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STABLE MAPS TO LOOIJENGA PAIRS: ORBIFOLD EXAMPLES

In [11] we established a series of correspondences relating five enumerative theories of log Calabi-Yau surfaces, i.e. pairs (Y, D) with Y a smooth projective complex surface and D = D1 + • • • + D l an anticanonical divisor on Y with each Di smooth and nef. In this paper we explore the generalisation to Y being a smooth Deligne-Mumford stack with projective coarse moduli space of dimension 2, and Di nef Q-Cartier divisors. We consider in particular three infinite families of orbifold log Calabi-Yau surfaces, and for each of them we provide closed form solutions of the maximal contact log Gromov-Witten theory of the pair (Y, D), the local Gromov-Witten theory of the total space of i OY (-Di), and the open Gromov-Witten of toric orbi-branes in a Calabi-Yau 3-orbifold associated to (Y, D). We also consider new examples of BPS integral structures underlying these invariants, and relate them to the Donaldson-Thomas theory of a symmetric quiver specified by (Y, D), and to a class of open/closed BPS invariants.

Introduction

In [START_REF]Stable maps to Looijenga pairs[END_REF], we established a series of correspondences between a priori distinct enumerative theories of Gromov-Witten (GW)/Donaldson-Thomas (DT) type associated to smooth log Calabi-Yau surface of maximal boundary with nef boundary components, or nef Looijenga pairs: these are pairs (Y, D) where Y is a smooth projective surface and | -K Y | D = D 1 + • • • + D l is an anticanonical normal crossings divisor with l > 1 smooth and nef irreducible components D j . For a nef Looijenga pair we proved an equivalence between the log GW theory of the pair (Y, D), the local GW theory of the total space of the sum of dual line bundles to the irreducible components D j , the open GW theory of Aganagic-Vafa branes in a Calabi-Yau threefold associated to (Y, D), the DT theory of a symmetric quiver specified by (Y, D), and a variety of BPS invariants considered by Klemm-Pandharipande, Ionel-Parker, and Labastida-Mariño-Ooguri-Vafa. Moreover, we provided closed-form solutions for the calculation of the these invariants in all the finitely many deformation families of such pairs. In this companion note we explore the extension of such correspondences to include orbifolds, and provide compelling evidence that the bulk of the correspondences put forward in [START_REF]Stable maps to Looijenga pairs[END_REF] generalise to this setting essentially verbatim. We consider pairs (Y, D = D 1 + • • • + D l ) where Y is a smooth complex Deligne-Mumford stack with coarse moduli space a normal Gorenstein projective surface Y , (Y, D) is log smooth (in particular, the singularities are concentrated along the codimension 2 strata of D), D ∈ | -K Y |, and the irreducible components D j are nef and Q-Cartier for all j = 1, . . . , l. In particular we will exemplify how and to what extent our circle of correspondences in [START_REF]Stable maps to Looijenga pairs[END_REF] generalises to this context in three infinite families of log-Calabi-Yau orbifolds:

Example I: in this example, Y is taken to be the weighted projective plane P(1, a, b) for a, b positive coprime integers with fan given in Figure 1.1. This surface has two orbifold singularities that are locally quotients of C 2 by the finite cyclic group µ a , resp. µ b , and there is a toric line D (a,b) that joins both. Extending D (a,b) to an anticanonical divisor by adding a general member

D 2 of |-K Y -D (a,b)
| gives the Looijenga orbi-pair P [2] Example II: in this case we blow up P [2] (1, a, b) in a smooth point of D 2 . We denote the resulting surface with its choice of 2-component boundary by Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) . Example III: blowing up P(1, a, b) in a smooth point of one of its toric divisors leads to a non-toric nef orbi-Looijenga pair with l = 3, which we denote by Y ). We will use the short-hand notation Y (D) to denote the log-scheme obtained by taking the divisorial log structure induced by D on Y . For n ≥ 0, denote by [n] q the q-number q n 2 -q -n 2 , as well as the symmetrised q-factorials [n] q ! := n i=1 [i] q and q-binomials n m q := [n] q !/([m] q ![n -m] q !).

1.1.1. All genus log GW invariants. Let g ≥ 0. We are (virtually) counting genus g degree d curves in X that have prescribed tangency conditions along the boundary D, namely we require the curves to meet each of D j in one point of maximal tangency d • D j . This is a moduli problem of virtual dimension g + l -1.

Log smoothness of Y (D) guarantees the existence of the corresponding moduli space of basic stable log maps M log g,m (Y (D), d) as constructed by Abramovich-Chen [START_REF] Abramovich | Stable logarithmic maps to Deligne-Faltings pairs II[END_REF][START_REF] Chen | Stable logarithmic maps to Deligne-Faltings pairs I[END_REF] and Gross-Siebert [START_REF]Logarithmic Gromov-Witten invariants[END_REF] by encoding the tangency conditions via log structures. It admits a rank g vector bundle E whose fiber over f : C → Y (D) is the vector space H 0 (C, ω C ) of sections of the dualising sheaf of the domain curve. To cut down the virtual dimension to 0, we require the curves to pass through l -1 general points in the interior Y \ D and further cap the virtual fundamental class by the top Chern class λ g := c g (E) of E, leading to invariants

N log g,d (Y (D)) := [M log g,l-1 (Y (D),d)] vir (-1) g λ g l-1 j=1 ev * j ([pt]), (1.1) 
where ev j : M log g,l-1 (Y (D), d) → X is the morphism given by evaluation at the jth point. We denote by N log d (Y (D)) := N log 0,d (Y (D)). We package the invariants into the fixed-degree, all-genus generating function

N log d (Y (D))( ) := 1 2 sin 2 l-2 g 0 N log g,d 2g-2+l . (1.2)
By a combination of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF][START_REF]The quantum tropical vertex[END_REF] (see [START_REF]Stable maps to Looijenga pairs[END_REF]Proposition 4.2]), after the change of variable q = e i , N log d (Y (D))( ) is the power series expansion in of polynomials

N log d (Y (D))(q) in q 1 2 .
1.1.2. Local GW invariants. A different class of invariants of (Y, D) arises by considering the local theory of Tot j O Y (-D j ) . This is a non-compact Calabi-Yau-(l + 2) fold, and since for l > 1 the virtual dimension of the moduli space is negative as soon as g > 1 we restrict below to genus 0. Suppose Y admits a presentation as a Gorenstein GIT quotient Y = Z/ /G for a complex smooth projective variety Z and reductive group G, and write Y = [Z/ /G] for the Deligne-Mumford quotient stack it represents. While the Gorenstein surface Y (with trivial log structure) is not smooth, Y (D) and Y are smooth in the respective categories by definition. The genus 0 local GW theory of Y (D) is a (virtual) count of rational orbi-curves in the (l +2)-dimensional non-compact Calabi-Yau orbifold

E Y (D) := Tot(⊕ l i=1 (O Y (-D i ))) with coarse space E Y (D) := Tot(⊕ l i=1 (O Y (-D i ))
). We will only be interested in the untwisted sector of the orbifold GW theory of E Y (D) [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF]. d) the universal curve and f univ : C univ → Y the universal twisted stable map. Restricting to the component of the inertia stack of age zero, we obtain the virtual fundamental class

Denote by M

[M 0,m (Y, d)] vir ∈ H 2vdim (M 0,m (Y, d), Q), (1.3) 
where vdim = -K Y • d + m -1. Assuming that d • D j > 0, there is a rank -K Y • d -l obstruction vector bundle Ob D on M log 0,m (Y, d) with fibre H 1 (C, f * l j=1 O Y (-D j )) over a twisted stable map [f : C → Y]. It is defined as Ob D := R 1 π * (f univ ) * l j=1 O Y (-D j ) for π : C univ → M 0,m (Y,
[M 0,m (E Y (D) , d)] vir := [M 0,m (Y, d)] vir ∩ c top (Ob D ) ∈ H 2(l-1+m) (M 0,m (Y, d), Q).
Restricting to the untwisted sector yields evaluations maps ev j : M 0,m (Y, d) → Y and we define the following two classes of local invariants

