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Abstract The dynamics of a fully three-dimensional lid-driven cubical cavity (3D-LDC) flow at several post-
critical conditions, i.e., beyond the first bifurcation, are elucidated using both linear and nonlinear analyses.
When the Reynolds number is increased beyond the critical value, symmetry breaks down intermittently
with subsequent gradual growth in spanwise inhomogeneity. This results in crossflow as well as pronounced
secondary flow due to enhanced imbalance between centrifugal and pressure forces. Thus, while a stable
solution is obtained at Re = 1900 (Reynolds number based on lid velocity and cavity side length), nonlinear
analysis identifies intermittent and nearly saturated regimes at Re = 2100 and Re = 3000, respectively. These
changes in the regime are examined by considering five basic states at different Reynolds numbers starting
from Re = 1900. At the lowest Reynolds number, linear analysis yields only symmetric modes, characterized
by Taylor–Görtler-like (TGL) vortices. However, at Re = 2100, the intermittent breakdown of symmetry
results in the emergence of an antisymmetric low-frequency mode apart from primary high-frequency mode.
The frequencies of both these modes are numerically close to those obtained from corresponding nonlinear
simulations. When the Reynolds number is increased even further, the TGL structures drift under the influence
of the crossflow to occupy the previously structureless region near the wall. The frequency of each mode
decreases with increase in Re; between 1900 and 3000, the frequency of the primary mode changes by more
than 20%. Furthermore, the spatial support of each mode becomes larger within the cavity. Both primary
and secondary modes are increasingly destabilized with Re; however, the secondary antisymmetric mode is
destabilized at a higher rate. The current study thus provides a comprehensive picture of the overall dynamics
of 3D-LDC flows in pre- and post-bifurcation regimes in an extended Re range not considered hitherto.
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1 Introduction

Flow in a lid-driven cavity (LDC) is a classical benchmark problem in fluid dynamics, frequently employed to
assess robustness and accuracy of numerical schemes because of its simple geometrical configuration andwell-
defined boundary conditions. Its rich dynamics are also representative of several other flowfields encountered
in nature as well as in engineering applications. Therefore, amore fundamental application of the LDC problem
is to explore successive flow bifurcations from subcritical to supercritical conditions, which facilitates a better
understanding of important instability mechanisms as well as the role of nonlinearity with increase in Reynolds
number.

The two-dimensional lid-driven cavity (2D-LDC) is arguably one of themost examined flows in the context
of stability dynamics; a detailed review is presented in Erturk [9]. The four walls in this flow are referred to as
top, bottom, upstream and downstream, respectively, as shown in Fig. 1a. The flow is characterized by a central
primary eddy (PE) and surrounding secondary eddies, designated as DSE (downstream secondary eddy), USE
(upstream secondary eddy) and TSE (top secondary eddy). The momentum transfer from the top moving lid
creates a downward wall jet on the top corner of the downstream wall. The jet later separates from this wall
and impinges on the bottom wall to form the DSE. The wall jet then separates from the bottom wall at some
distance from the left corner and impinges on the upstream sidewall resulting in the USE. Depending on the
Reynolds number, separation may occur again near the top left corner. The central primary eddy consists of
relatively slower moving rotating fluid, and the transfer of momentum from the wall jet into this core depends
on the Reynolds number [42].

The stability dynamics of fully three-dimensional lid-driven cavity (3D-LDC) flows are more pertinent to
realistic applications. However, their analysis is computationally very expensive, and comprehensive efforts
have appeared only more recently. The literature suggests that the dynamics of 3D-LDC flows differ signif-
icantly from their 2D counterparts [44]. The 3D-LDC configuration, as shown in Fig. 1b, contains two end
walls in spanwise(z−) direction; the central xy-plane in between is denoted the symmetry plane. The promi-
nent flow features of 2D-LDC are observed on this plane at low Reynolds numbers [14]. As the Reynolds
number is increased, however, the presence of the third dimension affects the flow in ways that distinguish the
3D-LDC from its 2D-LDC counterpart. Specifically, prominent features, known as Taylor–Görtler-like (TGL)
vortices, appear on the side walls as displayed in Fig. 1b. Corner vortices may also form at the cavity end walls
(not shown). The spanwise inhomogeneity results in crossflow as the Reynolds number is increased. An early
experimental effort [23] examining wall effects found that corner vortices influence the downstream secondary
eddy (DSE), whose size diminishes with Reynolds number when it is greater than 2000.

Fig. 1 Flow topology for LDC flows. PE Primary eddy, DSE downstream secondary eddy, USE upstream secondary eddy, TSE
top secondary eddy, TGL Vortex Taylor–Görtler-like vortex. Sudden turning of flow at the top corner of the downstream sidewall
creates a downward oriented flow that behaves like a variable-thickness wall jet shown in (a)



Table 1 Stability studies in the literature for the lid-driven cubical cavity (LSA linear stability analysis, TI time integration)

References Approach ±ωcr Recr Re > Recr

Giannetti et al. [16] LSA 0.0 � 2000 2100
Feldman and Gelfgat [11] TI 0.575 1914 1925, 1945, 1970
Gómez et al. [17] LSA 0.5718 < 2000 –
Kuhlmann and Albensoeder [25] TI 0.586 1919.5 1921, 1970
Anupindi et al. [2] LES 0.012 > 2100 2250, 2300, 2350
Loiseau et al. [29] LSA 0.585 1914 1930, 1970
Lopez et al. [30] TI 0.5832 1928.9 [1930 2100]
Gelfgat [15] LSA 0.5861 1919.4 –

The earliest attempts at performing stability analysis in 3D-LDC used a two-dimensional base flow with a
Fourier wave assumption in the spanwise direction [1,49]; this essentially emulates an LDC flowwith periodic
boundaries at a specified wavenumber. The bifurcation in such flows has been shown to be supercritical [1], and
TGL structures appear, which constitute a primary mechanism of instability. The extent to which the stability
of the flow is affected thus depends on the spanwise length of the cavity as well as the Reynolds number, Re.
Theofilis et al. [50] report that the inclusion of the periodic spanwise direction in the flow brings the critical
Reynolds number to Recr � 782, which is an order of magnitude lower than the critical value of the pure 2D
counterpart (Re2Dcr � 8000). However, the viscous effects due to the presence of sidewalls, such as damping
of TGL structures, cannot be studied in this periodic spanwise configuration.

