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Stability Analysis of Bio-inspired Source Seeking with Noisy Sensors

I. Rañó1 and M. Khamassi2 and K. Wong-Lin3

Abstract— Braitenberg vehicles have been used for decades
to implement source seeking and avoidance behaviours in bio-
inspired robotics. Recently, new theoretical results have derived
convergence conditions of these bio-inspired controllers under
the assumption of noiseless sensors. Although Braitenberg
vehicles have been experimentally shown to work in outdoor
scenarios, there is no theoretical evidence that shows they also
can work in perceptually harsh environments. In this paper
we mathematically analyse the source seeking behaviour of
Braitenberg vehicle 3a with noisy sensors, when noise cannot
be ignored. We approximate the stimulus the vehicle is seeking
close to a source and derive the evolution equations for the aver-
age and covariance of the trajectory realisations. The analysis of
the resulting non-linear differential equations shows that, under
some conditions, the average trajectory is convergent and the
dispersion around this trajectory is bounded. We illustrate these
theoretical results through simulations, but also show that our
results extend to general source seeking situations where the
approximations do not hold.

I. INTRODUCTION

Animals and humans can perform tasks in harsh envi-
ronments, highly dynamic environments which induce per-
ception or action discontinuities and present high levels of
perceptual noise. For instance, one can safely drive a car
under rain or foggy condition – up to some extent – and
cope with the visual uncertainty weather conditions create.
While conventional robotic sensors (e.g. range sensors) might
be unreliable in harsh environments, unconventional and ex-
perimental sensing modalities like; electrosense, chemical or
thermal sensing, pressure sensing et cetera, suffer from non-
negligible effects like hysteresis, sensing delays and noise
even in mild environments. Since sensor effects like delays
and noise can turn stable closed-loop controllers unstable [1],
extending the stability results of source seeking to the case
of noisy sensors is far from trivial. In this paper we show
that Braitenberg vehicles can lead to stable source seeking
behaviour in the presence of perceptual noise. Specifically,
we analyse the behaviour of our drift-diffusion model of
Braitenberg vehicles [2] in the vicinity of a source point and
show that the dispersion of the trajectories can be bounded
if the controller is selected appropriately.

Braitenberg vehicles are qualitative models of bio-inspired
sensor-based local navigation displaying source seeking and
avoidance behaviours [3]. They can be quantitatively mod-
elled as a family of non-linear controllers for wheeled robots
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[4], but they have been shown to work for snake-like [5]
and fish-like [6] robots. Using these quantitative models
[4] it can be shown that source seeking and avoidance
trajectories appear as solutions to the closed-loop system of
non-linear differential equations. Moreover, one can obtain
stability conditions like global stability for isotropic stimuli
[7], conditional stability, and oscillatory behaviour [8]. All
these theoretical results assume noiseless sensors (or the
existence of a potential function), yet, as we will see below,
multiple works successfully used Braitenberg vehicles in
real robots in scenarios where noise cannot be ignored.
Therefore, empirical works have shown that this source
seeking mechanism works in practice, but key issues like
stability limits have not been explored. In this paper we focus
on vehicle 3a, the source seeking model shown in figure 1,
for which a stochastic closed-loop model as a drift-diffusion
equation was presented in [2].
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Fig. 1. Braitenberg vehicle 3a with sensor noise

One of the first works in robot based chemical source
seeking [9] successfully applied Braitenberg vehicles 3a and
3b to perform chemotaxis. This experimental analysis used
two symmetrically placed chemical sensors to approach areas
of high concentrations of chemicals. Besides dealing with
noise and air turbulence, this work showed that this bio-
inspired controller can deal with slow sensor dynamics [10].
Several works also used Braitenberg vehicles to implement
robotic phonotaxis, i.e. sound source seeking. In a series
of papers [11], [12], [13] the motion of female crickets
towards the male chirping was replicated in robots. A
spiking neural network combined vehicles 2a and 3b to
control the movement of the robot wheels using increasing
and decreasing dynamic connections, showing an excellent
performance even in outdoor environments. The work pre-
sented in [14] proposes the design of a pinnea for a rat
robot and implements phonotaxis through a model of the
central auditory system of rats and a vehicle 3a. Another
implementation of phonotaxis relying on Braitenberg vehicle
2b [15] uses instead a model of the auditory system of



lizards to detect pre-defined frequencies. In these phonotaxis
implementations, sensor noise or noise in the signal derived
from the sound cannot be ignored, yet Braitenberg vehicles
showed good performance. Besides chemical and sound
sensing the principles of Braitenberg vehicles have been
used in underwater robotics with unconventional sensors. A
fish-like robot with electrosense avoiding isolating objects
and approaching conductive objects was presented in [16].
Given the experimental nature of this sensing modality sensor
readings are obtained with relatively high levels of noise,
which did not hamper their implementation of movement
towards conductive objects.

