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Abstract

In the framework of the level-set method we propose a topology optimization algorithm
for linear elastic structures which can exhibit fractures. In the spirit of Gri�th theory, brit-
tle fracture is modeled by the Francfort-Marigo energy model, with its Ambrosio-Tortorelli
regularization, which can also be viewed as a gradient damage model. This quasi-static and
irreversible gradient damage model is approximated using penalization to make it amenable to
shape-di�erentiation. The shape derivative is determined using the adjoint method. The shape
optimization is implemented numerically using a level-set method with body-�tted remeshing,
which captures shapes exactly while allowing for topology changes. The e�ciency of the pro-
posed method is demonstrated numerically on 2D and 3D test cases. The method is shown to
be e�cient in conceiving crack-free structures.

1 Introduction

The integrity of a mechanical structure is of paramount importance to ensure safety. Structures
subjected to a critical external load may undergo high stress, material damage, crack and an ultimate
collapse. Shape and topology optimization to minimize damage can facilitate engineers to conceive
robust structures, less susceptible to crack and hence with a longer life. The goal of the present work
is to design a level-set based algorithm for optimizing structures which are not prone to fracture.

The �rst step is to choose a convenient fracture model. In the framework of brittle fracture
mechanics, we consider the so-called Francfort-Marigo model [32], in the spirit of the pioneering
energetic approach of Gri�th [35]. This model relies on the quasi-static minimization of a total
energy which is the sum of a linear elasticity energy and a fracture energy, under an irreversibility
constraint. Its mathematical formulation was inspired by the Mumford-Shah energy functional for
image segmentation [45], which is a simpler model with a scalar unknown and without time variable.
The original Francfort-Marigo model belongs to the class of free discontinuity problems (the crack is
an unknown of the problem), which are notoriously di�cult to solve numerically. Therefore, the same
authors propose to approximate their original model with a regularized damage model [16], following
a Gamma-convergence process, �rst suggested by Ambrosio and Tortorelli for the Mumford-Shah
functional [6]. This Ambrosio-Tortorelli regularization features a small regularizing parameter ` > 0.
In the case of the Mumford-Shah functional, by Gamma-convergence techniques it was proved in [6],
[17] that, as ` converges to zero, the minimizers of the regularized model converge to those of the
original free discontinuity problem. A similar convergence holds true for a time-discretized version
of the Francfort-Marigo model [20, 34].

In the regularization of this free discontinuity problem, the parameter ` can be viewed as a
purely mathematical artifact, used to approach the exact minimization problem. However, this
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regularization has also a very clear physical interpretation as damage model with an internal length
scale which is precisely the regularization parameter `. Recall that a damage model features a damage
variable α, measuring the extent of degradation of the material and varying continuously between 0
(no damage) and 1 (fully damage), and an elastic Hooke's tensor which is a decreasing function of
α. Additional ingredients are, like in the fracture case, an irreversibility constraint and an energy
criterion which determines the onset of damage. How the original fracture or free discontinuity
problem is recast as a damage problem is precisely explained in [16] and [48]. This approach is also
called sometimes a smeared interface approach or a phase-�eld approach. Its main advantage is its
simplicity of numerical implementation using the �nite element method. Furthermore, it can easily
detect initiation, branching and coalescence of cracks without the need of meshing the crack path.
In the sequel we shall indi�erently call this model a damage or a fracture model.

The second step is to choose a shape and topology optimization method. There are mainly two
classes of algorithms. The �rst class, that of so-called density methods, represents or approximates
shapes by a continuous density function. The second class captures shapes by means of an auxiliary
function which could be a characteristic function, a phase-�eld function or a level-set function. Here,
we follow the level-set framework, introduced by Osher and Sethian [47]. The level-set approach
was combined with the notion of shape derivative in [4, 51] to make it a successful method for shape
and topology optimization of structures. We refer to [2] for a review of the level-set method in
structural optimization and for further references. Combining the Francfort-Marigo fracture model
with the level-set method, we propose a shape and topology optimization algorithm for preventing
crack initiation and propagation in solid structures.

There has already been some works on this topic. In the level-set framework we are only aware
of [52] which optimizes the con�guration of composite materials in a phase-�eld based fracture
model. We di�er from [52] in many aspects: they do not use a level-set equation but rather a
reaction-di�usion equation, they do not use a shape derivative but instead a topological gradient
for a simpli�ed model with a �xed damage �eld and �nally they do not optimize the overall shape
but just the inclusion's shape inside a composite structure. There are more works on topology
optimization using SIMP (solid isotropic material with penalization) applied to various fracture
models. Topology optimization using SIMP was performed for a fracture model in [40] or for a
damage model to reinforce concrete in [8]. Path dependency of the damage model was taken into
account in SIMP [38]. Phase-�eld model of fracture was considered for topology optimization using
extended BESO (Bi-directional Evolutionary Structural Optimization) [26]. Fracture governed by
the phase-�eld model is considered for maximizing the fracture resistance of periodic composite [26].

A common feature in all the previous works using SIMP is that several material properties must
be approximated for the mixture of material and void, corresponding to the density variable. This
is classical for the Young's modulus [14] but more delicate for other properties like, for example,
the fracture toughness. Usually, these material properties are approximated by multiplying their
values by the density raised to a certain exponent. This exponent is di�erent for every property
and ought to be chosen in an ad-hoc manner, ensuring numerical stability. If the optimized shape
has intermediate densities, the interpretation of damage is quite arti�cial and may cause numerical
di�culties. On the contrary, in the level-set framework, since the material properties are never
approximated, such arti�cial damaged zones are avoided.

The content of this article is as follows. Section 2 is devoted to the presentation of the Francfort-
Marigo damage model. Although this model has nice properties, it features an irreversibility con-
straint (a damage region cannot heal and be again undamaged) which makes it a variational in-
equality, instead of a more standard variational equality. Unfortunately, the adjoint method for
computing sensitivities or derivatives of an objective function is extremely involved and not practi-
cal for variational inequalities since it involves the notion of conical derivative [44, 49]. Therefore, we
penalize the irreversibility constraint to transform the variational inequality into a more convenient
variational equality which is amenable to the adjoint method.

Section 3 states the optimization problem and delivers its shape derivative (see Proposition 1),
relying on the adjoint method and the well-known Hadamard and Céa's methods. There is again a
subtle point here. The state equation corresponds to the minimization of a total energy depending
on two variables, the elastic displacement u and the damage variable α. It turns out that this energy
is not convex with respect to (u, α). As usual, the adjoint equation is the adjoint linearization of the
optimality condition for this energy minimization. Therefore, the adjoint equation features a linear
operator which is the transpose of the Hessian (or second-order derivative matrix) of this non-convex
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energy. As such, it is not a coercive operator and it is not clear at all that the adjoint equation
admits a solution. Nevertheless, under a technical assumption we are able to prove the existence
and uniqueness of a solution of the time-discretized version of the adjoint problem (see Theorem 1).

Section 4 presents the discretization of the damage model and of the adjoint problem in space and
time, and the level-set algorithm. A key ingredient for the sequel is that, the damage model being
non-convex, it is solved with a so-called backtracking algorithm, due to [16], which is able to escape
from local minima in the total energy minimization. Our �nite element analyses are performed within
the FreeFEM software [36]. For the �ner 3D meshes we use the parallel computational capacities of
FreeFEM which rely on domain decomposition and the PETSc package [10]. The level-set transport
equation is solved with the advect library [18]. One original feature of our work is that we rely
on body-�tted meshes at each iteration, using the remeshing software MMG [27]. Having a body-
�tted mesh of the structure is crucial for an accurate evaluation of the damage. Indeed, there is
no ersatz or weak material, so damage does not interact with this �ctitious phase. Furthermore,
since damage typically occurs in region of high stresses, those are more precisely computed with a
body-�tted mesh. We also outline the details of our gradient-based algorithm for shape and topology
optimization.

Finally, Section 5 is concerned with 2D and 3D numerical test cases. The objective function is
the so-called total compliance (integrated in time), which is minimized under a volume constraint.
These examples illustrate the e�ciency of our proposed shape and topology optimization algorithm
to obtain crack-free optimal structures. One speci�c di�culty in optimization of damage of fracture
models is that these phenomena may be discontinuous: a small increase in the loadings, a small
change in the structure's geometry may cause the sudden occurrence of a not-so-small crack and
thus a large increase of the objective function (see the discussion in Remark 10). Nevertheless, our
algorithm is able to sustain these large oscillations and, in the end, converge smoothly to optimal
undamaged structures.

2 Fracture model

This section is devoted to a presentation of the Francfort-Marigo model [32] of brittle fracture which
is relying on a mechanical energy minimization. Their original model was based on a representation
of the fracture as a line (in 2D) or surface (in 3D) of displacement discontinuity but they proposed
[16] a very e�cient approximation using the Ambrosio-Tortorelli regularization, which can be viewed
as a gradient damage model [48]. Over the last two decades, several researchers have worked on
di�erent aspects of this regularization, cited in the following presentation.

2.1 Governing laws and variational formulation

ΓD

Ω

Γ

Γα

Γi
u

Figure 1: Boundary conditions and the unknown crack Γα

Let Ω ⊂ Rd be a smooth bounded open set representing the structure in Fig.1 (with d = 2, 3
the space dimension). For T > 0, [0, T ] is the bounded time interval of interest. The imposed
displacement is denoted by ū : Ω × [0, T ] 7→ Rd and is assumed to be smooth, typically ū ∈
C0([0, T ], H2(Rd)d). Let ∂Ω = ΓD ∪ Γ ∪ Γū, be the union of disjoint boundaries and n denote the
outward normal to ∂Ω: Γ is the free boundary (no traction), ΓD is the Dirichlet boundary and Γū
is the boundary where the displacement ū is imposed.
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The elastic displacement vector �eld is u : Ω× [0, T ] 7→ Rd and ε(u) = 1
2

(
∇u+ (∇u)T

)
denotes

the second order strain tensor. The fourth order Hooke's tensor C0 is assumed to be coercive on the
set M d

s of symmetric d× d matrices, i.e., ∃ cmin > 0, cmax > 0 such that, ∀ξ ∈M d
s ,

cmin|ξ|2≤ C0ξ: ξ ≤ cmax|ξ|2.

