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Analysis of merged whole blood
transcriptomic datasets to identify
circulating molecular biomarkers of feed
efficiency in growing pigs
Farouk Messad1, Isabelle Louveau1, David Renaudeau1, Hélène Gilbert2 and Florence Gondret1*

Abstract

Background: Improving feed efficiency (FE) is an important goal due to its economic and environmental
significance for farm animal production. The FE phenotype is complex and based on the measurements of the
individual feed consumption and average daily gain during a test period, which is costly and time-consuming. The
identification of reliable predictors of FE is a strategy to reduce phenotyping efforts.

Results: Gene expression data of the whole blood from three independent experiments were combined and
analyzed by machine learning algorithms to propose molecular biomarkers of FE traits in growing pigs. These
datasets included Large White pigs from two lines divergently selected for residual feed intake (RFI), a measure of
net FE, and in which individual feed conversion ratio (FCR) and blood microarray data were available. Merging the
three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs, with
a large range of body weight (15 to 115 kg) and different test period duration (2 to 9 weeks). Random forest (RF)
and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,687 annotated molecular probes)
to identify the most important variables for binary classification on RFI groups and a quantitative prediction of FCR,
respectively. The dataset was split into learning (n = 74) and validation sets (n = 74). With iterative steps for variable
selection, about three hundred’s (328 to 391) molecular probes participating in various biological pathways, were
identified as important predictors of RFI or FCR. With the GTB algorithm, simpler models were proposed combining
34 expressed unique genes to classify pigs into RFI groups (100% of success), and 25 expressed unique genes to
predict FCR values (R2 = 0.80, RMSE = 8%). The accuracy performance of RF models was slightly lower in
classification and markedly lower in regression.

Conclusion: From small subsets of genes expressed in the whole blood, it is possible to predict the binary class
and the individual value of feed efficiency. These predictive models offer good perspectives to identify animals with
higher feed efficiency in precision farming applications.

Keywords: Biomarkers, Blood, Feed efficiency, Gradient TreeNet boosting, Microarray, Random Forest, Residual feed
intake
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Background
Peripheral blood is widely used in human medicine and
veterinary fields as a relevant and easy sampling source
of biological information, since it transports a large var-
iety of molecules including DNA, coding and non-
coding regulatory RNA, proteins and metabolites from
all over the body. Their dynamics reflects homeostatic
regulation [1–3], physiological changes [4, 5] and varia-
tions in immune capacity [6, 7]. Circulating molecules
also provide valuable insights into complex phenotypes
such as obesity and diabetes [8, 9], health status [10],
sensitivity to heat stress [11] and nutrient efficiency for
productive outputs [3, 7, 12]. Therefore, they hold much
promise for the identification of biomarkers for particu-
lar phenotype prediction [13]. Both hypothesis-based
and discovery-based procedures are used for the search
of biomarkers. For a discovery-based procedure, high-
throughput expression studies analyzed by linear model
statistics and functional annotation bioinformatics are
often used to enlighten how expressed genes and related
biological pathways are discriminants between treat-
ments. However, a plethora of machine learning (ML)
approaches applied on data gathered in a learning base
from characterized samples have the potential to surpass
these traditional approaches in predicting class member-
ship and individual values of unknown samples gathered
in a test base [14]. In conditions where small variations
in the data may cause significant changes in the predic-
tion, these methods generally overcome complex, noisy
and hidden relationships when ranking the most import-
ant genes for prediction and avoid the pitfalls of
overfitting.
Feed efficiency (FE) has become a research priority in

growing pigs to support competitive and sustainable
meat production. Improving FE is a strategy to reduce
the amount of feed needed to produce meat and to re-
duce environmental wastes and emissions. Feed effi-
ciency is measured on a farm as feed conversion ratio
(FCR), calculated as the ratio of an amount of feed in-
take to body weight (BW) gain. Residual feed intake
(RFI) has also been proposed as a refined measure of net
FE in selection experiments [15]. It is defined as the dif-
ference between the observed feed intake and the feed
intake predicted from growth and maintenance require-
ments. For RFI, BW gain and indicators of body com-
position such as backfat thickness must be recorded
during a test period for each animal. This is time-
consuming and costly, especially when animals are
housed in group. Moreover, FE is underlined by varia-
tions in the transcripts of several genes participating in
many functional pathways in different tissues [16], which
adds to its complexity. Therefore, there is a need to find
molecular biomarkers that accurately differentiate high
and low FE animals and that can be further used for

improving FE of growing animals in breeding programs
or nutritional decision tools. So far, various studies have
revealed differences in the whole blood transcriptome
between low RFI (most feed efficient) and high RFI pigs
(less feed efficient) at post-weaning [12] and during the
growing period [3, 7]. Moreover, the concentration of
IGF-1 in blood plasma of juvenile post-weaned pigs was
correlated with RFI measured during the growing period
[17], suggesting that circulating molecules may even
serve as early indicators for FE. However, among genes
identified as differentially expressed between steers with
low or high BW gain and feed intake, only few of them
were similarly found across different cohorts [18]. This
highlights the importance of incorporating different
datasets to cover various experimental conditions and to
avoid the limits of each design (number of samples/
number of treatments) for biomarker discovery.
This study aimed to identify reliable sets of expressed

genes in the whole blood to predict the RFI group or in-
dividual FCR value. For that, ML algorithms were ap-
plied on a merged transcriptomic dataset from three
independent experiments where meta-data for RFI and
FCR were also available in growing pigs.

Results
Animals and FE traits
Three independent experiments [19–21] were merged to
reanalyze gene expression levels in whole blood from a
total of 148 females and barrows. These experiments all
included purebred French Large White pigs of two lines
divergently selected for RFI during 7th to 9th genera-
tions, and were based on different dietary treatments.
The distribution of FCR values for the 148 pigs consid-
ered in the merged dataset was illustrated in Fig. 1, ac-
cording to the RFI group and their experiment of origin.
The FCR averaged 2.85 kg feed/kg BW, and covered a
large range of values (Min = 1.92; Max = 5.00). It was
generally lower for pigs of the low RFI line than for pigs
of the high RFI line, but there was an interpenetration
between the two lines within each experiment and be-
tween experiments.

