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Quantum Multiple-Valued Decision Diagrams in
Graphical Calculi

Renaud Vilmart

Universit Paris-Saclay, ENS Paris-Saclay, Inria, CNRS, LMF, 91190, Gif-sur-Yvette,
France

Abstract. Graphical calculi such as the ZH-calculus are powerful tools
in the study and analysis of quantum processes, with links to other mod-
els of quantum computation such as quantum circuits, measurement-
based computing, etc.
A somewhat compact but systematic way to describe a quantum pro-
cess is through the use of quantum multiple-valued decision diagrams
(QMDDs), which have already been used for the synthesis of quantum
circuits as well as for verification.
We show in this paper how to turn a QMDD into an equivalent ZH-
diagram, and vice-versa, and show how reducing a QMDD translates in
the ZH-Calculus, hence allowing tools from one formalism to be used
into the other.

1 Introduction

Graphical calculi for quantum computation such as the ZX-Calculus [9], the
ZW-Calculus [10] and the ZH-Calculus [2] are powerful yet intuitive tools for
the design and analysis of quantum processes. They have already been succes-
fully applied to the study of measurement-based quantum computing [15], error
correction through the operations of lattice surgery on surface codes [12,13], as
well as for the optimisation of quantum circuits [4,11,22]. Their strong links with
“sums-over-paths” [1,23,28], as well as their respective complete equational theo-
ries [4,16,21,27], make them good candidates for automated verification [7,14,17].

An important question, whose answer benefits a lot of these different aspects,
is the one of synthesis. Given a description of a quantum process, how do we
turn it into a ZX-diagram? This all depends on the provided description. It was
already shown how to efficiently get a diagram from quantum circuits [4], from
a measurement-based process [15], from a sequence of lattice surgery operations
[13], from “sums-over-paths” [23], or even from the whole matrix representation
of the process [20]. Although this last translation is efficient in the size of the
matrix, the size of the matrix itself grows exponentially in the number of qubits,
so few processes will actually be given in terms of their whole matrix.

The matrix representation however has an advantage: it is (essentially) unique.
Two quantum operators are operationally the same if and only if their matrix
representations are colinear. This is to be contrasted with all the different previ-
ous examples, where for instance two different quantum circuits may implement
the same operator.



The form of the ZX-diagram obtained from a quantum state by [20] is that
of a binary tree: a branching in the tree corresponds to a cut in half of the
represented vector, while the leaves of the tree exactly correspond to the entries
in the vector. It is however possible to exploit redundancies in the entries of the
vector, by merging similar subtrees. Doing so alters the notion of normal form
by compacting it, whilst retaining its uniqueness property. This can be done at
the level of the ZX-diagram using its equational theory, and in particular some
equality that is reminiscent to that of a bialgebra rule. Doing this from a proper
tree on the other hand gives rise to a quantum version of a decision diagram,
which has already been introduced in [24]. The so-called quantum multiple-
valued decision diagrams (QMDDs) [25] have since then been used to synthesise
quantum circuits [26] or to perform verification of quantum programs [6,5].

We hence aim in this paper at showing the links between the aforementioned
graphical calculi and QMDDs. We in particular show how to translate from one
formalism to the other, and how the reduction of a QMDD translates in the
graphical languages. As a consequence, tools developped in one formalism may
be transported and used in the other. Additionally, this result together with
the aforementionned results in the graphical languages, relates the QMDDs to
measurement-based computation, lattice surgery operations, “sums-over-paths”,
etc.

In Section 2, we present the ZH-calculus, the graphical language we will use in
this paper for convenience. We then present in Section 3 the quantum multiple-
valued decision diagrams. In Section 4, we show how to turn a QMDD into a
ZH-diagram that represents the same quantum operator. In Section 5, we show
an algorithm to turn a ZH-diagram into QMDD form, which can be used to get
the QMDD description of any ZH-diagram.

2 The ZH-Calculus

We aim in this paper at showing links between quantum multiple-valued decision
diagrams and graphical languages for quantum computing: ZX, ZW and ZH.
Since any of the three languages can be translated in the other two [2,16,19], we
may simply choose one. It so happens that the closest to QMDDs we have is the
ZH-Calculus. We hence present here this language.

2.1 ZH-Diagrams

A ZH-diagram D : k → ` with k inputs and ` outputs is generated by:

– Zn
m : n→ m ::

n...

...
m

called Z-spiders

– Hn
m(r) : n→ m :: r

n...