A primary limiting factor in performing fully three-dimensional stability analyses with end-wall effects is
the difficulty in solving the large eigenvalue problem that arises naturally in the formulation of the problem. The
evolution of iterative eigenvalue solvers such as those based on the Arnoldi iteration method [48] has alleviated
this problem and has recently facilitated 3D-LDC studies. High-fidelity discretization schemes [38], as well as
the availability of computational power, have also aided the analysis. Some investigators, as reported below,
have approached the stability problem through direct time integration (TI) of high-resolution computational
data, which demands less computational memory but more processor resources.While the eigenvalue approach
yields the frequencies and growth rates, as well as structures of global modes, the TI approach is often
useful in obtaining the precise bifurcation point, together with the nature of transition (such as subcritical or
supercritical).

Table 1 lists several major recent advances in the stability dynamics of fully three-dimensional LDC flows,
along with their numerical approaches, in chronological order (cf. Kuhlmann and Romanò [26]; Feldman
[10] for cavities with different aspect ratios as well as configurations). Apart from the critical parameters at
bifurcation, the list also includes the post-bifurcation Reynolds numbers (Re > Recr) examined, as this aspect
is central to the current study.

Giannetti et al. [16]were the first to examine the 3D-LDCcavitywith the traditional stability approach using
the Arnoldi method, but on a relatively modest (643) mesh. They found that the flow is stable at Re = 2000
but becomes unstable at 2100. Numerical convergence issues such as those due to low resolution were not
addressed. Subsequently, both Feldman and Gelfgat [11] and Kuhlmann and Albensoeder [25] used time-
integration methods with rigorous convergence studies and found similar critical parameters at bifurcations.
The transition from steady to oscillatory flow was confirmed to be weakly subcritical in these studies.

Analyses of fully three-dimensional LDCs on reasonably refined grids using the traditional linear stability
approach with eigenvalue problem formulation have become available more recently. Gómez et al. [17];
Loiseau et al. [29] used this approach and extracted frequencies similar to those obtained with the TI approach
in Table 1 and displayed the structure of this mode as being characterized by symmetric TGL structures about
the midplane. Loiseau et al. [29] also reported the critical Reynolds number as Recr � 1914, which was further
confirmed by Gelfgat [15] from stability analysis on a very fine grid (2563). Anupindi et al. [2] used Lattice–
Boltzmann simulations to observe steady flow at Re = 2100. The flow became oscillatory only at Re = 2250
and also exhibits a very different frequency than reported by others. This discrepancy may be attributable to
the low grid resolution (803) or, as identified by Gelfgat [15], to the change in momentum equation with the
eddy model used.

The above discussion makes it evident that there is generally a broad agreement in the literature about the
critical parameters for instability of cubical cavity flows at the first Hopf bifurcation point and the subcritical
nature of transition. Some recent studies, shown in the last column in Table 1, also describe flow evolution
beyondRecr such as presence of secondary bifurcations, limit cycles and associated changes of the symmetry of



flow.BothFeldman andGelfgat [11] andKuhlmann andAlbensoeder [25] have considered slightly supercritical
flows in their studies, but their observations differ on the effects of nonlinearity. Twokey events in the immediate
aftermath of bifurcation are: the breakdownof symmetry and the appearance of intermittent bursts. Feldman and
Gelfgat [11] noted loss of symmetry soon after bifurcation and regular oscillations with saturated amplitude
for all Re > Recr � 1914. However, Kuhlmann and Albensoeder [25] observed loss of symmetry only at
Re = 1970, while at slightly supercritical conditions (Recr < Re ≤ 1970), the dynamics are characterized by
intermittent events. These intermittent bursts were further confirmed in the simulations of Loiseau et al. [29],
who observed two limit cycles corresponding to primary oscillations and intermittent events, respectively.
The frequencies of these two cycles differ by a ratio of about 4. Lopez et al. [30] presented a comprehensive
analysis of transition to oscillatory dynamics by gradually increasing the Reynolds number limit to 2100.
They attributed the breakup of reflection symmetry about the midplane as observed in nonlinear simulations
to a second Hopf bifurcation at Re = 2089. The eigenfrequency of this bifurcation is close to that of the
intermittent large-amplitude oscillations as observed by Loiseau et al [29]. A more detailed discussion of these
observations is provided in a recent review by Kuhlmann and Romanò [26].

Several experimental [23,27] and numerical [2,20] studies report significant changes in the character of
the flow in the 2000 to 3000 Reynolds number range, particularly on the intensity and distribution of the TGL
vortices. Shankar and Deshpande [44] in their review suggest that the number of TGL vortex pairs increases
with Re, influencing the spanwise motion and significantly altering the underlying flow dynamics. However,
rigorous stability studies examining Re effects in this limit are sparse and most studies in Table 1 have been
confined in the immediate vicinity of Recr, i.e., within 8% of Recr � 1914. Since the Re span over which
the flow changes from stable to oscillatory is relatively small in these works, no appreciable changes in the
frequencies of dominant modes or their structures (as expected due to change in side-wall viscous drag) are
reported. An exception in Table 1 is the study by Anupindi et al. [2], who extended the analysis for a slightly
higher Re range up to 2350. An interesting observation was that the flow loses symmetry at Re = 2250, but it
gets restored at Re = 2350. As noted earlier, although the eddy model used in the study may have affected the
prediction of critical parameters, the observation is nonetheless interesting in its own right, meriting further
examination. Overall, the understanding of the evolution of the flow dynamics in 3D-LDC flow in the Reynolds
number range 2000 < Re < 3000 is generally limited. The purpose of the present study is to examine the
change in flow behavior in this extended Re-range using both linear and nonlinear simulations and analysis.
Particularly, the study focuses on tracking the change in the dominant frequency and therefore the structure of
the mode, as the flow parameters are changed away from the critical values.

The approach in the present study differs from those described earlier, which investigated the post-
bifurcation mechanism in detail. In the Re-range considered here (1900 ≤ Re ≤ 3000), the flow goes through
transition from stable to oscillatory to chaotic intermittent to almost saturated state. Therefore, following the
successive bifurcations and computing their stability as the flow transitions to turbulence become quickly
impossible or even a totally illusory task. In fact, computing the basic states and their stabilities becomes very
challenging as soon as the solution is no longer quasi-periodic [5]. On the contrary, when the flow is fully
turbulent, two approaches are currently possible. The first consists in computing the stabilities of particular
solutions like the exact coherent states (ECS; Park and Graham [39]), and the turbulent solution is then seen
as a particular trajectory (in phase space) around these ECS. The notion of the turbulent solution as a weighted
combination of ECS, although attractive, is strongly dependent on the initial conditions and is therefore not
robust or very predictive. The other solution is to adopt a more statistical description which, to first order, is
represented by a very long time-averaged state. This state describes an asymptotic solution of all trajectories
in phase space.