Multiple experimental works have shown that Braitenberg
vehicles can perform source reaching behaviours with real
(noisy) sensors. Moreover, it has been also shown that nav-
igation functions (in our case noisy stimuli) including noise
terms can allow obstacle avoidance mechanism to escape
local minima [17]. Although theoretical results show the
convergence of Braitenberg vehicle 3a with noiseless sensors,
adding noise to the sensors can change the stability properties
[8] of this bio-inspired controller. The contribution of this
paper is to theoretically show that this control mechanism
can generate stable trajectories even in the presence of
noise in the sensors. To find the stability conditions, the
dynamics of the average and covariance of the trajectories of
the stochastic differential equation modelling vehicle 3a are
obtained as a set of non-linear ordinary differential equations.
These equations describing a Braitenberg vehicle 3a close to
a stimulus source can lead to stable trajectories with bounded
covariance, i.e. a stable equilibrium point. The rest of the
paper is organised as follows. Section II reviews the model,
derives the analytical equations for the evolution of the first
and second moments of the distribution of the vehicle under
a parabolic stimulus, and shows that they can lead to stable
trajectories. Section III presents simulations to illustrate the
theoretical results, and some more general simulations that,
although do not match the theoretical assumptions, show
a similar long term behaviour. Section IV ends the paper
presenting the conclusions and future lines of work.

II. STOCHASTIC MODEL OF BRAITENBERG VEHICLES

This section reviews the derivation of the system of
stochastic differential equations modelling Braitenberg ve-
hicle 3a. Let us assume a non-negative smooth scalar stim-
ulus S(x) in a domain D. Braitenberg vehicle 3a has two
symmetrically placed sensors controlling the speed on the
corresponding wheel on the same side as shown in figure 1.
We denote the connection or control function F (s), which
for vehicle 3a should be decreasing, i.e. F ′(s) < 0 for all
the values s returned by the sensors. We assume a stimulus
value with noise η with a variance smoothly dependent on
the measured stimulus value η = σ(s)dWt, where Wt is a
Wiener process. The noise in general may be different for
each sensor but we will assume it has the same statistical
properties. Under these assumptions, for a vehicle with the
left and right sensors located at xl, and xr respectively, the
speed of the right and left wheels are vr = F (S(xr) +

σ(S(xr))dW
r
t ) and vl = F (S(xl) + σ(S(xl))dW

l
t ), where

dW l
t and dW r

t are the independent noise processes on the
left and right sensors. Considering the distance between the
sensors is δ, we can approximate vl and vr as Taylor series
around the middle point between the sensors x. Obtaining
the forward speed and turning rate from these approximations
and substituting them into the unicycle kinematic model we
get the following closed-loop system of stochastic differential
equations (see [2] for more details):

dxt =F (xt) cos θtdt+
1

2
D1(xt, θt) cos θt(dW

l
t + dW r

t )

+
1

2
D2(xt, θt) cos θt(dW

l
t − dW r

t )

dyt =F (xt) sin θtdt+
1

2
D1(xt, θt) sin θt(dW

l
t + dW r

t )

+
1

2
D2(xt, θt) sin θt(dW

l
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dθt =− δ

d
∇F (xt) · êp(θt)dt−

1

d
D1(xt, θt)(dW

l
t − dW r

t )

− 1

d
D2(xt, θt)(dW

l
t + dW r

t ) (1)

where d is the wheelbase of the vehicle, êp =
[− sin θ, cos θ]T and the diffusion terms D1(x, θ) and
D2(x, θ) are:

D1(x, θ) =
δ2

4
F ′′(x)σ(x) [∇S(x) · êp]2 + F ′(x)σ(x)

D2(x, θ) =
δ

2
∇S(x) · êp [F ′(x)σ′(x) + F ′′(x)σ(x)] (2)

where to simplify the expressions we use the following
notation; F (xt) = F (S(xt)), F ′(xt) = F ′(S(xt)), and
so on. The diffusion terms depend on the noise variance
σ(s), the control function F (s), and their derivatives. They
correspond to non-additive noise as the terms multiplying the
increments of the Wiener processes, dW r

t and dW l
t , have a

functional dependency on xt and θt. There is no way of
turning these terms into additive noise because of the effect
of the trigonometric functions of the angular variable in the
first two equations of the system (1).

