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QUASI-STATIONARY DISTRIBUTION FOR HAMILTONIAN
DYNAMICS WITH SINGULAR POTENTIALS

ARNAUD GUILLIN♦, BORIS NECTOUX♦, AND LIMING WU♦

Abstract. In this work, we prove the existence and the uniqueness of a quasi-stationary
distribution for hypoelliptic Hamiltonian dynamics for a system of N particles in Rd

interacting with Lennard-Jones type potentials or with repulsive Coulomb potentials.

AMS 2010 Subject classifications. 37A60, 60B10, 60F99, 60J60, 37A30.

Key words and Phrases. Quasi-stationary distribution, Lyapunov functions, hypoelliptic
diffusions, molecular dynamics, Lennard-Jones potential, Coulomb potential.

1. Introduction

1.1. Setting and purpose. For d ≥ 1, consider a system of N ≥ 2 particles in Rd

which cannot collide and let

xt = (x1
t , . . . , x

N
t ) ∈ (Rd)N and vt = (v1

t , . . . , v
N
t ) ∈ (Rd)N ,

denotes respectively the positions of the N particles and their velocities, at time t ≥ 0.
The natural space to consider the time evolution of the positions (xt, t ≥ 0) and of the
velocities (vt, t ≥ 0) of the N particles is thus

S = O × (Rd)N , (1.1)

where {
if d = 1, O =

{
x = (x1, . . . , xN) ∈ (R)N , x1 < x2 < . . . < xN

}
,

if d ≥ 2, O =
{
x = (x1, . . . , xN) ∈ (Rd)N , xi 6= xj for all i 6= j

}
.

(1.2)

Notice that in both cases, O is open, path connected, and unbounded. In addition,

∂S = ∂O × (Rd)N , with,

{
if d = 1, ∂O ⊂ ∪i=1,...,N−1 {x ∈ RN , xi = xi+1},
if d ≥ 2, ∂O = ∪1≤i 6=j≤N {x ∈ (Rd)N , xi = xj}.

(1.3)

In molecular dynamics, the interatomic potential of the system of N particles is typically
of the form, for x = (x1, . . . , xN) ∈ O,

V(x) =
N∑
i=1

Vc(x
i) +

∑
1≤i<j≤N

VI(x
i − xj) ∈ R, (1.4)
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where Vc : Rd → R is the confining potential of the system and VI : Ω → R (where, if
d = 1, Ω = {y < 0}, and if d ≥ 2, Ω = {y 6= 0}) is the potential energy modeling the
interaction between two particles, the latter becoming infinite when (and only when)
y ∈ ∂Ω = {0} (which prevents from collisions). Let (Ω,F , (Ft)t≥0,P) be a filtered
probability space. We assume that the evolution of the positions (xt, t ≥ 0) and the
velocities (vt, t ≥ 0) of the N particles on S1 is described by the following hypoelliptic
stochastic differential equation{

dxt = vtdt,

dvt = −∇V(xt)dt− γ(xt, vt)vtdt+ Σ(xt, vt) dBt,
(1.5)

where γ : (Rd)N × (Rd)N → MNd(R) (the space of square matrices of size Nd with real
coefficients) is the friction coefficient, (Bt, t ≥ 0) is a standard dN -dimensional Brownian
motion, and Σ : (Rd)N × (Rd)N → R. We set Xt = (xt, vt) for t ≥ 0. Throughout this
paper, we assume that

(Ac) γ : (Rd)N × (Rd)N → MNd(R) is a locally Lipschitz function such that:
(i) there exists γ∗ > 0, ∀x, v ∈ (Rd)N : 1

2

[
γ(x, v) + γT (x, v)

]
≥ γ∗ I(Rd)N , where

γT is the transpose matrix of γ,
(ii) supx,v∈(Rd)N ,k,`=1,...,Nd |γk,`(x, v)| < +∞.

(AΣ) Σ : (Rd)N×(Rd)N → R is a C∞ function, uniformly Lipschitz over (Rd)N×(Rd)N ,
and such that for some Σ0 > 0 and Σ∞ > 0,

∀x ∈ (Rd)N × (Rd)N , Σ0 ≤ Σ(x) ≤ Σ∞.

For many intermediate results, Assumption (Ac) can be relaxed, see Remark 2.13

In this work, we prove the existence and the uniqueness of a quasi-stationary distribu-
tion for the process (1.5) when VI is the Lennard-Jones type potential or the Coulomb
potential (see (1.7) for the definition of a quasi-stationary distribution). These two pair
potentials are widely used in molecular dynamics simulation. Such a setting is motivated
by what follows. Due to energetic barriers of the potential V, the process (xt, t ≥ 0)
spends a lot of time in a neighborhood O (bounded or not) of a local minimum of V in
O. Thus, the process (1.5) is stuck during long period of times in regions D of the form
D = O × (Rd)N . For this reason, the set D is called a metastable region (modelling in
practice a macroscopic state). It is thus expected that when the process starts inside
D, its law becomes quickly close to a local equilibrium inside D. This local equilibrium
inside D is described by a quasi-stationary distribution. In addition, starting from the
quasi-stationary distribution, the first exit time from D and the exit location on ∂D are
independent, and the first exit time from D is exponentially distributed. For this reason,
the notion of quasi-stationary distribution is a central object to justify the use of kinetic
Monte Carlo processes (also called Markov jump processes) to model the exit event from
a metastable region [35, 29, 18, 1, 31].

The main results of this work are Theorem 2.4 and Theorem 3.2 which provides existence
and uniqueness (in some weighted spaces) of a quasi-stationary distribution (see (1.7))
for the process (1.5) on D = O × (Rd)N (where O ⊂ O) when VI is respectively a

1Existence and uniqueness will be proved later, under additional assumptions on V, see Proposi-
tions 2.3 and 3.1.
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Lennard-Jones type potential and when VI is the Coulomb potential. The results cover
the case when O contains some subset of singular points of V, namely some subset of
∂O. The starting point of the proofs is [24, Theorem 2.2]. To use these results, we will
in particular construct Lyapunov functions W on S for such processes which provide an
asymptotic return from +∞. Let us mention that these Lyapunov functions are much
smaller, to the best of our knowledge, to those already constructed in the literature for
such processes. Indeed, they satisfy, for any η ∈ (0, 1), W ≤ exp(mHη) on S, where H
is the Hamiltonian of the process (1.5). Let us also mention that since the potentials V
we consider are singular and ∂O ∩ {V = +∞} is not necessarily nonempty, it turns out
that most of the arguments used in [24, Section 6] do not apply here.

Remark 1.1. The long time behavior of the law of the process (1.5) has been inves-
tigated in [26, 32, 3, 5] when when γ and Σ are constant, and V is C∞ on S (see
also [8, 17, 16, 34, 38, 23] and references therein).

Remark 1.2. From the proof of Theorem 2.4 and Theorem 3.2, we also deduce that
large deviation principles hold for the non killed process (i.e. the process (Xt, t ≥ 0) on
S) with Lennard-Jones and Coulomb potential interactions, as well as the exponential
convergence of its law towards its invariant measure, see Corollary 4.1.

Remark 1.3. The notion of quasi-stationary distribution has initially been introduced
to investigate long time behavior of biological systems and we refer for instance to [14, 33,
15, 6, 7, 13, 10, 20, 19]. For existence and uniqueness of a quasi-stationary distribution
for elliptic processes, we refer to [25, 11, 9, 29, 36, 22, 28]. See also [2, 21, 12] for general
criteria implying existence uniqueness of a quasi-stationary distribution.

We refer to [24] for existence and uniqueness of a quasi-stationary distribution for the
process (1.5) when the coefficient of (1.5) are continuous on R2dN . We also refer to [30]
(see also [37, Chapter 4]) when γ and Σ are constant on R2dN , the drift in (1.5) is smooth
on R2dN , and O is bounded. Existence and uniqueness of quasi-stationary distribution
for hypoelliptic diffusions on a bounded subdomain D of Rm have been very recently
investigated in [4] when D satisfies a boundary condition (see (ii)-(a) in Theorem 1
there), and the coefficients of the diffusions are smooth and satisfy some Hörmander
conditions.

1.2. Notation and definition of a quasi-stationary distribution. Let B(S) be the
Borel σ-algebra of S, bB(S) the space of all bounded and Borel measurable functions
f on S (its norm will be denoted by f ∈ bB(S) 7→ ‖f‖bB(S) = supx∈S |f(x)|). If u :
S → [1,+∞) is a continuous function, we denote by buB(S) the Banach space of all
B(S)-measurable functions on S with norm ‖f‖buB(S) := supx∈S |f(x)|/u(x) < +∞. The
function 1K will denote the indicator function of K ⊂ (Rd)N .
Consider (Xt, t ≥ 0) the (strong) Markov process solution in the strong sense of the
stochastic differential equation (1.5) with values in an open subset S of (Rd)N × (Rd)N

(existence and uniqueness of such a process will be proved later, see Propositions 2.3
and 3.1). Its transition probability semigroup is denoted by (Pt, t ≥ 0) where we recall
that it is defined by:

Ptf(x) = Ex[f(Xt)],
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for f ∈ bB(S) and x ∈ S. We will denote by (Xt(x), t ≥ 0) the process (Xt, t ≥ 0) when
X0 = x ∈ S. Given an initial distribution ν on S, we write Pν(·) =

∫
S Px(·)ν(dx). Under

Pν , the distribution of X0 is ν.

Now let D be a non-empty open domain of S, different from S. Consider the first exit
time of D

σD := inf{t ≥ 0, Xt ∈ Dc}
where Dc = S\D is the complement of D. The transition semigroup of the killed process
(Xt, 0 ≤ t < σD) is for t ≥ 0 and x ∈ D,

PDt f(x) = Ex[1t<σDf(Xt)], (1.6)

for f ∈ bB(D). Let us now recall the definition of a quasi-stationary distribution.

Definition 1.4. A quasi-stationary distribution (QSD in short) of the Markov process
(Xt, t ≥ 0) in the domain D is a probability measure on D such that

µD(A) = PµD(Xt ∈ A|t < σD) =
PµD(Xt ∈ A, t < σD)

PµD(t < σD)
, ∀t > 0, A ∈ B(D). (1.7)

where B(D) :=
{
A ∩ D;A ∈ B(S)

}
.

We say that a continuous function f belongs to the extended domain De(L) of the
generator L of (Pt, t ≥ 0) if there is some measurable function g on S such that∫ t

0
|g|(Xs)ds < +∞,Px − a.e. for all x ∈ S, and

Mt(f) = f(Xt)− f(X0)−
∫ t

0

g(Xs)ds

is a Px-local martingale for all x. Such a function g, denoted by Lf , is not unique in
general. But it is unique up to the equivalence of quasi-everywhere (q.e.): two functions
g1, g2 are said to be equal q.e., if g1 = g2 almost everywhere in the (resolvent) measure

R1(x, ·) =
∫ +∞

0
e−tPt(x, ·)dt for every x ∈ S.

