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Quotients of the Bruhat-Tits tree by arithmetic subgroups of

special unitary groups

Luis Arenas-Carmona, Claudio Bravo, Benoit Loisel, Giancarlo Lucchini Arteche

Abstract

Let K be the function field of a curve C over a field F of either odd or zero characteristic.
Following the work by Serre and Mason on SL2, we study the action of arithmetic subgroups
of SU(3) on its corresponding Bruhat-Tits tree associated to a suitable completion of K.
More precisely, we prove that the quotient graph “looks like a spider”, in the sense that it
is the union of a set of cuspidal rays (the “legs”), parametrized by an explicit Picard group,
that are attached to a connected graph (the “body”). We use this description in order to
describe these arithmetic subgroups as amalgamated products and study their homology.
In the case where F is a finite field, we use a result by Bux, Köhl and Witzel in order to
prove that the “body” is a finite graph, which allows us to get even more precise applications.

MSC codes: primary 20E08, 20H25, 14H05; secondary 20J06, 20G30, 11F75.
Keywords: Algebraic function fields, arithmetic subgroups, Bruhat-Tits trees, quotient
graphs, special unitary groups.

1 Introduction

Let C be a smooth, projective, geometrically integral curve over a field F and let K be its
function field. In [13], Serre considers the action of SL2(K) on the Bruhat-Tits tree, as well as
the action of some arithmetic subgroups, such as SL2(A), where A is the ring of functions on C
that are regular ouside a closed point P . In order to study these groups, Serre gave the following
description of the corresponding quotient graphs.

1.1 Theorem. [13, Ch. II, Th. 9] Let X be the local Bruhat-Tits tree defined by the group SL2

at the completion KP associated to the valuation induced by P . Then, the graph X = SL2(A)\X
is combinatorially finite, i.e. it is obtained by attaching a finite number of infinite half lines,
called cusp rays, to a certain finite graph Y . Moreover, the set of such cusp rays is indexed by
the elements of the Picard group Pic(A) = Pic(C)/〈P 〉.

Then, using Bass-Serre Theory (c.f. [13, Ch. I, §5]), Serre introduces a family of triples
{(Iσ ,Pσ,Bσ)}σ∈Pic(A) and a group H naturally associated to the action of SL2(A) on the tree.
These groups satisfy the following properties: Iσ is an A-fractional ideal, Pσ = (F∗ × F∗) ⋉ Iσ,
Bσ has canonical injections Bσ → H and Bσ → Pσ and H is finitely generated if the base field
F is finite. He gets then the following result.

1.2 Theorem. [13, Ch. II, Th. 10] SL2(A) is isomorphic to the sum of Pσ, for σ ∈ Pic(A),
and H, amalgamated along their common subgroups Bσ according to the above injections.

In the literature, there are many particular cases of groups of the form SL2(A) whose explicit
structures has been described as amalgamated sums by describing the corresponding quotient
graphs. The most classical example was introduced by Nagao in [11]. This corresponds to the
case where C = P1

F and deg(P ) = 1. In this context, up to automorphism, we can assume that
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A = F[t]. By using this convention, it is not hard to see that the quotient graph is isomorphic
to a ray. Consequently, it is possible to establish an isomorphism between SL2(F[t]) and the
amalgamated sum of the group of upper triangular matrices with coefficients in F[t] and SL2(F)
amalgamated along their intersection (see [11] or [13, Ch. II, §1.6]).

Further developments are introduced by Serre in [13, Ch. II, §2.4] where he covers the cases
where C = P1

F and deg(P ) ∈ {2, 3, 4}, or when C is a curve of genus 0 without rational points
and deg(P ) = 2. The first author of this article extends the study of Serre’s and Nagao’s explicit
examples in [1], by determining the quotient graphs when the closed point P has degree 5 or 6,
and giving a method for further computations.

The preceding results are interesting since they describe the combinatorics of SL2(A) by
characterizing the combinatorics of its corresponding quotient graph. But they can also be
applied to the study its homology and cohomology. See for instance the following result by
Serre.

1.3 Theorem. [13, Ch. II, §2.8] Assume that F is a finite field of characterisic p. Let M be
an SL2(A)-module that is finitely generated as a group. Then, for each i ≥ 2, Hi(SL2(A),M) is
the sum of a finite abelian group and a countable p-primary torsion group. Moreover, when M
has finite order prime to p, then Hi(SL2(A),M) is finite for i ≥ 0. Also, when M = Q, we have
Hi(SL2(A),M) = 0 for all i ≥ 2 and H1(SL2(A),M) is a Q-vector space of finite dimension.

One of the most significant difficulties at the moment of extending Serre’s results to other
reductive groups is that he extensively uses the theory of vector bundles of rank 2 in his work,
which is a particular interpretation of the Bruhat-Tits tree of SL2. Fortunately, there is a more
elementary method in the literature that is easier to generalize. In [10], Mason studies the
combinatorics of quotient graphs with a point of view that only requires the Riemann-Roch
Theorem and some basic notions about Dedekind rings.

In order to present more current results, we need to introduce some technical definitions.
Recall that, to every discretely valued field KP and every split reductive KP -group G, we
associate as in [2] a polysimplicial complex X = X (G,KP ). This complex is called the Bruhat-
Tits building of (G,KP ). When G has rank one, for instance when G = SL2, the associated
building is actually a tree. The analogs of rays in trees in higher dimensional buildings are
called sectors. When K = F(t) and G is a semi-simple, simply connected, split K-group, Soulé
describes in [14] the topology and combinatorics of the quotient space X := G(F[t])\X . More
precisely, he shows that X is isomorphic to a sector in X , extending Nagao’s results. Soulé
consequently describes the group G(F[t]) as an amalgamated sum of some of its subgroups.
Finally, by analyzing the preceding action on X , he obtains some results on the homology
groups H∗(G(F[t]), F ), for some fields F . His results were extended by Margaux in [9] to the
case where G is a semi-simple, simply connected, isotrivial K-group, i.e., when G splits over an
extension of the form L = ℓK, where ℓ/F is a finite extension.

Going to the particular case of a finite base field F, one of the strongest current results on
the structure of quotient buildings is due to Bux, Köhl and Witzel (see [4]). This is written in
terms of a certain thin subspace of X that covers the quotient of the building. We state this
result for further use below.

1.4 Theorem. [4, Prop 13.6] Assume that F is finite. Let G be an isotropic, non-commutative
algebraic K-group and let X = X (G,K) be the building associated to G and K. Let S be a finite
set of places of K and denote by OS the ring of S-integers of K. Choose a particular realization
G ⊂ GLn, and subsequently define G as G(K) ∩GLn(OS). Then, there exists a constant L and
finitely many sectors Q1, · · · , Qs such that
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(1) The G-translates of the L-neighborhood of
⋃s

i=1Qi cover X .

(2) For i 6= j, the G-orbits of Qi and Qj are disjoint.

When G has dimension one, then Theorem 1.4 reduces to a special case of a theorem due
to Lubotzky ([8, Th. 6.1]), who proves that the corresponding quotient graph is combinatori-
ally finite. The proof of this result strongly involves the use of some strong theorems due to
Raghunathan. Using this, Lubotzky gives a general structure theorem for lattices in G and con-
sequently confirms Serre’s conjecture that such arithmetic lattices do not satisfy the congruence
subgroup property.

Still over finite fields, the homological and cohomological applications of the preceding
results go further than the previously described results by Serre and Soulé. For instance, we
can cite some results by Stuhler in [16], which strongly use the combinatorial structure of
the quotient of X = X (SL2,KP ) by Γ = PGL2(OS), where S is a finite set of closed points
on C not including P . Indeed, by analyzing this quotient graph, Stuhler proves that the
cohomology groups Ht(Γ,Fp), for t = Card(S), are infinite dimensional Fp-vector spaces. This
has implications on the number of generators, relations, relations among relations, and so on,
for the group Γ. Finally, one of the strongest existing results on rational cohomology of split
semi-simple simply connected groups was proved by Harder in [6] by analyzing the actions of
the latter on buildings. It essentially states that Hv(G(OS),Q) = 0 for v 6∈ {0, rt}, where r is
the rank of G and t = Card(S). It also describes the dimension of the non trivial cohomology
groups in terms of representations of the group

∏
Q∈S G(KQ). This analysis is what is currently

known as reduction theory.

Note that almost all the previous combinatorial and homological results are specific to split
groups. Thus, it is natural to seek for a generalization to quasi-split (non-isotrivial) groups. The
main goal of this article is to deal with the case where G is the special unitary group SU(3, h)
associated to a three-dimensional hermitian form h defined over K. Note that this the natural
first step in this direction since SU(3, h) is the only quasi-split non-split simply connected semi-
simple group of split rank 1 (cf. [3, 4.1.4]). Since SL2 and SU(3, h) encode the behaviour of all
the possible Levi subgroups of rank 1 of quasi-split reductive groups, it is expectable that one
can obtain results in the general case from results on these two cases.

Specifically, in this article we follow Mason’s approach in [10] in order to obtain analog results
to Theorems 1.1, 1.2 and 1.3 for SU(3, h). The topological implications of our results are stronger
than what one can obtain from Bux, Köhl and Witzel’s result or from Lubotzky’s result, since
here the ground field F is not assumed to be finite, but also because we get a precise control
on a particular set of cusp rays in the quotient, which we call the rational cusps, and which
constitute the totality of cusps in the finite field case. Moreover, by using Bass-Serre theory, we
consequently describe the structure of the considered arithmetic groups as amalgamated sums.
We also obtain results on the homology of these groups, for rational and finite modules. Finally,
we present some interesting examples with explicit computations, getting in particular what
could be considered as a “quasi-split analog” of Nagao’s Theorem.

2 Context and main results

Let F be a field of characteristic 6= 2, C a smooth, projective, geometrically integral curve
over F and K the function field of C. Let L/K be a quadratic extension with F algebraically
closed in L and denote by τ the generator of Gal(L/K). This corresponds to a 2 : 1 morphism
of geometrically integral F-curves ψ : D → C with L the function field of D.
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We consider the C-group-scheme G defined as follows. Consider an affine subset of C given
by Spec(R) for some ring R ⊂ K such that K = Quot(R). Let S ⊂ L be the integral closure
of R in L. We have that Spec(S) is the fiber of ψ over Spec(R). Let hR : S3 → R be the
R-hermitian form defined by

hR(x−1, x0, x1) := x−1x̄1 + x0x̄0 + x1x̄−1,

where ¯ denotes the action of τ ∈ Gal(L/K). Then we define GR as the group-scheme SU(hR),
which is a reductive group-scheme away from ramification points. Since we can cover C with
affine subsets Spec(Ri) with affine intersection, the groups GRi

clearly glue in order to define
G, which we denote alternatively as SU(h).

Let P be a closed point in C of degree d. The curve C r {P} is known to be affine and
thus it corresponds to Spec(A) for some subring A ⊂ K such that K = Quot(A). As a subset
of K, it contains precisely the global functions that only have poles in P . We also consider the
completion KP of K with respect to the discrete valuation ω := ωP induced by the point P . We
write OP for its ring of integers and κP for its residue field. It is a degree d extension of F.

We assume that L/K is non-split at P (but it could be either ramified or unramified) and
we denote by Q the point in D above P . Let B ⊂ L be the integral closure of A in L. Then
Spec(B) = Dr {Q}. Denote by hA, hK and hKP

the respective induced hermitian forms on B,
L and LQ = L⊗K KP .

We will consider as well the reductive K-group GK = SU(hK) and the KP -group
GKP

= SU(hKP
) obtained by base change. By our assumption on L and P , GKP

and
GK have semisimple rank 1. Let X = X(G,KP ) be the Bruhat-Tits tree of GKP

over KP . The
group GKP

(KP ) = G(KP ) acts naturally on this tree, and so do G(K) and G(A) as subgroups
of G(KP ). We are interested in the quotient graph X = X/G(A).

For every graph g, denote by v(g) and e(g) the corresponding sets of vertices and edges,
respectively. We have then the following result on the graph X = X/G(A):

2.1 Theorem. There exist a connected subgraph Y of X and geodesic rays c(σ) ⊆ X with initial
vertex vσ ∈ X for each σ ∈ Pic(B) such that

• X = Y ∪
⊔

σ∈Pic(B)

c(σ);

• v(Y ) ∩ v(c(σ)) = {vσ};

• e(Y ) ∩ e(c(σ)) = ∅.

Moreover, if F is finite, then the subgraph Y is finite.

In other words, the quotient graph X looks like a “spider” with a “body” Y and a given set
of “legs” c(σ) going to infinity (this set will be finite whenever Pic(B) is finite, for instance if
F is finite). In particular, we have that the inclusion Y → X̄ is a homotopy equivalence. Note
however that for infinite F we may have an infinite body and, to our knowledge, we cannot even
exclude the possibility of it having infinite diameter.

Recall (c.f. [13, I.§5.4]) that to the action of G(A) on X one may associate a graph of groups
(G(A), X̄), which consists in equipping every vertex v and edge e of X̄ with a group (here, the
stabilizer of a preimage of the corresponding edge or vertex), denoted Gv and Ge respectively,
and homomorphisms Ge → Gv when e is incident to v. Consider the restrictions (G(A), Y ) and
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(G(A), c(σ)) of (G(A), X̄) to the subgraphs Y and c(σ). Let H denote the fundamental group
of (G(A), Y ) and Gσ the fundamental group of (G(A), c(σ)) (c.f. [13, I.§5.1]). Since c(σ) is a
ray, Gσ is simply the sum of the Gv’s for v ∈ v(c(σ)), amalgamated along the corresponding
inclusions of the Ge’s for e ∈ e(c(σ)). Since vσ is a common vertex of Y and c(σ), we have
injections Gvσ →֒ H and Gvσ →֒ Gσ. So, by using Bass-Serre theory we can deduce the following
result on the structure of G(A) as an amalgam (see §9):

2.2 Theorem. Assume that X is combinatorially finite (for instance, if F is finite). Then,
G(A) is isomorphic to the sum of Gσ, for σ ∈ Pic(B), and H, amalgamated along the groups
Gvσ , according to the previously defined injections. Moreover, each Gσ is an extension of a
subgroup of F∗ by a group Hσ which itself is an extension of two finitely generated A-modules.

In particular, when F is a finite field, we have that H is finitely generated and Gvσ is finite
for every σ ∈ Pic(B).

We can use the previous result, for example, to show that G(A) is not finitely generated
(cf. Corollary 9.2). We also prove along the way the following result on the holomogy groups
relative to G(A).

2.3 Theorem. Assume that F is a finite field, and denote by p its characteristic. Let M be
a G(A)-module that is a finitely-generated abelian group. Then, for each i ≥ 2, the homology
group Hi(G(A),M) is the sum of a finite abelian group and a countable p-primary torsion group.
Moreover, when M has finite order prime to p, then all groups Hi(G(A),M) are finite. Also,
when M = Q, we have Hi(G(A),M) = 0, for all i ≥ 2, and that H1(G(A),M) is a Q-vector
space of finite dimension.