The system of equations (1) describes the time evolution
of a Braitenberg vehicle 3a with noisy sensors immersed
into an environment with stimulus S(x). The drift terms
are equivalent to the deterministic model which leads to an
equilibrium point x∗ if F (S(x∗)) = 0 and ∇S(x∗) = 0.
These deterministic equations correspond to a non-linear
differential equation for which some analytical solutions can
be found under several assumptions. One such analytical
solution corresponds to the case of parabolic symmetry (i.e.
S(xTAx)) of the stimulus, which leads to straight line
trajectories when the vehicle is directly heading towards the
source along the principal axis of the parabola. This, in turn,
allows linearising the motion equations and analysing the
evolution and stability of nearby trajectories. As we will see
below, this analysis can be extended to the case of noisy
sensors.



A. Approximations of the first two moments of the trajecto-
ries

This section derives the equations of the evolution of the
average trajectory and the covariance matrix of the trajectory
realisations from the system of stochastic differential equa-
tions (1) modelling Braitenberg vehicle 3a in closed-loop.
If we consider the general form of a stochastic differential
equation dxt = f(xt)dt + g(xt)dWt, where xt ∈ <n
is an n dimensional stochastic process; dWt ∈ <m is
an m dimensional uncorrelated white Gaussian noise; and
f : <n → <n and g : <n → <n × <m are respectively
vector and matrix functions, the equations for the average
trajectories can be obtained taking expectations on both sides
of the equation. Since E [g(xt)dWt] = 0, the equation
for the average becomes dµx = E [f(xt)] dt. If f(xt) is
a non-linear function its expectation can be computed using
different approximations. A first order approximation leads
to E [f(xt)] = f(E [xt]). In the case of equations (1), a
second order approximation leads to the following system of
non-linear differential equations:

µ̇x =F (µxy) cosµθ +
1

2
tr(HxΣ)

µ̇y =F (µxy) sinµθ +
1

2
tr(HyΣ)

µ̇θ =− δ

d

[
∇F (µxy) · êp(µθ) +

1

2
tr(HθΣ)

]
(3)

where µxy is the vector of expectations [E[xt], E[yt]]
T , and

µθ = E[θt]; Σ is the covariance matrix of x, y and θ,
and Hx, Hy , and Hθ are the Hessian matrices of the x,
y and θ components of the functional vector flow defined
by [F (x) cos θ, F (x) sin θ,− δ

d∇F (x) · êp]T evaluated at the
average µx, µy and µθ (see [2]). It is worth noting that a
first order approximation of the expectation of equations (1),
i.e. discarding second order terms, leads to the deterministic
equations of motion for this vehicle. However, equations (3)
are more accurate since they are derived from a second order
approximation.

The derivation of the evolution of the second moment, the
covariance matrix, is more involved but in the general case of
a stochastic differential equation dxt = f(xt)dt+g(xt)dWt,
it is described by the differential matrix equation:

Σ̇ = Jf(µx)Σ + ΣJf(µx)T + g(µx)g(µx)T (4)

where Jf(x) is the Jacobian matrix of f(x), and µx is the
average of the state vector.

B. Moments of the vehicle under Parabolic stimuli

In this section we assume the stimulus S(x) has parabolic
shape, or can be approximated as a parabola close to the
maximum, which is possible if S(x) is at least of class C2.
Without loss of generality we will assume the maximum is
located at the origin. Therefore, the stimulus function can
be stated as S(x) = g0 − 1

2x
TAx where A is a positive

definite matrix. It is worth noting that this approximation
works in general close to a stimulus source. For instance,
light follows the inverse square law S(x) ∝ I0

h2+||x||2 , and

it can be approximated as S(x) ∝ I0
h2 − I0

h4 ||x||2. We can
further assume that the matrix A is diagonal with elements
a11 and a22 in the diagonal, or rotate our reference system
to be aligned with the eigenvectors of A. To simplify the
noise terms we will also assume that the noise in the
sensors is additive, i.e. σ(x) = σ0 with σ0 constant, and the
control function is linear or can be approximated linearly
around s0 = S(0), F (s) = α(g′0 − s), where the controller
parameters α and g′0 are real positive numbers. It is worth
noting that when g′0 = g0 the drift part of equations (1) –
equivalent to the deterministic model – has an equilibrium
point at the origin as F (S(x)) = αxTAx, when g′0 > g0
there is no equilibrium point, and when g′0 < g0 there is
an elliptic region of equilibrium points around the origin.
Because F ′(s) = −α, the diffusion terms are D1(x, θ) =
−ασ0 and D2(x, θ) = 0.

