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A Scalable MapReduce Similarity Join Algorithm Using LSH

Sébastien RIVAULT · Mostafa BAMHA · Sébastien
LIMET · Sophie ROBERT

Abstract. Similarity Joins are recognized to be among the most useful data processing and analysis operations.
A similarity join is used to retrieve all data pairs whose distances are smaller than a prede�ned threshold λ.
In this paper, we introduce the MRS-join algorithm to perform similarity joins on large trajectories datasets.
The MapReduce model and a randomized LSH (Local Sensitive Hashing) keys redistribution approach are
used to balance load among processing nodes while reducing communications and computations to almost all
relevant data by using distributed histograms.
A cost analysis of MRS-join algorithm shows that our approach is insensitive to data skew and guarantees
perfect balancing properties, in large scale systems, during all stages of similarity join computations. These
performances have been con�rmed by a series of experiments using the Fréchet distance on large datasets of
trajectories from real world and synthetic data benchmarks.
Keywords: Similarity-Join operations, Local Sensitive Hashing (LSH), MapReduce model, Data Skew, Hadoop
framework.

1 Introduction

Parallel joins have been widely studied and e�ciently implemented on distributed architectures [3�5, 15, 16].
However, all the existing parallel join approaches cannot be used in the case of similarity-joins because no
hashing or sorting technique makes it possible to �nd all potentially similar data pairs. So, all the data pairs
must be compared which requires a Cartesian product computation. This can have a disastrous e�ect on
performance and limit the scalability for large datasets processing [21]. Therefore, it is of utmost importance
to e�ciently implement scalable similarity join algorithms on large scale systems.
The aim of this paper is to focus on similarity joins on trajectories or time series. Trajectories or time series
are seen as polygonal lines where each point belongs to Rd with d the dimension of the trajectory. A similarity
join consists in �nding all the pairs of trajectories having a similarity distance smaller than a given threshold.
Given two collections of trajectories R and S, the goal is to compute

R onλ S = {(U, V ) ∈ R× S | sim(U, V ) ≤ λ}

where sim(U, V ) is a distance between two trajectories U and V and λ is the threshold parameter.
To compute a similarity score between two trajectories, several distances can be used depending on the use
cases. We focus on the study of similarity join using the Fréchet distance. In the literature, this distance was
used for the recognition of handwriting [22], the prediction of protein structures [22] as well as the study of
moving objects [20].
The Fréchet distance is often explained by the following metaphor: a man holds his dog on a leash, both are
walking on �nite trajectories. Man and dog can vary their speeds but cannot turn back. The Fréchet continuous
distance is the minimum length of the leash to connect man to his dog during the entire journey.
Although the Fréchet distance has been studied in detail in the literature, three challenging aspects related to
modern systems have not yet been addressed for large scale similarity join computation:

� Scalability: The algorithm must be scalable and e�cient on very large datasets processing,
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� Completeness: The algorithm must be able to generate all the pairs of trajectories having a strong simi-
larity,

� Insensitive to data skew: The algorithm must be insensitive to data skew while guaranteeing perfect
balancing properties during all the stages of similarity join computations.

