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Abstract
Global terrestrial vegetation is greening, particularly in mountain areas, providing strong feedbacks
to a series of ecosystem processes. This greening has been primarily attributed to climate change.
However, the spatial variability and magnitude of such greening do not synchronize with those of
climate change in mountain areas. By integrating two data sets of satellite-derived normalized
difference vegetation index (NDVI) values, which are indicators of vegetation greenness, in the
period 1982–2015 across the Tibetan Plateau (TP), we test the hypothesis that climate-change-
induced greening is regulated by terrain, baseline climate and soil properties. We find a widespread
greening trend over 91% of the TP vegetated areas, with an average greening rate (i.e. increase in
NDVI) of 0.011 per decade. The linear mixed-effects model suggests that climate change alone can
explain only 26% of the variation in the observed greening. Additionally, 58% of the variability can
be explained by the combination of the mountainous characteristics of terrain, baseline climate
and soil properties, and 32% of this variability was explained by terrain. Path analysis identified the
interconnections of climate change, terrain, baseline climate and soil in determining greening. Our
results demonstrate the important role of mountainous effects in greening in response to climate
change.

1. Introduction

Understanding changes in vegetation greenness in
mountainous areas is of great importance because
these changes are associated with a series of ecosys-
tem processes and services, such as carbon and water
cycling (Gottfried et al 2012, Hagedorn et al 2019).
Changes in vegetation greenness over time usually
consist of an alternating sequence of greening and/or
browning, which are defined as statistically significant

increases and decreases in vegetation greenness over a
period of several years (De Jong et al 2012, Chen et al
2019a). The effects of climate change, notably global
warming or wetting, on vegetation greenness have
been widely recognized (Zhu et al 2016, Du et al
2018, Park et al 2020). However, the effects of cli-
mate change on greening trends are inconsistent
depending on the mountainous characteristics, such
as topography, climate and soil properties, whichmay
interact with climate change to regulate vegetation
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greenness dynamics (Pugnaire et al 2019, Xu et al
2020). Identifying the processes underlying the spatial
variability of greening under climate change is chal-
lenging, particularly in mountainous areas.

The Tibetan Plateau (TP), which is called the
‘Third Pole’ of the earth with an average elevation of
4000 m (Qiu 2008), has responded more sensitively
to climate change than other zones at the same lat-
itude (Duan et al 2017, Teng et al 2018). Over the
past decades, satellite-derived vegetation indices have
indicated widespread change on the TP (Shen et al
2015a, Zhu et al 2016, An et al 2018). The long-
term changes in vegetation greenness over the TP are
recognized to be driven primarily by climate change
(Piao et al 2014, Zhu et al 2016), specifically warm-
ing (Qiu 2008) and wetting (Chen et al 2013). How-
ever, the trend of greening shows great variability on
the TP due to the strong vertical zonality of the topo-
graphy (Anderson et al 2020), baseline climate (Shen
et al 2011), and soil conditions (Kato et al 2006).
The terrain is a significant regulator of energy and
water availability even at fine scales and is very com-
plex on the TP; thus, the terrain may play a vital
role in regulating vegetation dynamics (Bolton et al
2018, Gao et al 2019). The baseline climate plays a
key role in the surface energy balance and inmodulat-
ing the land–climate interactions (Forzieri et al 2017),
and may therefore impact the widespread greening of
the TP. In addition, the heterogeneity of soil nutri-
ent availability and the abiotic soil conditions may
lead to profound changes in plant species diversity
and community structure (Pugnaire et al 2019), ulti-
mately driving diverse greenness dynamics on the TP.
The comprehensive impact of climate change, terrain,
baseline climate and soil, which influence the per-
mafrost and groundwater, the flow of rainwater into
or off the soil, and the heat absorbed by soil, induce
extreme local variability of the vegetation composi-
tion and structure on the TP (Cheng and Jin 2013,
Mu et al 2016). Thus, investigating the greening pat-
tern on the TP and the underlying drivers is import-
ant for sustainably managing the TP ecosystems and
is also important for the land surface energy balance
of the region (Zhang et al 2013, An et al 2018). How-
ever, it is still challenging to understand the underly-
ing mechanisms underpinning the spatial variability
of greening on the TP.