N loc d (Y (D)) := [M 0,l-1 (E Y (D) ,d)] vir l-1 j=1 ev * 1 ([pt]) , (1.4 
)

N loc,ψ d (Y (D)) := [M 0,1 (E Y (D) ,d)] vir ev * 1 ([pt])ψ l-2 1 , (1.5) 
where 

ψ i = c 1 (L i ) is
Y op (D) = (X, L, f) with X a semi-projective toric Calabi-Yau 3-fold, L = L 1 ∪ • • • ∪ L l-1 a
disjoint union of l -1 Aganagic-Vafa toric Lagrangians [START_REF] Aganagic | Mirror symmetry, D-branes and counting holomorphic discs[END_REF] in X and f a framing for L. At first approximation, X is the total space of

K Y \(D 1 ∪•••∪D l-1 )
, the L j S1 × R 2 are Lagrangians that contract to a vanishing cycle [S 1 ] of Y near D j , and f is determined by the compactification given by adding back the D j , j < l. The construction moreover induces a natural isomorphism

ι : H rel 2 (Y op (D), Z) ∼ → H 2 (Y, Z).
It is immediate to verify from Construction 6.4 [START_REF]Stable maps to Looijenga pairs[END_REF] that the above generalises with no modification to the case of nef Looijenga orbi-pairs Y (D), for which Y op (D) = (X, L, f) is in general a semi-projective Gorenstein orbifold X with fractionally framed orbifold toric Lagrangians (L, f) [START_REF] Brini | Open orbifold Gromov-Witten invariants of [C 3 /Zn]: localization and mirror symmetry[END_REF]. In Examples I-III, X and L will always be smooth, but the framing f will be fractionally shifted by rational numbers f i = p i /r i from the canonical framing on each connected component

L i of L.
The open GW theory of Y op (D) was defined in the algebraic category 1 in [START_REF] Li | A mathematical theory of the topological vertex[END_REF]. Given partitions µ i of length (µ i ), i = 1, . . . , l -1, there is a virtual dimension zero moduli space M g;β;µ 1 ,. 

d i e i - α:v i →v j d i e j . (1.8) 
The motivic DT invariants DT d;i (Q) of Q are defined from the plethystic generating function

Exp   1 [1] q d =0 i∈Z DT d;i (Q)x d (-q 1/2 ) -i   = d∈N n -q 1/2 E Q (d,d) x d n i=1 (q; q) d i , (1.9) 
where 

x d = n i=1 x d i i ,
l i=1 d/k•D i +1 [1] 2 q [k] 2 q l i=1 [k] q [d • D i ] q µ(k) k 2-l N log d/k (Y (D))(-ik log q) . (1.11)
We will also denote just by Ω d (Y (D)) the genus-zero limit Ω d (Y (D))(1).

The log-open correspondence of Theorem 1.2 below implies that, for Examples I-III,

Ω d (Y (D))(q) = [1] 2 q l-1 i=1 d • D i r i [d • D i ] q k|d µ(k)(-1) l-1 i=1 d•D i (r i +1)/k k O ι -1 (d/k) (Y op (D))(-ik log q) , (1.12 
) where f i = p i /r i with (p i , r i ) = 1 is the framing of the i th orbifold Aganagic-Vafa Lagrangian in Y op (D). Even though Ω d (q) can at most be expected to be a rational function of q 1/2 , heuristically, and for smooth, integrally framed Y op (D) [START_REF] Labastida | Polynomial invariants for torus knots and topological strings[END_REF][START_REF] Labastida | Knots, links and branes at large N[END_REF][START_REF] Marino | Framed knots at large N[END_REF][START_REF] Ooguri | Knot invariants and topological strings[END_REF], Ω d (Y (D))(q) has an interpretation as generating function of BPS domain walls counts in a type IIA string compactification on Y op (D), with its coefficient computing degeneracies of D2-branes with fixed spin and charge ending on a D4-brane wrapped around the Lagrangians Y op (D). The formula (1.12) generalises [START_REF] Marino | Framed knots at large N[END_REF]Eq. 2.10] to the orbifold setting, with an additional factor keeping track of the fractional framing of the branes.

1.2. The correspondences.

1.2.1. Numerical log-local. Our first result is the following Theorem 1.1. Assume that Y (D) is one of P [2] (1, a, b), Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) or Y [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] (a,b) . Then

N loc d (Y (D)) =   l j=1 (-1) d•D j -1 d • D j   N log d (Y (D)) . (1.13)
Our proof of Theorem 1.1 follows from a stronger result, wherein we give a complete closed-form solution of both sides of (1.13) in all degrees. In the case of an irreducible smooth nef divisor, the correspondence between genus 0 log and local GW invariants was proven in all dimensions at the cycle-level in [START_REF] Van Garrel | Local Gromov-Witten invariants are log invariants[END_REF], and for point insertions orbifold toric pairs with simple normal crossings divisors in [START_REF] Bousseau | On the log-local principle for the toric boundary[END_REF]. Theorem 1.1 simultaneously provides a non-toric, orbifold version of the numerical version of the log-local correspondence of [START_REF] Bousseau | On the log-local principle for the toric boundary[END_REF][START_REF] Van Garrel | Local Gromov-Witten invariants are log invariants[END_REF].

1.2.2. Log-open.
Our second result is an orbifold generalisation of the higher genus log-open principle of [START_REF]Stable maps to Looijenga pairs[END_REF]. There is a canonical identification of relative curve degrees in Y op (D) and curve degrees in H 2 (Y, Z) defined as follows: the morphisms

K Y \D 1 ∪•••∪D l-1 π -→ Y \ D 1 ∪ • • • ∪ D l-1 i -→ Y , (1.14) 
with π :

K Y \D 1 ∪•••∪D l-1 → Y \ D 1 ∪ • • • ∪ D l-1 the bundle projection and i : Y \ D 1 ∪ • • • ∪ D l-1 → Y
the canonical open immersion, induce an injective homomorphism of 2-homology groups

ι o : H 2 (Y \ D 1 ∪ • • • ∪ D l-1 , Z) → H 2 (Y, Z) . (1.15) 
We can extend ι o to an isomorphism

ι : H 2 (Y \ D 1 ∪ • • • ∪ D l-1 , Z) ⊕ l-1 i=1 H 1 L i , 1 r i Z ∼ -→ H 2 (Y, Z) (1.16) by positing that ι : [(S 1 ) i ] → r i [D i ] ∨ for i = 1, . . . , l-1, where [(S 1 ) i ] ∈ H 1 (L i , Z) → H 2 (Y op (D), Z)
is the class of the homologically non-trivial circle in the i th connected component L i of the toric Lagrangian L at framing

f i = p i /r i . Theorem 1.2. For each of Y (D) = P [2] (1, a, b), Y [2] (a,b) or Y [3]
(a,b) , writing f j = p j r j with (p j , r j ) = 1 for the framing of the j th Aganagic-Vafa orbi-brane in Y op (D), we obtain

O ι -1 (d) (Y op (D)) = 1 [1] 2 q l-1 j=1 (-1) d•D j r j +1 r j l j=1 (-1) d•D j -1 [1] q [d • D j ] q l-1 j=1 [d • D j ] q d • D j N log d (Y (D)) , (1.17) 
as well as closed-form expressions of the invariants.