The motivation for these criteria comes from the huge amount of data collected by di�erent applications. For
example, a taxi or an Uber generates a sequence of locations throughout its taxi ride. This sequence of points
in the space forms a trajectory. This leads to massive amounts of location data. For instance, the dataset
ECML/PKDD (Porto)1 contains 1.7 million trajectories from the rides of 442 taxis during one year. Uber is
likely to generate trajectory dataset orders of magnitude larger than those generated from only 442 taxis. The
amount easily exceeds the storage capacity and the processing capability of a single machine. Accordingly, a
cluster of machines and scalable distributed algorithms are needed to process such large scale trajectory data.
There are multiple and useful query operations on trajectory dataset like �nding all taxis which share a route
similar to a given trajectory. The trajectory similar search could help decision-making when building new roads,
recommending faster taxi rides or more e�cient customer care. It is also useful in domains like sports analytics
or weather forecast. It also allows to build many advanced mining and learning tasks such as clustering and
classi�cation.
In this paper, we present an algorithm called MRS-Join (MapReduce Similarity Join) with provable guarantees
that Scalability, Completeness and Insensitivity to data skew are met. We guarantee perfect balancing proper-
ties, among cluster processing nodes, during all MapReduce computation steps by using distributed histograms
and randomized communication templates. To guarantee the scalability of the algorithm, it is not necessary to
compute the distance between all the pairs of trajectories. Recently, a Locale sensitive hashing (LSH) family
has been introduced for trajectories [13] for the Dynamic Time Warping (DTW) and the Fréchet distance. LSH
is a hashing technique where near points are more likely to have a common partition than distant points. In the
literature, the standard use of LSH to �nd strongly similar objects, is very e�cient if the number of required
iterations of LSH is low. We will, therefore, use this LSH family to reduce the search space and show results in
terms of performance and quality.
The quality of the results is measured in terms of recall and precision. The recall is the fraction of the number
of pairs of close trajectories correctly generated by the algorithm over the exact number of close trajectories,
whereas precision corresponds to the fraction of the number of pairs of close trajectories correctly generated
over the number of pairs of trajectories predicted as close.
In the literature, there is no distributed and scalable similarity join algorithm for trajectories using LSH. Many
in-memory �ltering-based similarity join algorithms provide exact algorithms [25,26] however, these results do
not apply on very large datasets.
In the massively-parallel computation model, [17] presents an algorithm relying on LSH to approximate simi-
larity joins to achieve output-optimal guarantees on the maximum load. However, this algorithm assumes that
the dataset is not skewed. We primarily review that work and adapt it to our settings.
The remaining of this paper is organized as follows: Section 2 presents requirements for the understanding of the
MRS-join algorithm. Section 3 describes the MRS-join algorithm with its complexity analysis. Experimental
results presented in Section 4 con�rm the e�ciency of our approach. We then conclude in Section 5.

2 Preliminaries

This section is organized as follows: Section 2.1 describes the MapReduce programming model; Section 2.2
explains the Fréchet distance and its computation; Section 2.3 introduces LSH and its associated algorithm
for trajectories processing; Section 2.4 presents an algorithm called "Standard" which is the best approach to
perform similarity join in high dimension using LSH; Section 2.5 explains distributed histograms and randomized
communication templates.

2.1 MapReduce programming model

MapReduce [11] is a simple yet powerful framework for implementing distributed applications without having
extensive prior knowledge of issues related to data redistribution, task allocation or fault tolerance in large
scale distributed systems.

1 Ecml/pkdd porto taxi data.
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
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Google's MapReduce programming model presented in [11] is based on two functions: map and reduce, that
the programmer is supposed to provide to the framework. These two functions should have the following
parameters:

map: (k1, v1) −→ list(k2, v2),
reduce: (k2, list(v2)) −→ list(k3, v3).

The user must write the map function that has two input parameters, a key k1 and an associated value v1. Its
output is a list of intermediate key/value pairs (k2, v2). This list is partitioned by the MapReduce framework
depending on the values of k2, where all pairs having the same value of k2 belong to the same group.

The reduce function, that must also be written by the user, has two parameters as input: an intermediate
key k2 and a list of intermediate values list(v2) associated with k2. It applies the user de�ned merge logic on
list(v2) and outputs a list of key/values list(k3, v3).
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Fig. 1: MapReduce processing work�ow.

In this paper, we used an open source version of MapReduce called Hadoop developed by "The Apache Software
Foundation�. The Hadoop framework includes a distributed �le system called HDFS2 designed to store very
large �les with streaming data access patterns.
For e�ciency reasons, in Hadoop MapReduce framework, users may also specify a �Combine function�, to reduce
the amount of data transmitted from Mappers to Reducers during shu�e phase (see Fig 1). The �Combine
function� is like a local reduce applied (at map worker) before storing or sending intermediate results to the
Reducers. The parameters of combine function is:

combine: (k2, list(v2)) −→ (k2, list(v3)).

To cover a large range of application needs in terms of computation and data redistribution, in Hadoop frame-
work, the user can optionally implement two additional functions: init() and close() called before and after
each map or reduce task. The user can also specify a �partition function� to send each key k2 generated in
map phase to a speci�c Reducer destination. The Reducer destination may be computed using only a part of
the input key k2. The partition function is de�ned as:

partition: k2 −→ Integer,

where the output of partition should be a positive number strictly smaller than the number of Reducers task.
Hadoop's default partition function is based on �hashing� the whole input key k2.

2.2 Fréchet distance

Let U, V be two trajectories de�ned by theirs vertices U0, ...Un and V0, ..., Vm. We denote by Ui,j the subcurve
(Ui, Ui+1, ..., Uj) from U . The continuous Fréchet distance is de�ned by viewing a trajectory as a continuous
function U, V : [1, n]→ Rd and interpolating between vertices with Ui+τ = (1−τ)∗Ui+τ ∗Ui+1 with τ ∈ [0, 1].