We want to analyse the stability of the stochastic system
close to the equilibrium point of the deterministic model,
i.e. checking whether the equilibrium point of the deter-
ministic system still appears in the case of noisy sensors.
The analysis of the first order approximation of the average
trajectory E[f(xt)] = f(E[xt]) reduces to the analysis of
the deterministic case [8] as mentioned above. In this case
the vehicle follows a straight line trajectory approaching
the maximum when the initial position of the vehicle lays
along the principal axis defined by the matrix A and it
directly heads towards the source. Although this is also true
for the first order approximation of the average trajectory,
the second order approximation, equation (3), depends on
terms containing the evolution of the covariance matrix,
i.e. tr(HxΣ), tr(HyΣ) and tr(HθΣ), which could make
the average trajectory deviate from a straight line. The
covariance matrix, in turn, evolves according to equation
(4). If we denote Σ = (σij) with i, j = x, y, θ, and since
σij = σji, the evolution of the average trajectory for the
stimulus approximate close to the source is given by:

µ̇x = α

[
1

2

(
1− σθθ

2

)
µTxyAµxy + (g′0 − g0)

]
cosµθ

+
α

2
(a11σxx + a22σyy) cosµθ

−α(a11σxθµx + a22σyθµy) sinµθ

µ̇y = α

[
1

2

(
1− σθθ

2

)
µTxyAµxy + (g′0 − g0)

]
sinµθ

+
α

2
(a11σxx + a22σyy) sinµθ

+α(a11σxθµx + a22σyθµy) cosµθ

µ̇θ = −αδ
d

[(
1− σθθ

2

)
µTxyAêp(µθ)

+
δ

d
(a11σxθ cosµθ + a22σyθ sinµθ) (5)

Our aim is to analyse the solution of these equations
when the vehicle starts with a pose that generates straight
line trajectories in the deterministic system, since they
have analytical solution. That starting pose corresponds to
(µx(0), µy(0), µθ(0)) = (−d, 0, 0) with d > 0 while the
initial conditions of the covariance matrix corresponds to



Σ(0) = 0. If we compute the dynamics of the covariance
matrix, eq. (4), for the vehicle and consider these initial
conditions we get that the equations for the evolution of σxy
and σxθ are; σ̇xy = 0 and σ̇xθ = 0. Since the initial values
of the covariance matrix are zeros, the terms on equations
(5) containing σxy and σxθ will vanish. Moreover, since
µxy = (−d, 0) and êp = (0, 1) the equation for the average
angle evolution becomes µ̇θ = 0, which means µθ(t) = 0, so
there is no change in the average orientation of the vehicle. It
can be seen that the evolution equation for the y average also
vanishes, i.e. µ̇y = 0, and therefore we only need to consider
the evolution of µx. This means that the average trajectory
for the stochastic differential equation (1) under parabolic
stimulus with a second order approximate of the average
behaves similarly to the deterministic case. Specifically, the
evolution of the average x position, µx, is given by:

µ̇x =α(g′0 − g0) +
1

2
α [a11σxx + a22σyy]

+
αa11

2

[
1− σθθ

2

]
µ2
x (6)

where the evolution of the non zero elements of the covari-
ance matrix σxx, σyy, σθθ, and σyθ can be derived from
equation (4). Using the initial conditions above and the fact
that the average angle is constant, µθ(t) = 0, the evolution
of these elements of Σ can be stated as:

σ̇xx =
α2σ2

0

2
+ 2a11µxσxx

σ̇yy =2α(g′0 − g0)σyθ + αa11σyθµ
2
x

σ̇yθ =− αa22
d

δ
σyy + α(g′0 − g0)σθθ + αa11

d

δ
σyθµx

+
1

2
αa11σθθµ

2
x

σ̇θθ =
2α2σ2

0

d2
− 2

d

δ
αa22σyθ + 2

d

δ
a11ασθθµx (7)

where it is worth noting that σyθ is not zero, so there is
a correlation between the deviation from the straight line
trajectory (y(t) = 0) and the angular variable θ.