Model performance in RFI classification
Merging the transcriptomic data of the three independ-
ent experiments resulted in a new dataset of 26,687 an-
notated expressed probes across the 148 blood samples.
The random forest (RF) and gradient tree boosting
(GTB) procedures were applied to this merged dataset
to find the most important transcripts that allow the
classification of pigs (low RFI/high RFI). These algo-
rithms were considered to produce an excellent fit of
predicted to observed values even when the specific na-
ture of the relationships between the predictor variables
and the dependent variable was very complex [22]. In
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the two procedures, a randomly selected bootstrap sam-
ple set was used as a learning dataset (n = 74 pigs),
whereas the remaining samples (n = 74 pigs) were used
in a test dataset for validation. Learning and validation
datasets including transcriptomic data and meta-data
(RFI group, FCR) are freely available at https://doi:1
0.15454/J4XOPD.

From the RF procedure, a total of 778 probes (out of
the 26,687 annotated probes) were first selected to pro-
vide an accurate classification of pigs into low and high
RFI groups during the training step. In the validation
step (Supp. Table S1), the RF model further selected 328
probes (out of the 778 probes) as very important vari-
ables (VIP) for RFI classification. The accuracy of the

Fig. 1 Distribution of feed conversion ratio across the dataset. Pigs of low and high residual feed intake (RFI) lines were considered in three
different experiments unraveling different periods for blood sampling. Feed conversion ratio (FCR) was measured for each pig during specific test
periods. The first dataset included 21 pigs, the second dataset included 48 pigs and the third dataset included 79 pigs. In the merged dataset,
148 pigs were thus analyzed. Feeding conditions, test periods and age and body weight of pigs when blood sampling was performed, are
detailed in Material and Methods
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model was estimated by the proportion (%) of good clas-
sification, and the optimal model was selected according
to the receiver operating characteristic curve (ROC) as a
diagnostic ability of the binary classifier system. Iterative
steps allowed to obtain the best model (96% of success
on average) with a subset of 50 molecular probes (out of
the 328 VIP). It provided a good prediction for 94.74%
of the high RFI pigs and 97.22% of the low RFI pigs, re-
spectively (Table 1), so that the prediction accuracy was
similar for the two RFI lines (chi2 = 0.59). The 50 VIP
corresponded to 25 unique identified expressed genes
since 17 probes had no consolidated annotation and
some genes were represented by two up to four probes
(GPX3, CD1A, and SERPINF1). The list of these 50
probes, the encoded genes, and the score attributed to
each probe in the predictive RF model is given in Supp.
Table S2.
From the GTB procedure, a total of 728 probes (out of

the 26,687 annotated probes) were similarly retained as
providing an accurate classification on low/high RFI dur-
ing the training step. In the validation step, the GTB
model further identified 391 probes (out of 728 probes)
as the best VIP to classify pigs on low or high RFI (Supp.
Table S1). Iterative steps led to select a subset of 50 mo-
lecular probes (out of the 391 VIP) allowing 100% of
good classification (Table 1). These 50 probes corre-
sponded to 34 unique annotated expressed genes
(Table 2); these genes were all represented by a single
probe in the model but 16 probes had no consolidated
annotation. The top five transcripts for classifying pigs
into low or high RFI were the following: PSEN1, SERP
INF1, TMEM63B, EPAS1 and MX1 genes (Table 2).

Overall, 12 annotated expressed genes (25% of the
genes retained by each method) were commonly pro-
posed by the RF and GTB models as top VIPs to classify
pigs on low or high RFI. They were PSEN1, SERPINF1,
EPAS1, GPX3, CLU, WDHD1, HTRA1, PARVG,
HMG20A, RPS18, SLC46A3 and DCT.

Model performance in FCR prediction
When addressing continuous variables such as FCR, re-
gression trees rather than classification trees must be
built. The transcriptomic dataset was similarly split into
training (n = 74) and validation (n = 74) datasets. About
1393 probes (out of the 26,687 annotated probes) were
selected during the training procedure. The performance
of the models was then evaluated by using the validation
set, and models with the best R2 and the lowest Root
Mean Squared Error (RMSE) were retained (Table 3).
The accuracy of prediction by the GTB algorithm (R2 ~
0.80; RMSE ~ 0.23) exceeded that obtained by the RF
procedure (R2 ~ 0.65 and RMSE ~ 0.29). Due to this
large difference in model performance between the two
algorithms in regression, also mentioned by others [23],
only the results of the GTB model for FCR prediction
were described in this study. The GTB procedure first
identified 428 probes as a top VIP to predict FCR values.
Iterative steps led to a good compromise between a
lower number of VIP and increased accuracy of the pre-
diction, which was obtained with 50 molecular expressed
probes. These 50 probes corresponded to 27 unique an-
notated genes (Table 4). Finally, the predicted (X) values
were compared with the observed (Y) values for the pigs
included in the validation set (n = 74). The quality of the
relationships was evaluated based on the RMSE of pre-
diction (RMSEP) obtained by a leave-one-out cross-
validation from the value of the predicted residual sum
of squares. Observed and predicted values for FCR were
very close (R2 = 0.80, RMSEP = 0.15; Fig. 2). The mean of
predicted FCR values was 2.83 and the mean for ob-
served FCR values was 2.85, respectively, and the error
made by the model was evaluated at 7% on the average.
The samples (n = 5) having the highest residual (> 0.15)
all corresponded to pigs of the high RFI line but from
different experiments (1 pig from experiment 1, 1 pig
from experiment 2, and 3 pigs from experiment 3, Supp.
Fig. S1), suggesting no bias due to the independent data-
sets. Without these few samples (5 out of 74), the pre-
diction accuracy was improved (R2 = 0.94).