Finally, we say that a class A of bounded continuous functions on D is measure-
separable, if for any bounded (signed) measure ν on D, if ν(f) = 0 for all f ∈ A, then
ν = 0.

1.3. Organization. The rest of the paper is organized as follows. In Section 2, we
focus on Lennard-Jones type interactions (see (2.1)): we state and prove Theorem 2.4.
Section 3 is dedicated to the case when VI is the Coulomb potential. The main result of
Section 3 is Theorem 3.2.

2. Quasi-stationary distributions for Lennard-Jones type interactions

In this section, we state and prove Theorem 2.4, which is concerned with existence and
uniqueness of the process (1.5) with Lennard-Jones type interactions.

2.1. Main result.
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2.1.1. Lennard-Jones type interactions. Recall that Ω = {y ∈ R, y < 0} if d = 1, and
Ω := {y ∈ Rd, |y| 6= 0} if d ≥ 2. Let Φ1,I : Ω→ R, B > 0, and β1 > 1. Define for y ∈ Ω:

V1,I(y)=


B

|y|β1
+ Φ1,I(y) if y ∈ Ω

+∞ if y = 0.

Recall that the potential function V1 we consider is, for x = (x1, . . . , xN) ∈ O (see (1.2)),

V1(x) =
N∑
i=1

V1,c(x
i) +

∑
1≤i<j≤N

V1,I(x
i − xj) ∈ R, (2.1)

where V1,c : Rd → R and V1,I : Ω→ R. We assume the following on V1,V2,c and Φ1,I.

Assumption (H-LJ). Let A > 0 and α1 > 1. The function V1,c ∈ C2(Rd,R) and for
some r > 0, it holds:

∀y ∈ Rd, |y| ≥ r, V1,c(y) = A|y|α1 + Φ1,c(y),

where Φ1,c ∈ C2(Rd,R) satisfies:

lim
|y|→+∞

|Φ1,c(y)|
|y|α1

= lim
|y|→+∞

|∇Φ1,c(y)|
|y|α1−1

= lim
|y|→+∞

|Hess Φ1,c(y)|
|y|α1−2

= 0.

In addition, Φ1,I : Ω→ R is C2 and satisfies:

lim
y∈Ω,|y|→0

|y|β1|Φ1,I(y)| = lim
y∈Ω,|y|→0

|y|β1+1|∇Φ1,I(y)| = lim
y∈Ω,|y|→0

|y|β1+2|Hess Φ1,I(y)| = 0. (2.2)

Finally, for some r > 0,

Φ1,I, ∇Φ1,I, and Hess Φ1,I are bounded on Ω ∩ {|y| ≥ r}. (2.3)

Remark 2.1. The Lennard-Jones potential V1,I corresponds to β1 = 12 and Φ1,I(y) =
−C/|y|6, C > 0, y ∈ Ω. When d ≥ 3, the Coulomb potential is also covered here by
choosing β1 = d − 2 and Φ1,I = 0. The Coulomb potential when d = 1, 2 is treated in
Section 3.

In this section, we assume that (H-LJ) is satisfied. Recall that (see (1.1)), S = O×(Rd)N

is the natural state space on which the evolution of the N particles can be considered.
By assumption (H-LJ),

O = {x ∈ O,V1(x) <∞} (see indeed (1.2)).

Notice also that the set S is open and path connected. Let us now give some properties
of V1 which are direct consequences of (H-LJ) and which will be used throughout this
work. Note first that V1 : S → R is C2.

Remark 2.2. We have assumed that V1 is at least C2 on S to ensure existence and
uniqueness of a local strong solution to (1.5) when V = V1, see indeed the proof of
Proposition 2.3.
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Notice also that by (H-LJ), for all ε > 0, there exist k,K > 0 such that for all y ∈ Rd,

− k +
A

1 + ε
|y|α1 ≤ V1,c(y) ≤ K + (1 + ε)A|y|α1 , (2.4)

and, for all y ∈ Ω,

− k +
B

1 + ε
|y|−β1 ≤ V1,I(y) ≤ K + (1 + ε)B|y|−β1 . (2.5)

In particular, V1,c and V1,I are lower bounded respectively on Rd and on Ω . Therefore,
V1 is also lower bounded on O, i.e.

inf
O

V1 > −∞.

In addition, by (2.4) and (2.5), V1,I(y) → +∞ (y ∈ Ω) if and only if |y| → 0 , and
V1,c(y)→ +∞ if and only if |y| → +∞. This implies that, when x ∈ O (see (2.1)):

V1(x)→ +∞ iff

{
(1) ∃ i ∈ {1, . . . , N} s.t. |xi| → +∞ or,

(2) for some i 6= j ∈ {1, . . . , N}, |xi − xj| → 0
, (2.6)

or equivalently, V1(x) → +∞ iff either (1) |x| → +∞ or (2) x → ∂O (see (1.3)), that
we write x→ ∂O ∪ {∞}. In the following and up to changing V1 into V1 − infO V1 + 1,
we assume that

V1 ≥ 1 on O.
Let us denote for (x, v) ∈ S,

L1 =
Σ2(x, v)

2
∆v + v.∇x −∇V1(x).∇v − γ(x, v)v.∇v, (2.7)

the infinitesimal generator of the diffusion (1.5) when V = V1. The Hamiltonian of the
process (1.5) when V = V1 is, for (x, v) ∈ S,

H1(x, v) = V1(x) +
1

2
|v|2 ≥ 1. (2.8)

Notice that for (x, v) ∈ S, H1(x, v)→ +∞ if and only if x→ ∂O∪{∞} or if |v| → +∞.
Existence and uniqueness of the process (1.5) on S (see also [26, Proposition 2.2 and
Section 4]) follows from the following result.

Proposition 2.3. Assume that (H-LJ) is satisfied as well as (Ac) and (AΣ). For
all R > 0, the set {x ∈ O, V1(x) < R} is open, bounded, and its closure is included
in O. Furthermore, for all (x0, v0) ∈ S, there exists a unique pathwise solution (Xt =
(xt, vt), t ≥ 0) of {

dxt = vtdt,

dvt = −∇V1(xt)dt− γ(xt, vt)vtdt+ Σ(xt, vt) dBt.
(2.9)

with X0 = (x0, v0), which is moreover non-explosive and remains in S for all t ≥ 0.

Notice that by Proposition 2.3, the process (2.9) is a (strong) Markov process.
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Proof. Clearly, for R > 0, the set {x ∈ O, V1(x) < R} is open, and its closure is included
in O since ∂O = {V1 = +∞}. It is bounded, by (2.6). Even if it is standard, let us
write the proof of the second statement since we will need Eq. (2.12) below for further
computations. Then, by definition of H1 (see (2.8)), for r > 0, the set

H1
r := {(x, v) ∈ S, H1(x, v) < r}, (2.10)

is open, bounded, and its closure is included in S. Let x = (x, v) ∈ S and rx > 0 be such
that x ∈ {(x, v) ∈ S, H1(x, v) < rx}. Since the coefficients of the stochastic differential
equations (1.5) are locally Lipschitz on S, for any r ≥ rx, there exists a unique strong
solution (Xt = (xt, vt), t ≥ 0) of (2.9) with initial condition x up to time

τr(x) = inf{t ≥ 0, Xt(x) /∈ H1
r}. (2.11)

Let τ = limr→+∞ τr = supr≥rx
τr. Then, for all (x, v) ∈ S

L1H1(x, v) =
1

2
dNΣ2(x, v)− γ(x, v)v · v ≤ hH1(x, v),

where h = max(dNΣ2
∞/2, 2m) where m > 0 is such that γ + γT ≥ −2mI(Rd)N on

(Rd)N × (Rd)N (see (Ac) and (AΣ)). Thus, by Itô formula, (e−ht∧τrH1(Xt∧τr), t ≥ 0) is
a supermartingale and then:

for r ≥ rx : H1(x) ≥ Ex[1τr≤t e
−ht∧τrH1(Xt∧τr)] ≥ e−htrPx(τr ≤ t). (2.12)

Therefore, Px(τr ≤ t)→ 0 as r → +∞, and then Px(τ > t) = 1. That is Px(τ = +∞) =
1. Because {τ = +∞} ⊂ {Xt ∈ S,∀t ≥ 0}2, it holds Px({Xt ∈ S, ∀t ≥ 0}) = 1, which
concludes the proof of the proposition. �

2.1.2. Quasi-stationary distribution for Lennard-Jones type interactions. The first main
result of this section concerns the existence and uniqueness of a quasi-stationary distri-
bution of the process (2.9) in D = O× Rd with the potential V1 (see (2.1)).

Theorem 2.4. Assume that (H-LJ), (Ac), and (AΣ) are satisfied. Let O be a sub-
domain of O such that O \ O is nonempty and ∂O ∩ O is C2. Set D = O × (Rd)N ⊂ S
(see (1.1)). Consider the process (Xt, t ≥ 0) solution of (2.9) with potential V1 on S
(see Proposition 2.3). Then, for each

η1 ∈ (0, 1] with moreover, if α1 ∈ (1, 2), η1 > (2− α1)/α1 (∈ (0, 1)),

there exists a continuous and unbounded Lyapunov functional W1 : S → [1,+∞) such
that W1 ≤ exp

[
mHη1

1

]
on S, for some m > 0 (see Proposition 2.9 for the explicit

construction of W1) and for all p ∈ (1,+∞):

(a) There is only one QSD µD of the process (Xt, t ≥ 0) in D satisfying µD(W
1/p
1 ) :=∫

DW
1/p
1 (x)µD(dx) < +∞.

(b) There exists λD > 0 such that for all t ≥ 0, the spectral radius of PDt on b
W

1/p
1
B(D)

is given by
r(PDt |b

W
1/p
1

B(D)) = e−λDt.

2Indeed, on {τ = +∞}, for all t > 0, there exists r > 0 such that t < τr. Therefore, for all s ∈ [0, t],
Xs ∈ {H1 < r} ⊂ S.
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In addition, µDP
D
t = e−λDtµD, for all t ≥ 0, and µD(O) > 0 for all non-empty open

subsets O of D. Furthermore, there is a unique continuous function ϕ : D → R
bounded by cW

1/p
1 (for some c > 0) such that µD(ϕ) = 1 and

PDt ϕ = e−λDtϕ on D,∀t ≥ 0. (2.13)

Moreover, ϕ > 0 everywhere on D.
(c) There exist δ > 0 and C ≥ 1 such that for any initial distribution ν on D with

ν(W
1/p
1 ) < +∞,∣∣Pν(Xt ∈ A|t < σD)− µD(A)

∣∣ ≤ Ce−δt
ν(W

1/p
1 )

ν(ϕ)
, ∀A ∈ B(D), t > 0. (2.14)

(d) Px(σD < +∞) = 1 for all x ∈ D, XσD and σD are PµD-independent, and PµD(t <
σD) = e−λDt.