Equations (6) and (7) form a system of non-linear dif-
ferential equations that approximate the evolution of the
moments of the trajectories of Braitenberg vehicle 3a with
noisy sensors starting with a pose (−d, 0, 0). Finding the
equilibrium points of this system is not trivial, but some
conclusions can be drawn by analysing the structure of the
equations. First, it is worth reminding that all the parameters
(δ, d, α, a11. . . ) are positive reals, and the variables σxx,
σyy and σθθ should be also positive. On the other hand, σyθ
could be negative, while µx < 0 because of the initial pose of
the vehicle (although it might become possible if the vehicle
passes the source). By first analysing the equation for σ̇xx we
can see that σxx will have a stable equilibrium point as long
as the vehicle does not reach the source, i.e. µx < 0, meaning
that the dispersion of the trajectories along the x axis will
be bounded. However, if the average trajectories reach the
origin µx = 0, the variance σxx will increase linearly over
time. This divergence on σxx could occur for values of µx
close to the source if the term α2σ2

0

2 is large enough.

The evolution of the other components of the covariance
matrix, equations (7), is more complex to analyse as the
potential equilibrium points depend on the sign of σyθ and
the values of the parameters of the stimulus and the linear
control function. For instance, σyy could have an equilibrium
point if σyθ < 0, but also if g′0 < g0. In the case of the
angular covariance σθθ, a negative value of σyθ would make
σθθ increase, yet it could have a stable equilibrium point as
long as the average x coordinate µx is negative as the last
term of the dynamic equation would be negative. Finally, the
large amount of terms with different signs on the evolution
equation of σyθ makes its analysis complicated. However, it
cannot be ruled out that σyθ takes negative values making
the equation for σyy stable. In any case it might be possible
to find a combination of parameters that bound σxx, σyy and
σθθ.

We can also analyse the evolution of the average x
position, equation (6). This again is a combination of positive
and negative terms which can lead to a stable equilibrium
point, i.e. the final average position of the vehicle. While
the terms on σxx and σyy are positive, the last term can
change its sign depending on the value of σθθ. This could
lead to a stable equilibrium point, but also the constant term
α(g′0− g0) could lead to stability as long as g′0 < g0. Trying
to simultaneously solve equations (6) and (7) to find the
equilibrium point, i.e. µ̇x = 0, σ̇xx = 0, σ̇yy = 0, σ̇yθ = 0
and σ̇θθ = 0, leads to a high degree polynomial with complex
solutions dependent on all the parameters. However, our
inspection of the sign terms in the equations points out to the
possibility of the existence of stable solutions, which indeed
appear, as we will illustrate in the following section.

III. COMPUTER SIMULATIONS

This section presents the results of simulations performed
to illustrate the analytical results obtained in section II. We
integrated numerically both the system of ordinary differ-
ential equations describing the evolution of the first two
moments and multiple realisations of the stochastic model.
In the case of equations (1) each experiment consists of 5000
simulations integrated using the Euler-Maruyama algorithm
with a step size of h = 0.05. As stated earlier, the stimulus
function was parabolic, the control function linear and the
sensor noise additive, i.e. with constant variance. For all
the simulation g0 = 5, a11 = a22 = 0.05, g′0 = 4.3
and α = 1.75. The differential equations (6) and (7) were
integrated using the Runge-Kutta 4-5 algorithm with adaptive
step size, which has a higher computational cost but also
provides higher accuracy.

Figure 2 shows the evolution of the average x coordinate
(µx, bottom plot) over time and the four non-zero elements
of the covariance matrix σxx, σyy, σyθ and σθθ for the
case when g′0 < g0, which, as we can see, has a stable
solution, i.e. bounded coefficients on the covariance matrix
and the average x position. The dashed lines show the result
of the numerical integration of the non-linear dynamical
system (6) and (7), and the solid lines represents the values
obtained for the mean and covariance for the trajectories



Fig. 2. Evolution of the average and elements of the covariance matrix
(dashed line) and result of the simulation (solid line) for g′0 < g0

Fig. 3. Simulated trajectories and covariance matrices (black ellipses) for
g′0 < g0

simulated using equation (1). Figure 3 shows some of the
corresponding simulations in the x-y plane. The covariance
matrix (3σ interval) is represented for some time stamps
on the x-y variables. It is worth noting that the time-steps
for which the covariance matrix is plotted in figure 3 is
logarithmic in scale, therefore the uncertainty ellipses (which
look like lines because of the much higher dispersion on
the y axis) are separated by exponentially increasing time
intervals. Figure 3 shows that the average trajectory coincides
with the expected deterministic trajectory, i.e. a straight line
towards the stimulus maximum located at the origin. Since
all the stochastic simulations start from the same point, the
initial covariance matrix is zero, but it grows as the simulated
vehicles move towards the maximum. It is worth noting
that, the condition g′0 < g0 was set to enforce the existence
of a stable equilibrium on the system (6) and (7). Like in
the case of the noiseless vehicle 3a, that condition entails
that the average x position µx will not reach the maximum
of the stimulus, which also occurs for the case of noisy
sensors. Figure 2 also shows that the elements of Σ converge
to a stable equilibrium point, meaning that the variance of