Overview of the biological pathways shared by the
molecular predictors of RFI and FCR traits
To progress in the knowledge of the most important
biological pathways underlying the variation of FE
among pigs, the expressed genes selected by the GTB
models as top VIP allowing binary diagnostic for RFI

Table 1 Classification of pigs between RFI groups based on 50
molecular probes expressed in blood

Actual
class

Nb
pigs

Percent
correct

Predicted classes

High RFI Low RFI

Random Forest procedure

High RFI 38 94.7% 36 2

Low RFI 36 97.2% 1 35

Total 74

Overall %Correct 96.0%

Gradient Tree Boosting procedure

High RFI 38 100% 38 0

Low RFI 36 100% 0 36

Total 74

Overall %Correct 100%

Random forest (RF) and gradient treenet boosting (GTB) algorithms were
applied on transcriptomic dataset from the whole blood sampled from 148
pigs of lines divergently selected for residual feed intake (RFI). Pigs were
randomly split into training (n = 74) and validation test (n = 74) datasets to
evaluate model performance in classifying pigs into low or high RFI groups.
Expression levels of 50 molecular probes were considered in the validation set.
The model made no error (100% of success) when built by GTB procedure
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(low/high) or predicting FCR (individual values) were
submitted to a functional analysis using n bioinformatics
tool. The 391 molecular probes initially selected to split
pigs into low and high RFI groups, corresponded to 253
annotated unique genes that were clustered into 14 bio-
logical pathways (Table 5). The lipid metabolic process
and transport, response to oxidative stress,

phosphorylation, and positive regulation of defense re-
sponse were among the top functional pathways identi-
fied across these genes. The 728 molecular probes
selected to predict FCR values corresponded to 477
unique annotated genes that were clustered in 10 bio-
logical pathways (Table 5). Significant pathways were re-
lated to immune and defense response (regulation of

Table 2 List of blood genes retained as very important to classify pigs for RFI1

Probe name Gene symbol Full name Score

A_72_P304024 PSEN1 presenilin 1 100

A_72_P008221 SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium der 87.7

A_72_P047696 TMEM63B transmembrane protein 63B 60.8

A_72_P035801 EPAS1 endothelial PAS domain protein 1 59.9

A_72_P010326 MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mous 59.2

A_72_P359418 WDHD1 WD repeat and HMG-box DNA binding protein 1 57.4

A_72_P418319 HTRA1 HtrA serine peptidase 1 56.2

A_72_P201717 NPR3 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide rec 56.1

A_72_P061216 ADAM9 ADAM metallopeptidase domain 9 54.5

A_72_P548816 HMG20A high mobility group 20A 51.9

A_72_P035056 BCO2 beta-carotene oxygenase 2 50.7

A_72_P183616 TEX2 testis expressed 2 50.1

A_72_P039066 EIF1B eukaryotic translation initiation factor 1B 48.4

A_72_P036051 GPX3 glutathione peroxidase 3 (plasma) 47.0

A_72_P131741 SLC46A3 solute carrier family 46, member 3 46.2

O12841 PARVG parvin, gamma 42.8

A_72_P001891 SPTLC2 serine palmitoyltransferase, long chain base subunit 2 42.5

A_72_P250342 RPS18 ribosomal protein S18 40.8

O8712 ENO3 enolase 3 (beta, muscle) 39.7

A_72_P094676 UGCG UDP-glucose ceramide glucosyltransferase 39.2

A_72_P051041 MKI67 antigen identified by monoclonal antibody Ki-67 38.6

A_72_P128591 SCML1 sex comb on midleg-like 1 (Drosophila) 38.5

A_72_P002751 JPH4 junctophilin 4 38.3

A_72_P200892 ZNF672 zinc finger protein 672 33.1

A_72_P177616 DCT dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2) 32.6

A_72_P619999 OAZ3 ornithine decarboxylase antizyme 3 32.3

A_72_P134026 NUP43 nucleoporin 43 kDa 30.2

A_72_P126346 WBSCR27 Williams Beuren syndrome chromosome region 27 30.1

A_72_P000776 PAG1 phosphoprotein associated with glycosphingolipid microdomains 1 29.7

A_72_P185296 CLU Clusterin 29.3

A_72_P289839 ZNF3 zinc finger protein 3 27.4

A_72_P470830 ORC4 origin recognition complex, subunit 4 27.4

A_72_P000506 CREBRF CREB3 regulatory factor 27.9

A_72_P499239 TSPAN7 tetraspanin 7 16.3
1A gradient tree boosting (GTB) algorithm was applied on transcriptomic dataset (26,687 annotated molecular probes) from the whole blood of 148 growing pigs.
Data were split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in classifying pigs into low or high residual feed intake
(RFI) groups. The unique genes corresponding to the most relevant annotated probes able to attribute RFI class for each pig were listed. The score attributed to
each probe gave hierarchy of importance in the predictive model
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leukocyte activation, regulation of cytokine production,
regulation of acute inflammatory response and positive
regulation of immune response), glycoprotein metabolic
process, regulations of protein transport and of peptid-
ase activity, and protein amino acid auto-
phosphorylation.
The subset of the 50 best VIP to predict FCR values

are participating in a variety of pathways, such as the
regulation of immune system response (CD84, IGF2,
PSMB9, TRIM38, PIKFYVE, KLF1, IRF2BP2), protein
metabolism and especially ubiquitination process (SHPR
H, PSMB9, FEM1C, TRIM38), response to peptides and
organic substances (GNG12, KLF1, IGF2, PSMB9,
TRIM38), lipid and cholesterol metabolic process
(MORC2 CYP51A1, DHCR24), oxido-reduction
(SDR39U1) or intracellular transport (CD84, GEMIN5,
PIKFVE, AAGAB, SLC36A4). This suggested equal im-
portance of many biological routes in the variation of
FCR, and underlined genes as pivots in inter-related
pathways.
Overall, 63 unique genes (i.e., 8% of all VIPs)

expressed in the whole blood were identified as common
VIP for the two FE traits (Table 6). Among them, BCO2,
CREBRF, GPX3, HMG20A, JPH4, PAG1 and SPTLC2

were notably included in the list of top 50 VIP for RFI,
while IRF2BP2, MACF1, MORC2, SDR39U1, TRIM46
and ZNF644 were included in the list of top 50 VIP for
FCR.