In the genus zero limit (q → 1) Theorem 1.2 recovers a version of the numerical log/local correspondence of Theorem 1.1, with the genus zero open invariants equating the local invariants up to a factor:

O 0;ι -1 (d) (Y op (D)) = l-1 j=1 (-1) d•D j (r j +1) r j N loc d (Y (D)) . (1.18)
The additional normalisation factor as compared to the case of smooth varieties (where Theorem 1.3. Let Y (D) be any of P [2] (1, a, b), Y

r i = 1)
(a,b) or

Y [3] (a,b) . Then Ω d (q) ∈ Z[q ±1/2 ].
In the genus zero limit, the combination of Theorems 1.1 and 1.2 gives ) of the local orbifold surfaces P [2] (1, a, b), Y

Ω d (Y (D)) = 1 l i=1 (d • D i ) k|d (-1) l i=1 d/k•D i +1 µ(k) k 4-2l N log d/k (Y (D)) = k|d µ(k) k 4-l l-1 j=1 r j (-1) d•D j (r j +1)/k O 0;ι -1 (d/k) (Y op (D)) (1.19) = k|d µ(k) k 4-l N loc d/k (Y (D)) . ( 1 
(a,b) and Y [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] (a,b) introduced by Klemm-Pandharipande for l = 2 in [START_REF] Klemm | Enumerative geometry of Calabi-Yau 4-folds[END_REF] and by Ionel-Parker in [START_REF] Ionel | The Gopakumar-Vafa formula for symplectic manifolds[END_REF] for smooth varieties. Theorem 1.3 implies then immediately their integrality in the generalised orbifold context of this paper.

Finally, when l = 2 and the Lagrangians of Y op (D) are integrally framed, the integrality statement above is also a consequence of the following statement, which is a direct consequence of the stripsquiver correspondence of [START_REF] Panfil | Donaldson-Thomas invariants, torus knots, and lattice paths[END_REF] (see in particular [START_REF]Stable maps to Looijenga pairs[END_REF]Theorem 7

.3]) Theorem 1.4. Let Y (D) = P [2] (1, a, b) or Y (D) = Y [2]
(a,b) with either a = 1 or b = 1. Then there exists a symmetric quiver Q(Y (D)) with χ(Y ) -1 vertices and a lattice isomorphism κ :

Z(Q(Y (D))) 0 ∼ → H 2 (Y, Z) such that DT num d (Q(Y (D))) = Ω κ(d) (Y (D)) + i α i δ d,v i , (1.21 
)

with α i ∈ {0, 1}. In particular, Ω d (Y (D)) ∈ Z.
1.3. The techniques.

1.3.1. Scattering diagrams. The tool for the computations of N log d (Y (D)) are multiplications of quantum broken lines in the quantum scattering diagrams of [START_REF]Quantum mirrors of log Calabi-Yau surfaces and higher-genus curve counting[END_REF][START_REF]The quantum tropical vertex[END_REF][START_REF] Davison | Strong positivity for quantum theta bases of quantum cluster algebras[END_REF][START_REF] Mandel | Scattering diagrams, theta functions, and refined tropical curve counts[END_REF]. In the classical limit, this is treated in [START_REF] Gross | Tropical geometry and mirror symmetry[END_REF][START_REF] Gross | Mirror symmetry for log Calabi-Yau surfaces I[END_REF][START_REF] Gross | The tropical vertex[END_REF] in dimension 2 and in full generality in [START_REF] Gross | Theta functions on varieties with effective anti-canonical class[END_REF][START_REF] Gross | From real affine geometry to complex geometry[END_REF] As a topological manifold, B is homeomorphic to R 2 . It comes with some distinguished integral rays ρ 1 , . . . , ρ l+r emanating from the origin. Up to reordering, ρ 1 , . . . , ρ l will correspond to D 1 , . . . , D l . The collection of all rays forms a fan with associated toric variety Y (D = D ρ 1 + • • • + D ρ l+r ) for the toric prime divisors D ρ 1 , . . . , D ρ l+r of Y . Some of these rays, say ρ j 1 , . . . , ρ js with possible repetitions, have focus-focus singularities on them. For our purposes, we perturb these away from their rays, which simply means the creation of lines parallel to the rays carrying the focus-focus singularities. These walls are decorated with wall-crossing functions. When two walls meet, there is scattering resulting in the creation of new walls carrying wall-crossing functions themselves. For our examples, there will only be "simple" scattering.

For each focus-focus singularity on a line parallel to ρ j i , we blow up a smooth point of D ρ j i . Taken together, this yields a toric model π : ( Y , D) -→ (Y , D) .

(1. [START_REF] Van Garrel | Local Gromov-Witten invariants are log invariants[END_REF] This means that there is a birational map

ϕ : ( Y , D) -→ (Y, D) (1.23)
that is a sequence of blow ups at codimension 2 strata of the boundary. By [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF], ( Y , D) and (Y, D) have the same log GW theory.

Then, B has integral asymptotic directions that correspond to weighted blow ups of ( Y , D). Theta functions (which are sections of an ample line bundle on the mirror family) correspond to asymptotic directions. Their values on open subsets of the mirror corresponding to the chambers of the scattering diagram are given by the sums of the end-coefficients of broken lines coming from the corresponding asymptotic directions. The broken lines can bend when crossing walls picking up contributions from the wall-crossing functions.

Multiplying broken lines together corresponds to creating tropical curves with the correct weights (=intersection multiplicities) with a selection of (possibly weighted blow ups of) boundary divisors. 

, χ ∈ H T (E Y (D) ) denote η Y (D) (θ, χ) the T -equivariant Poincaré pairing on E Y (D) , η Y (D) (θ, χ) := Y i * θ ∪ i * χ ∪ l i=1 e T (O Y (-D i ))
.

(1.24)

In terms of the small T -equivariant

J-function of E Y (D) , J Y (D) small (t, z) := ze ρ(Y ) i=1 t i ϕ i /z   1 + d∈NE(Y ) α,β η -1 Y (D) (ϕ α , ϕ β ) E Y (D) e t•d ϕ α z(z -ψ 1 ) E Y (D) 0,1,d ϕ β   , (1.25) (1.5) is given by N loc,ψ d (Y (D)) = [z l-1 e t•d ]η Y (D) pt, J Y (D)
small (t, z) .

(1.26)

In (1.25), we employed the usual correlator notation for GW invariants,

τ 1 ψ k 1 1 , . . . , τ n ψ kn n E Y (D) 0,n,d := [M 0,m (E Y (D) ,d)] vir i ev * i (τ i )ψ k i i . (1.27) 
We compute the r.h.s. of (1.26) using the Coates-Givental twist [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF][START_REF] Coates | Quantum Riemann-Roch, Lefschetz and Serre[END_REF][START_REF]Equivariant Gromov-Witten invariants[END_REF][START_REF]A mirror theorem for toric complete intersections[END_REF] at the J-function level, equating J Y (D) small (t, z), up to a mirror map t → t(y), to an explicit generalised hypergeometric series I Y (D) (y, z), which is in turn read off from the fan of E Y (D) [START_REF] Coates | Computing genus-zero twisted Gromov-Witten invariants[END_REF][START_REF]A mirror theorem for toric complete intersections[END_REF]. In all of Examples I-III we will have t = log y, and thus

N loc,ψ d (Y (D)) = [z l-1 y d ]η Y (D) pt, I Y (D) (y, z) .
(1.28)

To compute (1.4), we use part of a reconstruction theorem due to Boris Dubrovin [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF]Lecture 6], combined with the vanishing of quantum corrections to certain products in quantum cohomology.

Recall that the components of the big J-function,

J Y (D) big (τ, z) := z + τ + d∈NE(Y ) n∈Z + 1 n! α,β η -1 Y (D) (ϕ α , ϕ β ) τ, . . . , τ, ϕ α z -ψ 1 E Y (D) 0,n+1,d ϕ β , (1.29) 
form a basis of flat co-ordinates for the Dubrovin connection,

z∇ θ ∇ χ J Y (D) big (τ, z) = ∇ θ τ χ J Y (D) big (τ, z) , (1.30) 
with τ ∈ H T (E Y (D) ) and τ the big quantum cohomology product, the restriction to small quantum cohomology being τ → ρ(Y ) i=1 t i ϕ i . Suppose now that there exist numbers ij , i, j = 1, . . . , ρ(Y ) such that

ρ(Y ) i,j=1 Y (D) ij ϕ i τ ϕ j τ → ρ(Y ) i=1 t i ϕ i = ρ(Y ) i,j=1 Y (D) ij ϕ i ∪ ϕ j = pt.
(1.31)

f 1 f 2 f 3 f 4 Figure 1.2.
The toric graph of the resolved conifold with four outer framed Lagrangians.

