariance
in law of the CLEκ and the conformal covariance in law of Ξν . It remains to show Proposition 1.1 (2).

For the continuity of the envelop we will use a somewhat different argument from [WW13, Section 2.4],
relying on Lemma 2.3. If one shows that ∂Oκ,ν is a continuous closed curve, then one gets that ηκ,ν =
∂Oκ,ν \ AR is a continuous curve. Its endpoints are −i and i since these are also the endpoints of AR.
According to Theorem 2.8, to show that ∂Oκ,ν is a continuous closed curve one needs to check that
C \ Oκ,ν is locally connected. According to Lemma 2.4, it is enough to check that Sκ,ν ∪ ∂D is locally
connected. To this end, we will apply Lemma 2.3 twice. The first time, we apply it to K0 = ∂D and
(Kn)n≥1 = Ξν . We get that ∂D ∪

⋃
γ∈Ξν

Range(γ) is locally connected. The second time, we apply it

to K0 = ∂D ∪
⋃
γ∈Ξν

Range(γ) and (Kn)n≥1 = C̃κ,ν and get that Sκ,ν ∪ ∂D is locally connected. This
completes the proof.

From the construction, the curves ηκ,ν satisfy an obvious monotonicity in ν. Indeed, if ν1 ≤ ν2, Ξν1
can be realized as a subset of Ξν2 .

Proposition 3.1. Fix κ ∈ [8/3, 4]. Let ν1 and ν2 be two finite non-negative Radon measures on AL such
that ν1 ≤ ν2, i.e. ν2 − ν1 is a non-negative measure. Then ηκ,ν1 and ηκ,ν2 can be coupled on the same
probability space such that a.s., ηκ,ν1 is contained between AL and ηκ,ν2, and in particular,

(ηκ,ν2 ∩AL) ⊂ (ηκ,ν1 ∩AL) .

By construction, ηκ,ν ∩ AR = ∅. However, ηκ,ν may intersect AL. Next we give a condition under
which ηκ,ν may contain a whole subarc of AL.

Proposition 3.2. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Let A be a non-
empty open subarc of AL and let A1 and A2 denote the two connected components of AL \ A. Then
P(A ⊂ ηκ,ν) > 0 if and only if ν(A) = 0. Moreover, in the latter case, the event A ⊂ ηκ,ν coincides a.s.
with the event defined by the following two conditions (and only the first one if κ = 8/3).

(1) There is no excursion in Ξν joining A1 and A2.

(2) The process Ξν does not contain an excursion from A1 to A1 and an excursion from A2 to A2

intersecting the same CLEκ loop in Cκ (provided κ 6= 8/3).

On the complementary event, again in the case ν(A) = 0, we have a.s. A ∩ ηκ,ν = ∅.

Proof. First assume that ν(A) > 0. According to Lemma 2.10, the process Ξν contains a.s. an excursion
γ with both endpoints x, y in A. This implies that A(x, y)∩ ηκ,ν = ∅, where A(x, y) is the open subarc of
A with endpoints x, y. In particular, a.s. A 6⊂ ηκ,ν .

Next assume that ν(A) = 0. Also take κ 6= 8/3. The case κ = 8/3 is actually simpler. Since ν(A) = 0,
the process Ξν does not contain excursions with one or both endpoints in A.

• Let E0 denote the event that A ⊂ ηκ,ν . Let Ẽ0 be the event that A ∩ ηκ,ν = ∅. Clearly, Ẽ0 ⊂ Ec
0.

• Let E1 denote the event that there is an excursion in Ξν joining A1 and A2. If γ is such an excursion,
its range disconnects in D the arc A from AR. Thus, E1 ⊂ Ẽ0.
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• Let E2 denote the event that there is an excursion from A1 to A1 and an excursion from A2 to
A2 intersecting the same CLEκ loop in Cκ. If γ1, respectively γ2, are such excursion from A1,
respectively A2, and γ̃ is the common loop in Cκ they intersect, then Range(γ1) ∪ Range(γ2) ∪
Range(γ̃) disconnects in D the arc A from AR. Thus, E2 ⊂ Ẽ0.

Let us further show that Ec
1 ∩ Ec

2 ⊂ E0, which will establish E0 = Ẽc
0 = Ec

1 ∩ Ec
2. Set

Ξ1 := {γ ∈ Ξν |γ has both endpoints in A1}, Ξ2 := {γ ∈ Ξν |γ has both endpoints in A2},

C̃κ,1 := {γ̃ ∈ Cκ : ∃γ ∈ Ξ1,Range(γ̃) ∩ Range(γ) 6= ∅},

C̃κ,2 := {γ̃ ∈ Cκ : ∃γ ∈ Ξ2,Range(γ̃) ∩ Range(γ) 6= ∅},

S1 :=
( ⋃
γ̃∈C̃κ,1

Range(γ̃)
)
∪
( ⋃
γ∈Ξ1

Range(γ)
)
, S2 :=

( ⋃
γ̃∈C̃κ,2

Range(γ̃)
)
∪
( ⋃
γ∈Ξ2

Range(γ)
)
.

The local finiteness of the CLE ensures that S1 ∪ A1 and S2 ∪ A2 are closed subsets of D and that
∂D ∩ S1 ⊂ A1, ∂D ∩ S2 ⊂ A2. Thus, neither S1 ∪A1 nor S2 ∪A2 disconnect A from AR in D. Moreover,
on the event Ec

2, we have
(S1 ∪A1) ∩ (S2 ∪A2) = ∅.

It follows from the Janiszewski’s theorem, on the event Ec
2, we have that (S1 ∪ A1) ∪ (S2 ∪ A2) does not

disconnect A from AR in D; see [Pom92, Section 1.1]. Moreover, on the event Ec
1, we have Sκ,ν = S1 ∪S2.

So on the event Ec
1 ∩ Ec

2, the set Sκ,ν does not disconnect A from AR in D and thus, A ⊂ ηκ,ν .
Finally, let us check that P(Ec

1 ∩ Ec
2) > 0. Actually, the two events are independent and it suffices to

show P(Ec
1) > 0 and P(Ec

2) > 0.

• We have P(E1) < 1 because the intensity measure of excursions from A1 to A2 is finite.

• Let U1 be an open neighborhood of A1 such that U1∩A2 = ∅. The local finiteness and the fact that
the CLE loops do not hit the boundary guarantee that there is U2 an open neighborhoods of A2,
such that U1 ∩U2 = ∅ and such that with positive probability no loop in Cκ intersects both U1 and
U2. With positive probability, all the excursions of Ξ1 are contained in U1, and all the excursions
of Ξ2 are contained in U2, and these are independent events; see Lemma 2.10. Thus, P(Ec

2) > 0.

These complete the proof.

Now, we are ready to complete the proof of Proposition 1.3.

Proof of Proposition 1.3. Recall that ψ0 is the conformal transformation from D to H given by (1.5) and
η̃κ,ν := ψ0(ηκ,ν). It suffices to check that ηκ,ν satisfies the conditions in Proposition 2.12.

• From the construction, ηκ,ν clearly satisfies Proposition 2.12 (a).

• As the support of ν equals AL, ηκ,ν satisfies Proposition 2.12 (b) due to Proposition 3.2.

Therefore, η̃κ,ν is a continuous curve in H from 0 to∞ with continuous driving function. The half-plane ca-
pacity is a continuous strictly increasing function on η̃κ,ν . So one can parametrize η̃κ,ν as (η̃κ,ν(t))0≤t<Tmax ,
with Tmax ∈ (0,+∞], such that (1.6) holds. Note that one does not necessarily have Tmax = +∞.

Next, we consider the simplicity of ηκ,ν .

Lemma 3.3. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Assume further that ν
has no atoms. Then the curve ηκ,ν is a.s. simple.

16



Proof. According to Theorem 2.8, to show that ∂Oκ,ν is a Jordan curve one additionally needs to check
that ∂Oκ,ν has no cut points. Since ν has no atoms, for every γ ∈ Ξν , the two endpoints of γ are distinct.
Denote by R(γ) the right boundary of the excursion γ, defined rigorously as a portion of the boundary of
the connected component of D \Range(γ) that contains AR. According to [LSW03, Corollary 8.5], R(γ)
is a continuous simple curve joining the two endpoints of γ, more specifically distributed as a chordal
SLE8/3(ρ) process, with ρ = 2/3. Denote

Ĉκ,ν := {γ̃ ∈ Cκ : ∃γ ∈ Ξν ,Range(γ̃) ∩R(γ) 6= ∅}, Ŝκ,ν :=
( ⋃
γ̃∈Ĉκ,ν

Range(γ̃)
)
∪
( ⋃
γ∈Ξν

R(γ)
)
.

Then Oκ,ν is a connected component of C \ (Ŝκ,ν ∪ ∂D). According to Lemma 2.7, it is enough to check

that Ŝκ,ν ∪ ∂D has no cut points. To this end, we classify the points of Ŝκ,ν ∪ ∂D as follows:

(1) The points of ∂D that are not an endpoints of an excursion γ ∈ Ξν .

(2) The endpoints of excursions γ ∈ Ξν .

(3) The points on R(γ), for γ ∈ Ξν , that are not endpoints and do not lie on Range(γ̃) for γ̃ ∈ Ĉκ,ν .

(4) The points on Range(γ̃), for γ̃ ∈ Ĉκ,ν , that do not lie on R(γ) for γ ∈ Ξν .

(5) The points that belong to an intersection R(γ) ∩ Range(γ̃) for γ ∈ Ξν and γ̃ ∈ Ĉκ,ν .

It is clear that the points of type (1) cannot be cut points. The points of type (2) cannot be cut points
because each R(γ) has two distinct endpoints. The points of type (3) cannot be cut points because the
curve R(γ) is simple. The points of type (4) cannot be cut points because CLEκ loops are Jordan curves.
Regarding the points of type (5), they cannot be cut points because for every γ ∈ Ξν and γ̃ ∈ Ĉκ,ν , the
intersection R(γ)∩Range(γ̃) is either empty or contains at least two points. Indeed, given an independent
Brownian motion that hits a CLEκ loop, it will a.s. enter the interior surrounded by the loop.

Let us explore more the multiple points of the curve ηκ,ν in the case the measure ν has atoms. Denote

Atomisol(ν) := {x ∈ Atom(ν) : ∃A ⊂ ∂D, A open arc, x ∈ A,1Aν = ν({x})δx},

Atomconv(ν) :=
{
x ∈ Atom(ν) :

∫
AL\{x}

1

|y − x|2
dν(y) < +∞

}
.

Note that Atomisol(ν) ⊂ Atomconv(ν).

Proposition 3.4. Fix κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Let ψ be an
uniformizing map from D to Oκ,ν . Then a.s., for every x ∈ ηκ,ν , the number Card(ψ−1({x})) (which does
not depend on the choice of ψ) is either 1 or 2. Moreover, a.s.,

{x ∈ ηκ,ν : Card(ψ−1({x})) = 2} ⊂ Atomconv(ν) ⊂ AL. (3.3)

In particular, if Atomconv(ν) = ∅, then the curve ηκ,ν is a.s. simple. As a partial converse, we have that
for every x ∈ Atomisol(ν),

P(Card(ψ−1({x})) = 2) > 0. (3.4)

Proof. According to [Pom92, Proposition 2.5] and the corresponding proof, for every x ∈ ηκ,ν , the number
Card(ψ−1({x})) equals the number of connected components in C\ (Oκ,ν ∪{x}). Similarly to Lemma 3.3,
one can show that C \ Oκ,ν does not have cut points in ηκ,ν \Atom(ν). Thus Card(ψ−1({x})) is either 1
or 2 and it can be 2 only for points x ∈ Atom(ν).

Then we show (3.3). From Lemma 3.5 below and an absolute continuity argument near an endpoint
applied to Brownian excursions, it follows that for every γ, γ′ ∈ Ξν , such that Range(γ) ∩Range(γ′) 6= ∅,
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one also has (Range(γ) ∩ Range(γ′)) \ ∂D 6= ∅. If x ∈ Atom(ν) \ Atomconv(ν), then a.s. there is an
excursion γ ∈ Ξν with one endpoint x and the other endpoint different from x. For every γ′ excursion in
Ξν with both endpoints in x, we have (Range(γ) ∩ Range(γ′)) \ {x} 6= ∅. This implies that Sκ,ν \ {x} is
connected a.s. Thus, for every x ∈ ηκ,ν \ Atomconv(ν), we have Card(ψ−1({x})) = 1. This completes the
proof for (3.3).