Notice that O is not necessarily bounded in Theorem 2.4, and its closure may contain
singularities of V, namely some subset of ∂O. The Lyapunov function W1 given in (2.24)
satisfies thanks to (2.30), for (x, v) ∈ S,

W1(x, v) = exp
[(
aH1(x, v) + o(H1(x, v))

)η1],
as x → ∂O ∪ {∞} or |v| → +∞. If α1 ≥ 2, there is no restriction on η1 (i.e. one
can choose any η1 in (0, 1]). Notice that if O is bounded, we can modify V1,c outside
O with α1 ≥ 2, so that we can take any η1 ∈ (0, 1] such that W1 satisfies (C3). In
addition, because W1 is continuous over S, the set of probability measures ν such that

ν(W
1/p
1 ) < +∞ contains the set of compactly supported probability measures in D (and

in particular Dirac measures δx with x ∈ D). Theorem 2.4 will be a consequence of
Lemma 2.7, Corollary 2.12, and Propositions 2.8, 2.9, and 2.11 below.

Remark 2.5. Apart from the fact that V1 is assumed to be only C2 on S, Assumption
(H-LJ) differs from those adopted in [26, Example 4.4] because (2.3) is not assumed
there. We have added Assumption (2.3) so that in particular [26, Lemma A.1] implies
that

|Hess V1|/|∇V1|2 → 0 as x→ ∂O ∪ {∞}, (2.15)

a property we will use3. Indeed, without (2.3) one can consider, when d = 1 and
N = 2, Φ1,I(y) = y6 for y < 0, and α1 = 2. To simplify the computations, choose
β1 = 1, B = A = 1, and Φ1,c ≡ 0. Then, it holds for x1 < x2 ∈ R, V1(x1, x2) =
(x1)2 + (x2)2 + 1/(x1 − x2) + (x1 − x2)6. Thus, for x1 < x2 ∈ R:

∂2
1V1(x1, x2) = 2 +

2

(x1 − x2)3
+ 30(x1 − x2)4.

Set x2 = 0 and x1 = −λ, for λ > 0. Then, one has ∂2
1V1(−λ, 0) ∼ 30λ4, when λ→ +∞.

Then, we cannot conclude with [26, Lemma A.1] that |∂2
1V1(−λ, 0)|/|∇V1(−λ, 0)|2 → 0

as λ → +∞, since α1 − 1 = 1 here. However, when assuming (2.3), Eq. (2.29) below
holds, and then [26, Lemma A.1] implies that (2.15) holds. Assumption (2.29) is natural
since it states that the interaction potential does not blow up when the particles are far
from each other (this the case for the potential functions of interest, see Remark 2.1).

3Eq. (2.3) also ensures that V1,I is lower bounded (see (2.5)), and Lemma A.1 in [26] holds when
(HLJ) is satisfied (see Remark 2.6).



QSD FOR LANGEVIN DYNAMICS WITH SINGULAR POTENTIALS 9

Remark 2.6. Let us explain why [26, Lemma A.1] (that we will use) is valid when
(H-LJ) holds. Lemma A.1 in [26] is proved there when Φ1,c ≡ 0 and Φ1,I ≡ 0. Fix
C > 0. By (2.3), for all r > 0, there exists m > 0, for all y ∈ Ω,

C

|y|β1+1
− |∇Φ1,I(y)| ≥

1|y|≤r
|y|β1+1

[
C − |y|β1+1|∇V1,I(y)|

]
−m.

Then, by (2.2), choosing r > 0 small enough, there exists m > 0, C/|y|β1+1−|∇Φ1,I(y)| ≥
C/(2|y|β1+1) −m. Similarly, one has C|y|α1−1 − |∇Φ1,c(y)| ≥ C|y|α1−1/2 − R for some
R > 0 and all y ∈ Rd. Thus, [26, Lemma A.1] holds under (H-LJ).

2.2. Proof of Theorem 2.4. The proof of Theorem 2.4 is based on the recent results
from [24].

2.2.1. Result from [24]. Let us recall the previous result from [24]. We consider in this
section, the framework of Section 1.2. Introduce the following set of assumptions:

(C1) There exists t0 > 0 such that for each t ≥ t0, Pt is strong Feller, i.e. Ptf is
continuous on S for any f ∈ bB(S).

(C2) For every T > 0, x→ Px(X[0,T ] ∈ ·) (the law of X[0,T ] := (Xt)t∈[0,T ]) is continuous
from S to the space M1(C0([0, T ],S)) of probability measures on C0([0, T ],S),
equipped with the weak convergence topology.

(C3) There exist a continuous function function W : S → [1,+∞), belonging to the
extended domain De(L), two sequences of positive constants (rn) and (bn) where
rn → +∞, and an increasing sequence of compact subsets (Kn) of S, such that

−LW(x) ≥ rnW(x)− bn1Kn(x), q.e.

Let D be an nonempty subdomain of S different from S. Assume in addition that the
killed process (Xt, 0 ≤ t < σD) satisfies:

(C4) For t ≥ 0, PDt is weakly Feller, i.e. for a measure-separable class A of continuous
bounded functions f with support contained in D, PDt f is continuous on D.

(C5) (PDt , t ≥ 0) is topologically irreducible on D, that is: there exists t1 > 0 such that
for all t ≥ t1, for all x ∈ D and non-empty open subsets O of D, PDt (x, O) > 0
(where PDt (x, O) := Px(Xt ∈ O, t < σD)). In addition, there exists x0 ∈ D such
that Px0(σD < +∞) > 0.

Notice that (C1), (C2), and (C3) are independent of the domain D. Let us recall [24,
Theorem 2.2] when one considers the process (1.5) on S.

Lemma 2.7. If (C1), (C2), (C3), (C4), and (C5) hold, then, items (a)→(d) in
Theorem 2.4 are satisfied with W given by (C3).

The purpose of the next sections is to check that (C1)→(C5) are satisfied when D =
O× (Rd)N with O a subdomain of O (see (1.1) and the lines after).

2.2.2. Assumptions (C2) and (C3) on (Pt, t ≥ 0). In this section, we prove that as-
sumptions (C2) and (C3) are satisfied for the process (2.9) with potential function V1

(see (2.1)).

Proposition 2.8. Assume that (H-LJ) is satisfied as well as (Ac) and (AΣ). Then,
assumption (C2) is satisfied for the process (Xt, t ≥ 0) solution of (2.9) on S (see
Proposition 2.3).
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Proof. Let T > 0. Let xn → x ∈ S, where (xn)n≥0 is a sequence in S. Then, there exists
rx > 0 such that

{xn, n ≥ 0} ∪ {x} ⊂ H1
rx

= {(x, v) ∈ S,H1(x, v) < rx}. (2.16)

In what follows we consider r ≥ rx. We first claim that the sequence of probability
measures (Pxn [X[0,T ] ∈ ·])n≥0 on C0([0, T ]) is tight. Let us prove this claim. Recall that
(see (2.11)),

τr(z) = inf{t ≥ 0, Xt(z) /∈ H1
r},

is the first exit time for the process (2.9) from H1
r (see (2.10)) when X0 = z ∈ S. Define

for (x, v) ∈ S:

b(x, v) =

(
v

−∇V1(x)− γ(x, v) v

)
, (2.17)

which is the drift of the stochastic differential equation (2.9). Set for r > 0,

cr = sup
(x,v)∈H1

r

|b(x, v)|.

Notice that cr is finite because H1
r is bounded, with closure included in S (see (2.10)

and the lines below), and b is locally bounded on S since it is continuous on S. Then,
for all n ≥ 0, 0 ≤ s ≤ t ≤ τr(xn), it holds:∫ t

s

|b(xu(xn), vu(xn))|du ≤ cr(t− s).

Because Σ is uniformly bounded on (Rd)N × (Rd)N (see (AΣ)), using in addition the
Burkholder’s inequality and the Kolmogorov-Chentsov criterion (see for instance [27,
Corollary 14.9 and Proposition 15.7]), it follows that (Pxn [X[0,T∧τr] ∈ ·])n≥0 is tight in
M1(C0([0, T ],S)), for any r ≥ rx fixed. On the other hand, by (2.12) (see also (2.16)),
one has for all n ≥ 0 and r ≥ rx:

H1(xn) ≥ e−hT rPxn(T ≥ τr).

Thus, since H1 is continuous at x, supn≥0 Pxn(τr ≤ T ) → 0 as r → +∞. Let K be
compact subset of C0([0, T ],S). Then,

Pxn(X[0,T∧τr] ∈ K) = Pxn(X[0,T ] ∈ K,T < τr) + Pxn(X[0,τr] ∈ K,T ≥ τr)

= Pxn(X[0,T ] ∈ K)− Pxn(X[0,T ] ∈ K,T ≥ τr)

+ Pxn(X[0,τr] ∈ K,T ≥ τr). (2.18)

Let ε > 0. Take r(ε) ≥ rx such that supn≥0 Pxn(τr(ε) ≤ T ) ≤ ε/2. For this fixed r(ε) > 0,
let Kε ⊂ C0([0, T ],S) be a compact set such that for all n ≥ 0, supn≥0 Pxn(X[0,T∧τr(ε)] ∈
Kε) > 1− ε/2. By (2.18),

sup
n≥0

Pxn [X[0,T ] ∈ Kε] > 1− ε.

Thus, by Prokhorov’s theorem [27, Theorem 14.3], (Pxn [X[0,T ] ∈ ·])n≥0 is sequentially
compact in the space M1(C0([0, T ],S)) equipped with the topology of weak convergence.
Let P and (Pxm′

[X[0,T ] ∈ ·])m′≥0 a subsequence such that

Pxm′
[X[0,T ] ∈ ·]→ P (weakly in M1(C0([0, T ],S))) as m′ → +∞.
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Denote by Y[0,T ] = (Yt, t ≥ 0) the canonical process associated with P. For each m′,
X[0,T ](xm′) = (Xt(xm′), t ∈ [0, T ]) is the solution of the martingale problem associated
with (2.9) and with initial condition xm′ . For f : S → R a smooth compactly supported
function, 0 ≤ s < t ≤ T , g : C0([0, s],S) → R a bounded and continuous function, and
µ ∈ C0([0, T ],S), set

Φs,t(µ) =
(
f(µ(t))− f(µ(s))−

∫ t

s

L1f(µ(r))dr
)
g(µ|[0,s]) ∈ R.

It thus holds for all m′ ≥ 0, E
[
Φ(X[0,T ](xm′))

]
= 0. Because Φs,t(µm′) → Φs,t(µ) when

µm′ → µ in C0([0, T ],S) (because b and Σ are continuous over S), and Pxm′
[X[0,T ] ∈ ·]→

P (weakly in M1(C0([0, T ],S))), by [27, Theorem 3.27], one has as m′ → +∞

E
[
Φs,t(X[0,T ](xm′))]→ E

[
Φs,t(Y[0,T ])].