...
m

called H-spiders

– id : 1→ 1 ::

– σ : 2→ 2 ::

– η : 0→ 2 ::
– ε : 2→ 0 ::

where n,m ∈ N and r ∈ C. In the following, we may write H-spiders with no



parameter, in which case, the implied parameter is −1 by convention.

Diagrams can then be composed either sequentially:
D1

...

...

D2
...

(if the number of

output of the top diagram matches the number of inputs of the bottom one), or

in parallel: D1

...

...
D2

...

...
.

It is customary to define the additional two “X-spiders”:

n...

...
m

:=

n...

...
m

1
2 and

n...

...
m

:=

n...

...
m

1
2

¬

ZH-diagrams can be understood as quantum operators thanks to the standard
interpretation J.K which maps any ZH-diagram D : n→ m to a complex matrix
JDK ∈ C2m × C2n , and which is inductively defined as:u

ww
v
D1

...

...

D2
...

}

��
~ = JD2K ◦ JD1K

t

D1

...

...
D2

...

...

|

= JD1K⊗ JD2K

u

v
n...

...
m

}

~ = 2m



2n︷ ︸︸ ︷
1 0 · · · · · · 0

0 0
......

. . .
...... 0 0

0 · · · · · · 0 1


u

v r

n...

...
m

}

~ = 2m


2n︷ ︸︸ ︷

1 · · · · · · 1...
. . .

...... 1 1
1 · · · 1 r


r z

=

(
1 0
0 1

) r z
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 q y
=

q y†
=


1
0
0
1


The standard interpretation of the X-spiders can then be obtained by com-

position. We underline that
r z

= |0〉 :=

(
1
0

)
and that

r
¬

z
= |1〉 :=

(
0
1

)
.

We have used here the Dirac notion, were a quantum state i.e. a vector is denoted
|ψ〉. We recall that 〈ψ| is defined as |ψ〉† where (.)† yields the transconjugate of
a matrix.

The language is universal, i.e. any quantum operator can be represented as
a ZH-diagram [2]:

∀f ∈ C2m × C2n , ∃D ∈ ZH(n,m), JDK = f

An important result that we will use in the following is the fact that there
is an isomorphism between ZH(n,m) and ZH(0,m + n), i.e. any ZH-diagram
D : n → m can be turned into a state D′ : 0 → m + n in a reversible manner.
This is called the map/state duality [9,8,18].



Graphically, this isomorphism is obtained by ψn,m(D) = D

...

...
...

...

and ψ−1n,m(D′) =

D′

...

...
, and the fact that this is indeed an isomorphism comes from the fact

that:

= = =

Notice that this definition of the map/state duality differs from more usual ones
by a rearranging of the wires. This is useful in the following to better relate
state-QMDDs to proper QMDDs.

2.2 Equational Theory

The previous equalities constitute the first of a series of axioms that makes up
an equational theory for the language. The axioms are summed up in figure 1.

...

...

=

...

...
(zs) r

...

...

= r

...

...

2
(hs)

==
(sp) (id)

= 2
(hh)

...

...

=

...

...
(ba1)

...

...

=

...

...
(ba2)

r s

=
rs

(m)
=

1

(u)

r s =
r+s
2

¬
2

(a)

r r

¬
=

r

(i)

¬
=

¬

1
2

(o)

Fig. 1. Rules of the ZH-Calculus

The previous equality is actually part of an implicit set of axioms of the
language, aggregated under the paradigm “only connectivity matters”, which
states that all deformations of diagrams are allowed.

When we can turn a diagram D1 into another diagram D2 by a succession
of the transformations in Figure 1, we usually write ZH ` D1 = D2, however, to
keep things simple, we will abbreviate it as D1 = D2 in this paper. This set of
rules was proven to be sound and complete [2], that is:

∀D1, D2 ∈ ZH(n,m), JD1K = JD2K ⇐⇒ ZH ` D1 = D2

A list of useful lemmas, proven in [3], and that will be used in the proofs of
the paper is given in Section A in the appendix.



In the following, since J r K = r and since it represents a global scalar, we

may “forget the box”, and write r D

...

...
simply as r D

...

...
. Notice that thanks

to Lemma 22, we have r s rs= , which means that following the convention,
different global scalars will get multiplied. For instance, we have r1 ·D1⊗r2 ·D2 =
(r1r2) · (D1 ⊗D2).

2.3 New Constructions

To make the link between decision diagrams and ZH-diagrams, we feel it is
simpler to introduce two new constructions:

:= 1
2 and :=

0
=
24

1
2

of which we may compute the standard interpretation:
t |

=

(
1 0 0 0
0 1 1 0

)
and

t |

=


1 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

.

corresponds to the diagram of the ZW-Calculus [10], it is very close

to the so-called W-state. It can also by found in [3] in the context of the ZH-
calculus. The interaction of this building block with classical states is given by:

Lemma 1.