Now, consider x ∈ Atomisol(ν). Let Ξx be the subset of Ξν made of all the excursions with both
endpoints in x. Denote

Sx :=
⋃
γ∈Ξx

Sκ(γ).

Since for all γ, γ′ ∈ Ξx, we have (Range(γ)∩Range(γ′)) \ {x} 6= ∅. Thus Sx \ {x} is connected a.s. Define
the event

Ex := {for every γ ∈ Ξν \ Ξx, we have Range(γ) ∩ Sx = ∅}.

One the event Ex, the set C\(Oκ,ν ∪{x}) has exactly two connected components, one containing Sx \{x},
and the other C \ D. So, on the event Ex, we have Card(ψ−1({x})) = 2. On the complementary event
Ec
x, the set C \ (Oκ,ν ∪ {x}) is connected and Card(ψ−1({x})) = 1. Further, it is easy to see that for

x ∈ Atomisol(ν), we have P(Ex) > 0. This completes the proof for (3.4).

Lemma 3.5. Let ℘1 and ℘2 be two i.i.d. Brownian excursions from −i to i in D, sampled according to
µD,#−i,i. Then

dist(−i, (Range(℘1) ∩ Range(℘2)) \ {−i}) = 0 a.s.

Proof. Because of the conformal covariance, one can consider ℘̃1 and ℘̃2 two i.i.d. Brownian excursions
from 0 to ∞ in the upper half-plane H. Define the random variable

δ̃ := dist(0, (Range(℘̃1) ∩ Range(℘̃2)) \ {0})

with values in [0,+∞]. It is enough to show that δ̃ = 0 a.s. Since the law of ℘̃1 and ℘̃2 is invariant
under Brownian scaling, we have that for every c > 0, cδ̃ is distributed as δ̃. This in turn implies that
δ̃ ∈ {0,+∞} a.s. So we have only to show that P(δ̃ = +∞) = 0. On the event that δ̃ = +∞, we in
particular have that ℘̃1([0, 1]) ∩ ℘̃2([0, 1]) = {0}. However,

P
(
℘̃1([1,+∞)) ∩ ℘̃2([1,+∞)) 6= ∅|(℘̃1(t), ℘̃2(t))0≤t≤1

)
> 0 a.s.

So, if the probability P(δ̃ = +∞) were positive, then we would have that P(δ̃ ∈ (0,+∞)) > 0, which is a
contradiction. Thus, P(δ̃ = +∞) = 0.

Next we complement Proposition 3.4 and give a partial results on atoms of ν which cannot be hit by
ηκ,ν . We will need this result in Section 5. Recall that Atoml

conv(ν),Atomr
conv(ν) and Atom∗conv(ν) are

defined in (1.8) and (1.9). Note that by construction, Atom(ν) ∩ {−i, i} ⊂ Atom∗conv(ν).

Lemma 3.6. For every x ∈ Atom(ν) \Atom∗conv(ν), P(x ∈ ηκ,ν) = 0.

Proof. Let x ∈ Atom(ν) \Atom∗conv(ν). Then a.s., there is an excursion γ ∈ Ξν with one endpoint x and
the other endpoint strictly to the left of x, and an other excursion γ′ ∈ Ξν with one endpoint x and the
other endpoint strictly to the right of x. Moreover, by Lemma 3.5, γ and γ′ a.s. intersect near x. Thus,
Range(γ) ∪ Range(γ′) disconnects a neighborhood of x in D from AR.

3.2 Local absolute continuity with respect to SLEκ away from the boundary

In this section we will show that for ν 6= 0, the curve ηκ,ν is in some sense absolutely continuous with
respect to a chordal SLEκ away from the boundary. First we recall the result of [WW13] which identifies
the law of ηκ,ν when ν is a constant on AL.
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Theorem 3.7 (Werner-Wu [WW13]). Let κ ∈ [8/3, 4]. Assume that ν = a1AL
σ∂D, with a > 0 a constant.

Let η̃κ,a denote η̃κ,ν = ψ0(ηκ,ν) in this case. Then η̃κ,a is distributed as a chordal SLEκ(ρ) curve in H
from 0 to ∞, with one force point at 0−, with ρ be the unique real in (−2,+∞) satisfying

a2 =
π

2

(ρ+ 2)(ρ+ 6− κ)

κ
.

In particular, if a =
√
π(6− κ)/κ, then η̃κ,a is distributed as a chordal SLEκ.

ηκ,ν
Oκ,ν,ε

Figure 3.1: In the left panel, the dashed line indicates ∂Dε ∩D and the curve indicates ηκ,ν intersecting
Dε. The set Oκ,ν is the connected component of D \ ηκ,ν adjacent to AR. Consider Oκ,ν ∩ Dε, there are
many connected components, and Oκ,ν,ε is the one adjacent to AR ∩Dε. In the right panel, the region in
gray indicates Oκ,ν,ε.

For ε ∈ (0, 1), let Oκ,ν,ε denote the connected component of Oκ,ν ∩Dε (see (2.3)) adjacent to AR ∩Dε;
see Figure 3.1. To motivate what will follow, we state the next proposition.

Proposition 3.8. Let be κ ∈ [8/3, 4] and ν a finite non-negative Radon measure on AL. Assume that
ν 6= 0. Then a.s., for every z ∈ ηκ,ν \AL, there is U a neighborhood of z in ηκ,ν \AL and ε ∈ (0, 1) such
that U ⊂ ∂Oκ,ν,ε.

Proof. For w ∈ ηκ,ν \ AL, let Iw denote the straight line segment in D with endpoints 1 and ψ−1
κ,ν(w),

where ψκ,ν is the conformal map from D to Oκ,ν defined in Section 1. Take z ∈ ηκ,ν \ AL. Let A be an
open subarc of AL containing ψ−1

κ,ν(z), such that ψκ,ν(A) ⊂ ηκ,ν \AL. Let K be

K :=
⋃
w∈A

ψκ,ν(Iw).

K is a connected compact subset of Oκ,ν containing 1, z and a neighborhood of z in ηκ,ν \ AL. By
construction, K ∩AL = ∅. Thus, for ε ∈ (0, dist(K,AL) ∧ 1), K ⊂ Oκ,ν,ε.

Next we state the absolute continuity result.

Proposition 3.9. Let κ ∈ [8/3, 4] and ν1, ν2 be two finite non-negative Radon measure on AL. Assume
that both ν1 and ν2 are non-zero. Then, for every ε ∈ (0, 1), the laws of Oκ,ν1,ε and Oκ,ν2,ε are mutually
absolutely continuous. In particular, if ηκ denotes a chordal SLEκ curve in D from −i to i and Oκ,ε
denotes the connected component of D \ ηκ adjacent to AR ∩ Dε, then for every ν non-negative non-zero
Radon measure on AL, the law of Oκ,ν,ε is absolutely continuous with respect to that of Oκ,ε.
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Proof. The second part of the statement follows from the first part and Theorem 3.7.
For the first part, fix ε ∈ (0, 1). We assume that κ 6= 8/3, the case κ = 8/3 being simpler. Let Cκ,ε be

the subset of Cκ made of CLE loops intersecting Dε. Let ε̃ be the following r.v.:

ε̃ := inf
γ̃∈Cκ,ε

dist(Range(γ̃), AL).

We have that ε̃ ∈ (0, ε) a.s. Define

Ξ̃ν1,ε̃ :=
{

(γ(T f
γ,ε̃ + t))0≤t≤T l

γ,ε̃−T
f
γ,ε̃

: γ ∈ Ξν1 ,Range(γ) ∩ Dε̃ 6= ∅
}
,

where T f
γ,ε̃ and T l

γ,ε̃ are given by (2.4), and where Ξν1 is independent from Cκ. Similarly define Ξ̃ν2,ε̃.

We have that the law of (Cκ, Ξ̃ν2,ε̃) is absolutely continuous with respect to that of (Cκ, Ξ̃ν1,ε̃). This
follows from the Markovian decomposition of Proposition 2.11. Further, Oκ,ν1,ε, respectively Oκ,ν2,ε, is

measurable with respect to (Cκ, Ξ̃ν1,ε̃), respectively (Cκ, Ξ̃ν2,ε̃). This concludes the proof.

3.3 Curves hitting the boundary with positive measure

Fix κ ∈ [8/3, 4]. Assume that the measure ν has full support on AL. By Proposition 3.2, ηκ,ν ∩ AL has
a.s. empty interior. However, ηκ,ν may still hit AL, depending on ν. Here we will show that actually
for some ν-s, ηκ,ν ∩AL may have a.s. empty interior, yet have, with positive probability, a positive mass
for the arc-length measure σ∂D. We will construct examples with ν actually being a continuous function
u : AL → [0,+∞). We will write ηκ,u in this case.

For k ≥ 0, denote

Qk :=
{π

2
+ (2j + 1)

π

2k+1
: 0 ≤ j ≤ 2k − 1

}
.

Set
Q :=

⋃
k≥0

Qk.

Note that Qk ∩Qk′ = ∅ for k 6= k′ and that Q is everywhere dense in
[

1
2π,

3
2π
]
. Given ε ∈ (0, 1), denote

fk,ε :
[

1
2π,

3
2π
]
→ [0,+∞) the following function:

fk,ε(x) := (2−(k+1)π − ε−1 dist(x,Qk)) ∨ 0.

The function fk,ε is continuous and bounded from above by 2−(k+1)π. Moreover, given ε ≤ ε′ ∈ (0, 1), we
have that fk,ε ≤ fk,ε′ .

Given a sequence (εk)k≥0 in (0, 1), let f = f(εk)k≥0
be the following function on

[
1
2π,

3
2π
]
:

f =
∑
k≥0

fk,εk .

The function f is non-negative, continuous, and positive on Q whatever the choice of (εk)k≥0. Moreover,
f ≤ π. Let u = u(εk)k≥0

be the function on AL defined by u(eiθ) = f(θ) for θ ∈
[

1
2π,

3
2π
]
.

Proposition 3.10. Fix κ ∈ [8/3, 4]. There is a sequence (εk)k≥0 in (0, 1) such that

P(σ∂D(ηκ,u ∩AL) > 0) > 0,

where u = u(εk)k≥0
.
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Proof. First note that given the measurable functions v : AL → [0, π], the Poisson point processes of
excursions Ξv are all naturally coupled on the same probability space. First one takes Ξπ, which contains
countably many excursions. For each γ ∈ Ξπ, one takes two i.i.d. random variables U f

γ and U l
γ , uniform

in (0, 1). Given v : AL → [0, π], one gets Ξv by keeping an excursion γ ∈ Ξπ if

1

π
v(γ(0)) > U f

γ and
1

π
v(γ(Tγ)) > U l

γ .

In this way, Ξv ⊂ Ξπ a.s. This coupling of the Ξv-s induces a coupling of the curves ηκ,v, by taking the
same CLEκ for different v-s. We will further consider this coupling.

For k ≥ 0 and ε0, . . . , εk ∈ (0, 1), denote

fε0,...,εk :=

k∑
j=0

fk,εj ,

and define uε0,...,εk by uε0,...,εk(eiθ) = fε0,...,εk(θ).
Given a sequence (εk)k≥0 in (0, 1), we have that

Ξu(εk)k≥0
=
⋃
k≥0

Ξuε0,...,εk a.s.,

and
ηκ,u(εk)k≥0

∩AL =
⋂
k≥0

(ηκ,uε0,...,εk ∩AL) a.s.,

where the last intersection is non-increasing. In particular,

σ∂D(ηκ,u(εk)k≥0
∩AL) = lim

k→+∞
σ∂D(ηκ,uε0,...,εk ∩AL) a.s.

In particular, for any δ > 0,

P(σ∂D(ηκ,u(εk)k≥0
∩AL) ≥ δ) = lim

k→+∞
P(σ∂D(ηκ,uε0,...,εk ∩AL) ≥ δ).

Further, fix k ≥ 1. Consider the values of εk of form 2−n. We have that⋃
n≥1

(ηκ,uε0,...,εk−1,2
−n ∩AL) = (ηκ,uε0,...,εk−1

∩AL) \Qk a.s.

Therefore,
lim
εk→0

σ∂D(ηκ,uε0,...,εk−1,εk
∩AL) = σ∂D(ηκ,uε0,...,εk−1

∩AL) a.s.