Consequently, E
[
Φs,t(Y[0,T ])] = 0, i.e. Y[0,T ] solves the martingale problem (2.9) with

initial condition x. By uniqueness of the martingale problem for (2.9)4, Y[0,T ] = X[0,T ](x)
in law and then, Pxn [X[0,T ] ∈ ·]→ Px[X[0,T ] ∈ ·] weakly in M1(C0([0, T ],S)) as n→ +∞.
This concludes the proof of the proposition. �

Let us now check that assumption (C3) is satisfied. To this end, let us introduce some
functionals. Recall that α1 > 1. Let

η1 ∈ (0, 1].

and assume moreover that, if α1 ∈ (1, 2), η1 > (2 − α1)/α1 (notice that in this case
(2− α1)/α1 ∈ (0, 1)). Let us define for x = (x1, . . . , xN) ∈ O,

κ(x) = κc(x) + κI(x) (2.19)

with

κc(x) =
N∑
i=1

U(xi) and κI(x) =
∑

1≤i<j≤N

|xi − xj|−β1 ,

and where U : Rd → R+ is smooth and is such that,

for all y ∈ Rd, |y| ≥ 1, U(y) = |y|α1−ε1 ,

with

max(0, 2− α1) < ε1 < min(1, α1η1). (2.20)

The function κ is a smooth function over O and is lower bounded. Notice that the
function κ(x)→ +∞ if and only if x→ ∂O ∪ {∞} (since α1 − ε1 > 0).

We now claim that there exists r > 0 such that |∇V1(x)| 6= 0 if V1(x) ≥ r, x ∈ O. This
is is a simple consequence of what follows. By [26, Lemma A.1] (see also Remark 2.6),
it holds for some C > 0 and m > 0, and all x ∈ O:

|∇V1(x)| ≥ C
(
|x|α1−1 +

∑
1≤i<j≤N

|xi − xj|−β1−1
)
−m. (2.21)

4Recall that pathwise uniqueness and weak existence imply uniqueness in law, and thus uniqueness
of the martingale problem (see for instance [27, Theorems 18.7 and 18.14]).
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Consequently, since α1 > 1 and β1 > 0, |∇V1(x)| → +∞ (when x ∈ O) if one of the
two conditions (1) or (2) in (2.6) is satisfied. The reverse is also true since |∇V1| is
continuous over O. Hence, one has:

|∇V1(x)| → +∞ iff x→ ∂O ∪ {∞} (equivalently iff V1(x)→ +∞, by (2.6)).

Therefore, there exists r > 0 such that |∇V1(x)| 6= 0 if V1(x) ≥ r. Then, inspired by
[26], we set for x ∈ O:

G1(x) = κ(x)α(V1(x))
∇V1(x)

|∇V1(x)|2
, (2.22)

where α ∈ C∞(R, [0, 1]) is such that α(u) = 1 if u ≥ R2 and α(u) = 0 if u ≤ R1

(0 < R1 < R2), where R1 is chosen large enough such that |∇V1(x)| 6= 0 if V1(x) ≥ R1.
The function G1 is then C1 over O. Recall that the Hamiltonian of the process (2.9) is,
for (x, v) ∈ S (see (2.8)),

H1(x, v) = V1(x) +
1

2
|v|2.

Let us introduce for (x, v) ∈ S, the modified Hamiltonian [39, Eq. (3.3)],

F1(x, v) = aH1(x, v) + b v · G1(x), (2.23)

where a > 0 and b > 0. For all (x, v) ∈ S, set:

W1(x, v) = exp
[(

F1(x, v) + m
)η1] ≥ 1, (2.24)

where m = − infS F1 + 1. It will be proved in the next proposition that F1 is indeed
lower bounded on S.

When η1 = 1 and κ is a (well chosen) constant function (i.e. κ is independent of x),
it is proved in [26] that for some a, b > 0:

L1W1

W1

≤ −c1|v|2 − c2 on S, (2.25)

where c1, c2 > 0. To get Assumption (C3), one needs in particular a stronger version
of (2.25). More precisely, we need an asymptotic return to +∞ in the x-variable in the
sense that we need that (2.25) holds replacing c2 in (2.25) by a function L of x ∈ O
satisfying

lim
x∈O, x→∂O∪{∞}

L(x) = +∞.

It turns out that the function κ defined in (2.19) will provide this asymptotic behavior
as V1 → +∞, as shown by the following result.

Proposition 2.9. Assume that (H-LJ) is satisfied as well as (Ac) and (AΣ), and
consider the process (Xt, t ≥ 0) solution of (2.9) on S (see Proposition 2.3). Then, the
function F1 is lower bounded on S. Moreover, for each

η1 ∈ (0, 1] with moreover, if α1 ∈ (1, 2), η1 > (2− α1)/α1,

we can choose parameters a, b, ε1 > 0 (see (2.37), (2.38), (2.20)) such that (C3) is
satisfied for the process (2.9) on S with the Lyapunov function W1 : S → [1,+∞)
defined in (2.24) (see also (2.22) and (2.19)).
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Proof. We prove that F1 is lower bounded over S and that, for a, b > 0 small enough,
W1 defined by (2.24) satisfies (C3). The proof is divided into two steps.

Step 1. Properties of G1 and F1 is lower bounded over S.

In this step, C > 0 is a constant independent of (x, v) ∈ S, which can change from one
occurence to another.

For all x ∈ O, G1(x) · ∇V1(x) = κ(x)α(V1(x)). Therefore, if V1(x) ≥ R2,

G1(x) · ∇V1(x) = κ(x).

Thus, since the closure of {x ∈ O,V1(x) < R2} is a compact subset of O, it holds on O,

∇V1 · G1 ≥ κ−M, (2.26)

for some M > 0. Let us now prove that ∇G1 is bounded over O. One has on O:

|∇G1| ≤ C
[
α(V1)|κ| |Hess V1|

|∇V1|2
+ α(V1)

|∇κ|
|∇V1|

+ |κ| |α′(V1)|
]
.

By definition of κ (see (2.19)), for all x ∈ O,

|κ(x)| ≤ C
(

1 +
N∑
i=1

|xi|α1−ε1 +
∑

1≤i<j≤N

|xi − xj|−β1
)

(2.27)

and

|∇κ(x)| ≤ C
(

1 +
N∑
i=1

|xi|α1−ε1−1 +
∑

1≤i<j≤N

|xi − xj|−β1−1
)
. (2.28)

Using (H-LJ), for all y ∈ Ω, |Hess V1,I(y)| ≤ C(1/|y|β1+2 + 1) and for all y ∈ Rd,
|Hess V1,c(y)| ≤ C(|y|α1−2 + 1). Then, by definition of V1 (see (2.1)) for all x ∈ O:

|Hess V1(x)| ≤ C
(

1 +
N∑
i=1

|xi|α1−2 +
∑

1≤i<j≤N

|xi − xj|−β1−2
)
. (2.29)

Because α′(V1) = 0 if V1 ≥ R2 and since {x ∈ O,V1 ≤ R2} is bounded,

the function |κ| |α′(V1)| is bounded over O.

A continuous function Q : O → R is bounded if and only if it is bounded when x →
∂O ∪ {∞}. For this reason, and using (2.28) and (2.21) together with the fact that
0 ≤ α ≤ 1,

α1 − ε1 − 1− (α1 − 1) = −ε1 < 0 and β1 + 1− (β1 + 1) = 0,

the function α(V1)|∇κ|/|∇V1| is bounded over O. Furthermore, using (2.27), (2.21)
and (2.29) together with

α1 − ε1 + α1 − 2− 2(α1 − 1) = −ε1 < 0

and

β1 + β1 + 2− 2(β1 + 1) = 0,

the function α(V1)|κ| |Hess V1|/|∇V1|2 is bounded over O. In conclusion, the function
∇G1 is bounded over O.
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Let us now prove that as x→ ∂O ∪ {∞} or v → {∞},

|v · G1(x)| = o(H1(x, v)). (2.30)

First of all, since α(V1)|κI|/|∇V1| is bounded over O (by definition of κI and (2.21)), for
all (x, v) ∈ S:

|v · G1(x)| ≤ |v|α(V1)(x)
|κc(x)|
|∇V1(x)|

+ C|v|.

In addition, for all x ∈ O,

α(V1)(x)
|κc(x)|
|∇V1(x)|

≤ C(1 + |x|1−ε1). (2.31)

Let p be such that 2 < p < (α1 − ε1)/(1 − ε1) (notice that (α1 − ε1)/(1 − ε1) > 2 since
ε1 > 2− α1). Set q = p/(p− 1) < 2. By Young’s inequality, for all (x, v) ∈ S,

|v · G1(x)| ≤ C|v|+ C|v|q + Cα(V1)(x)
|κc(x)|p

|∇V1(x)|p
. (2.32)

In conclusion, by (2.31) and (2.32) together with the definition of V1 (see (2.1), (2.4),
and (2.5)), since 1 < q < 2 and p(1− ε1) < α1 − ε1 < α1 for all (x, v) ∈ S,

|v · G1(x)|
|v|2/2 + V1(x)

≤ C(1 + |v|q)
|v|2/2 + V1(x)

+
C(1 + |x|1−ε1)p

|v|2/2 + V1(x)
→ 0

as x→ ∂O ∪ {∞} or v → {∞}. This proves (2.30). Equation (2.30) implies that

inf
S

F1 > −∞.

Step 2. W1 satisfies (C3).

Let us now prove that Assumption (C3) is satisfied for the process (2.9) on S with
W1 : S → [1,+∞) (see (2.24)). Because W1 ∈ C1,2(S,R) (i.e. W1 is C1 in the variable
x and C2 in the variable v), W1 ∈ De(L) and LW1 = L1W1 quasi-everywhere. In the
following, for ease of notation and with a slight abuse of notation, we denote by F1 the
function F1 + m. One then has on S,

L1W1

W1

= L1Fη11 +
Σ2

2
|∇vFη11 |2

= η1Fη1−1
1 L1F1 +

Σ2

2

[
η1(η1 − 1)|∇vF1|2Fη1−2

1 + η1
2F

2(η1−1)
1 |∇vF1|2

]
≤ η1

F1−η1
1

[
L1F1 + η1

Σ2

2F1−η1
1

|∇vF1|2
]

≤ η1

F1−η1
1

[
L1F1 + η1

Σ2

2
|∇vF1|2

]
, (2.33)
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where we have used that η1 − 1 ≤ 0 and that over S, 0 ≤ 1/F1−η1
1 ≤ 1 (because F1 ≥ 1).