Then,

z ρ(Y ) i,j=1 Y (D) ij ∂ 2 t i t j J Y (D) small (t, z) = ∇ pt J Y (D) big (τ, z) τ → ρ(Y ) i=1 t i ϕ i , (1.32) 
from which we deduce 

N loc d (Y (D)) = [z l-1 y d ]η Y (D)   pt, ρ(Y ) i,j=1 Y (D) ij q i q j ∂ 2 q i q j I Y (D) (y, z)   , =   ρ(Y ) i,j=1 Y (D) ij d i d j   N loc,ψ d (Y (D)) . (1.33 
O µ (Y op (D))(Q, ) := β O β, µ (Y op (D))( )Q β , (1.34 
O µ (Y op (D))(Q, )x µ   =: µ∈(P) l-1 Z µ (Y op (D))(Q, ) x µ , =: µ, ν∈(P) l-1 l-1 i=1 χ ν i (µ i ) z µ i W ν (Y op (D))(Q, )x µ .
( 1)), L, f is the resolved conifold with L the disconnected union of four outer branes in representations µ 1 , . . . , µ 4 and framing shifts f = (f 1 , . . . , f 4 ) as in Figure 1.2, we have

W µ 1 ,µ 2 ,µ 3 ,µ 4 Tot O ⊕2 P 1 (-1) , L, f (Q, ) = = ν∈P W µ 1 ,µ 2 ,ν C 3 , (L 1 , L 2 , L 0 ), (f 1 , f 2 , f 0 ) ( )(-Q) |ν| W ν T ,µ 3 ,µ 4 C 3 , L, (-f 0 , f 3 , f 4 ) ( ) , (1.36)
and if Y op (D) = (C 3 , L, f) is the affine space with three outer branes in representations µ 1 , . . . , µ 3 and framing shifts f = (f 1 , . . . , f 3 ) as in Figure 1.3 (the framed 3-legged vertex), we have [START_REF] Aganagic | Topological strings and integrable hierarchies[END_REF][START_REF] Maulik | Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds[END_REF] 

W µ 1 ,µ 2 ,µ 3 (C 3 , L, f)( ) = q κ(µ 1 )/2 3 i=1 q f i κ(µ i )/2 (-1) f i |µ i | δ∈P s µ t 1 δ (q ρ+µ 3 )s µ 2 δ (q ρ+µ t 3 )s µ 3 (q ρ ) . (1.37)
where s µ (q ρ+α ) denotes the principally-specialised α-shifted Schur function in the representation of GL(∞) labelled by µ (see [11, Appendix C] for details), κ(µ) is its second Casimir invariant of the partition µ normalised as κ((1)) = 0, and again q = e i .

1.4. Organisation of the paper. The paper is organised as follows. In Sections 2-4 we work out, for each of the Examples I-III, the full closed-form calculation of the log, local, and open GW invariants described in the previous sections, and prove Theorems 1.1 and 1.2 as a result. In the final section we employ these results to establish the BPS integrality statements of Theorems 1.3 and 1.4.

proving Theorem 1.1 for Y [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] (a,b) ). It is a privilege to be able to dedicate this paper as a modest testament to his legacy.

Example I

Let a, b be coprime positive integers. Then P(1, a, b) has toric divisors D (-1,0) , D (0,-1) and D (a,b) with relations

D (-1,0) ∼ aD (a,b) , D (0,-1) ∼ bD (a,b) , (2.1) 
intersections

D (-1,0) • D (0,-1) = 1 , D (0,-1) • D (a,b) = 1 a , D (-1,0) • D (a,b) = 1 b , (2.2) 
and self-intersections

D 2 (-1,0) = a b , D 2 (0,-1) = b a , D 2 (a,b) = 1 ab . (2.3)
To obtain a log smooth nef log Calabi-Yau surface, we choose D 1 = D (a,b) and D 2 a smooth element of the linear system of D (-1,0) + D (0,-1) so that (2.6)

D 2 1 = 1 ab , D 2 2 = (a + b) 2 ab . ( 2 
2.1. Local GW invariants. Let T (C ) 2 E P [2]
(1,a,b) be the fibre-wise action on E P [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (1,a,b) , and denote by λ i , i = 1, 2 its equivariant parameters. The inverse of the Gram matrix of the T -equivariant Poincaré pairing in the basis {1, H, H 2 } reads

η -1 P [2] (1,a,b) =    0 0 λ 1 λ 2 ab 0 λ 1 λ 2 ab -aλ 1 +bλ 1 +λ 2 a 2 b 2 λ 1 λ 2 ab -aλ 1 +bλ 1 +λ 2 a 2 b 2 a+b a 3 b 3    . (2.7) 
From [24, Thm 0.1] and [15, Thm 4.6], the T -equivariant I-function of E P [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (1,a,b) is

I P [2] (1,a,b) (y, z) = zy H/z d≥0 y d d-1 m=0 (λ 1 -H/(ab) -mz) (a+b)d-1 m=0 (λ 2 -(a + b)H/(ab) -mz) d m=1 (H/(ab) + mz) ad m=1 (H/b + mz) bd m=1 (H/a + mz)
.

(2.8) We have

I P [2] (1,a,b) (y, z) = z + (log y)H + O 1 z , (2.9) 
and therefore, as alluded to in Section 1.3.2, the mirror map is trivial, J P [2] (1,a,b) small (t, z) = I P [2] (1,a,b) (e t , z) .

(2.10)

x y D 2 D 1 E × (a,a+b) • 1+tx -1 Figure 2.1.
The toric model of P [2] (1, a, b).

Since l = 2 and thus N loc,ψ d (P [2] (1, a, b)) = N loc d (P [2] (1, a, b)), (1.26) gives

N loc d (P [2] (1, a, b)) = 1 ab i∈{0,1,2} (η P [2] (1,a,b) ) 2,i [H i z -1 y d ]I P [2] (1,a,b) (y, z) , (2.11) 
where, from (2.8), we have

[z -1 y d ]I P [2] (1,a,b) (y, z) = (-1) d(a+b+1) Γ((a + b)d)(H -abλ 1 )(H(a + b) -abλ 2 ) a 2 b 2 dΓ(ad + 1)Γ(bd + 1) , (2.12) 
and we have used that H 2 = (ab)pt. Combining (2.7), (2.11) and (2.12) finally yields N loc d (P [2] In the → 0 (q → 1) limit, this recovers the log-local correspondence of Theorem 1.1 for Y (D) = P [2] (1, a, b).

Proof. We view P(1, a, b) as given by the fan generated by (-1, 0), (0, -1) and (a, b). Start by adding a ray in the direction (-1, 1) yielding a new divisor E. Then the proper transform of D (-1,0) is a (-1)-curve, which we contract. This yields a focus-focus singularity on the ray directed by (-1, 1) The complement of the proper transform of D now has Euler characteristic 0, hence is (C * ) 2 , therefore the variety is toric. We apply the SL 2 (Z) transformation given by 1 0 1 1 to the fan and obtain the toric model of Figure 2.1.