The time-averagedflowunlike the steady basic flow,which is a fixed point of theNavier–Stokes equations, is
not a solution of the latter but can be perceived as that of the Reynolds-averaged equations. In addition, the time-
averaged flow differs from the steady basic flow by a distortion term which is due to nonlinear interactions [34,
47]. This peculiarity is all the more true as the flow regime is far from the threshold of appearance of the
bifurcation. When weakly nonlinear theory becomes invalid for a flow state beyond bifurcation, it has been
argued that themean flow can be used to redefine the concept of an equilibriumpoint [34,47] and sometimes can
constitute a more suitable choice than the steady base flow to characterize the modes [5]. For example, Barkley
[3] found that in cylinder wakes over a range of Re, the frequency of the vortex shedding can be tracked through
stability analysis of themean flow. Later,Mittal [35] also observed similar behavior, i.e., stability analysis of the
mean flow accurately predicted the vortex-shedding frequency; however, results obtained from the steady base
flowseverely under-predicted it. Similar examples of successful frequencyprediction using linearization around
the mean flow are available for transitional [36] and turbulent round jets [18], flat plates [33] and airfoils [8].



Mean flows in these examples are obtained either by directly solving Reynolds-averaged equations or by time-
averaging instantaneous flowfields from large eddy simulation (LES) or direct numerical simulation (DNS).
Both approaches are suitable for obtaining essential dynamics as shown in Mettot et al. [34]. An additional
support for mean flow approach in the current study is due to the confined configuration of the LDC flow
that dictates the leading dynamics in the flow. Bengana et al. [5] have observed that for flows within confined
walls, frequencies and growth rates predicted by a linear analysis around the mean flow are closer to the truth
model (DNS) than those obtained with the base flow. Overall, the geometrical constraints place the LDC in
the category of flows with a dominant singular value; in this case, the spatial structure of the unsteadiness at
unstable frequencies may be closely related to the dominant singular mode around the mean flow. Mean flow
stability analysis then suggests a way to accurately predict unsteady features of a flow, as successfully shown
in the case of backward facing step [4] and open cavity [5].

Based on the above discussion, the present work adopts mean flow as the equilibrium point to extract
the linear dynamics of flows at different Reynolds numbers, while the results are also compared with fully
nonlinear simulations. This mean flow is obtained by time-averaging the snapshots as obtained by LES with
the approach described in Sect. 2(a). A gradual change in the flow dynamics for the lid-driven cavity around the
equilibrium point is studied by considering five Reynolds numbers in 1900 ≤ Re ≤ 3000. The methodology
for linear evolution of the flow is presented in Sect. 2(b). Sections 3(a) and (b) delineate results of pre- and
post-bifurcation dynamics, respectively. A phenomenological description of the mean flow at different states is
first provided. The evolution of viscous and nonlinear effects with Re is then characterized through dominant
mode structures and their associated frequencies. Finally, some concluding remarks are made in Sect. 4.

2 Methodology

2.1 Nonlinear evolution

The compressible Navier–Stokes equations are solved in non-dimensional form on a curvilinear (ξ, η, ζ )-
coordinate system:

∂
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Q

J

)
= −

[(
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+ ∂Gi

∂η
+ ∂Hi

∂ζ

)
+ 1
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+ ∂Hv

∂ζ
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(1)

where Q = [ρ, ρu, ρv, ρw, ρE]T is the solution vector, defined in terms of the fluid density ρ, Cartesian
velocity components (u, v, w) and total specific internal energy E = T/(γ − 1)M2+(u2+v2+w2)/2. Here,
M is the reference Mach number of the flow, γ is the ratio of the specific heats and T is the fluid temperature.
The ideal gas law connects fluid pressure p to ρ and T as p = ρT/γ M2. Sutherland’s law is used to express
fluid viscosity μ as a function of temperature T . J = ∂(ξ, η, ζ, τ )/∂(x, y, z, t) denotes the Jacobian of the
transformation from Cartesian (x, y, z) to curvilinear (ξ, η, ζ )-coordinate system. The inviscid and viscous
fluxes in (ξ, η, ζ )-directions are represented in Eq. (1) by (Fi , Gi , Hi ) and (Fv, Gv, Hv), respectively. The
expression for the inviscid flux Fi is given as

Fi =

⎡
⎢⎢⎢⎣

ρU
ρuU + ξ̂x p
ρvU + ξ̂y p
ρwU + ξ̂z p
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⎤
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where U = (̂ξt + ξ̂xu + ξ̂yv + ξ̂zw), ξ̂x = J−1∂ξ/∂x , ξ̂y = J−1∂ξ/∂y and ξ̂z = J−1∂ξ/∂z. The expressions
for other two inviscid flux quantities Gi and Hi can also be similarly defined by replacing ξ in Eq. (2) by η
and ζ , respectively. The viscous flux Fv is given as

Fv =
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where Pr denotes the Prandtl number of the fluid. The stress tensor τi j and heat flux qi appearing in Eq. (3)
are given as

τi j = μ
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∂ξ j

∂xi

∂T

∂ξ j
(5)

Expressions for other two viscous fluxes, namely Gv and Hv , can also be similarly defined by replacing ξ in
Eq. (3) by η and ζ , respectively.

The discretized equations are solved using high-order schemes as described in Gaitonde and Visbal [13].
Specifically, a sixth-order compact difference scheme is used for the fluxes, together with an eighth-order
implicit filter to inhibit numerical issues associated with nonlinearities and boundary conditions. A second-
order implicit scheme is used for time-marching to wash out initial transients in the flow. Subsequently,
a nonlinearly stable third-order Runge–Kutta method [45] is employed to obtain either a steady flow or a
statistically stationary asymptote, depending on Re. For the latter case, a long time average is computed,
during which time snapshots are also stored as necessary. No-slip boundary conditions are used on all cavity
walls. All velocity components are set to zero on the boundaries, except for the top wall, where the lid velocity
is assigned to the u-component. Neumann boundary conditions are used for pressure and density.