In addition, for all (x, v) ∈ S:

L1F1(x, v) + η1
Σ2

2
|∇vF1|2(x, v) =

Σ2(x, v)

2
∆vF1(x, v) + v · ∇xF1(x, v)

−
[
∇V1(x) + γ(x, v)v

]
· ∇vF1(x, v)

+ η1
Σ2(x, v)

2
|∇vF1(x, v)|2

= aNd
Σ2(x, v)

2
− aγ(x, v)v · v + b

N∑
i,j=1

vi · ∂xi(G1)j(x) vj

− bγ(x, v)v · G1(x)− b∇V1(x) · G1(x)

+ η1
Σ2(x, v)

2
|av + bG1(x)|2. (2.34)

For all ε > 0 and for (x, v) ∈ S, one has:

|av + bG1(x)|2 ≤ a2|v|2(1 + ε) + b2(1 + ε−1)|G1(x)|2. (2.35)

By (2.31) and (2.32), and since α(V1)|κI|/|∇V1| is bounded over O, |v| ≤ |v|q + 1, and γ
is bounded over (Rd)N × (Rd)N (see (Ac)), there exists C1 > 0 such that for (x, v) ∈ S,

−γ(x, v)v · G1(x) ≤ C1(1 + |v|q + |x|p(1−ε1)),

and

|G1(x)|2 ≤ C1(1 + |x|2(1−ε1)).

In addition, since ∇G1 is bounded over O, there exists C2 > 0 such that for (x, v) ∈ S
N∑

i,j=1

vi · ∂xi(G1)j(x) vj ≤ C2|v|2. (2.36)

Consequently, using also (2.26), (Ac), and (AΣ), one has for all (x, v) ∈ S:

L1F1(x, v) + η1
Σ2

2
|∇vF1|2(x, v) ≤ aNd

Σ2
∞
2
−
[
a
(
γ∗ − aη1Σ2

∞(1 + ε)/2
)
− bC2

]
|v|2

+ bC1|v|q + η1b
2Σ2
∞(1 + ε−1)C1(1 + |x|2(1−ε1))/2

− b(κ(x)−M) + bC1(1 + |x|p(1−ε1)).

Choose a > 0 such that

a < 2γ∗/(η1Σ2
∞). (2.37)

For ε > 0 small enough, one has (γ∗ − aη1Σ2
∞(1 + ε)/2

)
> 0, and then for b > 0 small

enough:

a
(
γ∗ − aη1Σ2

∞(1 + ε)/2
)
− bC2 > 0. (2.38)

Fix such parameters a > 0 and b > 0. Since p(1− ε1) < α1 − ε1 and 2(1− ε1) < α1 − ε1
(because ε1 > 2− α1), it holds

max(|x|2(1−ε1), |x|p(1−ε1)) = o(κc(x)) as x→ ∂O ∪ {∞},
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and since q < 2, |v|q = o(|v|2) as |v| → +∞. Consequently, using in addition (2.37) and
(2.38), there exist constants ci > 0 (i = 1, 2, 3) such that for all (x, v) ∈ S,

L1F1(x, v) + η1
Σ2

2
|∇vF1|2(x, v) ≤ c1 − c2|v|2 − c3κ(x),

so that

L1W1

W1

(x, v) ≤ −K1(x, v),

where

K1(x, v) :=
η1

[
− c1 + c2|v|2 + c3κ(x)

]
F1−η1

1 (x, v)
.

The function K1 is continuous over S. By (2.30), for all (x, v) ∈ S, F1(x, v) ≤MH1(x, v),
for some M > 0. Consequently, it holds, for (x, v) ∈ S outside a compact set of S (so
that the numerator in the definition of K1 is positive):

K1(x, v) ≥
2η1

[
− c1 + c2|v|2 + c3κ(x)

]
M1−η1

(
|v|2/2 + V1(x)

)1−η1 .

By definition of κ (see (2.19)) and V1 (see (2.1), (2.4), and (2.5)), since α1−ε1 > α1(1−η1)
(recall that ε1 < α1η1, see (2.20)), β1(1 − η1) < β1, and 2 > 2(1 − η1), we deduce that,
for (x, v) ∈ S,

lim
x→∂O∪{∞} or v→{∞}

K1(x, v) = +∞,

or equivalently,

lim
(x,v)∈S,H1(x,v)→+∞

K1(x, v) = +∞.

Let us now consider, for n ∈ N, Kn as the closure of the bounded set H1
n = {(x, v) ∈

S,H1(x, v) < n}, which is a compact subset of S (see the lines after (2.10)). For all
(x, v) ∈ S, one has:

L1W1

W1

(x, v) ≤ −K1(x, v)1S/Kn(x, v)− K1(x, v)1Kn(x, v)

≤ −1S/Kn(x, v) inf
S/Kn

K1 −m11Kn(x, v)

≤ − inf
S/Kn

K1 + ( inf
S/Kn

K1 −m1)1Kn(x, v)

≤ − inf
S/Kn

K1 + ( inf
S/Kn

K1 −m1)
supKn W1

W1(x, v)
1Kn(x, v),

where m1 = infS K1 (the function K1 is indeed lower bounded on S). Set rn :=
infS/Kn K1 → +∞ as n→ +∞, and bn = (infS/Kn K1 −m1)supKn W1 ≥ 0. The proof of
the proposition is complete. �
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2.2.3. On Assumptions (C1), (C4), and (C5). Let us now consider a subdomain O of
O. Set

D = O× (Rd)N ⊂ S. (2.39)

Recall that σD is the first exit time from D for the process (2.9):

σD(x) = inf
{
t ≥ 0, Xt(x) /∈ D

}
= inf

{
t ≥ 0, xt(x) /∈ O

}
,

and that the semigroup of the killed process (Xt, t ∈ [0, σD)) is

PDt (x) = Ex[f(Xt)1t<σD ],

for f ∈ bB(D) and x ∈ D. Introduce the process (X0
t = (x0

t , v
0
t ), t ≥ 0) solution (in the

strong sense) to the stochastic differential equation over (Rd)N × (Rd)N :{
dx0

t = v0
t dt,

dv0
t = Σ(x0

t , v
0
t ) dBt.

(2.40)

That is (X0
t , t ≥ 0) is the process (2.9) when V1 = 0 and γ = 0. We will denote by

σ0
D the first exit time from D for the process (X0

t , t ≥ 0). One has the following (local)
Girsanov formula.

Proposition 2.10. Assume that (H-LJ), (Ac), and (AΣ) are satisfied, and consider
the process (Xt, t ≥ 0) solution of (2.9) on S (see Proposition 2.3). Let O be a subdomain
of O and set D = O× (Rd)N (see (2.39)). Let f ∈ bB(D) (see (2.39)), t > 0, and x ∈ D.
Then, it holds:

Ex

[
f(Xt)1t<σD

]
= Ex

[
f(X0

t ) 1t<σ0
D

Mt

]
, (2.41)

where Mt is the exponential martingale defined by

Mt = exp
[
−
∫ t

0

Σ−1(x0
s, v

0
s)
(
γ(x0

s, v
0
s)v

0
s +∇V1(x0

s)
)
dBs

− 1

2

∫ t

0

∣∣Σ−1(x0
s, v

0
s)
[
γ(x0

s, v
0
s)v

0
s +∇V1(x0

s)
]∣∣2ds], t < σ0

D. (2.42)

Proof. Let O be a subdomain of O. For n ∈ N, let On be a bounded subdomain of O
such that On ⊂ On+1 and ∪n≥0On = O (so On ∩ ∂O = ∅). Then, set

Dn = On × {v ∈ (Rd)N , |v| < n},

which is bounded and with closure included in S = O × (Rd)N . Choose a function
ψn ∈ C∞((Rd)N , [0, 1]) such that ψn = 1 on On and ψn = 0 on (Rd)N \ On+1 (this is
possible since On ⊂ On+1). Set

V(n) = ψnV1. (2.43)

By reasoning as in the proof of [39, Lemma 1.1], for all n ≥ 0, there exists a unique non

explosive strong solution (X
(n)
t = (x

(n)
t , v

(n)
t ), t ≥ 0) on (Rd)N × (Rd)N of{

dx
(n)
t = v

(n)
t dt,

dv
(n)
t = −∇V(n)(x

(n)
t )dt− γ(x

(n)
t , v

(n)
t )v

(n)
t dt+ Σ(x

(n)
t , v

(n)
t ) dBt,
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Let us denote σ
(n)
Dn = inf{t ≥ 0, x

(n)
t /∈ On} the first exit time from Dn for the process

(X
(n)
t , t ≥ 0). Let f ∈ bB(D), t > 0, and x ∈ D. Then, the process (Xt, t ≥ 0) and

(X
(n)
t , t ≥ 0) coincides in law up to the first exit time from Dn, i.e. for all n ≥ 0,

Ex

[
f(Xt)1t<σDn

]
= Ex

[
f(X

(n)
t )1

t<σ
(n)
Dn

]
.

By the Girsanov formula [39, Lemma 1.1], for all t > 0 and n ≥ 0:

Ex

[
f(X

(n)
t )1

t<σ
(n)
Dn

]
= Ex

[
f(X0

t )1t<σ0
Dn

M
(n)
t

]
,

where M
(n)
t is the exponential martingale:

M
(n)
t = exp

[
−
∫ t

0

Σ−1(x0
s, v

0
s)
(
γ(x0

s, v
0
s)v

0
s +∇V(n)(x0

s)
)
dBs

− 1

2

∫ t

0

∣∣Σ−1(x0
s, v

0
s)
[
γ(x0

s, v
0
s)v

0
s +∇V(n)(x0

s)
]∣∣2ds].

Notice that when t < σ0
Dn , V(n)(x0

s) = V1(x0
s) for all s ∈ [0, t], and thus, M

(n)
t = Mt where

Mt is given by (2.42). Then, Ex

[
f(Xt)1t<σDn

]
= Ex

[
f(X0

t )1t<σ0
Dn

Mt

]
. Notice that σDn(x)

is increasing in n and

{t < σD} = ∪n≥0{t < σDn},
and the same holds for {t < σ0

D}. Consequently, passing to the limit n→ +∞, one has
by the Lebesgue monotone convergence theorem, if f ≥ 0,

Ex

[
f(Xt)1t<σD

]
= Ex

[
f(X0

t )1t<σ0
D

Mt

]
. (2.44)

Equation (2.44) then extends to any f ∈ bB(D), by linearity. The proof of Proposi-
tion 2.10 is complete. �

With Proposition 2.10, we are in position to prove the following result.

Proposition 2.11. Assume that (H-LJ), (Ac), and (AΣ) are satisfied, and consider
the process (Xt, t ≥ 0) solution of (2.9) on S (see Proposition 2.3). Recall that O is a
subdomain of O and D = O× (Rd)N (see (2.39)). Then:

(1) The semigroup (PDt , t ≥ 0) is topologically irreducible on D.
(2) If O \ O is nonempty, then for all x ∈ D

Px(σD < +∞) > 0.