Finally, in §11 we illustrate these results by giving explicit computations of the quotient
graph X and the structure of G(A) in some cases where C = P1

F and deg(P ) = 1. In particular,
we get the following analog to Nagao’s Theorem for SL2 (see Theorem 11.1):

2.4 Theorem. Let F be a field of characteristic 6= 2, let h : F[
√
t]3 → F[t] be the hermitian form

defined by
h(x−1, x0, x1) := x−1x̄1 + x0x̄0 + x1x̄−1,

and let SU(h,F[t]) be the subgroup of SL(3,F[
√
t]) of matrices that preserve h. Consider the

following subgroups of SU(h,F[t]):

F := SU(h,F[t]) ∩GL(3,F) ≃ SO(3,F),

T := {upper triangular matrices in SU(h,F[t])}

=







t −x̄ t−1y
0 1 t−1x
0 0 t−1


 , t ∈ F∗ = F[

√
t]∗, x, y ∈ F[

√
t], N(x) + T (y) = 0



 .

Then the group SU(h,F[t]) is the sum of the groups F and T amalgamated along their intersec-
tion.

2.5 Remark. Looking back on Theorem 1.4, or the results by Lubotzky and Harder mentioned
above, one could wonder whether our results could be extended to rings of the form OS , where S
is a finite set of closed points in C. We leave this study for later mainly because of the following
issue. Since we are restricting our study to trees by following Mason’s approach, we are avoiding
the general theory of buildings in order to gain in simplicity. However, for any closed point P in
C that is split in D we have GKP

= SL3,KP
, so that it is not a tree but a 2-dimensional building

that is associated to this point (this is why we assume P to be non-split above). We could still
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try to study the case of several non-split points, but in that case an application of the Strong
Approximation Theorem tells us that the quotient graph of the tree associated to G(KP ) for
P ∈ S is simply an edge. The natural thing to do then is actually studying the action of G(OS)
on the product of all such trees, but then we are back to higher-dimensional buildings.

Note however that the case of a single point is the crucial one for applications in the study
of such groups as amalgams. Indeed, we can write a group of the form G(OS) as an amalgam of
two groups of the form G

(
OS−{P}

)
by considering the local quotient at P , which, as mentioned

above, is an edge. When S has two points, one of such subgroups is the one being considered
here, while the other is the stabilizer of a lattice of prime discriminant. See Section 6 for the
relation between trees and lattices.

3 Notations and preliminaries

3.1 Conventions on graphs and trees

In this section we recall some basic notions about graphs and trees. A graph g consists of
a pair of sets v = v(g) and e = e(g), and three functions s, t : e → v and r : e → e satisfying
the identities r(a) 6= a , r

(
r(a)

)
= a and s

(
r(a)

)
= t(a), for every a ∈ e. The set v and e are

called set of vertices and edges respectively, and the functions s, t and r are called respectively
source, target and reverse. A simplicial map γ : g → g′ between graphs is a pair of functions
γv : v(g) → v(g′) and γe : e(g) → e(g′) preserving these functions, and a similar convention
applies to group actions. An action of a group Γ on a graph g does not have inversions if
g.a 6= r(a) for every edge a and every element g ∈ Γ. An action without inversions defines a
quotient graph in the usual sense.

Let g be a graph. A ray r in g is a subcomplex of g whose sets of vertices {vi ∈ v(r) : i ∈ Z≥0}
and edges {ei ∈ e(r) : i ∈ Z≥0} satisfy the identities s(ei) = vi, t(ei) = vi+1 and vi 6= vj for

all i 6= j in Z≥0. Let r1 and r2 be rays whose set of vertices are
{
v
(1)
i ∈ v(r1) : i ∈ Z≥0

}
and

{
v
(2)
i ∈ v(r2) : i ∈ Z≥0

}
respectively. We say that r1 and r2 are equivalent, and we write r1 ∼ r2,

if there exists t, i0 ∈ Z≥0 such that v(1)i = v
(2)
i+t, for all i ≥ i0. This definition applies to g = X,

g = X̄ or any of their subcomplexes. The equivalence class of a ray r is denoted ∂∞(r), and it
is called the visual limit of r. Analogously, the set of equivalence classes of rays is denoted by
∂∞(X). The same definitions and notation applies to any unbounded subtree of X.

A cusp ray in a graph g is a ray where every non-initial vertex has valency two in g. We say
that a graph is combinatorially finite if it is the union of a finite graph and a finite number
of cusp rays. By definition a cusp in g is an equivalence class of cusp rays. In the context of
Theorem 2.1 a set of representatives for the (rational) cusps is precisely {c(σ) : σ ∈ Pic(B)}.

3.2 Parametrization of subgroups of SU(h)

We recall some known facts on the group G = SU(h) (see for instance [3, 4.1], or [7, §4 Case
2. p. 43–50]).

We will use repeatedly the norm and trace map of the quadratic extension L/K, denoted
by N = NL/K and T = TrL/K , respectively. It is also convenient to introduce the following
K-varieties:

H(L,K) :=
{
(u, v) ∈ RL/K(Ga,L)

2, N(u) + T (v) = 0
}
,

H(L,K)0 :=
{
(0, v) ∈ 0×RL/K(Ga,L), T (v) = 0

}
,
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We will abusively denote by H(L,K) and H(L,K)0 the corresponding sets of K-points, which
we will naturally view as subsets of L2. Note that, if (u, v) ∈ H(L,K), then we also have
(ū, v), (u, v̄), (ū, v̄) ∈ H(L,K). Moreover, one can endow these varieties with a natural group
structure from a matrix realization given further below.

We recall that GK is a quasi-split semi-simple K-group which admits a natural K-linear
faithful representation GK → RL/K(SL3,L). It is easy to see that this extends to an embedding
G→ RD/C(SL3,C). Through this representation, we identify G with its image and the elements
ofG(K) (resp. G(A), G(KP ), G(OP )) with 3×3 matrices with coefficients in L (resp. B, LQ, OQ)
preserving the hermitian form and with trivial determinant. Given this matrix interpretation
of K-points and A-points of G, we will make the following abuse of notation: we will denote
by G(F) (resp. T (F)) the elements in G(K) ⊂ M3(L) (resp. T (K), as defined below) whose
coefficients lie in F ⊂ L. In particular, G(F) = G(A)∩G(OP ). Note that these are not F-points
in the usual (schematic) sense.

A maximal K-split torus S of G is given by the matrices of the form:

(2a)∨(s) =



s 0 0
0 1 0
0 0 s−1


 s ∈ Gm,K

and its centralizer T = ZG(S), that is a maximal K-torus since G is quasi-split, admits the
following parametrization with diagonal matrices:

ã : RL/K(Gm,L) → T ⊂ G

t 7→



t 0 0
0 t̄t−1 0
0 0 t̄−1


 .

Note that ã : RL/K(Gm,L) → T is the extension of (2a)∨ : Gm,K → S ⊂ T .
The maximal K-torus T , and therefore G, splits over L onto the torus:

TL =







x

y
z


 , xyz = 1





∼= G2
m,L

having a basis of characters over L given by:

α



x

y
z


 = yz−1 and ᾱ



x

y
z


 = xy−1.

We denote the restriction of α to S, which coincides with that of ᾱ by a = α|S = ᾱ|S ; it is
the character generating X∗

K(S). We denote the restriction of α+ ᾱ to S by 2a = (α+ ᾱ)|S .
The K-root system of G is of type BC1 and we write it as Φ = {±a,±2a}, so that (2a)∨

is the coroot of 2a, and it generates the Z-module of cocharacters of S. We pick the Borel
K-subgroup B of G consisting in upper-triangular matrices, which contains T . It corresponds
to positive roots {a, 2a}. We parametrize root groups by:

ua : H(L,K) → Ua ⊂ G

(u, v) 7→



1 −ū v
0 1 u
0 0 1


 and

u2a : H(L,K)0 → U2a ⊂ G

v 7→



1 0 v
0 1 0
0 0 1


 .

7



The Weyl group W (G,S) = NG(S)/ZG(S) is of order 2. We denote by s the lift of the non-trivial
element, that exchanges a with −a, and whose matrix realization is

s =




0 0 −1
0 −1 0
−1 0 0


 .

The parametrization of root groups for a negative root is given by the formula

u−a(u, v) = sua(u, v)s.

Matricially, this gives:

u−a : H(L,K) → U−a ⊂ G

(u, v) 7→



1 0 0
u 1 0
v −ū 1


 and

u−2a : H(L,K)0 → U−2a ⊂ G

v 7→



1 0 0
0 1 0
v 0 1


 .

4 Stabilizers of vertices

4.1 Definition. Define, for (u, v) ∈ H(L,K), the element:

gu,v = u−a(u, v)s = sua(u, v) =




0 0 −1
0 −1 −u
−1 ū −v


 ∈ G(K)

This element will be used repeatedly in this article.

Using these elements, we can parametrize some geodesic rays in X as follows. Recall that a
standard apartment is defined from S by A = X∗(S)⊗R ∼= Ra∨ with vertices x = ra∨ satisfying
a(x) = 2r ∈ Γa = 1

2ω(L
×
P ) [3, 4.2.21(4) and 4.2.22]. If eP denotes the ramification index of

LP /KP and if the valuation ω in P is normalized such that ω(K∗
P ) = Z, then r ∈ 1

4eP
Z.

We recall from [2, 6.2.10] and [3, 4.2.7] that the action of NG(S)(KP ) onto A can be deduced
from the formulas:

ã(v) · x = x− 1

2
ω(v)a∨ and s · x = −x

Indeed, the formula 〈ν(t), a〉 = −ω ◦ a(t) from [3, 4.2.7], applied with t = ã(v) ∈ T (K) and

ν(t) = ra∨, gives that 2r = −ω
(
a
(
ã(v)

))
= −ω

(
v2(v̄)−1

)
.

4.2 Definition. We define the half-apartment r(∞) of A by

r(∞) := {x ∈ A, a(x) > 0}.

We define moreover a numbering of its vertices v(r(∞)) as follows:

λn(∞) :=
n

4eP
a∨ ∈ r(∞), for n ∈ Z>0.

For any (u, v) ∈ H(L,K), we define another half-apartment r(u, v) = g−1
u,v · r(∞) with a

numbering of its vertices by λn(u, v) = g−1
u,v · λn(∞).

4.3 Lemma. The set H(L,K) is a dense subset of H(LQ,KP ).
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Proof. Recalling that H(L,K) parametrizes Ua, this is easily proven by dévissage, using that
this K-group has a decomposition series with subquotients isomorphic to Ga,K .

4.4 Lemma.

X =
⋃

(u,v)∈H(L,K)

{1, s} · r(u, v)

Proof. Throughout this proof, we denote r(0, 0) by r(−∞). Then r(∞) = s · r(−∞) ⊂ A.
Let x ∈ X be any point. If x ∈ r(±∞), we are done. Otherwise, since r(∞) and r(−∞) are

the sectors of A with tip λ0(∞) = 0a∨, we know that there is an apartment Ax that contains
x and r(ε∞) for ε ∈ {±}. If Ax contains r(∞), then we know that s · Ax contains both r(−∞)
and s · x. Thus, we only need to prove that if Ax contains r(−∞), then x ∈ r(u, v) for certain
(u, v) ∈ H(L,K).

We know by [7, 9.7(i)] that the valued root group U−a,r(−∞) acts transitively on the set of
apartments of X containing r(−∞). Thus, there exists an element (ũ, ṽ) ∈ H(LP ,KP ) such that
x′ = u−a(ũ, ṽ) · x ∈ r(∞). We know that the stabilizer of x′ in U−a,r(−∞) is the open subgroup
U−a,x′ of U−a,r(−∞) and that U−a,r(−∞) acts continuously. By continuity of the parametrization
and by density of H(L,K) in H(LP ,KP ) (Lemma 4.3), there exists an element (u, v) ∈ H(L,K)
such that u−a(u, v) ·x = x′ ∈ r(∞). Thus x ∈ u−a(u, v)

−1 · r(∞) = s(g−1
u,v) · r(∞) = s · r(u, v).

In the next lemmas, we observe that it is convenient to introduce the following fractional
ideals, subrings and subsets:

4.5 Notation. For any (u, v) ∈ H(L,K), we set pu,v to be the fractional B-ideal B+Bu+Bv ⊂
L and bu := B +Bu, so that:

p−1
u,v =





B if v = 0,

B ∩ 1
vB if u = 0, v 6= 0,

B ∩ 1
vB ∩ 1

uB if u 6= 0.

and b−1
u =

{
B if u = 0,

B ∩ 1
uB if u 6= 0.

We define as well the fractional B-ideals

qu,v
−1 = pū,vpu,v̄ = B +Bu+Bv +Bū+Bv̄ +Buū+Buv +Būv̄ +Bvv̄

and
q̃u,v

−1
= bupu,v̄ = B +Bv̄ +Bu+Bu2 +Buv̄

so that

qu,v =





B if v = 0,

B ∩B 1
v ∩B 1

v̄ ∩B 1
vv̄ if v 6= 0 and u = 0,

B ∩B 1
u ∩B 1

v ∩B 1
ū ∩B 1

v̄ ∩B 1
uū ∩B 1

uv ∩B 1
ūv̄ ∩B 1

vv̄ if u 6= 0.

and

q̃u,v =





B if v = 0,

B ∩B 1
v̄ if v 6= 0 and u = 0,

B ∩B 1
u ∩B 1

v̄ ∩B 1
u2 ∩B 1

uv̄ if u 6= 0.

4.6 Definition. We define the degree of a fractional B-ideal q as

deg q :=
∑

P ′ 6=P

dP ′vP ′(q),

where dP ′ denotes the degree of the closed point P ′ ∈ C and vP ′ denotes the corresponding
valuation. Note that vP ′(q) makes sense since the completion qP ′ ⊂ KP ′ is a principal fractional
ideal generated by a power of a uniformizer.
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The obvious properties of deg that we will use in the results below are:

• deg qq′ = deg q+ deg q′.

• deg q ≤ deg q′ if q ⊃ q′.

• deg q = deg q̄ for any q.

4.7 Lemma. Let (u, v) ∈ H(L,K). If n > 2eP
d deg q̃u,v, then

qu,v
−1 ∩ ω−1

([ n
eP
,∞

])
= {0} and q̃u,v

−1 ∩ ω−1
([ n

2eP
,∞

])
= {0}.

Proof. Write q for either qu,v or q̃u,v and let x ∈ q−1 be a non-zero element. Then the product
formula gives

dω(x) +
∑

P ′ 6=P

dP ′vP ′(x) = 0.