2.2 Linear evolution

The linear evolution of perturbations around an equilibrium point displays their growth or decay with time,
typically associated with large-scale structures [34]. These perturbations snapshots are often obtained using a
linearized Navier–Stokes equations (LNSE) solver or a regular Navier–Stokes solver combined with Frèchet
derivatives [17,19,31]. In the present work, we use a high-order Navier–Stokes-mean flow perturbation (NS-
MFP) approach, described in Ranjan et al. [41], which uses a numerical linearization [51] to facilitate the use
of the same code (Sect. 2.1) that solves nonlinear equations. The procedure is illustrated in Fig. 2 and briefly
described below. The Navier–Stokes equations in compact notation can be written as,

∂q
∂t

= N (q) (6)

where N is the nonlinear Navier–Stokes operator. A steady base flow satisfies the above equations exactly.
However, the mean flow, depending on the state of flow (below or above bifurcation point), may or may not
satisfy above equations. Therefore, in the NS-MFP approach, the change in the mean flow, Δq̄, due to the
Navier–Stokes operator is obtained by solving equation (6) for one time step and then stored for subsequent
usage. For the evolution of perturbations, the Navier–Stokes equations are first marched in time for both the
mean flow and the added initial perturbation, q̄+ q ′0, as shown by the thick black arrow in Fig. 2. This updates
both the mean flow and perturbation, but the evolution of mean flow due to numerical or physical reasons is
arrested by subtractingΔq̄, obtained earlier, as shown by the green dashed downward arrow in the figure. Thus,
at this state, indicated by red dots in the figure, the mean flow remains unaltered, but the linear evolution of only
the perturbation snapshots q ′, under the assumption of small initial perturbation, is obtained. This procedure is
repeated every time step to obtain evolution with time as shown in the figure, while the perturbation snapshots
are stored for post-processing by subtracting the mean flow, �̄q (orange downward arrow).

Linear perturbation simulations are performed with the same flux schemes as the nonlinear ones, and
time-stepping is performed using the explicit third-order Runge–Kutta method. NS-MFP approach offers
flexibility in applying boundary conditions to either only on perturbations q ′ or total flow variables q̄ + q ′.
In the current work, the boundary conditions are applied to the total flow variables, and thus, Dirichlet and
Neumann boundary conditions are applied, respectively, on velocity and pressure (and density) in the manner
used in nonlinear simulations. Although the current study considers essentially incompressible conditions,
the numerical approach of linear and nonlinear evolution can analyze compressibility effects on stability with
increase inMach number. The resulting stabilizing influence has been discussed for two-dimensional lid-driven
cavities [37] and cylinders [7].



Fig. 2 Linear evolution of initial disturbance field q′0 superimposed on mean flow q̄ using the NS-MFP approach. The thick
black arrow shows evolution of both the mean flow and perturbations using Navier–Stokes operator. The changes to the mean
flow are eliminated at each time step by subtracting Δq̄, shown by green downward arrow; this ensures that only the perturbation
is evolved (color figure online)

3 Results and discussion

The lid-driven cubical cavity considered is similar to that used in the literature as shown earlier in Fig. 1b. The
computational domain is comprised of a cube in [0 1]3 with 121 grid points uniformly distributed in each
direction; a grid convergence study of the mean flow, performed with a 2013 grid as presented later, indicates
no significant change in the flow. The top lid at y = 1 moves in positive x direction, whereas z represents the
spanwise direction. The symmetry xy-plane thus lies at z = 0.5. The length and velocity scales chosen for
non-dimensionalization are the cavity side length, L and top lid velocity U , respectively.

The simulations are initializedwith quiescent flow in the cavity. The initial transients typically require about
100 flow characteristic times, Tc ≡ tU

L , during which the meaningful physical structures develop. A suitable
mean flow for the subsequent linear analysis is obtained by computing the average over a minimum of 200
flow characteristic times after discarding the initial transients. The time-step size used to generate linearized
snapshots with the third-order Runge–Kutta scheme is Δt = 2 × 10−4. These snapshots are sampled at
every 200 iterations, and thus, the effective time step for the subsequent stability analysis is 0.04. The highest
resolvable Strouhal number St = 12.5 (circular frequency ω � 78) using the Nyquist criterion is much higher
than any frequency of interest.Wherever possible, the mean flow is compared to those available in the literature
before stability analysis.

The results are presented in two parts. In the first, the flow is examined with numerical simulations and
stability analyses just prior to bifurcation. Validation of the current method to extract stability characteristics is
also provided. The second part focuses on flow dynamics after the transition to oscillatory flow. Five Reynolds
numbers, 1900, 2100, 2400, 2700 and 3000, are considered, to encompass the phenomena of interest, including
the evolution of global modes and dominant frequencies.

3.1 Dynamics near bifurcation

The dynamics near bifurcation are examined at Re = 1900, where a stable solution is obtained as also expected
from prior studies at this flow parameter (see Table 1). The features of the basic state, as obtained by time-
averaging, are shown in Fig. 3a, b with surface-restricted streamlines at the symmetry plane as well as at a plane
close to the end wall (z = 0.05). As expected, the streamlines at the symmetry plane resemble the flow in a 2D-
LDC (see Fig. 1a), with the presence of a primary central eddy, and also upstream and downstream secondary
eddies. The top secondary eddy as found in the 2D-LDC flow at its critical conditions, Re2Dcr � 8000 [41], is
absent in the 3D-LDC because of the smaller Re. The streamlines in this plane do not indicate any effect of the
end walls at the midplane suggesting the absence of any spanwise flow component. However, end-wall effects
are evident in the streamlines on planes near the walls (Fig. 3b), where the inward spiraling motion of the fluid
particles is clearly visible. The open streamlines indicate the presence of secondary flow, which arises due to



Fig. 3 Streamlines of the basic state. Contours of streamwise velocity are also shown. The wall at the top moves in the +ve
x-direction, Re = 1900

the imbalance between pressure and centrifugal forces. The transverse velocity component w at this plane is
nonzero, but decays exponentially from the wall and vanishes at the midplane as shown in Fig. 3a.

Quantitative validation of the basic state at the symmetry plane is shown in Fig. 4a by comparing with
the results of Feldman and Gelfgat [11], who used a Richardson extrapolation based on 1523 and 2003 grids
to obtain steady-state results. The figure shows good agreement between these two datasets. Both u and v
velocities vary rapidly near the walls because of the no-slip effects of side walls. Figure 4b shows the variation
of transverse velocity component w along the spanwise direction z at three locations: at the center, as well
as in the vicinity of secondary eddies near the bottom of upstream and downstream walls. The w component
is antisymmetric with respect to the symmetry plane. Its value is zero at this plane at all the three locations,
further confirming no crossflow at the center of the cavity, as earlier observed from streamlines in Fig. 3.