(3) If ∂O ∩ O is C2, for t > 0, PDt is strong Feller on D (and thus weakly Feller on
D).

Consequently, (C4) and (C5) are satisfied for the process (2.9) when D = O× (Rd)N .

Proof. Let O be a subdomain of O.

Step 1. On Assumption (C5).

Consider x0 ∈ D = O × (Rd)N . Let O1 ⊂ O and O2 ⊂ (Rd)N be two nonempty open
sets. Then, by choosing f = 1O1×O2 ∈ bB(D) in (2.41), it holds for all t > 0,

Px0(Xt ∈ O1 ×O2, t < σD) > 0 if and only if Px0(X
0
t ∈ O1 ×O2, t < σ0

D) > 0.
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Consider x1 = (x1, v1) ∈ O1 ×O2, and write x0 = (x0, v0) with x0 ∈ O and v0 ∈ (Rd)N .
By the first step of the proof of [24, Lemma 6.5],

Px0(X
0
t ∈ O1 ×O2, t < σ0

D) > 0.

This implies that for all t > 0,

PDt (x0,O1 ×O2) = Px0(Xt ∈ O1 ×O2, t < σD) > 0.

Let us now prove that Px0(σD < t) > 0, for all t > 0. Assume that O \ O is not
empty. Let us then consider a nonempty open ball B1 such that B1 ⊂ O \ O. Let
x1 = (x1, v1) ∈ B1 × (Rd)N . By the first step of the proof of [24, Lemma 6.5], for all
t > 0,

Px0(X
0
t ∈ B1 × (Rd)N , t < σ0

S) > 0.

Then, using (2.41) with S instead of D, it holds for all t > 0 and all x0 ∈ D,

Px0(Xt ∈ B1 × (Rd)N) = Px0(Xt ∈ B1 × (Rd)N , t < σS) > 0,

since Px0(t < σS) = 1 by Proposition 2.3. When X0 = x0, {Xt ∈ B1×(Rd)N} ⊂ {σD < t}
by continuity of the trajectories of the process (2.9) and because x0 ∈ O and B1 ⊂ O\O.
Therefore, we have

Px0(σD < +∞) ≥ Px0(σD < t) > 0.

Assumption (C5) is then satisfied for the process (2.9).

Step 2. On Assumption (C4).

Let us now prove that (C4) is satisfied. Pick f ∈ bB(D), t > 0, and x ∈ D. Let (xn)n be
a sequence of elements of S such that xn → x ∈ D as n→ +∞. We want to prove that

Exn

[
f(Xt)1t<σD

]
→ Ex

[
f(Xt)1t<σD

]
, as n→ +∞. (2.45)

Assume that ∂O ∩ O is C2.

Case 1. Let us first consider the case when O ⊂ O.

By [39, Equation (1.8)],

f(X0
t (xn))→ f(X0

t (x)) in probability as n→ +∞.

In addition, one can replace V1 by ψV1 in the expression of Mt in (2.42), where ψ ∈
C∞((Rd)N , [0, 1]) is such that ψ = 1 on O and ψ = 0 on (Rd)N \ O (which is possible
since O ⊂ O). Indeed, when t < σD, V1(x0

s) = (ψV1)(x0
s), for all s ∈ [0, t]. The function

ψV1 is lower bounded and C1 over (Rd)N . Thus, ψV1 satisfies the assumptions of [39,
Proposition 1.2] as well as γ and Σ (see indeed (Ac) and (AΣ)). Therefore, by [39,
Equation (1.7)], one has, as n→ +∞,

Mt(xn)→ Mt(x) in L1.

Finally, since ∂O is C2, by the first step of the proof of [24, Proposition 6.6], one has,
1t<σ0

D(xn) → 1t<σ0
D(x) in probability as n→ +∞. Thus,

Exn

[
f(X0

t ) 1t<σ0
D

Mt

]
→ Ex

[
f(X0

t ) 1t<σ0
D

Mt

]
, as n→ +∞,

which implies (2.45) thanks to (2.41).

Case 2. Let us now consider the case when ∂O ∩ ∂O 6= ∅.
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In this case, we cannot argue as previously since the situation when x0
σD
∈ ∂O∩∂O can oc-

cur, and ∂O∩∂O is not in general C2, a crucial condition to prove that 1t<σ0
D(xn) → 1t<σ0

D(x)

in probability as n→ +∞ (see indeed the first step of the proof of [24, Proposition 6.6]).
To overcome this issue, we use the fact that, roughly speaking, the process (Xt, t ≥ 0)
has a very small probability to reach a neighborhood of ∂O, according to (2.12). More
precisely, we proceed as follows. Since xn → x ∈ D, there exists rx > 0 such that

{xn, n ≥ 0} ∪ {x} ⊂ H1
rx

= {(x, v) ∈ S,H1(x, v) < rx},

and, for all n large enough (say n ≥ n1), xn ∈ D. In the following, we assume without
loss of generality that n1 = 0. By (2.12), for all ε > 0, there exists r∗ = r∗(ε) > rx such
that

sup
n≥0

Pxn(τr∗ ≤ t) ≤ ε

4(1 + ‖f‖L∞)
and Px(τr∗ ≤ t) ≤ ε

4(1 + ‖f‖L∞)
.

In addition, because {x ∈ O,V1(x) ≥ r∗} is a neighborhood of ∂O in O (since the
closure of its complementary in O, namely {x ∈ O,V1(x) < r∗}, is a compact included
in the open set O, by Proposition 2.3), ∂O ∩ O is C2, and O is connected, there exist
two subsets Dr∗ and Ωr∗ of O such that

D = Dr∗ ∪ Ωr∗ ,

where

• Dr∗ = Or∗ × (Rd)N with Or∗ a C2 subdomain of O such that

Or∗ ⊂ O,

• Ωr∗ = Ur∗ × (Rd)N (where Ur∗ = O \ Or∗) with

Ur∗ ⊂ {x ∈ O,V1(x) ≥ r∗}.

x1 = x2

x2 = x3

0

OO
∂O ∂O

•

{V1 = r∗}

Ur∗

Or∗

Or∗{V1 ≥ r∗}

{V1 ≥ r∗}

Figure 1. Schematic representation, when d = 1 and N = 3, of a slice
of the domain O = {x = (x1, x2, x3) ∈ R3, x1 < x2 < x3}, the domain O
(where ∂O ∩ O is C2), the C2 domain Or∗ (with Or∗ ⊂ O), and Ur∗ (with
Ur∗ ⊂ {V1 ≥ r∗}.
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We refer to Figure 1 for a schematic representation of Or∗ and Ur∗ . By continuity of the
trajectories of the process (2.9) on S, when X0 ∈ Dr∗ and on {t < σD, t ≥ σDr∗},

∃s ∈ (0, t], Xs ∈ Ωr∗ ⊂ {(x, v) ∈ S,H1(x, v) ≥ r∗},

so that {t < σD, t ≥ σDr∗} ⊂ {τr∗ ≤ t}, where we recall that τr∗ is defined by (2.11).
Since r∗ > rx,

{xn, n ≥ 0} ∪ {x} ⊂ Dr∗ .
Therefore, when X0 ∈ {xn, n ≥ 0} ∪ {x},

{t < σD, t ≥ σDr∗} ⊂ {τr∗ ≤ t}.

Furthermore, by (2.41), and since Or∗ is C2 and Or∗ ⊂ O, by the first case above, there
exists n0 ≥ 0 such that for all n ≥ n0,∣∣Exn

[
f(Xt)1t<σDr∗

]
− Ex

[
f(Xt)1t<σDr∗

]∣∣ ≤ ε/2.

Then, since 1t<σD1t<σDr∗ = 1t<σDr∗ when X0 ∈ Dr∗ , one has for all n ≥ n0,∣∣Exn

[
f(Xt)1t<σD

]
− Ex

[
f(Xt)1t<σD

]∣∣
≤
∣∣Exn

[
f(Xt)1t<σDr∗

]
− Ex

[
f(Xt)1t<σDr∗

]∣∣
+
∣∣Exn

[
f(Xt)1t<σD,t≥σDr∗

]
− Ex

[
f(Xt)1t<σD,t≥σDr∗

]∣∣
≤ ε/2 + ‖f‖L∞

[
Pxn(t < σD, t ≥ σDr∗ ) + Px(t < σD, t ≥ σDr∗ )

]
≤ ε/2 + ‖f‖L∞

[
Pxn(τr∗ ≤ t) + Px(τr∗ ≤ t)

]
≤ ε.

Consequently, Exn

[
f(Xt)1t<σD

]
→ Ex

[
f(Xt)1t<σD

]
as xn → x ∈ D. In conclusion,

Assumption (C4) is satisfied when ∂O ∩ O is C2. This concludes the proof of Proposi-
tion 2.11. �

Choosing O = O in items (1) and (3) in Proposition 2.11, we have the following direct
consequence of Proposition 2.11 together with the fact that Px(t < σS) = 1, for all x ∈ S,
by Proposition 2.3.

Corollary 2.12. Assume that (H-LJ), (Ac), and (AΣ) are satisfied. Consider the
process (Xt, t ≥ 0) solution of (2.9) on S (see Proposition 2.3). Then, for all t > 0, Pt is
strong Feller, i.e. Assumption (C1) is satisfied. In addition, (Pt, t ≥ 0) is topologically
irreducible on S.

When γ and Σ are constant, and V is C∞ on S, this results is a direct consequence of
the Hörmander’s hypoellipticity theorem (see for instance [26, Proposition 2.5]).

Let us now recall that Theorem 2.4 is a consequence of Lemma 2.7, Corollary 2.12, and
Propositions 2.8, 2.9, and 2.11. The proof of Theorem 2.4 is thus complete.

Remark 2.13. Notice that for Corollary 2.12 and Propositions 2.8 and 2.11, we can
replace (Ac) by the less stringent assumption γ : (Rd)N × (Rd)N → MNd(R) is a locally
Lipschitz function such that for some m > 0, ∀x, v ∈ (Rd)N : 1

2

[
γ(x, v) + γT (x, v)

]
≥

−mI(Rd)N .
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3. Quasi-stationary distributions for Coulomb interactions

In this section we consider N particles in Rd interacting through the Coulomb potential.
Recall that the case of Coulomb potential when d ≥ 3 is covered by Theorem 2.4 (see
Remark 2.1), and therefore, it remains to deal with the case when d = 1, 2. Thus, in
this section, we assume that

d ∈ {1, 2}.
The purpose of this section is to prove Theorem 3.2. For x = (x1, . . . , xN) ∈ O (see
(1.2)), set:

V2(x) =
N∑
i=1

V2,c(x
i) +

∑
1≤i<j≤N

V2,I(x
i − xj) ∈ R, (3.1)

where V2,I is the potential:

for all y ∈ Rd: V2,I(y) = − log |y| if y 6= 0, else V2,I(y) = +∞, (3.2)

where V2,c : (Rd)N → R is a confining potential which satisfies:

Assumption (H-C). Let A > 0 and α2 ≥ 2. The function V2,c ∈ C2(Rd,R) and for
some r > 0, it holds:

∀y ∈ Rd, |y| ≥ r, V2,c(y) = A|y|α2 + Φ2,c(y),

where Φ2,c ∈ C2(Rd,R) satisfies: lim|y|→+∞
|Φ2,c(y)|
|y|α2 = lim|y|→+∞

|∇Φ2,c(y)|
|y|α2−1 = 0.