There is a broken line β 1 coming from the direction of D 1 carrying the monomial (x a y a+b ) d•D 1 = x ad y (a+b)d and a broken line β 2 coming from the D 2 -direction carrying the monomial (y -1

) d•D 2 = x y D 2 D 1 E × (a,a+b) 1+tx -1 y -(a+b)d x ad y (a+b)d [ (a+b)d
ad ] q t ad x -ad y -(a+b)d

• p The all-genus, 1-hole open GW generating function of (P [2] (1, a, b)) op at winding j = ad is, by (1.34) and (1.37):

O j ((P [2] (1, a, b)

) op ) = j-1 s=0 (-1) s j W (j-s,1 s ),∅,∅ (C 3 , L, f) = j-1 s=0
(-1) s j q b/aκ((j-s,1 s )/2) (-1) b/aj s (j-s,1 s ) (q ρ ) , (2.14) where (j -s, 1 s ) denotes a partition represented by a hook Young diagram with j boxes and s + 1 rows. Using the hook formula for Schur functions [START_REF] Stanley | Theory and application of plane partitions. I, II[END_REF],

s (j-s,1 s ) (q ρ ) = q 1 2 ( j 2 )-js 2 [j] q [j -s] q ![s] q ! , (2.15) f Figure 2.3.
The toric graph of (P [2] (1, a, b)) op , depicted for a = 3, b = 2.

we get O j ((P [2] (1, a, b)

) op ) = (-1) b/aj q ( b a + 1 2 )( j 2 ) j[j] q d-1 s=0 (-1) s q -( b a + 1 2 )js [j -s -1] q ![s] q ! , = (-1) b/aj q ( b a + 1 2 )( j 2 ) j[j] q ! j-1 s=0 j -1 s q -q bj/a s q -js 2 , = (-1) b/aj q ( b a + 1 2 )( j 2 ) j[j] q ! j-1 k=1 1 -q -k-bj/a , = (-1) b/aj j[j] q ! [(1 + b/a)j -1] q ! [b/aj] q ! = (-1) jb/a j[(1 + b/a)j] q (1 + b/a)j j q . (2.16)
In this case, the isomorphism ι :

H 1 L, 1 a Z → H 2 (P(1, a, b), Z) of (1.16) is ι : [S 1 ] → a[D (a,b) ] ∨ = aH,
(2.17) therefore, setting j = da, O da ((P [2] (1, a, b)

) op ) = (-1) da da[(a + b)d] q (a + b)d ad q , (2.18) 
which proves Theorem 1.2 for P [2] (1, a, b).

Example II

Define Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) by considering the blow up π :

Y [2]
(a,b) -→ P [2] (1, a, b) at a smooth point of the second divisor of P(1, a, b). Torically, we take the fan with rays (-1, 0), (-1, -1) (0, -1) and (a, b) and choose D 1 = D (a,b) as well as D 2 a smooth member of the linear system D (-1,0) +D (-1,-1) +D (0,-1) . The relations are

D (-1,0) + D (-1,-1) ∼ aD 1 , D (0,-1) + D (-1,-1) ∼ bD 1 , (3.1) 
the intersections are

D (-1,0) • D (-1,-1) = D (-1,-1) • D (0,-1) = 1, D (0,-1) • D (a,b) = 1 a , D (-1,0) • D (a,b) = 1 b , (3.2) 
and the self-intersections are

D 2 (-1,0) = a b -1, D 2 (-1,-1) = -1, D 2 (0,-1) = b a -1, D 2 (a,b) = 1 ab . (3.3) Writing D = D 1 + D 2 , the topological Euler characteristic of the complement of D is χ(Y (a,b) \ D) = 2.
Then, H 2 (Y (a,b) , Z) is generated by the proper transform π * H ∼ abD 1 and by the class of D (-1,-1) . We write an effective curve class as

d = d 0 f + d 1 E with E := D (-1,-1) , f := π * H -D (-1,-1) , (3.4) 
so that

d • D 1 = d 0 , d • D 2 = (a + b -1)d 0 + d 1 , d • π * D (-1,0) = ad 0 d • D (-1,-1) = d 0 -d 1 . (3.5)
3.1. Local GW invariants. In this case, the (inverse) Gram matrix of the T -equivariant Poincaré pairing in the basis

{ϕ 0 , ϕ 1 , ϕ 2 , ϕ 3 } = {1, E, f, pt} reads η -1 Y [2] (a,b) =      0 0 0 λ 1 λ 2 0 -λ 1 λ 2 (ab-1) ab λ 1 λ 2 ab --a(b-1)λ 1 +bλ 1 +λ 2 ab 0 λ 1 λ 2 ab λ 1 λ 2 ab -aλ 1 +bλ 1 +λ 2 ab λ 1 λ 2 --a(b-1)λ 1 +bλ 1 +λ 2 ab -aλ 1 +bλ 1 +λ 2 ab 1 a + 1 b      , (3.6) 
and the T -equivariant I-function is

I Y [2] (a,b) (y, z) = d 0 ,d 1 ≥0 zy p 0 /z+p 1 /z 0 y d 0 0 y d 1 1 d 0 -1 m=0 (λ 1 -p 0 -mz) d 0 m=1 (p 0 + mz) (b-1)d 0 +d 1 m=1 ((b -1)p 0 + p 1 + mz) (a+b-1)d 0 +d 1 -1 m=0 (λ 2 + (1 -b -a)p 0 -p 1 -mz) d 0 -d 1 m=1 (p 0 -p 1 + mz) (a-1)d 0 +d 1 m=1 ((a -1)p 0 + p 1 + mz) , (3.7) 
where p 0 := H/(ab), p 1 := H/(ab) -E. At O(1) around z = ∞ we have

I Y [2] (a,b) (y, z) = z + (log y 0 )p 0 + (log y 1 )p 1 + O 1 z , (3.8) 
so the mirror map is once again trivial:

J Y [2] (a,b) small (t, z) = I Y [2]
(a,b) (e t , z) .

From (1.26) we obtain

N loc d (Y [2] (a,b) ) = i∈{0,1,2,3} η Y [2] (a,b) 3,i [ϕ i z -1 y d ]I Y [2] (a,b) (y, z) , (3.10) 
where, from (3.7), we have

[z -1 y d ]I Y [2] (a,b) (y, z) = Γ (d 0 ) (p 0 -λ 1 ) (-1) d 0 (a+b)+d 1 Γ (ad 0 + bd 0 -d 0 + d 1 ) (p 0 (a + b -1) -λ 2 + p 1 ) Γ (d 0 + 1) Γ (d 0 -d 1 + 1) Γ (ad 0 -d 0 + d 1 + 1) Γ (bd 0 -d 0 + d 1 + 1) . 
(3.11) Piecing (3.6), (3.10) and (3.11) together finally leads to

N loc d (Y [2] (a,b) ) = (-1) d 0 (a+b)+d 1 ((a + b -1)d 0 + d 1 -1)! d 0 (d 0 -d 1 )! ((a -1)d 0 + d 1 )! ((b -1)d 0 + d 1 )! . (3.12) 
3.2. Log GW invariants.

Proposition 3.1. Let a, b be coprime positive integers. Then

N log d Y [2] (a,b) (q) = ad 0 d 0 -d 1 q (a + b -1)d 0 + d 1 ad 0 q . ( 3.13) 
In conjunction with (3.12), taking the q → 1 limit recovers the numerical log-local correspondence of Theorem 1.1.

Proof. Given that Y (a,b) differs from P(1, a, b) by blowing up a smooth point of D 2 , the scattering

diagram for Y [2]
(a,b) is obtained by adding a focus-focus singularity in the direction (0, -1) in Figure 2.2. This creates simple scattering as described in Figure 3.1, which also contains the broken line calculation. As before, the wall-crossing is overdetermined.

Figure 3.1. Scatt Y [2] (a,b) x y D 2 D 1 × × (a,a+b) 1+t 0 x -1 1+t 1 y -1 1 + t 0 t 1 x - 1 y - 1 y -(a+b-1)d 0 -d 1 x ad 0 y (a+b)d 0 2 1 • p
At 1 , the broken line coming from the D 1 -direction picks up

ad 0 d 0 -d 1 q t d 0 -d 1 1
x ad 0 y (a+b-1)d 0 +d 1 .

At 2 , the broken line coming from the D 2 -direction picks up

(a + b -1)d 0 + d 1 ad 0 q t ad 0 0 x -ad 0 y -(a+b-1)d 0 -d 1 .
We conclude by [11, Proposition 4.2].