Thus, for every δ > 0,

lim
εk→0

P(σ∂D(ηκ,uε0,...,εk−1,εk
∩AL) > δ) = P(σ∂D(ηκ,uε0,...,εk−1

∩AL) > δ). (3.5)

Similarly,
lim
ε0→0

σ∂D(ηκ,uε0 ∩AL) = σ∂D(AL) = π a.s.,

and for every δ ∈ (0, π),
lim
ε0→0

P(σ∂D(ηκ,uε0 ∩AL) > δ) = 1. (3.6)

Therefore, (3.5) and (3.6) ensure that one can choose the sequence (εk)k≥0 in (0, 1) such that for every
k ≥ 0,

P
(
σ∂D(ηκ,uε0,...,εk ∩AL) ≥

(1

2
+

1

2k+1

)
π
)
≥ 1

2
+

1

2k+1
.

For such a sequence,

P
(
σ∂D(ηκ,u(εk)k≥0

∩AL) ≥ π

2

)
≥ 1

2
.
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4 Continuous dependence on boundary conditions

4.1 Continuous dependence of the Poisson point process of excursions

In this section, we deal with the continuity in ν of the Poisson point process Ξν . Suppose S1 and S2 are
two finite sets of continuous paths (γ(t))0≤t≤Tγ in C with Tγ < +∞. We define

dcurves(S1, S2) := min
σ∈Bij(S1,S2)

∑
γ∈S1

(
|Tγ − Tσ(γ)|+ maxs∈[0,1] |γ(sTγ)− σ(γ)(sTσ(γ))|

)
, if Card(S1) = Card(S2),

+∞, if Card(S1) 6= Card(S2).

Note that dcurves is a distance. By definition, the distance of the empty set to any non-empty set is +∞.
In the following, we will consider distance between Poisson point processes. Although the Poisson

point process Ξν contains infinitely many excursions, its cutoff is finite (2.2). In this section, we will
consider the following three types of cutoff. Recall from (2.2) that

Ξν,ε := {γ ∈ Ξν : diam Range(γ) > ε}.

We also define, for ε > 0,

Ξ̂ν,ε := {γ ∈ Ξν : Range(γ) ∩ Dε 6= ∅} , Ξ̃ν,ε :=
{

(γ(T f
γ,ε + t))0≤t≤T l

γ,ε−T f
γ,ε

: γ ∈ Ξ̂ν,ε

}
,

where Dε is given by (2.3), and T f
γ,ε and T l

γ,ε by (2.4).

Proposition 4.1. Fix ν a finite non-negative Radon measure on AL. Let (νn)n≥0 be a sequence of finite
non-negative Radon measures on AL, converging weakly to ν. Then, for every ε > 0, (Ξνn,ε)n≥0 converges
in law to Ξν,ε for dcurves. Moreover, it is possible to couple on the same probability space all the processes
(Ξνn)n≥0 and Ξν such that the following two conditions hold a.s.

(1) For every ε ∈ (0, 1), limn→+∞ dcurves(Ξνn,ε,Ξν,ε) = 0.

(2) For every ε ∈ (0, 1), there is nε ∈ N, such that Ξ̃νn,ε = Ξ̃ν,ε for every n ≥ nε.

The proof of Proposition 4.1 will be split into several lemmas. In the rest of this section, we fix the
following assumptions: Fix ν a finite non-negative Radon measure on AL. Let (νn)n≥0 be a sequence of
finite non-negative Radon measures on AL, converging weakly to ν.

Lemma 4.2. Fix ε ∈ (0, 1).

(1) If ν 6= 0, then for every n ≥ 0, the law of Ξ̃νn,ε is absolutely continuous with respect to that of Ξ̃ν,ε.
Moreover, the corresponding density Yε,ν,νn, converges a.s. to 1 as n→ +∞.

(2) If ν = 0, then
lim

n→+∞
P(Ξ̃νn,ε = ∅) = 1. (4.1)

Proof. Both Ξ̃νn,ε and Ξ̃ν,ε are a.s. finite Poisson point processes. According to Proposition 2.11, the

intensity measure of Ξ̃ν,ε is

1

2

∫∫
(∂D̂ε∩D)2

σ
∂D̂ε(dz)σ∂D̂ε(dw)µDz,w

∫∫
AL×AL

HD̂ε(x, z)HD̂ε(w, y)d(ν ⊗ ν)(x, y).

The intensity measure for Ξ̃νn,ε has same expression, with νn instead of ν.
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If ν 6= 0, then the intensity measure for νn is absolutely continuous with respect to that for ν, both
being absolutely continuous with respect to∫∫

(∂D̂ε∩D)2

σ
∂D̂ε(dz)σ∂D̂ε(dw)µDz,w. (4.2)

The density from ν to νn is ∫∫
AL×AL

HD̂ε(x, z)HD̂ε(w, y)d(νn ⊗ νn)(x, y)∫∫
AL×AL

HD̂ε(x, z)HD̂ε(w, y)d(ν ⊗ ν)(x, y)
,

where z, w ∈ ∂D̂ε ∩ D are the two endpoints of the path. This density converges to 1 almost everywhere
and in L1. This follows from the weak convergence of (νn)n≥0 to ν together with the continuity of the
boundary Poisson kernel HD̂ε . Since the Poisson point processes are a.s. finite, this implies the absolute
continuity of Poisson point processes and the a.s. convergence of the density to 1.

If ν = 0, then the total mass of the intensity for νn converges to 0, which implies (4.1).

Lemma 4.3. Let S be an abstract Polish space and B be its Borel σ-algebra. Let X and Xn, for n ≥ 0,
be random variables taking values in (S,B). Assume that for every n ≥ 0, the law of Xn is absolutely
continuous with respect to that of X, with density denoted by Yn. Assume moreover that (Yn)n≥0 converges
dPX-a.s. to 1 as n→ +∞. Then it is possibles to couple X and all Xn for n ≥ 0 on the same probability
space such that a.s. Xn = X for every n large enough.

Proof. Note that the sequence (Yn)n≥0 is naturally defined on the same probability space as X and is

measurable with respect to X. For n ≥ 0 such that P(Yn > 1) > 0, let X̃n be a random variable taking
values in (S,B), with density

(Yn − 1)+

E[(Yn − 1)+]

with respect to X. We also take X and all the X̃n to be independent. Let U be a uniform random
variable on (0, 1), independent from (X, (X̃n)n≥0). We construct the sequence (X̂n)n≥0 as follows. On

the event {Yn ≥ U}, we set X̂n = X. On the event {Yn < U}, we set X̂n = X̃n. It is easy to check that
for every n ≥ 0, X̂n has same distribution as Xn. Moreover, a.s. for every n large enough, Yn ≥ U and
X̂n = X.

Lemma 4.4. It is possible to couple (Ξ̂νn,ε)n≥0 and Ξ̂ν,ε on the same probability space such that the
following conditions hold a.s.

(1) limn→+∞ dcurves(Ξ̂νn,ε, Ξ̂ν,ε) = 0.

(2) For every n large enough, Ξ̃νn,ε = Ξ̃ν,ε.

Proof. We can assume that ν 6= 0. The case ν = 0 is trivial by (4.1). The fact that there is a coupling
such that the condition (2) is satisfied follows from Lemmas 4.2 and 4.3. It remains to couple the slices{

(γ(t))0≤t≤T f
γ,ε

: γ ∈ Ξ̂νn,ε

}
,

{
(γ(T l

γ,ε + t))0≤t≤Tγ−T l
γ,ε

: γ ∈ Ξ̂νn,ε

}
,

and {
(γ(t))0≤t≤T f

γ,ε
: γ ∈ Ξ̂ν,ε

}
,

{
(γ(T l

γ,ε + t))0≤t≤Tγ−T l
γ,ε

: γ ∈ Ξ̂ν,ε

}
,

in a way that the condition (1) holds. We only construct coupling of the slices (γ(t))0≤t≤T f
γ,ε

. The coupling

for the slices (γ(T l
γ,ε + t))0≤t≤Tγ−T l

γ,ε
can be obtained similarly.
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According to Proposition 2.11, given γ ∈ Ξ̂ν,ε, conditionally on (γ(T f
γ,ε), γ(T l

γ,ε)), the three slices

(γ(t))0≤t≤T f
γ,ε

, (γ(T f
γ,ε + t))0≤t≤T l

γ,ε−T f
γ,ε

and (γ(T l
γ,ε + t))0≤t≤Tγ−T l

γ,ε
are independent. The conditional

distribution of (γ(t))0≤t≤T f
γ,ε

is(∫
AL

dν(x)HD̂ε(x, γ(T f
γ,ε))

)−1 ∫
AL

dν(x)µD̂ε
x,γ(T f

γ,ε)
.

In the case of Ξ̂νn,ε the distribution is the same, with νn instead of ν.
Given θ ∈ [1

2π,
3
2π], let A[i, eiθ] denote the closed subarc of AL with endpoints i and eiθ. Given

z ∈ ∂D̂ε ∩ D, let ϑz,ν be the following function from [0, 1] to [1
2π,

3
2π]:

ϑz,ν(u) := inf

{
θ ∈

[
1

2
π,

3

2
π

]
:

∫
A[i,eiθ]

dν(x)HD̂ε(x, z) ≥ u
∫
AL

dν(x)HD̂ε(x, z)

}
.

Suppose U is a uniform random variable on (0, 1), then eiϑz,ν(U) has the distribution(∫
AL

dν(x̃)HD̂ε(x̃, z)

)−1

HD̂ε(x, z)dν(x).

The functions ϑz,νn are defined similarly, with νn instead of ν. We have that (ϑz,νn(U))n≥0 converges a.s.
to ϑz,ν(U).

Given x ∈ AL and z ∈ ∂D̂ε ∩ D, let ψx,z be the conformal map from D to D̂ε, uniquely defined by

ψx,z(−i) = x, ψx,z(i) = z, |ψ′x,z(−i)| = 1.

Given (℘(t))0≤t≤T℘ a continuous curve in D from −i to i, let Tx,z(℘) denote the continuous curve in

D̂ε from x to z obtained by applying to the curve ℘ the conformal map ψx,z and the change of time

ds = |ψ′x,z(℘(t))|2dt. The image of the normalized excursion probability measure µD,#−i,i under the map

Tx,z is the normalized excursion probability measure µD̂ε,#x,z .

Now fix z ∈ ∂D̂ε ∩ D. Let ℘ be a Brownian excursion from −i to i in D, sampled according to µD,#−i,i ,
and let U be an independent random variable uniform on (0, 1). Then the random curve Teiϑz,ν (U),z(℘) is
distributed according to the probability measure(∫

AL

dν(x)HD̂ε(x, z)

)−1 ∫
AL

dν(x)µD̂εx,z.

The curve Teiϑz,νn (U),z(℘) has a similar distribution, with νn instead of ν. Moreover, as n → +∞, the
sequence (Teiϑz,νn (U),z(℘))n≥0 converges a.s. to Teiϑz,νn (U),z(℘). So, this construction provides a way to

couple the slices (γ(t))0≤t≤T f
γ,ε

for γ ∈ Ξ̂ν,ε, respectively γ ∈ Ξ̂νn,ε, so that the a.s. convergence holds.

Lemma 4.5. Fix ε̃ > 0. Then

lim
ε→0

P(Ξν,ε̃ \ Ξ̂ν,ε 6= ∅) = 0, lim
ε→0

sup
n≥0

P(Ξνn,ε̃ \ Ξ̂νn,ε 6= ∅) = 0.

Proof. The Poisson point processes Ξν,ε̃ \ Ξ̂ν,ε and Ξνn,ε̃ \ Ξ̂νn,ε consist precisely of excursions of diameter
greater than ε̃, but that do not visit Dε. It is easy to see that

lim
ε→0

sup
x,y∈AL

µDx,y({γ : diam(γ) > ε̃,Range(γ) ∩ Dε = ∅}) = 0.

The conclusion follows.
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Now we are ready to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. According to Lemma 4.5, for every k ≥ 1, there is εk ∈ (0, 2−k] such that

P
(

Ξν,2−k \ Ξ̂ν,εk 6= ∅
)
≤ 2−k, sup

n≥0
P
(

Ξνn,2−k \ Ξ̂νn,εk 6= ∅
)
≤ 2−k.

