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Abstract

First-price auctions have largely replaced traditional bidding approaches based on Vickrey
auctions in programmatic advertising. As far as learning is concerned, first-price auctions
are more challenging because the optimal bidding strategy does not only depend on the
value of the item but also requires some knowledge of the other bids. They have already
given rise to several works in sequential learning, many of which consider models for which
the value of the buyer or the opponents’ maximal bid is chosen in an adversarial manner.
Even in the simplest settings, this gives rise to algorithms whose regret grows as

√
T with

respect to the time horizon T . Focusing on the case where the buyer plays against a
stationary stochastic environment, we show how to achieve significantly lower regret: when
the opponents’ maximal bid distribution is known we provide an algorithm whose regret
can be as low as log2(T ); in the case where the distribution must be learnt sequentially,
a generalization of this algorithm can achieve T 1/3+ε regret, for any ε > 0. To obtain
these results, we introduce two novel ideas that can be of interest in their own right. First,
by transposing results obtained in the posted price setting, we provide conditions under
which the first-price bidding utility is locally quadratic around its optimum. Second, we
leverage the observation that, on small sub-intervals, the concentration of the variations of
the empirical distribution function may be controlled more accurately than by using the
classical Dvoretzky-Kiefer-Wolfowitz inequality. Numerical simulations confirm that our
algorithms converge much faster than alternatives proposed in the literature for various bid
distributions, including for bids collected on an actual programmatic advertising platform.

Keywords: multi-armed bandits; sequential bidding; auctions

1. Introduction

We consider the problem of setting a bid in repeated first-price auctions. First-price auc-
tions are widely used in practice, partly because they constitute the most natural and
simple type of auctions. In particular, they have been largely adopted in the field of pro-
grammatic advertising, where they have progressively replaced second-price auctions (Sluis.,
2017; Slefo., 2019). This recent transition took place for various reasons. First, whereas
second-price auctions have the advantage of being dominant-strategy incentive-compatible
and hence allow for simple bidding strategies (Vickrey, 1961), they were made obsolete by
the widespread use of header bidding, a technology that puts different ad-exchange plat-
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forms in competition. With this technology, every participating ad-exchange has to provide
the winning bid of the auction organized on its platform; a second-level auction is then or-
ganized between all the winners to determine which bidder earns the right of displaying its
banner. Second price auctions would hence jeopardize the fairness of the attribution of the
placement at sale with header bidding. Second, sellers have benefited from the transition,
since many bidders continued to bid as in second-price auctions and despite the automated
implementation of so-called bid shading by demand-side platforms, meant to adjust their
bids to this new situation (Sluis., 2019). The transition to first price auctions raises ques-
tions for advertisers who need new bidding strategies. In general, bidders participating in
auctions in the context of programmatic advertising do not know the bidding strategies
of the other contestants in advance, or anything about the valuations that other bidders
attribute to the advertisement slot. Not only do they have to learn other bidders’ behavior
on the go, but they also need to understand how valuable the placement is for their own use
(how many clicks or actions the display of their ad on this placement will lead to), which is
usually not the same for all bidders.

In this work, we model the problem faced by a single bidder in repeated stochastic first-
price auctions, that is, when the contestants’ bids are drawn from a stationary distribution.
We consider that the learner’s bids will not influence the others’ bidding strategies. This
approximation is sensible in contexts where the major part of the stakeholders do not have
an elaborate bidding strategy. More precisely, many stakeholders never modify their bids
or do so at a very low frequency. Moreover, the poll of bidders is very large and each bidder
only participates in a fraction of the auctions, which argues in favor of the assumption that
the influence of one bidder on the rest of the participants can be neglected.

Model We consider that similar items are sold in T sequential first price auctions. For
t = 1, . . . , T , the auction mechanism unfolds in the following way. First, the bidder submits
her bid Bt for the item that is of unknown value Vt. The other players submit their bids,
the maximum of which is called Mt. If Mt ≤ Bt (which includes the case of ties), the bidder
observes and receives Vt and pays Bt. If Bt < Mt, the bidder loses the auction and does
not observe Vt.

We make the following additional assumptions: {Vt}t≥1 are independent and identically
distributed random variables in the unit interval [0, 1]; their expectation is denoted by
v := E(Vt). The {Mt}t≥1 are independent and identically distributed random variables in
the unit interval [0, 1] with a cumulative distribution function (CDF) F , independent from
the {Vt}t≥1. When applicable, we denote by f = F ′ the associated probability density
function.

Due to the stochastic nature of the setting, we study the first-price utility of the bidder:
Uv,F (b) := E

[
(Vt − b)1{Mt ≤ b}

]
= (v − b)F (b). The (pseudo-)regret is defined as

Rv,FT = T max
b∈[0,1]

Uv,F (b)−
T∑
t=1

E[Uv,F (Bt)] .

We denote by b∗v,F = max
{

arg maxb∈[0,1] Uv,f (b)
}

the (highest) optimal bid. In the rest of
the paper, we will abuse notation and speak about regret although rigorously this quantity
should be termed pseudo-regret. Note that the outer max is required as the utility may
have multiple maxima (see Section 2 below): in that case, we define the optimal bid as
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the one that has the largest winning rate. In the sequel, we exclude the particular case
where F (b∗v,F ) = 0, since in this hopeless situation the contestants always bid above the
value of the item and the best strategy is not to bid at all (Bt ≡ 0): we thus assume that
F (b∗v,F ) > 0.

In Section 3, we will first assume that F is known to the learner. This setting bears
some similarities with the case of second-price auctions considered by (Weed et al., 2016;
Achddou et al., 2021): the truthfulness of second-price auctions makes it sufficient for the
bidder to learn the value of v and the valuation of the item is the only parameter to estimate
in that case. However, an important feature of the second-price auction mechanism is that
the utility of the bidder is quadratic in v under very mild assumptions on the bidding
distribution F . In the case of first-price auctions, the utility is no longer guaranteed to be
unimodal, neither is the optimal bid b∗v,F a regular function of v.

We treat the case, in Section 4, where the CDF F of the opponents’ maximal bid is
initially unknown to the learner, assuming that the maximal bid Mt is observed for each
auction. Note that in this more realistic setting, the bidder could not infer the optimal bid
b∗v,F even if she had perfect knowledge of the item value v. The bidder consequently needs to
estimate F and v simultaneously, which makes it a clearly harder task. This second setting
bears some similarities with the task of fixing a price in the posted price problem (Huang
et al., 2018; Kleinberg and Leighton, 2003; Bubeck et al., 2017; Cesa-Bianchi et al., 2019),
in which a seller needs to estimate the distribution of the valuations of buyers, in order
to set the optimal price in terms of her revenue. However, in contrast to the posted-price
setting, there is an additional unknown parameter v that also impacts the utility function.

In both of these settings, the learner is faced with a structured continuously-armed ban-
dit problem with censored feedback. Indeed, the bidder only observes the reward associated
with the chosen bid, but she observes the value only when she wins. This introduces a spe-
cific exploitation/exploration dilemma, where exploitation is achieved by bidding close to
one of the optimal bids but exploration requires that the bids are not set too low. This
structure seems to call for algorithms that bid above the optimal bid with high probability,
as in (Weed et al., 2016; Achddou et al., 2021) for the second-price case, but we will see in
the following that it is not necessarily true.

Related Works A major line of research in the field of online learning in repeated auc-
tions is devoted to fixing a reserve price for second-price auctions or a selling price in posted
price auctions, see (Nedelec et al., 2020) for a general survey. In the posted price setting,
arbitrarily bad distributions of bids give rise to very hard optimization problems (Rough-
garden and Schrijvers, 2016). That is why regularity assumptions are often used, like e.g.
the monotonic hazard rate (MHR) condition. Most notably, Huang et al. (2018); Cole and
Roughgarden (2014); Dhangwatnotai et al. (2015) use this assumption to bound the sample
complexity of finding the monopoly price. Regarding online learning in the posted price
setting, Kleinberg and Leighton (2003) and Cesa-Bianchi et al. (2019) introduce algorithms
for the stochastic case, respectively in the cases where the distribution of the prices are
continuous and discrete. Bubeck et al. (2017) study the adversarial counterpart. Blum
et al. (2004); Cesa-Bianchi et al. (2014) study online strategies that aim at setting the opti-
mal reserve price in second-price auctions while learning the distribution of the buyer’s bids.
Cesa-Bianchi et al. (2014) assume that bidders are symmetric, but that the bids distribution
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is not necessarily MHR. They introduce an optimistic algorithm based on two ideas. Firstly
they observe that exploitation is achieved by submitting a price smaller than the optimal
reserve price, and secondly they use the fact that the utility can be bounded in infinite
norm, thanks to the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Massart, 1990).

The problem of learning in repeated auctions from the point of view of the buyer was
originally addressed in the setting of second-price auctions. For the stochastic setting, Weed
et al. (2016) propose an algorithm that overbids with high probability, and that is shown
to have a regret of the order of log2 T under mild assumptions on the distribution of the
bids. They also provide algorithms for the adversarial case, that have a regret scaling in√
T . Achddou et al. (2021) extend their work by proposing tighter optimistic strategies that

show better worst case performances. They also analyze non-overbidding strategies, proving
that such strategies can perform well on a large class of second-price auctions instances.
Flajolet and Jaillet (2017) consider the contextual set-up where the value associated to an
item is linear with respect to a context vector associated to the item, and revealed before
each action.

Learning in repeated stochastic first price auctions is a difficult problem that has given
rise to a number of very different though equally interesting modelizations. Feng et al.
(2020) consider auctions in which the values of all the bidders are revealed as a context
before each turn, proving that the bids of bidders who use no regret contextual learning
strategies in first price auctions converge to Bayes Nash equilibria. Han et al. (2020) also
consider the case where the values are assumed to be revealed as an element of context
before each auction takes place and the highest bid among others’ bids is only shown to the
learner when she loses. This setting interestingly introduces a censoring structure that is
opposed to the one we consider: in this context, exploitation is achieved by not bidding too
high. Han et al. (2020) provide new algorithms for this setting which have a regret of the
order of

√
T . A setting somewhat closer to ours is studied by Feng et al. (2018). This work

deals with the setting of a bid in an adversarial fashion, when the other bids are revealed
at each time step and the value is revealed only upon winning an auction. However the
proposed algorithm is based on a discretization of the bidding space which relies on the
prior knowledge of the smallest gap between two distinct bids. With this knowledge, the
proposed algorithm achieves an adversarial regret of the order of

√
T .

Contributions The highlights of Sections 2–4 are the following. In Section 2 we stress
the hardness of the first-price bid optimization task, showing that in general it necessarily
leads to high minimax regret rates. We however transplant ideas introduced in the case of
posted prices to exhibit natural assumptions ensuring that the first-price utility is smooth,
paving the way for faster learning. In Section 3, we consider the case where the learner can
assume knowledge of F and propose a new UCB-type algorithm called UCBid1 for learning
the optimal bid with low regret. UCBid1 is adaptive to the difficulty of the problem in
the sense that its regret is O(

√
T ) in difficult cases, but comes down to O(log2 T ) when the

first-price utility is smooth. We also provide lower-bound results suggesting that these rates
are nearly optimal. In Section 4, we consider the more general setting where F is initially
unknown to the learner. By leveraging the structure of the first-price bidding problem,
we are able to propose an algorithm, termed UCBid1+, which is a direct generalization of
UCBid1. Interestingly, this algorithm is not optimistic anymore: it does not submit bids
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which are with high probability above the (unknown) optimal bid. However, it can still be
proved to achieve a regret rate of O(

√
T ) in the most general case and, more importantly, a

regret rate upper bounded by O(T 1/3+ε) for every ε > 0 when the first-price utility satisfies
the regularity assumptions mentioned in Section 2. The latter result relies on an original
proof notably based on the use of a local concentration inequality on the empirical CDF.
All the proofs corresponding to these three sections are presented in appendix. Section 5
closes the paper with numerical simulations where we compare the proposed algorithms
with continuously-armed bandit strategies and tailored strategies from the literature, both
using simulated and real-world data.

2. Properties of Stochastic First-Price auctions

Figure 1: An example with two maximizers

There are two important difficulties with first price auctions. The first one lies in
the fact that the utility can have multiple maximizers (or multiple modes with arbitrarily
close values) and thus lead to arbitrarily hard optimization problems. To illustrate this, we
provide in Figure 1 an example of value v and discrete distribution, supported on two values
m0,m1, that leads to a utility having two global maximizers. Note that the utility Uv,F (b)
is the area of the rectangle with vertices (b, F (b)), (b, 0), (v, F (b)), (v, 0). This observation
makes it easy to build examples with multiple maxima. Discrete examples like the one in
Figure 1 are intuitive because the utility is decreasing between two successive points of the
support, but there also exist similar cases with continuous distributions (see for example
Appendix A.3). This example also shows that there exist combinations of bids distributions
and values for which the utility is not regular around its maximum.

The second difficulty comes from the fact that the mapping from v to the largest maxi-
mizer, ψF : v 7→ b∗v,F may also lack regularity. Indeed, keeping the distribution in Figure 1
but setting the value to v′ = v + ∆, with a positive ∆ (resp. to v′ = −∆) yields that the
set of maximizers is {m1} (resp. {m0}). Even though ψF can not be proved to be regular
in all generality, it always holds that ψF is increasing. This is intuitive: the optimal bid
grows with the private valuation.

Lemma 1 For any cumulative distribution F , ψF : v 7→ b∗v,F is non decreasing.
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The two aforementioned difficulties contribute to making the problem at hand particu-
larly hard. In the following theorem, we show that any algorithm is bound to have a worst
case regret growing at least like

√
T .

Theorem 2 Let C denote the class of cumulative distribution functions on [0, 1]. Any
strategy, whether it assumes knowledge of F or not, must satisfy

lim inf
T→∞

maxv∈[0,1],F∈C R
v,F
T√

T
≥ 1

64
,

Theorem 2 corresponds to Theorem 6 in Han et al. (2020). For completeness, we prove it
in Appendix B. The proof relies on specifically hard instances of CDF that are perturbations
of the example of Figure 1. It illustrates the complexity of bidding in first-price auctions,
when F and v are arbitrary. This complexity stems from specifically hard instances of F
and v. We present a natural assumption that avoids these pathological cases.

Assumption 1 F is continuously differentiable and is strictly log-concave.