In particular, if we denote by (x) = Bx the fractional ideal generated by x, we get dω(x) =
− deg(x) and, since clearly deg q−1 ≤ deg(x), we get dω(x) ≤ − deg q−1 = deg q. When q = q̃u,v,
we see from the hypothesis on n that

ω(x) ≤ 1

d
deg qu,v <

n

2eP
.

This implies the second identity. In order to get the first one, it will suffice to prove that
deg qu,v ≤ 2 deg q̃u,v. Now this falls easily from the definitions and the basic properties of deg.
Indeed, we have

deg q̃u,v = − deg bu − deg pu,v̄ = deg b−1
u − deg pu,v̄ ≥ − deg pu,v̄,

the last inequality coming from the fact that b−1
u ⊂ B, hence it has positive degree. And since

pū,v = pu,v̄, we get

deg q̃u,v ≥ − deg pu,v̄ = −1

2
(deg pu,v̄ + deg pū,v) =

1

2
deg qu,v.

This concludes the proof.

Having Lemma 4.4 at hand, and recalling that s ∈ G(A). we can study stabilizers of vertices
in X for the action of G(A) by analyzing the stabilizers of vertices of the form λn(u, v) with
(u, v) ∈ H(L,K). The results that follow, and in particular Proposition 4.12, can be seen then
as an analogue of [10, Lemma 3.4] in the context where G = SU(h).

We start however by studying a simpler type of subgroup, which are the stabilizers of the
visual limits of the rays r(u, v). In order to proceed, we need to fix some notations.

Recall that G(F) and T (F) denote the subgroups of G(K) and T (K) whose coefficients in
the matrix representation are contained in F ⊂ K. In particular, T (F) consists of elements
ã(t) with t ∈ F× ⊂ K×. Let B be the subgroup of G(K) that is the internal semi-direct
product B := Ua(K) ⋊ T (F), i.e. elements of the form ua(x, y)ã(t) with (x, y) ∈ H(L,K) and
t ∈ F× ⊂ L×.

4.8 Definition (Stabilizers of visual limits). For (u, v) ∈ H(L,K), define the group

Stab(u, v) = g−1
u,vBgu,v ∩G(A).

Denote by U(u, v) the subgroup of its unipotent elements (it is a group because B is contained
in B(K) and B is solvable).
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The fact that this subgroup is indeed the stabilizer of the visual limit of r(u, v) will be proved
in Proposition 4.12. We start by studying in detail the subsets U(u, v). In order to do so, note
that H(L,K)0 can be seen as an A-module via b · (0, v) := (0, bv). On the other hand, the
projection onto the first coordinate π1 : H(L,K) → L is a surjective group homomorphism
with kernel H(L,K)0. The quotient group H(L,K)/H(L,K)0 is also naturally endowed with
an A-module structure by b · (x,−) = (bx,−) via the induced isomorphism.

4.9 Lemma. Let (u, v) ∈ H(L,K).

1. There is a unique proper and finitely generated A-submodule H(u, v)0 of H(L,K)0 ∼= K
such that

g−1
u,vU2a(K)gu,v ∩G(A) =

{
g−1
u,vua

(
x, y

)
gu,v, (x, y) ∈ H(u, v)0

}
.

More precisely, we have H(u, v)0 = H(L,K)0∩ (0× qu,v), which is a nontrivial A-module.

2. There is a unique subgroup H(u, v) of H(L,K) such that

U(u, v) = g−1
u,vUa(K)gu,v ∩G(A) = {g−1

u,vua
(
x, y

)
gu,v, (x, y) ∈ H(u, v)}.

Moreover, H(u, v) contains H(u, v)0 as a normal subgroup, is contained in L×B, and the
quotient group H(u, v)/H(u, v)0 canonically identifies, as projection onto the first coordi-
nate, with a finitely generated (and therefore proper) A-submodule of H(L,K)/H(L,K)0 ∼=
L.

3. The subset U(u, v) is a normal subgroup of Stab(u, v) and the quotient group
Stab(u, v)/U(u, v) is isomorphic to a subgroup of F×.

Proof. For any subset X of H(L,K), denote by ua(X) = {ua(x, y) : (x, y) ∈ X}. Note that the
subgroup U2a(K) of Ua(K) is equal to ua

(
H(L,K)0

)
.

The existence of subgroups H(u, v)0 ⊂ H(L,K)0 and H(u, v) ⊂ H(L,K) is immediate
since ua realizes group isomorphisms H(L,K) → Ua(K) and H(L,K)0 → U2a(K). Moreover,
H(u, v)0 is a normal subgroup of H(u, v) as inverse image by the group isomorphism ua of the
normal subgroup U2a(K) ∩ gu,vG(A)g−1

u,v of Ua(K) ∩ gu,vG(A)g−1
u,v .

The equality U(u, v) = g−1
u,vUa(K)gu,v ∩G(A) is immediate by definition since Ua(K) are the

unipotent elements of B. Moreover, since Ua(K) is a normal subgroup of B, we deduce that
U(u, v) is a normal subgroup of Stab(u, v).

Note that g−1
u,vua(x, y)gu,v ∈ U(u, v) if and only if (x, y) ∈ H(L,K) and n ∈ M3(B), where

n = Mat
(
g−1
u,vua(x, y)gu,v

)
− Id =





v̄y + ūx −v̄x̄− ūv̄y −N(u)x −uv̄x̄+N(v)y + ūvx

−uy + x ux̄+N(u)y − ūx u
2
x̄− vuy + vx

y −x̄− yū ux̄+ yv



. (4.1)

Consider the matrix

m = Mat(g−1
u,v)



0 0 1
0 0 0
0 0 0


Mat(gu,v) =



v̄ −ūv̄ N(v)
−u N(u) −uv
1 −ū v


 .

Note that n2 = −N(x)m.
If x = 0, then n = ym. Thus n ∈ M3(B) if, and only if, y ∈ qu,v. This proves that

H(u, v)0 = H(L,K) ∩ (0× qu,v). In order to prove that H(u, v)0 is non trivial, we only need
to check that there exists a nonzero element z ∈ qu,v such that T (z) = 0. Now, note that
qu,v = qū,v̄ = qu,v. Thus, the trace of any element in qu,v belongs to qu,v. Note that qu,v is
not contained in K, since it is a B-ideal. So, let z0 ∈ qu,v r K. Then z = z0 − 1

2T (z0) ∈ qu,v
is a nontrivial element with trivial trace.1 Recalling that, since A is a Noetherian domain, an

1If we assumed char(F) = 2, since qu,v is a B-ideal stable by conjugation, we could take any z0 ∈ qu,v \ {0}
and consider z = N(z0) ∈ qu,v ∩K \ {0} (instead of z0 +

1
2
T (z0)) which is of trace T (z) = 0.
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A-submodule of a finitely generated A-module is finitely generated, this proves statement 1.

Consider any element (x, y) ∈ H(u, v) \H(u, v)0 so that −T (y) = N(x) 6= 0. Let t ∈ A be
any element. We want to prove the existence of an element yt ∈ L such that (tx, yt) ∈ H(u, v).
Write yt = ty + ztN(x) with zt ∈ L. Then

N(tx) + T (yt) = t2N(x) + tT (y) +N(x)T (zt) = N(x)
(
t2 − t+ T (zt)

)

Moreover
Mat

(
g−1
u,vua(tx, yt)gu,v

)
= Id+tn+ ztn

2

Thus Mat
(
g−1
u,vua(tx, yt)gu,v

)
∈ M3(B) ⇐⇒ ztn

2 = −ztN(x)m ∈ M3(B) since t ∈ A ⊂ B and
n ∈ M3(B) by assumption on (x, y). Hence

(tx, yt) ∈ H(u, v) ⇐⇒ T (zt) = t− t2 and zt ∈
1

N(x)
qu,v. (4.2)

Note that B ⊂ 1
N(x)qu,v since n2 = −N(x)m ∈ M3(B) and qu,v is a fractional B-ideal. If

we take zt = 1
2(t − t2), then zt ∈ A ⊂ 1

N(x)qu,v satisfies T (zt) = t − t2. In other words,
(
tx, ty − t(t−1)

2 N(x)
)
∈ H(u, v).

This proves that π1(H(u, v)) is an A-submodule of L. Note that this is a proper submodule
since equation (4.1) tells us, by looking at the first column, that y ∈ B and hence x ∈ uB +B.
In particular, since uB + B is finitely generated as an A-module, so is π1(H(u, v)). Since
H(u, v) ∩ H(L,K)0 = H(u, v)0, the isomorphism of A-modules H(L,K)/H(L,K)0 → L in-
duced by π1 provides an isomorphism H(u, v)/H(u, v)0 → π1(H(u, v)). This completes the
proof of statement 2.

Finally, consider the composite ϕ of the group homomorphism Stab(u, v) → B given
by g 7→ gu,vgg

−1
u,v and the quotient group homomorphism B → B/Ua(K) ∼= T (F). Then

kerϕ = g−1
u,vUa(K)gu,v ∩ Stab(u, v) = U(u, v). Hence ϕ induces an isomorphism between

Stab(u, v)/U(u, v) and a subgroup of T (F). Since T (F) is isomorphic to F× via ã, we deduce
statement 3.

4.10 Remark. In the rest of the article, we only need to know that π1(H(u, v)) is an F-vector
space. Actually, if F contains at least 3 elements, this is equivalent to π1(H(u, v)) being an
A-module. Indeed, there is t0 ∈ F such that t0 − t20 ∈ F× = A×. Thus, the existence of yt for
any t ∈ A in the proof above becomes equivalent to the existence of yt0 , taking yt = t−t2

t0−t20
yt0 by

linearity of T and the fact that 1
N(x)qu,v is a fractional B-ideal. Moreover, in the particular case

where F = F2, it is simply obvious that π1(H(u, v)) is an F-vector space.
However, fields of characteristic 2 provide new issues to our argument. Indeed, if char(F) = 2,

we cannot define zt = t(1−t)
2 . For t ∈ F r {0, 1}, up to dividing by t − t2, the existence of a

zt ∈ B satisfying conditions of (4.2) is equivalent to that of an element z1 ∈ B with T (z1) = 1.
If such an element exists, we take zt = z1(t − t2). But in characteristic 2, it may happen that
such an element does not exist. For instance, if L = K(α), where α2 + α + 1

r = 0, for some
r ∈ A with valuation ω(r) < 0, one can easily show that there is no element in B with trace
equal to 1. It could happen that such an element exists in 1

N(x)qu,v, but we do not know how
much bigger than B is this fractional ideal, which of course depends on x. This calls for further
analysis, which is a reason why we have avoided fields of characteristic 2 in this article.

4.11 Definition (Stabilizers of vertices). For (u, v) ∈ H(L,K) and n ∈ Z>0, define the group

Stab(u, v, n) = StabG(A)

(
λn(u, v)

)
.
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Denote by U(u, v, n) the subset of its unipotent elements and by S(u, v, n) the subset of its
semisimple elements.

The following result gives all the information we need about these stabilizers.

4.12 Proposition. Let (u, v) ∈ H(L,K) and N0 = N0(u, v) :=
⌈
2eP
d deg q̃u,v

⌉
. Then:

1. We have Stab(u, v, n) ⊂ Stab(u, v, n + 1) for every n > N0.

2. We have Stab(u, v) =
⋃

n>N0
Stab(u, v, n). In particular, Stab(u, v) is the stabilizer in

G(A) of the visual limit of r(u, v).

3. We have, for every n > N0,

Stab(u, v, n) =
{
g−1
u,vua(x, y)ã(t)gu,v ∈ Stab(u, v) : (x, y) ∈ H(L,K), ω(y) > − n

eP

}
.

4. There exists a non zero B-ideal I = I(u, v) such that I = I and H(L,K)I := H(L,K) ∩
(I × I) satisfies, for every n > N0,

U(u, v, n) ⊇
{
g−1
u,vua(x, y)gu,v : (x, y) ∈ H(L,K)I , ω(y) > − n

eP

}
.

Proof. In this proof, given fractional ideals bi,j of B, we denote for simplicity:



b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


 =







b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


 ∈ M3(L), bi,j ∈ bi,j ∀i, j



 .

Clearly, we have:

Stab(u, v, n) = G(A) ∩ g−1
u,v StabG(KP )(λn(∞))gu,v

Let g ∈ G(A) ⊂ M3(B) =



B B B
B B B
B B B


. Then

gu,vgg
−1
u,v = u−a(u, v) (sgs) u−a(−u, v̄)

∈



1 0 0
u 1 0
v −ū 1






B B B
B B B
B B B







1 0 0
−u 1 0
v̄ ū 1




⊂



1 0 0
u 1 0
v −ū 1






pu,v̄ bū B
pu,v̄ bū B
pu,v̄ bū B




⊂




L L L
pu,v̄bu L L
pu,v̄pū,v būpū,v L


 =




L L L

q̃u,v
−1

L L

qu,v
−1 q̃ū,v̄

−1
L




By [7, 9.3(i) and 8.10 (ii)], we know that:

StabG(KP )(λn(∞)) = U−a,λn(∞)Ua,λn(∞)Nλn(∞) (4.3)
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where

U−a,λn(∞) =

{
u−a(u, v),

1

2
ω(v) > −(−a)(λn(∞)) =

n

2eP

}
,

Ua,λn(∞) =

{
ua(u, v),

1

2
ω(v) > −a(λn(∞)) = − n

2eP

} (4.4)

and
Nλn(∞) = StabNG(S)(KP )(λn(∞)) = {1, ã(t)s} · T (KP )b

with 1
2ω(t) = −a(λn(∞)) = − n

2eP
by [7, 8.6(ii), 4.21(iii) and 4.14(i)].

Now assume that g ∈ Stab(u, v, n) so that h = gu,vgg
−1
u,v ∈ StabG(KP )(λn(∞)) and write it

as: h = u−a(U, V )ua(X,Y )n for some (U, V ), (X,Y ) ∈ H(LP ,KP ) and n ∈ {1, ã(t)s} · T (KP )b
such that: {

2ω(X) > ω(Y ) > − n
eP

2ω(U) > ω(V ) > n
eP

If n ∈ T (KP )b, then write it as n = ã(t) with t ∈ OP , then we have:

Mat(h) =




1 0 0
U 1 0
V −Ū 1






1 −X̄ Y
0 1 X
0 0 1






t 0 0
0 t̄/t 0
0 0 1/t̄




=



t −(t̄/t)X̄ (1/t̄)Y
tU (t̄/t)(1 − X̄U) (1/t̄)(X + UY )
tV −(t̄/t)(Ū + V X̄) (1/t̄)(1− ŪX + V Y )




∈




L L L

q̃u,v
−1

L L

qu,v
−1 q̃ū,v̄

−1
L




But since

ω(tU) >
n

2eP
,

ω(tV ) >
n

eP
,

ω(−(t̄/t)(Ū + V X̄)) > min(ω(U), ω(V ) + ω(X)) >
n

2eP
,

we deduce from Lemma 4.7 that h ∈



L L L
0 L L
0 0 L


.

