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Summary

In this paper we consider the 
-stabilization of nth-order linear time-invariant (LTI)
dynamical systems using Multiplicity-Induced-Dominancy (MID)-based controller
design in the presence of delays in the input or the output channels. A sufficient con-
dition is given for the dominancy of a real root with multiplicity at least n + 1 and
at least n using an integral factorization of the corresponding characteristic function.
A necessary condition for 
-stabilizability is analyzed utilizing the property that the
derivative of a 
-stable quasipolynomial is also 
-stable under certain conditions.
Sufficient and necessary conditions are given for systems with real-rooted open-
loop characteristic function: the delay intervals are determined where the conditions
for dominancy and 
-stabilizability are satisfied. The efficiency of the proposed
controller design is shown in the case of a multi-link inverted pendulum.

KEYWORDS:
feedback system, time delay, stabilizability, characteristic equation, dominant roots

1 INTRODUCTION

Stabilization of unstable equilibria and orbits in the presence of communication delay is an important and challenging task in
engineering applications1,2,3. Finding the control parameters that allow stable operation for large feedback delay is not a trivial
task4. Stability diagrams can be used to visualize stability properties in the space of control parameters5,6,7. When performance
with respect to settling time has to be optimized in linear time-invariant systems then one has to deal with 
-stability in order to
minimize the corresponding spectral abscissa or, equivalently, to maximize the decay rate of the closed-loop system’s solutions.
A negative spectral abscissa can also be interpreted as a kind of robustness indicator, i.e., a measure of stability reserve against
parameter perturbation. Time delay in the feedback loop is generally seen as a source of unstable behavior. Typically, as the
feedback delay gets larger, the stable region in the stability diagrams (charts) gets smaller. A challenging task is to find the
maximum delay (critical delay), for which the system can still be stabilized by some control law, but for larger delay, it is not
possible any more. For a fixed control law, such a delay is called (generalized) delay margin if there exists only one (several)
stable delay interval(s). The critical delay can also be interpreted to achieve a given spectral abscissa 
 < 0, i.e., to achieve

-stabilizability.
On the other hand, delay in the feedback loop can also be considered as a control parameter. To the best of the authors’ knowl-

edge, the idea of exploiting the delay effect in controller design was first introduced in8 where it is shown that the conventional
proportional controller equipped with an appropriate time-delay performs an averaged derivative action and thus it can replace

0Abbreviations: LTI, linear time-invariant; MID, multiplicity-induced-dominancy
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the proportional-derivative controller. Furthermore, it was stressed in9 that time-delay may have a stabilizing effect in the con-
trol design. Indeed, the closed-loop stability is guaranteed precisely by the existence of the delay. In the context of mechanical
engineering problems, the effect of time-delay was emphasized in6 where concrete applications are studied, such as the machine
tool vibrations and robotic systems.
It is worth noting that the real part of the rightmost root for quasipolynomial function corresponding to stable time-delay

systems is actually the exponential decay rate of its time-domain solution, see for instance10 for an estimate of the decay rate
for stable linear delay systems. Also, to the best of the authors’ knowledge, the first time an analytical proof of the dominancy
of a multiple spectral value for the scalar equation with a single delay was presented in11. For reduced-order models (mainly
first- and second-order systems), the link between multiple spectral values and the spectral abscissa corresponding to time-delay
systems were observed in several recent works, see for instance12,13,14,15. In particular, an analytical proof of the dominancy
of multiple spectral value thanks to an integral representation of quasipolynomial functions was proposed in16 for scalar delay
equations, then extended to second-order systems controlled by a delayed proportional feedback in17,18,19 and applied in damping
active vibrations for a piezo-actuated beam in20. This property was named Multiplicity-Induced-Dominancy (MID) in21 where
the dominancy of the multiple spectral value was parametrically characterized and proven using the argument principle. It
appears that the emphasized integral representation of quasipolynomials satisfying the MID property is closely related to some
degenerate hypergeometric functions as proved in22.
In this paper, we analyse the general nth-order linear time-invariant dynamical system with single delay. Relying on the MID

property, we propose a unified methodology to assess the critical delay associated with 
-stabilizability based on the integral
representation of quasipolynomial as in the works23,18,17,24. Furthermore, we extend the idea of21 to nth-order setting in exploiting
the root location of the open-loop characteristic polynomial in order to have theMID property of the overall system. In particular,
we analyze real-rooted open-loop systems. Such systems arise in many biological applications. Trivial cases are given by first-
order scalar systems, e.g, in the description of the control of blood cell dynamics25, the pupil light reflex26 or simple models of
human postural sway27. Real-rooted systems typically arise when a mechanical system is set to its completely unstable position,
i.e., the number of unstable characteristic roots is N for an N-degree-of-freedom system. Human balancing can be mentioned
as example, where single, double or even multiple link inverted pendulum models are used to describe human standing, walking
or running28,29,30,31,32. Balancing on rolling or pinned balance board is another example where the governing equation resembles
that of a double inverted pendulum33,34. The ball-and-beam balancing task can also be mentioned as a special case: actually
s = 0 is a double root of the open-loops system35. In human controlled tasks, the critical delay is directly linked to the human
reaction delay and is therefore a crucial parameter in respect of performance. Stick balancing on the fingertip can be used to
demonstrate the relation between critical delay and stabilizability. Shorter sticks are more difficult to balance on the fingertip
since they fall faster than the time required for the human subject to perform a corrective movement. Actually, most humans
cannot balance a stick of length shorter than 30 cm on their fingertip.
The rest of the paper is organized as follows. The problem is stated in Subsection 1.1 and Subsection 1.2 presents a motivating