Discussion
Due to the integrative nature of FE and the difficulties to
record it accurately for each pig, there is a strong need
to identify relevant biomarkers of FE traits. Also, because
transcriptomic differences in muscle and liver segregated
pigs on RFI better than their genotype and farm of ori-
gin [24], we hypothesized that the landscape of gene ex-
pression levels in the whole blood, a compartment that
summarizes the variations in tissue metabolism, may be
used to find biomarkers of FE in growing pigs. The data
presented herein confirmed that the gene expression
profiling in the whole blood represented a relevant
source to identify small sets of candidate biomarkers for
two FE traits. Previous studies have identified about
1000 genes [1] and even more [2] that were differentially
expressed in the whole blood between low and high RFI
pig lines. But none have tried to identify molecular pre-
dictors for low/high RFI (binary classification) and quan-
titative values of FCR (prediction of individual values).
For that, ML procedures have proven their capability to
develop highly precise prediction models including FE
[25]. In the current study, it was possible to discriminate
pigs according to RFI (low/high) by using a subset of
few blood transcripts (< 50) with 96 to 100% of success
when using RF and GTB procedures, respectively. More-
over, it was possible to predict individual FCR, and not
only the assignment of animals to divergent groups, by
using another subset of 50 transcripts corresponding to
25 unique annotated genes with a good (~ 0.65; RF
model) and very good (~ 0.80; GTB model) accuracy.
Similarly, recent studies using ML algorithms [26, 27] in
pigs showed that it was possible to predict the binary
class of RFI by using the expression of 200 genes in the
liver (accuracy: 0.78), 100 genes in duodenum (accuracy:
0.69) and 50 genes in skeletal muscle (accuracy: 0.61–
0.70). In the current study, only 8% of all VIPs were
identified as common predictors for RFI and FCR. These
two traits are not equivalent, with only a moderate
(0.39) genetic correlation between RFI and FCR [15],
and in some studies, higher correlations between FCR
and production traits than between FCR and RFI [28].
The common predictors in our study may correspond to
the RFI part of FCR variability. Irrespective of the FE
trait, the GTB procedures had better performance than
the RF algorithms. This confirms that, despite a signifi-
cant amount of overlap between the two methods and
although RF performs well for class object detection, the
gradient boosting methods result in better performance
on other assessments like regression [22, 29]. Indeed, the

Table 3 Iterative steps for model reduction to predict FCR
values1

Number of probes Number of genes R2 RMSE

Random Forest procedure

FCR 604 411 0.42 0.366

100 58 0.62 0.301

50 30 0.65 0.293

25 17 0.67 0.281

10 8 0.68 0.278

Gradient Tree Boosting

FCR 728 477 0.78 0.241

100 56 0.79 0.235

50 27 0.80 0.234

25 12 0.81 0.229

10 5 0.80 0.223

Random forest (RF) or gradient treenet boosting (GTB) algorithms were
applied on a transcriptomic dataset containing 26,687 molecular probes
measured in whole blood sampled from 148 pigs. Dataset was split into
training (n = 74) and validation test (n = 74) subsets to evaluate model
performance in predicting food conversion ratio (FCR). The first rounds led to
model stabilization with 604 molecular probes as very important variables
(VIP) for FCR prediction using RF and 728 probes for FCR prediction with GTB,
respectively, out of the 26,687 expressed annotated probes. The second entry
was an iterative step of the former procedure, but considering the VIP
identified in the first step as the new inputs. This increased the accuracy of
the prediction evaluated by the root mean square error (RMSE) and the
coefficient of determination (R2). Iterative steps were further performed. The
numbers of annotated probes and their corresponding unique genes
identified as VIP were indicated at each step. Iterative models were almost
equivalent in performance, so that the ones including 27–30 unique genes
were further selected. Models obtained with GTB algorithms performed better
than those obtained by using RF procedures
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GTB algorithm combines the gradient descent error
minimization approach with boosting, and encapsulates
an ensemble of weak prediction models added sequen-
tially to improve the robustness of predictors [14]. In
cattle, different ML methods have been tested to identify
candidate genes for growth prediction, and the authors
concluded that the better performance was obtained
with the gradient boosting machine algorithm followed
by the RF [30]. As compared with the individual ML
method alone, combining RF and GTB together may fur-
ther produce the highest value of prediction accuracy
with the smallest subsets of genes that are biologically
relevant to FE, as suggested in beef cattle [25]. This de-
serves further studies.
The subsets of genes combined in predictive models of

FE in growing pigs were involved in several functional

pathways that might be of equivalent importance in the
definition of RFI and FCR. For some of them, they
shared common transcriptional regulators. Finding rele-
vant biological categories across the VIP attested to the
reliability of the proposed candidates. Indeed, many
genes in the immune/inflammatory system were identi-
fied as top predictors for RFI (PSNE1, SERPINF1, MX1),
for FCR (CD84, PIKFYVE, IRF2BP2) and for both traits
(JPH4, PAG1). This is consistent with findings that low
RFI pigs had specificities in their immune tissue profile
and capacity to respond to infectious or inflammatory
challenges as compared with high RFI pigs [31, 32]. Es-
pecially, IRF2BP2 (Interferon Regulatory Factor 2 Bind-
ing Protein 2) has emerged as an important
transcriptional co-regulator in the immune system [33].
Moreover, JPH4, a gene that was also identified as

Table 4 List of blood genes identified as very important in FCR predictiona

Probe name Gene symbol Full name Score

A_72_P004376 SLC36A4 solute carrier family 36 (proton/amino acid symporter), member 4 100.00

A_72_P052096 SEPTIN6 septin 6 88.24

A_72_P035551 PSMB9 proteasome (prosome, macropain) subunit beta type, 9 77.53

A_72_P006596 GNG12 guanine nucleotide binding protein (G protein), gamma 12 75.40

A_72_P441179 KLF1 Kruppel-like factor 1 (erythroid) 74.39

A_72_P027206 CCDC70 coiled-coil domain containing 70 73.21

A_72_P000681 IRF2BP2 IRF2 binding protein 2 70.00

A_72_P155326 IGF2 insulin growth factor 2 69.17

A_72_P000006 ZNF644 zinc finger protein 644 68.67

A_72_P001306 AAGAB alpha- and gamma-adaptin binding protein 68.31

A_72_P008086 SLC39A9 solute carrier family 39 (zinc transporter), member 9 67.00

A_72_P000171 SHPRH SNF2 histone linker PHD RING helicase, E3 ubiquitin protein ligase 65.24