This assumption is reminiscent of the monotonic hazard rate (MHR) condition (see e.g.
Cole and Roughgarden (2014)), that appears in the analysis of the posted price prob-
lem. While MHR requires f/(1− F ) to be increasing, Assumption 1 requires f/F to be
decreasing. In particular, this condition is satisfied by truncated exponentials and Beta
distributions with f of the form Cxα−1 where α > 1 or C(1− x)β−1 where β > 1, or Beta
distributions in which α + β < αβ (see Lemma 15 in Appendix A). Assumption 1 plays
roughly the same role for first price auctions than MHR for the posted price setting. It guar-
antees in particular that there is a unique optimal bid. Note that if F satisfies Assumption
1, F is increasing, and admits an inverse which we denote by F−1.

Lemma 3 Under Assumption 1, for any v ∈ [0, 1] the mapping b 7→ Uv,F (b) has a unique
maximizer.

As does the MHR assumption for the posted-prices setting, Assumption 1 ensures that
the utility is strictly concave when expressed as a function of the quantile q = F (b) associated
with the bid b. Another important consequence of Assumption 1 is that the mapping from
v to the optimal bid b∗v,F is guaranteed to be regular.

Lemma 4 If Assumption 1 is satisfied and f is continuously differentiable, then ψF : v 7→
b∗v,F is Lipschitz continuous with a Lipschitz constant 1.

Indeed, if f is continuously differentiable and if f does not vanish on [0, 1[ (which is
implied by Assumption 1), ψF is invertible and it inverse φF writes φF : b 7→ b+F (b)/f(b).
Assumption 1 ensures that φF admits a derivative that is lower-bounded by φ′F (b) > 1.

Assumption 1 also implies the important property that the probability of winning the
auction at the optimal bid F (b∗v,F ) cannot be arbitrarily small when compared to F (v).

Lemma 5 If Assumption 1 is satisfied, then

F (b∗v,F ) ≥ F (v)

e
.
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We conclude this section by additional properties that are essential for obtaining low re-
gret rates: the utility is second-order regular, when expressed as a function of the quantiles.
LetWv,F denote the utility expressed as a function of the quantile, Wv,F : q 7→ Uv,F (F−1(q)),
and let q∗v,F := F (b∗v,F ) be its maximizer. Under Assumption 1, the deviations of Wv,F from
its maximum are lower-bounded by a quadratic function.

Lemma 6 Under Assumption 1, for any q ∈ [0, 1],

Wv,F (q∗v,F )−Wv,F (q) ≥ 1

4
(q∗v,F − q)2Wv,F (q∗v,F ).

This property relies, among other arguments, on the observation that

W ′v,F (q) = v − φF (F−1(q)) = φF (F−1(q∗v,F ))− φF (F−1(q))

and that φ′F is lower-bounded by 1 under Assumption 1 (see discussion of Lemma 4 above).
Similarly, in order to obtain a quadratic lower bound on Wv,F (q), one needs to show that
φ′F may be upper bounded. This is the purpose of the following regularity assumption.

Assumption 2 F admits a density f such that cf < f(b) < Cf ,∀b ∈ [b∗v,F −∆, b∗v,F + ∆]

and φF : b 7→ b+F (b)/f(b) admits a derivative that is upper-bounded by a constant λ ∈ R+

on [b∗v,F , b
∗
v,F + ∆].

Assumption 2 holds, in particular, when F is twice differentiable, f is lower-bounded
by a positive constant and f ′ is upper-bounded by a positive constant on a neighborhood
of b∗v,F . Note that in the field of auction theory, it is common to assume that the utility is
approximately quadratic around the maximum, which is a far stronger assumption, as stated
in (Nedelec et al., 2020) (see (Kleinberg and Leighton, 2003) for example). Assumption 2
implies the following lower bound for the utility expressed as a function of the quantiles.

Lemma 7 Under Assumption 2, for any q ∈ [q∗v,F , q
∗
v,F + Cf∆],

Wv,F (q∗v,F )−Wv,F (q) ≤ 1

cf
λ(q∗v,F − q)2.

3. Known Bid Distribution

In this section we address the online learning task in the setting where the bid distribution
F is known to the learner from the start. In order to set the bid Bt at time t, the available
information consists in Nt :=

∑t−1
s=1 1{Ms ≤ Bs}, the number of observed values before time

t, and V̂t := 1
Nt

∑t−1
s=1 Vs1(Ms ≤ Bs) the average of those values. Let εt :=

√
γ log(t− 1)/2Nt

denote a confidence bonus depending on a parameter γ > 0 to be specified below.

Algorithm 1 (UCBid1) Initially set B1 = 1 and, for t ≥ 2, bid according to

Bt = max
{

arg max
b∈[0,1]

(V̂t + εt − b)F (b)
}
.
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This algorithm, strongly inspired by UCB-like methods designed for second-price auc-
tions by Weed et al. (2016); Achddou et al. (2021), is a natural approach to first-price
auctions. The idea behind this kind of method is that one should rather overestimate the
optimal bid, so as to guarantee a sufficient rate of observation. As an UCB-like algorithm,
UCBid1 submits an (high probability) upper bound ψF (V̂t + εt) of b∗v,F , thanks to Lemma
1 and since ψF is non decreasing. In practice, the algorithm requires a line search at each
step as the utility maximization task is usually non-trivial, as discussed in Section 1.

In the most general case, the regret of UCBid1 admits an upper bound of the order of√
T log(T ).

Theorem 8 When γ > 1, the regret of UCBid1 is upper-bounded as

Rv,FT ≤
√

2γ

F (b∗v,F )

√
T log T +O(log T ) .

Note that
√
T is the order of the regret of UCB strategies designed for second-price

auctions in the absence of regularity assumptions on F (Weed et al., 2016). However, under
the regularity assumptions introduced in Section 2, it is possible to achieve faster learning
rates.

Theorem 9 If F satisfies Assumption 1 and 2, then, for any γ > 1,

Rv,FT ≤
2γλC2

f

F (b∗v,F )cf
log2(T ) +O(log T ).

The log2(T ) rate of the regret comes from the Lipschitz nature of ψF , that makes it
possible to bound the gap Bt − b∗v,F , and from the obervation that the utility is quadratic
around its optimum. This explains the similarity with the order of the regret of UCBID
in (Weed et al., 2016), when the distribution of the bids admits a bounded density. In-
deed, in second-price-auctions, when the distribution of the bids admits a bounded density,
the utility is locally quadratic around its maximum and the equivalent of ψF is the iden-
tity, meaning that the optimal bid is just the value v of the item. The presence of the
multiplicative constant 1/F (b∗v,F ) is also expected: it is the average time between two suc-
cessive observations under the optimal policy. This similarity between the structures of
second and first price auctions under Assumptions 1 and 2 also suggest that the constants
in the regret may be further improved by using a tighter confidence interval for v based on
Kullback-Leibler divergence, proceeding as in (Achddou et al., 2021).

Under Assumption 1, the regret of any optimistic strategy can be shown to satisfy the
following lower bound.

Theorem 10 Consider all environments where Vt follows a Bernoulli distribution with
expectation v and F satisfies Assumption 1 and is such that φ′ ≤ λ, and there exists cf
and Cf such that 0 < cf < f(b) < Cf , ∀b ∈ [0, 1]. If a strategy is such that, for all such

environments, Rv,FT ≤ O(T a), for all a > 0, and there exists γ > 0 such that P(Bt < b∗) <
t−γ, then this strategy must satisfy:

lim inf
T→∞

Rv,FT
log T

≥ c2
fλ

2

(
v(1− v)(v − b∗v,F )

32

)
.
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The first assumption, Rv,FT ≤ O(T a), is a common consistency constraint that is used
when proving the lower bound of Lai and Robbins (1985) in the well-established theory of
multi-armed bandits. The second assumption, P(Bt < v) < t−γ , restricts the validity of the
lower bound to the class of strategies that overbid with high probability. By construction,
this assumption is satisfied for UCBid1.

Note that there is a gap between the rates log T in the lower bound (Theorem 10) and
log2 T in the performance bound of UCBid1 (Theorem 9), which we believe is mostly due
to the mathematical difficulty of the analysis. The v(1 − v) factor may be interpreted as
an upper bound on the variance of the value distribution with expectation v. Theorem 10
displays a dependence on v of the order of v2 when v tends to 0. However this has to be put
in perspective with the fact that the value of the optimal utility Uv,F (b∗v,F ) is also quadratic
in v, when v tends to zero under the assumptions of Theorem 10 (from Lemma 6).

4. Unknown Bid Distribution

We now turn to the more realistic, but harder, setting where both the parameter v and
and the function F need to be estimated simultaneously. For this setting, we propose
the following algorithm, which is a natural adaptation of UCBid1, simply plugging in the
empirical CDF in place of the unknown F .

It may come as a surprise that we do not add any optimistic bonus to the estimate F̂t:
it is not necessary to be optimistic about F since the observation Mt drawn according to
F is observed at each time step whatever the bid submitted.

Algorithm 2 (UCBid1+) Submit a bid equal to 1 in the first round, then bid:

Bt = max
{

arg max
b∈[0,1]

(V̂t + εt − b)F̂t(b)
}
,

where F̂t(b) := 1
t−1

∑t−1
s=1 1{Ms < b} and εt :=

√
γ log(t− 1)/2Nt.

Although Bt produced by Algorithm 2 could, in principle, be arbitrarily small, it is
possible to show that there is no extinction of the observation process. Indeed, after a time
that only depends on v and F , F (Bt) is guaranteed to be higher than a strictly positive
fraction of F (b∗v,F ) with high probability (see Lemma 28 in Appendix E). This result implies
that the number of successful auctions Nt asymptotically grows at a linear rate (with high
probability), making it possible to bound the expected difference between V̂t + εt and v.
Combined with the DKW inequality (Massart, 1990), this allows to bound the difference
between the utility and (V̂t + εt− b)F̂t(b) in infinite norm and hence the difference between
Bt and b∗v,F . Putting all the pieces together (see the complete proof in Appendix E) yields
the following upper bound on the regret of UCBid1+.

Theorem 11 UCBid1+ incurs a regret bounded by

Rv,FT ≤ 12

√
γv

Uv,F (b∗v,F )

√
T log T +O(log T ),

provided that γ > 2.
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Note that computing the bid Bt for UCBid1+ is easy, as (V̂t+εt−b)F̂t(b) necessarily lies
among the observed bids because this function is linearly decreasing between observed bids.
More precisely, (V̂t + εt− b)F̂t(b)) = F̂t(M

(i))(V̂t + εt− b), for b ∈ [M (i),M (i+1)[, where M (i)

is the i-th order statistic of the observed bids (obtained by sorting the bids in ascending
order). However, as there is no obvious way to update Bt sequentially, this results in a
complexity of UCBid1+ that grows quadratically with the time horizon T .

The proof of Theorem 11 relies on the DKW inequality to bound the difference between
Bt and b∗. This happens to be very conservative and a little misleading in practice. Indeed,
what really matters is the local behavior of the empirical utility, and hence, of F̂t around
b∗. As illustrated by Figure 2, locally, F̂t is roughly a translation of F plus a negligible
perturbation which can be bounded in infinite norm. This intuition is formalized in Lemma
12, a localized version of the DKW inequality. The fact that F̂t is locally almost parallel to
F imposes a constraint on Bt that may be used to bound its distance from b∗, yielding an
improved regret rate under Assumptions 1 and 2, as shown by Theorem 13.

Lemma 12 For any a, b ∈ [0, 1], if F is increasing,

sup
a≤x≤b

|F̂t(x)− F (x)− (F̂t(a)− F (a))|

≤

√√√√√2(F (b)− F (a)) log

(
e
√
t

η
√

2(F (b)−F (a))

)
t

+
log( t

2(F (b)−F (a)η2
)

6t
,

with probability 1− η.
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Figure 2: Local behavior of the empirical CDF

Theorem 13 If F satisfies Assumptions 1 and 2, UCBid1+ incurs a regret bounded by

Rv,FT ≤ O
(
T 1/3+ε

)
,

for any ε > 0, provided that γ > 2.

UCBid1+ thus retains the adaptivity of UCBid1. In general, its regret is of the order
of
√
T (omitting logarithmic terms), matching the lower bound of Theorem 2. But it is

reduced to T 1/3+ε, for any ε > 0, in the smooth case defined by Assumptions 1 and 2. In
practice, the improvement over other

√
T -regret algorithms is huge, as shown in the next

section.
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5. Numerical simulations

5.1. Benchmark Algorithms

Methods pertaining to black box optimization. Sequential black box optimization
algorithms, also known as continuously-armed bandits (Kleinberg et al., 2008; Bubeck et al.,
2011; Munos, 2011; Valko et al., 2013), are algorithms designed to find the optimum of an
unknown function by receiving noisy evaluations of that function at points that are chosen
sequentially by the learner. They rely on prior assumptions on the smoothness of the
unknown function. For first-price bidding, we may consider that the reward (v−Bt)1(Mt ≤
Bt) is a noisy observation of the utility Uv,F (Bt), with a noise bounded by 1. Moreover,
when F admits a density f and f(b) < Cf , then −1 < U ′v,F (b) = (v − x)f(b)− F (b) < Cf ,
which implies that Uv,F is Lipschitz with constant max(1, Cf ). As a consequence, all black-
box optimization algorithms that consider an objective function with Lispchitz regularity
may be used for learning in stochastic first price auctions. HOO (Bubeck et al., 2011) has
a parameter ρ related to the level of smoothness of the objective function which we can
set to 1/2, corresponding to the observation that the first-price utility is Lipschitz under
the assumptions discussed above. This immediately leads to a first baseline approach with
O(
√
T log T ) regret rate. Setting the parameter related to the Lipschitz constant of HOO

so that it is larger than Cf is not possible in practice without prior knowledge on F . More
generally, knowing the smoothness is considered a challenge most of the time in black-
box optimization, so that several methods have been introduced that are adaptive to the
smoothness, e.g. stoSOO (Valko et al., 2013).

UCB on a smartly chosen discretization. Combes and Proutiere (2014) prove that
when the reward function is unimodal, a discretization based on the smoothness level of this
function suffices to achieve a regret of the order of

√
T . If F satisfies Assumption 1, Uv,F is

unimodal, as shown by the proof of Lemma 3. Hence, using the right discretization while
applying UCB, one can achieve a O(

√
T ) regret. In particular if the utility is quadratic, the

advised discretization is a grid of O(T 1/4) values.