example. Section 2 collects some preliminary results. Subsection 2.1 provides the main ingredient of the dominancy proof,
which consists in writing quasipolynomial function with multiple ((n+ 1)-fold) real root as an integral operator. Subsection 2.2
gives a similar result for an at least n-fold real root. Subsection 2.3 reviews a necessary condition for 
-stabilizability. The main
results are presented in Section 3 where sufficient conditions for the dominancy of a multiple real root and necessary conditions
for 
-stabilizability are provided for a real-rooted plant. The results of the paper are illustrated through the stabilization of an
N-link inverted pendulum in Section 4. Finally, an outlook to more general systems is discussed in Section 5.

1.1 Problem statement
We consider delayed feedback systems whose characteristic function is a quasipolynomial of the form

D(s) = P (s) + e−s�Q(s) , (1)

where the degrees of polynomials P (s) and Q(s) are n and n − 1, respectively:

P (s) = ansn + an−1sn−1 + ... + a1s + a0 ,

Q(s) = bn−1sn−1 + bn−2sn−2 + ... + b1s + b0 .
(2)

Assume that the plant parameters ai are known and fixed, such that an > 0. Furthermore, assume that coefficients bi inQ(s) can
be considered as independently adjustable control parameters. The problem we are focusing on can be summarized as follows:
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for what values of � is system (1) 
-stabilizable (i.e. ∃ bi(aj , �) for which the real parts of all roots of (1) are less than 
<0
for some given 
). To give a sufficient condition for 
-stabilizability we utilize the MID-property: the control parameters bi are
tuned in a way that the characteristic function D(s) has a real root s0 with multiplicity n + 1.
Note that when derivative actions are involved in the feedback loop then implementation of the derivative term may lead to an

improperly-posed problem36,37, which may destroy the internal stability. The arguments in the papers36,37 suggest a constructive
way to make the closed-loop system properly-posed.

1.2 Motivating example: the inverted pendulum
Balancing an inverted pendulum in the presence of feedback delay is a frequently cited example in dynamics and control the-
ory38,39. Different control methods are often implemented in simple inverted pendulum systems40,41,42. The inverted pendulum
is also a basic concept in human balancing models43,44,45. The equation of motion of an inverted pendulum controlled by a
proportional-derivative (PD) controller reads as:

'̈(t) + a0'(t) = u(t) ,
u(t) = −b0'(t − �) − b1'̇(t − �) ,

(3)

with a feedback delay � > 0 and a system parameter a0 < 0. The characteristic function corresponding to (3) is

D(s) = s2 + a0 + e−s�(b0 + b1s) . (4)

The open-loop characteristic function P (s) = s2 + a0 has real roots ±
√

−a0 since a0 < 0. This property proves to be useful in
Section 3.
The critical delay of system (3) is well-known from the literature46:

�crit =

√

− 2
a0
, (5)

that is, the trivial solution of system (3) can be asymptotically stable if and only if � < �crit . Next, we will show that the critical
delay (5) can be obtained by studying the multiple roots of the characteristic function D(s).
Assume that D(s) has a real root s0 with algebraic multiplicity at least degP (s) + 1 = 3. Then D(s0) = 0, D′(s0) = 0 and

D′′(s0) = 0 give
s20 + a0 + e

−s0�(b0 + b1s0) = 0 ,
2s0 + e−s0�(−�(b0 + b1s0) + b1) = 0 ,
2 + e−s0�(�2(b0 + b1s0) − 2�b1) = 0 .

⎫

⎪

⎬

⎪

⎭

(6)

From (6) we obtain
b0 = es0�

(

�s30 + s
2
0 + a0�s0 − a0

)

,

b1 = −es0�
(

�s20 + 2s0 + a0�
)

,

s0 =
−2 ±

√

2 − a0�2

�
=∶ s0,± .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(7)

It can be shown that the triple root s0,+ is negative and dominant for every 0 < � < �crit , and therefore system (3) is asymptotically
stable. In particular, at the upper bound � = �crit the triple root is s0,+ = 0 and it is the dominant (rightmost) root of (4)
with control coefficients b0 = −a0 and b1 = −a0�crit . Alternatively, for a given s0 = 
 < 0, (6) can be solved for b0, b1 and
�. The smallest positive solution for � is the critical delay �crit(
) associated with 
-stability. The dominancy of s0,+ may be
shown by using the argument principle, see, for instance18,19. In the next section, we use a different method based on an integral
representation of the characteristic function.