Long-term remotely sensed measurements of the
normalized difference vegetation index (NDVI) have
been widely used to indicate changes in large-scale
vegetation dynamics and greenness (Huete 2016,
Myers-Smith et al 2020). Here, we investigate the
trend of the growing season NDVI across the TP for
the period 1982–2015 using remotely sensed data sets.
We present a new method to spatially resample the
NDVI record and thus provide a new growing season
NDVI data set at a 1 km resolution. Combined with
climate records from meteorological stations across
the TP, we also disentangle the relative importance

of, and interactions among, climate change variables,
terrain attributes, baseline climatic characteristics,
and soil properties in controlling the spatial variab-
ility of the greening trend.

2. Materials andmethods

2.1. Satellite-derived NDVI data sets
Two remote sensing data sets, AVHRR GIMMS
NDVI3g (hereafter NDVIGIMMS) during the period
from 1982 to 2015 and SPOT-VGT NDVI (hereafter
NDVISPOT) covering the period from 1999 to 2013,
were used in this study. NDVIGIMMS is the longest
time series NDVI data set and provides information
on terrestrial vegetation changes with a spatial resol-
ution of 1/12◦ (∼8 km) (Tucker et al 2005). This data
set was compiled by merging segments (data strips)
during a half-month period using the maximum
value composite (MVC) method. The NDVISPOT
product has been pre-processed by the VEGETA-
TION Processing Centre at the Flemish Institute for
Technological Research in Belgium. The spatial res-
olution of NDVISPOT is 1 km, and the temporal res-
olution is 10 days (Maisongrande et al 2004). To
ensure temporal overlap and equal treatment with
NDVIGIMMS, the 10 day images were aggregated into
monthly MVC.

In this study, we used an empirical orthogonal
teleconnections (EOT) model (Appelhans et al 2015,
Detsch et al 2016) to assess the dynamics of the
NDVI during 1982–2015 at a 1 km spatial resol-
ution (SI appendix, Processing of NDVI data sets
(available online at stacks.iop.org/ERL/16/064064/
mmedia)). After that, the new NDVI data set (here-
after NDVIEOT) was used in the following analysis.
In this study, the EOT analysis was performed using
the package remote in R 3.6.3 (R Core Team 2020).
To minimize the impacts of snow and ice, we con-
sidered NDVIEOT within the plant growing season
fromMay to September during 1982–2015 (Shen et al
2015b). The mean values of the monthly NDVIEOT
(hereafter NDVImean) during the growing season
over 1982–2015 were calculated based on the cor-
responding NDVIEOT values to represent the aver-
age of growing season NDVI. To reduce the noise
from non-vegetation signals, grid cells with long-
term NDVImean values less than 0.1 over the period
1982–2015 were excluded in this study (Liu et al
2016).

2.2. Estimation of long-termNDVI trend
To quantify the long-term trend of growing season
vegetation growth, we performed least squares lin-
ear regression analysis using the annual growing sea-
son NDVImean as the dependent variable and the year
as the independent variable over the period 1982–
2015. The slope of the regression (hereafter Trmean)
was then defined as the linear trend of the vegetation
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Figure 1. (a) Spatial pattern of meteorological stations based on an ecosystem map of the Tibetan Plateau (TP) from the
1:1000 000 Vegetation Atlas of China (Editorial Board of Vegetation Map of China) provided by the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC) (www.resdc.cn). (b) Number of meteorological stations in
each of the ecosystem types analyzed in this study. (c) Zonal statistics of each ecosystem based on the ecosystem map. The
non-vegetated areas with growing season NDVI lower than 0.10 are not considered in this study.

growth over the growing season. Positive and negat-
ive values of Trmean over time can be referred to as
greening and browning, respectively. The spatial pat-
terns of the temporal trends in each data set were
calculated using least squares linear regression for
each grid. All the data calculations were accomplished
using the function lm() in R 3.6.3 (R Core Team
2020).

2.3. Identifying possible driving factors
2.3.1. Climate variables
There were 64 meteorological stations, which con-
tained daily climate variables of precipitation, tem-
perature and evaporation, provided by the China
Meteorological Administration over the TP during
the study period 1982–2015. Among these meteoro-
logical stations, four had a corresponding NDVImean

less than 0.1 during the study period, and were
excluded from this study. Thus, 60 meteorological
stations were used in the following analysis (figure 1).