Fig. 4. Evolution of the average and elements of the covariance matrix
(dashed line) and result of the simulation (solid line) for g′0 = g0

Fig. 5. Simulated trajectories and covariance matrices (black ellipses) for
g′0 = g0

the trajectories is bounded, as pointed by the analysis in
section II-B.

Figures 4 and 5 show the results for a simulation with
g′0 = g0, which could lead to instability of the equations
(6) and (7). Interestingly, the trajectories shown in figure 5
converge to the origin and the average trajectory seems to
be stable despite the absence of negative terms in equation
(6) for the simulated time. Although the elements of the
covariance matrix σ̇yy , σ̇yθ and σ̇θθ match closely those of
the stochastic simulations, there is a large divergence in the
result for σ̇xx which grows linearly over time after 5 seconds.
This divergence is due to the non-linearity of the stimulus
function. Because the stimulus is a quadratic function the
distributions of the simulated vehicles will deviate from a
Gaussian distribution over time (it is worth reminding that the
initial distribution of vehicles can be stated as p(x, y, θ) =
δ(x+d)δ(y)δ(θ) which corresponds to a Gaussian with zero
covariance matrix). Therefore, although the approximate of
the first two moments of the trajectories predict a bounded
variation on the trajectories and convergence to the origin,
the non-linearity of the stimulus makes the dispersion of the
vehicles larger in the x direction.



Fig. 6. Simulation of vehicles 3a starting outside the analytical solutions
with g′0 = g0 (black ellipses represent the covariance)

A. Evolution outside the analytical trajectories

This section presents simulations of the stochastic equa-
tions when an analytical average trajectory cannot be ob-
tained, i.e. the average trajectory is not a straight line towards
the source. Figure 6 shows the trajectories (dotted lines)
of vehicles with noisy sensors starting from random poses
drawn from a Gaussian distribution centred at [µx, µy] =
[8, 8]. The solid line represents the trajectory of a vehicle
with ideal sensors starting at the average initial pose, while
the dashed line corresponds to the average of the trajectories
with noisy sensors. Although these two latter plots look quite
similar, there is a small difference due to the additional terms
accounting for the variance of the trajectories which depend
on the Hessian of S(x). These terms do not affect in the
case of the straight line trajectory of the previous section. The
solid ellipses around the average trajectory correspond to the
x and y components of the covariance matrix (3σ interval).
Because all the initial poses do not coincide there is a non
zero initial covariance, which grows and shrinks in different
directions as the trajectories evolve. In the long term the
average trajectory converges to the source and approaches a
straight line, while the dispersion of the trajectories decreases
in the y direction but increase in the x direction as in figures 4
and 5. Therefore, even if the trajectory starts outside the
range of straight line solutions, because of the convergence
properties close to the analytical solution, the long term
behaviour will be similar to the one obtained in the previous
section.

IV. CONCLUSIONS AND FUTURE WORK

This work analysed the behaviour of Braitenberg vehicle
3a close to a stimulus source when the sensors present
white Gaussian noise. Multiple experimental works used the
qualitative Braitenberg models to implement source reaching
in robots. Although stable controllers exist, our results show
that care must be taken when designing the control function
for real robots. Specifically, a stable controller for a noiseless
vehicle could generate a stable average trajectory (over
multiple trials) although the dispersion at the end point can
be large for a fixed trajectory time. Stability of the trajectories

can be ensured when the parameters of the control function
are tuned so that it will not actually reach the highest value
(source) of the stimulus.

As we stated earlier, finding the equilibrium point of
the second order approximate of the trajectories involves
finding the roots of a high degree polynomial, yet since the
order is lower than five, an analytical solution exists. That
would provide a condition equation for stable trajectories
relating the stimulus, the parameters of the controller, the
morphological parameters of the vehicle, and the noise level,
at least for a simple linear F (s) close enough to the source.
Future work will focus on finding more general conditions
under which the variance of the trajectories is bounded, as
well as finding the boundary values. Reinforcement Learning
can also be applied to learn appropriate control functions to
minimise the effects of noise in the trajectories.
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