We may also take the sequence (εk)k≥1 to be non-increasing.
According to Lemma 4.4, for every k ≥ 1, there is a coupling on the same probability space of

Ξ
(k)
ν and Ξ

(k)
νn for n ≥ 0, with Ξ

(k)
ν distributed as Ξν and Ξ

(k)
νn distributed as Ξνn , such that a.s.,

limn→+∞ dcurves(Ξ̂
(k)
νn,εk , Ξ̂

(k)
ν,εk) = 0 and for every n large enough, Ξ̃

(k)
νn,εk = Ξ̃

(k)
ν,εk . Moreover, since Ξ

(k)
ν \Ξ̂(k)

ν,εk

is independent from Ξ̂
(k)
ν,εk and Ξ

(k)
νn \ Ξ̂

(k)
νnεk is independent from Ξ̂

(k)
νn,εk , one can further require that for

every k ≥ 1,

P
(

Ξ
(k)

ν,2−k
\ Ξ̂(k)

ν,εk
6= ∅ or ∃n ≥ 0,Ξ

(k)

νn,2−k
\ Ξ̂(k)

νn,εk
6= ∅
)

≤ P
(

Ξ
(k)

ν,2−k
\ Ξ̂(k)

ν,εk
6= ∅
)
∨ sup
n≥0

P
(

Ξ
(k)

νn,2−k
\ Ξ̂(k)

νn,εk
6= ∅
)
≤ 2−k.

By considering the conditional law of the sequence (Ξ
(k)
νn )n≥0 given Ξ

(k)
ν , one can further couple all the

Ξ
(k)
ν and Ξ

(k)
νn for n ≥ 0 and k ≥ 1 on the same probability space such that the Poisson point processes

Ξ
(k)
ν are a.s. all the same for different values of k. Will denote by Ξ∗ν their common value. It is distributed

as Ξν .
Set N1 := 0, and for k ≥ 2,

Nk := min
{
N > Nk−1 : P

(
∃n ≥ N, dcurves(Ξ̂

(k)
νn,εk

, Ξ̂(k)
ν,εk

) > 2−k or Ξ̃(k)
νn,εk

6= Ξ̃∗ν,εk

)
≤ 2−k

}
.

We would like to emphasize that the sequence (Nk)k≥1 is deterministic. We define the sequence (Ξ∗νn)n≥1

as follows. Given n ≥ 0, there is a unique k ≥ 1 such that Nk ≤ n < Nk+1, and we set Ξ∗νn = Ξ
(k)
νn . For

every n ≥ 0, Ξ∗νn is distributed as Ξνn .
For j ≥ 1 and k ≥ j, let Ej,k denote the event that there is n ∈ {Nk, . . . , Nk+1 − 1} such that

Ξ̃
(k)
νn,εj 6= Ξ̃∗ν,εj . By construction, for every k ≥ 1 P(Ek,k) ≤ 2−k. Moreover, Ej,k ⊂ Ek,k for j ≤ k. Thus,

for every j ≥ 1, ∑
k≥j

P(Ej,k) < +∞.

By Borel-Cantelli lemma, this means that a.s., the events Ej,k occur for only finitely many values of k.

Thus, a.s. for every n large enough, Ξ̃∗νn,εj = Ξ̃∗ν,εj .
Similarly, by using the Borel-Cantelli lemma, we get that for every j ≥ 1, a.s.

lim
n→+∞

dcurves

(
Ξ̂∗νn,εj , Ξ̂

∗
ν,εj

)
= 0.

By applying the Borel-Cantelli lemma once more, we get that a.s., for every j ≥ 1, there is k ≥ j such
that for every n ≥ Nk, Ξ∗

νn,2−j
⊂ Ξ̂∗νn,εk . This concludes the proof.

We end this section with the following lemma which will be useful for the proof of Theorem 1.2.

Lemma 4.6. Assume (Ξνn)n≥0 and Ξν are coupled on the same probability space as in Proposition 4.1.
Then a.s. the family

(Range(γ) ∪ ∂D)γ∈Ξνn ,n≥0

is uniformly locally connected; see Definition 2.1. Furthermore, a.s. the family

(Range(γ) ∪ Range(γ′) ∪ ∂D)γ,γ′∈Ξνn ,n≥0

is uniformly locally connected, too.
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Proof. We will only prove the first point. The proof of the second point is similar and we omit it.
First note that for any fixed n ≥ 0, the family (Range(γ) ∪ ∂D)γ∈Ξνn is uniformly locally connected.

Indeed, each Range(γ)∪ ∂D, is compact, connected, and locally connected due to Lemma 2.2. Moreover,
for every ε > 0, there are only finitely many γ ∈ Ξνn such that diam Range(γ) ≥ ε. So, if (Range(γ) ∪
∂D)γ∈Ξνn ,n≥0 were not uniformly locally connected, one of the two cases would occur:

• Case 1: there are ε > 0, a subsequence (nj)j≥0, with nj → +∞ as j → +∞, excursions γnj ∈ Ξνnj ,

and points znj , z
′
nj ∈ Range(γnj ), such that |z′nj − znj | → 0 and znj and z′nj are not ε-connected in

Range(γnj ).

• Case 2: there are ε > 0, a subsequence (nj)j≥0, with nj → +∞ as j → +∞, excursions γnj ∈ Ξνnj ,

and points znj ∈ Range(γnj ), z
′
nj ∈ ∂D, such that |z′nj−znj | → 0 and znj and z′nj are not ε-connected

in Range(γnj ).

In both cases, necessarily
inf
j≥0

diam Range(γnj ) > 0.

So, up to further extracting a subsequence, one can assume that γnj converges to an excursion γ∞ ∈ Ξν
for dcurves, and that znj and z′nj converge to z∞.

In Case 1, z∞ ∈ Range(γ∞). One can further distinguish the following subcases:

• Case 1a: z∞ ∈ Range(γ∞) ∩ D.

• Case 1b: z∞ ∈ Range(γ∞) ∩AL.

In Case 1a, consider ε′ ∈ (0, dist(z∞, AL) ∧ 1). For j large enough, we have that

(γnj (T
f
γnj ,ε

′ + t))0≤t≤T l
γnj ,ε

′−T f
γnj ,ε

′
= (γ∞(T f

γ∞,ε′ + t))0≤t≤T l
γ∞,ε′

−T f
γ∞,ε′

,

and
znj , z

′
nj ∈ {γ∞(T f

γ∞,ε′ + t) : 0 ≤ t ≤ T l
γ∞,ε′ − T

f
γ∞,ε′} ⊂ Range(γnj ).

However, since the set {γ∞(T f
γ∞,ε′

+t) : 0 ≤ t ≤ T l
γ∞,ε′

−T f
γ∞,ε′
} is locally connected, we get a contradiction.

So Case 1a cannot occur.
In Case 1b, there is a sequence of positive times (tnj )j≥0 converging to 0 such that for every j ≥ 0,

znj , z
′
nj ∈ {γnj (t) : 0 ≤ t ≤ tnj} ∪ {γnj (t) : Tγnj − tnj ≤ t ≤ Tγnj }.

We have that

lim
j→+∞

diam{γnj (t) : 0 ≤ t ≤ tnj} = lim
j→+∞

diam{γnj (t) : Tγnj − tnj ≤ t ≤ Tγnj } = 0,

and that the set {γnj (t) : 0 ≤ t ≤ tnj} ∪ {γnj (t) : Tγnj − tnj ≤ t ≤ Tγnj } ∪ ∂D is closed and connected. So
we get that the family

({γnj (t) : 0 ≤ t ≤ tnj} ∪ {γnj (t) : Tγnj − tnj ≤ t ≤ Tγnj } ∪ ∂D)j≥0

is uniformly locally connected. So Case 1b cannot occur.
In Case 2, again z∞ ∈ Range(γ∞) ∩ AL. So Case 2 can be ruled out by an argument very similar to

that used for Case 1b.
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4.2 Continuous dependence of the curve ηκ,ν and proof of Theorem 1.2

In this section we deal with the dependence of the curve ηκ,ν on the measure ν. Recall that Oκ,ν is an open
simply connected subset of D, and ∂Oκ,ν = ηκ,ν ∪ AR. Recall that ψκ,ν is the conformal transformation
from D to Oκ,ν uniquely defined by the normalization ψκ,ν(−i) = −i, ψκ,ν(1) = 1, ψκ,ν(i) = i and
ψκ,ν(AR) = AR. According to Theorem 2.8, ψκ,ν extends continuously to D. In case the curve ηκ,ν is
simple (see Proposition 3.4), ψκ,ν induces a homeomorphism from D to Oκ,ν . In general, ψκ,ν induces a
homeomorphism from D ∪ AR to Oκ,ν ∪ AR; see e.g. [Pom92, Theorem 2.15]. By construction, ηκ,ν =
ψκ,ν(AL). The goal of this section is to complete the proof of Theorem 1.2.

We will restrict to the case κ 6= 8/3, as the case κ = 8/3 is simpler. Note that all the probabilistic
content of our proof is already contained in Proposition 4.1. We will additionally rely on deterministic
geometrical arguments and some a.s. properties of Brownian excursions and CLE. In the rest of this
section, we fix the following assumptions: Fix κ ∈ (8/3, 4] and ν a finite non-negative Radon measure
on AL. Let (νn)n≥0 be a sequence of finite non-negative Radon measures on AL, converging weakly to ν.
Assume (Ξνn)n≥0 and Ξν are coupled on the same probability space as in Proposition 4.1. Let Cκ be a
CLEκ in D independent from ((Ξνn)n≥0,Ξν).

Lemma 4.7. Denote by C̃κ,ν the set constructed from Cκ and Ξν as in (3.2). Recall that Oκ,ν,ε denotes

the connected component of Oκ,ν ∩ Dε (see (2.3)) adjacent to AR ∩ Dε. Define C̃κ,νn and Oκ,νn,ε for Cκ
and Ξνn similarly. Then a.s., for every ε ∈ (0, 1), there is n′ε ∈ N, such that, for every n ≥ n′ε,

Oκ,νn,ε = Oκ,ν,ε.

Proof. It is enough to check this for fixed ε, and then consider a sequence of ε converging to 0. Fix
ε ∈ (0, 1). The local finiteness of the CLE ensures that a.s. there is ε′ ∈ (0, ε) such that all the CLEκ
loops in Cκ intersecting Dε are at distance greater than ε′ from AL. The condition (2) in Proposition 4.1
ensures that one can take n′ε = nε′ .

Lemma 4.8. A.s., for every w ∈ Oκ,ν , the point w belongs to Oκ,νn for every n large enough and
(Oκ,νn , w) converges to (Oκ,ν , w) in the Carathéodory sense as n→ +∞; see Definition 2.9.

Proof. The condition (1) in Definition 2.9 is automatic. We then check the condition (2) in Definition 2.9.
Given z ∈ Oκ,ν , let Iz denote the straight line segment in D with endpoints 1 and ψ−1

κ,ν(z). If z is a
multiple point on ∂Oκ,ν , then ψ−1

κ,ν(z) will denote an arbitrary choice of a preimage of z. Let Jz denote

ψκ,ν(Iz). It is a continuous curve in Oκ,ν from 1 to z. If z ∈ Oκ,ν , then dist(Iz, AL) > 0, and thus

dist(Jz, AL) ≥ dist(Jz, ηκ,ν) > 0.

So, for ε ∈ (0, dist(Jz, AL)/2), we have Jz ⊂ Oκ,ν ∩ Dε. Then necessarily Jz ⊂ Oκ,ν,ε. According to
Lemma 4.7, for n ≥ n′ε, we have Oκ,ν,ε = Oκ,νn,ε, and thus Oκ,νn,ε is a neighborhood of z in Oκ,νn . So we
get that for every w ∈ Oκ,ν , the point w belongs to Oκ,νn for every n large enough. This guarantees the
condition (2) in Definition 2.9. It remains to check the condition (3).

So consider z ∈ ∂Oκ,ν . There are two cases, either z ∈ D or z ∈ AL. In the first case, z ∈ (∂Oκ,ν)∩D,
we still have dist(Jz, AL) > 0. For ε ∈ (0,dist(Jz, AL)/2), one has that z ∈ (∂Oκ,ν,ε) ∩Dε. It follows that
for n ≥ n′ε, z ∈ Oκ,νn,ε and also z 6∈ Oκ,νn , since otherwise one would have z ∈ Oκ,ν,ε. Thus, for n ≥ n′ε,
z ∈ ∂Oκ,νn .

Now consider the second case, z ∈ (∂Oκ,ν) ∩AL. For j ≥ 1, let z̃j be the point

z̃j := ψκ,ν

((
1− 1

j

)
ψ−1
κ,ν(z) +

1

j

)
∈ Oκ,ν .