In this study, ten baseline climate variables, which
determined a reference point for climate change
based on the average climate over a 33 year period
(1982–2015) based on monthly precipitation, tem-
perature and evaporation data sets, were calculated
from daily records from 60 meteorological stations
over the TP. They included the average annual
total precipitation (Pre), average total precipitation
in the growing season (Pre_gs), average annual mean

temperature (Tmp), average mean temperature in
the growing season (Tmp_gs), average annual min-
imum temperature (Tmn), average minimum tem-
perature in the growing season (Tmn_gs), average
annual maximum temperature (Tmx), average max-
imum temperature in the growing season (Tmx_gs),
average annual total evaporation (Evp), and average
total evaporation in the growing season (Evp_gs). The
corresponding ten climate change variables, which
represented the long-term trend of climate dynamics
(TrPre, TrPre_gs, TrTmp, TrTmp_gs, TrTmn, TrTmn_gs, TrTmx,
TrTmx_gs, TrEvp, TrEvp_gs), were also calculated (table
S1). All ten climate change variables were quanti-
fied by performing least squares linear regression ana-
lysis using climate data sets as the dependent variable
and year as the independent variable over the period
1982–2015. The regression slopes of the linear regres-
sion models were identified as the trends of the cor-
responding climate change variables (table S1).

Since the ten baseline climate variables and
ten climate change variables were highly correlative
(figures S2(a) and (d)), we used principal component
analysis (PCA) to summarize/reduce the informat-
ive features and control for autocorrelations between
these variables. We performed PCA on all variables
reflecting the baseline climate variables (n = 10) and
climate change (n = 10) to analyze the variation in
baseline climate (PCb) and climate change (PCc).
Based on the PCA results, three PCbs (PCb1 to PCb3)
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that explained 97.25%of the baseline climate variance
and six PCcs (PCc1 to PCc6) that explained 96.08%
of the variance in the assessed climate change factors
were used in the following analysis (figure S2).

2.3.2. Terrain
At each of the 60 meteorological stations, seven ter-
rain attributes, including the digital elevation model
(DEM), slope, aspect, curvature (Curv), topographic
wetness index (TWI), multiresolution index of val-
ley bottom flatness (MrVBF), and terrain ruggedness
index (TRI), were extracted from the 3 arcsecond
(approximately 90m) grid Shuttle Radar Topography
Mission DEM (SI appendix, Explanation of terrain
attributes).

2.3.3. Soil attributes
Maps of bulk density (BD), total nitrogen (TOTN),
soil content (sand, silt and clay), effective cation
exchange capacity (ECEC), total exchangeable
bases (TEB), and available water capacity (TAWC)
were obtained from a 30 arcsecond raster data-
base of the harmonized soil property values for
the world (WISE30sec) (Batjes 2016). Soil maps
of pH (Chen et al 2019b) and soil organic mat-
ter (SOM) (Liang et al 2019) were produced using
soil samples, environmental variables, and digital
soil mapping techniques. In this study, the ten soil
attributes mentioned above were extracted at the 60
meteorological station locations for the following
analysis.

2.3.4. Ecosystem types
The ecosystem types were identified according to the
vegetation map of the TP that was obtained from
the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC)
(www.resdc.cn). The vegetation map was produced
from a digitized 1:1000 000 Vegetation Atlas of China
(Chinese Academy of Sciences 2001). In the vegeta-
tionmap, four vegetation types related to forest (con-
iferous forest, coniferous and broad-leaved mixed
forest, broad-leaved forest, and shrub) were classi-
fied as woodland ecosystems; three vegetation types
belonging to grassland (steppe, herbs and meadow)
were classified as woodland ecosystems. Other veget-
ation types, including alpine vegetation, cultivated
vegetation desert and others, were classified as other
ecosystems (figure 1).