A_72_P005536 DIAPH3 diaphanous homolog 3 (Drosophila) 64.94

A_72_P001051 FCRLA Fc receptor-like A 63.55

A_72_P000371 SDR39U1 short chain dehydrogenase/reductase family 39 U member 1 63.36

A_72_P001061 CD84 CD84 molecule 61.94

A_72_P001366 MORC2 MORC family CW-type zinc finger 2 61.81

A_72_P010816 MMAA methylmalonic aciduria (cobalamin deficiency) cblA type 61.38

A_72_P000376 TRIM38 tripartite motif containing 38 61.12

A_72_P001201 FEM1C fem-1 homolog c (C. elegans) 59.74

A_72_P023626 NUAK1 NUAK family, SNF1-like kinase, 1 56.91

A_72_P000856 TRIM46 tripartite motif containing 46 53.82

A_72_P002226 GEMIN5 gem (nuclear organelle) associated protein 5 51.67

A_72_P043191 PIKFYVE phosphoinositide kinase, FYVE finger containing 51.53

A_72_P000356 MACF1 microtubule-actin crosslinking factor 1 51.07

A_72_P614951 SEPP1 selenoprotein P, plasma, 1 47.05

A_72_P021346 RBM25 RNA binding motif protein 25 43.75
aA gradient treenet boosting (GTB) algorithm was applied on transcriptomic dataset (26,687 molecular probes) from the whole blood of 148 growing pigs. Data
were split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in classifying pigs into low or high residual feed intake (RFI)
groups. The unique genes corresponding to the most relevant annotated probes able to predict feed conversion ratio (FCR) for each pig were listed. The score
attributed to each probe gave hierarchy of importance in the predictive model

Messad et al. BMC Genomics          (2021) 22:501 Page 7 of 14



differentially expressed in the liver of pigs that differed
in FE [24], stimulates the expression of activation
markers and cytokines [34]. However, PAG1 negatively
regulates T-cell activation [35]. Finding these two genes
having opposite actions on T cell activation in the pre-
diction model suggests subtle modifications in the regu-
lation of immune signaling in pigs ranked for FE.
Interestingly, SERPINF1, HTRA1 and NPR3 proposed for
binary classification of pigs on RFI, have been previously
identified as having the biggest changes in expression
level in the whole blood between low and high RFI pig
lines [3]. In accordance, Chen and colleagues [25] indi-
cated that the GTB method picked up the top-ranked
differentially expressed genes identified by t-test for FE
in beef cattle. In the current study, some candidate bio-
markers for FE were also associated with roles in the
ubiquitination and protein modification process. The
importance of the ubiquitin pathway may be over-
estimated here, since we considered the whole blood
where this process is specifically enriched [36]. This
could be also related to the higher protein turnover
identified in the liver of the most efficient pigs compared
with less efficient pigs [31]. Because immunity, inflam-
mation and ubiquitin-related protein modification are
inter-related pathways, it is not surprising to find com-
mon genes in these pathways among the proposed

biomarkers. For instance, TRIM38 encoding the E3 ubi-
quitin ligase has multifaceted roles in innate immunity
and inflammation [37]. Different genes related to anti-
oxidant response and oxido-reduction activity, such as
GPX3 (glutathione peroxidase-3) and BCO2 (beta-caro-
tene oxygenase-2), were among the top-ranked VIPs for
RFI classification. This is consistent with previous stud-
ies showing a difference in susceptibility to oxidative
stress between low and high feed efficient pigs [38, 39].
Finally, lipid transport and catabolism, including SPTL
C2 and MORC2 identified as top predictors, were under-
lined as biological pathways able to classify pigs accord-
ing to RFI. Similarly, molecular alterations in lipid
metabolism have been observed in the liver of low/high
RFI pigs, having consequences on triglycerides, phospho-
lipids or cholesterol concentrations in the blood of pigs
from the same [3] or different [40] RFI lines. Among
others, PLA2G4A (phospholipase A2 group IVA) identi-
fied as a common VIP for RFI and FCR traits, was re-
cently suggested as a key regulator of fat deposition in
chicken [41]. Increased circulating levels of IL-15 corre-
lated with variations in adipose tissue mass and FCR in
male mice fed a high-fat diet [42]. In the current study,
it is unlikely that differences in diets between experi-
mental pigs biased the results. Indeed, we did not ob-
serve any marked changes in the accuracy of prediction

Fig. 2 Regression analysis of the relationship between observed and predicted FCR. A predictive model to identify the most important annotated
expressing probes able to predict feed-conversion-ratio (FCR) was built from the whole blood transcriptome merged from three independent
experiments, and using a Gradient TreeNet Boosting (GTB) algorithm. Randomly selected bootstrap pig samples (n = 74) were used for learning,
whereas the remaining samples (n = 74) were used for validation. Iterative steps led to retain a set of 50 very important variables. The graph was
then computed between observed and predicted FCR values. Accuracy of the prediction was estimated by using R squared (R2) and root mean
square error of prediction (RMSEP). Pigs considered in the study were from two divergent selection lines for residual feed intake (RFI), a measure
of net feed efficiency. The red square represents pigs of the high RFI line, and the blue dot represents pigs of the low RFI group. No specific bias
in prediction was observed due to RFI line
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model for FCR reasoned on (net) energy intake or feed
intake [26].
Altogether, this study reduced the complexity of FE

into small subsets (< 50) of predictive transcripts.
Among these candidate biomarkers for accurate predic-
tions of RFI groups and FCR values, several genes have

been already proposed as top molecular contributors to
differences between low and high RFI lines, and even, in
predictive models of FE. For instance, the expression
level of GPX3 was identified as affected by RFI selection
in the whole blood [3], muscle, adipose tissues and liver
of the same lines of pigs [16]. Similarly, HTRA1 was

Table 5 Main overrepresented biological processes shared by genes selected as predictors of feed efficiency traits