We have that z̃j → z as j → +∞. Let Jz,j be the part of the curve Jz running from 1 to z̃j . Then for
every j ≥ 1,

dist(Jz,j , AL) ≥ dist(Jz,j , ηκ,ν) > 0.
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Thus, for εj ∈ (0, dist(Jz,j , AL)/2), we have z̃j ∈ Oκ,ν,εj , and moreover, for n ≥ n′εj , we have z̃j ∈ Oκ,νn,εj .
Using a diagonal extraction, we get a subsequence (z̃jn)n≥n0 , with for every n ≥ n0, z̃jn ∈ Oκ,νn , and

lim
n→+∞

z̃jn = z.

Since z ∈ ∂D, we have that z 6∈ Oκ,νn . Thus, the straight line segment from z̃jn to z contains a point
zn ∈ ∂Oκ,νn . Moreover, by construction, |z − zn| < |z − z̃jn |, and so zn → z as n→ +∞. So one gets the
condition (3) of Definition 2.9.

Lemma 4.9. A.s. the family (C \ Oκ,νn)n≥0 is uniformly locally connected; see Definition 2.1.

Proof. According to Lemma 2.4, it is enough to check that the family (Sκ,νn ∪∂D)n≥0 is uniformly locally
connected. If this is not the case, then at least one of the following happens:

• Case 1: there are ε > 0, a subsequence (nj)j≥0, excursions γnj ∈ Ξνnj , and points znj , z
′
nj ∈ Sκ(γnj )

(see (3.1)) such that |z′nj − znj | → 0 and znj and z′nj are not ε-connected in Sκ,νnj ∪ ∂D.

• Case 2: there are ε > 0, a subsequence (nj)j≥0, excursions γnj ∈ Ξνnj , and points znj ∈ Sκ(γnj ),

z′nj ∈ ∂D, such that |z′nj − znj | → 0 and znj and z′nj are not ε-connected in Sκ,νnj ∪ ∂D.

• Case 3: there are ε > 0, a subsequence (nj)j≥0, excursions γnj , γ
′
nj ∈ Ξνnj , γnj 6= γ′nj , and points

znj ∈ Sκ(γnj ), z
′
nj ∈ Sκ(γ′nj ), such that |z′nj − znj | → 0 and znj and z′nj are not ε-connected in

Sκ,νnj ∪ ∂D.

First consider Case 1. One can further distinguish between the case infj≥0 diam Range(γnj ) = 0 and
the case infj≥0 diam Range(γnj ) > 0. By extracting sub-subsequences, one can thus reduce Case 1 to the
following two subcases:

• Case 1a: Case 1 with moreover limj→+∞ diam Range(γnj ) = 0.

• Case 1b: Case 1 with moreover γnj converging to an excursion γ∞ ∈ Ξν for dcurves.

Regarding Case 1a, Sκ(γnj ) is a connected compact subset connecting znj and z′nj . Moreover, the fact
that we use for every j ≥ 0 the same CLEκ, together with the local finiteness of the CLEκ, ensures that

lim
j→+∞

diam(Sκ(γnj )) = 0. (4.3)

So Case 1a cannot occur.
Regarding Case 1b, by considering sub-subsequences, one can further reduce it to the following sub-

cases:

• Case 1ba: Case 1b with moreover znj , z
′
nj ∈ Range(γnj ).

• Case 1bb: Case 1b with moreover z′nj ∈ Range(γnj ) and znj ∈ Range(γ̃nj ) for γ̃nj ∈ C̃κ(γnj ) (see
(3.1)), with diam Range(γ̃nj )→ 0 as j → +∞.

• Case 1bc: Case 1b with moreover z′nj ∈ Range(γnj ) and znj ∈ Range(γ̃) for γ̃ ∈
⋂
j≥0 C̃κ(γnj ).

• Case 1bd: Case 1b with moreover znj ∈ Range(γ̃nj ) and z′nj ∈ Range(γ̃′nj ) for γ̃nj , γ̃
′
nj ∈ C̃κ(γnj ),

with diam Range(γ̃nj )→ 0 and diam Range(γ̃′nj )→ 0 as j → +∞.

• Case 1be: Case 1b with moreover znj ∈ Range(γ̃nj ) and z′nj ∈ Range(γ̃′) for γ̃nj ∈ C̃κ(γnj ) and

γ̃′ ∈
⋂
j≥0 C̃κ(γnj ) , with diam Range(γ̃nj )→ 0 as j → +∞.
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• Case 1bf: Case 1b with moreover znj , z
′
nj ∈ Range(γ̃) for γ̃ ∈

⋂
j≥0 C̃κ(γnj ).

Lemma 4.6 ensures that Case 1ba cannot occur.
In Case 1bb, take points z̃nj ∈ Range(γ̃nj )∩Range(γnj ). Then for j large enough, diam Range(γ̃nj ) <

ε/2, and thus z̃nj and z′nj cannot be ε/2-connected in Sκ,νn ∪ ∂D. So Case 1bb reduces to Case 1ba and
cannot occur.

In Case 1bc, one can proceed similarly to the proof of Lemma 4.6. Indeed, away from AL, Range(γnj )
coincides with Range(γ∞) for j large enough, and by Lemma 2.2, Range(γ∞) ∪ Range(γ̃) is locally con-
nected. This rules out Case 1bc.

Case 1bd reduces to Case 1bb by considering points z̃nj ∈ Range(γ̃nj ) ∩ Range(γnj ).
Similarly, Case 1be reduces to Case 1bc.
Case 1bf cannot occur because Range(γ̃) is locally connected.

In Case 2 one can see that dist(z′nj ,Range(γnj ) ∩ AL) → 0 as j → +∞. Thus, Case 2 reduces to
Case 1.

Case 3 can be reduced, by considering sub-subsequences, to the following two subcases:

• Case 3a: Case 3 with moreover limj→+∞ diam Range(γnj ) = 0.

• Case 3b: Case 3 with moreover γnj , respectively γ′nj , converging to excursions γ∞, respectively γ′∞
in Ξν for dcurves.

In Case 3a, since (4.3) holds, and in this way Case 3a reduces to Case 2.
Case 3b can be ruled out by arguments similar to those used for Case 1b.

Proof of Theorem 1.2. As mentioned, we deal only with κ ∈ (8/3, 4]. Assume (Ξνn)n≥0 and Ξν are
coupled on the same probability space as in Proposition 4.1, and that Cκ is sampled independent from
((Ξνn)n≥0,Ξν). We will deduce the a.s. convergence of ((ψκ,νn(x))x∈AL

)n≥0 to (ψκ,ν(x))x∈AL
in this

coupling.
Take w ∈ Oκ,ν . According to Lemma 4.8, there is nw ≥ 0 such that for n ≥ nw, we have w ∈ Oκ,νn .

Denote by ψw the conformal map from D to Oκ,ν uniquely determined by the normalization: ψw(0) = w
and ψ′w(0) > 0. According to Theorem 2.8, ψw extends continuously from D to Oκ,ν . Define ψw,n for
Oκ,νn similarly. Since (Oκ,νn , w) converges to (Oκ,ν , w) in the Carathéodory sense (Lemma 4.8), it follows
that ψw,n converges to ψw uniformly on compact subsets of D; see [Pom92, Theorem 1.8]. Since the family
(C \ Oκ,νn)n≥nw is uniformly locally connected (Lemma 4.9), ψw,n converges to ψw uniformly on D; see
[Pom92, Corollary 2.4].

Further, we write
ψκ,ν = ψw ◦ ψ̃w,

where ψ̃w is the Möbius transformation from D to D uniquely determined by the normalization

ψ̃w(−i) = ψ−1
w (−i), ψ̃w(i) = ψ−1

w (i), ψ̃w(1) = ψ−1
w (1).

In case −i or i are not simple points of ηκ,ν , the notions ψ−1
w (−i) and ψ−1

w (i) are to be understood as

ψ−1
w (−i) = lim

θ→−π
2

θ>−π
2

ψ−1
w (eiθ), ψ−1

w (i) = lim
θ→π

2
θ<π

2

ψ−1
w (eiθ).

Define ψ̃w,n for ψκ,νn and ψw,n as ψκ,νn = ψw,n ◦ ψ̃w,n similarly. Since ψ−1
w,n(−i), ψ−1

w,n(i), respectively

ψ−1
w,n(1), converges to ψ−1

w (−i), ψ−1
w (i), respectively ψ−1

w (1), we get that ψ̃w,n converges to ψ̃w uniformly

on D, and ψκ,νn converges to ψκ,ν uniformly on D.
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4.3 Continuous dependence of the driving functions and proof of Proposition 1.4

Suppose ηn is a continuous curve with continuous driving function ξ(n). In the literature, one is always
interested in the following question: whether the convergence of driving function ξ(n) implies the conver-
gence of curves ηn. See [SS12] and [KS17]. In this section, we are interested in the question in reverse
direction and the goal is to show Proposition 1.4. We first give a general conclusion on convergence of
driving functions out of convergence of curves: Proposition 4.10. Then Proposition 1.4 follows. Recall
that ψ0 is the conformal map from D to H defined in (1.5).

Proposition 4.10. Suppose (ηn(t))0≤t≤1 and (η(t))0≤t≤1 are parameterized continuous curves in D from
−i to +i. Assume the following hold.

(a) The curves ((ηn(t))0≤t≤1)n converges to (η(t))0≤t≤1 for the uniform topology:

‖ηn − η‖∞ := sup{|ηn(t)− η(t)| : 0 ≤ t ≤ 1} → 0, as n→∞. (4.4)

(b) The curves ψ0(ηn) and ψ0(η) satisfy assumptions in Proposition 2.12.

For each t ∈ (0, 1), let gt be the conformal map from the unbounded connected component of H\ψ0(η[0, t])

onto H with normalization limz→∞ |gt(z)− z| = 0. Denote by ξt = gt(ψ0(η(t))). Define g
(n)
t and ξ

(n)
t for

ψ0(ηn) similarly. Then we have the following conclusions.

(1) The half-plane capacity converges: for any t ∈ (0, 1),

sup{|hcap(ψ0(ηn[0, s]))− hcap(ψ0(η[0, s]))| : 0 ≤ s ≤ t} → 0, as n→∞. (4.5)

(2) When parameterized by the half-plane capacity, we have ψ0(ηn)→ ψ0(η) and ξ(n) → ξ for the local
uniform topology.

Proof. For each t ∈ (0, 1), define ft = ψ−1
0 ◦ gt ◦ψ0. From Schwarz reflection principle, ft can be extended

analytically in a neighborhood of i. Denote by Dt the connected component of D \ η[0, t] with i on the
boundary. From elementary calculation, the function ft is the conformal map from Dt onto D with the
normalization ft(i) = i, f ′t(i) = 1, and f ′′t (i) = 0. Moreover, we have

hcap(ψ0(η[0, t])) =
2

3
f ′′′t (i).

We define f
(n)
t = ψ−1

0 ◦ g
(n)
t ◦ ψ0 for ηn similarly.

For each t ∈ (0, 1), we have ηn[0, t] → η[0, t] in Hausdorff metric. Consequently, f
(n)
t → ft uniformly

when bounded away from η[0, t]. Therefore,

hcap(ψ0(ηn[0, t])) =
2

3
(f

(n)
t )′′′(i)→ 2

3
f ′′′t (i) = hcap(ψ0(η[0, t])), n→∞.

This gives the pointwise convergence of half-plane capacity. We will explain the uniform convergence
below. Fix t ∈ (0, 1). From [Law05, Lemma 4.1], one can show that, for any 0 ≤ s1 < s2 ≤ t,

‖fs1 − fs2‖∞ := sup{|fs1(z)− fs2(z)| : z ∈ Dt} ≤ C(η[0, t])
√

osc(η, s2 − s1, t), (4.6)

where osc(η, δ, t) := sup{|η(u) − η(v)| : 0 ≤ u, v ≤ t, |u − v| ≤ δ} and C(η[0, t]) is a constant depending
on the diameter of ψ0(η[0, t]). Similarly, we have

‖f (n)
s1 − f

(n)
s2 ‖∞ ≤ C(ηn[0, t])

√
osc(ηn, s2 − s1, t).
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From (4.4), we may choose Cηt large so that C(ηn[0, t]), C(η[0, t]) ≤ Cηt . Note that

osc(ηn, δ, t) ≤ 2‖ηn − η‖∞ + osc(η, δ, t).