The rate of evolution of the imposed displacement ū is assumed to be small, resulting in a quasi static
evolution of the structure, and hence a negligible acceleration ü = 0. As the loading increases with
time t and the elastic energy in the structure exceeds a critical elastic energy density, the structure
undergoes damage, which is measured with the damage variable α : Ω × [0, T ] 7→ [0, 1]. The value
α = 0 corresponds to no damage and α = 1 to a complete damage. Damage is characterized by
deterioration of the sti�ness and is modeled by assuming the Hooke's tensor C(α) to be a convex
function of the damage variable α, such that

C(0) = C0, C(1) = 0 and C′(α)ξ: ξ < 0 ∀ξ ∈M d
s . (1)

The second expression in the above states that when the damage variable α attains unity, the sti�ness
becomes zero and structure undergoes a crack. The third expression in the above states that, when
α increases, the sti�ness must decrease.

The study of the damage model requires the introduction of some functional spaces. The space
of admissible displacements is given by

V = {u ∈ H1(Ω)d : u = 0 on ΓD}. (2)

For v = ˙̄u, the a�ne space of admissible velocities is de�ned as

Cv = {v ∈ V : v = v , on Γū}. (3)

The subspace of functions in H1(Ω) which vanish on ΓD and Γū, is denoted by

H1
D(Ω) = {β ∈ H1(Ω) : β = 0 on ΓD ∪ Γū}. (4)

The convex set of admissible damage is

D1 = {α ∈ H1
D(Ω) : 0 ≤ α(x) ≤ 1 a.e. x ∈ Ω} (5)

and the convex set of admissible damage evolution rate (γ = α̇) is

D = {γ ∈ H1
D(Ω) : γ(x) ≥ 0 a.e. x ∈ Ω}, (6)

To simplify notations, we de�ne the product space

Z = V ×H1
D(Ω).

The initial condition of the model is

(u(0), α(0)) = (0, α0) ∈ V ×D1. (7)

Remark 1. Typically, the set D1 of admissible damage variable and the set D of admissible damage
evolution rate are de�ned for functions in H1(Ω). In (5) and (6) we rather choose H1

D(Ω) because
we wish to forbid crack formation on ΓD and Γū. Without this, the creation of cracks on these
boundaries would require only half the energy needed for cracks occurring inside the structure Ω and
thus would be arti�cial.

Following [5, 48] we introduce the elastic energy and the damage energy respectively as

E(u, α) =
1

2

∫
Ω

C(α)ε(u) : ε(u) dx, (8)

H (α) =
Gc
4cw

(∫
Ω

`|∇α|2dx+

∫
Ω

w(α)

`
dx

)
, where cw =

∫ 1

0

√
w(ξ)dξ, (9)
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where Gc is the fracture toughness of the material, ` > 0 is the characteristic length, measuring the
thickness of the damaged zone around the fracture, and w(α) is the fracture energy density [24],
assumed to satisfy

w(0) = 0, w(1) = 1, and w′(α) ≥ 0 for 0 ≤ α ≤ 1.

The sum of the integrands in the above two energies de�nes the energy density W`

W`(u, α) =
1

2
C(α)ε(u) : ε(u) +

Gc
4cw

(
`|∇α|2+

w(α)

`

)
. (10)

The total energy of the structure is then given by

P(u, α) =

∫
Ω

W`(u, α) dx. (11)

The Francfort-Marigo regularized fracture model amounts to minimize the total energy P(u, α)
among all �elds (u(t), α(t)) ∈ V × D1, for t ∈ (0, T ], such that (u̇(t), α̇(t)) ∈ Cv × D and with the
initial condition (7). In particular, the de�nition of the space D contains the irreversibility condition
α̇ ≥ 0 and that of the space Cv implies that the boundary condition u(t) = ū(t) on Γū is satis�ed
at all times.

No body or surface forces are applied. Indeed, it is well-known [32] that, in the case of complete
damage (C(1) = 0), applying a force leads to the breakdown of the structure, which is not physical.

The solution (u(t), α(t)) satis�es the energy balance∫
Ω

Ẇ`(u, α,∇α) dx =

∫
Γū

(C(α)ε(u) · n) · ˙̄u ds, (12)

where overdot represents derivative with respect to time. The optimality conditions for the mini-
mization of (11), written in a compact form, are [42, 46]: for all t ∈ (0, T ], �nd (u(t), α(t)) ∈ V ×D1,
satisfying the initial condition (7), such that (u̇(t), α̇(t)) ∈ Cv ×D, u(t) = ū(t) on Γū and

dP(u, α)(v − u̇, β − α̇) ≥ 0 ∀(v, β) ∈ Cv ×D. (13)

From (13), one can derive the strong form of the quasi-static damage model: �nd (u(t), α(t)),
satisfying the initial condition (7), such that

α̇ ≥ 0 in Ω× (0, T ], (14a)

1

2
C′(α)ε(u): ε(u)− Gc

2cw
`∆α+

Gc
4cw

w′(α)

`
≥ 0 in Ω× (0, T ], (14b)

α̇

(
1

2
C′(α)ε(u): ε(u)− Gc

2cw
`∆α+

Gc
4cw

w′(α)

`

)
= 0 in Ω× (0, T ], (14c)

∇α · n ≥ 0, α̇∇α · n = 0 on ∂Ω× (0, T ], (14d)

α = 0 on (ΓD ∪ Γū)× (0, T ], (14e)

div(C(α)ε(u)) = 0 in Ω× (0, T ], (14f)

u = ū on Γū × (0, T ], (14g)

u = 0 on ΓD × (0, T ]. (14h)

Inequality (14b) is known as the damage criterion. Equation (14c) is the complementary relation
which essentially states that the damage criterion is an equality only if the damage evolution rate is
positive. The variational formulation (or weak form) of the system of equations (14) reads: for all
t ∈ (0, T ] �nd (u(t), α(t)) ∈ V ×D1 such that u(t) = ū(t) on Γū, α̇ ∈ D∫

Ω

C(α)ε(u): ε(v) dx = 0 ∀v ∈ V, (15a)∫
Ω

1

2
C′(α)βε(u): ε(u) dx+

∫
Ω

Gc
2cw

`∇α · ∇β dx+

∫
Ω

Gc
4cw

w′(α)

`
β dx ≥ 0 ∀β ∈ D. (15b)

When the characteristic length ` is small enough, and since C(1) = 0, the above gradient damage
model (15) is known to approximate brittle fracture. In Fig.1, Γα represents a crack which is a priori
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unknown. The model (15) is able to capture a crack Γα which is typically a line in 2D and a surface
in 3D, where α takes a unit value, which is surrounded by a band of thickness 2` where α is strictly
positive. Thus, the length ` characterizes the thickness of the region that shall undergo damage.

Two choices of dissipation function w(α) are usually considered and the second one is chosen for
the numerical test cases in this article:

• DQ model (proposed in a di�erent context by Ambrosio and Tortorelli [7])

w(α) = α2, cw =
1

2
. (16)

In this case, the damage onsets as soon as the external loading increments from zero.

• DL model (proposed in [48])

w(α) = α, cw =
2

3
. (17)

In this case, the damage onsets only when a critical elastic energy density is exceeded.

The two choices of w(α), (17) and (16), make w(α) convex. Therefore, the functional α 7→ W`(u, α)
is convex. Similarly, for a �xed α, u 7→ W`(u, α) is convex. This implies that �xing one variable
at a time, one can alternately solve the minimization problem (15) [15]. However, W`(u, α) is not
convex with respect to the two variables (u, α) together.

Remark 2. The existence of at least one minimizer of (11) or, equivalently, of a solution to (15)
in some weak sense was obtained in [34] for the so-called antiplanar shear case. Using Gamma-
convergence, it can be proved that, as the length ` tends to zero, the global minimizers of (11) tend
to a global minimizer of the original Francfort-Marigo energy (with a free discontinuity modeling
fracture) [20, 34].

2.2 Penalization

The damage criterion (15b) is a variational inequality and is not shape-di�erentiable in the classical
sense. For a class of inequalities, called of the �rst kind and of the second kind, one can determine
the so-called conical derivative [44, 49]. Well-known examples of inequality of the �rst kind include
the obstacle-problem and the frictionless contact mechanics problem. The damage inequality (15b)
without the irreversibility constraint (only the box constraint α ∈ [0, 1]) and for a convex C(α)
classi�es as an inequality of the second kind, hence easy to analyze. But with the irreversibility
constraint, inequality (15b) classi�es neither as the �rst kind nor as the second kind. The analytical
treatment of (15b) is thus complex and out of the scope of this article. Instead, we prefer to convert
the inequality (15b) into an equation, using penalization. Let ε be a penalization factor such that
0 < ε� 1 and letM be the max function, de�ned as

M(β) = max(β, 0).

From now on, we replace the original model (15) by the following penalized problem: for all t ∈ (0, T ],
�nd (uε(t), αε(t)) ∈ Z such that αε(0) = α0, uε(t) = ū(t) on Γū, and∫

Ω

Gc
2cw

(
`∇αε · ∇β +

w′(αε)β
2`

)
dx+

∫
Ω

1

2
C′(αε)βε(uε): ε(uε) dx

+

∫
Ω

Gc
ε

(M(αε − 1)−M(−α̇ε))β dx = 0 ∀β ∈ H1
D(Ω), (18a)

∫
Ω

C(αε)ε(uε): ε(v) dx = 0 ∀v ∈ V. (18b)

We call (18), the state problem, and the solution to it (uε, αε), the state solution. Note that we
implicitly assume in writing (18a) that αε admits a time derivative. In the sequel it is assumed
that there exists a unique state solution. As is clear in (18a), only the bound constraints α̇ε ≥ 0
and αε ≤ 1 are penalized. The constraint αε ≥ 0 is not penalized explicitly, rather implicitly by
penalizing α̇ε ≥ 0 and de�ning an initial condition α0 ≥ 0. A similar penalization approach was

6



studied numerically [43], where authors penalize only the irreversibility criterion. Our work defers
as we penalize the upper bound αε ≤ 1 as well.

In the sequel, to simplify notations, we shall drop all ε indices and simply denote by (u, α) the
solution (uε, αε) of problem (18).

Remark 3. The conversion of (15) to (18) has been made using the max function, but one can also
consider a regularized form of the max function. This conversion not only simpli�es the computation
of the shape-derivative, but also helps in the numerical resolution using alternate minimizations
(precisely, step 2 of the algorithm 1 using a Newton scheme). Without penalization, the damage
model (15) can be solved with a sequential quadratic programming solver, capable of taking simple
bound constraints into account [15].