2 HDFS: Hadoop Distributed File System.
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Let Φn be the set of all continuous and non-decreasing functions φ from [0, 1] to [1, n]. Then the continuous
distance of Fréchet is de�ned as follows:

dF (U, V ) = inf φ1∈Φ|U|
φ2∈Φ|V |

maxt ∈ [0,1] ‖Uφ1(t) − Vφ2(t)‖

Alt and Godau were the �rst in 1995 [1] to introduce a polynomial algorithm computing Fréchet distance in a
discrete manner. The discrete distance of Fréchet is an approximation of the continuous distance that considers
only the leash length when the man and his dog are located on the vertices of their respective trajectory. In
the literature, it is proven that the discrete distance of Fréchet between two trajectories cannot be decided in
strictly subquadratic time in the number of vertices of the trajectories unless the Strong Exponential Time
Hypothesis is false [6]. Accordingly, the most e�cient algorithms are quadratic [7]. By taking some realistic
assumptions on the shape of the input curves, it is possible to approximate the distance in near-linear time [12].
More recently, during the ACM SIGSPATIAL GIS Cup 2017, the challenge was to develop an exact and e�cient
algorithm to select close trajectories and test quickly if two trajectories have a distance less than a threshold
distance. Winner of the ACM SIGSPATIAL GIS Cup 2017 presented an algorithm using several heuristics [24].
The following �lters are applied in the order where λ denotes a threshold distance.

1. For two trajectories, if the distance between two points with the same index on each trajectory is always
less than λ then the Fréchet distance is necessarily smaller than λ [8];

2. This heuristic seeks to construct a traversal of U and V by minimizing the distance between the component
of the traversal. The distance between U0 and V0 is computed; then for Ui and Vj , we match Ui′ and Vj′ for
(i′, j′) ∈ {(i + 1, j), (i, j + 1), (i + 1, j + 1)} minimizing ||Ui′ − Vj′ ||2. We exclude options that make i > n
or j > m. If the two indexes arrive at the last points of each trajectory and the minimum distance at each
iteration is less than the threshold distance, then the overall distance is less than the threshold distance [2];

3. For all the points of a trajectory, if there does not exist at least one point in the other trajectory having a
distance less than λ, then the global distance is necessarily greater than λ. The heuristic [2] uses this idea
to �lter out trajectories that are at a distance greater than λ;

4. If none of the previous �lters returns a result, the discrete Fréchet distance is computed using the recursive
implementation of the Alt and Godau algorithm [1] described in [2].

In the literature, improvements have been made, and a procedure using the concept of simpli�cation is shown
in [10]. We use this procedure in order to speed up the Fréchet distance computation.

2.3 Local Sensitive Hashing (LSH)

Indyk and Motwani introduced an approximate search method [19] to simplify the search for the nearest
neighbor in a high dimensional Euclidean space by using a hash function ensuring that close points are more
likely collide than distant points. This strategy was subsequently extended to several distances and types of
objects; it is characterized by the following de�nition.
Let two trajectories U and V , a distance measure d and the threshold distance λ. Given an approximation
factor c > 1 and two probabilities p1 and p2 such that 0 ≤ p2 ≤ p1 ≤ 1, H is a family of LSH functions, if it
satis�es the following conditions for any hash function chosen uniformly g ∈ H:

1. If d(U, V ) ≤ λ then P (g(U) = g(V )) ≥ p1
2. If d(U, V ) ≥ c ∗ λ then P (g(U) = g(V )) ≤ p2
Several LSH families have been introduced in the literature for the Fréchet distance. The oldest one was
described by Indyk [18]. However, this strategy has exponential space complexity, which makes it impractical
for our application.
Recently a LSH family, called Gσ, was introduced by Driemel, Silvestri and Ceccarello [10,13]. It uses grids and
transforms a trajectory into a sequence of grid points.
A grid Gtσ of dimension d is de�ned by its origin t and its resolution σ. More formally, the canonical de�nition
of a grid is as follows:

Gtσ =
{
(x1, ..., xd) ∈ Rd | ∀ i ∈ [1..d] ∃ j ∈ N : xi = j ∗ σ + ti

}
The origin of the grid is chosen randomly in the half-open hypercube [0, σ[d whereas the grid resolution param-
eter σ is �xed to σ = 4 ∗ d ∗ λ as in the experiments of LSH strategy in the paper [10]. The value σ = 4 ∗ d ∗ λ
is not proven to be optimal, but produces good results in practice as our experiments will show.
For a given grid Gtσ, the hash function associated to Gtσ takes a trajectory U and produce a sequence of grid
nodes as follows:
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1. For each point of the trajectory, �nd the nearest grid node,
2. Add the node to the result sequence if it is di�erent from the last added node.