Otherwise n = ã(t)s for some t ∈ LP such that ω(t) > −n
eP

. Thus, we have:

Mat(h) =




1 0 0
U 1 0
V −Ū 1






1 −X̄ Y
0 1 X
0 0 1






t 0 0
0 t̄/t 0
0 0 1/t̄







0 0 −1
0 −1 0
−1 0 0




=




−(1/t̄)Y (t̄/t)X̄ −t
−(1/t̄)(X + UY ) −(t̄/t)(1− X̄U −tU

−(1/t̄)(1 − ŪX + V Y ) (t̄/t)(Ū + V X̄) −tV




∈




L L L

q̃u,v
−1

L L

qu,v
−1 q̃ū,v̄

−1
L



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But since

ω(−(1/t̄)(X + UY )) >
n

eP
+min(ω(X), ω(U) + ω(Y ) >

n

2eP
,

ω(−(1/t̄)(1− ŪX + V Y )) >
n

eP
+min(0, ω(U) + ω(X), ω(V ) + ω(Y )) >

n

eP
,

ω((t̄/t)(Ū + V X̄)) > min(ω(U), ω(V ) + ω(X)) >
n

2eP
,

we deduce from Lemma 4.7 that h ∈



L L L
0 L L
0 0 L


.

Hence, in both cases, we have h ∈ B(K) ∩ StabG(KP )(λn(∞)) and one can write h =
ua(x, y)ã(t) for some t ∈ L× and (x, y) ∈ H(L,K) with

{
ω(y) > − n

eP
ω(t) = 0

The characteristic polynomial of g has coefficients in B with non-negative valuation in P since
the valuation of its eigenvalues (t, t̄/t, 1/t̄) is equal to 0. Hence, the characteristic polynomial of
g has coefficients in F. Furthermore, as F is algebraically closed in L, then t ∈ F×. We see then
that

Stab(u, v, n) ⊆
{
g−1
u,vua(x, y)ã(t)gu,v, ua(x, y)ã(t) ∈ B, ω(y) > − n

eP
and ω(x) > − n

2eP

}
.

Now we can prove 1. Let h ∈ gu,vG(A)g
−1
u,v ∩ StabG(KP )(λn(∞)). By the previous discussion, h

has the form h = ua(x, y)ã(t), for some t ∈ F∗ and (x, y) ∈ H(L,K) with 2ω(x) > ω(y) > − n
eP

.
This implies that h ∈ Ua,λn(∞)T (F) ⊆ U−a,λn+1(∞)Ua,λn+1(∞)Nλn+1(∞) by (4.3). We conclude
that h ∈ gu,vG(A)g−1

u,v ∩ StabG(KP )(λn+1(∞)). This proves 1.

We have seen that Stab(u, v, n) ⊆ g−1
u,vBgu,v for any n > N0. In particular, we deduce that⋃

n>N0
Stab(u, v, n) ⊆ g−1

u,vBgu,v ∩G(A) = Stab(u, v).
Conversely, let b ∈ Stab(u, v) and write it b = g−1

u,vua(x, y)ã(t)gu,v ∈ G(A). Then
gu,vbg

−1
u,v = ua(x, y)ã(t). We have that ã(t) ∈ T (F) ⊂ T (KP )b ⊂ StabG(KP )(λn(∞))

for any n ∈ Z>0 since T (KP )b fixes the standard apartment. Moreover, for n1 > N0

large enough, we have that ω(y) > − n1
eP

. Hence ua(x, y) ∈ StabG(KP )(λn1(∞)). Thus,
ua(x, y)ã(t) ∈ StabG(KP )(λn1(∞)) and, since b ∈ G(A), we deduce that b ∈ Stab(u, v, n1).
Hence we have Stab(u, v) ⊆ ⋃

n>N0
Stab(u, v, n), and therefore the equality of 2. This equality

clearly implies that Stab(u, v) stabilizes the visual limit of r(u, v). On the other hand, if
g ∈ G(A) stabilizes the visual limit of r(u, v), then the element gu,vgg−1

u,v stabilizes the visual
limit of r(∞), hence it is contained in B(K). We can write gu,vgg−1

u,v = ua(x, y)ã(t), for some
t ∈ L× and (x, y) ∈ H(L,K). Then, the eigenvalues of g are t, t̄/t and 1/t̄, which belong
to L. On the other hand, the characteristic polynomial of g ∈ M3(B) belongs to B[x], and
therefore t, t̄/t and 1/t̄ are integral over B. Since B is integrally closed, we get t, t̄/t, 1/t̄ ∈ B.
In particular, we deduce that ω(t), ω(1/t) = ω(1/t̄) ≤ 0. This implies that ω(t) = 0, whence
t ∈ OQ ∩B = F. We conclude that gu,vgg−1

u,v ∈ B, so that g ∈ Stab(u, v). This proves 2.

We claim now that all elements in Stab(u, v, n + 1) r Stab(u, v, n) are of the form
g−1
u,vua(x, y)ã(t)gu,v with ω(y) = −n+1

eP
. Indeed, for any g ∈ Stab(u, v, n) we have
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h = gu,vgg
−1
u,v ∈ StabG(KP )(λn(∞)). So the uniqueness in the decomposition of any ele-

ment of StabG(KP )(λn(∞)) as a product in U−a,λn(∞)Ua,λn(∞)Nλn(∞),which follows from Bruhat
decomposition, shows the claim. This implies 3.

Finally, let us prove 4. Consider the matrix n given in (4.1), in the proof of Lemma 4.9.
Observe that all entries of n are linear polynomials in the variables x, x̄ and y. Moreover,
if we let pij(x, y) = aijx + bijy + cij x̄ be the polynomial corresponding to the entry (i, j)

of n, then for any i, j ∈ {1, 2, 3} we can write aij =
a′ij
a′′ij

, bij =
b′ij
b′′ij

and cij =
c′ij
c′′ij

, where

a′ij , a
′′
ij , b

′
ij , b

′′
ij , c

′
ij , c

′′
ij ∈ B. Let Kij be the principal B-ideal generated by a′′ijb

′′
ijc

′′
ij . Then n ∈

M3(B) if and only if a′ijx+ b′ijy+ c′ij x̄ ∈ Kij for each i, j ∈ {1, 2, 3}. So, the previous condition

holds for x, y ∈ ⋂3
i,j=1(Kij ∩Kij). In particular we can take I =

⋂3
i,j=1(Kij ∩Kij) ⊂ B, which

clearly satisfies I = I. This proves 4.

5 Riemann-Roch and cusps in X

In this section, we apply the Riemann-Roch Theorem in order to compare stabilizers of the
different λn(u, v). Let us recall first this statement and apply it to our content.

Riemann-Roch Theorem. Let J ⊂ L be a proper non-zero fractional B-ideal, which we see
as a line bundle associated to a divisor DJ in the affine curve Spec(B) = D r {Q}, and let
m ∈ Z>0. Note that deg(DJ ) = − deg(J). Recalling that Γ = ω(L×

P ) =
1
eP

Z, define

J [m] := L(DJ +mQ) =

{
x ∈ J : ω(x) ≥ −m

eP

}
.

We denote by gD the genus of D. Then by the Riemann-Roch Theorem [15, §1, Thm. 1.5.17]
the set J [m] is a finite-dimensional vector space over F, and when deg(DJ +mQ) ≥ 2gD − 1 we
have

dimF(J [m]) = deg(DJ +mQ) + 1− gD.

Let fP = [κQ : κP ] be the residual degree of L/K at P . Hence

deg(DJ +mQ) = − deg(J) +m deg(Q) = − deg(J) +mfP deg(P ) = − deg(J) +mfPd,

so that we finally get,

dimF(J [m]) = − deg(J) +mfPd+ 1− gD, when mfPd ≥ deg(J) + 2gD − 1. (5.1)

This result will help us to define the “legs of the spider”, that is, the cusps in the quotient
graph X . In order to do this, we use the rays r(u, v), but starting “away enough”. The first
result of this section fixes such a bound. But first we need some definitions.

5.1 Definition. We denote by M(u, v) := π1(gu,vU(u, v)g−1
u,v) the A-submodule of L defined

in Lemma 4.9.2. Note that it contains the B-ideal I(u, v) by Proposition 4.12.4. Similarly, we
define

M(u, v, n) := π1(gu,vU(u, v, n)g−1
u,v).

Finally, define r(u, v) as the F-dimension of the quotient M(u, v)/I(u, v).
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Note that M(u, v, n) contains I(u, v)[n2 ]. Indeed, for each x ∈ I(u, v)[n2 ] we have (x, y) ∈
H(L,K)I with y := −N(x)/2 and ω(y) = ω(N(x)) ≥ − n

eP
. So, it follows from Proposition

4.12.4 that g−1
u,vua(x, y)gu,v ∈ U(u, v, n), whence x ∈ π1(gu,vU(u, v, n)g−1

u,v).
Note also that M(u, v, n) is an F-vector space. Indeed, let x ∈ M(u, v, n) and let y ∈ L be

such that g−1
u,vua(x, y)gu,v ∈ U(u, v, n). For any λ ∈ F, the pair (λx, λ2y) belongs to H(L,K)

and satisfies ω(λ2y) = ω(y) ≥ − n
eP

. Thus, we get g−1
u,vua(λx, λ

2y)gu,v ∈ U(u, v, n) and λx ∈
M(u, v, n).

5.2 Lemma. The dimension r(u, v) is finite. Moreover, there exists N1 = N1(u, v) ∈ Z>0 such
that, for n ≥ N1, M(u, v, n)/I(u, v)[n2 ] has dimension r(u, v).

Proof. Let P (u, v) be the proper B-fractional ideal generated by M(u, v) ⊂ L. Then, since
B is a Dedekind domain, P (u, v)/I(u, v) is a finite-dimensional F-vector space. In particular,
M(u, v)/I(u, v) is a finite dimensional F-vector space, which proves the finiteness of r(u, v).

This implies that there exists a set {ai = ai(u, v)}ri=1 such that M(u, v) = I(u, v)⊕⊕r
i=1 aiF.

For each i ∈ {1, · · · , r}, let bi ∈ L, so that g−1
u,vua(ai, bi)gu,v ∈ U(u, v). Define then

N1 := max{N0(u, v),max{−eP · ω(bi) : i ∈ {1, . . . , r}}}.

Any σ ∈M(u, v, n) can be written as σ = a+a1f1+· · ·+amfm, where fi ∈ F and a ∈ I(u, v). Let
τ ∈ L such that g−1

u,vua(σ, τ)gu,v ∈ U(u, v, n). If n > N1, by definition, we have g−1
u,vua(ai, bi)gu,v ∈

U(u, v, n), hence ai ∈M(u, v, n) for all i, and thus a ∈M(u, v, n). Therefore, there exists b ∈ L
such that g−1

u,vua(a, b)gu,v ∈ U(u, v, n) and ω(b) ≥ − n
eP

. Then ω(a) = 1
2ω(T (b)) ≥ 1

2ω(b) ≥ − n
2eP

,
whence a ∈ I(u, v)[n2 ]. The result follows.

5.3 Definition. For (u, v) ∈ H(L,K), define

N(u, v) := max

{
2

fPd
(deg(I(u, v)) + 2gD − 1), N1(u, v)

}
.

We define r0(u, v) as the subray {λn(u, v) : n > N(u, v)} ⊂ r(u, v) of r(u, v) and c(u, v) ⊂ X as
the image of r0(u, v) in X via the canonical projection.

For x = λn(u, v) ∈ r(u, v), we denote by rx the edge defined by x = λn(u, v) and λn+1(u, v).

One must think of rx as the edge “going outwards”. This will allow us to see the cusps as
directed rays in some sense, which will come in handy when proving that they are actual rays
in X .

We start by using Riemann-Roch in order to bound the valency of the vertices in the cusps.

5.4 Lemma. Let x ∈ r0(u, v) be a lift of a vertex in c(u, v). Then all edges different from rx lie
on the same G(A)-orbit. In particular, every vertex of the subgraph c(u, v) of X has valency at
most two.

Proof. For any x ∈ v(X) we define V1(x) as the star of x, i.e, the subcomplex of X whose
vertices are x and its neighbors. Let Px = StabG(KP )(x) and P ∗

x =
⋂

w∈v(V1(x)) Pw. The group
P ∗
x is a normal subgroup of Px. We denote by πx : Px → Gx = Px/P

∗
x the canonical projection.

Let xn := λn(u, v) ∈ r(u, v) and write yn := λn(∞) so that xn = g−1
u,vyn. By [7, 9.7(i)], we

know that for every such x (resp. y) there is a subgroup Urx of Px (resp. Ury of Py), generated by
unipotent elements, acting transitively on the set of apartments containing rx (resp. ry). Hence,
the image Ūrx of Urx in Gx acts transitively on the sets of edges r 6= rx joined to x. We only
need to prove then that the image in Gxn of unipotent elements in Stab(u, v, n) generate Ūrxn ,
which amounts to proving that the image in Gyn of gu,vU(u, v, n)g−1

u,v generates Ūryn .
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By [7, Def 8.8], we have that

Uryn = 〈U−a,λn+1(∞), Ua,λn(∞)〉 and P ∗
yn ⊇ 〈U−a,λn+1(∞), Ua,λn−1(∞)〉,

where these groups were defined in (4.4). So we only need to prove that gu,vU(u, v, n)g−1
u,v covers

the quotient Ua,λn(∞)/Ua,λn−1(∞).
Consider then ua(x, y) ∈ Ua,λn(∞) with ω(y) = − n

eP
. Assume first that ω(T (y)) > ω(y) and

define y′ := y − 1
2T (y). We have then ω(y′) = ω(y) and T (y′) = 0. We claim that we can

write y′ as y′ = v0 + v1, with v0 ∈ I = I(u, v), ω(v0) = ω(y′) = ω(y) and ω(v1) > ω(v0), where
I(u, v) is defined in Proposition 4.12. Indeed, under the condition −ω(y) > N(u, v), the quotient
I[−ePω(y)]/I[1− ePω(y)] has the same F-dimension as κQ, as it can be deduced from equation
(5.1), hence such an element v0 always exists. Moreover, we may assume that T (v0) = 0. Indeed,
since T (y′) = 0, we conclude that T (v0) = −T (v1). And since ω(−T (v1)) ≥ ω(−v1) > ω(v0),
we can replace v0 by v0 − 1

2T (v0) and get our claim since T (v0) ∈ I(u, v) (recall that I = I).
We have then that ua(0, v0) ∈ gu,vU(u, v, n)g−1

u,v and, if we set v2 = v1 +
1
2T (y), we get the

matrix equality ua(x, y) = ua(x, v2)ua(0, v0). Since both ua(x, y) and ua(0, v0) are in Ua, then so
does ua(x, v2) and thus N(x) + T (v2) = 0. And since both w1 and T (v1) have valuation greater
than ω(y), we get that ua(x, v2) ∈ Ua,λn−1(∞), which concludes the argument in this case.