Linear analysis is performed around this basic state. The linearized snapshots are first obtained using theNS-
MFP approach given in Sect. 2.2. An initial impulse random perturbation field is specified to the pressure with a
magnitude of ε = 10−5Pref , where Pref is the reference pressure. Snapshotswere also processed bydoubling the
perturbationmagnitude; the results changed proportionally, thus confirming linearity. The snapshots effectively
constitute a subspace similar to Krylov subspace with an initial random vector in Arnoldi iteration [48], except
that no orthonormalization is incorporated between iterations. The evolution of perturbations is shown through
isosurfaces of vertical velocity perturbations (v′) in Fig. 5 at nine different instants. The initial transients in the
perturbation evolution (Fig. 5a) are dominated by the random nature of the initial conditions. Subsequently,
however, characteristic structures exhibiting meaningful scales appear. In particular, banana-like structures
[28], reminiscent of Taylor–Görtler-like (TGL) vortices as shown in Fig. 5f–i, manifest periodically at the
upstream and downstream walls. The maximum number of such structures on a wall at any time is five.

These linearized snapshots are subjected to dynamic mode decomposition (DMD); the dynamic modes
thus obtained are equivalent to the global linear stability modes [43]. The eigenvalue of the mode yields data
on the associated frequency as well as growth rate. The lack of orthonormalization between steps in DMD
is sometimes associated with convergence issues of eigenmodes compared to Arnoldi approach. Although
this issue is relatively moot for dominant eigenvalues of interest, which are generally robust if a sufficiently
long dataset is used [12,41,43], the present results are also compared with the eigenvalues obtained using the
Arnoldi approach for further validation.

Figure 6 shows the eigenspectrum obtained using this approach, with the dimensionless modal angular
frequencies (ω) and growth rates (σ ) along the abscissa and ordinate, respectively. At these parameters, there
are no growing modes, i.e., those with positive σ . The slowest decaying (or least stable) mode pair is observed
at ω = ±0.5711. Since the flow is in pre-bifurcation state, the stability analysis of the current basic state is
consistent with the theoretical considerations. As pointed out by Sipp and Lebedev [46], prior to bifurcation,
both the mean flow and the steady base flow coincide. Thus, the features obtained from the current analysis
may be appropriately compared against those available from the literature at Re � Recr.



Fig. 4 a Comparison of present solution (lines) with that of Feldman and Gelfgat [11] (markers) along the centerline of the cavity
at the symmetry plane. v/2 and u/2 velocity components plotted, respectively, along, (x, 0.5, 0.5): solid red line and (0.5, y, 0.5):
dashed black line. b Spanwise variation of crossflow velocity w at locations—center of the cavity (0.5, 0.5, z), as well as near
upstream and downstream secondary eddies at (0.1, 0.1, z) and (0.9, 0.1, z), respectively (color figure online)

In order to compare current results with the Arnoldi approach, the eigenvalues of dominant modes from
the latter as reported in Loiseau et al. [29] are also shown in Fig. 6a. Although the reported results are at
slightly higher Re (= 1930), where an unstable mode pair is obtained, the figure presents a good comparison
of dominant frequencies. As shown, the frequency of the least stable mode is very close to the reported value
of ω = ±0.58. The structure of this mode, shown in Fig. 6b for v′ component, is also strikingly similar to
the leading eigenvector from the Arnoldi approach displayed in Fig. 6c. A similar mode shape is found in the
recent high-resolution study of Gelfgat [15]. The perturbations show a mirror symmetry with respect to the
symmetry plane. Figure 7a shows the eigenmodes for u′ and w′ velocity components. The u′ mode exhibits
the same symmetry as v′, while w′ mode shows mirror antisymmetry, consistent with the mean flow behavior.
Such modes, which follow mean flow symmetry, will be referred to as ‘symmetric’ modes in the discussion
below.

The structure of the v′ mode is characterized by Taylor–Görtler-like (TGL) vortices formed along the
upstream and downstream walls due to centrifugal instability. Further, at this Re, these structures are confined
near the symmetry plane, since they decay away from this plane. This is the consequence of the end walls,
where viscous effects attenuate the TGL structures, and the flow is strongly stabilized. This effect is absent
when periodic boundary conditions are used; in this case, the TGL vortices are present throughout the domain,
without modulation in the spanwise direction [50]. Thus, the critical Reynolds number for flows with periodic
boundaries is smaller (Recr � 782) than when end walls are present.

The sub-dominant low-frequency modes are recovered for these flows as shown in Fig. 6a. Both the current
NS-MFP approach and Arnoldi show a decaying mode at ω � 0.17. Loiseau et al. [29], for bifurcated flow,
have suggested similar frequency to be associated with the intermittent dynamics in the flow where symmetry
breaking is observed, although very briefly. We show the structure of this mode in Fig. 7b. Like the least-
stable high-frequency mode ω1, this ω2 mode is also symmetric. This is consistent with the observations that
the symmetry breaking is not expected at pre-bifurcation state at Re = 1900 [11]. The TGL structures for
ω2 mode are now confined to the vicinity of only the upstream wall. A comparison of the two types of v′
structures in the high- and low-frequency modes reveals that in the latter case, the TGL structures are longer,
and the counter-rotating vortices observed near the upstream end of the top wall are missing. This suggests
that secondary mode becomes prominent only at sufficiently high Re, i.e., when the wall jet formed at the top
corner of the downstream wall has sufficient momentum to penetrate near the upstream region (see Fig. 1a).



Fig. 5 Evolution of v-velocity perturbations using NS-MFP (Re = 1900)

3.2 Post-bifurcation dynamics

Now, we examine the oscillatory and subsequent chaotic regimes for the 3D-LDC flow by considering four
Reynolds numbers in 2100 ≤ Re ≤ 3000. The lowest Re in this range is beyond the first bifurcation point,
as shown in Table 1. The change in flow character post-bifurcation is first analyzed using fully nonlinear
simulations for the lowest and highest Reynolds numbers in the range. The gradual change in the flow regime
due to linear dynamics is discussed subsequently.