3 Optimization problem

3.1 Setting of the problem

We minimize an objective functional J(Ω) given by

J(Ω) =

∫ T

0

∫
Ω

m(u(Ω), α(Ω)) dx dt, (19)

where (u(Ω), α(Ω)) is the solution of (18) and the function m(·, ·) is assumed to be C1 smooth with
quadratic growth and linear growth for its derivative, so as to ensure that the objective function
(19) is well-de�ned and the adjoint equation is well-posed. This objective functional represents a
mechanical property such as total power, total elastic energy, or total fracture energy. In Section 5,
we shall maximize the total elastic energy and thus choose

m(u, α) = −C(α)ε(u) : ε(u).

The justi�cation for the above choice shall be given at the beginning of Section 5.
In practice, the shape Ω must be found inside a pre-�xed design space D ⊂ Rd. Figure 2 shows

ΓD

Γū
ū

Figure 2: Design domain D and shape Ω

the shape Ω (in gold) and the design space D (in gold and grey). The crack Γα is an unknown of the
problem (18) that shall be determined for every shape Ω. This crack Γα might appear anywhere in
the shape Ω and there is no postulated initial crack. The space of admissible shapes Uad is de�ned
as

Uad =

{
Ω ⊂ D :

∫
Ω

dx = Vf

}
,

where Ω is an open set and Vf is the target volume. The minimization problem then reads

min
Ω∈Uad

J(Ω). (20)

As is well known, very often there exists an optimal shape only if additional uniform smoothness
conditions are imposed to the admissible shapes, that we shall not consider in the sequel. The study
of existence of optimal shapes is outside the scope of this article (see [37] for more details) and we
content ourselves with computing numerical minimizers, using a gradient-descent method.
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3.2 Hadamard method

In the context of shape optimization, the derivative needed for a gradient descent method is based
on the notion of Hadamard shape derivative [37, 49]. Given a smooth set Ω, its perturbation is
expressed as

Ωθ = (Id + θ)(Ω),

where θ ∈ W 1,∞(Rd,Rd) and Id is the identity map. It is well-known that when the norm of θ is
su�ciently small, the map Id + θ is a di�eomorphism in Rd. Using this small perturbation one can
de�ne the Fréchet derivative for a function J(Ω).

De�nition 1. The shape derivative of J(Ω) at Ω is de�ned as the Fréchet derivative inW 1,∞(Rd,Rd)
evaluated at 0 for the mapping θ 7→ J((Id + θ)Ω) i.e.,

J((Id + θ)Ω) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

o(θ)

‖θ‖ = 0,

where J ′(Ω)(·) is a continuous linear form on W 1,∞(Rd,Rd).

Given a shape Ω, one can then determine the above gradient J ′(Ω), and move the shape along
the gradient in an iterative manner, attempting to minimize the objective functional (19).

In a structural design process, typically, the clamped and the forced boundaries are assumed to
be non-optimizable. Hence in our optimization, we allow only the free boundary Γ to move along θ
as shown in Fig.2. Furthermore, for simplicity it is assumed that ΓD ∪ Γū ⊂ ∂D. This constraint is
incorporated by introducing the space of admissible perturbations

W 1,∞
0 (D,Rd) = {θ ∈W 1,∞(D,Rd) : θ · n = 0 on ΓD ∪ Γū}.

Using this space, we state a lemma, useful to prove Theorem 1.

Lemma 1. Let Ω be a smooth bounded open set and ϕ ∈W 1,1(Rd,R). De�ne the function J(Ω) by

J(Ω) =

∫
Ω

ϕ(x) dx.

Then J(Ω) is shape-di�erentiable at Ω and its derivative is

J ′(Ω)(θ) =

∫
Γ

θ · n ϕ(x) ds ∀θ ∈W 1,∞
0 (D,Rd).

3.3 Shape derivative computation

To de�ne the adjoint problem for the shape derivative, we introduce the subspace V0 of V

V0 = {u ∈ H1(Ω)d : u = 0 on ΓD ∪ Γū}. (21)

The adjoint variational formulation is de�ned as: �nd (v, β) ∈ H1([0, T ], Z), satisfying the �nal
condition β(T ) = 0, such that, for all t ∈ [0, T ),∫

Ω

(∂um(u, α)ψ + C(α)ε(v) : ε(ψ) + C′(α)βε(u) : ε(ψ)) dx = 0 ∀ψ ∈ V0, (22a)

∫
Ω

(
∂αm(u, α)ϕ+ C′(α)ϕ ε(u) : ε(v) +

Gc`

2cw
∇β · ∇ϕ

+

(
1

2
C′′(α)ε(u) : ε(u) +

Gc
4cw

w′′(α)

`
+
Gc
ε
M′(α− 1)

)
βϕ

)
dx

−
∫

Ω

Gc
ε

(
d

dt
(M′(−α̇)β)

)
ϕ dx = 0 ∀ϕ ∈ H1

D(Ω). (22b)

In the sequel, we assume that there exists a unique solution of the adjoint equation. Note that (22b)
features the time derivative of the derivative M′ of the maximum function M(β) = max(β, 0).
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Since M′ is the Heaviside function, its time derivative is a Dirac mass and the precise meaning
of the last integral in (22b) is unclear. However, if M(β) was a regularization of max(β, 0), then
everything makes sense, including the following proposition. In other words, our computation of
the shape derivative below is �ne for a smooth functionM(β) and merely formal for the maximum
function. Further time discretization will make clear in which sense the time derivative of the
Heaviside function is computed (see Subsection 3.4).

Proposition 1. Let Ω be a smooth bounded open set. Assume that there exists a unique solu-
tion (u, α) to (18), which belongs to H1([0, T ], Z), and that there exists a unique solution (v, β) ∈
H1([0, T ], Z) of the adjoint equation (22). If the state solution (u, α) ≡ (u(Ω), α(Ω)) is shape-
di�erentiable, then the objective function (19) admits a shape derivative, given, for any θ ∈W 1,∞

0 (D,Rd),
by

(23 )
J ′(Ω)(θ) =

∫ T

0

∫
Γ

θ · n
(
m(u, α) + C(α)ε(u) : ε(v) +

1

2
C′(α)βε(u) : ε(u)

+
Gc
2cw

(
`∇α · ∇β +

w′(α)β

2`

)
+
Gc
ε

(
M(α− 1)−M(−α̇)

)
β

)
ds dt.

Remark 4. The uniqueness of the solution of the damage model (18) is far from being obvious since
this model is the optimality condition for the minimization of a non-convex energy, which thus may
have multiple minima. For the same reason, the existence of a solution for the adjoint equation (22)
is not obvious either because the corresponding operator is not coercive (nevertheless, see Subsection
3.4 for a positive result in this direction). Note that we also assume that the solutions are smooth
with respect to time since they belong to H1([0, T ], Z) and, in particular, are continuous with respect
to time. We use this assumption in the variational formulations (18a) and (22b), which involve
the time derivative of the damage variable α. Unfortunately, as discussed further in Remark 10, it
is likely that, in some cases, the solution (u(Ω), α(Ω)) is discontinuous in time and thus the shape
derivative (23) is not rigorously justi�ed.

Proof. The idea of the proof is well-known, based on Céa's method [25]. Introduce a few spaces on
the full space Rd and thus independent of Ω:

Ṽ = {v ∈ H1(Rd)d : v = 0 on ΓD}, C̃t = {v ∈ Ṽ : v = ū(t) on Γū},
H̃1
D(Rd) = {β ∈ H1(Rd) : β = 0 on ΓD ∪ Γū}, Z̃t = C̃t × H̃1

D(Rd),

Ṽ0 = {v ∈ Ṽ : v = 0 on Γū}, Z̃0 = Ṽ0 × H̃1
D(Rd).

For independent variables ũ(t), ṽ(t), α̃(t), β̃(t) and λ̃, belonging to the spaces

• (ũ, α̃) ∈ H1([0, T ], Z̃t),

• (ṽ, β̃) ∈ H1([0, T ], Z̃0) (the Lagrange multiplier for the state equation (18)),

• λ̃ ∈ L2(Rd) (the Lagrange multiplier for the initial condition α̃(0) = α0),

de�ne a Lagrangian as

L(ũ, ṽ, α̃, β̃, λ̃,Ω) =

∫ T

0

∫
Ω

m(ũ, α̃)dxdt+

∫ T

0

(∫
Ω

C(α̃)ε(ũ) : ε(ṽ) dx

)
dt

+

∫ T

0

∫
Ω

(
1

2
C′(α̃)β̃ε(ũ) : ε(ũ) +

Gc
2cw

(
`∇α̃ · ∇β̃ +

w′(α̃)β̃

2`

)
+
Gc
ε

(
M(α̃− 1)

−M(− ˙̃α)

)
β̃

)
dx dt+

∫
Ω

λ̃(α̃(0)− α0) dx.

(24)

Since the boundaries ΓD ∪ Γū are non-optimizable, the variables ũ(t), ṽ(t), α̃(t), β̃(t), and λ̃ are
independent of Ω. When the optimality condition are applied to the Lagrangian (24) (that is, its
partial derivatives with respect to its independent variables are set to zero), we obtain the state
equation (18), the adjoint equation (22) and the shape derivative (23).
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At �rst, di�erentiating the Lagrangian (24) with respect to the adjoint variable (ṽ, β̃) in the
direction (ψ, ϕ) ∈ H1([0, T ], Z̃0) and equating it to zero at (ũ, α̃) = (u, α), we obtain

∂L
∂β̃

(ϕ) =

∫ T

0

(∫
Ω

Gc
2cw

(
`∇α · ∇ϕ+

w′(α)ϕ

2`

)
dx+

∫
Ω

1

2
C′(α)ϕε(u): ε(u) dx

+

∫
Ω

Gc
ε

(M(α− 1)−M(−α̇))ϕdx

)
dt = 0 ∀ϕ ∈ H1([0, T ], H̃1

D(Rd))) ,

∂L
∂ṽ

(ψ) =

∫ T

0

(∫
Ω

C(α)ε(u): ε(v) dx

)
dt = 0 ∀ψ ∈ H1([0, T ], Ṽ0).

To obtain the initial condition α(0) = α0, it su�ces to di�erentiate (24) with respect to λ̃ at α̃ = α.
We thus recover the state equation (18).