Assume finally that ω(T (y)) = ω(y). Using once again the Riemann-Roch Theorem, we
can write x as x = u0 + u1, with u0 ∈ I = I(u, v), ω(u0) = ω(x) and ω(u1) > ω(x). Define
v0 := −1

2u0u0, so that v0 ∈ I (recall that I is an ideal of B), ω(v0) = 2ω(u0) = 2ω(x)
and N(u0) + T (v0) = 0. In particular, we may consider the element ua(u0, v0) ∈ Ua, which
is actually in gu,vU(u, v, n)g−1

u,v by Proposition 4.12.4. Finally, define v1 := y + u0u1 − v0,
so that we get the matrix equality ua(x, y) = ua(u1, v1)ua(u0, v0). In particular, since both
ua(x, y) and ua(u0, v0) are in Ua, we see that so does ua(u1, v1) and thus N(u1) + T (v1) = 0. If
ω(v1) > ω(y), then ua(u1, v1) ∈ Ua,λn−1(∞) and we are done. Otherwise, since by construction
we have ω(u0u1) > ω(v0) = ω(y), we get ω(v1) ≥ ω(y) and thus we may assume ω(v1) = ω(y).
Now, since ω(u1) > ω(x), we see that

ω(T (v1)) = ω(N(u1)) > ω(N(x)) = ω(T (y)) = ω(y) = ω(v1).

So that up to replacing our element ua(x, y) ∈ Ua,λn(∞) by ua(u1, v1), we are reduced to the first
case, which concludes the proof.

We would like to prove now that c(u, v) is actually a ray in X. In order to do this, we apply
Lemma 5.2 (which depends on Riemann-Roch) as follows.

5.5 Lemma. If λn(u, v) and λm(u′, v′) are on the same G(A)-orbit with n > N(u, v) and
m > N(u′, v′), then

fPd
⌊n
2

⌋
− deg

(
I(u, v)

)
+ r(u, v) = fPd

⌊m
2

⌋
− deg

(
I(u′, v′)

)
+ r(u′, v′).

In particular, r0(u, v) does not have two vertices in the same G(A)-orbit, i.e. c(u, v) is a ray.

Proof. Suppose that there exists g ∈ G(A) such that g ·λn(u, v) = λm(u′, v′). Then the element
h = gu′,v′gg

−1
u,v ∈ G(K) satisfies that hU(u, v, n)h−1 = U(u′, v′,m). On the other hand, by

Lemma 5.2, we have

dimF(M(u, v, n)) = dimF(I(u, v)[
n
2 ]) + r(u, v), (5.2)

and an analogous equality holds for M(u′, v′,m). So, it follows from the hypothesis on m and
n and the Riemann-Roch Theorem (cf. equation (5.1)) that M(u, v, n) and M(u′, v′,m) are
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both nontrivial. In particular, there are upper triangular matrices in U(u, v, n) with nontrivial
coordinates above the diagonal. Let g1 = ua(u1, v1) ∈ U(u, v, n), with u1, v1 6= 0, and write
Mat(h) = (aij)

3
i,j=1. So, it follows from hU(u, v, n)h−1 = U(u′, v′,m), that there exists g2 =

ua(u2, v2) ∈ U(u′, v′,m) such that




a11 a12 a13

a21 a22 a23

a31 a32 a33









1 −u1 v1

0 1 u1

0 0 1



 =





1 −u2 v2

0 1 u2

0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



,

whence we have




a11 a12 − u1a11 a13 + u1a12 + v1a11

a21 a22 − u1a21 a23 + u1a22 + v1a21

a31 a32 − u1a31 a33 + u1a32 + v1a31



 =





a11 − u2a21 + v2a31 a12 − u2a22 + v2a32 a13 − u2a23 + v2a33

a21 + u2a31 a22 + u2a32 a23 + u2a33

a31 a32 a33



.

Thus, if we analyze the coordinates in the last row of the previous matrices, we deduce a31 =
0, and then a32 = 0. Note that, if u2 = 0 (and hence v2 6= 0), then, it follows from the
previous equation, by comparing the second columns of both matrices, that a11 = a21 = 0,
which contradicts the fact that h is invertible. Thus, we may assume that u2 6= 0. We deduce
then, by comparing the first columns of the previous matrices, that a21 = 0. Finally, we conclude
that Mat(h) is a upper triangular matrix. In other words, h = ã(t)ua(z, w), for some t ∈ L×

and some (z, w) ∈ H(L,K). Hence, for ua(x, y) ∈ U(u, v, n) we have

hua(x, y)h
−1 = ua

(
t
2
/tx, tt(y + xz − zx)

)
.

This implies that M(u′, v′,m) = λM(u, v, n), where λ = t
2
/t ∈ L×. In particular,

dimF(M(u′, v′,m)) = dimF(M(u, v, n)) and thus equation (5.2) together with the Riemann-
Roch Theorem imply that

fPd
⌊n
2

⌋
+ 1 − deg

(
I(u, v)

)
− g + r(u, v) = fPd

⌊m
2

⌋
+ 1 − deg

(
I(u′, v′)) − g + r(u′, v′),

and the result follows.

The next result builds on the last two and gives a criterion for the equivalency of two rays
c(u, v) and c(u′, v′). Moreover, this result shows that the intersection of non-equivalent rays on
X is a finite subgraph of X. Obviously, this results applies to the image in X of r(∞) too, by
replacing r(0, 0) by r(∞).

5.6 Proposition. Suppose that λn(u, v) and λm(u′, v′), are in the same G(A)-orbit for some
n > N(u, v) and m > N(u′, v′). Then λn+t(u, v) and λm+t(u

′, v′) are in the same G(A)-orbit,
for all t ∈ Z≥0.

Proof. We denote by w the image of w ∈ v(X) in X. By an inductive argument we can
reduce our proof to the case t = 1. By Lemma 5.4, if λn(u, v) = λm(u′, v′) then λn+1(u, v) ∈{
λm+1(u′, v′), λm−1(u′, v′)

}
. Assume that λn+1(u, v) = λm−1(u′, v′), then by Lemma 5.5 we

have that

fP d
⌊m
2

⌋
− deg(I(u, v)) + r(u′, v′) = fPd

⌊n
2

⌋
− deg I(u′, v′) + r(u, v),

and

fPd

⌊
m− 1

2

⌋
− deg(I(u, v)) + r(u′, v′) = fPd

⌊
n+ 1

2

⌋
− deg(I(u′, v′)) + r(u, v),

whence we get a contradiction. Hence λn+1(u, v) = λm+1(u′, v′), and the result follows.
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As a consequence, we get the following result, which will allow us to define the cusps in the
quotient graph, that is, the “legs of the spider”.

5.7 Corollary. Suppose that c(u, v) is equivalent to c(u′, v′). Then either c(u, v) is a subgraph
of c(u′, v′) or the converse.

Proof. Since the two rays are equivalent, we know that they contain at least one common vertex
x̄, i.e., x̄ = λn(u, v) = λm(u′, v′), with n > N(u, v) and m > N(u′, v′). By Proposition 5.6, we
know that there is a ray in X starting at x̄ that is contained both in c(u, v) and c(u′, v′). If x̄ is
the terminal vertex of either c(u, v) or c(u′, v′), then we are done. Otherwise, by Lemma 5.4, we
know that x has valency 2 and hence c(u, v) and c(u′, v′) must coincide on the preceding vertex,
that is λn−1(u, v) = λm−1(u′, v′). Arguing by induction, we may assume that x̄ is the terminal
vertex of at least one of the two rays, which concludes the proof.

5.8 Remark. Let ∂∞(X)rat be the set of visual limits of the r(u, v) for (u, v) ∈ H(L,K) ∪ {∞}.
The set of visual limits ∂∞(X) of X (which corresponds to the spherical building associated to
(G,KP )) may be identifed with H(LQ,KP )∪{∞}. With this identification, ∂∞(X)rat identifies
with H(L,K)∪{∞} which is a strict subset. Thus, there are rays g ·r(∞) for g ∈ G(KP )rG(K)
whose visual limit is in ∂∞(X) r ∂∞(X)rat. With our method, which follows Mason’s method
for SL2, we cannot say anything about the behaviour of these rays. In particular, we cannot
exclude that their image in X is eventually a cusp ray contained in the “body of the spider”,
providing “irrational cusps” inside it. This was discarded for SL2 by Serre using deeper results
on vector bundles of rank 2.

6 Lattice interpretation of vertices and edges

In this section, we use a rather well known description of X in terms of three dimensional
lattices to study the set of neighbors of a fixed vertex in X. This point of view will be useful
when dealing with examples in Section 11 and in some proofs in Section 7.

It is possible to define the Bruhat-Tits tree for SU(h) in terms of the Bruhat-Tits building
for SL3 (c.f. [5, §2]). One of the two types of vertices of the tree are the vertices in the building
that correspond to the homothety classes [M ] of unimodular lattices M , where [Λ] denotes the
class of a lattice Λ, while the other corresponds to pairs of neighboring classes of the form
([Λ], [Λ̂]), where Λ̂ = {x ∈ L3 | h(x,Λ) ⊆ B}. Inside a (suitable) fixed apartment, the vertex
corresponding to a pair ([Λ], [Λ̂]) can be seen as the middle point of the edge joining the vertices
corresponding to [Λ] and [Λ̂], as it is shown in Figure 1.

This gives a simple way to describe the neighbors of each vertex:

Neighbors of a unimodular lattice. Consider the class of a local unimodular lattice M .
This is the case for instance of the special vertex λ0(∞), which corresponds to the class of the
lattice Λ0 = O3

Q. The neighbors of [M ] are the pairs ([Λ],[Λ̂]), where Λ is a maximal proper

integral sublattice of M and Λ̂ = M + OQπ
−1
Q v, with v ∈ M primitive. The condition that Λ

and Λ̂ are neighbors translates as πQ dividing h(v, v).
Recall that, when the cover ψ : D → C ramifies at Q, we have x̄ ≡ x (modπQ) for x ∈ OQ.

Therefore, if we denote by MQ the quotient M/πQM ∼= κ3Q, the induced form hQ :MQ×MQ →
κQ is a non-singular symmetric bilinear form. When ψ is inert at P , the same construction
defines a hermitian form over the residue field. In either case, the neighbors of the lattice M are
in correspondence with the isotropic lines in the space MQ.
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Figure 1: The building for the unitary group inside the building for SL3.

Neighbors of a pair of lattices. Every hermitian lattice has a Jordan decomposition,
i.e. an orthogonal decomposition of the form

Λ = Λm ⊥ Λm+1 ⊥ · · · ⊥ Λn,

for some integers m ≤ n, where each lattice Λi is πiQ-modular, in the sense that h(v,Λi) = πiQOQ

for every primitive vector v ∈ Λi. Note that πQΛi is πi+2
Q -modular. A simple computation shows

that
Λ̂ = π−m

Q Λm ⊥ π−m−1
Q Λm+1 ⊥ · · · ⊥ π−n

Q Λn.

In particular, two mutually dual classes [Λ] and [Λ̂] are neighbors in the building of SL3 if and
only if each is a sum of precisely two consecutive Jordan components. Multiplying by a scalar
and replacing Λ by Λ̂ if needed, we might assume Λ = Λ0 ⊥ Λ1. By discriminant considerations,
we conclude that Λ0 has rank 1 and Λ1 has rank 2. For such a pair, its unimodular neighbors
in the tree of SU(h) have the form Λ+OQπ

−1
Q v, where v ∈ Λ1 satisfies h(v, v) ∈ π2QOQ. Up to

a re-scaling, i.e. replacing h by πQh, we can again reduce the problem to the study of isotropic
lines in a two dimensional κQ-space Λ1,Q = Λ1/πQΛ1. Note however that the re-scaling must be
done carefully since we still want to deal with a hermitian or a skew-hermitian form. Therefore,
we assume that πQ ∈ KP in the unramified case, while we choose πQ of trace 0 in the ramified
case. In the latter case, πQh is skew-hermitian, whence it induces a skew-symmetric form in the
space Λ1,Q.

Forms and lattices at split places. Even though we are assuming throughout that ψ
does not split at P (since otherwise we would not have a tree to study), we need to analyze
the behaviour of these forms at split places for use in next section. Choose a point P ′ 6= P .
We assume that ψ−1(P ′) = {Q1, Q2}. In this case, we recall that LP ′ := KP ′ ⊗K L ∼= LQ1 ×
LQ2

∼= KP ′ × KP ′ . In this ring, the involution computes as (a, b) = (b, a), so in particular
ρ̄ = 1 − ρ, if ρ denotes the idempotent (1, 0). In this case, the closure of the three dimensional
space L3 is isomorphic to K3

P ′ × K3
P ′ as a module over the ring LP ′ . Furthermore, note that

h(ρv, ρw) = ρρ̄h(v,w) = 0, and the same holds for ρ̄ = 1− ρ. We conclude that

h
(
(v1, v2), (w1, w2)

)
= b(v1, w2) + b(v2, w1), (6.1)

for a suitable symmetric bilinear form over K. Furthermore, the “ring of integers” is BP ′
∼=

BQ1 × BQ2 , and lattices have the form M = M1 ×M2. In this context, unimodular B-lattices
give rise to pairs of dual lattices, with respect to the symmetric form b.
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7 On the number of cusps

In this section we parametrize cusps of X = G(A)\X, i.e. the “legs of the spider”, in terms
of the Picard group of B. More precisely, we have the following result.

7.1 Theorem. There are natural bijections between the following sets:

1. the set c(X) of cusps of the quotient graph X that are represented by c(u, v) for some
(u, v) ∈ H(L,K);

2. the double quotient G(A)\G(K)/B(K);

3. the set of G(A)-orbits of isotropic lines in L3, where the action comes from the natural
action of SL3(L);

4. the Picard group Pic(B).