O-UCBID1. We also implement the following algorithm, that is reminiscent of the method
used by (Cesa-Bianchi et al., 2014) to learn reserve prices.

Algorithm 3 (O-UCBid1) Submit a bid equal to 1 in the first round, then bid:

Bt = max{b ∈ [0, V̂t + εt], Ût(b) ≥ max
b∈[0,1]

Ût(b)− 2εt},

where Ût(b) = (V̂t − b)F̂t(b).

This algorithm overbids with high probability, by construction. Thanks to the DKW
inequality, one can control the difference between the true bid distribution F and its empir-
ical version F̂t in infinite norm. Because we observe Mt at each round, ‖F − F̂t‖∞ is at most
εt with high probability. It is easy to show that ‖Uv,F − Ût‖∞ is bounded by a multiple of εt
showing that Bt is (again with high probability) larger than the unknown optimal bid b∗v,F .
O-UCBid1 is very close to the method used by (Cesa-Bianchi et al., 2014) to set a reserve
price in second-price auctions. While in first-price auctions, a bidder needs to overbid in
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order to favor exploration, sellers in second-price auctions are encouraged to offer a lower
price than the optimal one, as they can only observe the second highest bid if their re-
serve price is set lower than the latter. The approach of Cesa-Bianchi et al. (2014) requires
successive stages as sellers in second-price auctions can only observe the second-price and
need to estimate the distribution of all bids based on this information. In our setting, we
have direct access to the opponents’ highest bid and successive stages are not required any
longer. We prove that the regret incurred by O-UCBid1 is of the order of log T

√
T when

γ > 1, which makes it an interesting baseline algorithm, that has guarantees similar to
those of black box optimization algorithm, without the need of knowing the smoothness or
the horizon. We refer to Theorem 23 in Appendix E for further details.

Methods for discrete distributions We run UCBid1+ on discrete examples. In this
case, we compare it to UCB on a discretization of [0, 1] and to WinExp, a generalization of
Exp3 for the problem of learning to bid (Feng et al., 2018).

5.2. Experiments On Simulated Data
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Figure 5: Regret plots for unknown F

In this section we focus on two particular instances of the first price auction learning
problem. The first instance is characterized by a value distribution set to a Bernoulli
distribution of average 0.5, and a distribution of the highest contestants’ bids set to a
Beta(1,6). The second instance only differs by the distribution of the highest contestants’
bids, which is set to a mixture of two Beta distributions: 0.55 × Beta(500, 2500) + 0.45 ×
Beta(1000, 2000). This distribution is very close to that used in the proof of Theorem 2,
but is continuous. The cumulative distribution and the matching utility of each instance are
plotted on Figure 3. Both distributions are smooth but the first one satisfies Assumption
1, while it is not clear that the second one does.

Figures 4(a)subfigure and 4(b)subfigure show the regret of various strategies when F
is known. The first (respectively second) figure represents the regrets of these strategies
under the first (respectively second) instance of the problem described above. The horizon
is set to 10000 and the results of 720 Monte Carlo trials are aggregated. The plots represent
the average regret over time (shaded areas correspond to the interquartile range). The
strategy termed Greedy is a naive strategy that bids max arg max Ût(b), whenever it has
made more than three observations. It shows a linear regret, which comes from the fact
that when it only observes value samples equal to zero during the first three observations,
it bids 0 indefinitely, and thus incurs the regret Uv,F (b∗v,F ) − Uv,F (0) at each time step.
Observing only 0 three times in a row is not very likely: the third quartile is very small,
but the consequences are so terrible that the average is many orders of magnitude higher.
The strategy termed Balanced consists in bidding the median of the highest contestants’
bids. It guarantees that the learner is able to win half of the rounds. As expected, this
strategy, which does not adapt to the instance at hand, shows poor performances in both
cases. However, it is a better solution than bidding 0 or 1. Finally, we also plot the
regret of UCBid1. Note that in order to implement UCBid1 we would have to compute
arg maxb∈[0,1](V̂t + εt − b)F (b) at each round; instead we only use an approximation of this
quantity by computing the argmax of the function over a grid of 10000 values. UCBid1
outperforms the naive baseline strategies in both cases. Under the more complex second
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instance of the problem, it shows a larger regret than under the first one. However, even in
this more complex case, the rate of growth of the regret stays very low.

In Figure 5, we analyze the regrets of different algorithms when F is unknown. In
this setting, we compare UCB on a discretization of [0, 1] with 10 arms, HOO (Bubeck
et al., 2011) with various parameters, O-UCBid1 and UCBid1+ with γ = 1 and stoSOO
(Valko et al., 2013) with the parameters recommended in the latter paper. For efficiency
reasons, we also do not allow the tree built by HOO and stoSOO to have a depth larger
than log2 T . The various versions of HOO, UCB, as well as stoSOO show regret plots that
could correspond to a

√
T behavior. UCBid1+ shows a dramatically improved regret plot

compared to the black box optimization strategies.
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Figure 6: An example with discrete bids

Figure 6 shows a different example where the distribution of bids is discrete with a
probability mass of 0.51 on 0.1 and equal probability masses on i/50, ∀i ∈ [1 . . . 4, 6, . . . , 50].
We compare UCBid1+ with UCB, having operated a discretization into 10 arms and with
Winexp with a discretization into 50 arms. UCBid1+ again yields a regret at least 5 times
smaller than the other algorithms. In addition, it is important to stress that UCBid1+
and O-UCBid1 are anytime algorithms, while all the alternatives shown on Figures 5 and 6
require, at least, the knowledge of the time horizon.

5.3. Experiments On a Real Bidding Dataset

We also experiment on a real-world bidding dataset representing the highest bids from the
contestants of one advertiser on a certain campaign. Thanks to Numberly, a media trading
agency, Adverline, an advertising network, and Xandr, a supply and demand-side platform,
we collected a set of 56607 bids that were made on a specific placement on Adverline’s
inventory on auctions that Numberly participated to, for a specific campaign. We keep
only the bids smaller than the 90% quantile and we normalize them to get data between 0
and 1 (see Figure 10 in Appendix F for a histogram). The regret plots are represented in
Figure 7(b)subfigure. As earlier, with discrete simulated data, we compare UCBid1+ with
UCB, having operated a discretization into 10 arms and with Winexp with a discretization
into 100 arms. Unsurprisingly, the regret plots are similar to those with simulated data,
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Figure 7: Experiment with real bidding data

since the distributions at hand are similar. UCBid1+ still largely outperforms the baseline
algorithms.
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Supplementary Material

Outline. We prove in Appendix A all the results pertaining to Section 2 apart from Theo-
rem 2, which is proved separately in Appendix B. In Appendix C, we introduce preliminary
results necessary to analyze the regrets of the algorithms presented in main body of the
paper. Appendix D contains all the proofs of the results of Section 3, while the theorems of
Section 4 are proved in Appendix E. A figure related to Section 5 is presented in Appendix
F.

Notation.

• In the following we write U instead of Uv,F (respectively W instead of Wv,F ; b∗ instead

of b∗v,F ; q∗ instead of q∗v,F and RT instead of Rv,FT ) when there is no ambiguity.

• b(q) denotes F−1(q).

• V̂ (n) := 1/n
∑n

s=1 V (s) is the mean of the n first observed values.

• We set V ′s = Vs if Ms ≤ Bs, and V ′s = ∅ otherwise.

• We set Ft = σ((Ms, V
′
s )s≤t) be the σ-algebra generated by the the bid maxima and

the values observed up to time t.

• St := (Vt − b∗)1(Mt < b∗)− (Vt −Bt)1(Mt < Bt) represents the instantaneous regret.

Appendix A. Properties of first-price auctions

A.1. General properties

Lemma 1 For any cumulative distribution function F , ψF is non decreasing.

Proof Let 0 < v1 < v2 < 1. We have Uv2,F (b∗v2,F ) − Uv2,F (b∗v1,F ) ≥ 0 and Uv1,F (b∗v1,F ) −
Uv1,F (b∗v2,F ) ≥ 0, by definition of b∗v1,F and b∗v2,F .

By summing these two inequalities, Uv2,F (b∗v2,F )−Uv1,F (b∗v2,F )−(Uv2,F (b∗v1,F )−Uv1,F (b∗v1,F )) ≥
0. Hence

(v2 − v1)(F (b∗v2,F )− F (b∗v1,F )) ≥ 0.

We then prove the result by contradiction, by assuming that b∗v1,F > b∗v2,F . Then F (b∗v1,F ) =
F (b∗v2,F ), since F is non decreasing. In this case,

Uv1,F (b∗v1,F ) = (v1 − b∗v1)F (b∗v1,F ) < (v1 − b∗v2)F (b∗v2,F ) = Uv1,F (b∗v2,F ).

This is impossible, since b∗v1,F is an optimizer of Uv1,F . In conclusion, b∗v1,F ≤ b
∗
v2,F
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A.2. Properties under regularity assumptions

Lemma 3 If Assumption 1 is satisfied, then for any v ∈ [0, 1], Uv,F has a unique maxi-
mizer.

Proof If F satisfies Assumption 1 then f
F is decreasing and φF : b 7→ b+ F (b)

f(b) is increasing

and f does not vanish on ]0, 1[.

The derivative of U is U ′(b) =
(
v − b− F (b)

f(b)

)
f(b). So U ′(b) = 0 if and only if v = b+ F (b)

f(b) .

Since φF is increasing, this can only be satisfied by a single b ∈ [0, 1]. Also, since f does
not vanish, U is unimodal (increasing then decreasing).

Lemma 14 If Assumption 1 is satisfied, then Wv,F is strongly concave.

If F satisfies Assumption 1 then f
F is decreasing and φF : b 7→ b+ F (b)

f(b) is increasing and f

does not vanish on ]0, 1[.

The derivative of U is U ′(b) =
(
v − b− F (b)

f(b)

)
f(b). The derivative of W is W ′(q) =(

v − b− F (F−1(q))
f(F−1(q))

)
= v − φ′F (F−1(q)), since φF is increasing. Consequently, U ′ is de-

creasing, and U ′ is strongly concave.

Lemma 4 If Assumption 1 is satisfied and f is differentiable, then ψF : v 7→ b∗(v, F ) is
Lipschitz continuous with a Lipschitz constant 1.

Proof If b∗ is the optimum of the utility U , then it satisfies (v − b∗)f(b∗)− F (b∗) = 0. It
satisfies

φF (b∗) := b∗ +
F (b∗)

f(b∗)
= v.

Since φ′F (b∗) > 1 thanks to Assumption 1, φF is invertible and (φF )−1 = ψF is Lipschitzian
with constant 1 .

Lemma 5 If Assumption 1 is satisfied, then

F (b∗) ≥ e−1F (v)

Proof We know that b∗ < v and

log

(
F (v)

F (b∗)

)
=

∫ v

b∗

f(u)

F (u)
du.

Hence
F (v)

F (b)
= exp

(∫ v

b∗

f(u)

F (u)
du

)
.
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Since f(u)
F (u) is decreasing, thanks to Assumption 1,

F (v)

F (b)
≤ exp

(
(v − b∗) f(b∗)

F (b∗)

)
.

We have v − b∗ = F (b∗)
f(b∗) , by definition of b∗. Hence exp

(
v − b∗) f(b∗)

F (b∗)

)
= exp(1) and

F (b∗) ≥ exp(−1)F (v).

Lemma 6 If Assumption 1 is satisfied, for any 0 ≤ q′ ≤ 1,

W (q∗)−W (q′) ≤ 1

4
(q∗ − q′)2W (q∗)

Proof Note that this proof is an adaptation of the proof of Lemma 3.2 in Huang et al.
(2018). In this proof, we denote by b(q) F−1(q).

First of all, let us observe that U ′(b) = (v−φF (b))f(b). We haveW ′(q) = v−φF (F−1(q)).
Assumption 1 implies that φ′F (b) > 1, ∀b ∈ [0, 1].
To prove Lemma 6, we will apply case-based reasoning. There are three cases depending

on the relation between q′ and q∗: q′ > q∗, q′ = q∗, and q′ < q∗. The second case, i.e.,
q′ = q∗, is trivial.

First, consider the case when q′ > q∗. It holds

W (q∗)−W (q′) =

∫ q′

q∗
−W ′(q)dq =

∫ q′

q∗

(
φF (b(q))− v

)
dq.

We therefore need to bound φF (b(q), ∀q ∈ [q∗, q′]. By definition of q∗, for any q s.t. q∗ ≤
q ≤ q′, we have

q(v − b(q)) ≤ q∗(v − b(q∗)).

By rewriting this equation,

b(q) ≥ qv − q∗v + q∗b(q∗)

q
= v

(
q − q∗

q

)
+
q∗

q
b(q∗) (1)

Secondly, by the intermediate value theorem, there exists b ∈ [b(q∗), b(q)], such that

φF (b(q))− φF (b(q∗)) = φ′F (b)
(
b(q)− b(q∗)

)
≥ b(q)− b(q∗),

for any q∗ ≤ q ≤ q′, where the second inequality follows from Assumption 1 that dφF (b)
db ≥ 1

and F being increasing thanks to Assumption 1. This in turn yields

φF (b(q)) ≥ v + b(q)− b(q∗),
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since by definition, W ′(q∗) = φF (b(q∗)) = v. Combining with Inequality 1, we get that

φF (b(q))− v ≥ v(
q − q∗

q
) +

q∗

q
b(q∗)− b(q∗) ≥ (v − b(q∗))(q − q

∗

q
) =

W (q∗)

q∗
(
q − q∗

q
)

Therefore, we get that

W (q∗)−W (q′) =

∫ q′

q∗
−W ′(q)dq =

∫ q′

q∗

(
φF (b(q))− v

)
dq ≥ W (q∗)

q∗

∫ q′

q∗

q − q∗

q
dq

≥ W (q∗)

q∗

∫ q′

q′+q∗
2

q − q∗

q
dq,

since q−q∗
q ≥ 0 for any q′ ≤ q ≤ q∗. Moreover, for any q ≥ q′+q∗

2 , we have q−q∗
q = 1− q∗

q ≥
1− 2q∗

q′+q∗ ≥
q′−q∗
q′+q∗ . Hence, we can derive the following inequality

W (q∗)−W (q′) ≥
∫ q′

q′+q∗
2

q′ − q∗

q′ + q∗
W (q∗)

q∗
dq =

(q′ − q∗)2

2(q′ + q∗)

W (q∗)

q∗
=

(q′ − q∗)2

2q∗(q′ + q∗)
W (q∗) .