Second, we di�erentiate the Lagrangian (24) with respect to (ũ, α̃) to recover the adjoint equation.
By de�nition, ũ ∈ C̃t, which is an a�ne space. The admissible perturbations ψ with respect to ũ,
must be such that ũ+ψ ∈ C̃t, hence ψ ∈ Ṽ0. Equating to zero the partial derivative in the direction
(ψ, ϕ) ∈ H1([0, T ], Z̃0), and denoting by (v, β) its solution for (ũ, α̃) = (u, α) and λ̃ = λ, we arrive
at

(26a)

∂L
∂u

(ψ) =

∫ T

0

(∫
Ω

(∂um(u, α)ψ + C(α)ε(v) : ε(ψ)

+ C′(α)βε(v) : ε(ψ)) dx

)
dt = 0 ∀ψ ∈ H1([0, T ], Ṽ0),

∂L
∂α

(ϕ) =

∫ T

0

(∫
Ω

(
∂αm(u, α)ϕ+ C′(α)ϕε(u) : ε(v) +

Gc`

2cw
∇β · ∇ϕ

+

(
1

2
C′′(α)ε(u) : ε(u) +

Gc
4cw

w′′(α)

`
+
Gc
ε
M′(α− 1)

)
βϕ+

Gc
ε
M′(−α̇)ϕ̇β

)
dx

)
dt

+

∫
Ω

λϕ(0)dx = 0 ∀ϕ ∈ H1([0, T ], H̃1
D(Rd)).

(26b)

Varying the test function ψ in (26a), we get the boundary condition v(t) = 0 on Γū and for all
t ∈ [0, T ) ∫

Ω

(∂um(u, α)ψ + C(α)ε(v) : ε(ψ) + C′(α)βε(v) : ε(ψ)) dx = 0 ∀ψ ∈ V0,

where we used de�nition (21) of V0. We have thus derived the adjoint equation (22a). Now, to
get rid of the time derivative ϕ̇ in equation (26b), we integrate the termM′(−α̇)ϕ̇β by parts with
respect to t and obtain

(27)

∫ T

0

(∫
Ω

(
∂αm(u, α)ϕ+ C′(α)ϕε(u) : ε(v) +

Gc`

2cw
∇β · ∇ϕ

+

(
1

2
C′′(α)ε(u) : ε(u) +

Gc
4cw

w′′(α)

`
+
Gc
ε
M′(α− 1)

)
βϕ

)
dx

−
∫

Ω

Gc
ε

(
d

dt
(M′(−α̇)β)

)
ϕ dx

)
dt+

∫
Ω

λ ϕ|t=0 dx

+

∫
Ω

Gc
ε

(M′(−α̇)βϕ|t=T − M′(−α̇)βϕ|t=0) dx = 0 ∀ϕ ∈ H1([0, T ], H̃1
D(Rd)).

This integration by part is legitimate if M is a smooth function but is purely formal if M is the
maximum function since in such a caseM′ is a Heaviside function and its time derivative involves
a Dirac function. Varying ϕ in (27), we �nd that the Lagrange multiplier λ is given by

λ =
Gc
ε
M′(−α̇)β|t=0 ,
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and that the adjoint problem (22b) for β holds true. Finally, since J(Ω) = L(u, α, ṽ, β̃, λ̃, µ̃,Ω), the
shape derivative J ′(Ω)(θ) satis�es, for any θ ∈W 1,∞

0 (D,Rd),

J ′(Ω)(θ) =
∂L
∂Ω

(θ) +
∂L
∂u

(
∂u

∂Ω
(θ)

)
+
∂L
∂α

(
∂α

∂Ω
(θ)

)
as the variables ṽ, β̃, λ̃ and µ̃ are independent of Ω. Substituting these variables by the optimal
ones v, β, λ, µ and using the adjoint equation (22), the two last terms in the above formula vanish,
resulting in

J ′(Ω)(θ) =
∂L
∂Ω

(θ).

Consequently, formula (23) is deduced by a straightforward application of Lemma 1.

3.4 Time-discretized state and adjoint equations

The adjoint equation (22) is a linear backward parabolic equation with a �nal condition at t = T .
This equation was assumed to be well-posed in the statement of Theorem 1. There are two di�culties
in proving that (22) admits a unique solution. First, the bilinear form, involved in (22), is the Hessian
of the non-convex energy functional (10) and thus is not coercive. Second, if M is the maximum
function, then (22) features a time derivative which is a Dirac function (the precise meaning of
which is unclear). This second issue can be settled upon time discretization, as can be expected.
It turns out that, upon a technical assumption (see (34) in Theorem 1), the �rst issue can also be
circumvented by a trick similar to what is used for solving Helmholtz equation (this equation is not
coercive but its kernel is at most �nite dimensional and often reduced to zero).

To construct a time-discretized version of the adjoint problem (22), we �rst time-discretize the
state equation (18) along with the objective function (19). The time interval [0, T ] is split in N
sub-intervals of length δt = T/N . Let (un, αn) and (vn, βn) denote the discrete state and adjoint
solutions, respectively, at the end of every n-th time interval. The discrete state is determined using
an implicit scheme: initialize (u0, α0) = (0, α0) and, for 0 < n ≤ N , �nd (un, αn) ∈ Z such that
un = ū(tn) on Γū and ∫

Ω

C(αn)ε(un): ε(v) dx = 0 ds ∀v ∈ V, (28a)

∫
Ω

Gc
2cw

(
`∇αn · ∇β +

w′(αn)

2`

)
dx+

∫
Ω

1

2
C′(αn)ε(un): ε(un) dx

+

∫
Ω

Gc
ε

(
M(αn − 1)β dx−

∫
Ω

M
(
αn−1 − αn

δt

)
β

)
dx = 0 ∀β ∈ H1

D(Ω). (28b)

The above problem can be shown to admit at least one solution [29], while uniqueness of the solution
is not guaranteed (like its continuous counterpart (18)). Nevertheless, we assume that the solution
(un, αn) ∈ Z is unique. The discretization of the objective function (19) reads:

JN (Ω) =

N∑
n=0

δt

∫
Ω

m(un, αn) dx. (29)

Introducing a Lagrangian, as in the proof of Proposition 1, adapted to the above discretization, we
obtain the following discrete adjoint problem: initialize (vN , βN ) = (0, 0) and, for N − 1 ≥ n ≥ 0,
�nd (vn, βn) ∈ Z such that∫

Ω

(∂un
m(un, αn)ψ + C(αn)ε(vn) : ε(ψ) + C′(αn)βnε(un) : ε(ψ)) dx = 0 ∀ψ ∈ V0, (30a)

∫
Ω

Gc`

2cw
∇ϕ · ∇βn dx+

∫
Ω

(
C′(αn)ϕε(un) : ε(vn) +

1

2
C′′(αn)ε(un) : ε(un) +

Gc
4cw

w′′(αn)

`

)
ϕβn dx

+

∫
Ω

Gc
ε

(
M′(αn − 1) +

1

δt
M′(αn−1 − αn)

)
ϕβn dx

+

∫
Ω

∂αnm(un, αn)ϕdx =
Gc
εδt

∫
Ω

M′(αn − αn+1)βn+1ϕ dx ∀ϕ ∈ H1
D(Ω).

(30b)
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Remark 5. When M is the maximum function, its derivative is the Heaviside function, M′ =
H. The value H(0) is not precisely de�ned since the Heaviside function is discontinuous at zero.
Numerically, we tested the adjoint equation (31) (along with the corresponding shape derivative) for
values H(0) = 0 and H(0) = 1, and both choices yield the same optimized shape (at least, for the 2D
cantilever in Section 5).

Since the variational formulation (30) is linear, it can be written in a compact form: (vN , βN ) =
(0, 0) and, for N − 1 ≥ n ≥ 0, �nd (vn, βn) ∈ Z such that

an(vn, βn,ψ, ϕ) = fn(ψ, ϕ) ∀(ψ, ϕ) ∈ Z, (31)

where the symmetric bilinear form an : Z × Z 7→ R is de�ned as

an(v, β,ψ, ϕ) =

∫
Ω

C(αn)ε(ψ) : ε(v) dx+

∫
Ω

C′(αn)βε(ψ) : ε(un) dx+

∫
Ω

Gc`

2cw
∇ϕ · ∇β dx

+

∫
Ω

C′(αn)ϕε(v) : ε(un) dx+

∫
Ω

(
1

2
C′′(αn)ε(un) : ε(un) +

Gc
4cw

w′′(αn)

`

)
ϕβ dx

+
Gc
ε

∫
Ω

(
M′(αn − 1) +

1

δt
M′(αn−1 − αn)

)
ϕβ dx,

(32)

and the linear form fn : Z 7→ R is

(33)fn(ψ, ϕ) = −
∫

Ω

∂um(un, αn)ψ dx−
∫

Ω

∂αm(un, αn)ϕdx+
Gc
εδt

∫
Ω

M′(αn − αn+1)βn+1ϕdx.

To the bilinear form an is associated an operator An : Z 7→ Z, de�ned by

an(v, β,ψ, ϕ) = 〈An(v, β), (ψ, ϕ)〉. (34)

To prove the existence of a solution to the time-discretized adjoint equation (31), we have to change
the assumption (1) on C(α), which cannot be anymore degenerate when damage is complete.

Lemma 2. Assume C(α) is convex, decreasing, C(0) = C0 and there exists κ > 0 (a residual
sti�ness) such that

C(α)ξ: ξ ≥ κ|ξ|2 ∀ξ ∈M d
s , 0 ≤ α ≤ 1. (35)

Assume that un ∈W 1,∞(Ω)d. There exists a real number c > 0 such that (An+cI) is invertible from
Z to Z (where I is the identity operator) and its inverse is a compact linear continuous operator.