GO Terms Nb
genes

E PValue Clustered genes

Clustered pathways among 391 probes corresponding to 253 unique genes first selected to classify pigs on low/high RFI

GO:0006643 ~membrane lipid metabolic
process

6 1.93 0.004 TEX2, SPTLC2, PSAP, COL4A3BP, UGCG, SMPD3

GO:0006979 ~ response to oxidative stress 8 1.66 0.006 PLA2G4A, PSEN1, EPAS1, CLU, GPX3, JAK2, ADAM9, DHCR24

GO:0006869 ~ lipid transport 8 1.59 0.003 OSBPL3, PSAP, COL4A3BP, CLU, PCTP, ABCA1, APOM, CROT

GO:0016310 ~ phosphorylation 20 1.55 0.010 IRAK2, FCER1A, ND2, TGFBR1, BMPR2, EIF2A, ULK4, GALK2, NDUFV3, VRK1,
PSEN1, GCK, COL4A3BP, TGFBR3, JAK2, ATP5O, CIT, THBS1, MYLK, ADAM9

GO:0031349 ~ positive regulation of defense
response

6 1.34 0.003 FCER1A, IRAK2, PLA2G4A, CADM1, IL6ST, JAK2

GO:0000267 ~ cell fraction 23 1.33 0.036 JPH4, CADM1, CYP51A1, SLC22A7, UGCG, HPS1, CCDC47, ATP1A1, NMB,
ABCA1, NPR3, IL15, KARS, DCT, JUP, PLA2G4A, PSEN1, GCK, GPX3, SRR, ENO3,
JAK2, ACSL3

GO:0009725 ~ response to hormone stimulus 10 1.27 0.055 PLA2G4A, ENPP1, SOCS3, TGFBR1, TGFBR3, JAK2, PIK3R3, THBS1, BRCA1,
ADAM9

GO:0008361 ~ regulation of cell size 5 1.25 0.295 ENPP1, TGFBR1, SMAD4, TGFBR3, NTN1

GO:0030278 ~ regulation of ossification 4 1.16 0.085 PLA2G4A, ENPP1, IL6ST, BMPR2

GO:0017015 ~ regulation of transforming
growth factor beta receptor signaling
pathway

4 1.09 0.015 HTRA1, CHST11, SMAD4, THBS1

GO:0051091 ~ positive regulation of
transcription factor activity

4 1.05 0.045 IRAK2, UBE2V1, TGFBR3, JAK2

GO:0042470 ~melanosome 5 1.03 0.033 DCT, STOM, SERPINF1, RAB35, ATP1A1

GO:0007498 ~mesoderm development 4 1.02 0.075 MACF1, BMPR2, EOMES, JAK2

Clustered pathways among 728 probes corresponding to 477 unique genes first selected to predict FCR

GO:0002694 ~ regulation of leukocyte
activation

13 1.89 0.002 CD83, CD86, CD80, STAT5A, IL27, IL4R, IL1B, CD4, IL15, CD40, PAG1, THY1, SYK

GO:0009100 ~ glycoprotein metabolic process 14 1.79 0.003 ATP7A, B3GNT9, MGAT4A, GALNT1, TRAK2, HPSE, CHST11, ACAN, CD4, FUT1,
OGT, UGGT2, ST6GALNAC2, DHCR24

GO:0001817 ~ regulation of cytokine
production

15 1.65 0.000 CADM1, PANX1, IGF2, STAT5A, IL27, CD40, NLRP3, DDX58, CD83, CD86, CD80,
IL1B, CD4, CLEC7A, SYK

GO:0051223 ~ regulation of protein transport 8 1.65 0.034 CADM1, PANX1, IGF2, ANG, IL1B, CD40, NLRP3, DNAJC1

GO:0002673 ~ regulation of acute
inflammatory response

5 1.51 0.002 PLA2G4A, C3, IGF2, SERPING1, CCL5

GO:0052547 ~ regulation of peptidase activity 7 1.39 0.028 SLC11A2, CYCS, BCL2L13, HBXIP, NLRP3, EIF2AK3, DHCR24

GO:0046777 ~ protein amino acid
autophosphorylation

6 1.32 0.079 FYN, CLK4, KIT, LRRK2, EIF2AK3, SYK

GO:0050778 ~ positive regulation of immune
response

10 1.15 0.017 CADM1, C3, FYN, STAT5A, IL1B, SERPING1, IL15, CLEC7A, THY1, SYK

GO:0031349 ~ positive regulation of defense
response

6 1.01 0.047 PLA2G4A, CADM1, C3, STAT5A, CLEC7A, CCL5

GO:0032881 ~ regulation of polysaccharide
metabolic process

3 1.01 0.060 PPP1R3C, ENPP1, IGF2

Very important genes for prediction of feed efficiency traits (RFI: residual feed intake; FCR: feed conversion ratio) were clustered into functional groups using DAVI
D tool. The enrichment score (E > 1) for each cluster and P-value of the enrichment for the corresponding Gene Ontology (GO) terms are provided. Iterative steps
for model reduction have been further applied on these transcripts of genes to obtain smaller sets of predictors
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listed as differentially expressed in both muscle and liver
between low and high RFI pigs of two different popula-
tions [24]; this serine protease mediates multiple bio-
logical processes by antagonizing IGF-binding proteins
and proteins of the TGF-beta family [43]. In line, the ex-
pression level of IGF2 in muscle was identified as a reli-
able predictor for RFI breeding values [26] and
increasing muscle growth through the IGF-1/2 signaling
pathway was proposed as a potential strategy for the im-
provement of FE in Yorkshire pigs from 30 to 90 kg BW
[44]. Expression level of PSNE1 in muscle was also in-
cluded in a predictive model for RFI breeding value in
pigs of Large White breed [26]. The expression level of
SLC46A3 in liver, a gene involved in macromolecule
degradation process [45], was identified as important to
categorize pigs into RFI groups in the Hermitage Max-
gro genotype [27]. Finding the same molecular candi-
dates in different tissues is not surprising, since only <
10% of protein coding genes are tissue specific [46]. This
reinforces the interest in using readily accessible samples
in living animals such as blood to predict complex phe-
notypes. The proposed biomarkers can be also con-
fronted to genomic regions identified by genome-wide
association study (GWAS) as affecting FE traits. For in-
stance, TEX2 (Testis Expressed 2 protein) identified here
as a predictive biomarker for RFI classification, was iden-
tified as a positional candidate in SNP detected for aver-
age daily feed intake (a FE related trait) in Landrace pigs
[47].