The LSH family Gσ is de�ned by Gσ =
{
Gtσ | ∀t ∈ [0, σ[d

}
. In the context of LSH, an element of this family

is called a hash function (in other words Gtσ denotes both the grid and its associated hash function). A LSH
strategy consists in choosing an element of Gσ. To generate a good proportion of all similar pairs of trajectories,
several hash functions are used. We denote by LK the number of iterations of the LSH strategy. For each
iteration i, 1 ≤ i ≤ LK , a hash function gi is uniformly and independently selected from Gσ. Since, the LSH
family may report trajectories with distance in (λ, σ], R onσ S will denote the similarity join output predicted
by LSH.

2.4 Standard algorithm to perform a similarity join using LSH

In order to compute a similarity join using LSH, an output optimal algorithm was described by [17]. By setting
LK = 1

p1
, the algorithm is de�ned in three steps:

1. Randomly and independently select LK hash functions g1, ..., gLK
∈ Gσ, and broadcast them to all servers.

2. For each trajectory t, emit a key/value pair <(i, gi(t)), t> for all i ∈ 1, ..., LK
3. Perform an equi-join on all copies of the pairs by treating (i, gi(t)) as the join attribute value, i.e., two

trajectories U, V join if gi(U) = gi(V ) for all i. For a pair of trajectories U, V , output them if dist(U, V ) ≤ λ.

As p1 is not de�ned according to the grid resolution σ, we present in the experiments several values of the
iteration's number LK and their results in terms of recall and precision parameters. During the third step
(Reducer phase), the distance of Fréchet between all trajectories having a common key (join attribute value)
will be computed.
Since the node sequences resulting from the LSH may require a lot of memory, a hashing function using the
multiply-shift [23] is used to associate an integer to each sequence. i.e., if h a hashing function using the multiply-
shift, a key (i, gi(t)) will be hashed by (i, h(gi(t))). To simplify notation of keys from each LSH iteration, Hj

i

will denote the tuple (i, Hj) with Hj the sequence of hashed nodes of a given trajectory for i ∈ 1, ..., LK .

2.5 Distributed histograms

To reduce communication costs while guaranteeing perfect balancing properties among all processing nodes, a
distributed histogram of the relation is constructed in the same manner as in [16]. This histogram is the associ-
ation between a key and its frequency in both datasets R and S. Distributed histograms are used to generate
communication templates, allowing to distribute only relevant data fairly during the join phase. Distributed
histograms avoid the e�ects of data skew, due to the fact that data will be partitioned into buckets �tting in
memory. For a set R, let us denote L(R) the set of keys of R and fxR the number of elements of R which have
x as key (when it is clear from context x will be omitted).

De�nition 1 For a dataset R, a histogram is de�ned as a function HistR that maps each element x of L(R)
to its frequency fxR.

In order to distribute only relevant data, only keys which might be present in join result are present in the
histogram. A key producing a result implies that none of its frequencies in R and S are zero. The set of keys
which produce a result are in L(R) ∩ L(S). Thus, we can de�ne a histogram for the similarity join R onσ S
which contains only relevant data.

De�nition 2 Let Hist(R onσ S) be the function: x ∈ L(R) ∩ L(S)→ (fxR, f
x
S ).

Communication templates require a parameter which is denoted by fmax. This parameter de�nes the number
of trajectories from a relation that a Reducer will have to store and process during the join. Owing to this
parameter, the trajectories having a common key will be divided into several buckets (blocks), so that, each
bucket can be loaded in memory. fmax is chosen in a manner that each bucket will �t in Reducer 's memory. This
makes the MRS-join algorithm insensitive to the e�ects of data skew. Partitioning data into buckets guarantees
that, all join tasks are generated in a manner that the input data for each join task will �t in the memory of
processing nodes and never exceed a user de�ned size, even for highly skewed datasets.
For a key x belonging to the histogram Hist(R onσ S) during the join, the communication templates will
distribute all buckets according to one of the following three cases:
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� If fxR < fmax and fxS < fmax
(i.e. the key corresponds to low frequencies in both datasets R and S and holds in memory on a single
Reducer),

� If fxR> fmax and fxR > fxS
(i.e. the frequency in relation R is very high and is greater than in S),

� If fxS> fmax and fxS > fxR
(i.e. conversely, the frequency in dataset S is higher than in R).