Proof. It is enough to check the coercivity of the bilinear form

an(v, β,ψ, ϕ) + c〈(v, β), (ψ, ϕ)〉,

for some constant c, large enough. Since C(α) is assumed to be convex and, by its de�nition (17) or
(16), w(α) is convex too, we have

C′′(α) ≥ 0, w′′(α) ≥ 0. (36)
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Compute

an(ψ, ϕ,ψ, ϕ) =

∫
Ω

C(αn)ε(ψ) : ε(ψ) dx+

∫
Ω

2C′(αn)ϕε(ψ) : ε(un) dx

+

∫
Ω

Gc`

2cw
∇ϕ · ∇ϕ dx+

∫
Ω

(
1

2
C′′(αn)ε(un) : ε(un) +

Gc
4cw

w′′(αn)

`

)
ϕ2dx

+
Gc
ε

∫
Ω

(
M′(αn − 1) +

1

δt
M′(αn−1 − αn)

)
ϕ2 dx

≥ κ
∫

Ω

|ε(ψ)|2dx+

∫
Ω

2C′(αn)ϕε(ψ) : ε(un) dx

+

∫
Ω

Gc`

2cw
|∇ϕ|2dx+

∫
Ω

(
1

2
C′′(αn)ε(un) : ε(un) +

Gc
4cw

w′′(αn)

`

)
ϕ2dx (sinceM′ = H ≥ 0 )

≥ κ
∫

Ω

|ε(ψ)|2dx+

∫
Ω

2C′(αn)ϕε(ψ) : ε(un) dx+

∫
Ω

Gc`

2cw
|∇ϕ|2dx (using (36) )

≥ κ
∫

Ω

|ε(ψ)|2 dx− 2 ‖C′(αn)‖L∞(Ω)

∫
Ω

|ε(ψ)| |ϕε(un)|dx+

∫
Ω

Gc`

2cw
|∇ϕ|2dx

≥ κ ‖ε(ψ)‖2L2(Ω) − ‖C′(αn)‖L∞(Ω)

(
s ‖ϕ|ε(un)|‖2L2(Ω) +

1

s
‖ε(ψ)‖2L2(Ω)

)
+
Gc`

2cw
‖∇ϕ‖2L2(Ω)

(using Young's inequality with s > 0)

≥ κ ‖ε(ψ)‖2L2(Ω) − ‖C′(αn)‖L∞(Ω)

(
s ‖ε(un)‖L∞(Ω) ‖ϕ‖

2
L2(Ω) +

1

s
‖ε(ψ)‖2L2(Ω)

)
+
Gc`

2cw
‖∇ϕ‖2L2(Ω)

(because of our assumption un ∈W 1,∞(Ω)d )

=

(
κ− 1

s
‖C′(αn)‖L∞(Ω)

)
‖ε(ψ)‖2L2(Ω) +

Gc`

2cw
‖∇ϕ‖2L2(Ω)−s ‖C′(αn)‖L∞(Ω) ‖ε(un)‖L∞(Ω) ‖ϕ‖

2
L2(Ω) .

We choose s = 2 ‖C′(αn)‖L∞(Ω) /κ resulting in the bound

an(ψ, ϕ,ψ, ϕ) ≥ κ

2
‖ε(ψ)‖2L2(Ω) +

Gc`

2cw
‖∇ϕ‖2L2(Ω) −

2

κ
‖C′(αn)‖2L∞(Ω) ‖ε(un)‖L∞(Ω) ‖ϕ‖

2
L2(Ω)

≥ C1

(
‖ε(ψ)‖2L2(Ω) + ‖∇ϕ‖2L2(Ω)

)
− C2 ‖ϕ‖2L2(Ω)

≥ C1

(
‖ε(ψ)‖2L2(Ω) + ‖∇ϕ‖2L2(Ω)

)
− C2

(
‖ψ‖2L2(Ω)d + ‖ϕ‖2L2(Ω)

)
,

where C1 = min
(
κ
2 ,

Gc`
2cw

)
and C2 = 2

κ ‖C′(αn)‖2L∞(Ω) ‖ε(un)‖L∞(Ω). Therefore, choosing c > C2

yields the result.

Lemma 2 implies that the operator An has a discrete countably in�nite spectrum, like any elliptic
operator, although it is not coercive (like the Helmholtz equation). It allows us to state a result
about the well-posedness of the time-discretized adjoint equation (31).

Theorem 1. Under the hypotheses of Lemma 2 and assuming that 0 does not belong to the spectrum
of An, the time-discretized adjoint equation (31) admits a unique solution (vn, βn) ∈ Z, N − 1 ≥
n ≥ 1.

Remark 6. In Theorem 1, we made a strong assumption that zero is not in the spectrum of An
or equivalently that the kernel of An is reduced to zero. Since the spectrum of An is discrete, it
is unlikely that it generically contains the value zero. Even if zero is an eigenvalue of An, we can
always perturb the coe�cients in An (un and αn) in such a way that the spectrum is perturbed so
that zero is not anymore an eigenvalue.

Proof. The linear form (33) is clearly continuous on Z. Therefore, solving the variational formulation
(31) amounts to solve the linear equation in Z, An(v, β) = fn. By virtue of Lemma 2, An admits a
family of eigenvectors, which form a Hilbert basis of Z. By the spectral decomposition of An this
equation has a unique solution if 0 does not belong to the spectrum of An.
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4 Numerical Implementation

In this section, we expound the numerical aspects of the resolution of the state equation (18) and
adjoint equation (22) and the proposed shape optimization algorithm. For all the numerical test
cases presented in Section 5, the material is chosen to be concrete having the following properties
[12]: Young modulus E = 29GPa, Poisson ratio ν = 0.3, ultimate tensile strength σM = 4.5MPa
and fracture toughness Gc = 70MPa. For the damage model, the characteristic length ` is calculated
using the formula [50]

` =
3GcE

8σ2
M

. (37)

The domain Ω is discretized by a simplicial unstructured mesh Ωh. The mesh is produced by the
MMG software [27] which features two important input parameters: the minimal and maximal mesh
size, denoted by hmin and hmax, respectively. The mesh Ωh is assumed to be uniform in the sense
that hmax and hmin are of the same order of magnitude. Following the numerical experiments in
[43], for all our numerical test cases the mesh is chosen such that

2hmin < `. (38)

Although this choice was proposed in [43] for quadrilateral mesh elements, we follow it for our
simplicial meshes. Nevertheless, we have to make one exception with the rule (38) in the test case
of Subsection 5.8 (a realistic column of height 4m) where we just enforce hmin < ` in order to have
a not too �ne mesh which can be treated without resorting to high performance computing. The
penalization parameter is chosen to be small, ε = O(h2

max) (its precise value is given in the beginning
of Subsection 5.1).

Remark 7. Despite the fact that the damage model (18) is non-local, the crack initiation is mesh-
dependent. For instance, mesh-re�nement at corners of the shape Ω makes the crack initiation easier
at these corners. For this reason we rely on uniform meshes (hmax and hmin of the same order), so
that the crack initiation is unbiased.

The spaces V,Cv , H
1
D(Ω), Z, de�ned by (2), (3), (4) are discretized by piecewise a�ne contin-

uous (linear) �nite elements and their discrete counterparts are denoted by V h, Chv , H
1
D(Ωh), Zh,

respectively.
The time interval [0, T ] is discretized in N intervals of length δt = T/N . The time at the end of

the n-th time interval is denoted tn, n = 1, 2, · · · , N .

4.1 Solving the fracture model

We still denote by (un, αn) ∈ Zh the time-space discretized solution at time interval tn (we do not
write its dependence to h). The space discretized version of (28) is simply the same variational for-
mulation with the �nite dimensional spaces V h, H1

D(Ωh), Zh replacing their continuous counterparts
V,H1

D(Ω), Z. Following [16], the nonlinear variational formulation (28) is solved by a sequentially
alternate algorithm: �xing αn, solve (28a) for un ; �xing un, solve (28b) for αn. This algorithm ex-
ploits the fact that the total energy (11) is separately convex in u and α, but not with respect to the
couple (u, α), which may hinder the convergence of a standard Newton algorithm. This algorithm
of [16] is precisely recalled in Algorithm 1.

The tolerance tol in Algorithm 1 is chosen to be 10−6. The resolution for αn (step 2 in the algo-
rithm 1) using Newton algorithm is easy given that there are no constraints on αn, because of penal-
ization. Without penalization, one needs to apply a constrained Newton algorithm, the numerical im-
plementation of which is not straight-forward. Algorithm 1 builds a sequence (uin, α

i
n) −→ (un, αn)

as i −→∞. Typically, its convergence is very fast when αn is close to zero everywhere in Ωh.Whereas
the convergence is very slow when αn approaches unity and there is crack formation in Ωh.

Of course, the solution (un, αn) depends on the mesh size hmax and on the time step δt. Fur-
thermore, each solution at time tn depends on the whole time history before tn. In practice, the
solution depends on the initialization (u0

n, α
0
n) which is usually taken as the solution at the previous

time step (un−1, αn−1). Therefore, it is not clear that Algorithm 1 delivers an approximation of the
global minimizer of the total energy (11) [20]. Rather, we may end up in local minima. Following
again [16], we rather use the backtracking Algorithm 2 which escapes from local minima in practice.
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Algorithm 1 Numerical resolution of (28)

Initialization: (u0
n, α

0
n) = (0, 0) for n = 0 and (u0

n, α
0
n) = (u0

n−1, α
0
n−1) for n > 0.

For i = 0, 1, · · · , do

1. Substitute αn = αin in (28a), and solve it for un = ui+1
n

2. Substitute un = ui+1
n in (28b), and solve it for αn = αi+1

n using a Newton-Raphson or a �xed
point algorithm

3. If
∥∥αi+1

n − αin
∥∥
L2(Ωh)

< tol ‖1‖L2(Ωh) , then exit the loop,

else repeat

Algorithm 2 Numerical resolution of (28) with backtracking

Set n = 1 and (ũ, α̃) = (0, 0)
While n ≤ N (time steps), do

1. Solve (28) for (un, αn) using algorithm 1 using an initial guess (u0
n, α

0
n) = (ũ, α̃)

2. If ‖αn − α̃‖L∞(Ωh) > 0.5 and n > 1

then (ũ, α̃) = (un, αn), and set n = n− 1,

else (ũ, α̃) = (un, αn), and set n = n+ 1.

The idea of Algorithm 2 is that, if the solution found at time-step n using Algorithm 1 features a
strong increase of damage, the solution at the previous time step n − 1 is re-computed using the
solution at time step n as initial guess. In doing so, we expect to �nd a new solution (un−1, αn−1)
which is a better minimizer of the total energy (11).

4.2 Solving the adjoint problem

We still denote by (vn, βn) ∈ Zh the time-space discretized adjoint solution at time interval tn.
As for the state solution in the previous subsection, the space discretized version of (30) is simply
the same variational formulation with the �nite dimensional spaces V h, H1

D(Ωh), Zh replacing their
continuous counterparts V,H1

D(Ω), Z. As usual the adjoint problem is solved backward in time,
i.e., for decreasing indices n = N − 1, · · · , 1, 0. One ought to solve the state equation (28) (using
Algorithm 2) until the last time step, store the solutions (un, αn) for every time-step and retrieve
the solutions starting from the last time step. As explained in Section 3.4, the bilinear form in the
variational formulation (30) is not coercive. Hence, for numerical implementations, one ought to use
a direct solver or an iterative technique like GMRES, that is capable of resolving inde�nite matrices.