Conclusion
This study identified small sets of transcripts in the
whole blood as candidate biomarkers for FE traits,
namely RFI group (low/high) and FCR values measured
in growing pigs. Since nutritional requirements for the
most efficient pigs might be slightly greater than usual
feed recommendations [48], these circulating biomarkers
could be further used as a decision support tool for feed-
ing animals with an appropriate diet. Therefore, this
study offers encouraging perspectives for assigning ani-
mals to phenotypic groups and to be used as proxy of
FE in large numbers of animals. Additional studies are
required to confirm the generality of the predictions in
other pig breeds and crossbreds before these circulating
biomarkers could be readily used for precision farming
strategies.

Methods
General design
This study reused phenotypic data obtained in pigs from
the three independent experiments that were previously
published [19–21], to avoid the needs of new sampling
in living animals while obtaining a high number of ani-
mals allowing robust predictions. The application of ML
procedures on the merged dataset (n = 148 pigs) avoided
the overfitting often observed when simple classification
or regression procedures are used for a limited number
of animals and a high number of dependent variables,
and the leave-one-out method was an additional way to
resampling the datasets. Thus, this study fits with the 3R
(Replacement, Reduction and Refinement) principles.

Pigs and blood samples
The three independent datasets referred to purebred
French Large White pigs produced in a divergent selec-
tion experiment for RFI. The selection program was de-
scribed in full details elsewhere [49], including the
equation to calculate RFI from a regression between ob-
served feed intake and that expected based on require-
ments for maintenance (based on the metabolic BW)
and performance (average daily gain, backfat thickness).
From birth to weaning, all pigs were reared in the selec-
tion farm of INRAE (UE Genesi, Le Magneraud &
Rou i l l é , F r anc e ; h t t p s : / / do i . o r g / 10 . 1 5454 / 1 .
5572415481185847E12). All pigs were weaned at 28 days
(d), and were first fed ad libitum with standard starter
and weaner diets. During subsequent test periods in ded-
icated buildings, pigs have undergone different feeding
conditions depending on the experiments as described
below. As indicated in the referenced publications [19–
21], the three experiments were conducted in accord-
ance with the French legislation on animal experimenta-
tion, and the protocols were approved by regional
ethical committees evaluating the research question, de-
sign, plan analysis, animal care and monitoring, and
ways to minimize pain and consider limit points (espe-
cially regarding jugular blood sampling). At the end of
each experiment, pigs were slaughtered using approved
procedures, including electronarcosis followed by jugular
exsanguination.
The first dataset [19] included 21 castrated males from

the 7th generation of selection (n = 10 low RFI pigs and
n = 11 high RFI pigs) housed at thermo-neutrality (24 °C)

Table 6 List of the 63 blood genes identified as common predictors for two feed efficiency traits

Traits Common VIPa

RFI/
FCR

ADAP2; APCDD1; ARHGEF10L; ARRDC3; BCO2; CADM1; C6orf89; CHST11; CIT; CREBRF; CROT; CYHR1; CYP51A1; DHCR24; EIF2A; ENPP1; ESCO1;
FAF2; GIMAP8; GPX3; HMG20A; HOXD3; IL15; IGF2; IRF2BP2; JPH4; KCNH2; MACF1; MORC2; NT5DC3; P2RY1; PAG1; PHKB; PLA2G4A; PLXNC1;
PPCDC; PSAP; RBM38; RPS17; SCUBE3; SDR39U1; SECISBP2; SLC25A44; SLCO2B1; SPTLC2; SRRD; TAF4B; TNFRSF21; TMEM163; TRIM46; TRPT1;
WLS; UROS; ZNF644

aBCO2, CREBRF; GPX3; HMG20A; JPH4; PAG1; SPTLC2 were also listed among the top 50 very important predictors (VIP) for residual feed intake (RFI), and IGF2,
IRF2BP2, MACF1, MORC2, SDR39U1, TRIM46 and ZNF644 were listed among the top 50 VIP of feed conversion ratio (FCR)
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and reared at the INRAE experimental pig facility at
Saint-Gilles, France (UE3P, https://doi.org/10.15454/1.
5573932732039927E12). At 80 d of age, pigs were trans-
ferred in individual cages, and were fed a standard diet
that met nutritional requirements for growth. At 87 d of
age (59.2 kg BW on average), blood was collected from
the jugular vein and prepared for RNA extraction. The
feed conversion ratio (FCR) was calculated from individu-
ally measured daily feed intake and average daily gain for
the 14 d of the trial (i.e., from 87 d to 100 d of age).
The second dataset [20] included 48 castrated males

from the 8th generation of selection (n = 24 low RFI pigs
and n = 24 high RFI pigs). Pigs were reared at the
INRAE experimental pig facility at Saint-Gilles, France
( U E 3 P , h t t p s : / / d o i . o r g / 1 0 . 1 5 4 5 4 / 1 .
5573932732039927E12). At 74 d of age, pigs were trans-
ferred in individual cages and after 2 d of transition, the
first half was fed a standard diet and the second half was
fed a high-fiber high-fat diet during the growing and fin-
ishing phases. At 132 d of age (average BW of 75.6 kg),
blood was sampled from the jugular vein and prepared
for RNA extraction. The FCR was then calculated from
76 d to 132 d of age.
The third dataset [21] included 79 castrated males and

females from the 9th generation of selection (n = 37 low
RFI pigs and n = 42 high RFI pigs). Pigs were reared at
the experimental INRAE pig facility at Le Magneraud,
France (UE Genesi ; https ://doi .org/10.15454/1.
5572415481185847E12). Blood was sampled at 40 d of
age from the jugular vein. At 70 d of age, pigs were
transferred to group-housing facilities equipped with
single-place electronic feeders. The first half of the pigs
were fed standard diets, whereas the second half was fed
a high-fiber diet during the growing-finishing phases
[21]. The FCR was then calculated from 90 d to 161 d of
age.
In the three datasets, the reference to low or high RFI

line was indicated for each pig, and the FCR value was
individually attributed. Other factors (sex, season, gener-
ation, diet) were not taken into account.