=

Lemma 2.

¬

=
¬

Proof. In appendix at page 20.

The pair

(
,

)
can be seen as a commutative monoid, which means that,

on top of Lemma 1, the following is true:

Lemma 3.

=

Lemma 4.

:=

Proof. Proof for associativity can be found in [3], and commutativity is obvious
from the definition.



This allows us to use a generalised version of this diagram, with arbitrary

number of inputs, defined inductively as follows: := and

...

:=

...

. In

practice, in the following, we will not use the case 0 inputs. We will however use

the case 1 extensively, which we will assume simplified: =

The second diagram is the ZH version of the gadget used in the normal forms
of [20], and it can be understood as follows:

t |

= 〈0| ⊗
s {

+ 〈1| ⊗
s {

so it is a diagram that builds and whose leftmost wire controls whether or

not the outputs are swapped. This can be checked diagrammatically:

Lemma 5.

=

Lemma 6.

=
¬

Lemma 7.

¬ =

Lemma 8.

=

Proof. In appendix at page 20.

3 Quantum Multiple-valued Decision Diagrams

Quantum multiple-valued decision diagrams (QMDD) were introduced to store
quantum unitaries in a way that is efficient in certain cases, similarly to binary
decision diagrams for representing decision problems. In the following, we use
the map/state duality to turn every map into a state. As a consequence, QMDDs
are adapted to “state-QMDDs” as follows:

Definition 1. A state-QMDD (SQMDD) is a tuple (s, V, u0, t,H, h,E, ω) where:

– s ∈ C is called the overall scalar
– V 6= ∅ is a set of vertices
– u0, t ∈ V are two distinguished vertices, called respectively root and terminal

node
– u0 = t ⇐⇒ V = {t}, i.e. u0 and t coincide only if V only contains one

vertex
– H ∈ N is the height of the SQMDD



– h : V 7→ {0, ...,H} maps each vertex to their height in the SQMDD
– h(u) = 0 ⇐⇒ u = t
– E : V \ {t} → V 2 maps any non-terminal vertex to a pair of vertices. These

are the edges of the SQMDD
– If E(u) = (v0, v1) then h(vi) < h(u) for i ∈ {0, 1}
– ∀v ∈ V \ {u0},∃u ∈ V, v ∈ E(u), i.e. all vertices have at least one parent
– ω : V \ {t} → C2 maps edges to complex weights

Notice that the requirement on the heights of two endpoints of an edge also
enforces the fact that an SQMDD is acyclical.

When drawing a SQMDD, it is relevant to set all the same-height nodes
at the same height in the representation. It is also customary to omit writing
weights of 1, as well as the vertices’ names (we write instead their height). We
highlight the root by an incoming wire, and distinguish the terminal node by
drawing it as a square, instead of a circle for the other nodes (following [24]’s
convention). Finally, we display the overall scalar as a weight on the incoming
edge of the root, and if h(u0) = H, we omit H, which we otherwise specify at
the top of the SQMDD.

Example 1. The diagram:

4

3 3

2

1

3√
2

1√
2

0

0

i

1√
2

−1

0

is a graphical representation of an SQMDD.

Remark 1. SQMDDs can be seen as a more fine-grained version of proper QMDDs.
Indeed, using the map/state duality ψn,m defined above amounts to decompos-

ing a QMDD vertex into . This for instance allows us to apply

a swap only on one side of a circuit/diagram, while the associated QMDD

notion of variable reordering requires swapping the whole qubit i.e. apply a swap
on both sides of the circuit. A similar presentation of QMDDs for states can be
found in [29].

We can define two natural constructions from any SQMDD of height ≥ 1:

Definition 2. Let D = (s, V, u0, t,H, h,E, ω) be a SQMDD with H ≥ 1. We
denote `(D) the diagram obtained from D by:

– If h(u0) = H:
• replacing the overall scalar s by s · π0ω(u0)



• removing all nodes (and subsequent edges) that cannot be reached by
π0E(u0)

• replacing the root u0 by π0E(u0)

– decreasing the height H by 1

Where π0 and π1 are the usual left and right projectors of a pair.
We can similarly build r(D) by replacing π0 by π1 in the definition.

Example 2. With D the SQMDD defined in the previous example:

`(D) =

3

2

1

3√
2
1√
2

0

0

0

and r(D) =

3

2

1

− 3√
2

0

0

i

1√
2

0

We can now use these constructions to understand SQMDDs as representa-
tions of quantum states.