2 PRELIMINARY RESULTS FOR ARBITRARY PLANTS

In this section some preliminary results are discussed for arbitrary plants without restriction to real-rootedness. First, factoriza-
tion and sufficient condition for dominancy is derived in the case of a real spectral value with multiplicity at least n, and with
multiplicity at least n + 1. Then, a necessary condition for stabilizability is given.
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2.1 Factorization and a sufficient condition for dominancy
We have the following result:

Proposition 1. If the quasipolynomial (1) has a real root s0 with multiplicity at least n then it can be written as

D(s) = (s − s0)n
⎛

⎜

⎜

⎜

⎝

an +

1

∫
0

e−(s−s0)�t
�Rn−1(s0; �t)
(n − 1)!

dt

⎞

⎟

⎟

⎟

⎠

, (8)

where the family of polynomials Rk(s; �) is defined as

Rk(s; �) =
k
∑

i=0

(

k
i

)

P (i)(s)�k−i, k ∈ ℤ+0 . (9)

Proof. The quasipolynomialD(s) has a root s0 with algebraic multiplicity at least n if and only ifD(k)(s0) = 0, k = 0, 1, ..., n−1:

P (s0) + e−s0�Q(s0) = 0 ,

P ′(s0) + e−s0�
(

(−�)Q(s0) +Q′(s0)
)

= 0 ,

⋮

P (k)(s0) + e−s0�
k
∑

i=0

(

k
i

)

Q(i)(s0)(−�)k−i = 0 ,

⋮

P (n−1)(s0) + e−s0�
n−1
∑

i=0

(

n − 1
i

)

Q(i)(s0)(−�)n−1−i = 0 .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10)

Equation (10) gives a linear system of equations for the control coefficients. Solving (10) for bi enables the integral factorization
of the form (8). The system of equations (10) is equivalent to the following system of equations:

es0�P (s0) +Q(s0) = 0 ,

es0�
(

�P (s0) + P ′(s0)
)

+Q′(s0) = 0 ,

⋮

es0�
k
∑

i=0

(

k
i

)

P (i)(s0)�k−i +Q(k)(s0) = 0 ,

⋮

es0�
n−1
∑

i=0

(

n − 1
i

)

P (i)(s0)�n−1−i +Q(n−1)(s0) = 0 .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(11)

The system of equation (11) can be written as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 s0 s20 ... sn−10
0 1 2s0 ... (n − 1)sn−20
0 0 2 ... (n − 1)(n − 2)sn−30
⋮ ⋮ ⋮ ⋮
0 0 0 ... (n − 1)!

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶S(s0)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b0
b1
b2
⋮
bn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

´¹¹¹¹¸¹¹¹¹¶
=∶b

= −es0�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R0(s0; �)
R1(s0; �)
R2(s0; �)

⋮
Rn−1(s0; �)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶R(s0;�)

. (12)

Since S is an upper triangular matrix with nonzero diagonal elements the unique solution of (12) is

b = −es0�S−1(s0)R(s0; �) . (13)
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With the control coefficients (13) the polynomial Q(s) and the characteristic function D(s) in (1) have the form

Q(s) =
[

1 s s2 … sn−1
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶sT

b , (14)

and
D(s) = P (s) +Q(s)e−s� = P (s) + sTbe−s� = P (s) − sTS−1(s0)R(s0; �)e−(s−s0)� . (15)

It can be proved by induction that if

wT =
[

w0 w1 … wn−1

]

∶= sTS−1(s0) (16)

then
wk =

1
k!
(s − s0)k , k = 0, 1, ..., n − 1 . (17)

Since Rk(s0; 0) = P (k)(s0)

sTS−1(s0)R(s0; 0) =
n−1
∑

k=0

1
k!
(s − s0)kP (k)(s0) = P (s) −

1
n!
(s − s0)nP (n)(s0) = P (s) − an(s − s0)n . (18)

From (15) and (18) it can be seen that

D(s) =an(s − s0)n + sTS−1(s0)R(s0; 0) − sTS−1(s0)R(s0; �)e−(s−s0)�

=an(s − s0)n −
[

sTS−1(s0)R(s0; �t)e−(s−s0)�t
]1

0
.

(19)

Let
F (t) ∶= sTS−1(s0)R(s0; �t)e−(s−s0)�t . (20)

Then, after a long but elementary calculation we obtain

dF (t)
dt

= −(s − s0)ne−(s−s0)�t
�

(n − 1)!
Rn−1(s0; �t) . (21)

Using equations (19) and (21) we arrive to the desired integral factorization

D(s) = an(s − s0)n −
[

F (t)
]1
0 = an(s − s0)

n −

1

∫
0

dF (t)
dt

dt

= (s − s0)n
⎛

⎜

⎜

⎜

⎝

an +

1

∫
0

e−(s−s0)�t
�Rn−1(s0; �t)
(n − 1)!

dt

⎞

⎟

⎟

⎟

⎠

.

(22)

Remark 1. If D(s) has a real root s0 with multiplicity at least n + 1 then (8) holds and, in addition, D(n)(s0) = 0:

D(n)(s0) = n!

⎛

⎜

⎜

⎜

⎝

an +

1

∫
0

�Rn−1(s0; �t)
(n − 1)!

dt

⎞

⎟

⎟

⎟

⎠

= Rn(s0; �) = 0 . (23)

In this case D(s) can be factorized as

D(s) = 1
n!
(s − s0)n+1

1

∫
0

e−(s−s0)�t�Rn(s0; �t)dt . (24)

Proposition 2. Let s0 be a real root of the quasipolynomial (1) with multiplicity at least n+1. If Rn−1(s0; �t) ≤ 0, ∀t, 0 < t ≤ 1
then s0 is the dominant root of (1).
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Proof. Due to the Proposition 1, (1) can be written in the form of (8). To prove that there exists no root s1 = 
1 + i!1 of (8)
such that 
1 > s0, substitute s1 into (8). Since an > 0 one can obtain that

an =

|

|

|

|

|

|

|

|

1

∫
0

e−(s1−s0)�t �
(n − 1)!