The evolution of the nonlinear flowfield is analyzed using a velocity probe placed between the primary
central eddy and upstream secondary eddy on the midplane. This is a judicious choice, since the probe point
lies in the region where the instability causes strong fluctuations in velocity components [11]. The fluctuating
v-velocity signals for Re = 2100 and 3000 are, respectively, shown in Fig. 8a, b in the top panel. Middle and



Fig. 6 Eigenvalues at Re = 1900 as obtained from the current approach are shown by black circles (a). For comparison, results
from Arnoldi approach at Re = 1930 as reported in Loiseau et al. [29] are also plotted in red triangles. Leading eigenmodes
obtained from the current approach (b) and Arnoldi approach (c) are also shown. The green shadow box in (a) highlights the
family of modes for ω1 consisting of the fundamental frequency and its superharmonics (color figure online)

bottom panels, respectively, display the power spectral density (PSD) estimates using theWelch approach, and
wavelet transformations for these signals.

Focusing first on Re = 2100, the velocity signal in Fig. 8a clearly displays two prominent frequen-
cies; regions where high-frequency fluctuations are apparent are marked with rectangles. The switch to high-
frequency appears intermittently, soon after the flow switches from negative v′ to positive v′. Further, the
flow asymmetry in the probed time window is evident from the fact that the maximum negative oscillation
amplitude is three times bigger than that for positive fluctuations. Welch PSD estimates the two frequencies as
0.54 and 0.16, respectively, as shown in the middle panel. These values are similar to those recovered by Lopez
et al. [30] at similar flow conditions. Loiseau et al. [29] also observed these two frequencies at Re = 1930 in
both linear (as discussed earlier) and nonlinear simulations. The wavelet transformation in the bottom panel
indicates longer residence time of flow in the low-frequency regime at Re = 2100, which is also reflected in



Fig. 7 Dominant stability modes at Re = 1900. From left to right: u′, v′, w′. Isosurfaces are plotted at ±10% of the maximum
values

the higher spectral energy content in the Welch estimate. The higher probability of low-frequency fluctuations
in the current study is in contrast to the observations of Loiseau et al [29] at Re = 1930. This may be due
to relatively higher Re used in the current study. The more dominant behavior of low-frequency events with
increase in Re is discussed further below in the context of linear analysis.

At Re = 3000, as shown in Fig. 8b, the disparate high- and low-frequency behavior of the fluctuations is not
clearly visible in the signal. High-frequency fluctuations are evident throughout with the oscillation amplitude
fluctuating between −0.05 and 0.05. This suggests a more saturated state at this Re compared to the chaotic
intermittent behavior seen for Re = 2100. The PSD estimate in the middle panel shows a peak atω = 0.47, but
a spectral broadening observed for this state also gives considerable energy at very low frequency ω = 0.033.
The wavelet transformation again indicates that the high-frequency content is present almost throughout the
observed time window as expected from the signal.

The linear dynamics of these flows provide additional insights into the change in behavior from the stage
with intermittent behavior to that with nonlinear saturation. As discussed in Sect. 1, a suitable equilibrium point
for this analysis is a converged mean flow that encompasses the signature of all the limit cycles. The analysis
below is therefore similar to a quasi-laminar stability analysis, as proposed in Mettot et al. [34], to extract the
dominant low-frequency unsteadiness present in the flow. A natural question in the linear analysis with a time-
averaged flow is the consideration of eddy viscosity [22]. In the literature, linear analyses of mean flows have
been performed using both approaches, i.e., with and without inclusion of Reynolds stress (see Mettot et al.
[34]; Bhaumik et al. [6] for a list).Mettot et al. [34] have shown that even for a fully turbulent case, results from a
time-averaged flow without eddy viscosity are quantitatively similar to those of the experiments, and inclusion
of Reynolds stresses improves the results only slightly. For the 3D-LDC flow, Koseff and Street [24] report that
the flow in a lid-driven cavity becomes turbulent at Reynolds numbers between 6000 and 8000, significantly
higher than the Re-range considered here. Samantaray and Das [42] further confirmed computationally that
the Reynolds stresses become significant only at Re ≥ 10, 000. Therefore, as a reasonable first approximation,



Fig. 8 Nonlinear evolution of flow at Re = 2100 (a) and 3000 (b). Top panel shows the v-velocity fluctuations, while Welch
estimate of PSD and wavelet transformations are, respectively, shown in middle and bottom panels. Two dominant spectral peaks
in both flows are marked using circle in the Welch estimate

the Reynolds stresses can be neglected in the current linear stability analyses. Subsequently, the results are
compared with those inferred from fully nonlinear simulations for further verification.

The mean data are first compared with results from the literature for accuracy, and a grid convergence study
is also performed. Figure 9 shows comparisons for both Re = 2100 and Re = 3000 cases at the symmetry
plane, with the numerical results of Giannetti et al. [16] and experimental data of Prasad and Koseff [40],
respectively. Very good agreement is evident between the current results and those from the literature for both
cases. Furthermore, a grid refinement study is performed for Re = 2100 flow, and the results from a fine grid
(2013) are also plotted in Fig. 9a. Results from both meshes show good overlap, confirming grid independence
of data.

The eigenspectrum obtained from the stability analysis of the flow around the Re = 2100 mean state is
shown in Fig. 10. The two least stable (growing and slowest decaying) oscillatory mode pairs are shown in
green and blue, respectively. The frequencies of these modes (ω1 = ±0.53 and ω2 = ±0.11) are comparable
to those found in the earlier nonlinear analysis, with a larger difference for the lower frequency. Comparing
this eigenspectrum with that obtained for the stable case at Re = 1900 in Fig. 6, a primary observation is that
the high-frequency, least stable modes observed at Re = 1900 have now crossed the imaginary axis and are
unstable at this Re. The low-frequency modes, ω2, also move slightly closer to the imaginary axis, but do not
cross the axis and remain stable.

The structures of these two modes, again using the u′, v′ and w′ fields, are shown in Fig. 11. The mode
shapes corresponding to ω1 are very similar in terms of their distribution as well as localization, to the TGL
structures obtained for Re = 1900 (Fig. 7a). The low-frequency mode ω2, as shown in Fig. 7b, exhibits an
antisymmetric pattern. The frequency of this limit cycle is near the observed nonlinear frequency related to
intermittent symmetry-breaking events. Therefore, it may be concluded that as the Re is increased to 2100,
this limit-cycle flow assumes an antisymmetric form and manifests as the second most dominant eigenvalue
in the linear analysis.