2.4. Disentangling the contributions of driving
factors on the spatial variability of the greening
trends
We explored the variability of the relationships
between indicators (i.e. climate change, terrain,
baseline climate and soil) and the response vari-
able (Trmean) by using a linear mixed-effects model
(LMM) (Qie et al 2017) at the 60 meteorological sta-
tions. The LMM contains two components: a fixed

effect (the explanatory variables) and random effects.
Hypotheses were made prior to assessing the contri-
butions of climate change, terrain, baseline climate
and soil to the greening variation. First, we assumed
that climate change impacted greening. Second, we
assumed that the impact of climate change on the spa-
tial variability of the greening trend was modulated
by terrain, baseline climate and soil attributes. Third,
we assumed that terrain characteristics amplified the
spatial variability of the greening.

We built three sets of LMMs to examine these
hypotheses. The first set of LMMs used the six cli-
mate change variables (PCc1 to PCc6, figure S2) as
explanatory variables and Trmean as the response vari-
able to describe the response variable of the greening
trend. The second set of LMMs used the variables of
climate change (PCc1 to PCc6), terrain, baseline cli-
mate (PCb1 to PCb3) and soil as explanatory vari-
ables. The third set of LMMs was used similarly to
the second set of LMMs, but without the terrain
attribute.

Ecosystem types were treated as a random effect,
allowing each ecosystem type to have a separate
intercept in all sets of LMMs. The predicted green-
ing rates by the three sets of LMMs driven by the
identified variables mentioned above were compared
with the corresponding modeled greening rates. The
LMM enabled the estimation of the assessed RMSE of
an explanatory variable (i.e. climate change, terrain,
baseline climate and soil in this study) compared with
other variables that were considered. In this study, we
used the RMSE value to evaluate the relative import-
ance of a given variable in the LMM (SI appendix,
Relative importance of variables), and also used the
resulting coefficient of determination (R2) to present
the explanation rate of the model. The LMMs were
used at the locations of the 60meteorological stations
using the packagenlme in R 3.6.3 (RCoreTeam2020).

2.5. Partial least squares—pathmodeling
(PLS-PM)
We applied PLS-PM with four latent variables,
namely, climate change, terrain, baseline climate and
soil, to assess their direct/indirect effects on the vari-
ability of Trmean. The latent variables were reflected
by indicators. For example, for the latent variable
‘climate change,’ we considered six indicators: PCc1
to PCc6. In the PLS-PM, the loading of each latent
variable was the key to estimating the variable scores
and was calculated as the correlation between a lat-
ent variable and its indicators. An iterative algorithm
was used to estimate the loadings until the conver-
gence of the loadings was reached to maximize the
explained variance of the dependent variables (both
latent and indicator variables) (Luo et al 2019). The
R2 values of the endogenous latent variables indicated
the amount of variance in the endogenous latent vari-
able explained by its independent latent variables. The
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result of the path coefficient can be positive or negat-
ive. A negative path coefficient means that increasing
the causal variable causes a decrease in the dependent
variable if all other causal variables are held constant.

Using PLS-PM, we explored how the greening
trend responded to climate change, terrain, baseline
climate and soil, and we also investigated the interac-
tions among these variables.We first assumed that cli-
mate change, terrain, baseline climate and soil directly
impact the spatial variability of the greening trend.
Second, we assumed that these variables have indir-
ect impacts on the spatial variability of the green-
ing trend through their interactions with each other.
We also tested the assumptions based on the variables
without terrain (climate change, baseline climate and
soil). The PLS-PM was performed using the package
plspm in R 3.6.3 (R Core Team 2020).

3. Results

3.1. Climate change over the past decades on the TP
Figure 2 shows the long-term annual total precip-
itation, average mean temperature and annual total
evaporation aswell as their corresponding trends dur-
ing 1982–2015. During the past three decades, the TP
has experienced a warming trend based on the com-
parison of time series annual average temperature
on the whole TP (0.05 ◦C yr−1, p < 0.0001), wood-
land ecosystem (0.04 ◦C yr−1, p < 0.0001) and grass-
land ecosystem (0.07 ◦C yr−1, p < 0.0001) (figure 2).
Based on the records of the 60 meteorological sta-
tions, the total annual precipitation showed inter-
annual variation with an insignificant trend during
1982–2015 (0.13 mm yr−1, p = 0.8206). Woodland
ecosystem, however, showed a significant decreas-
ing trend of annual total precipitation over the study
period (−1.67 mm yr−1, p = 0.0415). The annual
total evaporation showed a universal decreasing trend
over the whole TP, woodland ecosystem, and grass-
land ecosystem (figure 2).