Definition 3. For any SQMDD D, JDK is the (unnormalised) quantum state
inductively defined as:

–

s
s
0

{
= s = s |〉

– JDK = |0〉 ⊗ J`(D)K + |1〉 ⊗ Jr(D)K

(here |〉 is used to represent the vector
(
1
)

i.e. the canonical 0-qubit state).

Example 3. With D the diagram of example 1:

JDK =
3√
2

(
1 0 0 0 1√

2
1√
2

1√
2

1√
2
− 1√

2
0 0 0 −i 0 −i 0

)T
The definition of SQMDDs given here does not only differ from that of [24]

by the fact that we only consider states, but also by the fact that our definition
is laxer. As a consequence, different SQMDDs can have the same interpretation.
To address this problem, we can give a set of rewrite rules that will reduce the
”size” of the SQMDD while preserving its interpretation. We give in Figure 2 this
set of rewrite rules, expressed graphically. Notice that the rules use the graphical
notation to encompass transformations on the root and the overall scalar.

It is fairly easy to see that this rewriting terminates. Let us denote deg(t)
the arity of t, i.e. the number of occurrences of t in E(V \ {t}). Notice that
deg(t) < 2|V |. For u ∈ V \ {t}, define:

δ(u) :=

{
0 if π0(ω(u)) = 1 ∨ (π0(ω(u)) = 0 ∧ π1(ω(u)) ∈ {0, 1})
1 otherwise



...

ba

w1 wn
→
a6=0
a6=1

...

b
a1

aw1 awn
...

b0

w1 wn
→
b 6=1

...

10

bw1 bwn

...
0

→
0

...

0

0

...

...

...
b

...
a →

...... h

...

1 1 →

h′
...

...

h′
...

h h

... ...

a

a
→

h′′

...
b b

h′
...

h

... ...

a

h′′

...
b

h′
...

here the nodes with height h′

and h′′ can be the same node

Fig. 2. Simplification rules for QMDDs

Consider now for any SQMDD the quantity:|V |, 2|V | − deg(t),
∑

u|h(u)=1

δ(u), ...,
∑

u|h(u)=H

δ(u)


and the lexicographical order over these. We can see that this quantity is reduced
by any rewrite.

When none of these rewrite rules can be applied on an SQMDD, it is called
irreducible. Notice that in an irreducible SQMDD, using the notions of [24], no
non-terminal vertex is redundant, and all non-terminal vertices are normalised
and unique. Hence, an irreducible SQMDD is what [24] properly calls a QMDD,
from which we get:

Theorem 1 ([24]). For any quantum state |ψ〉 ∈ C2n , there exists a unique
irreducible SQMDD D (of height n) such that JDK = |ψ〉.

4 From SQMDDs to ZH

From any SQMDD, it is possible to build a ZH-diagram whose interpretation
will be the same, in a fairly straightforward manner, using the two syntactic
sugars defined above. We denote [.]ZH this map. We define it on every “layer”
of an SQMDD, that is, on all the nodes of the same height ≤ H. Such a layer is
mapped to a ZH-diagram as follows:

...
7→

...

h ...
...

h

...

...... ... ......

This construction adds a wire to the left. It is the “effective” wire of the layer,
the one that will constitute the output qubit in the quantum state. If there is no
node of height h, the construction still add a wire on the left, disconnected from



everything: . Omitted in the previous definition is the mapping of the weights

on wires, which are simply: r 7→ r , as well that of the terminal node, for

which we have: 7→
0

... ...
. Finally, the particular state ¬ is plugged on top

of the root: h(u0) 7→

¬
H

...

H-h(u0)
(if the root has height < H we technically

have empty layers on top of the root, hence the ’s).

The full SQMDD is then mapped as follows, where L is the layer of interest, and
A and B will themselves be inductively decomposed layer by layer:

A

B

L 7→
...

...

[A]ZH
...

...
[L]ZH

... [B]ZH

...

Example 4.

4

3 3

2

1

3√
2

1√
2

0

0

i

1√
2

−1

0



ZH

= 3√
2

¬

i

1√
2

1√
2

0

0

This interpretation [.]ZH was not chosen at random: it builds a quantum state
with the intended semantics.

Proposition 1. For any SQMMD D,
q
[D]ZH

y
= JDK.

Proof. Since and ¬ represent |0〉 and |1〉 respectively, we have, for any ZH-

diagram D : 0→ n:

s
D
...

{
= |0〉 ⊗

s
D
...