The lemma then follows from the fact that 0 ≤ q′, q∗ ≤ 1.
The second case, q′ > q∗ has to be treated a little differently than the first, partly

because we now need to upper bound b(q) instead of lower-bounding it. We achieve this by
using the concavity of W (proved in Lemma 14).

By concavity of the revenue curve, for any q′ ≤ q ≤ q∗, we have

W (q) ≥ q − q′

q∗ − q′
W (q∗) +

q∗ − q
q∗ − q′

W (q′) ,

because W lies above the segment that connects (q′,W (q′)) and (q∗,W (q∗)), between q′

and q∗. Hence

(v−b(q))q ≥ q − q′

q∗ − q′
(v−b(q∗))q∗+ q∗ − q

q∗ − q′
(v−b(q′))q′ ≥ qv−b(q∗)q∗ q − q

′

q∗ − q′
−b(q′)q′ q

∗ − q
q∗ − q′

,

And

−qb(q) ≥ q∗q′

(q∗ − q′)

(
b(q∗)− b(q′)

)
+ q

q′b(q′)− q∗b(q∗)
q∗ − q′

,

which yields

qb(q) ≤ q∗q′

(q∗ − q′)

(
b(q′)− b(q∗)

)
+ q

q∗b(q∗)− q′b(q′)
q∗ − q′

,

Dividing both sides by q, we have

b(q) ≤ q∗q′

q(q∗ − q′)

(
b(q′)− b(q∗)

)
+
q∗b(q∗)− q′b(q′)

q∗ − q′
, (2)

Further, by the intermediate value theorem, there exists b ∈ [b(q∗), b(q)], such that

φF (b(q))− φF (b(q∗)) = φ′F (b)
(
b(q)− b(q∗)

)
,
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for any q∗ ≤ q ≤ q′. Further, by Assumption 1 that dφF (b)
db ≥ 1, and because b is increasing

thanks to Assumption 1, for any q′ ≤ q ≤ q∗,

φF (b(q))− φF (b(q∗)) ≤ b(q)− b(q∗)

and
φF (b(q)) ≤ v + b(q)− b(q∗) = v + b(q)− b(q∗),

Combining with Inequality 2, we get that

φF (b(q)) ≤ v +
q∗q′

q(q∗ − q′)

(
b(q′)− b(q∗)

)
+
q∗b(q∗)− q′b(q′)

q∗ − q′
− b(q∗)

= v +
q′(q∗ − q)
q(q∗ − q′)

(
b(q′)− b(q∗)

)
≤ v +

q′(q∗ − q)
q∗(q∗ − q′)

(
b(q′)− b(q∗)

)
,

where the last inequality is due to q ≤ q∗ and b(q′)− b(q∗) < 0. Hence, we have

W (q∗)−W (q′) =

∫ q∗

q′
W ′(q)dq

=

∫ q∗

q′
v − φF (b(q))dq

≥
∫ q∗

q′

q′(q∗ − q)
q∗(q∗ − q′)

(
b(q∗)− b(q′)

)
dq

=
q′

2q∗
(q∗ − q′)

(
b(q∗)− b(q′)

)
. (3)

On the other hand, we have

W (q∗)−W (q′) = (q∗ − q′)v + q′b(q′)− q∗b(q∗). (4)

Taking the linear combination 2q∗

3q∗−q′ · 3 + q∗−q′
3q∗−q′ · 4, we have

W (q∗)−W (q′) ≥ v (q∗ − q′)2

3q∗ − q′)
− (q∗ − q′)2

3q∗ − q′
b(q∗)

=
1

q∗(3q∗ − q′)
(q∗ − q′)2W (q∗)

≥ 1

3
(q∗ − q′)2W (q∗) ,

where the last inequality holds because 0 ≤ q∗, q′ ≤ 1.

Lemma 7 If Assumption 2 is satisfied, for any F−1(b∗) ≤ q′ ≤ F−1(b∗ + ∆) ≤ b∗ +Cf∆),

W (q∗)−W (q′) ≤ 1

cf
λ(q∗ − q′)2,
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Proof

W (q∗)−W (q′) =

∫ q′

q∗
−W ′(q)dq =

∫ q′

q∗

(
φF (b(q))− v

)
dq.

by the intermediate value theorem, there exists b ∈ [b(q∗), b(q)], such that

φF (b(q))− φF (b(q∗)) = φ′F (b)
(
b(q)− b(q∗)

)
≥ λ(b(q)− b(q∗)),

so that φF (b(q))−v ≤ λ(b(q)−b(q∗)) when q∗ ≤ q ≤ q′ and φF (b(q))−v ≥ λ(b(q)−b(q∗))
when q′ ≤ q ≤ q∗. Since f is bounded from below by cf , and since by the intermediate
value theorem ∃u ∈ [q, q∗], b(q)− b(q∗) = b′(u)(q − q∗) ≥ 1

f(u)(q − q∗), this yields

W (q∗)−W (q′) ≤ λ 1

cf
(q′ − q∗)2

in both cases.

Lemma 15 Beta distributions such that

α+ β < αβ

satisfy Assumption 1.

Proof The density of a Beta distribution satisfies

f(x) =
xα−1(1− x)β−1

B(α, β)

And

f ′(x) =
(α− 1)xα−2(1− x)β−1 − (β − 1)xα−1(1− x)β−2

B(α, β)
,

where B(α, β) = Γ(α+β)
Γ(α)Γ(β) when Γ denotes the Gamma function. F satisfies assumption

1 if and only if
(
f
F

)′
(x) = F (x)f ′(x)−f2(x)

F 2(x)
< 0, ∀x ∈]0, 1[, which is equivalent to:

f ′(x)F (x)− f2(x) < 0, ∀x ∈]0, 1[ ⇐⇒ f ′(x)

f(x)
F (x) < f(x), ∀x ∈]0, 1[)

⇐⇒ F (x)B(α, β) [(α− 1)(1− x)− (β − 1)x] < xα(1− x)β,

∀x ∈]0, 1[.

Therefore we study the function G : x 7→ F (x)B(α, β) [(α− 1)(1− x)− (β − 1)x] −
xα(1− x)β. First of all, we observe that G(0) = 0. Next, we note that

G′(x) =− F (x)(α+ β − 2)B(α, β) + ((α− 1)− (α+ β − 2)x)xα−1(1− x)β−1

−
(

(α(1− x)− βx)xα−1(1− x)β−1
)
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and G′(0) = 0. Now, we compute the second derivative of G:

G′′(x) =− (α+ β − 2)xα−1(1− x)β−1 + ((α− 1)− (α+ β − 2)x))2 xα−2(1− x)β−2

− (α+ β − 2)xα−1(1− x)β−1 − (α− (α+ β)x) ((α− 1)−
(α+ β − 2)x)xα−2(1− x)β−2 + (α+ β)xα−1(1− x)β−1

The sign of G′′(x) is the same as that of P (x) = − ((α+ β)− 4) (x(1 − x)) + (−1 +
2x) ((α− 1)− (α+ β − 2)x).

By simplifying, we get P (x) = −(α+ β)x2 + 2αx− (α− 1). This polynomial is always

negative because its maximum is P ( α
α+β ) = − α2

α+β + 2 α2

α+β −α+ 1 = α2( 2
α+β − 1)−α+ 1 =

α2

α+β − α+ 1 = α+β−αβ
α+β .

Since G′′(x) < 0, ∀x ∈ [0, 1] and G′(0) = 0, then G′(x) < 0, ∀x ∈ [0, 1]. Similarly,
G′(x) < 0,∀x ∈ [0, 1] and G(0) = 0, implies G′(x) < 0, ∀x ∈ [0, 1], which in turn implies
that F satisfies Assumption 1.

A.3. Continuous distribution leading to a utility with two global maximizers

Consider a distribution which cumulative distribution function F is piece-wise linear on
[0, v] at least. We consider that it changes slope at a1v < v, and that it is constant on
[a2v, v], as in Figure 8. We denote by b1 = F (a1v) and b2 = F (a2v). For simplicity we
assume that F is constant on [a2v, a3v] it is linear and does not change slope on [a3v, 1]
with a3 > 1. We make the following assumptions{

a2v > v/2,

a2v ≤ v+a1v
2 − a2v−a1v

b2−b1
b1
2 .

(5)

Figure 8: Example of F

Then
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• On [0, a1v] Uv(x) = b1
a1v

x, and the optimum on this interval is v/2. The optimal value

on this interval is Uv(v/2) = b1
a1v

v2

4 on this interval.

• On [a1v, a2v], Uv(x) =
(

b2−b1
a2v−a1v (x− a1v) + b1

)
(v − x), and on this interval, U ′v(x) =

b2−b1
a2v−a1v (v− 2x+ a1v)− b1 and U ′v(x) = 0 ⇐⇒ x = v+a1v

2 − a2v−a1v
b2−b1

b1
2 . The optimizer

on this interval is hence a2v, if v+a1v
2 − a2v−a1v

b2−b1
b1
2 > a2v. Under this condition, the

optimal value is Uv(a2v) = b2(v − a1v) on this interval. This can also be extended to
the whole interval [a1v, v], since U is decreasing after a2v.

Setting
b1
a1

v

4
= b2 (6)

leads to the utility having two global maximizers, v/2 and a2v.
To summarize, the utility’s argmax is {v/2, a2v} if the set of Equations 5 holds.
We can for example choose :

v = 1/2; a2 =
15

16
; a1 =

29

32
; b2 =

128

29
b1; b1 = 0.5

This choice of parameters satisfies Condition 5 and Condition 6. Figure 9 shows the
corresponding utility on [0, v].

Figure 9: Associated Utility with two maximizers

Appendix B. Lower Bound

Theorem 2 Let C denote the class of cumulative distribution functions on [0, 1]. Any
strategy, whether it assumes knowledge of F or not, must satisfy

lim inf
T→∞

maxv∈[0,1],F∈C R
v,F
T√

T
≥ 1

64
,
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Proof
We exhibit a choice of F , and two alternative Bernoulli value distributions Ber(v)

and Ber(v′) that are difficult to distinguish but whose difference is large enough so that
mistaking one for the other necessarily leads to a regret of the order of

√
T when the

cumulative distribution function is F .
Let v < 1 and consider a discrete distribution with support

{
v
3 ,

2v
3 , 1

}
such that F (v3 ) =

A and F (2v
3 ) = 2A + 3∆T

v , where ∆T and A are positive constants, that we will fix later
on. A maximizer of the utility can only be a point of the support, since Uv,F decreases in
the intervals where F is constant. It can not be 1, because v < 1. We have Uv,F (v3 ) = 2vA

3
and Uv,F (2v

3 ) = 2vA
3 + ∆T , while Uv,F (1) ≤ 0. Consequently, when the value is v, the

optimum is achieved by bidding 2v
3 and bidding less than 2v

3 yields a regret of at least
∆T . Now let us consider the alternative situation in which the value is v′ = v − δT , with
δT > 0. We get Uv′,F (v3 ) = 2Av

3 − δTA and Uv′,F (2v
3 ) = 2Av

3 + ∆T − δT (2A + 3∆T
v ). When

∆T < δT (2A+ 3∆T
v ), the optimal bid is v

3 and the regret incurred by bidding more than 2v
3

is at least δT (A+ 3∆T
v )−∆T . By setting ∆T = AδT

2−3δT /v
, we ensure that the regret incurred

by bidding on the wrong side of 2v
3 is larger than ∆T , whether the value is v or v′. Further,

by setting δT =
√
v(1− v)/T , we force the error ∆T to be of the order of 1/

√
T .

We also set A = 1
4 , and v = 1/2. We can prove that ∀T > 16, 2A+ 3∆T

v < 1 ; Indeed, if

T > 16 > (11/3)2, 4
3 < 2

√
T − 6 hence 4

3
√
T
< 2− 6√

T
which implies 2

3

1√
T

2− 6√
T

= 6∆T <
1
2 =

1− 2A.
We denote by Pv,F (·) the probability of an event under the first configuration (respec-

tively Ev,F (·) the expectation of a random variable under the first configuration), and by
Pv′,F (·) the probability of an event under the second configuration (respectively Ev−δ−T,F (·)
the expectation of a random variable under the first configuration). We denote by It the
information collected up to time t+ 1 : (Mt, V

′
t , . . .M1, V

′
1). PItv,F (respectively PItv′) denotes

the law of It in the first (respectively second) configuration.
We consider the Kullback Leibler divergence between PItv,F and PItv′,F . We prove that it

is equal to
KL(PItv ,P

It
v′,F ) = kl(v, v′)E[Nt], (7)

where kl(·, ·) denotes the Kullback Leibler divergence between two Bernoulli distributions.
Indeed, thanks to the chain rule for conditional KL,

KL(PItv,F ,P
It
v′,F ) = KL(PItv,F ,P

It
v′,F ) +KL(P(Mt,V ′t )|It

v,F ,P(Mt,V ′t )|It
v′,F ),

and

KL(P(Mt,V ′t )|It
v,F ,P(Mt,V ′t )|It

v′,F ) = E[E[KL(νIt ⊗DF , ν ′It ⊗DF )|It]]
= E[kl(v, v′)1(Bt > Mt)].

where νIt(respectively ν ′It) denotes the law of V ′t knowing It in the first configuration (re-
spectively the second), and DF the law of Mt.

By induction, we obtain

KL(PItv,F ,P
It
v′,F ) = kl(v, v′)Ev,F [Nt].
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We stress that in either of the former configurations (under (v, F ) or (v′, F )), playing
on the wrong side of 2

3v yields a regret larger than ∆T . Using this, we get that ∀T > 16,

max(Rv,FT , Rv
′,F
T ) ≥ 1

2
(Rv,FT +Rv−δ,FT )

≥ 1

2

T∑
t=1

(
∆TPv,F

(
Bt <

2

3
v

)
+ ∆TPv′,F

(
Bt >

2

3
v

))

≥ 1

2

T∑
t=1

(
∆TPv,F

(
Bt <

2

3
v

)
+ ∆T

(
1− Pv′,F (Bt >

2

3
v)

))

≥ 1

2

T∑
t=1

∆T

(
1− TV (PItv,F ,P

It
v′,F )

)
≥ 1

2

T∑
t=1

∆T

(
1−

√
1

2
KL(PItv,F ,P

It
v′,F )

)

≥ 1

2

T∑
t=1

∆T

(
1−

√
1

2
Ev,F [Nt]kl(v, v′)

)

≥ 1

2

T∑
t=2

∆T

(
1−

√
1

2
Tkl(v, v′)

)

where we used Pinsker’s inequality in the fifth inequality and where TV (·, ·) denotes the

total variation. Yet, since kl(v, v′) = (v′−v)2

2

∫ 1
0 g
′′(v′ + s(v′ + s(v − v′))2(1 − s)ds, where

g(x) = kl(x, v′) thanks to Taylor’s inequality,

kl(v, v′) ≤ (v′ − v)2

2

∫ 1

0
2 max
u∈[v,v′]

g′′(u)ds

≤ (v′ − v)2 1

minu∈[v,v′] u(1− u)

≤ (v′ − v)2

v′(1− v′)
,

since v = 1
2 .