Therefore, there exists a constant Cηt ∈ (0,∞) depending on η[0, t] such that

‖fs1 − fs2‖∞ ≤ C
η
t

√
osc(η, s2 − s1, t), ‖f (n)

s1 − f
(n)
s2 ‖∞ ≤ C

η
t

√
2‖ηn − η‖∞ + osc(η, s2 − s1, t). (4.7)

Combining with (4.4) and the pointwise convergence, we obtain the uniform convergence of half-plane
capacity (4.5). As a consequence, we have ψ0(ηn)→ ψ0(η) locally uniformly when parameterized by the
half-plane capacity. It remains to show the convergence of ξ(n).

Pick x > 0 large enough so that it has positive distance to ψ0(η[0, t]). For t ∈ (0, 1), define

ht(x) = gt(x)− ξt. (4.8)

Define h
(n)
t for ηn similarly. From Lemma 4.11, we have sup{|h(n)

s (x)−hs(x)| : 0 ≤ s ≤ t} → 0 as n→∞.
Therefore,

sup{|g(n)
s (x)− ξ(n)

s − gs(x) + ξs| : 0 ≤ s ≤ t} → 0, as n→∞. (4.9)

From (4.7) and pointwise convergence, we have sup{|g(n)
s (x) − gs(x)| : 0 ≤ s ≤ t} → 0 as n → ∞.

Combining with (4.9), we have sup{|ξ(n)
s − ξs| : 0 ≤ s ≤ t} → 0 as n → ∞. As the half-plane capacity

also converge as in (4.5), we have that ξ(n) → ξ locally uniformly when parameterized by the half-plane
capacity.

Lemma 4.11. Assume the same setup as in Proposition 4.10. Define ht(x) for η and define h
(n)
t (x) for

ηn as in (4.8). Then we have

sup{|h(n)
s (x)− hs(x)| : 0 ≤ s ≤ t} → 0, as n→∞.

Proof. The proof relies on a useful interpretation of the quantity ht(x). For η[0, t], denote byR(ψ0(η[0, t]))
the right-side of ψ0(η[0, t]) and by L(ψ0(η[0, t])) the left-side of ψ0(η[0, t]). Denote by B = (Bt)t≥0 the
Brownian motion in H starting from yi with y > 0 large. Define τ to be the first time that it exits
H \ ψ0(η[0, t]). From conformal invariance of Brownian motion, we have

ht(x) = lim
y→∞

πyPyi (Bτ ∈ R(ψ0(η[0, t])) ∪ (0, x)) .

Similarly, define τ (n) to be the first time that B exits H \ ψ0(ηn[0, t]). Then we have

h
(n)
t (x) = lim

y→∞
πyPyi (Bτ (n) ∈ R(ψ0(ηn[0, t])) ∪ (0, x)) .

For ε > 0, denote by Vε(ψ0(η[0, t])) the ε-neighborhood of ψ0(η[0, t]) and define T ε to be the first time
that B hits Vε(ψ0(η[0, t])). Choose n large enough so that

sup{|ψ0(ηn(s))− ψ0(η(s))| : 0 ≤ s ≤ t} ≤ ε/2. (4.10)

Then ψ0(ηn[0, t]) is contained in Vε(ψ0(η[0, t])). Denote by

V R
t = sup{ψ0(η[0, t]) ∩ R}, V L

t = inf{ψ0(η[0, t]) ∩ R}.

If τ < T ε, we have Bτ (n) = Bτ ∈ (V R
t + ε, x). Thus

ht(x)− h(n)
t (x) = lim

y→∞
πyPyi

(
R

(n)
t

)
− lim
y→∞

πyPyi
(
S

(n)
t

)
, (4.11)
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where

R
(n)
t =

{
T ε ≤ τ,Bτ ∈ R(ψ0(η[0, t])) ∪ (V R

t , V
R
t + ε),Bτ (n) 6∈ R(ψ0(ηn[0, t])) ∪ (0, x)

}
,

S
(n)
t =

{
T ε ≤ τ,Bτn ∈ R(ψ0(ηn[0, t])) ∪ (V R

t , V
R
t + ε),Bτ 6∈ R(ψ0(η[0, t])) ∪ (0, x)

}
.

Let us first estimate the probability of R
(n)
t . For δ > 0, consider a path in H \ψ0(η[0, t]) starting from

a point in
R(ψ0(η[0, t])) \B(ψ0(η(t)), δ)

and terminating at a point in
L(ψ0(η[0, t])) ∪ (−∞, V L

t ) ∪ (x,∞).

Denote by rt(δ) the infimum of the length of such paths. Recall that η satisfies Proposition 2.12 (a). We
have rt(δ) > 0 and rt(δ)→ 0 as δ → 0. From (4.10), we see that any path in H \ ψ0(η[0, t]) starting from
a point in

R(ψ0(η[0, t])) \B(ψ0(η(t)), δ)

and terminating at a point in
L(ψ0(ηn[0, t])) ∪ (−∞, V L

t ) ∪ (x,∞)

has length at least rt(δ) − ε. From Beurling estimate, there exists a universal constant c ∈ (0,∞) such
that

Pyi
(
R

(n)
t

)
≤Pyi

(
R

(n)
t ∩ {Bτ 6∈ B(ψ0(η(t)), δ)}

)
+ Pyi (T ε ≤ τ,Bτ ∈ B(ψ0(η(t)), δ))

≤c
√

ε

rt(δ)− ε
Pyi(T ε ≤ τ) + Pyi (T ε ≤ τ,Bτ ∈ B(ψ0(η(t)), δ)) .

Next, we estimate P(S
(n)
t ) in a similar way. For δ > 0, consider a path in H \ ψ0(η[0, t]) such that it

starts from a point in
L(ψ0(η[0, t])) ∪ (−∞, V L

t ) ∪ (x,∞) \B(ψ0(η(t)), δ)

and it terminates at a point in
R(ψ0(η[0, t])).

Denote by st(δ) the infimum of the length of such paths. Similarly, we have st(δ) > 0 and st(δ) → 0 as
δ → 0, and

Pyi
(
S

(n)
t

)
≤Pyi

(
S

(n)
t ∩ {Bτ 6∈ B(ψ0(η(t)), δ)}

)
+ Pyi (T ε ≤ τ,Bτ ∈ B(ψ0(η(t)), δ))

≤c
√

ε

st(δ)− ε
Pyi(T ε ≤ τ) + Pyi (T ε ≤ τ,Bτ ∈ B(ψ0(η(t)), δ)) .

Plugging these into (4.11), we have

|ht(x)− h(n)
t (x)| ≤ Cηt (ε, δ) + F ηt (δ),

where Cηt (ε, δ)→ 0 as ε→ 0 and F ηt (δ)→ 0 as δ → 0. The same analysis applies for all s ∈ [0, t]. Thus,
there exist C̃ηt (ε, δ) and F̃ ηt (δ) such that C̃ηt (ε, δ)→ 0 as ε→ 0 and F̃ ηt (δ)→ 0 as δ → 0 and that

sup{|hs(x)− h(n)
s (x)| : s ∈ [0, t]} ≤ C̃ηt (ε, δ) + F̃ ηt (δ), as long as (4.10) holds.

This gives the conclusion.

Proof of Proposition 1.4. The curves ηκ,νn and ηκ,ν satisfy the conditions in Proposition 4.10.

• From Theorem 1.2, (ηκ,νn)n≥0 and ηκ,ν satisfy Proposition 4.10 (a).

• From the proof of Proposition 1.3, (ηκ,νn)n≥0 and ηκ,ν satisfy all the conditions in Proposition 2.12.

Thus the conclusion follows.
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5 Identification with level lines of the GFF for κ = 4

5.1 Proof of Theorem 1.7

In this section, we will construct a level line of GFF and complete the proof of Theorem 1.7. Recall that
Φ is a zero-boundary GFF in D and ν is a finite non-negative Radon measure on AL such that the support
of ν equals AL and that ±i are not atoms of ν. The goal of this section is to construct a level line of
Φ + ν as in Definition 1.5. The strategy is to approximate such level line by the level line of GFF with
piecewise constant boundary data which is already well understood.

Let us introduce approximations of the measure ν. For n ≥ 1, we first decompose the arc AL into
subarcs of length π

n+1 :

θ
(n)
k =

π

2
+

(n+ 1− k)π

n+ 1
, k ∈ {0, 1, . . . , n+ 1}.

Note that θ
(n)
n+1 = π

2 < θ
(n)
n < · · · < θ

(n)
1 < θ

(n)
0 = 3π

2 . Denote by A
(n)
k the subarc of AL:

A
(n)
k =

{
eiθ : θ

(n)
k+1 < θ ≤ θ(n)

k

}
, k ∈ {0, 1, . . . , n}.

Define the measure νn on AL:

νn = 2λ1
A

(n)
0

σ∂D +
n∑
k=1

ν
(
A

(n)
k

)
σ∂D

(
A

(n)
k

)1
A

(n)
k

σ∂D. (5.1)

Denote by η(n) = η4,νn the curve constructed from CLE4 and the Poisson point process of intensity µDνn .
Then we have the following.

• From [ALS20], η(n) can be coupled with Φ as the level line of Φ + νn.

• From conclusions recalled in Section 2.4, in the above coupling, η(n) is a.s. determined by Φ.

In particular, the law of η(n) is the same as SLE4(ρ
(n)
n , . . . , ρ

(n)
1 ) in D from −i to i with force points

(eiθ
(n)
n , . . . , eiθ

(n)
1 ). Comparing with (2.6), the parameters (ρ

(n)
n , . . . , ρ

(n)
1 ) are determined as follows:

ρ̄
(n)
k =

1

λ

ν
(
A

(n)
k

)
σ∂D

(
A

(n)
k

) − 2, k ∈ {1, . . . , n}; ρ
(n)
k = ρ̄

(n)
k − ρ̄

(n)
k−1, k ∈ {1, . . . , n};

with the convention that ρ
(n)
0 = 0. From Proposition 1.4, the sequence η(n) converges to η4,ν .

Lemma 5.1. Suppose ν is a finite non-negative Radon measure on AL such that the support of ν equals AL

and Atom∗conv(ν) = ∅. Then the sequence (νn)n converges weakly to ν. Consequently, when parameterized
by the half-plane capacity, η̃(n) := ψ0(η(n)) converges in law to η̃4,ν := ψ0(η4,ν) and the driving function
of η̃(n) converges in law to the driving function of η̃4,ν for the local uniform topology.

We already know that η(n) can be coupled with Φ as a level line of Φ + νn. The goal is to argue that
η can be coupled with Φ as a level line of Φ + ν. To this end, the following lemma plays an essential role.

Lemma 5.2. Suppose η is a continuous curve in D from −i to i such that ψ0(η) has continuous driving
function ξ. Suppose Φ is zero-boundary GFF in D. Then the pair (Φ, η) can be coupled such that η is a
level line of Φ + ν as in Definition 1.5 if and only if for every choice of z ∈ D, the process (νt(z))t≥0 is
a Brownian motion with respect to the filtration generated by ξ when parameterized by minus log of the
conformal radius:

log CR(z,D)− log CR(z,D \ η[0, t]).
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Proof. The proof follows [SS13, Section 2.2], see also [PW17, Lemma 2.16].

Proof of Theorem 1.7. Suppose η(n) is parameterized by the half-plane capacity of ψ0(η(n)) and define νn,t
as in Definition 1.5. Applying Lemma 5.2 to η(n), for any z ∈ D, the process (νn,t(z))t≥0 is a Brownian
motion when parameterized by

C
(n)
t (z) := log CR(z,D)− log CR(z,D \ η(n)[0, t]).

Suppose η4,ν is parameterized by the half-plane capacity of ψ0(η4,ν) and define νt as in Definition 1.5.
We wish to argue that η4,ν can be coupled with Φ as a level line of Φ + ν. Fix an arbitrary z ∈ D. From
Lemma 5.2, we need to argue that (νt(z))t≥0 is a Brownian motion when parameterized by

Ct(z) = log CR(z,D)− log CR(z,D \ η[0, t]).

It suffices to show that (νn,t(z))t≥0 converges to (νt(z))t≥0 and (C
(n)
t (z))t≥0 converges to (Ct(z))t≥0 for

the local uniform topology on processes parametrized by the time t. To this end, we use similar analysis
as in Section 4.3.

We parameterize ψ0(η4,ν) by the half-plane capacity and denote by gt be the conformal map from
the unbounded connected component of H \ ψ0(η4,ν [0, t]) with normalization limz→∞ |gt(z)− z| = 0. Set

ft = ψ−1
0 ◦ gt ◦ ψ0. Define g

(n)
t and f

(n)
t for η(n) similarly.