{
+ |1〉 ⊗

s
D
...¬

{

Now, let D be an SQMDD, and D := [D]ZH. We proceed by induction on H the
height of D, where the base case is obvious. We then focus on the root u0. We
need to distinguish two cases:



•H > h(u0): In this case, `(D) = r(D) which entails JDK = (|0〉+|1〉)⊗J`(D)K. It

can be easily seen that [D]ZH = [`(D)]ZH, hence
q
[D]ZH

y
=

r z
⊗

q
[`(D)]ZH

y
=

(|0〉+ |1〉)⊗
q
[`(D)]ZH

y

• H = h(u0): Then, D =

¬

D′
...

. We hence have:

q
[D]ZH

y
=

u

www
v

¬

D′
...

}

���
~

= |0〉 ⊗

u

www
v

¬

D′
...

}

���
~

+ |1〉 ⊗

u

www
v

¬

D′
...

¬

}

���
~

= |0〉 ⊗

t

D′
...

¬ |

+ |1〉 ⊗

t

D′
...

¬ |

where the last equality is obtained thanks to Lemmas 5 and 7. We now need

to show that

t

D′
...

¬ |

=
q
[`(D)]ZH

y
and similarly with the right hand side.

We can actually show that we can reduce D′
...

¬
to [`(D)]ZH using the following

rewrites (provable in ZH):

r → r
¬ ¬

(1) → (2)
r → (3)

→
... ...

(4)

...

...

→
...

...

(5)

Rewrite 1 ensures that if the left wire was weighted, the weight itself gets factored
in the overall scalar.
Rewrites 2 and 3 destroy all the nodes that are not descendent of the left child
of the root.
Rewrite 4 dictates that if arrives at a node with several parents, the behaviour

depends on what happens to the others parents (if all parents are destroyed,

will get to all its inputs, which will result in , hence pursuing the destruction

of subsequent nodes). It also shows what happens to when it arrives at the

terminal node.
Finally, Rewite 5 simply normalises the connected Z-spiders one can obtain from
Rewrite 2.

This rewrite strategy goes on as long as some exist in the diagram, until

they all disappear from Rewrite 4, in which situation we get the diagram one



would have obtained from `(D). Similarly, we see that D′
...

¬
reduces to [r(D)]ZH.

Hence, by soundness of the rewrite strategy, we do have:
q
[D]ZH

y
= |0〉 ⊗

q
[`(D)]ZH

y
+ |1〉 ⊗

q
[r(D)]ZH

y

which by induction hypothesis means
q
[D]ZH

y
= JDK.

This proof introduces a small rewrite strategy, that will be used in the fol-
lowing, in particular to simplify a ZH-diagram in SQMDD form.

5 Setting a ZH-Diagram in SQMDD Form

If any SQMDD can be turned into a ZH-diagram, the reciprocal requires some
work. In the following, we describe an algorithm that turns any ZH-diagram
into SQMDD form, i.e. into a ZH-diagram that is in the image of [.]ZH, using its
equational theory.

5.1 SQMDD Reduction

We start to show that all the simplification rules for SQMDDs can be derived
directly into the ZH-Calculus. For this, we need the following lemmas:

Lemma 9.

=

...

...

...

...

Lemma 10.

...

= 0

0 0

...

Lemma 11.

r
=

rr

Lemma 12.

=

Lemma 13.

r

=
r r

Lemma 14.

=

Lemma 15.

=

Lemma 16.

= =

Proof. Proofs for these lemmas start in appendix at page 21.

Proposition 2. For any simplification rule D1
r→ D2, the following diagram

commutes:
D1 D2

[D1]ZH [D2]ZH

r

[.]ZH [.]ZH

ZH



Proof. We start with the first rewrite of Figure 2, where a 6= 0:

...

ba

w1 wn 7→

...
wnw1

ba

=
(m)

...
wnw1

b
a

a
a

=
13
11

...
wnw1

b
a

aa

=
(m)

...
awnaw1

b
a

←[
...

b
a1

aw1 awn

The proof for the rewrite where a = 0 and b diffuses instead is similar. When ap-

plied to the root, the proofs are the same with the additional equality r → r
¬ ¬

.

...
0

0

...
7→

...
0

...
=
24
1

(ba1)

...

...
=
24
1

(ba1)

...
0

...
← [

0

0

...

...

The rule
...

b
...
a →

......
is a direct consequence of the rewrite strategy

of the proof of Proposition 1.

h

...

1 1

h′
... 7→ ...

...

= ...

...

=
16

...

...

= ...

...

← [

...

h′
...

h h

... ...

a
a
h′′

...
b b

h′
... 7→ a

... ...

ab
b......