Rn−1(s0; �t)dt

|

|

|

|

|

|

|

|

≤

1

∫
0

|

|

|

|

|

e−(s1−s0)�t �
(n − 1)!

Rn−1(s0; �t)
|

|

|

|

|

dt

=

1

∫
0

e−(
1−s0)�t �
(n − 1)!

|

|

Rn−1(s0; �t)|| dt .

(25)

Using the condition Rn−1(s0; �t) ≤ 0, ∀t, 0 < t ≤ 1 (25) can be written as

an ≤ −

1

∫
0

e−(
1−s0)�t �
(n − 1)!

Rn−1(s0; �t)dt =∶ f (
1) . (26)

For 
1 = s0 the function f (
1) takes the value

f (
1 = s0) = −

1

∫
0

�
(n − 1)!

Rn−1(s0; �t)dt = −

1

∫
0

1
n!
dRn(s0; �t)

dt
dt

= − 1
n!

[

Rn(s0; �t)
]1
0 = −

1
n!

⎛

⎜

⎜

⎜

⎝

Rn(s0; �)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

−Rn(s0; 0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ann!

⎞

⎟

⎟

⎟

⎠

= an .

(27)

For 
1 > s0 the value of the integral in (26) is f (
1) < an since 0 < e−(
1−s0)�t < 1 for 
1 > s0, � > 0, 0 < t ≤ 1. Therefore
from (26) we obtain an < an which proves the inconsistency of the hypothesis that the characteristic function (8) has a root
s1 = 
1 + i!1 with 
1 > s0. Consequently, (1) has no root of the form s1 = 
1 + i!1 with 
1 > s0.

Similarly to Proposition 2, we can give sufficient condition for the dominancy of a root s0 with multiplicity at least n.

2.2 Sufficient condition for the dominancy of a root with multiplicity at least n
Proposition 3. Let s0 be a real root of (1) with multiplicity at least n, and let Rn−1(s0; #) has k sign changes in the interval
0 < # < �: �1 < �2 < ... < �k, with notations c(s0) ∶= sgnRn−1(s0; #) for 0 < # < �1, �0 = 0 and �k+1 = �. If

c(s0)
n!

k
∑

i=0
(−1)i

[

Rn(s0; #)
]�i+1
�i

≤ an (28)

then s0 is the dominant root of (1).

Proof. Since s0 is a root with multiplicity at least n, (1) can be written as

D(s) = (s − s0)n
⎛

⎜

⎜

⎜

⎝

an +

�

∫
0

e−(s−s0)#
Rn−1(s0; #)
(n − 1)!

d#

⎞

⎟

⎟

⎟

⎠

, (29)
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RnHs0;ΤL=0 Rn-1Hs0;ΤL=0

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

Τ

s0

not stabilizable

FIGURE 1 Illustration of the sufficient condition for theMID property in the sense of Proposition 3 (gray shading) and necessary
condition for stabilizability according to Remark 4 for the plant P (s) = (s − 2)(s − (2 − 10i))(s − (2 + 10i))(s − 4)

by Proposition 1. To prove that there exists no root s1 = 
1 + i!1 of (29) such that 
1 > s0, substitute s1 into (29). Since an > 0
one can obtain that

an =
|

|

|

|

|

|

|

�

∫
0

e−(s1−s0)# 1
(n − 1)!

Rn−1(s0; #)d#
|

|

|

|

|

|

|

≤

�

∫
0

|

|

|

|

|

e−(s1−s0)# 1
(n − 1)!

Rn−1(s0; #)
|

|

|

|

|

d#

=

�

∫
0

e−(
1−s0)# 1
(n − 1)!

|

|

Rn−1(s0; #)|| d# <

�

∫
0

1
(n − 1)!

|

|

Rn−1(s0; #)|| d#

= c(s0)

⎛

⎜

⎜

⎜

⎝

�1

∫
0

1
(n − 1)!

Rn−1(s0; #)d# −

�2

∫
�1

1
(n − 1)!

Rn−1(s0; #)d# + ... + (−1)k
�

∫
�k

1
(n − 1)!

Rn−1(s0; #)d#

⎞

⎟

⎟

⎟

⎠

=
c(s0)
n!

k
∑

i=0
(−1)i

�i+1

∫
�i

dRn(s0; #)
d#

d# =
c(s0)
n!

k
∑

i=0
(−1)i

[

Rn(s0; #)
]�i+1
�i

≤ an .

(30)

From (30) we obtain an < an which proves the inconsistency of the hypothesis that the characteristic function (29) has a root
s1 = 
1 + i!1 with 
1 > s0. Therefore, (1) has no root of the form s1 = 
1 + i!1 with 
1 > s0.

Remark 2. c(s0) = 1 for s0 > sa and c(s0) = −1 for s0 < sa, where sa is the average of the roots of P (s).