Microarrays data
Microarray data considered in the current study were
obtained from the referenced publications in the first
[19] and second [3] experiments, and were newly ac-
quired from RNA extracted from the stored blood
samples in the third experiment. All experiments
followed the same procedures for RNA extraction and
expression data generation. The porcine commercial
Agilent-026440 microarray (V2, 44 K, GPL15007, Agi-
lent Technologies, Massy, France) had been used in
the first experiment (representing about 12,332
unique annotated genes). The custom porcine micro-
array (8x60K, GPL16524 Agilent Technologies) that

contained the same probes as the Agilent-026444 and
an additional set of probes enriched with immune
system, muscle and adipose tissue genes, has been
used in the second and third experiments (represent-
ing about 14,466 unique annotated genes). In the
three transcriptomic datasets, raw spot intensities
have been submitted to quality filtration based on
four criteria: background intensity value, diameter,
saturation and uniformity of the spot, and intensities
of filtered spots were log2 transformed and median-
centered to correct for microarray effect.
For the current study, the three microarray datasets

were then merged into a single new dataset. There was
no exclusion of any animals in this merged dataset. To
obtain consolidated expression values across the three
independent datasets, the molecular data have been nor-
malized by mean centering, i.e. subtracting the mean
value across all probes from all raw values for each pig
sample in the merged dataset. The merged dataset also
included meta-data such as the experiment of origin (1,
2, and 3), RFI group (n = 71 pigs of low RFI line, n = 77
pigs of high RFI line) and FCR value (n = 148 pigs). All
data were deposited in a publicly available repository at
https://doi.org/10.15454/J4XOPD.

Supervised methods to identify important variables for
the prediction of FE traits
The merged dataset was used to search the most import-
ant molecular predictors for the RFI group and FCR
value, by using ML methods. The experimental unit was
the pig. Among the panel of ML methods for dimen-
sionality reduction, classification and regression used in
livestock breeding [14], the RF and GTB procedures
were chosen in the current study and were compared for
performance in classification (RFI group) and regression
(FCR value) procedures. These two ML methods use de-
cision trees, but RF uses a large number of trees com-
bined by averaging or “majority rules” at the end of the
process [50], whereas GTB starts the combining process
of decision trees at the beginning [27, 51, 52]. Other dif-
ferences include how trees are built: RF builds each tree
independently, while GTB builds one tree at a time but
in an additive model proceeding in a forward stage-wise
sequential error–correcting process to combine results
along the way and converge to an accurate model [29].
Sequential steps for learning, validation, and finally, se-
lection of the best models were performed according to
standards described by Fernandez-Lozano and col-
leagues [53]. Models were generated from RF and GTB
algorithms with Salford Predictive Modeler 8.0 (SPM
8.0®).
The RF models were generated with about 1500 trees

for classification of RFI and regression for FCR. For that,
a randomly selected bootstrap sample set was created by
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using 50% of the original dataset for learning (n = 74
pigs). Consequently, each bootstrap sample called “out-
of-bag” data (OOB) excluded 50% of the data that were
further used for validation (n = 74 pigs), and the leave-
one-out method assessed the performance by resampling
the training set. The test dataset allowed cross-validation
ensuring that the training of the model was not biased.
To split branches of a tree, a random sample of m vari-
ables was chosen from the full set of p variables. The
partition of probes between learning and validation data-
sets was shown in Supp. Fig. S2. We checked that the
three experiments of origin were included in both the
training and validation datasets.
The GTB prediction models were also generated using

1500 small decision trees for classification or regression,
and using a randomly selected bootstrap sample set for
learning (n = 74 pigs) and the remaining data (n = 74
pigs) for validation. As recommended, each tree typically
contained about six terminal nodes. The model was like
to Fourier or Taylor series, which is a sum of factors that
becomes progressively more accurate as the expansion
continues. After each step of boosting, the algorithm
scaled the newly added weights, which balanced the in-
fluence of each tree. The accuracy of the algorithm was
improved by introducing randomization through train-
ing the base learner on different randomly selected sam-
ples at each iteration.
In both procedures, significant variables were selected

using the Gini index to evaluate the discriminant ability
of the potential selected feature, defined as:

Gi ¼ 1−
X

jp2 jjtð Þ

Where p2 (j | t) is the estimated class probability for
feature t or node t in a decision tree and j is an output
data or class. Only the variables that improved Gini
index and minimized the OOB error rate were retained
as very important variables in prediction (VIP).
Multiple runs for each ML methods were performed

(ten times) to consider variations in the observations
used for the training step (using permutations and leave-
one-out procedures) and the stability of the techniques.
The iteration steps were also applied to reduce the num-
ber of VIPs in the selected models. At each run, the ac-
curacy of classification models was estimated with the
proportion (%) of good classification and the optimal
models were selected according to the ROC curve. In re-
gression, RMSE was calculated as the square root of the
difference between the realized and the predicted obser-
vation within the OOB data after permuting each pre-
dictor variable in the training dataset divided by the
number of trees for the regression procedure. The ad-
justed coefficient of determination (R2) was also com-
puted. The predicted (X) values for FCR obtained by the

best GTB model and the observed (Y) values measured
on the pigs were compared (X-Y) using the GLM pro-
cedure. The model was considered unbiased when the
intercept obtained by the GLM model was not different
from 0 and the slope was not significantly different from
1. The quality of the relationships was evaluated based
on RMSE of prediction (RMSEP) obtained by a leave-
one-out cross-validation from the value of the predicted
residual sum of squares.

Pathway enrichment analysis
Gene-annotation enrichment analyses among the VIP
identified for binary classification of pigs on RFI and
prediction of FCR were performed on encoded genes by
using DAVID bioinformatics tool on default settings
[54].
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