In the �rst case, the trajectories corresponding to the key x are sent to a single Reducer , without special
processing, using hashing whereas in the following two cases, a preprocessing is performed to balance the join
computation on several Reducers. Thus, for a given key x, the relation corresponding to the lowest frequency
is replicated on several nodes while the relation having the highest frequency is distributed over these same
nodes. An example of the second case where a key x is more frequent in the dataset R than S is shown in
Figure 2.

Fig. 2: Distribution of trajectories from R and replication of trajectories from S for a given key x.

In this example, each column corresponds to the data sent to a reduce task. All trajectories having the key
x from the dataset R are divided into 3 buckets (blocks) and sent over 3 di�erent Reducer tasks, whereas all
trajectories corresponding to the key x from the dataset S are replicated on these tasks. To balance the load
among processing nodes, the �rst reduce task identi�ed by i0 is computed using a random integer which can
be derived from the key x.

Appropriate MapReduce (Key,Value) pairs are used to ensure that the buckets are sorted in the correct order.
To this end, each emitted tuple is of the form <key, reducerId, line, bucketId>. The line value is used to
ensure the order in the Reducer side. It is represented in Figure 2. The pairs are redirected by the partition
function by means of the reducerId value. For a given Reducer task, the join is computed by using the following
algorithm for each key corresponding to a high frequency:

� Store in memory the distributed buckets (i.e. the line is at zero);
� Compute the join with replicated buckets (i.e. line is greater than zero).

To use this communication template, the histogram must hold in memory. We present a new way to distribute
it for multiple join attribute values. Distribution is based on the appearance of the keys in the di�erent splits.
When building the histogram, the identi�ers of splits where the key appears are saved. This set of identi�ers
holds in memory even for very large datasets since a HDFS split corresponds by default to 128Mb. Since entries
are compressed, the splits are consistent during all steps. To work, the job distribution must have as many
reduce tasks as the number of splits. Let <x, ((fxR, f

x
S ), splitId*)> be an entry of the distribution job of a key

x ∈ L(R)∩L(S), (fxR, fxS ) its entry in the histogram and splitId* the set of identi�ers of split where the key x
was found. The algorithm is as follows for each entry of the histogram:

Mapper : Emit a pair <id, (x, (fxR, f
x
S ))> for all id ∈ splitId∗.

Reducer : Write to HDFS all received values

During the next Mapper task requiring the distributed histogram, only retrieving their split identi�er is needed
to fetch and store in memory the Reducer corresponding output. Due to the fact that the size of distributed
histogram does not depend on the global size of the entries, it �ts in memory.
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3 MRS-Join: A scalable Similarity-join Algorithm using LSH

To compute similarity join, R onλ S, of two datasets R and S for a threshold distance λ, we assume that input
datasets are divided into splits (blocks) of data. These splits are stored in Hadoop Distributed File System
(HDFS) and are also replicated on several nodes for reliability issues. Throughout this paper, for a dataset
Γ ∈ {R,S}, we will use the following notations:
‖Γ‖ Number of entries or records in dataset Γ ,
|Γ | Number of pages (or blocks of data) of Γ ,
Γmap
i Fragment (set of split(s)) of Γ a�ected to Mapper i,
{Γ} Set of identi�ers of split(s) of Γ ,
‖{Γ}‖ Number of identi�ers of splits of Γ . This number, is in general, very small since only the

identi�ers of splits are stored. We recall that HDFS default split size is 128Mb.
Γ split
j , j ∈ {Γ} Split identi�ed by the integer j belonging to Γ

Γ red
i Fragment of Γ a�ected to Reducer i,
L(Γ ) Set of LSH keys of Γ ,
Γ (x), x ∈ L(Γ ) Returns the partition (a subset) of Γ corresponding to the LSH key x,
Hist(Γmap

i ) Histogram of fragment Γmap
i ; i.e., each key of L(Γmap

i ) have an entry in the histogram,
Hist(R onσ S) Global histogram reduced to contain only the keys of L(R) ∩ L(S).
Histmap

i (R onσ S) Fragment of Hist (R onσ S) a�ected to Mapper i,

Histredi (R onσ S) Fragment of Hist (R onσ S) a�ected to Reducer i,

Histj(R onσ S) Part of Hist(R onσ S) needed by split Γ split
j ; all the keys of L(R) ∩ L(S) ∩ L(Γ split

j ) have
an entry in the histogram. Note that the size of this histogram depends of the number of
trajectories in a split,