Figure 1 demonstrates the MID-property for a plant of degree n = 4. Gray shading indicates the pairs (s0, �) that satisfies the
sufficient condition of Proposition 3. In this region s0 is the dominant root.

2.3 Necessary condition for stabilizability
In this subsection the necessary condition of the stabilizability of system (1) is discussed. We start with a lemma from47 and48.

Lemma 1. Consider the quasipolynomial

ℎ(s) =
n
∑

i=0

r
∑

j=1
ℎijs

n−ie�js (31)
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such that �1 < �2 < ... < �r, with main term ℎ0r ≠ 0, and �1 + �r > 0. If ℎ(s) is stable (i.e. the roots of ℎ(s) = 0 are located in
the open left half of the complex plane), then ℎ′(s) is also a stable quasipolynomial.

Remark 3. Lemma 1 can be generalized to 
-stability by applying a shift z = s − s0 with s0 = 
 .

We can give a necessary condition for the 
-stability of (1) by the successive application of Lemma 1 and Remark 3 to the
quasipolynomial P (s)es� +Q(s).

Proposition 4. If the quasipolynomial (1) is 
-stable, then the polynomial Rn(s; �) is 
-stable.

Proof. If (1) is 
-stable then P (s)es� +Q(s) is 
-stable, and by Lemma 1 and Remark 3 the nth derivative of P (s)es� +Q(s) is
also 
-stable.

Remark 4. Rn(s; �) is independent of the control coefficients bi, therefore Proposition 4 also gives a necessary condition for the

-stabilizability of (1).

Figure 1 also demonstrates the necessary condition for stabilizability (i.e., 
 = 0). If � > 0.6202 then the system cannot be
stabilized.

3 SUFFICIENT AND NECESSARY CONDITIONS FOR DOMINANCY AND
STABILIZABILITY FOR SYSTEMSWITH REAL-ROOTED OPEN-LOOP
CHARACTERISTIC FUNCTION

In this section we assume that the polynomial P (s) corresponding to the open-loop system has only real roots. In this case, P (s)
has the form P (s) = an

∏n
i=1(s − si), si ∈ ℝ, sn ≤ sn−1 ≤ ... ≤ s1. To apply the sufficient condition in Proposition 2 and the

necessary condition in Proposition 4, first, we need to characterize the properties of polynomials Rk(s; �). These properties are
outlined and discussed in the forthcoming subsections.

3.1 Interlacing property of polynomials Rk(s; �)
The two-variable polynomials Rk(s; �), k ∈ ℤ+ have the following properties:

Rk(s; �) = �Rk−1(s; �) +
)Rk−1(s; �)

)s
, (32)

)Rk(s; �)
)�

= kRk−1(s; �) . (33)
Property (32) allows us to say that for a fixed � the polynomials Rk(s; �) and Rk−1(s; �) interlace and Rk(s; �) has only real

roots for s since R0(s; �) = P (s) has only real roots49. Polynomials Rn(s; �) and Rn−1(s; �) have n distinct real roots for s if
� ≠ 0. Let s0,k, k = 1, 2, ..., n denote the roots of Rn(s; �), � ≠ 0 with s0,n < s0,n−1 < ... < s0,1.
It can also be shown that for a fixed s the polynomialRn(s; �) has only real roots for � 50. Moreover,Rk(s; �), k = 1, 2, ..., n−1

has only real roots for �, andRk(s; �) andRk−1(s; �) interlacewhich are direct consequences of property (33) andRolle’s theorem.

3.2 Monotonicity
In the (�, s) plane the algebraic curve Rn(s; �) = 0 has distinct branches, and every branch is strictly increasing since the
derivative of the implicit function Rn(s; �) = 0 in a point (s, �) reads

ds
dτ
= −

)Rn(s;�)
)�

)Rn(s;�)
)s

= −
nRn−1(s; �)
Rn+1(s; �)

> 0 . (34)

The fraction Rn−1(s;�)
Rn+1(s;�)

is negative since for a fixed � ≠ 0 at a root s of the polynomial Rn(s; �) the function values Rn−1(s; �) and
Rn+1(s; �) are nonzero and have different signs because of the interlacing property.
A similar property holds for the algebraic curve Rn−1(s; �) = 0. If P (s) has at least two distinct roots then Rn−1(s; �) = 0 has

distinct branches, and every branch is strictly increasing. If P (s) has one root s1 with multiplicity n (i.e. P (s) = an(s− s1)n) then
one branch is constant and all the other branches are strictly increasing as a function of �.
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3.3 Asymptotic properties
If � →∞ (or � → −∞) then the roots of Rk(s; �) for s approach the roots of P (s) (i.e. sn ≤ sn−1 ≤ ... ≤ s1). Similarly, if s→∞
or s→ −∞ then the roots of Rk(s; �) for � approach the roots of �k = 0 (i.e. 0 with multiplicity k).

3.4 Roots of Rk(s; 0)
If � = 0 then Rk(s; �) = Rk(s; 0) = P (k)(s). Therefore if k = n then Rn(s; 0) = n!an has no roots for s. If k = n − 1 then
Rn−1(s; 0) =

n!
1!
ans +

(n−1)!
0!

an−1 has one root for s:

sa = −
1
n
an−1
an

= 1
n

n
∑

i=1
si , (35)

which is the average of the roots of P (s).