Notice that for some M > 0,

A|y|α2/2−M ≤ V2,c(y) ≤ 2A|y|α2 +M for all y ∈ Rd. (3.3)

When d = 2, V2,I is the Coulomb potential, and when d = 1, V2,I corresponds to a log
singularity pairwise potential. Notice that since V2,I(y) = V2,I(−y) for all y 6= 0, V2 also
writes

V2(x) =
N∑
i=1

V2,c(x
i) +

1

2

∑
1≤i 6=j≤N

V2,I(x
i − xj), x ∈ O.

3.1. Properties of V2 and definition of the process. Recall d = 1, 2. Let us give
some properties of V2. Note first that V2 : S → R is a C2 function. In addition, V2 is
lower bounded on S, since, using the inequality log z ≤ z for z > 0, and (3.3), one has
for all x ∈ O:

V2(x) ≥ A

2

N∑
i=1

|xi|α2 −MN −
∑
i<j

|xi − xj| ≥ A

2

N∑
i=1

|xi|α2 − C|x| −MN. (3.4)

Moreover, for all x ∈ O, V2(x) ≥ −MN −
∑

i<j log(|xi − xj|). Consequently, V2(x) →
+∞ as x→ ∂O ∪ {∞} (see (1.3)), x ∈ O. Since V2,c is continuous on O, the reverse is
also true, that is: when x ∈ O,

V2(x)→ +∞ iff x→ ∂O ∪ {∞}. (3.5)

Let us now introduce

L2 =
Σ2(x, v)

2
∆v + v.∇x −∇V2(x).∇v − γ(x, v)v.∇v,
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the infinitesimal generator of the diffusion (1.5) when V = V2. The Hamiltonian of the
process (1.5) when V = V2 is, for (x, v) ∈ S,

H2(x, v) = V2(x) +
1

2
|v|2. (3.6)

Note that H2(x, v)→ +∞ if and only if x→ ∂O∪{∞} or if |v| → +∞. In the following,
we assume (up to considering V2 − infO V2+1) that

V2 ≥ 1 on O,

so that H2 ≥ 1 on S. We have (see also [32, Proposition 2.4]):

Proposition 3.1. Assume d = 1, 2 and (H-C). Assume also that (Ac) and (AΣ) are
satisfied. For all R > 0, the set {x ∈ O, V2(x) < R} is open, bounded, and its closure
is included in O. Furthermore, for all (x0, v0) ∈ S = O × (Rd)N , there exists a unique
pathwise solution (Xt = (xt, vt), t ≥ 0) of{

dxt = vtdt,

dvt = −∇V2(xt)dt− γ(xt, vt)vtdt+ Σ(xt, vt) dBt.
(3.7)

with X0 = (x0, v0), which is moreover non-explosive and remains in S for all t ≥ 0.

Proof. Thanks to (3.5), and because V2 is C2 and lower bounded on O, the proof is the
same as the proof of Proposition 2.3. Let us mention that we have as in Proposition 2.3,

H2(x) ≥ e−htrPx(τr ≤ t), (3.8)

for some h > 0 and where τr(x) = inf{t ≥ 0, Xt(x) /∈ H2
r} and H2

r = {(x, v) ∈
S, H2(x, v) < r}, r > 0. �

By Proposition 3.1, the process (3.7) is a (strong) Markov process.

3.2. Quasi-stationary distribution for Coulomb interactions. The main result of
this section is the following.

Theorem 3.2. Assume d = 1, 2 and (H-C). Assume also that (Ac) and (AΣ) are
satisfied. Let O be a subdomain of O such that O \ O is nonempty and ∂O ∩ O is C2.
Set D = O× (Rd)N . Then, for each η2 ∈ (0, 1], there exists a continuous and unbounded
Lyapunov functional W2 : S → [1,+∞) such that W2 ≤ exp

[
mHη2

2

]
on S, for some

m > 0 (see Proposition 3.3 for the explicit construction of W2), and the statements of
items (a)→(d) in Theorem 2.4 are valid for the process (3.7) on S (see Proposition 3.1)
and with the Lyapunov function W2 (in place of W1 there).

When α2 > 2, by (3.12), the Lyapunov function W2 defined in (3.11) satisfies, for
(x, v) ∈ S,

W2(x, v) = exp
[(
aH2(x, v) + o(H2(x, v))

)η2],
as x → ∂O ∪ {∞} or v → {∞}. The o above is O when α2 = 2. Let us also mention
that there is no restriction on η2 (i.e. one can choose any η2 in (0, 1]).



24 A. GUILLIN, BORIS NECTOUX, AND LIMING WU

3.3. Proof of Theorem 3.2. To prove Theorem 3.2, we use Lemma 2.7. To this end,
we need to check that the assumptions (C1)→(C5) are satisfied for the process (3.7)
with potential V2 when D = O × (Rd)N with O a subdomain of O such that O \ O is
nonempty and ∂O ∩ O is C2. It is clear that, in view of their proofs, Corollary 2.12,
Proposition 2.8, and Proposition 2.11 are still valid for the process (3.7) on S. It thus
just remains to prove (C3) for such a process.

Notice first that if we choose as we did in the previous section, a functional of the form
G = κα(V2)∇V2/|∇V2|2, because here the function |Hess V2|/|∇V2|2 does not converge
to 0 as x → ∂O (as already observed in [32]), it will not be possible to take a function
κ growing at infinity as x → ∂O ∪ {∞}. Let us rather considered the function G2 =
((G2)1, . . . , (G2)N)T ∈ (Rd)N constructed in [32] which is defined as follows: for x =
(x1, . . . , xN) ∈ O and i ∈ {1, . . . , N}, set:

(G2)i(x) = −b
N∑

j=1,j 6=i

xi − xj

|xi − xj|
+ cxi,

where b > 0 and c > 0 will be chosen later. Let us introduce for (x, v) ∈ S, the modified
Hamiltonian F2(x, v) = aH2(x, v) + v · G2(x), where a > 0 will be chosen later. Notice
that for all i = 1, . . . , N and all x ∈ O,

|(G2)i(x)| ≤ bN + c|xi|. (3.9)

Then, by (H-C) and using (3.4), one has for (x, v) ∈ S:

F2(x, v) ≥ a(V2(x) + |v|2/2)−
N∑
i=1

|vi||(G2)i(x)|

≥ |v|
2

2
(a− c)− bN

N∑
i=1

|vi|+
N∑
i=1

(aA|xi|α2/2− c|xi|2/2)− aC|x| − aMN.

Then, if

c < 1α2=2 min(aA, a) + 1α2>2a (3.10)

the function F2 is lower bounded on S. Finally, set for all (x, v) ∈ S:

W2(x, v) = exp
[(

F2(x, v)− inf
S

F2 + 1
)η2] ≥ 1. (3.11)

where

η2 ∈ (0, 1].

When α2 > 2 in (H-C), using (3.9) and Young’s inequality with p ∈ (2, α2) (so that
q = p/(p− 1) < 2), for (x, v) ∈ S,

v · G2(x, v) = o(H2(x, v)) as x→ ∂O ∪ {∞} or v → {∞}. (3.12)

If α2 = 2, the o in (3.12) is O.

Proposition 3.3. Assume d = 1, 2 and (H-C). For each η2 ∈ (0, 1], we can choose
parameters a, b, c > 0 (see more precisely (3.10), (3.13), (3.14) (3.15)), such that As-
sumption (C3) is satisfied for the process (3.7) on S with the Lyapunov function W2 :
S → [1,+∞) defined in (3.11).
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Proof. Because W2 ∈ C1,2(S), W2 ∈ De(L) and LW2 = L2W2 quasi-everywhere. For
ease of notation and with a slight abuse of notation, we will denote by F2 the function
F2 − infS F2 + 1. The same computations as those to get (2.33) imply that on S,

L2W2

W2

≤ η2

F1−η2
2

[
L2F2 + η2

Σ2

2
|∇vF2|2

]
.

Using (Ac) and (3.9), there exists Kγ > 0 depending only on γ, such that for all
(x, v) ∈ S,

−γ(x, v)v · G2(x) ≤ Kγ

[
bN |v|+ c|v||x|

]
.

Then, one has for all (x, v) ∈ S, using (AΣ) and (Ac):

L2F2(x, v) + η2
Σ2

2
|∇vF2|2(x, v) = aNd

Σ2(x, v)

2
− aγ(x, v)v · v

+
N∑
i=1

vi · ∂xi
N∑
j=1

(G2)j(x)vj − γ(x, v)v · G2(x)

−∇V2(x) · G2(x) + η2
Σ2(x, v)

2
|av + G2(x)|2

≤ aNd
Σ2
∞
2
− aγ∗|v|2 +

N∑
i,j=1

vi · ∂xi(G2)j(x) vj + bNKγ|v|

+ cKγ|v||x| − ∇V2(x) · G2(x) + η2
Σ2
∞
2
|av + G2(x)|2.

In addition, one has:

Σ2
∞
2
|av + G2(x)|2 ≤ Σ2

∞
2

[
2a2|v|2 + 2|G2(x)|2

]
≤ a2Σ2

∞|v|2 + Σ2
∞

N∑
i=1

|(G2)i(x)|2

≤ a2Σ2
∞|v|2 + Σ2

∞

N∑
i=1

[
2b2N2 + 2c2|xi|2

]
≤ a2Σ2

∞|v|2 + 2c2Σ2
∞|x|2 + 2b2N3Σ2

∞.