Open GW invariants. To construct (Y

(a,b) ) op , as for P [2] (1, a, b), we take the canonical bundle on the complement of D 1 = D (a,b) . From the toric description of Y From (1.36) and (1.37), we have

W α ((Y [2] (a,b) ) op )(Q, ) = q ( b a -1)κ(α)/2 (-1) ( b a -1)|α| ν∈P s ν t (q ρ+α )s α (q ρ )s ν (-Qq ρ ) = q ( b a -1)κ(α)/2 (-1) ( b a -1)|α| s α (q ρ ) i,j≥1 1 -Qq -i-j+1+α i , (3.14) 
so that

W (j-s-1,1 s ) ((Y [2] (a,b) ) op )(Q, ) W ∅ ((Y [2] (a,b) ) op )(Q, ) = (-1) (b/a-1)j q ( b a -1 2 )(( j 2 )-js) j-1 k=0 (1 -q k Qq -s ) [j] q [j -s -1] q ![s] q ! . (3.15)
Using the Cauchy binomial theorem we get

O j ((Y [2] (a,b) ) op )(Q, ) = j-1 s=0 (-1) s j W (j-s-1,1 s ) ((Y [2] (a,b) ) op )(Q, ) W ∅ ((Y [2] (a,b) ) op )(Q, ) = (-1) (b/a-1)j q ( b a -1 2 )( j 2 ) j[j] q ! ∞ l=0 q l(j+1) 2 j l q (-Q) l q -l j-1 s=0 j -1 s q (-q -(b/a-1)j-l ) s q -1 2 js , = (-1) (b/a-1)j q ( b a -1 2 )( j 2 ) j[j] q ! ∞ l=0 q l(j-1) 2 j l q (-Q) l j-1 k=1 (1 -q -(b/a-1)j-l-k ), (3.16 
)

so the O(Q l ) coefficient reads O l;j ((Y [2] (a,b) ) op )( ) = (-1) (b/a+1)j+l j[b/aj + l] q b/aj + l j q j l q .
(3.17)

The identification of lattices ι : H 

2 (P 1 , Z) ⊕ H 1 S 1 , 1 a Z → H 2 (Y (a,b) , Z) in (1.16) reads ι : [S 1 ] → a[D (a,b) ] ∨ , ι : [P 1 ] → [D (-1,-1) ] , (3.18 
d • D 1 = d 0 , d • D 2 = (b -1)d 0 + d 1 , d • D 3 = ad 0 , d • D (-1,-1) = d 0 -d 1 . (4.2) 
4.1. Local GW invariants. In this case, the (inverse) Gram matrix of the T -equivariant Poincaré pairing in the basis {ϕ 0 , ϕ 1 , ϕ 2 , ϕ 3 } = {1, E, f, pt} reads

η -1 Y [3] (a,b) =      0 0 0 λ 1 λ 2 λ 3 0 -λ 1 λ 2 λ 3 (ab-1) ab λ 1 λ 2 λ 3 ab aλ 1 (bλ 3 -λ 2 )-λ 3 (bλ 1 +λ 2 ) ab 0 λ 1 λ 2 λ 3 ab λ 1 λ 2 λ 3 ab -aλ 1 λ 2 +λ 3 (bλ 1 +λ 2 ) ab λ 1 λ 2 λ 3 aλ 1 (bλ 3 -λ 2 )-λ 3 (bλ 1 +λ 2 ) ab -aλ 1 λ 2 +λ 3 (bλ 1 +λ 2 ) ab λ 3 a + λ 2 b + λ 1      , (4.3) 
and the T -equivariant I-function is

I Y [3] (a,b) (y, z) = d 0 ,d 1 ≥0 d 0 -1 m=0 (λ 1 -p 0 -mz) (b-1)d 0 +d 1 -1 m=0 (λ 2 + (1 -b)p 0 -p 1 -mz) d 0 m=1 (p 0 + mz) (b-1)d 0 +d 1 m=1 ((b -1)p 0 + p 1 + mz) zy p 0 /z+p 1 /z 0 y d 0 0 y d 1 1 ad 0 -1 m=0 (λ 3 -ap 0 -mz) d 0 -d 1 m=1 (p 0 -p 1 + mz) (a-1)d 0 +d 1 m=1 ((a -1)p 0 + p 1 + mz) , (4.4) 
where p 0 := H/(ab), p 1 := H/(ab) -E. It is immediate to check that there are no non-trivial contributions to the mirror map,

[z 0 ]I Y [3] (a,b) (y, z) = (log y 0 )p 0 + (log y 1 )p 1 , (4.5) 
and so we obtain

J Y [3] (a,b) small (t, z) = I Y [3]
(a,b) (e t , z) . Acting on (4.7) with θ 0 ((b -1)θ 0 + θ 1 ), where θ i := y i ∂ y i , annihilates the quantum corrections in the last two rows. This entails that the small quantum cohomology product of p 0 and (b -1)p 0 + p 1 is equal to their classical cup product:

p 0 y ((b -1)p 0 + p 1 ) = p 0 ∪ ((b -1)p 0 + p 1 ) = H 2 a 2 b = pt a . (4.8) 
At the next order in O(1/z), we have

[z -2 ]I Y [3] (a,b) (y, z) = (d 0 ,d 1 ) =(0,0) y d 0 0 y d 1 1 (-1) d 0 (a+b)+d 1 (ad 0 -1)! (p 0 -λ 1 ) ((b -1)p 0 -λ 2 + p 1 ) (ap 0 -λ 3 ) d 0 ((b -1)d 0 + d 1 ) (d 0 -d 1 )! ((a -1)d 0 + d 1 )! , (4.9) 
so that

N loc,ψ d Y [3] (a,b) = η Y [3] (a,b) pt, [z -2 y d 0 0 y d 1 1 ]I Y [3] (a,b) = (-1) d 0 (a+b)+d 1 +1 (ad 0 -1) d 0 ((b -1)d 0 + d 1 ) (d 0 -d 1 ) ((a -1)d 0 + d 1 )! , (4.10) 
and thus 

N loc d Y [3] (a,b) = η Y [3] (a,b) pt, [z -2 y d 0 0 y d 1 1 ]aθ 0 ((b -1)θ 0 + θ 1 )I Y [3] (a,b) = ad 0 ((b -1)d 0 + d 1 )N loc,ψ d Y [3] (a,b) . ( 4 
= ad 0 d 0 -d 1 , (4.12) 
N log d Y [3] (a,b) ( ) = [ad 0 ((b -1)d 0 + d 1 )] q [1] q ad 0 d 0 -d 1 q . ( 4.13) 
The genus zero (q → 1) limit of Proposition 4.1, combined with (4.11), concludes the proof of Theorem 1.1.

x y

D 2 D 1 D 3 × 1+ty -1 x -ad 0 y -(b-1)d 0 -d 1 x ad 0 y bd 0 1 • p Figure 4.1. Scatt Y [3] (a,b) Proof. The scattering diagram of Y [3]
(a,b) is given by the fan of P(1, a, b) with a focus-focus singularity in the direction (0, -1). The broken line calculations are given in Figure 4.1.

After crossing the wall at 1 , the broken line coming from the D 3 -direction carries the monomial

ad 0 d 0 -d 1 q t d 0 -d 1 x -ad 0 x -d 0 +d 1 y d 0 .
The result then follows from Propositions 4.1 and 4.2 of [START_REF]Stable maps to Looijenga pairs[END_REF]. (a,b) gives a toric Lagrangian triple given by affine space C 3 with two toric Lagrangians L 1 , L 2 at framing f 1 = (b/a -1) and f 2 = 0; see Figure 4.2. For this setup, denoting j i the winding number of open stable maps around S 1 → L i , i = 1, 2, we have

O j 1 ,j 2 (Y [3] (a,b) ) op = j 1 -1 i 1 =0 j 2 -1 i 2 =0 (-1) i 1 +i 2 aj 1 j 2 W (c) (j 1 ,1 i 1 ),(j 2 ,1 i 2 ) (Y [3] (a,b) ) op , (4.14) 
where