Proof. Let us prove that c(X) is in bijection with G(A)\G(K)/B(K). Consider the set of rays
in X

Ω := {w · r(u, v) : (u, v) ∈ H(L,K), w ∈ {1, s}},
and define ∂∞(Ω) := {∂∞(r) : r ∈ Ω}. We claim that ∂∞(Ω) is stable under the natural action of
G(K) on ∂∞(X). Indeed, by definition of r(u, v), we know that ∂∞(Ω) = Ua(K){1, s}·∂∞(r(∞)).
Moreover, the stabilizer of ∂∞(r(∞)) in G(K) is B(K). Then, by Bruhat decomposition we have

G(K) · ∂∞(r(∞)) = (B(K) ∪ Ua(K)sB(K)) · ∂∞(r(∞))

= ∂∞(r(∞)) ∪ Ua(K)s · ∂∞(r(∞))

= Ua(K) · ∂∞(r(∞)) ∪ Ua(K)s · ∂∞(r(∞))

= ∂∞(Ω),

so that ∂∞(Ω) is just the G(K)-orbit of ∂∞(r(∞)). In particular, we see that there is a natural
bijection between ∂∞(Ω) and G(K)/B(K) and hence G(A)\∂∞(Ω) ≃ G(A)\G(K)/B(K).

On the other hand, Proposition 5.6 implies that c(X) is in bijection with the quotient
G(A)\∂∞(Ω). This gives the desired bijection.

Let us prove now that G(A)\G(K)/B(K) is in bijection with the set of G(A)-orbits of
isotropic lines in L3 with respect to the natural action of G(A) ⊂ SL3(L) on L3. It is easy to
see that G(K) acts transitively on the set of isotropic lines in L3. Moreover, the stabilizer of
the line generated by (1, 0, 0), which is isotropic, is easily seen to correspond to upper triangular
matrices, i.e. B(K). This implies that isotropic lines in L3 are in natural correspondence with
the set G(K)/B(K), on which G(A) acts on the left, whence the second bijection.

Finally, let us relate isotropic lines in L3 with the Picard group of B. In order to do this, we
need the following lemma.

7.2 Lemma. Lel I1, . . . , In, J1, . . . , Jn ⊆ L be B-fractional ideals. If

I1 × · · · × In ∼= J1 × · · · × Jn (7.1)

as B-modules, then I1 · · · In ∼= J1 · · · Jn.
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Proof. Set Λ = I1 × · · · × In and M = J1 × · · · × Jn. The isomorphism at (7.1) can be
extended to a linear map f : Ln → Ln satisfying f(Λ) = M , by applying a tensor product
⊗BL on each side. We claim that det(f) generates the fractional ideal (J1 · · · Jn)(I1 · · · In)−1.
This proves the Lemma. The claim is proved by a local computation. We locally have the
identity f(ΛP ′) = MP ′ , at every local place P ′ 6= P . Local linear maps satisfy the formula

|det(f)|P ′µP ′(T ) = µP ′

(
f(T )

)
for any compact open set T ⊆ Ln

P ′ , where µP ′ denotes the local

Haar measure. The result follows now since the Haar measure on Ln
P ′ is the product measure.

Denote by Λ0 the canonical lattice B3 ⊂ L3. Let v be an arbitrary isotropic vector. Then
Lv ∩ Λ0 = Iv for some fractional ideal I. Certainly choosing a different generator for the space
Lv would replace I by another ideal in the same class, so the isotropic line completely determines
the ideal class of I. This defines a map from the set of isotropic lines to Pic(B). So, in order to
establish the last bijection, we only need to prove two facts:

1. Two lines that fall into the same class [I] ∈ Pic(B) are in the same G(A)-orbit, i.e. there
is an isometry of L3 that maps one line to the other.

2. For every fractional ideal J there exists an isotropic vector vJ satisfying LvJ ∩ Λ0 = JvJ .

Consider once again a fixed isotropic vector v and its corresponding ideal I. Let Q′ 6= Q
be a closed point in D, so that it defines a prime ideal in B and hence a finite place in L with
valuation ω′. Denote Λ0,Q′ the local lattice Λ0 ⊗B OQ′ ⊂ L3

Q′ . Fix a uniformizer π′ for this

place and let v′ = π′ω
′(I)v ∈ LQ′v be a local generator of the one dimensional lattice IQ′v. Then

LQ′v ∩ Λ0,Q′ = OQ′v′. We claim that h(Λ0,Q′ , v′) = OQ′ .
Indeed, consider the cover ψ : D → C corresponding to L/K, and set P ′ = ψ(Q′). Assume

ψ is ramified at P ′. Then, as we saw in Section 6, we have an induced non-singular bilinear
form hQ′ : κ3Q′ × κ3Q′ → κQ′ , whence hQ′(v′, w′) = 1, for some w′ ∈ κ3Q′ , since v′ 6= 0. The same
argument works if ψ is inert at P ′, except that now h is hermitian. Finally, if ψ is split at P ′,
i.e. ψ−1(P ′) = {Q1, Q2} with Q1 = Q′, the same argument can be applied using Formula (6.1).
The claim follows.

From the claim, applied to every Q′ 6= Q, we conclude that h(Λ0, Iv) = B, or equivalently
h(ĪΛ0, v) = B, whence there exists an element w ∈ ĪΛ0 such that h(w, v) = h(v,w) = 1.
Furthermore, note that h(w,w) ∈ ĪI, whence h(w,w)v ∈ Ī(Iv) ⊆ ĪΛ0. Thus, up to replacing w
by w− 1

2h(w,w)v, we may assume it is isotropic. We conclude that Ī−1w ⊆ Λ0 and h(Ī−1w, Iv) =
B. In particular, Λ1 := Ī−1w⊕ Iv is a unimodular sublattice of Λ0, whence we have a splitting
Λ0 = Λ1 ⊥ Λ⊥

1 .
Now let v′ be another isotropic vector satisfying Lv′ ∩ Λ0 = Iv′. Then we can write Λ0 =

Λ′
1 ⊥ (Λ′

1)
⊥, where Λ′

1 = Ī−1w′ ⊕ Iv′ for a suitable isotropic vector w′. It is immediate that Λ1

and Λ′
1 are isometric. By Lemma 7.2 the lattices Λ⊥

1 and (Λ′
1)

⊥ are isomorphic, and they are
also isometric by discriminant considerations. More precisely, we can assume Λ⊥

1 = I−1Īz and
(Λ′

1)
⊥ = I−1Īz′, where h(z, z) = h(z′, z′) = 1. With this we can define an isometry Λ0 → Λ0

and hence an isometry L3 → L3 (i.e. an element in G(A) seen as an element in SL3(B)) which
takes v to v′. This proves 1.

In order to prove 2, we observe that, for any ideal J , the lattice

(J̄−1w ⊕ Jv) ⊥ J−1J̄z,

with z as above, is a unimodular lattice that is locally isometric to Λ0, whence it is also globally
isometric since the group G has strong approximation (cf. [12, Thm. A]). The result follows.
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8 Proof of the main result

We can now give a proof of Theorem 2.1. The assertion for finite F will be proved further
below.

Proof of Theorem 2.1 (minus the last assertion). By Corollary 5.7 and Theorem 7.1, for every
element σ ∈ Pic(B) we can define the ray c(σ) as the union of the cusp rays c(u, v) whose class
in c(X) corresponds to σ. Defining vσ to be the tip of c(σ), Lemma 5.4 ensures then that we
can write

X = Y ∪
⊔

σ∈Pic(B)

c(σ);

with v(Y ) ∩ v
(
c(σ)

)
= {vσ} and e(Y ) ∩ e

(
c(σ)

)
= ∅ for some subgraph Y ⊂ X.

We are only left to prove that Y is connected. For this we choose two points ȳ and ȳ′ in Y
and two preimages y and y′ in the Bruhat-Tits tree X. Find a walk on X from y to y′, and look
at its image in X . If this walk contains a vertex in one of the rays c(σ), then it can do so only
by going through the vertex vσ, since every vertex in c(σ) has valency two by Lemma 5.4. If we
remove the section of the walk between the first and the last time it visits the vertex vσ, we get
a shorter walk, so we can iterate this process until we find a walk that contains only vertices in
Y . This finishes the proof.

We are now left with the last assertion of Theorem 2.1. In order to prove this results we
introduce some definitions.

Let ∆ be the spherical building of G(K), i.e. the simplicial complex that is the realization of
the poset of proper K-parabolic subgroups of G. Any vertex ξ of ∆ corresponds to a maximal
K-parabolic subgroup Pξ of G. In particular, the building ∆ is trivial if and only if G is
anisotropic over K. In our context, ∆ has dimension 0 since G has dimension 1. Indeed, ∆ can
be isometrically embedded in ∂∞(X). In this sense, we have that every ξ ∈ ∆ can be represented
by the equivalence class of a ray r(u, v), for some (u, v) ∈ H(L,K)∪{∞} (c.f. sections §3.1 and
§7). In all that follows we identify ∆ with its image in ∂∞(X). Then, for any pair (v, ξ) of a
vertex v ∈ v(X) and a vertex ξ ∈ ∆ we can define a ray r(v, ξ) as the geodesic ray in X from v
and whose visual limit is ξ.

In order to prove the last assertion of Theorem 2.1, which states the finiteness of Y (the
“body of the spider”) when F is a finite field, we need the following result, which is a direct
application of Theorem 1.4, proved by Bux, Köhl and Witzel.

8.1 Theorem. Assume that F is a finite field. Then there exist finitely many rays {ri =
r(vi, ξi)}si=1 for some ξi ∈ ∆ and vi ∈ X, and a constant L0 such that every point in X is within
distance L0 to the orbit of some ray ri.

With this, we immediately obtain the finiteness of Y in Theorem 2.1 as follows.

End of proof of Theorem 2.1. Let Y and (c(σ), vσ)σ∈Pic(B) be given by Theorem 2.1. As it was
stated above, since the rays ri given by Theorem 8.1 are defined by ξi ∈ ∆, they are equivalent
to a ray of the form r(u, v) for some (u, v) ∈ H(L,K) ∪ {∞}. This immediately implies by
construction that the image of ri in X is equivalent to one of the rays c(σ). Set L := L0 +
max{mi}si=1, where mi is the distance between the origins of ri and the corresponding c(σ).
Then clearly every vertex in X is at a distance at most L from one of the cusp rays c(σ). On the
other hand, the finiteness of F ensures the finiteness of Pic(B) and the finiteness of the valency
of every vertex in X. Putting everything together, we get the finiteness of Y .
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8.2 Remark. Note that Theorem 2.1 allows us to give a more precise version of the results of Bux,
Köhl and Witzel in the context of a finite field F. Indeed, while their results give fundamental
domains in X for the action of G(A), our result describes more precisely the structure of the
quotient graph X. For instance, knowing that the fundamental domain “looks like a spider” does
not imply that this is the case for X since we do not know a priori the valency of the vertices in
the “legs” after passing to the quotient. Moreover, we are able to describe precisely the number
of legs. This is impossible (or irrelevant) by definition with Bux, Köhl and Witzel’s approach
since they start from the K-group and then fix an arbitrary model over A, while we start with
an A-group from the very beginning.

9 Applications

In this section we use the theory developed above in order to study further the structure of
the group G(A).

9.1 Amalgams

In this section we analyze the structure of G(A) as an amalgam. In order to do this, we
extensively use Bass-Serre theory (cf. [13, Chap. I, §5]).

To start, we choose a maximal tree T of X and a lift j : T → X. Equivalently, let T be the
union of the cusp rays c(σ) of X for σ ∈ Pic(B), with a maximal tree of Y . Let (sX , tX , rX),
(sX , tX , rX) be the source, target and reverse maps of the respective graphs X and X . Let O be
an orientation of the edges inX , and set o(y) = 0, if y ∈ O, and o(y) = 1, if y 6∈ O, or equivalently
if rX(y) ∈ O. Then, we claim that we can extend j to a section j : e(X) → e(X) such that
j(rX(y)) = rX(j(y)), for all y ∈ e(X). Indeed, it suffices to define j(y), for y ∈ O r e(T ). In
this case we choose j(y) so that sX(j(y)) ∈ v(j(T )). Then, we have sX(j(y)) = j(sX(y)), for
all y ∈ O. We also choose gy ∈ G(A) satisfying tX(j(y)) = gy · j(tX(y)). This is possible since
tX(j(y)) and j(tX (y)) have the same image tX(y) in v(X). So, we extend the map y 7→ gy to
all edges in X by setting gȳ = g−1

y , for all y ∈ e(X), and gy = id, for all y ∈ e(T ). Thus, for
each y ∈ e(X) we get

sX(j(y)) = g−o(y)
y j(sX(y)), tX(j(y)) = g1−o(y)

y j(tX(y)), ∀y ∈ e(X).

We need to define a graph of groups (g,X) = (g(T ),X) associated to X and T (cf. [13,
Chap. I, §4.4]). This amounts to defining the following data

• For each vertex v ∈ v(X), we define the group Gv as the stabilizer in G(A) of j(v) ∈ v(X);

• for each edge y ∈ e(X), we define the group Gy as the stabilizer in G(A) of j(y) ∈ e(X);

• for each pair (v, y) where v is the target vertex of the edge y, we define a morphism

fy : Gy → Gv by g 7→ g
o(y)−1
y gg

1−o(y)
y . This definition is legitimate since we have

g
o(y)−1
y Gj(y)g

1−o(y)
y ⊆ Gj(t

X
(y)).

We can define the fundamental group associated to this graph of groups. Indeed, let F (g,X)
be the group generated by the groups Gv , where v ∈ v(X), and elements ay for each y ∈ e(X),
subject to the relations

ar
X
(y) = a−1

y , and ayfy(b)a
−1
y = fr

X
(y)(b), for all y ∈ e(X) and b ∈ Gy.

Then, the fundamental group π1(g) = π1(g,X) of (g,X) is, by definition, the quotient of F (g,X)
by the normal subgroup generated by the elements ay for y ∈ e(T ). Thus, if we denote by hy the
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image of ay in π1(g,X), the group π1(g,X) is generated by Gv for v ∈ v(X) and the elements
hy, for y ∈ e(X), subject to the relations

hr
X
(y) = h−1

y , for all y ∈ e(X),

hyfy(b)h
−1
y = fr

X
(y)(b), for all y ∈ e(X) and b ∈ Gy,

hy = id, for all y ∈ e(T ).

It can be proven that the group π1 is independent, up to isomorphism, of the choice of the graph
of groups g, and in particular of the tree T ⊂ X .

One of the fundamental results from Bass-Serre Theory implies that G(A) can be always
characterized from the action of G(A) on X (cf. [13, Chap. I, §5.4]). Indeed, it is isomorphic
to the fundamental group π1(g) = π1(g,X). We use this fact with no further explanation in all
that follows.

In the sequel, we assume that X is combinatorially finite. This will always be the case when
F is finite thanks to Theorem 2.1. We want to prove that G(A) is an amalgam of a group that
depends on Y (the “body” of the spider) and finitely many groups Gσ, for σ ∈ Pic(B) (the “legs”
of the spider).