From the conformal covariance of the conformal radius, we have

Ct(z) = log |f ′t(z)| − log CR(ft(z),D) + log CR(z,D);

C
(n)
t (z) = log |(f (n)

t )′(z)| − log CR(f
(n)
t (z),D) + log CR(z,D).

From the proof of Proposition 4.10, (f
(n)
t (z))t≥0 converges to (ft(z))t≥0 and ((f

(n)
t )′(z))t≥0 converges to

(f ′t(z))t≥0 for the local uniform topology, this implies that (C
(n)
t (z))t≥0 converges to (Ct(z))t≥0 for the

local uniform topology.
We further claim that (νn,t(z))t≥0 converges to (νt(z))t≥0 for the local uniform topology. The conver-

gence of 2λHD\η(n)[0,t](z,L(η(n)[0, t])) towards 2λHD\η[0,t](z,L(η[0, t])), locally uniformly in t, is similar to
Lemma 4.11. It remains to check the convergence of∫

∂D
HD\η(n)[0,t](z, x)dνn(x) (5.2)

towards ∫
∂D
HD\η[0,t](z, x)dν(x). (5.3)

Without loss of generality, we assume that η and the η(n) are defined on the same probability space such
that the convergence of the η(n) towards η is a.s. for the local uniform topology. Denote by At(z) the
maximal open arc of ∂D that can be accessed from z without hitting η[0, t]. Then the following holds a.s.:

• Both HD\η(n)[0,t](z, x) and HD\η[0,t](z, x) are bounded from above by HD(z, x).

• HD\η(n)[0,t](z, x) converges to HD\η[0,t](z, x) uniformly for x belonging to compact subsets of At(z),
and locally uniformly in t.

• HD\η(n)[0,t](z, x) converges to 0 uniformly for x belonging to compact subsets of ∂D \ At(z), and
locally uniformly in t.

Note that we do not claim that HD\η(n)[0,t](z, x) converges to HD\η[0,t](z, x) for x ∈ ∂At(z), and the

convergence of η(n) to η is not sufficient to ensure that. However, this is not needed, since by Lemma 3.6,
a.s. for every t, ν(∂At(z)) = 0. So the three points listed above are sufficient to ensure the convergence
of (5.2) towards (5.3).
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5.2 Proof of Theorem 1.8

We may repeat the same argument in [PW17, Section 4] and arrive at the following conclusion.

Proposition 5.3. Suppose Φ is zero-boundary GFF in D. Fix ε > 0. Suppose ν is a finite non-negative
Radon measure on AL such that

ν ≥ ε1AL
σ∂D. (5.4)

Suppose that ην is a continuous simple curve in D from −i to i with continuous driving function. Assume
that ην is coupled with Φ as a level line of Φ + ν. Then the level line coupling is unique and ην is almost
surely determined by Φ.

The proof of Proposition 5.3 follows the same argument in [PW17, Section 4]. To be self-contained,
we briefly summarize the proof below. The proof relies on the following three lemmas 5.4, 5.5 and 5.6.

−ε

−ε

−2λ
ν − F ≥ 0

−2λ+ ν − F 0

I

Figure 5.1: Given ην [0, Tδ], let Φ̃ be Φ restricted to the connected component of D \ ην [0, Tδ] with i on
the boundary. Then the boundary data for −Φ̃−F is as follows: it equals F on ∂D, it equals −2λ+ν−F
to the left side of ην [0, Tδ], and it equals ν − F to the right side of ην [0, Tδ]. Note that ν − F ≥ 0. Thus
η′F does not hit the union the union of the right side of ην [0, Tδ] and AR (the dashed line marked in red).

Lemma 5.4. Assume the same assumptions as in Proposition 5.3. Suppose there is an open arc I of AL

such that ν ≥ 2λ1Iσ∂D. Then ην ∩ I = ∅ almost surely.

Proof. We prove by contradiction. Suppose ην does hit I with positive probability. Then there exists an
open arc J ⊂ J ⊂ I so that ην hits J with positive probability. On this event, for δ > 0, define Tδ to the
first time that ην gets within δ of J . Let F be the bounded harmonic function in D with the following
boundary data: it equals 2λ on I, it equals ε on AL \ I, and it equals zero on AR. Then it is clear that
ν(z) ≥ F (z) for all z ∈ D. Let η′F be the level line of −Φ−F in D from i to −i and assume that the triple
(Φ, ην , η

′
F ) is coupled so that ην and η′F are conditionally independent given Φ. Note that F is piecewise

constant on ∂D and that η′F does not hit I almost surely.
For any δ > 0, given ην [0, Tδ], let Φ̃ be Φ restricted to the connected component of D \ ην [0, Tδ] with i

on the boundary. Then, given ην [0, Tδ], the curve η′F is coupled with −Φ̃ as the level line of −Φ̃−F whose
boundary data is shown in Figure 5.1 up to the first hitting time of ην [0, Tδ]. Note that such boundary
data is regulated. From [PW17, Lemma 4.1], the curve η′F does not hit the union of the right side of
ην [0, Tδ] and AR. This implies that η′F has to get within δ of J . This holds for any δ > 0. Let δ → 0, it
implies that η′F hits J ⊂ I with positive probability, contradiction.

Lemma 5.5. Assume the same assumptions as in Proposition 5.3. For any fixed x0 ∈ AL, the curve ην
does not hit {x0} almost surely.
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Proof. Let F be the bounded harmonic function in D with the following boundary data: it equals ε on AL

and it equals zero on AR. Then ν(z) ≥ F (z) for all z ∈ D. Let η′F be the level line of −Φ− F in D from
i to −i and assume that the triple (Φ, ην , η

′
F ) is coupled so that ην and η′F are conditionally independent

given Φ. Note that F is piecewise constant on ∂D and that η′F does not hit {x0} almost surely. If ην hits
{x0} with positive probability, by the same argument as in the proof of Lemma 5.4, it would imply that
η′F hits {x0} with positive probability, contradiction.

0

ν1 ≥ ε

2λ+ ν1 − ν2

ν1 − ν2

Figure 5.2: Given η′ν2 [0, τ ′], let Φ̃ be Φ restricted to the connected component of D \ η′ν2 [0, τ ′] with −i on

the boundary. Then the boundary data for Φ̃ + ν1 is as follows: it equals ν1 on ∂D, it equals 2λ+ ν1− ν2

to the right side of η′ν2 [0, τ ′], and it equals ν1 − ν2 to the left side of η′ν2 [0, τ ′]. As 2λ + ν1 − ν2 ≥ 2λ,
Lemma 5.4 and absolute continuity imply that ην1 does not hit the right side of η′ν2 [0, τ ′]. Let x′ be
the last point of ∂D ∩ η′ν2 [0, τ ′] (the solid point marked in red). As the boundary data is greater than ε
in neighborhood of x′, Lemma 5.5 and absolute continuity imply that ην1 does not hit the point x′. In
summary, ην1 does not hit the union of the right side of η′ν2 [0, τ ′] and the point {x′} (the dash line marked
in red). This implies that the point η′ν2(τ ′) stays to the left of ην1 .

Lemma 5.6. Fix ε > 0. Suppose ν1, ν2 are finite non-negative Radon measures on AL such that

ν1 ≥ ν2, and ν1 ≥ ε1AL
σ∂D.

Suppose that ην1 is a continuous simple curve in D from −i to i with continuous driving function and
suppose η′ν2 is a continuous simple curve in D from i to −i with continuous driving function. Assume
that ην1 is coupled with Φ as a level line of Φ + ν1 from −i to i and η′ν2 is coupled with Φ as a level line
of −Φ − ν2 from i to −i and that the triple (Φ, ην1 , η

′
ν2) is coupled so that ην1 and η′ν2 are conditionally

independent given Φ. Then ην1 stays to the right of η′ν2 almost surely.

Proof. As both ην1 and η′ν2 are simple, it suffices to show that, for any η′ν2-stopping time τ ′, the point

η′ν2(τ ′) is to the left of ην1 . Given η′ν2 [0, τ ′], let Φ̃ be Φ restricted to the connected component of D\η′ν2 [0, τ ′]

with −i on the boundary. Then, given η′ν2 [0, τ ′], the curve ην1 is coupled with Φ̃ as a level line of Φ̃ + ν
whose boundary data is shown in Figure 5.2 up to the first hitting time of η′ν2 [0, τ ′]. From Lemmas 5.4
and 5.5, the curve ην1 does not hit the right side of η′ν2 [0, τ ′], see detail in Figure 5.2. This implies the
point η′ν2(τ ′) is to the left of ην1 as desired.

Now, we are ready to complete the proof of Proposition 5.3.

Proof of Proposition 5.3. Suppose η′ν is a continuous simple curve in D from i to −i with continuous
driving function. Suppose that η′ν is coupled with Φ as a level line of −Φ− ν from i to −i and that the
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triple (Φ, ην , η
′
ν) is coupled so that ην and η′ν are conditionally independent given Φ. From Lemma 5.6,

we know that ην stays to the right of η′ν and that ην stays to the left of η′ν almost surely. As both of them
are simple, we have ην = η′ν (viewed as sets) almost surely. Since ην and η′ν are coupled with Φ so that
they are conditionally independent given Φ, the fact ην = η′ν implies that ην is almost surely determined
by Φ.

Corollary 5.7. Suppose Φ is zero-boundary GFF in D. Fix ε > 0. Suppose ν1, ν2 are finite non-negative
Radon measures on AL such that

ν1 ≥ ν2, and ν1 ≥ ε1AL
σ∂D. (5.5)

Suppose that ην1 , ην2 are continuous simple curves in D from −i to i with continuous driving functions.
Assume that ην1 (resp. ην2) is coupled with Φ as a level line of Φ + ν1 (resp. of Φ + ν2), then ην1 stays
to the right of ην2 almost surely.

Proof. Suppose η′ν1 is a continuous simple curve in D from i to −i with continuous driving function.
Suppose that η′ν1 is coupled with Φ as a level line of −Φ − ν1 from i to −i and that (Φ, ην1 , ην2 , η

′
ν1) is

coupled so that ην1 , ην2 and η′ν1 are conditionally independent given Φ. From Lemma 5.6, the curve η′ν1
stays to the right of ην2 almost surely. From the proof of Proposition 5.3, we have ην1 = η′ν1 (viewed as
sets) almost surely. These imply that ην1 stays to the right of ην2 almost surely as desired.

We emphasize that in the above proof of Proposition 5.3, we follow the method in [PW17] and the
assumption (5.4) plays an essential role. In the following, we will remove the assumption and complete
the proof of Theorem 1.8.

Proof of Theorem 1.8. Consider (Φ, η4,ν) to be coupled as in Theorem 1.7. For n ≥ 1, denote νn :=
ν+ 2−n. Let ηνn be the level line of Φ + νn from −i to i. The existence of ηνn is ensured by Theorem 1.7.
Its uniqueness and measurability with respect to Φ is given by Proposition 5.3. Moreover, for every n ≥ 1,
ηνn is distributed as η4,νn given by (1.4). However, the sequence (ηνn)n≥1 is a priori not coupled in the
same way as the sequence (η4,νn)n≥1 in Section 4.2 in the proof of Theorem 1.2.

According to Corollary 5.7, ηνn stays a.s. to the right of η4,ν and to the right of ηνn+1 , for every n ≥ 1.
Let O4,ν denote the connected component of D\η4,ν to the right of η4,ν , and On the connected component
of D \ ηνn to the right of ηνn . A.s., On ⊂ On+1. Denote

O∞ :=
⋃
n≥1

On.

We have that O∞ ⊂ O4,ν a.s. Moreover, Theorem 1.2 ensures that O∞ has the same distribution as O4,ν .
This implies that O∞ = O4,ν a.s. Since the sequence (ηνn)n≥1 is measurable with respect to Φ, we get
that O4,ν , and thus η4,ν , are measurable with respect to Φ.

5.3 An equation for the driving function

Let ν be a finite non-negative Radon measure on AL. We assume that ν has full support on AL. We also
assume that a.s., the curve η4,ν does not hit Atom(ν). A sufficient condition for that is given by Lemma
3.6. Denote ζν the following Radon measure on R:

dζν(x) :=
1

2
(1 + x2)d((ψ0)∗ν)(x),

where ψ0 is the Möbius transformation from D to H given by (1.5). ζν is a non-negative Radon measure
on (−∞, 0] satisfying ∫

(−∞,0]

1

1 + x2
dζν(x) < +∞.