Remark 8. The numerical resolution of (30) using a direct solver or GMRES is slow. If the damage
variable is small ‖αn‖L∞(Ωh) � 1, the adjoint problem is close to a simple linear elasticity problem
and one can rather use an iterative solver meant for positive de�nite matrices, for instance CG, to
save computational e�ort.

Finally, the space-time discretized version of the shape derivative of (29) is

J ′N (Ωh)(θ) =

∫
Γ

θ ·n
N∑
n=0

δt

(
m(un, αn) + C′(αn)βnε(un) : ε(un) +

Gc`

2cw
∇αn · ∇βn +

Gc
4cw

w′(αn)

`
βn

+ C(αn)ε(un) : ε(vn) +
Gc
ε

(
M(αn − 1)−M

(
αn−1 − αn

δt

))
βn

)
ds.

(39)

4.3 Level-set method and remeshing

The level-set method was introduced by Osher and Sethian [47] and adapted to the shape opti-
mization framework [3, 51]. In this method, a shape Ω ⊂ D is represented by a level-set function
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φ : D 7→ R, which is de�ned as 
φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ Γ,
φ(x) > 0 if x ∈ D \ Ω.

where we recall that Γ is the movable part of the boundary ∂Ω. The crux of the method lies in
letting the shape deform along a velocity �eld θ : D 7→ Rd. The evolution of the shape is governed
by the transport equation

∂φ

∂t
+ θ · ∇φ = 0. (40)

Very often, the velocity �eld is oriented along the normal, namely θ = θn where n = ∇ϕ/|∇ϕ| and
the scalar function θ is the normal velocity. In such a case, (40) can be re-written as a Hamilton-
Jacobi equation

∂φ

∂t
+ θ|∇φ|= 0. (41)

In (41) the scalar normal velocity θ is chosen to be the shape derivative (39), or a proper extension-
regularization of it (see the next subsection and (47) for details).

In our numerical setting, we solve the linear transport equation (40) instead of (41) because we
use non-cartesian meshes and rely on the advect library [18] which solves (40) by the method of
characteristics, known to be unconditionally stable. The level-set function is a P1 function on a
simplicial mesh of the computational domain D. After every advection, the new shape is captured
using a body-�tted mesh obtained using the MMG software [27]. On this new mesh, the level-set
function (precisely, the signed distance function) is reconstructed using another open-source library
mshdist [28]. Remeshing based shape optimization, relying on MMG, has already been carried out for
several physical problems [1, 30, 31] and we refer to these papers for more details. The MMG software
requires two important input parameters: hmin, the lower bound on the smallest mesh size, and
hmax, the upper bound on the largest mesh size. Then, it builds a good quality mesh, satisfying
these constraints, as much as possible.

4.4 Regularization and extension of the shape derivative

The shape derivative (39) is de�ned only on the boundary Γ, while it is needed in the full computa-
tional domain D for solving the transport equation (40). Furthermore, both the derivative and the
shape may be not smooth enough, which may result in poor numerical e�ciency. Therefore, it is
convenient to regularize the shape derivative (39) [2, 19], still ensuring that it is a descent direction.
A classical possibility is to consider the H1(D) scalar product (instead of the L2(Γ) scalar product)
for identifying the gradient. In other words, introducing a mesh Dh of D and denoting by H1(Dh)
the linear �nite element subspace of H1(D), we seek a function dj(Ωh) ∈ H1(Dh) such that∫

D

(
4h2

min∇dj(Ωh) · ∇ϕ+ dj(Ωh)ϕ
)
dx =

∫
Γ

j′(Ωh)ϕdx ∀ϕ ∈ H1(Dh), (42)

where hmin is the �xed minimal mesh size and j′(Ωh) is the function de�ned by formula (39) with

J ′N (Ωh)(θ) =

∫
Γ

θ · n j′(Ωh) ds.

For the implementation details of the above, an interested reader can refer to [29].

4.5 Shape optimization algorithm

We consider the shape optimization problem (20) where the admissible shapes must satisfy a con-
straint on the target volume Vf . To do so, the following Lagrangian is introduced

L(u, α,v, β,Ωh, λ) = J(Ωh) +
λ

CV

(∫
Ωh

dx− Vf
)
, (43)

16



where λ is the Lagrange multiplier for the volume constraint and CV is a normalization constant.
Denoting by Ωh0 the initial shape, the constant CV is de�ned by

CV =

∣∣∣∣∣
∫

Ωh
0

dx− Vf
∣∣∣∣∣ . (44)

We apply a standard gradient-based Uzawa-type algorithm to the Lagrangian (43). Let N be the
maximal number of shape optimization iterations (typically N = 200 for most of the test cases in
the next section). The iteration number is denoted by i with 1 ≤ i ≤ N . At each iteration i, once
the shape derivative dj(Ωhi ) is evaluated by (42), a pseudo-time step (or descent step) τ is de�ned
by

τ =
hmin

2Ci
, (45)

where hmin is the minimal mesh size of the �rst iteration and Ci is a normalization constant, given
by

Ci =

∫
∂Ωh

i

|dj(Ωhi )| dx.

Updating the constant Ci at every iteration of the optimization process ensures a control of the
descent step τ . The multiplier λ is also updated at each iteration by

λi+1 = λi +
Ciτ

CV

(∫
Ωh

i

dx− Vf
)
, (46)

ensuring that the volume will converge (slowly) to the target volume. Then, for the descent step τ ,
the transport equation (40) is solved with a velocity θi, given by

θi =

(
dj(Ωhi ) +

λi+1

CV

)
n, (47)

where n = ∇φi is the normal to the level-set function associated to the shape Ωhi .
To improve the satisfaction of the volume constraint, we apply the following trick. As soon as the

volume is close to the volume target, namely |Vi+1 − Vf |≤ 10−1Vf , we apply a projection algorithm
to satisfy the target volume exactly. More precisely, the level-set φi+1 is iteratively updated by

φi+1 = φi+1 +
Vi+1 − Vf∫
∂Ωh

i+1
ds
, (48)

until |Vi+1−Vf |≤ 10−4Vf . The newly obtained shape Ωhi+1 is remeshed with MMG [27]. Eventually, the
objective function J(Ωhi+1) is evaluated but is not compared to the previous value J(Ωhi ). Summing
up this sub-section, we basically implement Algorithm 3.

Remark 9. If at iteration i the objective function does not decrease, compared to its value at the
previous iteration i−1, we do not step back to the previous iteration with a reduced descent or pseudo-
time step (in order to ensure a decrease in objective function). This is due to the non-smooth nature
of the damage problem (28), where the onset of fracture is very sensitive to the loading and the
geometry and yields large variations of the objective function. We shall explain this issue in greater
details in Remark 10 in Sub-section 5.2.

4.6 Parallel implementation

All our numerical experiments are performed with the open-source software FreeFEM 4.8 [36], in-
stalled on a workstation featuring a Intel(R) Xeon(R) Gold 6230 CPU and 40 processors. In the next
section we shall present a large scale topology optimization test case, consisting of approximately 1.3
million tetrahedra. It would be impossible to perform this test case on a single processor, because
its CPU time would be at least a few weeks. Indeed, 90% of the total computation time is spent on
the �rst three steps of Algorithm 3, namely on the �nite element analyses.
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Algorithm 3 Shape optimization for the damage model

Initialize with a shape Ωh0 and repeat over i = 1, · · · ,N

1. Solve for the state (u, α) in Ωhi marching in time from t1 until tN using Algorithm 2

2. Solve for the adjoint (v, β) in Ωhi backward in time from tN up to t1

3. Compute the shape derivative using (39) and regularize it with (42) to deduce dj(Ωhi )

4. Update the Lagrange multiplier λi+1 with (46)

5. Solve the transport equation (40) with the velocity given by (47) for the pseudo-time step τ
given by (45) to obtain the new level-set function φ̃i+1

6. Re-initialize φ̃i+1 to the signed distance function φi+1 (de�ning a new shape Ωhi+1)

7. Compute the volume Vi+1. If it is close to the volume target, apply the projection algorithm
(48) to satisfy exactly the volume constraint.

8. Remesh the box D using MMG [27] to obtain the body �tted mesh of the new shape Ωhi+1

Therefore, in order to minimize the total computation time, we must perform parallel compu-
tation for the �nite element analysis. Fortunately, FreeFEM comes with built-in OpenMPI and the
open-source package PETSc [10]. The resolution of the state equation (28) (using Algorithm 2), the
adjoint equation (30) and the regularization of the shape derivative (42) are performed using the
parallel-solver of PETSc. The mesh is partitioned in sub-domains using the open-source package
METIS [41]. The �nite element rigidity matrix is thus partitioned accordingly and the linear sys-
tems are solved in parallel with the GAMG (geometric algebraic multigrid) preconditioner. The state
equation and the regularization problem are solved by the conjugated gradient algorithm, while the
adjoint equation is solved by GMRES. For details of implementation we refer to the tutorial on the
parallel version of FreeFEM [39].

5 Results

We now present 2D and 3D shape optimization results for the damage model (18), which prove the
e�ectiveness of our algorithm to produce crack-free structures.

5.1 Setting and parameters

We choose to maximize rigidity, namely to minimize an objective function which is the total com-
pliance. As already explained in Subsection 2.1, no body or surface forces can be considered in the
Francfort-Marigo damage model and, rather, one has to impose given displacements to the struc-
ture. In such a case, there is a subtle de�nition of compliance, see e.g. [11], which takes into account
the reaction force on the surface where the displacement is imposed. Since the work done by this
reaction force is equal to the elastic energy, the total compliance is de�ned as

J(Ω) = −
∫ T

0

∫
Ω

C(α)ε(u): ε(u)dx dt. (49)

The objective function (49) is minimized in all test cases, except otherwise mentioned.
The �nal time is T = 1s and the time step is δt = 0.15s. The solution (u, α) is computed by

solving the penalized formulation (28) using Algorithm 2. The penalization parameter is chosen
equal to ε = 10−5.