Furthermore, by (H-C), |∇V2,c(y)| ≤ C(1 + |y|α2−1) and ∇V2,c(y) · y ≥ α2A|y|α2/2−M ,
for some M,C > 0 and all y ∈ Rd. Thus, by following the computations made in [32,
Section 4]5 (notice that the computations there also works when d = 1), it holds for all
(x, v) ∈ S,

N∑
i,j=1

vi · ∂xi(G2)j(x) vj ≤ c|v|2,

and, denoting by m = α2A/4,

−∇V2(x) · G2(x) ≤ −cm|x|α2 − C0b
∑
i 6=j

1

|xi − xj|
+ C1,

5See more precisely the the computations for the terms p · ∇qΨ and −∇qU · ∇pΨ there.
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for some finite constant C0,C1 > 0 and where |x|α2 :=
∑

i |xi|α2 . Therefore, since
|x|2 ≤ |x|α2 + 1, for all (x, v) ∈ S,

L2F2(x, v) + η2
Σ2

2
|∇vF2|2(x, v) ≤

(
c− a(γ∗ − aη2Σ2

∞)
)
|v|2 + cKγ|v||x|+ bKγN |v|

− c(m− 2η2cΣ
2
∞)|x|α2 − C0b

∑
i 6=j

1

|xi − xj|
+ C2,

for some constant C2 > 0. Thus, for all ε > 0, it holds for (x, v) ∈ S:

L2F2(x, v) + η2
Σ2

2
|∇vF2|2(x, v) ≤

[
c + ε− a(γ∗ − aη2Σ2

∞)
]
|v|2 + bKγN |v|

+
[
c2K2

γ/(4ε)− c(m− η2cΣ
2
∞)
]
|x|α2

− C0b
∑
i 6=j

1

|xi − xj|
+ C2.

Fix b > 0. Choose first a > 0 sufficiently small such that

a < γ∗/(η2Σ2
∞). (3.13)

Then, take ε > 0 sufficiently small such that

ε− a(γ − aη2Σ2
∞/2) < 0 (3.14)

Finally, for such fix parameters a, b, and ε, choose c > 0 sufficiently small such that

c + ε− a(γ∗ − aη2Σ2
∞/2) < 0 and c2K2

γ/(4ε)− c(m− cη2Σ2
∞) < 0. (3.15)

Notice that the second inequality in (3.15) is satisfied for c > 0 small enough since
c2K2

γ/(4ε) − c(m − cη2Σ2
∞) = O(c2) − cm as c → 0. One then has for some constants

ci > 0 (i = 1, 2, 3) and for all (x, v) ∈ S,

L1W2

W2

(x, v) ≤ −K2(x, v),

where

K2(x, v) =
η2

[
− c3 + c1|v|2 + c2|x|α2 + C0b

∑
i 6=j |xi − xj|

−1]
F1−η2

2 (x, v)
. (3.16)

By (3.12) (see also the line just after), there exits M > 0 such that for (x, v) ∈ S
F2(x, v) ≤MH2(x, v). (3.17)

By (3.3), for some C > 0, H2(x, v) ≤ |v|2/2 + 2A|x|α2 −
∑

i<j 1|xi−xj |≤1 log |xi − xj|+ C,

for (x, v) ∈ S. Thus, using (3.17) and since 1 − η2 < 1, using (3.16) and (3.17), one
deduces that for (x, v) ∈ S,

lim
H2(x,v)→+∞

K2(x, v) = +∞ or equivalently (see (3.5)), lim
x→∂O∪{∞} or v→{∞}

K2(x, v) = +∞.

This concludes the proof of Proposition 3.3. �

Assumptions (C1)→(C5) are thus satisfied for the process (3.7) with potential V2 when
D = O × (Rd)N with O a subdomain of O as in Theorem 3.2. Theorem 3.2 is then a
direct consequence of Lemma 2.7. The proof of Theorem 3.2 is thus complete.
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4. Additional results

4.1. Large deviations for the processes (2.9) and (3.7). In this section, we provide
the following additional results on the two (non killed) Markov processes (2.9) and (3.7)
on S, which are of independent interest.

Corollary 4.1. Let d ≥ 1 (resp. d = 1, 2). Assume that (HL-J) (resp. (H-C))
is satisfied. Assume also that (Ac) and (AΣ) hold. Let W1 : S → [1,+∞) (resp.
W2 : S → [1,+∞)) be such that (C3) is satisfied for the process (2.9), see Proposition 2.9
(resp. the process (3.7), see Proposition 3.3). Then,

(a) The process (2.9) (resp. the process (3.7)) satisfies on S the large deviations
principles (a), (b), and (e) of [39, Theorem 2.1] uniformly for initial states z
in the compacts of S, and also uniformly over any family of initial measures
in {ν ∈ M1(S),

∫
S W1dν ≤ L} (resp. {ν ∈ M1(S),

∫
S W2dν ≤ L}) where L >

infS W1 (resp. L > infS W2) is arbitrary.
(b) The process (2.9) (resp. the process (3.7)) has a unique invariant probability

measure µ1 on S (resp. µ2).

In addition:

(c) It holds: ∫
S

W1dµ1 < +∞ (resp.

∫
S

W2dµ2 < +∞).

(d) There exist δ > 0 and C ≥ 1 such that for all t ≥ 0,∥∥Pt − µ1(·)
∥∥
bW1
B(S)
≤ Ce−δt (resp.

∥∥Pt − µ2(·)
∥∥
bW2
B(S)
≤ Ce−δt).

Proof. The proof is divided into two steps.

Step 1. Proofs of items (a) and (b).

The functions−L1W1/W1 and−L2W2/W2 converges to +∞ when x→ ∂O∪{∞} or v →
{∞}, (x, v) ∈ S. These two functions are thus inf-compact on S. In addition, Pt is strong
Feller and topologically irreducible by Corollary 2.12, and is thus topologically transitive
(see [39, Eq. (2.2)] for a definition). Items (a) and (b) in Corollary 4.1 are then direct
consequences of [39, Corollary 2.2].

Step 2. Proofs of items (c) and (d).

Let us denote by ress(T) (resp. rsp(T)) the (Wolf) essential spectral radius (resp. the
spectral radius) of a bounded linear map T on a Banach space X (see for instance [40]
for a definition). Let us consider the process (2.9) on S. The case of the process (2.9)
is treated similarly. For p > 1 sufficiently close to 1, by choice of a > 0 and b > 0
(see (2.37) and (2.38)) in the definition of W1, the function Wp

1 satisfies (C3) (indeed
the parameters a and b are then changed into ap1/δ1 and bp1/δ1). Then, for all n ≥ 0,

L(Wp
1) ≤ bn1Kn ≤ bnWp

1.

Therefore, since in addition (C1) and (C2) are satisfied, by [24, Theorem 3.5], it holds
for all t > 0 and n ≥ 0, ress(Pt|bW1

B(S)) ≤ e−rnt. Because rn → +∞ as n → +∞, this
implies that for all t > 0:

ress(Pt|bW1
B(S)) = 0.
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Since Pt is a Markov transition kernel, by [39, Proposition 4.5], one deduces that:

rsp(Pt|bW1
B(S)) = 1.

Items (c) and (d) in Corollary 4.1 are then direct consequences of [24, Theorem 4.1] (Pt
is strong Feller, topologically irreducible, and has a spectral gap on bW1B(S)) and of the
uniqueness of the invariant measure for the process (2.9) on S (notice also that ϕ = 1
there because Pt1 = 1, µ1(1) = 1, and 1 ∈ bW1B(S), where 1(x) = 1 for all x ∈ S). This
concludes the proof of Corollary 4.1. �

4.2. Elliptic diffusions with singular potential. In this section, we extend the pre-
vious results to the elliptic diffusion process (Yt, t ≥ 0) solution of the following stochastic
differential equation on O:

dYt = −∇V1(Yt)dt+
√

2dBt, (4.1)

where V1 : O → R is the C2 potential function given by (2.1) (under the assumption
(H-LJ)). In the elliptic case, (C1)→(C5) are much easier to check. For all x ∈ O, set

if α1 > 2, W3(x) = V1(x) ≥ 1 and, if α1 ∈ (1, 2], W3(x) = eεV1(x) ≥ 1, (4.2)

for ε ∈ (0, 1). The infinitesimal generator of the diffusion (4.1) is denoted by L =
−∇V1 · ∇ + ∆. By (2.21) and (2.29), ∆V1 = o(|∇V1(x)|2), as x → ∂O ∪ {∞}. Thus,
if α1 ∈ (1, 2], for x ∈ O, LW3(x)/W3(x) = −(ε − ε2)|∇V1(x)|2 + ε∆V1 → −∞, as
x→ ∂O∪{∞}. Assume now that α1 > 2. Then, using (2.21), and since 2(α1− 1) > α1

and 2(β1 + 1) > β1,

−|∇V1(x)|2

V1(x)
→ −∞, as x→ ∂O ∪ {∞}.

Thus, one has for all x ∈ O, LW3(x)/W3(x) → −∞ as x → ∂O ∪ {∞}. In both cases,
there exists M > 0 such that on O, LW3/W3 ≤ M . Thus, for all x0 ∈ O and r > 0, it
holds

W3(x0) ≥ e−MtrPx0(tr ≤ t), (4.3)

where tr ≥ 0 is the first exit time from {x ∈ O,V1(x) < r} of the local solution
(Yt, t ∈ [0, t`)) to (4.1) with Y0 = x0 (t` ∈ [tr,∞] being the life time of such a solution).
By (4.3), t` = +∞ almost surely.

Let now D be a subdomain of O and denote by σD the first exit time of (Yt, t ≥ 0)
from D. Then, for all f ∈ bB(O) (see (1.2)), t > 0, and x ∈ D, Ex

[
f(Xt)1t<σD

]
=

Ex
[
f(B0

t ) 1t<σ0
D
Mt

]
, where σ0

D is the first exit time of (Bt, t ≥ 0) from D and Mt is the
exponential martingale defined by

Mt = exp
[
− 1√

2

∫ t

0

∇V1(Bs)dBs −
1

4

∫ t

0

∣∣∇V1(Bs)
∣∣2ds], t < σ0

D.

Then, arguing similarly as we did to prove Corollary 2.12 and Proposition 2.11, one
deduces that (C1) is satisfied for the process (Yt, t ≥ 0) on O, and (C2) and (C4) are
satisfied for the process (Yt, t ∈ [0, σD)) when O \D is nonempty and ∂D ∩O is C2. By
Lemma 2.7, one then has the following result.
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Proposition 4.2. Assume that (H-C) holds. Let D be a subdomain of O such that
O \D is nonempty and ∂D ∩ O is C2. Then, there exists a continuous and unbounded
Lyapunov function W3 : O → [1,+∞) (explicitly given by (4.2) for instance), such that
the statements of items (a)→(d) in Theorem 2.4 are valid for the process (4.1) on O
(replacing there D by D) and with the Lyapunov function W3 (in place of W1 there).
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Séminaire de Probabilités XLIX, pages 165–182. Springer, 2018.

[10] N. Champagnat and D. Villemonais. Exponential convergence to quasi-stationary distribution and
Q-process. Probability Theory and Related Fields, 164(1-2):243–283, 2016.

[11] N. Champagnat and D. Villemonais. General criteria for the study of quasi-stationarity. Preprint
arXiv:1712.08092, 2017.

[12] N. Champagnat and D. Villemonais. Lyapunov criteria for uniform convergence of conditional
distributions of absorbed Markov processes. Stochastic Processes and their Applications, 135:51–
74, 2021.
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