3.5 Sufficient and necessary conditions for dominancy and stabilizability
Let �0 denote the smallest positive root of Rn(0; �) = 0 for �. For � > 0 the first branch of the algebraic curve Rn(s; �) = 0
corresponds to the greatest s values, and takes values in the interval ] − ∞, s1[. Therefore if s1 > 0 then �0 corresponds to the
first branch of Rn(s; �) = 0. If s1 ≤ 0 then Rn(0; �) = 0 has no positive roots: in this case we set �0 = ∞.
Furthermore, let �a denote the smallest positive root of Rn(sa; �) = 0 for �. If P (s) ≠ an(s − s1)n, i.e. P (s) has at least two

distinct roots, then �a corresponds to the first branch of Rn(s; �) = 0 since sn < sa < s1. If P (s) = an(s − s1)n, then sa = s1 and
Rn(sa; �) = 0 has no roots: in this case we set �a = ∞.

RnHs;ΤL=0 Rn-1Hs;ΤL=0

-10 -5 5
Τ

-4

-2

2

4

s

s0,1

s0,2

s0,3

RnHs;ΤL=0 Rn-1Hs;ΤL=0

0.2 0.4 0.6 0.8
Τ

-2

-1

1

2

s

ΤaΤ0

sa

stabilizable not stabilizable

FIGURE 2 Illustration of the sufficient condition for the MID property (gray shading) and the necessary and sufficient condition
for stabilizability based on the roots of the polynomials Rn(s; �) and Rn−1(s; �) on the (�, s) plane for the plant P (s) = (s −
2)(s − 1)(s + 2) according to Theorem 1 (case sa ≥ 0).

The curve Rn(s; �) = 0 gives a connection between the delay � and the possible values of the real root s0 with multiplicity
n + 1, while the curve Rn−1(s; �) = 0 is needed to analyze the sufficient condition given in Proposition 2. It is clear that the
condition Rn−1(s0,k; �t) ≤ 0, ∀t, 0 < t ≤ 1 can be satisfied if and only if k = 1 and 0 < � ≤ �a (i.e. for the greatest s0 and in a
certain delay interval).
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These observations are summarized in the following theorems.

Theorem 1. Let P (s) be real-rooted and consider the case sa ≥ 0. Then

1. �0 ≤ �a

2. s0,1 is the dominant root of system (8) if 0 < � ≤ �a

3. system (1) is stabilizable if and only if 0 < � < �0.

Proof. If sa > 0 then there is at least 1 positive root s1 of P (s), therefore there is a finite �0 corresponding to the first branch of
Rn(s; �) = 0. Then item 1. follows from the monotonicity of the curve Rn(s; �) = 0. If sa = 0 then �0 = �a. Item 2. follows from
the sufficient condition in Proposition 2. If 0 < � < �0 then s0,1 < 0, which gives the sufficient condition for the stabilizability
of system (1) in item 3. For � ≥ �0, Rn(s; �) has a root in the closed right half of the complex plane, therefore by Propostion 4,
system (1) cannot be stabilized. This gives the necessary condition in item 3.

RnHs;ΤL=0 Rn-1Hs;ΤL=0

-10 -5 5
Τ

-8

-6

-4

-2

2

4

s

s0,1

s0,2

s0,3

RnHs;ΤL=0 Rn-1Hs;ΤL=0

0.5 1.0 1.5 2.0 2.5 3.0
Τ

-4

-3

-2

-1

1

2

s

Τa Τ0

sa

stabilizable

not stabilizable

FIGURE3 Illustration of the sufficient condition for theMID property (gray shading) and the sufficient and necessary conditions
for stabilizability based on the roots of the polynomials Rn(s; �) and Rn−1(s; �) on the (�, s) plane for the plant P (s) = (s −
2)(s + 3)(s + 6) according to Theorem 2 (case sa < 0).

Figure 2 shows the branches of the algebraic curves Rn(s; �) = 0 and Rn−1(s; �) = 0 corresponding to the interlacing and
asymptotic properties for a plant of degree n = 3. The roots of the open-loop system are s1 = 2, s2 = 1, s3 = −2, thus
sa = 1∕3 > 0 hence Theorem 1 applies. The horizontal asymptotes corresponding to the roots of P (s) are indicated with dashed
lines. In the gray shaded regionRn−1(s0; �) ≤ 0 hence Proposition 2 applies. In this example, the numerical values are �0 = 0.532
and �a = 0.735 and the critical delay is �crit = �0.

Theorem 2. Let P (s) be real-rooted and consider the case sa < 0. Then

1. �0 ≥ �a

2. s0,1 is the dominant root of system (8) if 0 < � ≤ �a

3. system (1) is stabilizable if 0 < � ≤ �aand cannot be stabilized for � ≥ �0.