3.2. Greening on the TP
The growing season NDVIEOT of the time series grid
cells at a 1 km resolution shows a mean value of
NDVImean of 0.343, with an increasing trend of 0.011
per decade (i.e. greening, p < 0.0001) across the
whole TP during the period 1982–2015 (figure 3(c)).
In general, the NDVI increases from the very dry
western TP to the wetter eastern TP. At the pixel
level, NDVImean shows great spatial variability, ran-
ging from 0.10 to 0.83 (figure 3(a)). A 91% pro-
portion of the vegetated land over the TP exhibits
greening (i.e. Trmean > 0, p < 0.0001), and only 9%
experiences browning (p < 0.0001), that is, a decrease
in NDVImean (figure 3(b)). Woodland ecosystems,
which grow at lower altitudes (1706 ∼ 4440 m),
have a higher NDVImean value (0.514) (figure 3(d))
and show more rapid and significant greening rates
(0.013 per decade, p = 0.0003) than the average

value for the whole TP. Grassland ecosystems, which
account for 45% of the total TP (figure 1(c)), show
a lower greening rate than the whole TP (0.010 per
decade, p < 0.0001), with an NDVImean value of 0.286
(figure 3(e)).

3.3. Association of greening with climate change
only
The LMM results suggested that climate change
explains only 26%of the spatial variability of greening
trends (R2 = 0.26) (figure 4(a)). The random inter-
cepts for woodland and grassland ecosystems were
0.08 (×10−10) and 0.04 (×10−10), respectively (table
S2). Among the indicators of climate change, PCc4,
which had a high correlation with TrTmx_gs over 1982–
2015 based on the PCA results (correlation = 0.55,
figure S2(f)), showed significant correlation with the
greening trend (coefficient=−3.23, table S2).

3.4. Greening modulated by terrain, baseline
climate and soil properties
In addition to climate change, we introduce terrain,
baseline climate and soil variables (table S1) into the
LMM to test the hypothesis that these factors modu-
late the impact of climate change on the spatial vari-
ability of greening rates. We find that variables of ter-
rain, baseline climate and soil can explain another
58% of the greening trend variability (R2 = 0.26 for
climate change alone versus R2 = 0.84 for all variables
together). Among these variables, terrain can help
explain more than 32% of the variability (R2 = 0.52
with all variables except terrain) (figure 4(a)).

The results regarding the relative influence of
the LMM, which includes all environmental vari-
ables, suggest that terrain is the most important vari-
able in terms of explaining the spatial variation in
greening trends (relative importance = 42%). Alti-
tude has been found to be the most important
indicator within terrain variables in driving the spa-
tial variation in greening trends (relative import-
ance = 14%) (figure 4(b)). PCb1, which was mainly
correlated with temperature (figure S2(c)), showed
the highest contribution in the baseline climate to
explaining the spatial variance of greening trends
(relative importance = 13%). Overall, the contribu-
tion of soil to explaining the variance of greening
was comparable to that of other variables (relative
importance = 28%). According to our results, the
ECEC showed the highest relative importance value
(8%) for the greening trend among the soil attributes
(figure 4(b)).

3.5. Interconnections between greening trend and
its drivers
PLS-PM suggests that climate change is directly and
negatively correlated with the spatial variability of
greening trends over the whole TP (correlation coef-
ficients = −0.40) (figure 5(a)). However, the cor-
relation between climate change and greening could
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Figure 2. Comparisons of long-term annual total precipitation, average mean temperature, and total evaporation over (a) the TP,
(b) woodland ecosystem, and (c) grassland ecosystem based on average values at the 60 meteorological stations over 1982–2015.
Regression lines are overlaid for each climate variable and corresponding regression equations are reported in the label.