Therefore,



Achddou Cappé Garivier

max(Rv,FT , Rv
′,F
T ) ≥ 1

2

T∑
t=1

∆T

(
1−

√
1

2
Tkl(v, v′)

)

≥ 1

2

T∑
t=1

∆T

(
1−

√
1

8

1

(1/2− 1
2
√
T

)(1/2 + 1
2
√
T

)

)

≥ 1

2
× AδT

2− 3/2δT
T

(
1−

√
1

8

1

(1/2− 1
2
√
T

)(1/2 + 1
2
√
T

)

)

≥ 1

16− 12/
√
T

√
T

(
1−

√
1

8

1

(1/2− 1
2
√
T

)(1/2 + 1
2
√
T

)

)
Finally

lim inf
T→∞

max(Rv,FT , Rv
′,F
T )√

T
≥ 1

16

(
1−

√
1

2

)
≥ 1

64

Appendix C. Preliminary Results

C.1. Concentration inequalities used for the upper bounds

C.1.1. On the value Vt

Lemma 16 The following concentration inequality on the values holds

T∑
t=2

P

(
(V̂t − v)2 ≥ γ log(t− 1)

2Nt

)
≤

T∑
t=1

2e
√
γ(log(t))t−γ .

Proof We have, for all ηt−1,

T∑
t=2

P

(
(V̂ (Nt)− v)2 ≥ ηt−1

2Nt

)
≤

T∑
t=2

P
(
∃m : 1 ≤ m ≤ t, 2m(V̂ (m)− v)2 ≥ ηt−1

)
≤

T∑
t=1

2e
√
ηt−1 log(t− 1) exp(−ηt−1) := l1(T )

where the second inequality comes from Lemma 11 in (Cappé et al., 2013), and from the
fact that Vt is a positive random variable bounded by 1, so 1/2− sub-Gaussian.

Therefore, if ηt := γ log t,

l1(T ) =

T∑
t=2

2e
√
γ(log(t− 1))(t− 1)−γ

which tends to a finite limit as soon as γ > 1.
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C.1.2. On the cumulative distribution function of Mt

Lemma 17 The following concentration inequality holds on the empirical cumulative dis-
tribution F̂t.

T∑
t=2

P

(
‖F̂t − F‖∞ ≥

γ log(t− 1)

2(t− 1)

)
≤ 2

T∑
t=1

t−γ .

Proof It holds

T∑
t=2

P

(
( max
b∈[0,1]

|Ft(b)− F (b)|)2 ≥ γ log(t− 1)

2(t− 1)

)

≤
T∑
t=2

P

(
‖F̂t − F‖2∞ ≥

γ log(t− 1)

2(t− 1)

)

≤
T−1∑
t=1

2e−
2γ log(t

2t

≤
T∑
t=1

2t−γ ,

according to the Dvoretzky–Kiefer–Wolfowitz inequality (see Massart (1990)).
Note that this also yields

T∑
t=2

P

(
‖F̂t − F‖∞ ≥

γ log(t− 1)

2Nt

)
≤

T∑
t=2

P

(
‖F̂t − F‖∞ ≥

γ log(t− 1)

2(t− 1)

)

≤ 2

T∑
t=1

t−γ .

C.1.3. Local concentration inequality

This lemma is key for the proof of the upper bound of the regret of UCBid1+. It quantifies
the variation of F̂t on a small interval.

Lemma 12 For any a, b ∈ [0, 1], if F is continuous and increasing, then

sup
a≤x≤b

|F̂t(x)− F (x)− (F̂t(a)− F (a))|

≤

√√√√√2(F (b)− F (a)) log

(
e
√
t√

2(F (b)−F (a))η

)
t

+
log( t

2(F (b)−F (a)η2
)

6t
, (8)

with probability 1− η
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Remark : it follows from the lemma that the the maximal gap between F̂t(x) − F (x)
and F̂t(

a+b
2 )− F (a+b

2 ) can easily be bounded by :

sup
a≤x≤b

|F̂t(x)− F (x)− (F̂t(
a+ b

2
)− F (

a+ b

2
))|

≤ 2

√√√√√2(F (b)− F (a)) log

(
e
√
t√

2η(F (b)−F (a))

)
t

+ 2
log( t

2(F (b)−F (a)η2
)

6t

with probability 1− η.
Proof :
Let X1, . . . , Xn

iid∼ dF . Let m > 2 For every 1 ≤ i ≤ m, let xi be such that

F (xi) = F (a) +
i

m

(
F (b)− F (a)

)
.

By Bernstein’s inequality, since t
(
F̂t(xi) − F̂t(a)

)
∼ B(n, F (xi) − F (a)) has a variance

bounded by t
(
F (b)− F (a)), there is an event A of probability at least 1−me−z on which

max
0≤i≤m

∣∣F̂t(xi)− F̂t(a)− (F (xi)− F (a))
∣∣ ≤

√
2
(
F (b)− F (a)

)
z

t
+
z

3t
:= δ,

by a union bound. Besides, for i = 0, F̂t(xi)− F̂t(a)− (F (xi)− F (a)) = 0.
On this event, for every xi−1 ≤ x ≤ xi:

F̂t(x)− F̂t(a)− (F (x)− F (a)) ≤ F̂t(xi)− F̂t(a)− (F (xi)− F (a)) + F (xi)− F (x) ≤ δ +
1

m
,

F̂t(x)− F̂t(a)− (F (x)− F (a)) ≥ F̂t(xi−1)− F̂t(a)− (F (xi−1)− F (a)) + F (xi−1)− F (x)

≥ −δ − 1

m
.

and hence

sup
a≤t≤b

∣∣F̂t(x)− F̂t(a)− (F (x)− F (a))
∣∣ ≤

√
2
(
F (b)− F (a)

)
z

t
+
z

3t
+

1

m
.

Now, take

m =
⌈√ t

2
(
F (b)− F (a)

)⌉
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and z = log(m/η): one gets that with probability at least 1− η,

sup
a≤t≤b

∣∣F̂t(x)− F̂t(a)− (F (x)− F (a))
∣∣

≤

√√√√√√2
(
F (b)− F (a)

)
log

(√
t

2(F (b)−F (a))

η

)
t

+

log

(√
t

2(F (b)−F (a))

η

)
3t

+

√
2
(
F (b)− F (a)

)
t

≤

√√√√√2
(
F (b)− F (a)

)
log

(
e
√
t√

2(F (b)−F (a))η

)
t

+
log
(

t
2(F (b)−F (a))η2

)
6t

.

C.2. General bound on the instantaneous regret

In the following, we will repeatedly use the following general bound on the instantaneous
regret conditioned on the past and on a current victory.

Lemma 18 Let A be an Ft−1-measurable event. Let St denote (Vt− b∗)1(Mt < b∗)− (Vt−
Bt)1(Mt < Bt). The following inequality holds:

E [St1(Bt > b∗)1(A)|Ft−1 ∨ σ(1(Bt > Mt))] ≤
U(b∗)− U(Bt)

F (b∗)
1(Mt ≤ Bt)1(A).

Proof When Bt > b∗, the instantaneous regret can be decomposed as follows

St1(Bt > b∗) = (Bt − v)1(Mt ≤ b∗)1(Bt > b∗) + (Bt − b∗)1 {(Mt ≤ b∗ ≤ Bt)} . (9)

Note that in particular, there is no instantaneous regret when Mt > Bt. Therefore

E [St1(Bt > b∗)1(A)|Ft−1 ∨ 1(Bt > Mt)]

≤ (Bt − b∗)F (b∗) + (Bt − v)(F (Bt)− F (b∗))

F (Bt)
1(Mt ≤ Bt)1(Bt > b∗)1(A)

≤ U(b∗)− U(Bt)

F (b∗)
1(Mt ≤ Bt)1(A),

since U(b∗) − U(Bt) = (v − b∗)F (b∗) − (v − Bt)F (Bt), which also equals (Bt − b∗)F (b∗) +
(Bt − v)(F (Bt)− F (b∗)).

C.3. Other lemmas

Lemma 19 The expectations E
[∑T

t=2
1
Nt

1{Mt ≤ Bt}
]

and E
[∑T

t=2

√
1
Nt

1{Mt ≤ Bt}
]

can

always be bounded as followsE
[∑T

t=2
1
Nt

1{Mt ≤ Bt}
]
≤ 1 + log T,

E
[∑T

t=2

√
1
Nt

1{Mt ≤ Bt}
]
≤ 1 +

√
T .
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Proof Since winning an auction increments the number of observations Nt by 1,

T∑
t=2

E
[√ 1

Nt
1(Mt ≤ Bt)

]
≤

T∑
t=2

T−1∑
n=1

√
1

n
1{Nt = n, Nt+1 = n+ 1}

≤
T−1∑
n=1

√
1

n

T∑
t=2

1{Nt = n, Nt = n+ 1}

≤
T−1∑
n=1

√
1

n

≤ 1 +

T−1∑
n=2

∫ n

n−1

√
1

u
du

≤ 1 +
√
T .

Similarly, we get

T∑
t=2

E
[ 1

Nt
1(Mt ≤ Bt)

]
≤

T∑
t=2

T−1∑
n=1

1

n
1{Nt = n, Nt+1 = n+ 1}

≤
T−1∑
n=1

1

n

T∑
t=2

1{Nt = n, Nt = n+ 1}

≤
T−1∑
n=1

1

n

≤ 1 +
T−1∑
n=2

∫ n

n−1

1

u
du

≤ 1 + log T.

Lemma 20 If g1 and g2 are two functions such that ‖g1 − g2‖∞ ≤ δ, then

g1(b∗1)− g1(b∗2) ≤ 2δ

where b∗1 = max(arg maxb∈[0,1] g1(b)) and b∗2 = max(arg maxb∈[0,1] g2(b)).

Proof Indeed,

0 ≤ g1(b∗1)− g1(b∗2) ≤ g1(b∗1)− g2(b∗2) + g2(b∗2)− g1(b∗2)

≤ 2δ.
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Lemma 21 For any a > 0, t ≥ 2a log(a) implies t ≥ a log t.

Proof

a log t ≥ a
(
t

2a
+ log(2a)

)
≥ t/2 + a log(a),

where the first inequality follows from the fact that log(x/y) ≤ x/y for any positive x and
y. Hence when t > 2a log(a), t ≥ t/2 + a log t ≥ a log t.

Appendix D. Known F

D.1. Upper Bounds of the Regret of UCBid1

We prove the somewhat more precise form of Theorem 8.

Theorem 8 UCBid1 incurs a regret bounded as follows

RT ≤
1

F (b∗)

√
γ log T (

√
T + 1) +O(1).

Proof We denote by UUCBid1
t the function b 7→ (V̂t + εt − b)F (b). The regret can be

decomposed as follows.

RT ≤ 1 +

T∑
t=2

P
(
|V̂t − v| ≥ εt

)
+

T∑
t=2

E
[
St1

{
|V̂t − v| ≤ εt

}]
,

Lemma 16 yields the following bound on the probability of over-estimating V̂t:

T∑
t=2

P(|V̂t − v| ≥ εt) ≤
t∑
t=1

2e
√
γ(log t)t−γ .

Since F (x) ≤ 1, ∀x ∈ [0, 1], and ‖UUCBid1
t −U‖∞ = ‖(V̂t− v+ εt)F (x)‖∞ ≤ |V̂t−v+ εt|,

we can bound the difference between the utility function and its (upper confidence) estimate
with high probability:

T∑
t=2

P(‖UUCBid1
t − U‖∞ ≥ 2εt) ≤

T∑
t=1

2e
√
γ(log t)t−γ .

When ‖UUCBid1
t − U‖∞ ≤ 2εt, then

|U(b∗)− U(Bt)| ≤ 4εt,
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thanks to Lemma 20. Additionally, using Lemma 1, if V̂t + εt − v ≥ 0 , then Bt ≥ b∗

Therefore,

T∑
t=2

1

F (b∗)
E
[
St1 {Mt ≤ Bt} 1 {b∗ ≤ Bt}1

{
|V̂t − v| ≤ εt

}]
≤

T∑
t=2

E

[
U(b∗)− U(Bt)

F (b∗)
1 {b∗ ≤ Bt} 1 {Mt ≤ Bt}1

{
|V̂t − v| ≤ εt

}]

≤
T∑
t=2

E

[
U(b∗)− U(Bt)

F (b∗)
1 {b∗ ≤ Bt} 1 {Mt ≤ Bt}1 {U(b∗)− U(Bt) ≤ 4εt}

]

≤
T∑
t=2

1

F (b∗)
E [4εt1 {Mt ≤ Bt}1 {(U(b∗)− U(Bt) ≤ 4εt}]

≤
T∑
t=2

1

F (b∗)

√
2
γ log T

Nt

≤ 1

F (b∗)

√
2γ log T (1 +

√
T ),

where the second inequality comes from Lemma 18 (in fact
{
|V̂t − v| ≤ εt

}
is Ft−1-measurable)

and the last inequality comes from Lemma 19.
Using Lemma 16 yields

T∑
t=2

P(|V̂t − v| ≥ εt) ≤
T∑
t=1

2e
√
γ(log t)t−γ .

Combining this with the above decomposition of the regret yields

RT ≤ 1 +
T∑
t=1

2e
√
γ(log t)t−γ +

1

F (b∗)

√
2 log T (1 +

√
T ),

When γ > 1,
∑T

t=1 2e
√
γ(log t)t−γ tends to a constant, and

RT ≤
1

F (b∗)

√
2γ log T (1 +

√
T ) +O(1),

which concludes the proof.