Let c(σ) with σ ∈ Pic(B) be a cusp of X and fix a (u, v) ∈ H(L,K) such that c(σ) = c(u, v).
Let r0(u, v) be the subray of r(u, v) whose tip vertex is λN(u,v)+1(u, v). This is a lift of c(σ) to
X. Let xn = λn(u, v) ∈ r0(u, v) be a vertex different from the tip, and let yn be the edge joining
xn with xn+1. It follows from Proposition 4.12.1, that

· · · ⊂ StabG(A)(xn) ⊂ StabG(A)(xn+1) ⊂ StabG(A)(xn+2) ⊂ · · · .

In particular, we see that StabG(A)(yn) = StabG(A)(xn). From this, we see that Stab(u, v), which
is by Proposition 4.12.2 the union of all these stabilizers, is isomorphic to the fundamental group
Gσ of the graph of groups associated to c(u, v).

In all that follows, we denote by (u, v) = (u, v)σ ∈ H(L,K) the element fixed above for
σ ∈ Pic(B). Let H be the fundamental group of the restriction of the graph of groups g to Y .
Let vσ = λN(u,v)+1(u, v) be the intersection of c(σ) and Y as in Theorem 2.1 and let Gvσ be the
corresponding group in the graph of groups, that is Gvσ = Stab(u, v,N(u, v) + 1). Then there
are canonical injections Gvσ → H and Gvσ → Gσ.

9.1 Theorem. Assume that X is combinatorially finite. Then, G(A) is isomorphic to the sum
of Gσ, for σ ∈ Pic(B), and H, amalgamated along the groups Gvσ , according to the previously
defined injections. Moreover, Gσ is an extension of a subgroup of F∗ by H(u, v), where (u, v) =
(u, v)σ and H(u, v) is defined in Lemma 4.9.

In particular, when F is finite field, we have that H is finitely generated and Gvσ is finite for
every σ ∈ Pic(B).

Recall that in Lemma 4.9 we proved that H(u, v) is a subgroup ofH(L,K) whose intersection
with H(L,K)0 ∼= K is a finitely generated A-module H(u, v)0 and such that the quotient
H(u, v)/H(u, v)0 is also a finitely generated A-submodule of H(L,K)/H(L,K)0 ∼= L. This fact
and Theorem 9.1 imply then Theorem 2.2.

Proof. As Serre points out in [13, Chap. II, §2.5, Th. 10], if we have a graph of groups h, which
is obtained by “gluing” two graphs of groups h1 and h2 by a tree of groups h12, then there exist
two injections ι1 : h12 → h1 and ι2 : h12 → h2, such that π1(h) is isomorphic to the sum of π1(h1)
and π1(h2), amalgamated along π1(h12) according to ι1 and ι2. Given that Gσ = Stab(u, v), the
first part of the theorem follows from Theorem 2.1 and Lemma 4.9.
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Assume now that F is a finite field. Then, each vertex stabilizer is finite, since it is the
intersection of a compact subgroup of G(KP ) with a discrete one. In particular, we obtain that
Gvσ is finite. Moreover, in this context H is the fundamental group of a graph of groups whose
underlying graph is finite and whose vertex stabilizers are also finite. So, we conclude that H is
finitely generated. The result follows.

9.2 Corollary. The group G(A) is not finitely generated

Proof. Fix an element σ ∈ Pic(B). Let G′
σ be the group obtained by summing H with the

groups Gσ′ for σ′ 6= σ. Then, by Theorem 9.1 we have that G(A) is isomorphic to the sum of G′
σ

with Gσ, amalgamated along Gvσ . Recall that Gσ is the union of the strictly increasing sequence
of groups Stab(u, v, n), for n > N(u, v), where (u, v) = (u, v)σ . In particular, all these groups
contain Gvσ = Stab(u, v,N(u, v) + 1). So, for each n > N(u, v), we define G(A)n as the sum
of G′

σ with Stab(u, v, n), amalgamated along Gvσ . Then, we get that G(A) is the union of the
strictly increasing sequence G(A)n, which implies that it is not finitely generated.

9.2 Homology

We follow [13, II.2.8], where Serre studies the homology of the group G(A) when G = SL2

and F is a finite field. We keep notations as above and we assume that F is a finite field.
In particular, X̄ is combinatorially finite.

9.3 Proposition. Let M be a G(A)-module. Then there is a long exact sequence of homology
groups

· · · // Hi+1(G(A),M) //

⊕

σ∈Pic(B)

Hi(Gvσ ,M) // Hi(H,M)⊕
⊕

σ∈Pic(B)

Hi(Gσ ,M) EDBC
GF@A

// Hi(G(A),M) // · · · ,
and a long exact sequence of cohomology groups

· · · // H i(G(A),M) // H i(H,M)⊕
⊕

σ∈Pic(B)

H i(Gσ,M) //

⊕

σ∈Pic(B)

H i(Gvσ ,M) EDBC
GF
@A

// H i+1(G(A),M) // · · · .

Proof. By [13, II.2.8, Prop. 13], it suffices to define an action of G(A) on a suitable tree T0
satisfying the following properties:

• There exists a system of representatives (wσ)σ∈Pic(B)∪{∗} of v(T0) such that the stabilizer
of wσ in G(A) is Gσ, for σ ∈ Pic(B), and the stabilizer of w∗ is H.

• There exists a system of representatives (fσ)σ∈Pic(B) of e(T0) such that the stabilizer of fσ
in G(A) is Gvσ , for any σ ∈ Pic(B).

In order to define T0, we consider first the tree of groups naturally associated to the amalgam
obtained in Theorem 9.1 above, namely (cf. [13, I.4.4]):

•H

• GσGvσ

• Gω

Gvω

❥❥❥❥❥❥❥❥❥❥❥❥❥

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚
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Then [13, I.4.5, Thm. 9] gives us precisely the desired tree T0. Alternatively, one could follow
directly the second proof of [13, II.2.5, Thm. 10].

Still following Serre, we can use Theorem 9.1 in order to get the following result.

9.4 Proposition. Let M be a G(A)-module that is finitely generated as an abelian group. Let
p = char(F). Then:

(a) For i ≥ 2, the morphism

φ : Hi(H,M)⊕
⊕

σ∈Pic(B)

Hi(Gσ,M) → Hi(G(A),M),

has finite kernel and cokernel. For i = 1, ker(φ) is finite and coker(φ) is finitely generated.

(b) For i ≥ 2, the group Hi(H,M) is finite. For i ≤ 1 it is finitely generated.

(c) For i ≥ 1 and σ ∈ Pic(B), the group Hi(Gσ,M) is the direct sum of a finite group and a
countable p-primary torsion group.

Proof. By 9.3 and the finiteness of Pic(B), in order to prove assertion (a), it suffices to prove
that the groups Hi(Gvσ ,M) are finite, for i ≥ 1, and that H0(Gvσ ,M) is finitely generated.
Now these assertions follow immediately from the finiteness of Gvσ (proved in Theorem 9.1)
and the hypothesis on M .

Let us prove (b). We claim that H is virtually free of finite rank, which implies the assertion.
Now this is a direct consequence of Theorem 9.1 and [13, II.2.6, Prop. 11] applied to the graph
of groups (H, Y ).

Finally, for (c), fix σ ∈ Pic(B). Lemma 4.9.3, Proposition 4.12.2 and the finiteness of F tell
us that Gσ fits into an exact sequence

1 → Uσ → Gσ → Fσ → 1,

where Fσ is a finite abelian group of order prime to p and Uσ is a direct limit of finite p-
groups, hence a countable p-primary torsion group. Consider then the Hochschild-Serre spectral
sequence

Hi(Fσ ,Hj(Uσ,M)) ⇒ Hi+j(Gσ,M).

Since Uσ is a p-primary torsion group and Fσ has order prime to p, we have Hi(Fσ ,Hj(Uσ,M)) =
0 whenever i, j 6= 0. Moreover, the term Hi(Fσ ,H0(Uσ,M)) is clearly finite of order prime to
p and the term H0(Fσ ,Hj(Uσ,M)) is a quotient of Hj(Uσ ,M), which is clearly a countable
p-primary torsion group. This implies assertion (c).

This last result allows us to understand the homology group Hi(G(A),M) by using only
the collection of groups Hi(Gσ,M) for σ ∈ Pic(B). And these can be made explicit in theory
thanks to the results in Section 4. Indeed, the following corollary is an immediate consequence
of Proposition 9.4.

9.5 Corollary. The morphism

φ0 :
⊕

σ∈Pic(B)

Hi(Gσ ,M) → Hi(G(A),M).
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has finite kernel and cokernel for i ≥ 2 and, for i = 1, ker(φ0) is finite and coker(φ0) is finitely
generated.

In particular, the group Hi(G(A),M) is the direct sum of a finite group and a countable
p-primary torsion group for i ≥ 2.

The following result is also immediate.

9.6 Corollary. Assume that M is a finite module whose order is prime to p. Then Hi(G(A),M)
is finite for every i ≥ 0.

Finally, by taking M = Z, we get the following results

9.7 Corollary. The abelian group G(A)ab is finitely generated and its rank is bounded by the
order of Pic(B).

Proof. Indeed, since G(A)ab = H1(G(A),Z), we see from the exact sequence in Proposition 9.3
and Proposition 9.4 that the rank of G(A)ab is equal to the rank of its image in

⊕

σ∈Pic(B)

H0(Gvσ ,Z) = ZPic(B).

9.8 Corollary. One has Hi(G(A),Q) = 0, for i ≥ 2, and H1(G(A),Q) is a Q-vector space of
finite dimension that is isomorphic to H1(H,Q).

Proof. Remember that Hi(G(A),Q) = Hi(G(A),Z) ⊗ Q. It follows from Corollary 9.5 that
Hi(G(A),Z) is a torsion group for i ≥ 2, and then Hi(G(A),Q) = 0. The same argument
using Proposition 9.4 proves that Hi(Gvσ ,Q) = 0 and Hi(Gσ ,Q) = 0 for i ≥ 1. Then the
exact sequence in Proposition 9.3 shows that the homomorphism H1(H,Q) → H1(G(A),Q) is
an isomorphism.

10 An example: edges of λ0(∞) and their image in X

Using the notations from Section 4, let us consider the special vertex λ0(∞) ∈ X, which
corresponds to the unimodular lattice Λ0 = O3

Q. The corresponding stabilizer is the set G(F) =
G(A) ∩G(OQ). We can study several cases:

The isotrivial case. This case is well-documented in current literature [9]. This is the case
where the group-scheme G is actually defined over F and thus G(F) really corresponds to its
F-points in the usual sense. In this case, when Q is a point of degree 1, then the stabilizer G(F)
of λ0(∞) is the unitary group of a hermitian form for a quadratic extension over F. In this case,
it is easy to show that this group acts transitively on the isotropic lines and thus the stabilizer
of λ0(∞) acts transitively on the set of edges coming out from it. In particular, the image of
this vertex on the quotient graph will have valency 1.

The ramified case. Back to our setting, consider the case whereQ is a ramified point of degree
1. Then the hermitian form h becomes a bilinear form over the residue field F, as the action
of the Galois group is trivial there. Then G(F) becomes the orthogonal group corresponding to
this bilinear form, and the transitivity of the stabilizer of λ0(∞) on the set of edges coming out
from it follows as before. So, once again, the image of this vertex on the quotient graph will
have valency 1.
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The unramified case. Consider now the unramified case, i.e. where P has degree 1 and Q
has degree 2. In this case we do have a hermitian form defined over the residue field, which is a
quadratic extension of F, but the group G(F) does not correspond to the special unitary group of
this form. Indeed, one can check directly that, in this case, G(F) corresponds to the orthogonal
group of the bilinear form over F with the same Gram matrix, which is a subgroup of the
former. Thus, this case is much more involved, as it requires us to study orbits of isotropic lines
in a hermitian space under a certain orthogonal subgroup of the unitary group. We present this
computation below, for some particular base fields, to illustrate the difficulties of the general case.

We assume thus that P has degree 1 and Q has degree 2. In particular, κP = F and κQ is a
quadratic extension E = F(

√
a) of F whose Galois group is generated by σ. We identify F3 as a

subset of E3, and write vectors in the latter as z = w+
√
av, where both w and v belong to the

former. Note that the spanned line 〈z〉E has a generator in F3 precisely when 〈z〉E = 〈σ(z)〉E, or
equivalently, when w and v are F-linearly dependent. Moreover, the E-span 〈w, v〉E = 〈z, σ(z)〉E
is completely determined by the line and comes from a quadratic subspace of F3 by base change.
This naturally splits the problem in two parts:

1. Classify G(F)-orbits of binary quadratic subspaces of F3 whose E-span contains an isotropic
line.

2. Find the orbits of isotropic E-lines corresponding to each quadratic subspace.

After this analysis is done, one should not forget to add the obvious orbit corresponding to
the isotropic E-lines that come from isotropic F-lines, i.e., when w and v are F-linearly dependent.

Let us deal with the first part. The formula (x+y
√
a)(w+

√
av) = (xw+ayv)+

√
a(yw+xv)

tells us that we can replace w by any nontrivial vector in the space 〈w, v〉F. In particular, we
can assume it to be isotropic unless 〈w, v〉F is anisotropic as a quadratic space. Furthermore, if
w is isotropic, then so is v, as z is assumed to be isotropic. This implies that the span 〈w, v〉F
contains a basis of isotropic vectors, and it is either a totally isotropic subspace or a hyperbolic
plane. The former is not possible as the full hermitian space is regular and three dimensional,
whence its Witt index is 1. We conclude that all binary spaces involved are regular, so Witt’s
Theorem tells us that the answer to the first part of the problem is the number of isometry
classes of such subspaces. We can note then the following:

• We can always find a hyperbolic plane since the matrix of both the hermitian form and
the bilinear form is simply 


0 0 1
0 1 0
1 0 0


 .

Thus the first and last vectors of this basis give a hyperbolic plane.

• On the other hand, whether we find anisotropic subspaces, and how many, will depend
on the field F. It is easy to prove that any norm form, where the space is generated by a
vector of length 1 and an orthogonal vector of length −b is always represented, since the
hyperbolic plane is universal. Rescalings of it are more involved. When F is finite, there
is a unique isometry class of anisotropic subspaces, and it is a norm form, so there will
be precisely one orbit. For the field of real numbers, the negative definite binary space is
not represented by our form, while the positive definite space is, so there is also only one
orbit. On the other hand, when F = Q2 and a = 5, the norm form of either F(

√
3) or

F(
√
7) corresponds to a suitable binary subspace.
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Let us deal now with the second part of the problem, which we have to split in cases depending
on the quadratic subspace we found.

• For the hyperbolic plane we can write v = ru, where h(w, u) = 1, so that the isotropic
line is the E-span of w + r

√
au. The orthogonal group is generated by the reflection

that interchanges w and u and the maps sending (w, u) to (sw, s−1u). The latter sends
w + r

√
au to sw + rs−1√au = s(w + rs−2√au), so r can be modified by a square. On

the other hand, the reflection sends w+ r
√
au to u+ r

√
aw = r

√
a(w+ r−1a−1√au). We

conclude that these lines are in correspondence with F∗/〈a,F∗2〉. In particular, when F is
a finite field or the field of real numbers, there is a unique orbit.