An isotropic degradation function, with a small residual sti�ness Cres, is considered

C(α) = (1− α)2C0 + Cres. (50)

In practice the residual sti�ness is Cres = 10−6C0 but it could even be taken to be zero if the
�nite element solver is robust enough (which is the case with FreeFEM). For all test cases, only the
dissipation function (17) of the DL model is considered.
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Since we are in a quasi-static evolution framework, the rate of increment of the imposed displace-
ment has no e�ect on the solution (u, α) at the �nal time T = 1s. But the rate does have a strong
in�uence on the objective function (49) (since it contains a time-integral). In order to see a greater
in�uence of the damage variable α on the optimized shape, we consider an imposed displacement
ū(t) that grows from zero to a certain value and then remains constant for some period.

0.5m

1m

ΓD
Γū

0.1m ū

Figure 3: 2D Cantilever boundary conditions

5.2 2D Cantilever

We study a 2D cantilever beam represented by a rectangle of dimensions 1m×0.5m as shown in Fig.
3. The cantilever beam is clamped all along its leftmost edge and subjected to an applied vertical
displacement,

ū(t) = (0, 4 min(1.2t, 1))× 10−4m, t ∈ [0, 1], (51)

on a centered part of its rightmost edge Γū of length 0.1m. The above displacement (51) is chosen in
such a way that the initial shape of Fig. 4a su�ers from a crack as seen in Fig. 6a. A target volume
Vf = 0.25m2 is imposed for all the test cases in this subsection. The parameters of the remeshing
tool MMG are: hmin = 0.0064m,hmax = 0.0128m.

The initial shape is displayed in Fig. 4a. The shape obtained by minimizing (49) for linear
elasticity (without any damage) is plotted in Fig. 4b. The shape obtained by minimizing (49) for
the damage model is plotted in Fig. 4c. The convergence history is plotted in Fig. 5.

As can be seen in Fig. 4, the optimized shapes, with or without damage in the mechanical model,
are slightly di�erent, but share the same topology. The shape in Fig. 4c do not undergo a crack,
unlike the shape in Fig. 4b that does undergo a crack (see Fig. 7a). For the shape in Fig. 4c,
the damaged region in the intermediate shapes is plotted in Fig. 6. The optimization algorithm
indeed tries hard to remove every damaged or cracked region that appears. We observe that the
crack appears in the cantilever at several locations, taking di�erent con�gurations at each iteration
and disappears �nally after the 45-th iteration.

Remark 10. One can see in Fig.5 that the objective function (49) features very strong oscillations
during the �rst 50 iterations although the volume constraint is nicely satis�ed after 20 iterations.
These peaks in the convergence history occur whenever there is a transition from a shape without any
crack to a shape with a crack, or when the crack changes from one position to a completely di�erent
one (see Fig. 6). In other words, small perturbations in the shape Ω can result in the appearance
or disappearance of cracks, leading to abrupt changes in the objective function (49). Reducing the
descent step τ would not help here because the onset of fracture is a discontinuous process with respect
to load or geometry variations. Typically, the growth in time of a fracture can be discontinuous.
Therefore, it is plausible that a small change in the geometry of the shape can induce a large change
in the crack pro�le and thus in the value of the objective function (49). This non-smooth character
of fracture or damage is well documented in the theoretical literature [13, 21, 22, 23, 48] but also in
the numerical literature [16]. Note that our derivation of the shape derivative in Subsection 3.3 was
performed under the assumption of a smooth solution of the damage model (18).

The regularization of the damage �eld α with the characteristic length ` or the penalization
process of the damage irreversibility do not help at all on this matter. Our numerical experiments
con�rm this non-smoothness of the damage problem and the discontinuity of the objective function
with respect to shape variations. Therefore, it is questionable to use a gradient-descent method to
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(a) Initialization (b) Final shape obtained for linear elasticity

(c) Final shape for the damage model

Figure 4: Initial and �nal meshes for the cantilever shapes of Subsection 5.2
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Figure 5: Convergence history for the optimized shape of Fig. 4c

minimize the objective function (49). Nevertheless, the presented test cases show that, after some
early oscillations, our gradient algorithm does converge to a crack-free optimal shape. There are two
key ingredients for this relative success. First, although the descent step τ is adapted at each iteration
by formula (45), we do not test if the objective function decreases at each iteration and we never
step back with a smaller descent step. Second, we rely on the backtracking Algorithm 2 (following
[16]) which plays a pivotal role in ensuring a stable damage evolution. As a consequence, the shapes
obtained in the �nal iterations are more stable in the sense that small geometric perturbations do
not cause the appearance of a crack. Hence oscillations in the objective function are avoided and
a smooth convergence of the objective function is attained. This is con�rmed by our attempt to
replace the backtracking Algorithm 2 by the simpler Algorithm 1 (without backtracking) in our shape
optimization Algorithm 3. We noticed that the �uctuations in the objective function were more
violent than the ones obtained with backtracking, which was hindering convergence.

One could think that changing the initialization could improve the convergence of the shape
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(a) Iteration 0 (b) Iteration 4

(c) Iteration 9 (d) Iteration 21

(e) Iteration 40 (f) Iteration 200

Figure 6: Damage variable α at the �nal time T plotted for several optimization iterations for the
shape in Fig. 4c

optimization for the damage model. For example, instead of starting from the periodically perforated
initial shape in Fig. 4a, it is possible to initialize the damage model optimization with the optimal
shape for linear elasticity in Fig. 4b. We perform this new test case and the result in Fig. 7b is
quite deceiving. Indeed, it takes 600 iterations (3 times more, see Fig. 8) to converge to the shape
of Fig. 7b, which is di�erent from that previously obtained in Fig. 4c, slightly less optimal since the
objective function for Fig. 4c is 0.7% better than for the shape of Fig. 7b. Note that both shapes
of Fig. 7b and 4c feature no crack.

5.3 Traction-only degradation

In this subsection only, we replace the isotropic degradation function (50) by the following traction-
only degradation function [43]

C(u, α) =
(
H(divu)(−1 + (1− α)2) + 1

)
C0 + Cres, (52)

where H denotes the Heaviside function. If divu ≥ 0 the material is said to be in traction, otherwise
it is in compression. The degradation function (52) is constructed in such a way that damage occurs
only under tension. In other words, when divu < 0, whatever the value of α, one has C(u, α) = C0.
Such a traction-only degradation function is more realistic since it can make a di�erence between
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(a) Initial shape as in Fig. 4b (b) Final shape

Figure 7: Damage variable α at the �nal time T for the initial shape, as in Fig. 4b, and for the
resulting optimal shape
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Figure 8: Objective function (49) v/s iterations for the shapes (4c) and (7b)

an opening and a closing cracks (this idea was introduced in [9] with a slightly di�erent degradation
function). The Hooke's tensor C(u, α) obviously depends on u, and furthermore is not even di�er-
entiable with respect to u. Nevertheless, for the numerical test here, we ignore this dependence and
do not take it into account in the adjoint equation.

The same 2D cantilever beam, as in Subsection 5.2, is considered for the new degradation function
(52). Starting from the initialization in Fig. 4a the algorithm converges to the shape of Fig. 9. The
convergence history, in Fig. 10, is slightly smoother than in Fig. 5. The optimized shape in Fig.
9 is somehow intermediate between those in Fig. 4 for linear elasticity and the original isotropic
degradation function (50).

Figure 9: Final mesh for the anisotropic degradation function (52)
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Figure 10: Convergence history for the shape of Fig. 9

5.4 2D Cantilever: some variants

From the test cases of the previous subsections, we make two important observations:

1. the objective function converges in a highly non-smooth manner (see Fig. 5),

2. the �nal optimized shapes have zones that undergo slight damage (see Fig. 4 and 7b).

The �rst point is a consequence of two facts: (i), the damage model is very sensitive to all parameters
(loading, geometry, material parameters), (ii), the initialization with a periodically perforated shape,
which is very far from any possible optimal shape, implies that the optimization process will explore
"wild" intermediate shapes. In order to ensure that the convergence of the objective function is
smoother and that, if possible, the �nal shape features no damaged zones, we implemented the
following three variants of our approach to improve the smoothness of the optimization process.

1. Incremental approach: the residual sti�ness in the degradation function (50) is changed, taking
a decreasing residual sti�ness, as the iteration number increases

Cres = κiC0 (53)

where κi is (heuristically) given by

κi =
1

10

(
1− i

N

)p
, (54)

where i it the iteration number, p is an integer exponent and N is the total number of opti-
mization iterations.

2. Symmetrization: the level-set function is symmetrized about the horizontal x-axis (given the
observation that the optimal shapes of Fig. 4 have this symmetry which can be broken by the
non-linear character of the damage model).

3. Weighted objective function: to give more importance to the �nal time, when the structure is
more likely to endure fracture, replace the objective function (49) by its weighted or truncated
version

J(Ω) = −
∫ T

T0

∫
Ω

C(α)ε(u): ε(u)dx dt, (55)

where T = 1 and T0 = 0.85 > 1/1.2 (thus the imposed displacement (51) remains constant on
this time interval).

These three variants are tested with Algorithm 3 and exactly 200 iterations.
In the �rst variant, the parameter κi of the residual sti�ness in (53) is essentially the sti�ness of

the damaged phase. If κi is not small, the objective function does not increase signi�cantly when
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the structure undergoes a crack. However, when κi is small, meaning that the residual sti�ness
approaches zero, the objective function increases dramatically when a crack appears. Given that
the objective function oscillates in the �rst iterations (see Fig. 5), it is legitimate to try to reduce
these oscillations by having a larger residual sti�ness at the start and then gradually decrease it, as
is the case with (54). Three di�erent exponent are tested: p = 4, 8 and 10. The graphs of κi are
plotted in Fig. 12a. The shapes obtained for the three exponents are displayed in Fig. 11 and the
corresponding convergence histories are given in Fig. 12b. As can be seen in Fig. 11, the shapes
obtained for p = 4 and p = 8 are not optimal, unlike the shape obtained for p = 10 (which resembles
the one of Fig. 4c). In the convergence history of Fig. 12b, we observe that the �uctuations in
the objective functions are high for p = 4, lesser for p = 8 and least for p = 10. Hence it seems
preferable to decrease the residual sti�ness in (54) with a large exponent p.