Theorem 9 If F satisfies Assumption 1 and 2, then

RT ≤
2γλC2

f

F (b∗)cf
log2(T ) +O(log T ),

when γ > 1.
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Proof
Thanks to Lemma 1, if V̂t + εt − v ≥ 0 , then Bt ≥ b∗. Additionally,

Bt − b∗ ≤ (V̂t + εt − v),

thanks to Lemma 4. In particular, if V̂t + εt − v < 2εt,

Bt − b∗ ≤ 2εt.

The regret can therefore be decomposed as follows :

RT ≤ 1 +
T∑
t=2

P(V̂t + εt − v ≤ 0) +
T∑
t=2

P(V̂t − εt − v ≥ 0)

+ E

[
T∑
t=2

St1(Bt ∈ [b∗, b∗ + min(2εt,∆)]

]
+

T∑
t=2

E [St1(Bt ∈ [b∗ + min(2εt,∆), b∗ + ∆])]

(10)

Let us bound the third term of this inequality. Thanks to Lemma 18 ,

E [St1(Bt ∈ [b∗, b∗ + εt])|Ft−1 ∨ σ(1 {Mt ≤ Bt})]

≤ U(b∗)− U(Bt)

F (b∗)
× 1 {Mt ≤ Bt}1 {b∗ ≤ Bt ≤ b∗ + 2εt} , (11)

because (Bt ∈ [b∗, b∗ + εt]) is Ft−1- measurable. This is why

T∑
t=2

E [E [St1(Bt ∈ [b∗, b∗ + min(2εt,∆])|Ft−1 ∨ σ({1 {Mt ≤ Bt})}]]

≤
T∑
t=2

E

[
U(b∗)− U(Bt)

F (b∗)
× 1 {Mt ≤ Bt} 1 {b∗ ≤ Bt ≤ b∗ + min(2εt,∆}

]

≤
T∑
t=2

E

[
W (q∗)−W (Qt)

F (b∗)
× 1 {Mt ≤ Bt} 1 {q∗ ≤ Qt ≤ b∗ + 2Cf εt}

]

≤
T∑
t=2

E

[
λ(q∗ −Qt)2

cfF (b∗)
× 1 {Mt ≤ Bt} 1 {q∗ ≤ Qt ≤ b∗ + 2Cf εt}

]

≤ E

[
λ(2Cf )2

cfF (b∗)

T∑
t=2

(
γ log T

2Nt

)
1 {Mt ≤ Bt}

]

≤
2λγC̄f
cfF (b∗)

log T (log T + 1),

where the third inequality comes from Lemma 7 and the last one follows from Lemma 19.
Thanks to Lemma 16, the sum of the first term and the second term of Equation (10)

can be bounded by
∑T

t=2 P(V̂t − v < εt) +
∑T

t=2 P(V̂t − εt − v ≥ 0) ≤
∑T

t=1 e
√
γ log t

tγ which
is bounded by a constant when γ > 1.
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The last term of Equation (10) can be bounded as follows:

T∑
t=2

E [St1(Bt ∈ [b∗ + min(2εt,∆), b∗ + ∆])] ≤
T∑
t=2

P [(∆ > 4εt,Mt ≤ Bt, Bt > b∗]

≤
T∑
t=2

P

[
∆2 > 4

γ log T

2Nt
,Mt ≤ Bt, Bt > b∗

]

≤
T∑
t=2

T−1∑
n=1

P

[
∆2 > 2

γ log T

2Nt

]
1 [Nt = n, Nt+1 = n+ 1]

≤
T−1∑
n=1

1

[
n < 4

γ log T

2∆2

] T∑
t=2

1 {Nt = n, Nt+1 = n+ 1}

≤
T−1∑
n=1

1

{
n < 4

γ log T

2∆2

}
≤ 4

γ log T

2∆2

where the first inequality comes from the fact that when Bt > b∗, a positive instantaneous
regret can only occur if Mt ≤ Bt. By summing all components of the regret,

RT ≤ 1 + 4
γ log T

2∆2
+

2γλC2
f

F (b∗)cf
(log2(T ) + log T ).

In conclusion,

RT ≤
2γλC2

f

F (b∗)cf
log2(T ) +O(log T )

when γ > 1.

D.2. Lower bound of the regret of optimistic strategies

Lemma 10 Consider all environments where Vt follows a Bernoulli distribution with ex-
pectation v and F satisfies Assumption 1 and is such that φ′ ≤ λ, and there exists cf and
Cf such that 0 < cf < f(b) < Cf , ∀b ∈ [0, 1]. If a strategy is such that, for all such envi-

ronments, Rv,FT ≤ O(T a), for all a > 0, and there exists γ > 0 such that P(Bt < b∗) < t−γ,
then this strategy must satisfy:

lim inf
T→∞

Rv,FT
log T

≥ c2
fλ

2

(
v(1− v)(v − b∗v,F )

32

)
.

Note that this proof is an adaptation of the proof of the parametric lower bound of (Achddou
et al., 2021).
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Lemma 22 If RT ≤ O(T a), ∀a > 0, and F admits a density which is lower bounded by a
positive constant and upper bounded. Then,

lim
t→∞

E

[
Nt

t

]
= F (b∗).

Proof The fraction of won auctions is E
[
Nt
t

]
= E[1

t

∑t
s=1 F (Bs], by the tower rule. Since

F admits a density f , upper bounded by a constant Cf ,

E[(F (Bt)− F (b∗))2]] ≤ C2
fE[(Bt − b∗)2].

The consistency assumption implies
∑T

t=1 E[(Bt−b∗)2] ≤ O(T a), ∀a > 0, because of Lemma
6. In particular limt→∞ E[(Bt − b∗)2] = 0. Combining the two previous arguments yields
limt→∞ E[(F (Bt) − F (b∗))2] = 0. Then, because L2-convergence implies L1-convergence,
limt→∞ E[F (Bt)] = F (b∗).
Together with the equality E

[
Nt
t

]
= E[1

t

∑t
s=1 F (Bs)], and with the Cesaro theorem, this

result proves suffices to prove the lemma.

We set a time step t ∈ [1, T ]. We consider two alternative configurations with identical
distributions for Mt but that differ by the distribution of Vt. The value Vt is distributed
according to a Bernoulli distribution of expectation v in the first configuration, respectively

v′t = v +
√

v(1−v)
F (b∗)t , in the second configuration.

Notation. We let Pv(·) denote the probability of an event under the first configuration (re-
spectively Ev(·) the expectation of a random variable under the first configuration), whereas
Pv′t(·) denotes the probability of an event under the second configuration (respectively Ev′t(·)
the expectation of a random variable under the first configuration). The information col-
lected up to time t+ 1 is denoted It : (Mt, V

′
t , . . .M1, V

′
1). Finally, PItv (respectively PIt

v′t
) is

the law of It in the first (respectively second) configuration.
The Kullback Leibler divergence between PItv and PIt

v′t
can be proved to satisfy

KL(PItv ,P
It
v′t

) = kl(v, v′t)E[Nt],

exactly like in Equation 7.
Using Lemma 22, ∀ε > 0,∃t1(ε),∀t ≥ t1(ε),

KL(PItv ,P
It
v′t

) ≤ kl(v, v′t)(1 + ε)F (b∗).

Using the data processing inequality (see for example Garivier et al. (2019)), we get

KL(PItv ,P
It
v′t

) ≥ kl

(
Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)
,Pv′t

(
Bt >

v + b∗v′t,F

2

))

≥ 2

(
Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)
− Pv′t

(
Bt >

b∗v,F + b∗v′t,F

2

))2

≥ 2

(
Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)
+ Pv′t

(
Bt ≤

b∗v,F + b∗v′t,F

2

)
− 1

)2

,
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where the second inequality comes from Pinsker inequality. Consequently, we get

Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)
+ Pv′t

(
Bt ≤

b∗v,F + b∗v′t,F

2

)
≥ 1−

√
1

2
KL(PItv ,P

It
v′t

).

Specifically, ∀t > t0(ε),

Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)
+ Pv′t

(
Bt ≤

b∗v,F + b∗v′t,F

2

)
≥ 1−

√
1

2
kl(v, v′t)(1 + ε)F (b∗v,F )t.

Using the fact that Ev[(Bt − b∗v,F )2] ≥
(
b∗v,F −

b∗v,F+b∗
v′t,F

2

)2

Pv

(
Bt >

b∗v,F+b∗
v′t,F

2

)
yields

Ev[(Bt − b∗v,F )2] ≥

(
b∗v,F − b∗v′t,F

2

)2

Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)

≥
(
λ
v − v′t

2

)2

Pv

(
Bt >

b∗v,F + b∗v′t,F

2

)

≥ λ2 v(1− v)

4F (b∗v,F )t

(
1−

√
1

2
(1 + ε)kl(v, v′t)F (b∗v,F )t− 1/tγ

)
,

where the second inequality comes from the fact that v = φF (b∗v,F ) (resp. v′t = φF (b∗v′t,F
))

and that φ′F ≤ λ and the the second inequality stems from the assumption that the algorithm
outputs a bid that does not underestimate b∗v′t,F

with high probability: Pv′t(Bt < b∗v′t,F
) < 1

tγ .

We use the fact that ∀ε > 0, ∃t2(v, ε), ∀t ≥ t2(v, ε), kl

(
v, v +

√
v(1−v)
F (b∗v,F )t

)
≤ 1+ε

2F (b∗v,F )t

which is proved by observing that kl(v, v′) = (v′−v)2

2

∫ 1
0 g
′′(v′ + s(v′ + s(v − v′))2(1 − s)ds,

where g(x) = kl(x, v′); and that thanks to Taylor’s inequality,

kl(v, v′) ≤ (v′ − v)2

2

∫ 1

0
2 max
u∈[v,v′]

g′′(u)ds

≤ (v′ − v)2 1

minu∈[v,v′] u(1− u)

and that ∀ε > 0, ∃t2(v, ε), such that minu∈[v,v′] u(1−u) < 1+ε
v(1−v) . Putting all the pieces

together yields
∀t ≥ max(t1(ε), t2(v, ε)),

Ev[(Bt − b∗v,F )2] ≥ v(1− v)

4F (b∗v,F )t

(
1−

√
1

4
(1 + ε)2 − 1/tγ

)
.

Let t0(v, ε) = max(t1(ε), t2(v, ε)). We obtain

T∑
t=1

Ev[(Bt − b∗v,F )2] ≥
T∑

t=t0(v,ε)

λ2 v(1− v)

4F (b∗v,F )t

(
1− 1

2
(1 + ε)− 1/tγ

)
.
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Recall that, according to Lemma 6,

RT (v) =

T∑
t=1

E
[
U(b∗v,F )− U(Bt)

]
≥
U(b∗v,F )

4

T∑
t=1

Ev[(Qt−q∗)2] ≥
c2
fU(b∗v,F )

4

T∑
t=1

Ev[(Bt−b∗v,F )2].

Hence, ∀ε > 0,

RT (v) ≥ λ2
c2
fU(b∗v,F )

4

(
v(1− v)

4

(
1− 1

2
(1 + ε)

))
log

T

t0(v, ε)
−O(1).

And ∀ε > 0,

lim inf
T→∞

RT (v)

log T
≥
c2
fλ

2U(b∗v,F )

4

(
v(1− v)

4F (b∗v,F )

(
1− 1

2
(1 + ε)

))
.

Since this holds for all ε,

lim inf
T→∞

RT (v)

log T
≥ λ2c2

f

(
v(1− v)(v − b∗v,F )

32

)
.

Appendix E. Unknown F

E.1. Upper Bound of the Regret of O-UCBid1

Theorem 23 O-UCBid1 incurs a regret bounded by

RT ≤
4
√

2

F (b∗)

√
γ log T (

√
T + 1) +O(1).

We first observe that the algorithm overbids (Bt > b∗) when F and v belong to their
confidence regions Ft = {F̃ , ‖F − F̂t‖ ≤ εt} and Vt = [v − εt, v + εt].

Lemma 24 The bid submitted by O-UCBid1 is an upper bound of b∗ when ‖Ût−U‖∞ ≤ 2εt.{
‖Ût − U‖∞ ≤ 2εt

}
implies b∗ ≤ Bt.

Proof Let us pick b ∈ arg max Ût.

Ût(b)− Ût(b∗) = Ût(b)− U(b∗) + U(b∗)− Ût(b∗) ≤ 4εt.

We deduce that Ût(b
∗) ≥ Ût(b)− 4εt ≥ max Ût − 4εt.

Hence, b∗ ∈
{
b ∈ [0, 1], Ût(b) ≥ max Ût − 2εt

}
. By definition of Bt, this yields Bt ≥ b∗.
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Next we observe that if F and v lie in their confidence regions Ft and Vt, then ‖Ût −
U‖∞ ≤ 2εt. (Recall that Ût(b) = (V̂t − b)F̂t(b).) Indeed, we have

Ût(b)− U(b) = (V̂t − b)F̂t(b)− (v − b)F (b)

= (V̂t − v)F (b) + V̂t(F̂t(b)− F (b)) + b(F (b)− F̂b)
= (V̂t − v)F (b) + (V̂t − b)(F̂t(b)− F (b))

which yields
|Ût(b)− U(b)| ≤ |V̂t − v|+ ‖F (b)− F̂t(b)‖∞. (12)

We then decompose the regret into

E(RT ) =
T∑
t=1

E(U(b∗)− U(Bt))

≤ 1 +
T∑
t=

P(F /∈ Ft or v /∈ Vt) +
T∑
t=2

E
(
St1(Bt > b∗)1(‖Ût − U‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt

)
.

(13)

The second term of the second hand side of Equation 13 is easily bounded thanks to the
concentration inequalities in Lemmas 16 and 17. In fact, combining these latter lemmas
yields the following bound.

Lemma 25
T∑
t=2

P(F /∈ Ft or v /∈ Vt) ≤ 2
T∑
t=1

2e
√
γ(log t)t−γ

We apply Lemma 18 to bound the third term of the second hand side of Equation 13 as
follows:

E
[
]St1(Bt > b∗)1(‖Ût − U‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt)

]
≤ 1

F (b∗)
E
[
U(b∗)−U(Bt))×1(Mt ≤ Bt)1(‖U − Ût‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt)1(Bt > b∗)

]
,

(14)

because 1(Bt > b∗)1(‖Ût−U‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt) is Ft−1-measurable. We then bound
the deviation (U(b∗)− U(Bt))1(Mt ≤ Bt) by 8εt by using Lemma 20.