Hist(Γ )(x) Returns the frequencies associated to the key x ∈ L(Γ ),
Hist(R onσ S) Global histogram reduced of partitions contained in another partition. With y ∈ L(R) ∩

L(S), all key x ∈ L(R) ∩ L(S) \ y such that Γ (x) ⊂ Γ (y) are deleted. In addition, if
Γ (x) = Γ (y), only one key among x ∪ y is saved. This histogram is smaller compared to
Hist(R onσ S),

Histj(R onσ S) Part of Hist(R onσ S) required to compute the split Γ split
j ,

Γ Subset of Γ corresponding to keys that are present in the reduced histogram Hist(R onσ S),
LK Number of iterations of the LSH strategy (it also corresponds to the number of LSH keys

per trajectory),
NM Number of Mappers,
NR Number of Reducers,
cr/w Read/write cost of a page of data from Distributed File System (DFS),
cc Communication cost per page of data.

We will describe the MRS-join algorithm while giving a cost analysis for each computation step. The O(. . .)
notation only hides small constant factors: they only depend on the program's implementation, but neither on
input datasets nor on processing machine parameters. MRS-join proceeds in 4 steps, including one or more
MapReduce jobs. The Figure 3 represents the interactions between these di�erent steps of the algorithm:

Ê Compute LSH keys of each trajectory,
Ë A histogram of the join is computed to guarantee balanced communication patterns regardless the data

distribution [16],
Ì The histogram computed previously is reduced to optimize the communication costs to only relevant data.

All keys which have their partitions included in another partition are deleted,
Í By using histogram, an e�cient and scalable communication template scheme is generated and the distance

between pairs of trajectories identi�ed as similar is computed using the most e�cient algorithm in the
literature [2, 10] to generate similarity-join output.

3.1 LSH keys computation

LSH keys of trajectories are computed using a MapReduce job where only a map phase is performed as shown
in Figure 3.1.
In the input data, each trajectory is de�ned by a unique identi�er, the tag of its data source (R or S) and its
sequence of points. This step computes the LK keys of each trajectory using the map function de�ned in the
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algorithm 1.A. Before the start of this map phase, the LK hash functions are randomly and uniformly selected
from Gσ and then stored in the HDFS.

Algorithm 1.A: ComputeKeys � MapReduce job Ê

Map: <id, tag, trajectory> → <id, tag, trajectory, lsh_keys>

init:
Read from HDFS the LK hash function.

Compute lsh_keys: the LK LSH keys of trajectory.
Emit a key-value: <(id, tag, trajectory, lsh_keys)>.

By noting Np, the average number of points in input trajectories, the cost of this step is at most:
T ime(1.A) = O(max

NM
i=0 cr/w ∗ |Γ

map
i |+ LK ∗Np ∗ ‖Γmap

i ‖).

The �rst term cr/w ∗ |Γ
map
i | is the time to read trajectories from HDFS on Mapper i. The second term LK ∗Np ∗

‖Γmap
i ‖ is the time needed to compute LSH keys of all the trajectories of the fragments a�ected to Mapper i.

In order to reduce the number of jobs, it is possible to include this algorithm at the beginning of the following
steps.

3.2 Creation and distribution of the histogram

Once the keys have been computed for each trajectory, a histogram of the relation is computed. A histogram is
the association between a key and its frequency both in R and S datasets. The aim of histograms is to identify
the keys associated to high frequencies (these keys are generally those having a large e�ect on load imbalance
among processing nodes). Identifying these keys will allow us to generate appropriate communication templates
to avoid the e�ects of data skew while guaranteeing perfect balancing of load, among processing nodes, during
all the steps of MapReduce similarity-join computations.

To distribute the trajectories equitably and e�ciently using histograms, it is necessary to load the histogram
in memory. The size of the global histogram depends on the size of the entry to be processed. Therefore, it is
impossible to guarantee that it can hold in memory. However, when joining, a map function only processes
its split data, it will not need the entire histogram. Therefore, a second job DistributeHistogram is needed
to distribute the histogram entries according to their appearance in the di�erent splits. These two jobs are
represented by Figure 3.2 and will be described in the next two subsections.
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Output
Dataset

Histogram
Mapper

Histogram
Reducer

Global
Histogram

Distribute
Mapper

Distribute
Reducer

Distributed
Histogram

CreateHistogram (2.A) DistributeHistogram (2.B)

Fig. 3.2: Distributed histogram computation steps.