be different among ecosystems, which is 0.57 in the
woodland and −0.11 in the grassland (figures 5(b)
and (c)). According to the loading score of each indic-
ator to the corresponding variable, PCc1, which was
mainly correlated with temperature (figure S2(c)),
was a more powerful indicator of climate change for

the model over the whole TP and woodland (loading
score = 0.76 and 0.89, respectively). However, PCc2,
which wasmainly correlated with evaporation (figure
S2(c)), was a more powerful indicator of climate
change for the grassland (loading score = −0.96)
(table S3). Climate change also indirectly affects the
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Figure 3. Spatial pattern of (a) average annual mean growing season NDVI (NDVImean) and (b) the trend in NDVImean (Trmean)
for 1982–2015. White pattern indicates areas with a multiyear average growing season NDVI less than 0.1. Comparisons of
long-term trends in annual mean growing season NDVI over the different ecosystem types across the TP based on the zonal
statistics for (c) the whole TP, (d) woodland ecosystem, and (e) grassland ecosystem over the growing season (May to September)
during 1982–2015. The statistically insignificant regions (p > 0.05) are masked out from the statistics. The black and solid
regression lines are overlaid and corresponding regression equations are reported in the labels. The average values of mean
growing season NDVI for each ecosystem are shown by gray and dashed lines.

greening trend through its impact on soils (correla-
tion coefficients = 0.19) (figure 5(a)). Baseline cli-
mate, which was mainly derived by temperature on
PCb2 (loading scores=−0.77, figure S2(f), table S3),
was shown to have a higher direct contribution
than climate change in terms of explaining the vari-
ance of greening (correlation coefficient = −0.72)
(figure 5(a)).

Terrain, which is mainly reflected by the TRI and
TWI (loading scores in the path analysis are −0.90
and 0.90, respectively; table S4), had direct and neg-
ative control on the variability of greenness (correla-
tion coefficient = −0.24) (figure 5(d)). This finding
could be amplified over woodland ecosystems, with
a direct correlation coefficient of −0.65 between ter-
rain and greening (figure 5(e)). The terrain also had
an indirect relationship with the greening rate via all
hypothesized pathways, including those involving cli-
mate change, baseline climate and soil (figure 5). The

direct impact of climate change on greening could be
strengthened over woodland and grassland when the
terrain attributes were included in the path analysis
(figures 5(e) and (f)).

4. Discussion

As expected, climate change has a significant direct
effect on the spatial variability of greening trends. The
finding of a high correlation between temperature
and vegetation dynamics (table S2 and figure S2(f))
was in line with previous research showing that the
vegetation phenology at high latitudes is primar-
ily determined by temperature (Shen et al 2016).
However, the temperature increase may have vari-
able effects on greening among ecosystems. In this
study, woodland ecosystem experienced a relatively
rapid greening trend during the warming period
over 1982–2015. The increasing temperature, which

7



Environ. Res. Lett. 16 (2021) 064064 H Teng et al

Figure 4. (a) Performance of the linear mixed-effects models (LMMs) in predicting greening rates during 1982–2015 using three
sets of predictors. The first set of LMMs used climate change variables (PCc1 to PCc6) as predictors, the second set of LMMs
selected climate change (PCc1 to PCc6), baseline climate (PCb1 to PCb3), terrain, and soil variables as predictors, and the third
set of LMMs used similar predictors to the second set but without terrain. (b) First ten important variables of predictors in the
second set of LMMs. The blue bars show indicators in climate change, the purple bars show indicators in terrain, the pink bars
show indicators in baseline climate, and the orange bars show indicators in soil. All sets of LMMs were employed based on the
values at 60 meteorological stations.

primarily contributed to the indicator of PCc1 in
the climate change variable, promoted the greening
over the woodland ecosystem (figure 5(b), table S3,
figure S2(f)), indicating that warmer temperature
may lead to an extended growing season for temperate
forests due to earlier greenup and delayed senescence
(Hwang et al 2014). However, increasing temperature
will have a negative impact on the greening over the
grassland ecosystem. Warming over the TP induced
an increased preseason precipitation and correspond-
ing reduced precipitation during the growing season.
The deficient sunshine intensity and duration of pre-
season, and the drought stress induced by dramatic
increases in temperature and inadequate precipita-
tion during the growing season, could counteract
early spring carbon assimilation (Angert et al 2005)
and increase vegetation mortality (Adams et al 2009).
Accelerated leaf senescence associated with drought
stress along with warming has been studied specific-
ally in grasslands (Rivero et al 2007), for which chem-
ical mechanisms are largely known.