(a) p = 4 (b) p = 8

(c) p = 10

Figure 11: Shapes obtained after 200 iterations and damage �eld α at the �nal time for the decreasing
residual sti�ness κi as in Fig. 12a
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Figure 12: Convergence history for the shapes in Fig. 11

In the second variant, Algorithm 3 is slightly modi�ed. After the re-initialization step 6, the
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level-set function φi+1 is symmetrized around the horizontal central axis, which ensures that the
shape remains symmetric. After 200 iterations of shape optimization, the shape in Fig. 13a is
obtained, which is obviously not optimal as it undergoes a crack, unlike the shape in Fig. 9.

For the third variant, we obtain the shape of Fig. 13b, which is similar to the one obtained in Fig.
4c and undergoes only a very minor damage. This is quite deceiving as we weighted or truncated
the objective function (49) in the hope of totally eliminating any damage zone. Thus, considering a
weighted version of the objective function (49) is not e�ective in avoiding damaged zones.

(a) Symmetrization variant (b) Weighted objective variant (55)

Figure 13: Damage �eld α plotted at the �nal time T for the optimal shapes obtained after 200
iterations
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Figure 14: 2D wedge boundary conditions

5.5 2D wedge

We now study a 2D wedge as shown in Fig.14. The wedge is �xed on its leftmost support, with a
zero vertical displacement on its rightmost support, and subjected to an imposed displacement,

ū(t) = (0, 2.33 min(1.2t, 1))× 10−4m, t ∈ [0, 1], (56)

on the center of its top edge as shown in Fig. 14. These prescribed boundary conditions and the
sharp corner at the center ensure that there is a crack initiation at the notch in the center. The
input parameters of the remesher MMG are hmin = 0.0064m and hmax = 0.0128m. The target volume
is taken to be 0.2m2. The initial shape, as shown in Fig. 15a, converges to the shape in Fig. 15b
for linear elasticity and to the shape in Fig. 15c for the damage model. The convergence history is
plotted in Fig. 16. Like in the previous 2D-cantilever case, the shapes obtained for linear elasticity
or for the damage model have the same topology. In Fig. 17 are plotted the damaged regions for
several intermediate shapes corresponding to the �nal shape of Fig.15c. A crack is clearly present
during the �rst iterations although the notch is rounded by a hole. Nevertheless, after 21 iterations,
the algorithm �nds a crack-free shape, �nally converging to the �nal shape at iteration 200, which
features a very little amount of damage close to the notch.
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(a) Initialization (b) Final shape obtained for linear elasticity

(c) Final shape for the damage model

Figure 15: Initial and �nal meshes for the 2D wedge
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Figure 16: Convergence history for the wedge shape in Fig. 15c

5.6 2D L-beam

The last 2D example is an L-beam which is a meaningful test case because of its re-entrant right-
angled corner, which is prone to crack initiation. As shown in Fig. 18, the L-beam is �xed on its
topmost edge, subjected to an imposed displacement,

ū(t) = (0, 1 min(1.2t, 1))× 10−3m, t ∈ [0, 1], (57)

on a small part of its rightmost edge with a vertical force as shown in Fig. 18. A target volume
Vf = 2m2 is considered. The input parameters for MMG are hmin = 0.01m and hmax = 0.02m. From
the initial shape in Fig. 19a, the minimization of the objective function (49) for linear elasticity leads
to the �nal shape in Fig. 19b. Contrary to the previous test cases, we now initialize the optimization
for the damage model with this shape of Fig. 19b, instead of the periodically perforated initialization
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(a) Iteration 0 (b) Iteration 3

(c) Iteration 21 (d) Iteration 200

Figure 17: Damage variable α at the �nal time T plotted for several optimization iterations for the
shape in Fig.15c
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Figure 18: 2D L-beam boundary conditions

of Fig. 19a. It yields the �nal shape of Fig. 19c. In order to compare the shapes in Fig. 19b and in
Fig. 19c, we perform a damage computation for both shapes with ū(t), given by (57), and plot the
damage variable α at the �nal time in Fig. 20: obviously, the shape in Fig. 19c does not undergo a
crack, unlike the shape in Fig. 19b.

5.7 3D wedge

Continuing the study of test cases with sharp corners, we consider a 3D wedge as shown in Fig.
21. The wedge is supported on four square surfaces, each being 0.05m × 0.05m, at the bottom of
the working domain, see Fig. 21. The wedge is clamped in all three directions on one surface and
only along the vertical y-direction on the remaining three surfaces. The wedge is subjected to an
imposed displacement ū(t) on a 0.1m× 0.1m square surface at the top (in yellow in Fig. 21). The
input parameters for MMG are hmin = 0.013m and hmax = 0.026m. Here, we investigate the impact of
increasing the magnitude of the imposed displacement on the optimized shape and hence consider
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(a) Initialization mesh (b) Final shape for linear elasticity
(c) Final shape for the damage
model

Figure 19: Initial and �nal meshes for the 2D L-beam

Figure 20: Damage variable α at the �nal time T plotted for several optimization iterations for the
shapes in Fig.19

two functions

ū(t) = (0, 7 min(1.2t, 1))× 10−5m, t ∈ [0, 1], and (58)

ū(t) = (0, 8.5 min(1.2t, 1))× 10−5m, t ∈ [0, 1]. (59)
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Figure 21: 3D wedge boundary conditions

The target volume is chosen to be 0.7m3. The initial shape of Fig. 22a converges to the shape
of Fig. 22b for linear elasticity. For the damage model, the same initial shape converges to the
shape of Fig. 22c for the displacement (58) and to the shape of Fig. 22d for the displacement (59).
The corresponding convergence histories are plotted in Fig. 23. It is remarkable that the shapes
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in Fig.22c and in Fig.22d are very di�erent, although the imposed displacement (58) and (59) (for
which they were optimized) are quite close. This illuminates the highly non-linear nature of the
damage model (18).

The damage variable α for the intermediate shapes corresponding to the optimal shape in Fig.
22d are plotted in Fig.24. There, one can check that the intermediate shapes undergo crack, not
only at the notch at the center, but also at other places. As expected, the resulting �nal shape in
Fig. 59 is crack-free.

(a) Linear elasticity (b) Final shape obtained for linear elasticity

(c) Final shape for imposed displacement (58) (d) Final shape for imposed displacement (59)

Figure 22: Initial and �nal meshes for wedge shapes

5.8 Coarse 3D Column

This new test case is a 3D column (see Fig. 25a) which is 4m high, �xed at the bottom (in red) and
subjected to an imposed displacement ū(t) on the top (in yellow). The precise geometrical de�nition
of this column can be found in [33].

Here again, we investigate the impact of increasing the magnitude of the imposed displacement
on the optimized shape and hence consider two functions

ū(t) = (0, 2.88 min(1.2t, 1))× 10−4m, t ∈ [0, 1]s, and (60)

ū(t) = (0, 2.97 min(1.2t, 1))× 10−4m, t ∈ [0, 1]s. (61)

The input parameters of the remesher MMG are hmin = 0.02m and hmax = 0.04m. Since the char-
acteristic length (using the formula (37)) is ` = 0.0375m, the condition (38) is violated. Instead
of choosing a smaller hmax, we increase the characteristic length to ` = 0.075m to ensure that the
condition (38) is satis�ed. The target volume is 2.5m3. The shape is initialized as shown in Fig.
25b. The �nal shape obtained for linear elasticity is plotted in Fig. 26a. For the damage model,
it is plotted in Fig. 26b and 26c for the imposed displacement (60) and (61), respectively. Clearly
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Figure 23: Convergence history for the shapes (22c) (in red) and (22d)(in blue)

again, we see that a slight increase in the imposed displacement results in a very di�erent optimized
shape for the damage model.

We compare the performance of the three shapes in Fig. 26 for the same damage model and for
the same linear elasticity system with the imposed displacement (61) and plot the objective function
(49) values in Table 1. As can be expected, the shapes optimized for damage have much better
performances with the damage model. But, surprisingly, the performance of the three shapes for
linearized elasticity are very similar (the optimal shape for linear elasticity is less than a fraction of
percent better than the two other ones). The damage variable α for those three shapes is plotted
in Fig. 29. As one can check in Fig. 29, the shapes in Fig. 26b and 26c do not undergo a crack
whereas the shape in Fig.26a does.

Fig. 26a Fig. 26b Fig. 26c
Objective (49) for linear elasticity −183.47 −183.65 −186.83
Objective (49) for damage model −179.75 −186.49 −186.13

Table 1: Comparison between shapes in Fig. 26a and 26c for the imposed displacement (61)

5.9 Fine 3D Column

Eventually, we revisit the same column, as in the previous subsection, but with a highly re�ned
mesh. The goal of this example is to show that our optimization approach is amenable to high
performance computing (HPC). The details on the parallel implementation are given in Subsection
4.6. The column is subjected to the same imposed displacement (61). The input parameters of the
remesher MMG are hmin = 0.015m and hmax = 0.03m. It implies that the initial mesh has 243,641
vertices (1,359,805 tetrahedra) and the �nal mesh has 241,852 vertices (1,365,125 tetrahedra). The
characteristic length, given by (37), is ` = 0.0375m, satisfying condition (38). The target volume is
again chosen to be 2.5m3. An incremental residual strategy is used, where the residual sti�ness is
de�ned with (53), and the residual sti�ness parameter is de�ned as

κ =
1

2

(
1− i

N

)8

,

where i is the iteration number and N is the total number of iterations. This formula di�ers from
(54) by a factor of 5, heuristically found to yield a smoother convergence. This incremental approach
is preferred in order to ensure that the intermediate shapes do not undergo brittle fracture too often.
The mesh is so �ne that the time or descent step τ , given by (45), is very small and the convergence
is too slow. Therefore, for this test case, we multiply it by a factor of 2, namely τ = hmin/Ci. The
initial shape (with a rich topology) can be seen in Fig. 30a. The �nal shape obtained for linear
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(a) Iteration 3 (b) Iteration 12

(c) Iteration 26 (d) Iteration 57

(e) Iteration 90 (f) Iteration 300

Figure 24: Damage variable α at the �nal time T plotted for several optimization iterations for the
shape in Fig. 26b

elasticity is plotted in Fig. 30b and, for the damage model, is plotted in Fig. 30c. The damage
variable α is plotted for some intermediate shapes in Fig.31. Actually, there were only 3 intermediate
shapes, which were cracked. Our incremental approach of the residual sti�ness was thus not able
to eliminate completely the appearance of cracks during the optimization process. The �nal shape
obtained is very similar to the one obtained for linear elasticity in Fig.30b. The total computational
time for this optimization was 7 days.
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