3.2.A Creation of the histogram step

The MapReduce job of histogram creation is described in Algorithm 2.A and a working example is shown in
Figure 2.A. In order to compute frequencies of each key, the map phase emits for each trajectory and for all
x ∈ lsh_keys a tuple of the form (0 | 1, 0 | 1, splitId). The �rst two values depend on the data source of the
trajectory. For a trajectory belonging to the dataset R, the tuple will be of the form (1, 0, splitId).
The Combiner computes the local frequencies of the current split lfR and lfS for each key by summing each
column separately. Reducers sum up the frequencies received and �lter out keys with zero frequency for a
data source. The set of splitId where the key was found is saved in order to be able to distribute the global
histogram during the job DistributeHistogram. For the sake of clarity, in the following examples the sequence
of points forming a trajectory is never represented.

Algorithm 2.A: CreateHistogram � Step A of MapReduce job Ë

Map: <id, tag, trajectory, lsh_keys> → <x, (0 | 1, 0 | 1, splitId)>
splitId ← getCurrentSplitId ();

Emit a pair according to its data source for any x ∈ lsh_keys:
- <x, (1, 0, splitId)> when the trajectory belongs to R
- <x, (0, 1, splitId)> when the trajectory belongs to S

Combine: <x, (tokenR, tokenS , splitId)*> → <x, (lfR, lfS , splitId)>

Compute local frequencies by summing up tokens.
Emit a pair <x, (lfR, lfS , splitId)>.

Reduce: <x, (lfR, lfS , splitId)*> → <x, (fxR, f
x
S , splitId*)>

Compute the global frequencies in R and S.
Compute the union of splitIds.
Emit the pair <x, (fR, fS , splitId*)> if the key is present in R and S.

(T0, R, [H
0
0 , H

1
1 ])

(T1, S, [H
0
0 , H

2
1 ])

m
a
p
1

<H0
0 ,(1, 0, 1)>

<H1
1 ,(1, 0, 1)>

<H0
0 ,(0, 1, 1)>

<H2
1 ,(0, 1, 1)>

g
ro
u
p



<H1
1 ,(1, 0, 1)>

<H3
1 ,(1, 1, 2)> re
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ce

1

<H3
1 ,(1, 1, {2})>

(T2, R, [H
0
0 , H

3
1 ])

(T3, S, [H
0
0 , H

3
1 ])

m
a
p
2

<H0
0 ,(1, 0, 2)>

<H3
1 ,(1, 0, 2)>

<H0
0 ,(0, 1, 2)>

<H3
1 ,(0, 1, 2)>

<H2
1 ,(0, 1, 1)>

<H0
0 ,(1, 1, 1)>

<H0
0 ,(1, 1, 2)>

re
d
u
ce

2

<H0
0 ,(2, 2, {1, 2})>

Example 2.A: Execution example of the CreateHistogram job.

Analysis of CreateHistogram job: The cost of the map phase is as follows. The term cr/w ∗ |Γ
map
i | is the time,

for the Mapper i, to read its associated Γmap
i fragment from HDFS. The term LK ∗‖Γmap

i ‖ is the number of pairs
emitted by Mapper i. The last term LK ∗ ‖Γmap

i ‖ ∗ log(LK ∗ ‖Γmap
i ‖) is the time required to sort the emitted pairs

by the map function.

T ime(2.A.Mapper) = O
(
NM
max
i=0

cr/w ∗ |Γ
map
i |+ LK ∗ ‖Γmap

i ‖+ LK ∗ ‖Γmap
i ‖ ∗ log(LK ∗ ‖Γmap

i ‖)
)
.

Emitted pairs are then combined, partitioned and sent to the di�erent Reducers. The term LK ∗ ‖Γmap
i ‖ is the

cost to compute the local frequencies. The term cc ∗ |Hist(Γmap
i )| is the required time for communication phase
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between Mappers and Reducers.

T ime(2.A.Combiner) = O
(
NM
max
i=0

LK ∗ ‖Γmap
i ‖+ cc ∗ |Hist(Γmap

i )|
)
.

The di�erent partitions are �nally retrieved from the Mappers, the term
‖Histredi (Γ )‖ is the necessary time to compute the sum of the local frequencies and the union of splitId on the
Reducer i. The term cr/w ∗ |Histredi (R onσ S)| is the cost for Reducer i to write the histogram to the HDFS.
Therefore,

T ime(2.A.Reducer) = O
(
NR
max
i=0
‖Histredi (Γ )‖+ cr/w ∗ |Histredi (R onσ S)|

)
.