Proof. The proof follows the same lines as the proof of Theorem 1.
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Figure 3 shows the branches of the algebraic curves Rn(s; �) = 0 and Rn−1(s; �) = 0 for a plant of degree n = 3, when the
roots of the open-loop system are s1 = 2, s2 = −3, s3 = −6. In this case sa = −7∕3 < 0 hence Theorem 2 applies. Again,
the horizontal asymptotes corresponding to the roots of P (s) are indicated with dashed lines and in the gray shaded region
Rn−1(s0; �) ≤ 0 hence Proposition 2 applies. Here, the numerical values are �a = 0.337 and �0 = 1.145. Numerical analysis
shows that we can stabilize the system by the proposed controller design (s0 with multiplicity n + 1) if � < �̂ = 0.977, i.e.,
�a < �̂ < �0. Furthermore it can be shown that s0 is the dominant root if � < 0.831.

Remark 5. Let P (s) be real-rooted, and let s0 be a real root of (1) with multiplicity at least n+1. ThenD(n+1)(s0) = Rn+1(s0; �) ≠
0 because of the interlacing property, therefore the maximal multiplicity of a real root s0 is n + 1.

Remark 6. It can be seen by applying Proposition 4 that the real root s0,1 gives a lower bound on the spectral abscissa of the
quasipolynomial (1), and this lower bound is independent of the control parameters bi. Thus, if s0,1 is dominant, then it gives
the minimum of the spectral abscissa with respect to the control parameters.

This remark implies the following proposition.

Proposition 5. Let P (s) be real-rooted. Then system (1) is 
-stabilizable with 
 ≤ sa if and only if � ∈]0, �
 [, where �
 is the
smallest positive root of Rn(
; �) for �.

4 MULTI-DEGREE-OF-FREEDOMMECHANICAL EXAMPLE:N-LINK INVERTED
PENDULUM

Consider anN-link inverted pinned pendulum with rods of equal mass m and length l moving in the vertical plane. The control
torque is applied at the first (lowest) rod:

M = −
N
∑

i=1
pi'i(t − �) −

N
∑

i=1
di'̇i(t − �) . (36)

4.1 Derivation of the equation of motion
The equation of motion can be determined using the Euler–Lagrange equations. The generalized coordinates are chosen to be
the absolute pendulum angles 'i (i.e. angular displacement of the rods from the vertically upward position). The equation of
motion linearized around the unstable equilibrium has the form

Mq̈ +Kq = Q , (37)

where the mass matrixM and the stiffness matrix K can be written as

M = 1
6
ml2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6(N − 1) + 2 6(N − 2) + 3 ... 21 15 9 3
6(N − 2) + 3 6(N − 2) + 2 ... 21 15 9 3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
21 21 ... 20 15 9 3
15 15 ... 15 14 9 3
9 9 ... 9 9 8 3
3 3 ... 3 3 3 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

K = −1
2
mgl

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2(N − 1) + 1 0 ... 0 0 0 0
0 2(N − 2) + 1 ... 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ... 7 0 0 0
0 0 ... 0 5 0 0
0 0 ... 0 0 3 0
0 0 ... 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (39)
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FIGURE 4 Critical delay �crit(N, 
) of anN-link inverted pendulum if 3g∕l = 1

that is

mij =
1
6
ml2(6(N − j) + 3), i < j ,

mij =
1
6
ml2(6(N − i) + 2), i = j ,

mij =
1
6
ml2(6(N − i) + 3), i > j ,

(40)

and

kij = −
1
2
mgl(2(N − i) + 1), i = j ,

kij = 0, i ≠ j .
(41)

For more details see Appendix A. The generalized force Q reads

Q = −

⎡

⎢

⎢

⎢

⎣

p1 p2 ... pN
0 0 ... 0
⋮ ⋮ ⋮
0 0 ... 0

⎤

⎥

⎥

⎥

⎦

q(t − �) −
⎡

⎢

⎢

⎢

⎣

d1 d2 ... dN
0 0 ... 0
⋮ ⋮ ⋮
0 0 ... 0

⎤

⎥

⎥

⎥

⎦

q̇(t − �) . (42)

Therefore, the characteristic function has the form (1) where the open-loop characteristic function P (s) reads

P (s) = det
(

s2M +K
)

. (43)

4.2 Stabilizable delay interval
The mass matrixM is positive definite and the stiffness matrixK is negative definite therefore P (s) has only real roots. Further-
more, the roots occur in real pairs ±si, i = 1, ..., N , therefore the average of the roots is sa = 0. Thus, we can apply the results of
Theorem 1: system (37) is stabilizable if and only if 0 < � < �0, where �0 can be calculated if the system parameters are known.
Figure 4 shows the critical delay �crit(N) = �0 as a function of N if 3g∕l = 1. The case N = 1 gives the single inverted pen-
dulum when �crit(1) = 2 (see Subsection 1.2). This figure also shows the largest delays for which we can reach a given spectral
abscissa 
 . That is, we use a slightly generalized notion of the critical delay: �crit(N, 
) denotes the critical delay corresponding
to a given degree of freedomN and spectral abscissa 
 (with �crit(N) = �crit(N, 0) corresponding to stabilizability).
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FIGURE 5 Illustration of the root location of the characteristic function if N = 2 and � = �crit(N, s0) with quintuple roots
s0 = 0 and s0 = −1 yielding 
 = 0 and 
 = 1, respectively.