=
11

... ...

......

a b

=
15

... ...

......
a b

←[
h

... ...

a

h′′

...b

h′
...

The case where the two children are the same is very similar:

a

... ...

ab
b

...
=
11

... ...

... ba
=
15

......

... ba

Thanks to this proof, we now have a strategy to systematically reduce any ZH-
diagram in SQMDD form. We then show how to put a ZH-diagram in SQMDD
form in the first place.



5.2 SQMDD form of Generators and Compositions

We now show that all the generators of the ZH-Calculus can be put in SQMDD
form, and furthermore that the compositions of diagrams in SQMDD form can
be put in SQMDD form.

Proposition 3. Suppose D′ differs from a diagram D in SQMDD form by re-

placing some of its by . We then have: ZH ` D = D′.

Proof. In appendix at page 26.

This result actually still holds for any commutative monoid whose neutral
element is . A straightforward analysis yields that such monoids are of the form(

1 0 0 a
0 1 1 b

)
for a, b ∈ C.

This result will be used in the proposition that follows, but notice that it can
also be used to simplify the ZH-diagram obtained from an SQMDD.

Now, we can show that all the generators can be set in SQMDD form:

Proposition 4. The generators of the ZH-Calculus can be set in SQMDD form:

... =

...

¬

0 0

0 0

r

...
=

r...

¬

Proof. In appendix at page 26.

We then need to show that the composition of diagrams in SQMDD form
can be put in SQMDD form.

Proposition 5. The parallel composition of ZH-diagrams in SQMDD form can
be put in SQMDD form, by joining the root of the right diagram to the terminal
node of the diagram on the left.

Proof. In appendix at page 28.

Since we work only with quantum states after using the map/state duality,
what accounts for sequential composition is the linking of two ZH-diagrams in
SQMDD form through . This element can be decomposed into two primitives:

= . We hence show that applying each of these two primitives to

a ZH-diagram in SQMDD form can be put in SQMDD form. To simplify the
proof, we first show that swapping two outputs of a state in SQMDD can be put
in SQMDD form.



Proposition 6. Let D be a ZH-diagram in SQMDD form. Applying on two

of its outputs can be put in SQMDD form. By repeated application of , any

permutation of the outputs of D can be put in SQMDD form.

Proof. In appendix at page 33.

Proposition 7. Let D be a ZH-diagram in SQMDD form. Applying on two

of its outputs can be put in SQMDD form.

Proof. In appendix at page 33.

Proposition 8. Let D be a ZH-diagram in SQMDD form. Applying on any
of its outputs can be put in SQMDD form.

Proof. In appendix at page 33.

Combining the previous propositions, we get the expected result:

Theorem 2. Any ZH-diagram can be put in reduced SQMDD form.

Notice that this theorem gives an algorithm to translate any ZH-diagram
into an SQMDD. Indeed, since a diagram D in reduced SQMDD form is in the
image of [.]ZH (which is injective), it suffices to take its inverse.
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Proof (Proof of Lemmas 1 and 2).
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C Proofs of Section 5.1

We now aim to show Lemmas 9, 10, 11, 12, 13, 14, 15 and 16. We will show
them one by one, after introducing and proving auxiliary lemmas in between.

Lemma 31.

00 = 0

Lemma 32.

0
=

Proof.

00 =
24

1

4
=

(ba2)

1

4
=

(ba1)
28

1

2
=
24

0

0
= 0

0

=
31

0
=

Proof (Proof of Lemma 9).

=

0

=
(ba1)

0

=
31
(zs)

0 0 =

Lemma 33.

0
=

0

0 0

Lemma 34.

0
=

0

0

... ...



Proof. First, we have:

0
=
24

1

2
=

1

4
=

(ba1)

1

4
=
23

1

4 ¬

=
(o)

1

2
¬ =

23

1

2
=

(ba1)

1

2
=

(ba2)

1

2

Then:

0
=

0
=
32 0

0

=
24

1

2
0 =

1

2

0

0
=

(ba2)

1

2

0

0

=
(zs)
(id)

1

4

0

=
(ba2)

1

4

0

=
(ba1)

1

4

0

=
24

0

0 0

0
=
9

0

=
33

0

0 0

=
32

0

0

Proof (Proof of Lemmas 10 and 11).

...

=

...

= 0

...

=
34

0

0
...

=
ind.

0

0 0

...