W (c)
αβ is the connected 2-leg topological vertex at framing (b/a -1, 0),

W (c) αβ (Y [3] (a,b) ) op := W αβ (Y [3] (a,b) ) op -W α∅ (Y [3] (a,b) ) op W ∅β (Y [3] (a,b) ) op = q b/aκ(α)/2 (-1) (b/a-1)|α| δ =∅ s α t δ (q ρ )s β δ (q ρ ) . (4.15) 
We can express (4.14) as a q-series using the q-factorial expression for hook skew Schur functions [11, App. C], as

s (d,1 i ) δ (q ρ ) =    (-1) k-d q 1 2 ( d 2 -2d(i+k-r)+i 2 +2ik-2ir+i+k 2 -2kr+r 2 -r ) (q;q) i-r (q;q) d-i-k+r , δ = (k, 1 r ) , 0 else , (4.16) 
O j 1 ,j 2 (Y [3] (a,b) ) op = (-1) j 1 +j 2 +1 q 1 2 ( b/aj 2 1 +j 1 (1+b/a)+j 2 2 ) j 1 j 2 ∞ k,i 1 ,i 2 =0 k-1 r=0 q rj 1 a i 1 ,d,k b i 2 ,d,k c k , (4.17) 
where

a l 1 ,j 1 ,k = (-1) l 1 q 1 2 l 1 (l 1 -1-2j 1 ) (q; q) l 1 (q; q) bj 1 /a-k-l 1 , b l 2 ,j 2 ,k = (-1) l 2 q 1 2 l 2 (l 2 +1+2k-2j 2 ) (q; q) l 2 (q; q) j 2 -k-l 2 , c k = (-1) k q 1 2 k(k-1-2j 1 -2j 2 ) . (4.18) 
In the formulas above, (q; q) n is the usual q-Pochhammer symbol, (q; q) n := (-1) n q 1 4 n(n+1) [n] q !. Performing the l 2 summation using the Cauchy binomial theorem in the form

(qy; q) n = ∞ m=0 (-y) m q m(m+1) 2 (q; q) n (q; q) m (q; q) n-m (4.19) gives ∞ l 2 =0 b l 2 ,j 2 ,k = (q k-j 2 +1 ; q) j 2 -k (q; q) j 2 -k = 1 (q; q) j 2 -k (q; q) k-j 2 = δ j 2 k . (4.20) 
The sum over k consists then of a single summand at k = j 2 , and the sum over l 1 , using (4.19), is

bj 1 /a-j 2 l 1 =0 a l 1 ,j 1 ,j 2 = (-1) b/aj 1 -j 2 q -(j 1 +1)(j 1 -j 2 ) j 1 b/aj 1 -j 2 q . (4.21) Therefore, O j 1 ,j 2 (Y [3] (a,b) ) op = (-1) j 1 (1+b/a)+j 2 +1 j 1 j 2 q -1 2 j 1 (j 2 -1) j 1 b/aj 1 -j 2 q j 2 -1 r=0 q rj 1 = (-1) j 1 (1+b/a)+j 2 +1 j 1 b/aj 1 -j 2 q [j 1 j 2 ] q [j 1 ] q j 1 j 2 . ( 4 

.22)

Figure 5.1. The quiver for P [2] (1, a, b) for a = 1, b = 3.

From (1.16), the winding number variables in (Y 

BPS invariants

The closed-form higher genus GW expressions of the previous Sections put us now in a position to prove Theorem 1.3. Write

Ω d (Y (D))(q) = [1] 2 q l i=1 [d • D i ] q k|d (-1) l i=1 d/k•D i +1 µ(k) [k] q k 3-l N log d/k (-ik log q) . (5.1) 
From (2.1), (3.13) and (4.13), we have that obviously N log d/k (-ik log q) ∈ Z[q ±1/2 ] since it is a product of q-binomial coefficients. Then (5.1) implies a priori that Ω d (Y (D))(q) ∈ Q(q 1/2 ) with poles at q = 0, ∞ and at most double poles at q = exp(2πil/ d), with d := lcm{d • D i } l i=1 . We have the following Proposition 5.1. Let Y (D) = P [2] (1, a, b), Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) , Y [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] (a,b) . Then

l i=1 [d • D i ] q [1] 2 q Ω d (Y (D))(q) = O q -e 2πil d 2
, l = 0, . . . , d -1.

(5.2)

Proof. The vanishing at linear order can be shown with the exact same arguments of the proof of [START_REF]Stable maps to Looijenga pairs[END_REF]Thm 8.1] by replacing therein Θ d (q) → N loc d (-i log q) (for P [2] (1, a, b) and Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) ) and Ξ d (q) → N loc d (-i log q) (for Y [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] (a,b) ): the summands in the divisor sums in (5.1) can be grouped in pairs with leading order terms at q = e 2πil d having opposite signs, ensuring the l.h.s. is zero at that order. The quadratic vanishing is a consequence of [START_REF]Stable maps to Looijenga pairs[END_REF]Lemma 8.3].

The Proposition then implies that Ω d (Y (D)) ∈ Q[q ±1/2 ]. Since 1/[d•D i ] q ∈ q -d•D i /2 Z[[q]], from (5.1) we have Ω d (Y (D)) ∈ Z[q -1/2 ][[q 1/2 ]], and thus Ω d (Y (D)) ∈ Z[q ±1/2 ] from the previous Proposition. The claim of Theorem 1.3 then follows. [START_REF] Panfil | Donaldson-Thomas invariants, torus knots, and lattice paths[END_REF], that is, it consists of a single integrally framed outer Aganagic-Vafa Lagrangian on a smooth toric Calabi-Yau threefold whose fan is a cone over an integral polytope of unit width. Then Theorem 1.4 follows from a proof identical in all its parts to that of [START_REF]Stable maps to Looijenga pairs[END_REF]Thm 7.3], with framings now equal to f = b (for P [2] (1, a, b) with a = 1) and f = b-1 (for Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (a,b) with a = 1).

Example 5.1. For Y (D) = P(1, 1, b) [2] , Y op (D) is the 1-legged vertex at framing b, for which the corresponding quiver is the b + 1-loop quiver [START_REF] Panfil | Donaldson-Thomas invariants, torus knots, and lattice paths[END_REF] (see Figure 5.1). The dimension vector is here identically identified with the curve degree d, κ = id, and the integral shift in Theorem 1.4 vanishes, α i = 0. The Klemm-Pandharipande invariants KP d (E P(1,1,b) [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] ) are then up to a sign the polynomials in Table 1. BPS/KP invariants of Y [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (1,b) .

( 1 ,

 1 a, b) := (P(1, a, b), D = D (a,b) +D 2 ). It is non-toric since the topological Euler characteristic of the complement of D is χ(P(1, a, b)\D) = 1.

Figure 1 . 1 . 1 .

 111 Figure 1.1. The fan of P(1, a, b) with toric intersection numbers

  0,m (Y, d) the moduli stack of twisted genus 0 m-marked stable maps [f : C → Y] with f * ([C]) = d and C an m-pointed twisted curve. We write M 0,m (Y, d) for the substack of twisted stable maps such that the image of the evaluation maps is contained in the age zero component of the inertia stack of Y. The moduli stack M 0,m (Y, d) has a perfect obstruction theory, inducing a virtual fundamental class

1 . 1 . 3 .

 113 the first Chern class of the i th tautological line bundle on M 0,m (Y, d). All genus open GW invariants. In [11, Construction 6.4], we showed how to associate to a smooth Looijenga pair Y (D) satisfying certain positivity properties [11, Definition 6.3] a triple

5 .

 5 and the right hand side is the generating series of Poincaré rational functions of the stacks of representations of Q. The numerical DT invariants DT num d (Q) are non-negative [20] BPS invariants. For a Looijenga orbi-pair Y (D), we define open BPS numbers Ω d (Y (D))(q) := k|d (-1)

  , and especially the rescaling of the boundary circle classes by r i in the definition of ι are familiar in the relation of fractionally framed toric branes to enumerative invariants, and they match identically the correction factors relating open GW invariants of large N Lagrangians of torus links from fractionally framed open GW invariants of toric orbi-branes; see [5, 13, 18, 21]. 1.2.3. KP/LMOV/DT integrality. The next Theorem substantiates the expectation that (1.11)-(1.12) are particular open BPS/LMOV partition functions, and in particular integral Laurent polynomials in q 1/2 .

. 20 )

 20 It follows directly from Theorem 1.3 that Ω d (Y (D)) ∈ Z. In particular, (1.20) implies that the unrefined BPS invariants Ω d (Y (D)) coincide with an orbifold generalisation of the conjecturally integral invariants KP d (E Y (D)

  . The quantum scattering diagram associated to Y (D) consists of an affine integral manifold B and a collection of walls d with wall-crossing functions f d . Here we content ourselves to give a brief overview, referring to [11, Section 4.2] for details of the construction, the wall-crossing algorithm, broken lines and their multiplication. In particular, [11, Proposition 4.2] explains how to extract the N log d (Y (D)) from structural coefficients of the multiplication of theta functions.