5 ON BEYOND OF REAL-ROOTED PLANTS: PERSPECTIVES FOR CONTROL DESIGN
APPROACH IN A MORE GENERAL SETTING

The previous sections show the interest in exploiting the MID property in the design of stabilizing delayed-controllers for real-
rooted plants. However, in recent studies concerned with reduced-order plants such as21, it is shown that the MID property still
applies for open-loop plants with pairs of complex conjugate roots.
Based on the results of this paper, as well as on other recent results on the MID property for systems with time-delays such

as21,17,24,51,22, a Python software for the parametric design of stabilizing feedback laws with time-delays, called “Partial Pole
Placement via Delay Action” (P3� for short), has been developed. P3� also implements other features, which are detailed in52.
The software is freely available for download on https://cutt.ly/p3delta, where installation instructions, video demonstrations,
and the user guide are also available.
By this section, we provide an illustrative example generated using P3� showing the validity of the MID property even for plants
with pairs of complex conjugate roots. Let us revisit the problem of controlling the standard oscillator:

�̈ (t) + 2 � !0 �̇ (t) + !20 � (t) = c(t) (44)

where !0 > 0 and 0 < � < 1 stand respectively for the oscillator natural frequency and the damping factor. Let us define the
controller c as a proportional-derivative delayed-controller; that is

c(t) = −b0 � (t − �) − b1 �̇ (t − �).

Thus, the closed-loop characteristic function is given by:

D(s, �) = s2 + 2 � !0 s + !02 + (b0 + b1 s) e−� s.

Assume that the natural frequency !0 = 1 and the damping factor � = 1∕2, which corresponds to an open-loop plant with
a complex-conjugate pair s±OL = −1∕2 ± i

√

3∕2. Then, the closed-loop plant corresponds to the following characteristic
quasipolynomial function:

D(s, �) = s2 + s + 1 + (b0 + b1 s) e−� s. (45)

Forcing the existence of a triple spectral value suggests that s±CL = −1∕2 − 2 �
−1 ± 1∕2 �−1

√

−3 �2 + 8 are the only admissible
roots. As a matter of fact, those triple spectral values are defined if, and only if, the controller’s gains are such that:

b0 =

(

6 +
(

2 + s±CL
)

�2 +
(

10 s±CL + 6
)

�
)

es
±
CL�

�2
, b1 =

es
±
CL�

(

2 s±CL� + � + 2
)

�
(⋆±)

It follows that if (⋆+) is satisfied then, s+CL which is a triple root is also the dominant spectral value as illustrated in Figure 6.

https://cutt.ly/p3delta
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FIGURE 6 The P3� interface exhibiting the design of a stabilizing delayed PD controller in the case of the characteristic
function (45). (Left) Illustration of the root location in the case � = �−2 ≈ 0.422649 which corresponds to s+CL = −2. (Right)
The closed-loop response corresponding to the history function '(t) = 3 for all t ∈ [−�−2, 0].

Notice that the assignment of the triple root s = s+CL is possible only in the admissibility region s ∈ (−∞, sM ] which
corresponds necessarily to � ∈ (0, �M ]where �M = 2∕3

√

6 and sM = −1∕2 (1+
√

3), see for instance21. This fact is illustrated
in Figure 7.

6 CONCLUSION

We have provided sufficient conditions for the MID property in the case of a real root s0 with multiplicity at least n+1 and with
multiplicity at least n. Necessary condition for 
-stabilizability was investigated based on47 and48. As amain result, sufficient and
necessary condition for the MID property and 
-stabilizability was derived for systems with real-rooted open-loop characteristic
function. The result was applied to an N-link inverted pendulum subjected to delayed state feedback. One advantage of the
results is that only roots of polynomials should be found in order to check sufficient and necessary conditions for 
-stabilizability.
Although the main results were derived for systems with real-rooted open-loop characteristic function they can be generalized

to systems with P (s) having not only real roots. If Rn(s; �) and Rn−1(s; �) have single dominant real roots s0,1(�) and s̃0,1(�)
for � > 0, respectively, such that s̃0,1(�) > s0,1(�), and s0,1(�) and s̃0,1(�) are increasing as a function of � and, furthermore,
Rn−1(s(�); �) ≠ 0 for s0,1(�) < s(�) < s̃0,1(�) then similar statements can be made.
If the coefficients ai of an arbitrary plant are known, root location of polynomialsRn(s; �) andRn−1(s; �) can be accessed easily

using numerical techniques, hence the results in Section 2 can be applied. However, in general, it is difficult to parametrically
characterize the root location of these polynomials. Although, it could be done by exploiting the structure of the open-loop
characteristic polynomial, as we saw in the case of real-rooted plants in Section 3.
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FIGURE 7 The MID stabilizability region is defined by (−∞, sM ], in which the assignment of a triple negative dominant root
of (45) is possible. The value �M corresponds to an upper-bound for the corresponding delay.
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APPENDIX

AN-LINK INVERTED PENDULUM: EQUATION OF MOTION

The position and the velocity of the center of mass of the kth rod (k = 1, ..., N) can be written as

rCk =
⎡
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Using (A1) and (A2) the kinetic energy is
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and the potential energy is

U =
n
∑
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From (A3) and (A4) we obtain the matrix elements (40) and (41) by:

m�� =
)2T
)'̇�'̇�

('i = 0, '̇i = 0) ,

k�� =
)2U
)'�'�

('i = 0, '̇i = 0) .
(A5)
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