37



On (0,+∞), ζν equals 0. We see ζν as an analogue of the boundary condition (2.8). In particular, if ν is
of the form ν = a1AL

σ∂D with a > 0 a constant, then ζν is a piecewise constant function, equal to a on
(−∞, 0) and 0 on (0,+∞). Similarly to (2.8), we define ρν by

ρν := − 1

λ

d

dx
ζν − 2δ0,

where δ0 is the Dirac measure at 0 and where the derivative d
dx is to be taken in the sense of generalized

function. In general, ρν is an order 1 generalized function on R which is 0 on (0,+∞). Given f ∈ C1(R)
with compact support, by integration by parts, we have that∫

R
fρνdx = −2f(0) +

1

λ

∫
R
f ′(x)dζν(x). (5.6)

Consider now the curve η4,ν , parametrized by the half-plane capacity. Denote by gt be the conformal
map from the unbounded connected component of H\ψ0(η4,ν [0, t]) with normalization limz→∞ |gt(z)−z| =
0, and ξt the driving function in the corresponding Loewner chain. Following (2.10), we are interested in
giving a meaning to ∫

(−∞,0]

ρνdx

ξt − gt(x)
. (5.7)

Denote
xL(t) := min{x ∈ (−∞, 0] : x ∈ ψ0(η4,ν [0, t])}.

Given (5.6), we set

Zt := − 2

ξt − gt(0−)
+

1

λ

∫
(−∞,xL(t)]

g′t(x)dζν(x)

(ξt − gt(x))2
. (5.8)

If ν is actually a piecewise constant function on AL, then Zt coincides with (5.7). Denote ft = ψ−1
0 ◦gt◦ψ0,

and let Ut ∈
(
− 3

2π,
1
2π
)

such that ψ0(eiUt) = ξt. Then Zt can be expressed as

Zt =
(eiUt − i)(ft((−i)−)− i)

eiUt − ft((−i)−)
− i(eiUt − i)2

2λ

∫
AL(t)

xf ′t(x)

(eiUt − ft(x))2
dν(x), (5.9)

where
ft((−i)−) = lim

θ→−π
2

θ<−π
2

ft(e
iθ),

and AL(t) is the connected component of AL \ η4,ν [0, t] adjacent to i.

Proposition 5.8. Let ν be a finite non-negative Radon measure on AL with full support and assume η4,ν

is parametrized by the half-plane capacity. Also assume that a.s. the curve η4,ν does not hit Atom(ν).

(1) Let Zt be given by (5.8). Then Zt is well defined and continuous on the subset of times

Iν := {t ∈ [0, Tmax) : η4,ν(t) 6∈ AL}. (5.10)

(2) Let (νn)n≥0 be a sequence of finite non-negative Radon measures on AL with full support, converging
weakly to ν. Assume that for every n ≥ 0, a.s. η4,νn does not hit Atom(νn). Assume that each η4,νn

is parametrized by the half-plane capacity and that η4,ν and all the η4,νn are coupled on the same

probability space such that the sequence (η4,νn)n≥0 converges a.s. locally uniformly to η4,ν . Let Z
(n)
t

be defined as Zt, but with νn and η4,νn instead of ν and η4,ν . Then, as n→ +∞, Z
(n)
t converges a.s.

to Zt uniformly on compact subsets of Iν .

Proof. We will use the expression (5.9). Observe that AL(t) is constant on connected components of Iν .
For the first point we use the following:
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• ft is continuous on AL(t), locally uniformly in t for t ∈ Iν ; see (4.6).

• f ′t is bounded on AL(t), locally uniformly in t for t ∈ Iν . Indeed, t ∈ [0, Tmax) and x ∈ AL(t),

|f ′t(x)| = 2πHD\η4,νn [0,t]((ft)
−1(0), x) ≤ 2πHD((ft)

−1(0), x).

• f ′t is continuous on compact subsets of AL(t), locally uniformly in t for t ∈ Iν . Indeed, one can
use the Schwarz reflection principle so as to analytically extend ft across AL(t), and then Cauchy’s
integral formula to express f ′t through ft.

• For every t ∈ Iν , eiUt 6∈ ft(AL(t)).

Now let us check the second point. Let T
(n)
max ∈ (0,+∞] denote the maximal parameter in the

parametrization of η4,νn by half-plane capacity. Denote

Iνn := {t ∈ [0, T (n)
max) : η4,νn(t) 6∈ AL}.

Denote A
(n)
L (t) the connected component of AL \ η4,νn [0, t] adjacent to i. We will also use the notations

U
(n)
t and f

(n)
t in the case of η4,νn , with straightforward meaning. Every compact subset of Iν is contained

in Iνn for n large enough. Moreover, for every t ∈ Iν ,

AL(t) ⊂ lim inf
n→+∞

A
(n)
L (t).

The equality does not hold in general. The following holds.

• U
(n)
t converges to Ut, locally uniformly in t; see Proposition 1.4.

• For every t ∈ Iν and K compact subset of A
(n)
L (t) ∪ {i}, f (n)

t , respectively (f
(n)
t )′ converges to ft,

respectively f ′t , uniformly on K and locally uniformly in t.

• For every n ≥ 0, t ∈ [0, T
(n)
max) and x ∈ A(n)

L (t),

|(f (n)
t )′(x)| = 2πHD\η4,νn [0,t]((f

(n)
t )−1(0), x) ≤ 2πHD((f

(n)
t )−1(0), x).

In particular, for every t0 ∈ [0, Tmax),

lim sup
n→+∞

sup
t∈[0,t0]

sup
x∈A(n)

L (t)

|(f (n)
t )′(x)| < +∞.

• For every t0 ∈ [0, Tmax),

lim
n→+∞

sup
t∈[0,t0]

sup
x∈A(n)

L (t)\AL(t)

|(f (n)
t )′(x)| = 0.

This implies the convergence.

The following proposition tells that the driving function ξt satisfies the SDE

dξt = 2dBt + Ztdt

on the set of times (5.10), where (Bt)t≥0 is a standard Brownian motion.
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Proposition 5.9. Let ν be a finite non-negative Radon measure on AL with full support and assume η4,ν

is parametrized by the half-plane capacity. Also assume that a.s. the curve η4,ν does not hit Atom(ν). Let
(Ft)t≥0 be the natural filtration of η4,ν [0, t ∧ Tmax]. Fix t0 > 0. Let Et0 be the event defined by t0 < Tmax

and by η4,ν(t0) 6∈ AL. Let be the stopping time

τ(t0) := sup{t ∈ [t0, Tmax) : η4,ν [t0, t] ∩AL = ∅}.

Then, conditionally on the event Et0, the stochastic process(
ξt∧τ(t0) −

∫ t∧τ(t0)

t0

Zsds
)
t≥t0

is a continuous martingale for the filtration (Ft)t≥t0, with quadratic variation given by

4(t ∧ τ(t0)− t0).

Proof. The result is true in ν is a piecewise constant function. For general ν, one takes an approximation
of ν for the weak topology on measures by piecewise constant functions. For instance, one can take (5.1).
Then the result follows by convergence, by applying Proposition 5.8.

6 Some open questions

Here we present some open questions related to this work:

1. In Proposition 3.4 we present a necessary and a sufficient condition for the presence of double points
in ηκ,ν , but the two do not match. What is the optimal criterion for the presence of double points?

2. Similarly, in Lemma 3.6 we give a necessary condition for ηκ,ν hitting an atom of ν with positive
probability. But what is the optimal criterion for this?

3. If ν is a Dirac measure at −i, then ηκ,ν draws a bubble from −i to −i in D. What is the distribution
of this bubble? We believe that it is singular to the usual SLEκ bubble measure [SW12, Section 4]
because of the behaviour near −i.

4. If ν is a Dirac measure at −i and κ = 4, what is the harmonic extension of ν inside the bubble
created by η4,ν ? Does an uniformizing map for this bubble actually admit a derivative at −i ?

5. In Proposition 5.9 we give an equation for the driving function of η4,ν when the curve is away from
the boundary. But what happens when the curve hits the boundary? Is there an additional term
accounting for the interaction with the boundary? This might be the case in some situations, given
that η4,ν can actually intersect the boundary with a positive Lebesgue measure (Proposition 3.10).

6. What would be an equation for the driving function of ηκ,ν for κ 6= 4? This is not known even for
ν being a piecewise constant function, but it is known that the curve does not belong in general to
the SLEκ(ρ) family.

A Appendix: Non-negative harmonic functions

Here we recall some classical properties of non-negative harmonic functions.

Proposition A1. Let f be a non-negative harmonic function on the unit disk D. Then there is a finite
non-negative Radon measure ν on ∂D, such that for every z ∈ D,

f(z) =

∫
∂D
HD(z, x)dν(x), (A.1)

where HD(z, x) is the Poisson kernel on D (2.1). Moreover, the measure ν is unique.
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Proof. Let us first prove the existence of ν. For ε ∈ (0, 1), denote the following absolutely continuous
measure on ∂D:

dνε(x) := f((1− ε)x)σ∂D(dx).

For every z ∈ D with |z| < 1− ε, we have that

f(z) =

∫
∂D
HD((1− ε)−1z, x)dνε(x),

In particular, the total mass of νε is always 2πf(0). Thus, the family (νε)ε∈(0,1) is relatively compact for
the weak topology of measures, and admits subsequential limits as ε → 0. Any such subsequential limit
ν satisfies (A.1).

Now let us show the uniqueness. Let ν be such that (A.1) is satisfied. Let u be a continuous function
on ∂D. We have that∫

∂D
u(x)f((1− ε)x)σ∂D(dx) =

∫
∂D
dν(y)

(∫
∂D
u(x)HD((1− ε)x, y)σ∂D(dx)

)
.

The function

y 7→
∫
∂D
u(x)HD((1− ε)x, y)σ∂D(dx)

converges uniformly to u as ε→ 0. Thus,

lim
ε→0

∫
∂D
u(x)f((1− ε)x)σ∂D(dx) =

∫
∂D
u(y)dν(y).

This characterizes ν.

Corollary A2. A function f : D→ R is of form

f(z) =

∫
AL

HD(z, x)dν(x), z ∈ D,

where ν is a finite non-negative Radon measure on AL if and only if f is non-negative harmonic on D,
and for every x ∈ AR,

lim
z→x
z∈D

f(z) = 0.
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Ann. Inst. Henri Poincaré Probab. Stat., 53(4):2229-2259, 2017.

[RS05] Steffen Rohde and Oded Schramm. Basic properties of SLE. Ann. of Math. (2), 161(2):883-924,
2005.

[She09] Scott Sheffield. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79-129,
2009.

[SS09] Oded Schramm and Scott Sheffield. Contour lines of the two-dimensional discrete Gaussian free
field. Acta Math., 202(1):21-137, 2009.

[SS12] Scott Sheffield and Nike Sun. Strong path convergence from Loewner driving function conver-
gence. Ann. Probab., 40(2):578-610, 2012.

[SS13] Oded Schramm and Scott Sheffield. A contour line of the continuum Gaussian free field. Probab.
Theory Related Fields, 157(1-2):47-80, 2013.

[SW12] Scott Sheffield and Wendelin Werner. Conformal loop ensembles: the Markovian characteriza-
tion and the loop-soup construction. Ann. of Math. (2), 176(3):1827-1917, 2012.

[WW13] Wendelin Werner and Hao Wu. From CLE(κ) to SLE(κ, ρ). Electron. J. Probab., 18: article no.
36, 1-20, 2013.

[WW17] Menglu Wang and Hao Wu. Level lines of Gaussian Free Field I: Zero-boundary GFF. Stochastic
Process. Appl., 127(4):1045-1124, 2017.

42


	Introduction
	Continuity of the envelop
	Identification of the envelop when =4

	Preliminaries
	Local connectedness and cut points
	Poisson point processes of boundary to boundary excursions
	Loewner chain and SLE
	Gaussian free field and level lines

	Construction of chordal curves
	Proof of Propositions 1.1 and 1.3
	Local absolute continuity with respect to `39`42`"613A``45`47`"603ASLE away from the boundary
	Curves hitting the boundary with positive measure

	Continuous dependence on boundary conditions
	Continuous dependence of the Poisson point process of excursions
	Continuous dependence of the curve , and proof of Theorem 1.2
	Continuous dependence of the driving functions and proof of Proposition 1.4

	Identification with level lines of the GFF for =4
	Proof of Theorem 1.7
	Proof of Theorem 1.8
	An equation for the driving function

	Some open questions
	Appendix: Non-negative harmonic functions