Fig. 9 Validation of mean flow at the symmetry plane. Results are compared against data from Giannetti et al. [16] at Re = 2000
and from Prasad and Koseff [40] at Re = 3200 for Re = 2100 and 3000 cases, respectively. Grid sensitivity is shown for
Re = 2100 case by performing computation on a 2013 grid

Fig. 10 Eigenspectrum at Re = 2100. Two most dominant high (ω1)- and low (ω2)-frequency modes are highlighted in green
and blue circles, respectively. Gray region shows modes which are unstable (color figure online)

The above results also suggest a hypothesis that the nonlinearly observed chaotic intermittency (also see
Kuhlmann and Albensoeder [25]; Loiseau et al. [29]) is a consequence of competition between the pairs of
TGL vortices at ω1 and ω2. The TGL vortices at ω1 result primarily due to centrifugal instability of the vortex
core and hence are concentrated in the region between the primary and secondary vortices. On the other
hand, vortical structures at ω2 indicate transverse instability in the system and assume prominence only after
symmetry breaking following bifurcation.

Next, we examine the linear dynamics of the flow at the highest Re in the considered range. Figure 12 shows
the eigenspectrum of the analysis at Re = 3000. The results are shown both in terms of Ritz values, as obtained
from DMD analysis of the snapshots, λ = λr + iλi (Fig. 12a, b) as well as eigenvaluesΩ = σ + iω (Fig. 12c).
These quantities are related by: Ω = ln(λ)/Δt , where Δt is the time step between linearized snapshots



Fig. 11 Dominant stability modes at Re = 2100. From left to right: u′, v′, w′. Same isolevels as in Fig. 7

considered for stability analysis. The Ritz values shown in Fig. 12a lie close to the unit circle, suggesting
good convergence of the results. Figure 12b shows a zoomed view of the Ritz diagram near the most unstable
modes, which are shown in blue and green circles. Both pairs of unstable modes lie just outside the unit circle
near the x-axis. For a flow with saturated perturbation growth, DMD analysis with nonlinear snapshots results
in all the Ritz values along the unit circle. Therefore, although the nonlinear snapshots indicate saturation as
discussed in the context of Fig. 8b, linear analysis on the mean flow extracts modes as growing or decaying,
reflecting the dynamics associated with large-scale structures.

The eigenspectrum obtained from these Ritz values is shown in Fig. 12c. When compared to the eigen-
spectrum at Re = 2100 (Fig. 10), it is evident that at Re = 3000, in addition to mode at ω1 = 0.44, the
low-frequency mode ω2 = 0.029 has also become unstable. Note that in order to extract very low frequency
in this case, the mean flow is obtained by averaging 1200 flow cycles after the initial transients are discarded.
Further, in order to capture the low-frequency mode, the simulation is performed for 200 periods that can
resolve frequencies up to 0.01 (based on the Nyquist criterion). The frequencies associated with both modes
are lower compared to their respective values for Re = 2100 case, but close to the frequency peaks observed
in the nonlinear analysis, as shown in Fig. 8b. Figure 12d shows the amplitudes A of these modes as obtained
fromDMD, after optimally scaling themodes with respect to the contribution in the first snapshot, as suggested
in Jovanović et al. [21]. We note that ω1 has the highest amplitude, followed by ω2. This further confirms that
both unstable modes are indeed the most dominant ones in this flowfield.

The TGL structures of both these modes are shown in Fig. 13. The general form of both these modes
remains consistent with those at Re = 2100, indicating that ω1 and ω2, respectively, represent symmetric and
antisymmetric modes. However, a noticeable difference at high Re is that the TGL structures are no longer
localized near the midplane and they now fill the previously structureless domain near the end walls. At high
Re, the spanwise inhomogeneity leads to a strong crossflow which effectively extends the TGL structures to
regions far from themidplane, toward the end walls. Correspondingly, the strength of TGL diminishes from the
midplane to the wall. The number of dominant TGL structures for both modes, observed in v′-isosurfaces in



Fig. 12 Linear analysis of Re = 3000 flow. a Ritz diagram. b Zoomed view of Ritz diagram near the unstable modes. c
Eigenspectrum. d Amplitude versus frequency plot

Figs. 11 and 13, increases with Re, consistent with experimental campaigns [24,44]. Figures 14 and 15 display
these linear modes using v′ contours on an xz-plane at a quarter length of the cavity from the bottom wall
(y = 0.25). A comparison of both flows indicates that the strengths of TGL vortices increase with Re. This
trend is very striking for the structures near the downstream wall, where the TGL vortices are much stronger
at the higher Re. Other trends are also evident: for Re = 3000, the TGL structures are closer to the upstream
(x = 0) and downstream walls (x = 1) than the low Re case. This is associated with the larger concentration
of the downward wall jets from the top right corner into a thinner boundary layer. For the mode corresponding
to ω2, a change in wavelength of structures is also apparent.

The remarkable differences in the stability dynamics of flows at Re = 2100 and 3000 motivate a natural
question about the trajectory of these modes as the flow gradually changes from one end of this Reynolds
number range to the other. This question is addressed by performing linear analyses of the 3D-LDC flow at
two intermediate Re, specifically 2400 and 2700, respectively. Before presenting results from this analysis,
we compare the mean flow for all the cases analyzed in this study. Figure 16 shows the spanwise profiles of
all three velocity components at the center of the cavity. As expected for the mean flow, u and v velocities are
symmetric about the midplane, while w is antisymmetric. As Re is increased, the peak value of all velocities
decreases, with a corresponding increase in the size of central core; this is a consequence of the inability of



Fig. 13 Dominant stability modes at Re = 3000. From left to right: u′, v′, w′. Same isolevels as in Fig. 7

Fig. 14 Dominant modes from linear analysis at Re = 2100. v′ contours at y/L = 0.25 are shown between contour levels
−0.008 and 0.008

the wall-jet energy, due to lid velocity, to penetrate into the core. The boundary layers on the end walls adjust
accordingly to ensure no transverse flow in the mean sense. For the considered Re-range, very little variation
is seen in the slopes of u-velocity boundary layer near the wall.