Lemma 26 When applying the O-UCBid1 strategy, if ‖U − Ût‖∞ ≤ 2εt, then

|U(Bt)− U(b∗)| ≤ 8εt.

Proof Assume ‖U−Ût‖∞ ≤ 2εt. Note that Ût(Bt)−Ût(b∗) = Ût(Bt)−Ût(b̂)+Ût(b̂)−Ût(b∗),
where b̂ = max arg maxb∈[0,1](V̂t − b)F̂t(b).

By design , we have Ût(Bt) − Ût(b̂) = −2εt. Thanks to Lemma 20, and because ‖U −
Ût‖∞ ≤ 2εt we know that 0 ≤ Ût(b̂)− Ût(b∗) ≤ 4εt. This yields |Ût(Bt)− Ût(b∗)| ≤ 4εt.
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Finally
|U(Bt)− U(b∗)| ≤ 8εt.

Then, by summing, we get

T∑
t=2

E
[
]St1(Bt > b∗)1(‖Ût − U‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt)

]
≤

T∑
t=2

1

F (b∗)
E
(
U(b∗)− U(Bt))× 1(Mt ≤ Bt)1(Bt > b∗)1(‖U − Ût‖∞ ≤ 2εt, F ∈ Ft, v ∈ Vt)

)
≤

T∑
t=2

1

F (b∗)
E
[
8εt × 1(Mt ≤ Bt)1(‖U − Ût‖∞ ≤ 2εt)1(Bt > b∗)

]
≤

T∑
t=2

1

F (b∗)
E
[
8

√
log T

2Nt
1(Mt ≤ Bt)

]
≤ 1

F (b∗)
4
√

2 log T (
√
T + 1),

where the last inequality comes from Lemma 19. Using Equation 13 and Lemma 25 yields

RT ≤
1

F (b∗)
4
√

2 log T (
√
T + 1) +

T∑
t=2

2e
√
γ(log t)t−γ .

Consequently, when γ > 1,

RT ≤
1

F (b∗)
4
√

2 log T (
√
T + 1) +O(1).

E.2. General Upper Bound of the Regret of UCBid1+

We prove a slightly different version of Theorem 2 than that of the main paper.

Theorem 2 UCBid1+ incurs a regret bounded by

RT ≤ 12

√
γα

F (b∗)

√
log T

√
T +O(log T )

≤ 12
1

U(b∗)

√
vγ
√

log T
√
T +O(log T ),

where α := v
v−b∗ , provided that γ > 2.

Proof We denote by E the event {∀t0 < t < T, |V̂t − v| ≤ εt, ‖F − F̂t‖∞ ≤
√

γ log(t−1)
2(t−1) },

where t0 := min(3, 1 + 8 γ(α+1)2

α(F (b∗))2 log
(

4 γ(α+1)2

α(F (b∗))2

)
).

Using Lemmas 16 and 17, this event happens with high probability, when γ > 2.
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Lemma 27 The probability of the complementary of E is bounded as follows

P
(
EC
)
≤ 4e(γ − 1)(log T )(T )1−γ .

provided that γ > 2.

Proof
We have

P

(
∃t ∈ [t0, T ], (V̂ (Nt)− v)2 ≥ γ log(t− 1)

2Nt

)
≤ P

(
∃t ∈ [2, T ], (V̂ (Nt)− v)2 ≥ γ log(t− 1)

2Nt

)
≤

T∑
t=2

P

(
(V̂ (Nt)− v)2 ≥ γ log(t− 1)

2Nt
,

)

≤
T∑
t=1

2e log(t)t−γ

≤
∫ T

u=1
2e log(t)u−γdu

≤ 2e(γ − 1) log(T )(T )1−γ ,

thanks to Lemma 16. Similarly,

P

∃t ∈ [t0, T ], ‖F − F̂‖∞ ≥

√
γ log(t− 1)

2Nt

 ≤ T∑
t=t0

P

 ‖F − F̂‖∞ ≥
√
γ log(t− 1)

2Nt


≤ 2

T∑
t=t0

t−γ

≤
∫ T

u=2
2u−γdu

≤ 2(γ − 1)(T )1−γ

thanks to Lemma 17.

When E occurs, it is possible to prove that F (Bt) is lower-bounded by a positive constant
as soon as t is large enough.

Lemma 28 On E, provided that t > t0 := min
(

3, 1 + 8 γ(α+1)2

α(F (b∗))2 log
(

4 γ(α+1)2

α(F (b∗))2

))
, F (Bt)

is lower bounded by

F (Bt) >
F (b∗)

2α
,

where α = v
v−b∗ .

Proof b∗ = α−1
α v. Since we are on E ,

b∗ ≤ α− 1

α
(V̂t + εt).
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Hence
V̂t + εt ≤ α(V̂t + εt − b∗).

Since Bt > 0,
V̂t + εt −Bt ≤ α(V̂t + εt − b∗).

And
V̂t + εt −Bt
V̂t + εt − b∗

≤ α.

By definition of Bt,
(V̂t + εt −Bt)F̂t(Bt) ≥ (V̂t + εt − b∗)F̂t(b∗)

which implies

F̂t(Bt) ≥
V̂t + εt − b∗

V̂t + εt −Bt
F̂t(b

∗) ≥ 1

α
F̂t(b

∗)

Now,

F (Bt) ≥ F̂t(Bt)−

√
γ log(t− 1)

2(t− 1)

≥ 1

α
F̂t(b

∗)−

√
γ log(t− 1)

2(t− 1)

≥ 1

α
F (b∗)−

(
1

α
+ 1

)√
γ log(t− 1)

2(t− 1)
,

because we assume that we are on E . Note that if t > t0, then

4γ(α+ 1)2

F (b∗)2
<

(t− 1)

log(t− 1)
,

thanks to Lemma 21, and (
1

α
+ 1

)√
γ log(t− 1)

2(t− 1)
<

1

2α
F (b∗),

so that

F (Bt) ≥
F (b∗)

2α
,

which concludes the proof.

Lemma 29 ∀t > t0,

P

(
Nt <

1

4α
F (b∗)(t− t0), E

)
≤ exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)
.
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Proof Indeed if t ≥ t0, then Nt is larger than the sum N ′t of t − t0 samples from a
Bernoulli distribution with average 1

2αF (b∗) , hence the probability thatNt <
1

4αF (b∗)(t−t0)
intersected with E can be bounded as follows.

P

(
Nt <

1

4α
F (b∗)(t− t0), E

)
≤ P

(
N ′t < +

1

4α
F (b∗)(t− t0)

)
≤ P

(
1

2α
F (b∗)(t− t0)− (N ′t − t0) >

1

4α
F (b∗)(t− t0)

)
≤ exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)

≤ exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)
,

where we used Hoeffding’s inequality for the third inequality.

Finally, we can prove that the expected instantaneous regret conditioned on Bt is
bounded by a multiple of εt.

Lemma 30
U(Bt)− U(b∗) ≤ 6εt

Proof
Thanks to Equation 12, we have ‖Ût − U‖∞ ≤ 2εt. Very similarly we have

‖UUCBid1+
t − Û‖∞ = max

b∈[0,1]
|εtF̂t(b)| ≤ εt,

where UUCBid1+ : b 7→ (V̂t + εt − b)F̂t(b). Hence,

‖UUCBid1+
t − U‖∞ ≤ 3εt.

By Lemma 20, this yields
U(Bt)− U(b∗) ≤ 6εt

Proof of the Theorem We use the following decomposition

RT ≤ T × P(Ec) +
T∑
t=1

E[St1{E}]

≤ T × P(Ec) + t0 +
T∑
t=t0

E[St1{E}]
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Thanks to Lemma 28, and when t > t0, F (Bt) ≥ 1
2αF (b∗). Using this, we get Nt >

1
4αF (b∗)(t− t0),∀t > t0 with high probability.

Thanks to Lemma 29,

E[St1{E}] ≤ exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)
+ E

[
St1{Nt ≥

1

4α
F (b∗)(t− t0)}

]

≤ exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)
+ E

[
6

√
4αγ log T

F (b∗)(t− t0)
1{Nt ≥

1

4α
F (b∗)(t− t0)}

]
;

By summing,

T∑
t=t0

E[St1{E}] ≤
T∑
t=t0

exp

(
−

2(( 1
2αF (b∗))2

4
(t− t0)

)
+

T∑
t=t0

6

√
4αγ log T

F (b∗)(t− t0)

≤ 1

1− exp(−2( 1
2α
F (b∗))2

4 )
+ 6

√
4αγ

F (b∗)

√
log T

√
T

≤ 4
1

2αF (b∗)
+ 6

√
4αγ

F (b∗)

√
log T (

√
T ),

where the last inequality comes from 1 − exp(−u) ≥ 2/u, for any positive u. Using the
decomposition of the regret yields

RT ≤ t0 + TP(EC) +
4

1
2αF (b∗)

+ 6

√
4α

F (b∗)

√
log T

√
T

≤ 4 + 8
γ(α+ 1)2

α(F (b∗))2
log

(
4
γ(α+ 1)2

α(F (b∗))2

)
+ 4e(γ − 1) log T (T )2−γ +

8α

F (b∗)
+ 12

√
αγ

F (b∗)

√
log T

√
T

≤ 4 +
8α

F (b∗)
+ 8

γ(α+ 1)2

α(F (b∗))2
log

(
4
γ(α+ 1)2

α(F (b∗))2

)
+ 4e(γ − 1) log T + 12

√
αγ

F (b∗)

√
log T (

√
T ),

which concludes the proof.

E.3. Proof of an Intermediary Regret Rate under Assumptions 1 and 2

In this section, we prove an easier version of Theorem 13. We will use lemmas of the
previous subsection for this version as well as for the more complex version. In particular
we have already proven that E ∩ {Nt ≥ 1

4αF (b∗)t}, occurs with high probability. Under
Assumptions 1 and 2 and on this event, we prove the following result.

Lemma 31 Under Assumptions 1 and 2 and if t > max(t0, t1),

• ‖F − F̂t‖∞ ≤ ε+t and |v − V̂t| ≤ ε+t ,

• |U(b∗)− U(Bt)| ≤ 6ε+t
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• |b∗ −Bt| ≤ ∆,

• |b∗ −Bt| ≤ 1/
√
cU

√
6ε+t .

• |U(b∗)− U(Bt)| ≤ CU (b∗ −Bt)2

on E ∩ {Nt ≥ 1
4αF (b∗)t}, where



t0 = min
(

3, 1 + 8 γ(α+1)2

α(F (b∗))2 log
(

4 γ(α+1)2

α(F (b∗))2

))
t1 = 2

√
Cu∆1/4 γα

F (b∗) log T,

ε+t =
√

2αγ log t
F (b∗)t ,

cU = cf
1
4U(b∗),

CU =
Cf
cf
λ.

Proof On the event E ∩ {Nt ≥ 1
4αF (b∗)t}, ‖F − F̂t‖∞ ≤ ε+t and |v − V̂t| ≤ ε+t where

ε+t =
√

2αγ log t
F (b∗)t from Lemmas, 16,17 29 and |U(b∗)− U(Bt)| ≤ 6εt ≤ 6ε+t from Lemmas 30

and 29.
Under Assumptions 1 and 2, we prove that after t1, we have |Bt− b∗| ≤ ∆ on E ∩{Nt ≥

1
4αF (b∗)t}, so that we will be able to use the boundedness of the density after this time
step.

When F satisfies assumption 1, U is unimodal, as shown in the proof of Lemma 3, and
so if

U(b∗)− U(b) ≤ min(U(b∗)− U(b∗ −∆), U(b∗)− U(b∗ + ∆)),

then
b ∈ [b∗ −∆, b∗ + ∆].

It follows that if

6ε+t ≤ min(U(b∗)− U(b∗ −∆), U(b∗)− U(b∗ + ∆))

and therefore 6ε+t ≤ Cu∆ where Cu := λCf/cf (see Lemma 7), then

|b∗ −Bt| ≤ ∆

on E ∩{Nt ≥ 1
4αF (b∗)t}. Then, for all t > 2

√
cu∆1/4 γα

F (b∗) log T := t1, we have |Bt− b∗| ≤ ∆

on E ∩ {Nt ≥ 1
4αF (b∗)t}.

Under Assumption 1, for any q ∈ [0, 1], Wv,F (q∗v,F )−Wv,F (q) ≥ 1
4(q∗v,F − q)2Wv,F (q∗v,F ).

We have U = W ◦F , so that if t > t1, then Bt ∈ [b∗−∆, b∗+∆] and U(b∗)−U(Bt) ≥ cf 1
4(b∗−

Bt)
2U(b∗) := cU (b∗ − Bt)2. In this case, we can also prove that |b∗ − Bt| ≤ 1/

√
cU

√
6ε+t ,

under E ∩ {Nt ≥ 1
4αF (b∗)t}.

Proposition 32 Under Assumptions 1 and 2 and if t > max(t0, t1), δt < ∆ , |Bt−b∗| ≤ δt,
and ε+t ≤Mδt,
Then

|Bt − b∗|2 ≤
6

cU

√√√√Cfδt log
(
Me2t

√
2t

2cfη2

)
t

+
2 log(Mt

√
2t

2cfη2
)

cU t
+

2

cU
(2Cf + 1)δt

√
2αγ log T

F (b∗)t
,
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with probability 1− η on E ∩ {Nt ≥ 1
4αF (b∗)t}.

Proof It is clear from Lemma 12 that

sup
b∗−δt≤b≤b∗+δt

|F̂t(b)−F (b)−(F̂t(b
∗)−F (b∗))| ≤ 2

√√√√√2Cfδt log

(
e
√
t√

2cf δtη

)
t

+2
log( t

2cf δtη2
)

6t
:= βt,

with probability 1−η. We can also decompose U(b)−UUCBid1+
t (b)−(UUCBid1+

t (b∗)−U(b∗))
into

U(b)− UUCBid1+
t (b)− (UUCBid1+

t (b∗)− U(b∗))

= (v − b)F (b)− (V̂t + εt − b)F̂t(b)−
(

(v − b∗)F (b∗)− (V̂t + εt − b∗)F̂ ∗t(b)
)

= (v − b)F (b)− (v − b)F̂t(b)−
(

(v − b∗)F (b∗)− (v − b∗)F̂ ∗t(b)
)
− (V̂t + εt − v)

(
F̂t(b)− F̂t(b∗)

)
= (v − b∗)

(
F (b)− F̂t(b)−

(
F (b∗)− F̂ ∗t(b)

))
− (V̂t + εt − v)

(
F̂t(b)− F̂t(b∗)

)
+ (b∗ − b)(F̂ (b)− F̂t(b))

which in turn proves that

|U(b)− UUCBid1+
t (b)− (UUCBid1+

t (b∗)− U(b∗))| ≤ βt + 2εt|F̂t(b)− F̂t(b∗)|+ δt|F̂t(b)− F̂t(b)|
≤ βt + 2ε+t (Cfδt + βt) + δtε

+
t

≤ βt + 2ε+t βt + (2Cf + 1)δtε
+
t

≤ 3βt + (2Cf + 1)δtε
+
t := γt,

for all b in [b∗ − δt, b∗ + δt].