Moreover, climate change not only favors the
rapid growth of plants and controls the structure and
function of ecosystems but also accelerates perma-
frost thawing throughout the TP (Chen et al 2013). In
past decades, the mean annual permafrost temperat-
ures at a depth of 6.0 m increased by 0.12 ◦C–0.67 ◦C
(Wu and Zhang 2008). Such permafrost degradation
caused rapid soil carbon loss through the efflux of
CH4 and CO2. In turn, the decomposition of soil
organic carbon over these areas has accelerated with
climate warming (Chen et al 2013). On the other
hand, a changing climate has the potential to alter the
composition of plant and soil communities and the

interactions between them. The interactions among
plants and their associated abiotic soils, which are
termed plant–soil feedbacks, can lead to complex
feedbacks that regulate plant community dynamics
and ecosystem processes (Pugnaire et al 2019).

There is growing evidence that the impact of
climate change on the trend of vegetation green-
ness can be amplified by terrain attributes (Liu et al
2013, An et al 2018, Radula et al 2018). The influ-
ence of elevation-dependent warming on the vegeta-
tion dynamics inmountainous environments has also
been documented, revealing that warming is more
rapid at higher elevations (Mountain Research Initi-
ative EDWWorking Group 2015, Xu et al 2020). For
instance, warming promotes seedling establishment
and vegetation infilling (Du et al 2018) and induces
the upward migration of the treeline on the TP. The
terrain also causes localized changes in soil moisture
and soil temperature. The steepness, shape and slope
of an area affect the flow of rainwater into or off the
soil as well as the amount of heat absorbed by the soil.
Moreover, the structure and function of ecosystems
vary significantly with climate driven by fine-scale
variations in topography. It is usually assumed that
the spatial variability of the greening trend over the
mid- and high-latitude forest phenology is primarily
determined by temperature, while seasonal rainfall is
a more important factor for the interannual vegeta-
tion greenness dynamics in arid and semiarid grass-
land regions (figure 2) (Hwang et al 2014).

Baseline climate also has an impact on the green-
ness trend through its relationship with climate
change, soil, and vegetation type (figure 5). At higher
latitudes, plants slow or postpone developmental
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Figure 5. Results of path analysis on the direction and magnitude of the effects of latent variable climate change and climate, and
soil for Trmean during 1982–2015 for (a) the whole TP, (b) woodland ecosystem, and (c) grassland ecosystem. Path analysis on the
direction and magnitude of the effects of latent variable climate change, climate, terrain and soil for Trmean during 1982–2015 for
(d) the whole TP, (e) woodland ecosystem, and (f) grassland ecosystem. Continuous arrows indicate positive relationships.
Dashed arrows indicate negative relationships. Numbers in parentheses show the direct correlation coefficients between the latent
variables. Path analysis was performed based on the values at 60 meteorological stations.

processes to mitigate the high risk of freezing injury
at very low temperatures (Shen et al 2016). Frozen
soil water under low temperatures could limit water
absorption by alpine vegetation roots. The dominant
enhancing effect of the increasing minimum tem-
perature was likely caused by the reduction in
low-temperature constraints on alpine plants, which
promoted vegetation growth. In this study, the grass-
land with a higher average temperature (i.e. meadow)
showed a higher greening rate than that in a colder
environment (i.e. steppe) (figures 2 and 4).Moreover,
the combined effects of changes in snow depth and
cloud cover in response to the increase in CO2 con-
centrations result in greater surface heat storage in

high-mountain regions and therefore amplify the
warming rate with elevation on the TP (Palazzi
et al 2017). The implications for the combination
of cloud radiation and snow albedo feedbacks and
the increases in water vapor content in the atmo-
sphere can thus affect the greening trend (Mountain
Research Initiative EDW Working Group 2015, Yan
et al 2016).

5. Conclusion

This study usedmultiple data sources and approaches
to evaluate the greening trend of the TP vegetation
and revealed the drivers of the variation in this
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greening. The findings of this study have several
important implications. First, our results suggest an
overall greening trend over the TP in recent decades.
Second, the variability of greening in recent decades
has been driven not only by climate change but also
by terrain, baseline climate and soil. Finally, the inter-
connections of climate change, terrain, baseline cli-
mate and soil need to be considered in understand-
ing and predicting the vegetation dynamics over the
TP. The methods and logic developed here could aid
understanding of the influence of climate change on
terrestrial vegetation and toward improving the sim-
ulation of future vegetation dynamics.
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