The results from the linear analysis of all five flows are listed in Table 2 along with nonlinear frequencies
from LES for Re = 2100 and 3000 as reported earlier. Linear analysis shows a consistent drop in frequency



Fig. 15 Dominant modes from linear analysis at Re = 3000. v′ contours at y/L = 0.25 are shown. Same contour levels as in
Fig. 14

Fig. 16 Spanwise variation of mean flow at the centerline of the cavity (0.5, 0.5, z). Peak velocity at the center of the plane gets
attenuated with increase with Re

Table 2 Frequencies and growth rates of the two most dominant linearized modes in Re ∈ [1900 3000]
Re Linear Analysis LES

ω1 ω2 ω1 ω2

±ω σ ±ω σ ±ω ±ω

1900 0.5711 − 0.0169 0.1736 − 0.0220
2100 0.5321 0.0021 0.1108 − 0.0205 0.54 0.16
2400 0.4942 0.0073 0.0645 − 0.0173
2700 0.4696 0.0124 0.0671 0.0053
3000 0.4424 0.0228 0.0290 0.0281 0.47 0.03

Frequencies from two nonlinear simulations as shown in Fig. 8 are also provided

with increase in Re for both modes, while the growth rate gradually increases. In 1900 ≤ Re ≤ 3000, the
frequency of the most dominant mode, ω1, at highest Re decreases by about 23% from the value at the lowest
Re, while there is a much larger reduction of about 70% for ω2. The very low frequency generally indicates
that oscillations are not localized, but extend over a very large region in the flow, which is shown earlier in
Fig. 15b. Though not shown here for brevity, the structures of modes in 2100 ≤ Re ≤ 3000, corresponding
to ω1 and ω2, show symmetric and antisymmetric modes, respectively. Further, as expected, with increase in
Reynolds number, TGL vortices occupy a larger region in the spanwise direction along both side walls.

The eigenspectrums for all cases are plotted in Fig. 17a. Two families of modes are evident at ω1 and ω2 in
all these flows; these may be associated with the two limit cycles observed in Kuhlmann and Albensoeder [25];



Fig. 17 Stability analysis of mean flows for Re range between 1900 and 3000. Two families of modes at, ω1 and ω2, are marked

Loiseau et al. [29] and Lopez et al. [30]. While the high-frequency mode atω1 is always symmetric in all cases,
the low-frequency mode ω2 switches sign somewhere between Re = 1900 and 2100, when the flow changes
from stable to oscillatory conditions. However, the low-frequency mode remains stable until Re = 2400. At
the next analysis point, Re = 2700, this mode also becomes unstable.



Figure 17b, c shows the frequencies and growth rates of these twomodes as a function of Reynolds number.
The frequency decreases almost linearly with increase in Re. Examining the growth rates, the antisymmetric
mode ω2 becomes more unstable than the high-frequency symmetric mode ω1 at Re = 3000, indicating that
symmetry-breaking dynamics are now more dominant. The gradual increase in the growth rate of ω2 with Re
also indicates that these results are in contrast to those of Anupindi et al. [2], who found that the symmetry is
restored as the Reynolds number is increased from 2300 to 2350.

Lastly, it is reemphasized in the context of the current results that increasing Re may lead to larger changes
in the mean flow, and thus the saturation due to nonlinear effects [32]; this may be especially the case at the
highest Re. However, it is useful to revisit the recent observations of Bengana et al. [5] for confined flows
such as in the lid-driven cavities, where the dominant dynamics are governed by geometric configurations and
convection velocities. It was noted that for such flows, the nonlinear mechanism distorts the base flow only
slightly (up to reasonably high Reynolds numbers), and hence, the frequencies and growth rates predicted
by stability analysis around the mean flow are meaningful. Thus, when the nonlinearity becomes prominent
at high Reynolds number, the primary influence is on the numerical accuracy of the observed growth rate,
which is dictated by quantitative gradients in the flow. The frequencies and mode structures predicted by
linear dynamics in the current study are expected to be robust [34], as also confirmed by comparisons with the
nonlinear analysis.

4 Concluding remarks

Flows in a lid-driven cubical cavity at post-critical conditions are analyzed to provide perspective on changes in
linear and nonlinear dynamics under the influence of Reynolds number. ThewideRe-range considered (1900 ≤
Re ≤ 3000) encompasses flow in different regimes: from fully stable to chaotic intermittent and subsequently
nonlinearly saturated as confirmed by fully nonlinear simulations. A gradual transition between the states is
examined by the linear analysis. The subcritical transition of flow to oscillatory state at the bifurcation point
is characterized by symmetric global modes at frequency, ω � 0.58. A subdominant symmetric mode at low
frequency, ω � 0.16, is also recovered. The results are confirmed in both dynamic mode decomposition and
Arnoldi iteration approaches that process the linearized snapshots. The modal spatial shapes display Taylor–
Görtler-like (TGL) structures, which are considered primary mechanisms governing the stability dynamics.
The effects of end walls in these structures are evident in their diminished strength in the near-wall regions.
Sufficiently away from the critical point, i.e., at Re = 2100, the intermittent breakup in symmetry leads to
the emergence of an antisymmetric mode in the linear analysis at a much lower frequency than the primary
dominant mode. However, this mode is subdominant, and the primary symmetric mode, of higher frequency
ω � 0.53, controls the linear dynamics. These high- and low-frequency contents in the flow are also observed in
the nonlinear spectral signatures. Further change in the dynamics is examined by considering three Reynolds
numbers at Re = 2400, 2700 and 3000. A systematic three-dimensional linear analysis at these Reynolds
numbers suggests that the frequencies of the two dominant modes reduce with increase in Re. The dominance
of the secondary antisymmetric mode increases as the flowmoves further from the bifurcation point, indicating
increased instances of symmetry breaking. Modal structures of both the primary and secondary modes show
significant changes with dynamics. The TGL structures, largely confined near the midplane for Re = 1900,
increasingly extend toward the end walls as the Re is increased. These changes are associated with the thinning
of the boundary layer, as well as increased crossflow fluctuations with Re.

The current study adds further insights into the existing knowledge of the 3D-LDC flow, particularly in
elucidating the systematic change in character with the gradual increase in nonlinearity. A considerable change
in the dominant frequency of the flow during transition is an important observation that may aid in developing
a control strategy in related flows. The current effort also shows the ability of a simple low-cost linear analysis
tool in extracting key dynamics associated with large structures in a fully three-dimensional flow; such tools
can also be exploited for more complex practical flows. Future work on this flow will examine the effects
of compressibility, including leading instability dynamics and mode interaction mechanisms, to understand
differences relative to the low speed counterpart studied in this paper.
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