  The balancing condition has to be satisfied at each vertex except at the focus-focus singularities, which are seen as sources of Maslov index 0 disks. These tropical curves furthermore are weighted by contributions coming from the wall-crossing. Summing the weights of the tropical curves then calculates the N log d (Y (D)) as described in [11, Proposition 4.2]. 1.3.2. Local mirror symmetry. Since Y is a projective toric surface for all of Examples I-III, we can avail ourselves of Givental-type mirror theorems to determine (1.4)-(1.5). Let T (C ) l be the torus action on E Y (D) covering the trivial action on the zero section i : Y → E Y (D) . And fix {ϕ α } χ(Y )-1 α=0 be a H(BT )-basis of H T (E Y (D) ) given by lifts to T -equivariant cohomology of classes φ α ∈ H(Y ) with deg φ α ≤ deg φ α+1 , and for θ

) 1 . 3 . 3 .

 133 The topological vertex. The connected generating functions O µ (Y op (D))(Q, ) of open GW invariants in the 'winding-number basis' of[START_REF] Li | A mathematical theory of the topological vertex[END_REF],

  ) can be reconstructed from the disconnected generating functions Z µ (Y op (D)) and W µ (Y op (D)) in the 'winding number' and 'representation' bases defined by exp   µ∈(P) l-1

. 35 ) 3 f 1 f 2 Figure 1 . 3 .

 3531213 Figure 1.3. The toric graph of the framed 3-legged vertex.

. 4 )

 4 Writing D = D 1 + D 2 , the topological Euler characteristic of the complement of D is χ(P(1, a, b) \ D) = 1 . (2.5) Denote by H the effective generator of H 2 (P(1, a, b), Z). Notice that H 2 = ab, D 1 ∼ 1 ab H and D 2 ∼ a+b ab H. Consequently, for a curve class d = dH, d • D 1 = d, d • D 2 = d(a + b) .

2 .Proposition 2 . 1 .

 221 Log GW invariants. Let a, b be coprime positive integers. Then N log d (P(1, a, b))( ) = (a + b)d ad q .

Figure 2 . 2 . 2 . 3 .

 2223 Figure2.2. Scatt P[2] (1, a, b)

[ 2 ]Figure 3 . 2 .

 232 Figure 3.2. The toric graph of (Y [2] (a,b) ) op , depicted for a = 3, b = 5.

  ) and, accordingly, the change-of-variables relating the curve degrees (d 0 , d 1 ) in H 2 (Y (a,b) , Z) and the relative homology variables (l; j) in H rel 2 ((Y (a,b) ) op , Z) is j → d 0 a , l → (a -1)d 0 + d 1 , Example III Start with the pair (P(1, a, b), D 1 + D 2 + D 3 ) where the divisors D 1 = D (-1,0) , D 2 = D (0,-1) , D 3 = D (a,b) form the toric boundary of P(1, a, b), and blow up a smooth point of D (0,-1) leading to π : Y [3] (a,b) -→ P(1, a, b) D (-1,0) , D (0,-1) , D (a,b) . (4.1) Torically, the fan of Y (a,b) is given by the rays (-1, 0), (-1, -1) (0, -1) and (a, b). Then D 1 = D (a,b) , D 2 = D (0,-1) and D 3 is a smooth member of the linear system D (-1,0) + D (-1,-1) . Writing D = D 1 + D 2 + D 3 , the topological Euler characteristic of the complement of D is χ(Y (a,b) \ D) = 1. As before, we write an effective curve class as d = d 0 f + d 1 E, where f, E ∈ H 2 (Y (a,b) , Z) are defined in (3.4) and

(4. 6 )(- 1 )(p 1 -

 611 For the O(1/z) term in the expansion of the J-functions we have quantum corrections only whend 0 = 0 or d 1 = (1 -b)d 0 : b) (y, z) = (1 -ab) log 2 y 1 + log 2 y 0 + 2 log y 1 log y 0 2ab pt + d>0 (a+1)d (p 0 -λ 1 ) (ad -1)! (ap 0 -λ 3 ) y d-bd1 y d 0 dz(bd)!((a -b)d)! + d>0 p 0 ) ((b -1)p 0 -λ 2 + p 1 ) y d

.11) 4 . 2 .Proposition 4 . 1 .

 4241 Log GW invariants. Denote by N log,ψ

4. 3 .

 3 Open GW invariants. Applying[START_REF]Stable maps to Looijenga pairs[END_REF] Construction 6.4] to Y[START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF] 

f 1 f 2 Figure 4 . 2 .

 242 Figure 4.2. The toric graph of Y [3] (a,b) op for a = 1, b = 2.

  b) ) op and curve degrees in Y (a,b) are related asj 1 → ad 0 , j 2 → (b -1)d 0 + d 1 ,(4.23)which combined with (4.22) and Proposition 4.1 concludes the proof of Theorem 1.2.

Figure 5 . 2 .

 52 Figure 5.2. The quiver for Y [2] (a,b) for a = 1, b = 3.

. 3 ) 5 . 2 . 1 κ

 3521 1 d! Z[b] computed by Reineke in[START_REF] Reineke | Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers[END_REF] Thm 3.2]. Explicitly, we haveKP d E P(1,1,b) b b(b + 1)(5b(b + 1) + 2), . . . = (-1) b+d+1 DT d Q(P(1, 1, b)[2] )(5Example For Y (D) = Y [2](1,b) , the corresponding quiver is given in Figure5.2.The map between vertices of the quiver and effective generators of H 2 (Y (1,b) , Z) is v shifts in Theorem 1.4 are α 1 = 0, α 2 = 1. Klemm-Pandharipande invariants for small degrees d 0 , d 1 > 0 are given in Table1: note that despite being rational polynomials in b, they take integer values for b ∈ Z + . The quiver DT invariants of Q(Y[START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF] (1,b) ) are obtained as their absolute values.

5 (- 1 ) 24 (- 1 ) 12 (- 1 ) 12 (- 1 )

 51241121121 b b(5b-3)(5b-2)(5b-1) b+1 b(5b-2)(5b-1)(5b+1) b b(5b-1)(5b+1)(5b+2) b+1 b(5b+1)(5b+2)(5b+3) 24

  ) connected components of the boundary mapping to L i with winding numbers around S 1 → L i equal to the parts of µ i . The corresponding open GW invariants, Quiver DT invariants. Let Q be a symmetric quiver with n-vertices and, for dimensionvectors d = i d i v i , e = i e i v i ∈ NQ 0 = Nv 1 + • • • + Nv n , denote by E Q (d,e) the Gram matrix of the Euler form

	l-1 i=1 (µ i O g,β, µ (Y op (D)) =	1	(1.6)
		[M g;β; µ (Y op (D))] vir	
	can be encoded into formal generating functions	
	O β; µ (Y op (D))( ) :=	2g-2+ ( µ) O g;β; µ (Y op (D)) ,	(1.7)
		g	
	with ( µ) = s i=1 (µ i ). We will write simply O g;β (Y op (D)) and O β (Y op (D))( ) for the (l -1)-
	holed open GW invariants obtained when µ i = (m i ), which are then determined by the class
	β ∈ H rel 2 (Y op (D), Z).		
	1.1.4. E Q (d, e) :=	n	
		i=1	
				..,µ l-1 (Y op (D))
	of relative degree β open stable morphisms to Y op from genus-g, open Riemann surfaces with

See[START_REF] Brini | Open orbifold Gromov-Witten invariants of [C 3 /Zn]: localization and mirror symmetry[END_REF] for a definition of open GW invariants of toric orbifold Lagrangians using localisation, and[START_REF] Fang | Topological recursion for the conifold transition of a torus knot[END_REF] for a definition for smooth toric Lagrangians with fractional framing using relative GW theory.
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