First, we have:

r r

=
(hh)

1

4

rr

=
(ba1)

1

4

rr

=
(ba2)

1

4

rr

=
18

1

4
¬

r r



=
(hs)

r r

¬ ¬
=
23

r r

¬

¬

=
20

(ba1)
26

r r

¬

=
(i)

r

=
(zs)

r

Then:

r
=

1

2
r

=
(ba1)

1

2

r

=
1

2

r r
=

rr

Lemma 35.

0

=

Proof.

0

=
24

1

2
=

1

4
=

(ba1)

1

4

=
23

1

4

¬
=

(hh)

1

4

¬
=

(ba2)

1

4

¬

=
23

1

4
=
21
(zs)
28

1

2
=

Proof (Proof of Lemmas 12 and 13).

=
(zs)

1

2
=

(ba1)

1

2
=
35

1

4
=

r

=
12

r

=
11

r
r =

(ba1)

1

2 r
r =

35 r r



Lemma 36.

0

=
0

0

Lemma 37.

0

=
0

0

Proof.

0

=
12

0

=
33 0

0
0

=
35 0

0

For Lemma 37, first:

=
1

16
=

(ba1)

1

4
=

(ba2)
(hs)

=
17
18

¬¬

=
19
(hs)

¬ ¬

=
26
23 ¬ ¬

=
26
17

¬

=
(ba2)

1

2

¬

=
18

1

2

=
(ba2)

1

2
=

(ba1)
=

(ba1)
21

2



Then:

0

0

=
24

1

16
=

(ba1)
(zs)

1

16

=
1

8
=
(zs)

1

8
=
24

0

Proof (Proof of Lemmas 14, 15, 16).

=
1

4
=

1

4
=
20

(ba1)

1

2

=
(ba2)

1

2
=

(ba1)

1

2
=

=

0

=
15

0

=
34

0

0
=

=
35

=
1

2
=
30
(id)

1

2
=
19
(zs)
(id)



D Proofs of Section 5.2

Proof (Proof of Proposition 3). We will start at the bottom of the diagram and

work our way up, layer by layer. We first create the gadget ... at the

leaf:

*
**

*

...

=
(ba1)
(zs)

*

**

*
...

and then we move it up. It is easy, using Lemmas 10 and 31, to see that
...

=
... ......

. Hence, if we consider a particular layer, we get:

... ...

...

****

=
(zs)

... ...

...

*

**

*

=
12

... ...

...
*

**

*

=
9

... ...

...
*

**

*

=

... ...

...
*

**

*

Notice how we pushed the gadget through the whole layer while replacing some

(the ones we want) by . The gadget will hence move up until it gets to

the root, where it can simply be removed.

Proof (Proof of Proposition 4). First, we notice that:

=
1

2
=

(ba1)
(zs)

1

2
=
(id)

1

2
(6)



from which can derive the SQMDD form of the H-spider:

r

...
=
(hs)
21

1

2n

... r

¬

=
(6)

r
...

¬

=
(id)
(zs)
(ba1)

r...

¬

=
3

r...

¬

For the normal form of the Z-spider, we need a few intermediary derivations:

0

¬ 0

¬ =
24

1

4 ¬
¬ =

18
(id)

1

4
=

(ba2)

1

4
=
(zs)

1

2
=
17

1

2
=

(hh)
(zs)
(id)

(7)

¬
=
6

1

4

¬

¬

=
(ba1)
21

1

4

¬
¬ =

26
(zs)

1

4 ¬
¬

¬

=
(7)
¬

(8)

¬

=
1

2

¬

=
26

1

2
¬ ¬ =

21
20

1

2 ¬ =
(hh)

¬ (9)

Now, we can show how to turn a Z-spider in SQMDD form.

... =
(zs)
26 ...

¬ =
(8)

¬

...

=
(8)

... =

...

¬



=
(9)

...

¬

=
24

(ba1)

...

¬

0 0

0 0 =
3

...

¬

0 0

0 0

Proof (Proof of Proposition 5). Let D1 and D2 be two ZH-diagrams in SQMDD
form. If we define D′i by making the top and bottom nodes stand out, we can
show that:

¬

...
D′1

¬

...
D′2 =

¬

...

D′1

...
D′2

To do so, we start by factoring the top nodes:

¬

...
D′1

¬

...
D′2 =

26

¬

...
D′1

...
D′2

and then we push D′2 in D′1, which we can do layer by layer:

... ...

...

D′2

=
9

... ...

...

D′2

=
12

... ...

...

D′2



We eventually end up with:

¬

...
D′1

...
D′2

=
(zs)
(id)

¬

...

D′1

...
D′2

Lemma 38.

a b

=
a+b

Lemma 39.

2

0
= 0

¬

Lemma 40.