Now, we know that U(b∗)− U(b) is lower bounded by cU (b∗ − b)2, on this interval
and ‖UUCBid1+

t (b) − U(b) + UUCBid1+
t (b∗) − U(b∗)‖∞ ≤ γt on [b∗ − δt, b∗ + δt]. We call G

the shifted version of U defined by G(b) = U(b) + UUCBid1+
t (b∗)− U(b∗). Its argmax is b∗

and G(b∗)−G(b) is lower bounded by cU (b∗ − b)2

then cU (Bt − b∗)2 ≤ G(b∗)−G(Bt) ≤ 2γt (see Lemma 20).
Then , by definition of γt and βt:

(Bt − b∗)2 ≤ 6

cU

√√√√Cfδt log
(

e2t
2cf δtη2

)
t

+
2 log( t

2cf δtη2
)

cU t
+

2

cU
(2Cf + 1)δtε

+
t

≤ 6

cU

√√√√Cfδt log
(
M e2t

2cf ε
+
t η

2

)
t

+
2 log( Mt

2cf ε
+
t η

2
)

cU t
+

2

cU
(2Cf + 1)δtε

+
t

≤ 6

cU

√√√√Cfδt log
(
Me2t

√
t

2cfη2

)
t

+
2 log(Mt

√
t

2cfη2
)

cU t
+

2

cU
(2Cf + 1)δt

√
2αγ log T

F (b∗)t
.

where the last inequality stems from that fact that 1/ε+t =
√

F (b∗)t
2αγ log t ≤

√
t since α, γ ≥ 1.
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Theorem 33 Under Assumptions 1 and 2,

RT ≤ O(T 3/8 log T ).

Proof

From Lemma 31, we have that |b∗ − Bt| ≤ 1/
√
cU

√
6ε+t , on E ∩ {Nt ≥ 1

4αF (b∗)t}}.

Therefore, we can apply Proposition 32 with δt = 1√
cU

√
6ε+t with M =

√
cU√
6

, and η = 1
t .

We use the general fact that log(Atα) ≤ 2α log t as soon as tα > A, for all A, a > 0, to
derive the following two inequalities :

∀t ≥
(
Me2

2cf

) 1
4
,

6

cU

√√√√Cfδt log
(
Me2t

√
t

2cfη2

)
t

≤
6
√

8
√
Cf

c
5
4
U

√
δt log t

t
=

24(72αγ)
1
8

√
Cf

c
5
4
UF (b∗)

1
8

√
log2 t

t
5
4

.

∀t ≥ ( M2cf )
1
4 ,

2 log(Mt2t
√
t

2cf
)

cU t
≤ 16

cU

log t

t
.

We also have, for all t,

2

cU
(2Cf + 1)δt

√
2γα log T

F (b∗)t
≤ 2

cU
(2Cf + 1)

√
2γα

F (b∗)
δt

√
log t

t

=
2(72αγ)

1
4

c
3
2
UF (b∗)

1
4

(2Cf + 1)

√
2γα

F (b∗)

(log t)
1
4

t
1
4

√
log t

t

Therefore |Bt − b∗|2 ≤

(
24(72αγ)

1
8
√
Cf

c
5
4
UF (b∗)

1
8

+ 16
cU

+ 2(72αγ)
1
4

c
3
2
UF (b∗)

1
4

(2Cf + 1)
√

2γα

F (b∗)
1
8

)
log t

t
5
8

with prob-

ability 1 − 1
t , for t ≥ max(

(
Me2

2cf

) 1
4
, ( M2cf )

1
4 ) := t2 on E ∩ {Nt ≥ 1

4αF (b∗)t}. On this event,

U(b∗)− U(Bt) ≤ CU (b∗ −Bt)2
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We use the following decomposition

RT ≤ T × P(Ec) +
T∑
t=1

E[St1{E}]

≤ T × P(Ec) + max(t0, t1, t2) +
T∑

t=max(t0,t1,t2)

E[St1{E}]

≤ T × P(Ec) + max(t0, t1, t2) +
T∑

t=max(t0,t1,t2)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+
T∑

t=max(t0,t1,t2)

E[St1{E ∩ {Nt ≥
1

4α
F (b∗)t}}]

≤ T × P(Ec) + max(t0, t1, t2) +
T∑

t=max(t0,t1,t2)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+

T∑
t=max(t0,t1,t2)

CUE[(b∗ −Bt)2]

≤ T × P(Ec) + max(t0, t1, t2) +

T∑
t=max(t0,t1,t2)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+

T∑
t=max(t0,t1,t2)

C0
log t

t
5
8

+

T∑
t=max(t0,t1,t2)

1

t

≤ T × P(Ec) + max(t0, t1, t2) +
T∑

t=max(t0,t1,t2)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+ C0
8

3
T

3
8 log T + log T

≤ log T + 4e(γ − 1) log T (T )2−γ + max(t0, t1, t2) +
8α

F (b∗)
+

8

3
C0T

3
8 log T.

where



t0 = min
(

3, 1 + 8 γ(α+1)2

α(F (b∗))2 log
(

4 γ(α+1)2

α(F (b∗))2

))
t1 = 2

√
Cu∆1/4 γα

F (b∗) log T,

t2 = max(
(√

cUe
2

2cf
√

6

) 1
4
, (
√
cU

2cf
√

6
)
1
4 ) = (

√
cUe

2

2cf
√

6
)
1
4 ,

C0 =

(
24(72αγ)

1
8
√
Cf

c
5
4
UF (b∗)

1
8

+ 16
cU

+ 2(72αγ)
1
4

c
3
2
UF (b∗)

1
4

(2Cf + 1)
√

2γα
F (b∗)

)
CU .

Therefore

RT ≤
8

3
C0T

3
8 log T + o(T

3
8 log T ).
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E.4. Proof of Theorem 13

Theorem 33 is proved by applying Proposition 32 once. By iterating the argument, we can
actually achieve a regret of the order of T a, for any a > 1

3 . The proof involves an induction
argument. The following lemma is the main element of the proof of the induction.

Lemma 34 Assume that t and F satisfy the assumptions of Proposition 32. Assume that

|Bt − b∗| is bounded by δ
(k)
t such that δ

(k)
t = min(1, C(k) log(t)t−uk) with probability 1 −

η(k), and uk < 2/3, C(k) ≥ 1 . Then |Bt − b∗| is bounded by δ
(k+1)
t such that δ

(k+1)
t =

min(1, C(k+1) log(t)t−
1
4

(1+uk)) with probability 1− η(k) − 1
Kt ,

where C(k+1) = C
(
C(k)

) 1
4 and where C = max

(
1,

12
√

2Cf
cU

+ 16
cU

+ 2
cU

(2Cf + 1)
√

2γα
F (b∗

)
.

Proof
We use Proposition 32, and the fact that ε+t ≤

√
2αγ/F (b∗) log t

t−uk
≤
√

2αγ/F (b∗)δ
(k)
t to

prove that

|Bt−b∗|2 ≤
6

cU

√√√√Cfδ
(k)
t log

(
Me2t

√
2tK2t2

2cf

)
t

+
2 log(MK2t2t

√
2t

2cf
)

cU t
+

2

cU
(2Cf+1)δ

(k)
t

√
2αγ log t

F (b∗)t
,

with probability (1− η(k))(1− 1
Kt) and with M =

√
2αγ/F (b∗)

We use the general fact that log(Atα) ≤ 2α log t as soon as tα > A, for all A, a > 0, to
derive the following two inequalities :

∀t ≥
(
Me2K2

2cf

) 1
4
,

6

cU

√√√√Cfδ
(k)
t log

(
Me2t

√
2tK2t2

2cf

)
t

≤
6
√

8Cf

cU

√
δ

(k)
t log t

t
:= C1

√
δ

(k)
t log t

t
:= C1β1,t.

∀t ≥ (MK2

2cf
)
1
4 ,

2 log(MK2t2t
√

2t
2cf

)

cU t
≤ 16

cU

log t

t
:= C2

log t

t
:= C2β2,t.

We also have, for all t,

2

cU
(2Cf + 1)δ

(k)
t

√
2αγ log T

F (b∗)t
≤ 2

cU
(2Cf + 1)

√
2γα

F (b∗
δ

(k)
t

√
log t

t
:= C3δ

(k)
t

√
log t

t
:= C3β3,t

We can derive the following bounds

• β3,t ≤ β1,t since δ
(k)
t ≤ 1.

• β2,t ≤ β1,t since δ
(k)
t = min(1, C(k) log(t)t−uk) ≥ log t

t .



Fast Rate Learning in Stochastic First Price Bidding

Hence

|Bt − b∗|2 ≤ (C1 + C2 + C3)β1,t = (C1 + C2 + C3)

√
δ

(k)
t log t

t
,

with probability 1− η(k) 1
Kt . This yields

|Bt − b∗| ≤
√

(C1 + C2 + C3)

(
δ

(k)
t log t

t

) 1
4

≤
√

(C1 + C2 + C3)

(
min(1, C(k) log2(t)t−uk)

t

) 1
4

≤
√

(C1 + C2 + C3)(C(k))1/4t−
1
4

(1+uk) log t

≤ C
(
C(k)

)1/4
t−

1
4

(1+uk) log t,

Proposition 35 Assume that t and F satisfy the assumptions of Proposition 32. If t >

t3 = max

(
(

√
2αγ/F (b∗)K2

2cf
)
1
4 , (

√
2αγ/F (b∗)e2K2

2cf
)
1
4

)
, then on E ∩ {Nt ≥ 1

4αF (b∗)t},

|Bt − b∗| ≤ C(0)C
1
3 log(t)t

− 1
3

+ 1

3×4K
+ 1

4K+1 ,

with probability 1− 1
t where C = max

(
1,

12
√

2Cf
cU

+ 16
cU

+ 2
cU

(2Cf + 1)
√

2γα
F (b∗)

)
, and C(0) =

max

(
1,
√

1
cU

(
72γα
F (b∗)

) 1
4

)
Proof The proposition follows from using an induction argument based on Lemma 34. We

can initiate an induction argument with δ
(0)
t such that

δ
(0)
t = min(1, C(0) log(t)t−uk),

writing u0 = 1
4 and C(0) = max(1,

√
1
cU

(
72αγ
F (b∗)

)1/4
), thanks to Lemma 31. The fact that uk

and C(k) as defined as in Lemma 34 satisfy uk+1 = 1
4(1 + uk) which yields

uK =

(
1

4

)K
u0 +

K∑
i=1

1

4i
=

(
1

4

)K
u0 + 4

1/4− (1/4)K+1

3

and C(k+1) = C × (C(k))
1
4 which yields

C(K) =
(
C(0)

) 1

4K C
∑K
i=1

1

4i ≤ C
1
3 ,
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suffices to complete the induction.

We recall Theorem 13.

Theorem 13 Under Assumptions 1 and 2,

RT ≤ O(T 1/3+ε),

for any ε > 0 as long as γ > 2.

We choose K such that 1
3 + 2

3×4K
+ 2

4K+1 <
1
3 +ε. (We can choose K =

⌈
log4

(
3
14

1
ε

) ⌉
)+1

for example). Then, thanks to proposition 35, for all t > t3, on E ∩ {Nt ≥ 1
4αF (b∗)t},

|Bt − b∗| ≤ C(0)C
1
3 log(t)t

− 1
3

+ 1

3×4K
+ 1

4K+1 ,

with probability 1 − 1
t . We can therefore do the same decomposition as in the proof of

Theorem 33.
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RT ≤ T × P(Ec) + max(t0, t1, t3) +
T∑

t=max(t0,t1,t3)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+
T∑

t=max(t0,t1,t3)

E[St1{E ∩ {Nt ≥
1

4α
F (b∗)t}}]

≤ T × P(Ec) + max(t0, t1, t3) +
T∑

t=max(t0,t1,t3)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+
T∑

t=max(t0,t1,t3)

CUE[(b∗ −Bt)2]

≤ T × P(Ec) + max(t0, t1, t3) +
T∑

t=max(t0,t1,t3)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+

T∑
t=max(t0,t1,t3)

C(0)CUC
1
3 (log t)t

− 2
3

+ 2

3×4K
+ 2

4K+1

+

T∑
t=max(t0,t1,t3)

1

t

≤ T × P(Ec) + max(t0, t1, t3) +

T∑
t=max(t0,t1,t3)

P(E ∩ {Nt <
1

4α
F (b∗)t})

+ C(0)CUC
1
3

1
1
3 + 2

3×4K
+ 2

4K+1

T
1
3

+ 2

3×4K
+ 2

4K+1 log T + log T

≤ log T + 4e(γ − 1) log T (T )2−γ + max(t0, t1, t3)

+
8α

F (b∗)
+ 3C(0)CUC

1
3T

1
3

+ε.

where



t0 = min
(

3, 1 + 8 γ(α+1)2

α(F (b∗))2 log
(

4 γ(α+1)2

α(F (b∗))2

))
t1 = 2

√
cu∆1/4 γα

F (b∗) log T,

t3 = (

√
2αγ/F (b∗)e2K2

2cf
)
1
4 ,

C(0) = max

(
1,
√

1
cU

(
72γα
F (b∗)

) 1
4

)
C = max

(
1,

12
√

2Cf
cU

+ 16
cU

+ 2
cU

(2Cf + 1)
√

2γα
F (b∗)

)
.

Hence
RT ≤ O(T 1/3+ε).
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Appendix F. Further figures

We present in Figure 10 the histogram of the normalized data used to simulate the real-world
experiment.
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Figure 10: Bidding Data histogram
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