• In the case of anisotropic subspaces, since the situation depends on the field F, we will
only study further, here below, the particular case of norm forms. Note however that any
anisotropic binary quadratic form is a rescaling of a norm form, so this is still a quite
general case.

Moreover, as we noted above, norm forms are enough for a full analysis in the case of finite
fields. Note also that in the real case the situation is even simpler: the only anisotropic
space we got defines an anisotropic hermitian form, so it gives no isotropic E-lines.

Norm forms. For any quadratic extension K/F, we consider the norm form N : K → F. The
associated E-hermitian form is the norm form of a quaternion algebra. In fact, if H = K ⊕ jK
is the quaternion algebra satisfying jc = c̄j, for any c ∈ K, and if j2 = a is as above, then
the norm of w + jv is N(w) − aN(v). This algebra has norm-zero elements precisely when it
is isomorphic to a matrix algebra. If b is any such element, another quaternion spanning the
same isotropic line has the form cb, where c ∈ F[j]∗ ∼= E∗. The special unitary group of the
norm form on a quadratic extension consist of maps of the form u 7→ ux where x ∈ K has norm
one. We conclude that an orbit of isotropic lines of the hermitian form corresponds to one or
two elements in the set of double cosets F[j]∗\Φ/K1, where Φ is the set of non-trivial elements
of norm 0 and K1 denotes the set of elements of norm 1 in K.

A simple way of characterizing these orbits is to write quaternions in the form r+ si, where
i ∈ K satisfies i2 = b ∈ F. The isotropic line spanned by such a quaternion is completely
determined by the quotient x = r/s. Post-multiplication by an element of the form c+ di ∈ K

replaces the invariant x of the line F[j](r+ si) by the invariant x′ = cx+ad
c+xd of F[j](r+ si)(c+di).

With all this, we can complete our search for the orbits of G(F), and hence the valency of
λ0(∞) in the quotient graph X , in the case where F is a finite field.

10.1 Lemma. In the above notations, if F is finite and K ∼= L is its unique quadratic extension,
then the quotient set F[j]∗\Φ/K1 = F[j]∗\Φ/K1F∗ has precisely two elements, while F[j]∗\Φ/K∗

is a singleton.

Proof. Since H is isomorphic to a matrix algebra, we just need to count the invertible elements of
a matrix algebra. We have p2 − 1 non-trivial matrices with a trivial first column, and (p2 − 1)p
elements with a non-trivial first column y and a second column in the span 〈y〉. This totals
p3 + p2 − p − 1 = (p + 1)(p2 − 1) invertible elements. On the other hand, the multiplicative
group F[j]∗ × K1 has the same order, with the element (−1,−1) acting trivially. It suffices to
prove that no other element has fixed points. Set cbu = b, where c = x+ jy with x, y ∈ F, and
u ∈ K∗. Set also b = w + jv. Expanding this product we get

(x+ jy)(w + jv)u = (xw + ayv)u+ j(yw + xv)u = w + jv.

31



Since j and 1 are linearly independent under right multiplication by K, we obtain u−1 = x +
ay(v/w) = y(w/v) + x, whence either y = 0 or (w/v)2 = a. The latter condition implies
N(w)/N(v) = N(

√
a) = −a, but the condition that b has null norm requires this quotient to

be a instead. We conclude that y = 0, whence xu = 1. The proof of the last statement is
analogous, except that the set of elements in F[j]∗ ×K∗ acting trivially is {(r, r−1)|r ∈ F∗}.

10.2 Proposition. In the preceding notations, the valency of the vertex λ0(∞) is 3 whenever F

is finite.

Proof. It suffices to determine whether a reflection on K interchanges the two orbits or not. Note
that an element of the form r+si spans an isotropic line if and only if N(r/s) = a. Furthermore,
one particular rotation in K is the linear map fixing 1 and taking i to −i. At the quaternionic
level this map sends r + si to r − si, whence replacing the invariant r/s of the isotropic line by
−r/s. It suffices therefore to prove that if there are elements c and d in F satisfying rc+asd

sc+rd = − r
s ,

then the norm of c+di must be a perfect square. Note that the preceeding identity is equivalent
to c

d = − r2+as2

2rs , which in turns gives

c2 − ad2 = d2
[( c
d

)2
− a

]
= d2

[(
r2 + as2

2sr

)2

− a

]
=

d2

(2sr)2
(
r2 − as2

)2
.

If the left hand side of the preceding chain of equalities is a perfect square, then the following
element must belong to F:

r2 − as2

sr
=
r

s
− a

s

r
=
r

s
−

(r
s

)
,

but this is imposible, unless r/s ∈ F. This finishes the proof.

11 More examples: explicit computation of X

11.1 An example where L/K ramifies at P

Let C = P1
F, P be the point at infinity of C and L = F(

√
t). Then ψ corresponds to the

(unique) 2-cover P1
F → P1

F. In particular, A = F[t], B = F[
√
t], gC = gD = 0, d = deg(P ) = 1

and eP = 2. Since we are in the ramified case, the analysis done in last Section 10 tells us that
the valency of the image of λ0(∞) in X is 1. This fact hints that the quotient graph should be
a ray. This is what we prove here below.

Note that s ∈ G(A) sends r(∞) to r(0, 0) (and λ0(∞) to λ0(0, 0)), which suggests that the
common image of these two rays gives the whole quotient graph X . In order to prove this, we
analyze the different steps in the proof of Theorem 2.1 for (u, v) = (0, 0).

We consider first Proposition 4.12. We see that q̃0,0 = B and thus deg q̃0,0 = 0. This implies
that N0(0, 0) = 0, whence the results of this proposition are valid for n > 0. Moreover, after
following the explicit computations, we get the description

Stab(0, 0, n) =

{
u−a(x, y)ã(t) : (x, y) ∈ H(L,K)B , t ∈ F×, ω(y) ≥ − n

eP

}
,

and therefore also

U(0, 0, n) =

{
u−a(x, y) : (x, y) ∈ H(L,K)B , ω(y) ≥ − n

eP

}
.
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In particular, this implies that I(0, 0) equals B, whence deg(I(0, 0)) = 0. Now, note that the
preceding equality implies that M(0, 0, n) := π1(U(0, 0, n)) is contained in

I(0, 0)
[n
2

]
=

{
x ∈ I(0, 0) : ω(x) ≥ − n

2eP

}
.

We claim that, in this case, these sets actually coincide. Indeed, for each x ∈ I(0, 0) = B such
that ω(x) ≥ − n

2eP
we can define y := −N(x)/2, so that u−a(x, y) ∈ U(0, 0, n). In other words,

we have that M(0, 0, n) = I(0, 0)[n2 ] = B[n2 ]. In particular, following the proof of Lemma 5.2 we
obtain N1(0, 0) = N0(0, 0) = 0, whence

N(0, 0) = max

{
2

fPd

(
deg

(
I(0, 0)

)
+ 2gD − 1

)
, N1(0, 0)

}
= 0.

Thus, we conclude the ray c(0, 0) starts in λ1(0, 0). Moreover, Lemma 5.4 tells us that the
valency of λ1(0, 0) is at most two.

Finally, we look at Theorem 7.1. Since Pic(B) = 0, we get that there is only one cusp and
thus X is the union of c(0, 0) and a connected graph Y containing λ0(0, 0). Now, consider
y ∈ Y rc(0, 0) = Y r{λ1(0, 0)}. Then there is a shortest path in Y leading to λ1(0, 0). However,
since this last vertex has valency 2 and only one of its edges is connected to Y via λ0(0, 0), we
see that the path has to go through λ0(0, 0). But since this last vertex has valency 1 by the
computations from Section 10, we see that y must be λ0(0, 0). This proves that the graph X is
a ray starting in λ0(0, 0).

Next theorem follows immediately from the previous discussion and Bass-Serre Theory
(cf. [13, Chap. I, §5, Theo. 13]). This is an analogue of Nagao’s theorem in the context
where G = SU(h) (cf. [13, Chap. II, §1, Theo. 6]).

11.1 Theorem. The group G(F[t]) is the sum of the groups G(F) and

B(F[t]) := Ua(F[t])⋊ T (F) =
{
ua(x, y)ã(t) : (x, y) ∈ H(L,K)B , t ∈ F×

}
,

amalgamated along their intersection.

11.2 An example where L/K is unramified at P

As in the last example, we let C = P1
F with K = F(C) = F(t). Let P be the point at

infinity of C, and let φ : P1
F → P1

F be the automorphism satisfying t ◦ φ = 1/t. Since the
extension F(

√
a− t)/K is unramified at P0 = φ(P ), and non-split when a ∈ F r F2, we see

that L = F(
√
a− 1/t) = K(

√
at2 − t) is unramified and non-split at P . In particular D ∼= P1

F.
Then A = F[t], d = deg(P ) = 1 and B = F[t,

√
at2 − t]. Moreover, in our context we have

KP = F((1/t)), LQ = KP (
√
a− 1/t), OP = F[[1/t]] and OQ = OP [

√
a− 1/t]. In all that follows

we fix the uniformizing parameter π = 1/t of KP and LQ, and set κQ = F(
√
a) ∼= OQ/πOQ.

Note that Pic(B) = Z/2Z, since L is the function field of a plane quadratic curve, which is
rational, and the point at infinity has degree 2. In particular, the quotient graph X has only
two cusps by Theorem 7.1. We claim that these two cusps correspond to c(∞) = c(0, 0) and
c(0, v) for v =

√
a− 1/t ∈ L. Indeed, note first that T (v) = 0 and hence (0, v) ∈ H(L,K).

Then, using Theorem 7.1 (and its proof), it suffices to see that the isotropic lines generated by
(1, 0, 0) and (0, v, 1) do not lie in the same G(A)-orbit, which amounts to show that the B-ideal

J = {λ ∈ L | λ(0, v, 1) ∈ B3 ⊂ L3} = B ∩ 1

v
B,
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is not principal. We have t,
√
at2 − t ∈ B ∩ 1

vB. So M := tB +
√
at2 − tB is contained in

B ∩ 1
vB. Note that B ∼= F[t, y]/(y2−at2+ t), whence we get B/M ∼= F[t, y]/(t, y, y2 −at2+ t) ∼=

F[t, y]/(t, y) ∼= F. This implies that M is maximal. And since 1 /∈ J , we conclude that J =M .
Now, if J = zB for some z ∈ B, then z divides t and

√
at2 − t. In particular, N(z) divides

t2 and at2 − t, whence N(z) divides t. If N(z) has degree 1, we contradict the fact that the
extension is unramified at infinity. We conclude that N(z) ∈ F∗, in particular z ∈ B is an
invertible element and whence J = zB = B. This is a contradiction, which concludes the proof
of our claim.

Having our explicit cusps at hand, we need to compute the numbers N(0, 0) and N(0, v).
As in the previous example, we get the identities q̃0,0 = I(0, 0) = B,

Stab(0, 0, n) =
{
u−a(x, y)ã(t) : (x, y) ∈ H(L,K)B , t ∈ F×, ω(y) ≥ −n

}
,

and M(0, 0, n) = B[n2 ]. We conclude in the same way that N(0, 0) = 0. This implies that the tip
of c(0, 0) is λ1(0, 0). On the other hand, we have already seen that q̃0,v = B ∩ 1

v̄B has degree 1,
as it is a maximal ideal with quotient F. We obtain, then, that N0(0, v) is equal to 2. Following,
thus, the explicit computations in the proof of Proposition 4.12, we conclude, for any n > 2, the
identity

Stab(0, v, n) =
{
g−1
0,vua(x, y)ã(t)g0,v : (x, y) ∈ H(L,K)B , t ∈ F×, ω(y) > −n

}
.

Therefore, the group containing all unipotent elements of Stab(0, v, n) is

U(0, v, n) =
{
g−1
0,vua(x, y)g0,v : (x, y) ∈ H(L,K) ∩ (B ×B), ω(y) > −n

}
.

In particular, we can fix I(0, v) = B. Moreover, as in the previous example we can show
M(0, v, n) = B[n2 ]. In particular, this implies that N1(0, v) = N0(0, v) = 2. Thus,

N(0, v) = max

{
2

fPd
(deg(I(0, v)) + 2gD − 1), N1(0, v)

}
= 2,

and thus the tip of c(0, v) is λ3(0, v).

With all this, we are only left with the study of the “body of the spider”, that is, the
subgraph Y of Theorem 2.1. This is however quite dependent on the base field F (already the
valency of λ0(∞), computed in Section 10, illustrates this), so we will stop our analysis here.
Note however that we already know that Y must contain both, λ0(∞) = λ0(0, 0) and λi(0, v),
for i = 0, 1, 2, and that λ0(0, v) = λ0(∞). Indeed, it suffices to note that g0,v, which satisfies
λ0(0, v) = g−1

0,v · λ0(∞), is actually contained in the stabilizer of λ0(∞).

We may summarize our findings by stating that X is obtained by attaching a graph Y
attached via three points (λi(0, v), for i = 0, 1, 2) to a graph that is isomorphic to an appartment
of the Bruhat-Tits tree X (it is actually the image of the appartment g−1

0,vA, where A is the
standard appartment). Moreover, if F is finite, then the subgraph Y is finite. On the other
hand, when F = R, then λ0(0, 0) = λ0(0, v) need not be attached to Y , as its valency was proven
to be 2 in Section 10. This is described by Figure 2.

The following result is then immediate from Bass-Serre Theory (cf. [13, Chap. I, §5, Theo.
13]) and our analysis of stabilizers of vertices in Section 4.
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Figure 2: The quotient graph X of Example 12.2 for arbitrary F (left), and for F = R (right).
Here ai = λi(0, 0) and bi = λi(0, v).

11.2 Theorem. Assume that F is finite. Set C = P1
F, K = F(C) = F(t), L = F(

√
a− 1/t) and

let P be the point at infinity in C. Let G(F[t]) be the abstract group consisting of the F[t]-points
of the special unitary group G defined from the quadratic extension L/K and the form hK . Then,
there exist:

• a finitely generated subgroup H of G(F[t]); and

• two finite subgroups B1,B2, defined as the respective intersection of H with

P1 = Ua(F[t])⋊ T (F) =
{
ua(x, y)ã(t) : (x, y) ∈ H(L,K)B , t ∈ F×

}
,

and

P2 = g−1
0,v(Ua(F[t])⋊ T (F))g0,v =

{
g−1
0,vua(x, y)ã(t)g0,v : (x, y) ∈ H(L,K)B , t ∈ F×

}
,

such that G(F[t]) is the sum of H, P1 and P2, amalgamated along B1 and B2.
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