=
1

4
¬

Lemma 41.

0

a

...

=
0

...

Lemma 42.

0

a

¬

...

=
0

a

...

Lemma 43.

a = 2

1+a
2

Lemma 44.

... = 2
0

...
0 0

Lemma 45.

1

2

0
=

1
2

Lemma 46.

=

Lemma 47.

= =

Proof (Proof of Lemmas 38, 39, 40, 41, 42, 43, 44, 45, 46, 47).

• 38: [3, Prop. 5.10]

• 39:

2

0
=
27

1

4

¬

=
26

1

4¬

¬

=
(o)

1

2¬

¬

=
18

1

2

¬



=
(ba2)

1

2

¬

=
(ba1)
(zs)
(id)

1

2

¬

=
24

0

¬

• 40:

=
1

2
=
19

1

4
=

1

4

=
18

1

4

¬
=
(id)

1

4
¬

• 41:

0

a

...

=
24

1

2

a

...

=
(hs)
(ba2)

1

4

a

...

=
(ba1)

1

2

a

...

=
21
24

0

...

• 42:

0

a

¬

...

=
(hs)
18

1

2

0

a

...

=
41
(zs)

1

2

0

a

...

=
(id)
(hs)

0

a

...

• 43:

a =
26
(zs)

a

¬

=
25

a1

¬

=
(a)

2

1+a
2

• 44: First we show by induction on the number n of input wires that:

0 0 0 0

... = 2
...

1
2

1
2

1
2

1
2



The case n = 1 is given by:

0
=
43
(zs)

2
1
2

=
(zs)

2
1
2

and the general case by:

0 0 0 0

... =
33

0

0 0

... =
9

0
0 0

...

=
ind.

2
...

1
2

1
2

1
2

=
11

2
...

1
2

1
2

1
2

1
2

Finally, we show the announced equality:

... =
42

...

¬

¬

=
26

...¬

=
(hs)
19

1

2

...¬

=
(o)

1

4

...¬
=
24
39

0

...
0

2

=
sim.

0

0 0

...
0

2

0
0

2
2

=
prev.
(a)
(u)
(zs)

2
0

...
0 0

• 45:

0
=
(zs)
(u)
(m)

0

1
2

2 =
39
(hs)

2 0

1
2 ¬

=
(zs)
(ba1)
20

2
0

1
2

¬
=
23

2

0

1
2

= 2

1
2



• 46:

=
40

1

26

¬

¬ ¬

=
19
26
(zs)
(hs)

1

24
¬

¬
¬ ¬

=
26
(zs)

1

24
¬

¬

¬

=
19

1

26 ¬
¬

¬

=
40

• 47: First:

=
40

1

24

¬

¬

=
(zs)
19
(hs)
26

1

23 ¬¬
¬ =

(hs)
29
17

1

23
¬

=
21
(zs)

1

22
¬ =

40

Then:

=
6
26

¬
=

¬
=

¬

=
6



Proof (Proof of Proposition 6). We use Lemma 46 to show how two layers
interact when a swap is applied to their corresponding outputs:

... ...

...

...

...

∗ ∗ =
15

...

...

... ...
∗ ∗ =

13

...

...

... ...

∗
∗∗

∗ ∗
∗∗

∗

=
46

...

...

... ...

∗
∗∗

∗ ∗
∗∗

∗

The resulting diagram is in SQMDD form, and can be reduced further using the
above strategy.

Proof (Proof of Proposition 7). If is applied to two arbitrary outputs of D,

using Proposition 6, we can swap the outputs so that is now applied on the

first two.
We are left with two cases, the first one being when the “root gadget” is

linked to the same “child gadget”, in which case we apply Lemma 15:

¬

b

a =

¬

b

a

The second case now encapsulates the first, and is dealt with as follows:

¬

ba
=
13

¬

b
a b

a

=
47

¬

b
a b

a

=
(zs)
(id)
(ba1)
21

¬

ba

Now using the rewrite strategy of Proposition 1, the nodes will trickle down the

diagram, eventually getting absorbed by , and potentially destroying some

gadgets as they do.

Proof (Proof of Proposition 8). Using Proposition 6, we may consider we only

apply on the very last output. We notice that:

...
=
12
(zs)

... =
1

2n
...

...



=
44

2

2n
00 0

...

...

=
45

2
...

...
1
2

1
2

1
2

With this result, we can show how we turn the diagram into SQMDD form:

b1

...

bn

ana1

= 2

an bna1 b1

...

1
2 1

2 =
38

2
...

a1+b1
2 an+bn

2
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