This job will have the following cost:
T ime(2.A) = T ime(2.A.Mapper) + Time(2.A.Combiner) + T ime(2.A.Reducer).

3.2.B Histogram distribution

The global histogram is then distributed using DistributeHistogram job described in the 2.B algorithm. By
setting the number of reduce tasks to be equal to the number,‖{Γ}‖, of splits of Γ , the output of a reduce
task j corresponds to the histogram needed for the split Γ split

j . For the following tasks requiring the histogram,
it will therefore su�ce to retrieve their splitId and read the output of this job associated with their splitId. An
example of the output of the CreateHistogram job is shown in the Figure 2.B.

Algorithm 2.B: DistributeHistogram � Step B of MapReduce job Ë

Map: <x, (fR, fS , splitId*)> → <splitId, (x, (fR, fS))>

Emit a pair <splitId, (x, fR, fS)> for any splitId of the union computed previously.
Reduce: <splitId, (x, (fR, fS))*> → <x, (fR, fS)>

Emit a pair <x, (fR, fS)> for all the received values.

(H0
0 ,(2, 2, {1, 2}))

(H3
1 ,(1, 1, {2}))

m
a
p
1 <1, (H0

0 ,(2, 2))>

<2, (H0
0 ,(2, 2))>

<2, (H3
1 ,(1, 1))>

g
ro
u
p


<1, (H0

0 ,(2, 2))>

re
d
u
ce

1

<H0
0 ,(2, 2)>

<2, (H0
0 ,(2, 2))>

<2, (H3
1 ,(1, 1))> re

d
u
ce

2

<H0
0 ,(2, 2)>

<H3
1 ,(1, 1)>

Example 2.B: Execution example of DistributeHistogram job.

Analysis of DistributeHistogram job: Each Mapper reads its fragment of the histogram, thus the cost is
cr/w ∗ |Hist

map
i (R onσ S)|. For each entry in the histogram, there is a maximum of ‖{Γ}‖ pairs sent. The cost of this

step corresponds to the term ‖{Γ}‖∗‖Histmap
i (R onσ S)‖. The term ‖{Γ}‖∗‖Histmap

i (R onσ S)‖∗log(‖{Γ}‖∗‖Histmap
i (R onσ

S)‖) corresponds to the time required to sort the intermediate results on the Mapper i. The intermediate results
are then sent; at the cost of cc ∗ |Histmap

i (R onσ S)| ∗ ‖{Γ}‖. Therefore, this mapper's step requires at most:

T ime(2.B.Mapper) = O
(
NM
max
i=0

cr/w ∗ |Hist
map
i (R onσ S)|+ ‖{Γ}‖ ∗ ‖Histmap

i (R onσ S)‖

+ ‖{Γ}‖ ∗ ‖Histmap
i (R onσ S)‖ ∗ log(‖{Γ}‖ ∗ ‖Histmap

i (R onσ S)‖) + cc ∗ |Histmap
i (R onσ S)| ∗ ‖{Γ}‖

)
.

Each fragment processed by a reduce function corresponds to a necessary histogram of a split. There are
several reduce tasks executed on the Reducer i. Each of these tasks has an identi�er j such as j ∈ 0..‖{Γ}‖,
since the number of reduce tasks is set to be equal to the number of split. By noting {Fi}, the set of reduce
tasks executed on the Reducer i, the cost of this step is as follows.

T ime(2.B.Reducer) = O
(
NR
max
i=0

{Fi}∑
j

‖Histj(R onσ S)‖ + cr/w ∗ |Histj(R onσ S)|
)
.
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The �rst term ‖Histj(R onσ S)‖ corresponds to the cost of executing a reduce task on Reducer i. The second
term cr/w ∗ |Histj(R onσ S)| is required time to write output of a reduce task.

Thus, this job will have the following cost: T ime(2.B) = T ime(2.B.Mapper) + T ime(2.B.Reducer).

3.3 Reduction of the global histogram step

In order to reduce the intermediate results of the next Similarity join step Í and therefore decrease the number
of trajectories comparisons, it is possible to reduce the overall histogram. Indeed, by reducing the histogram,
the trajectories will be less replicated on the Reducers.
The aim of this step is therefore to delete all the partitions which are contained in another. All these partitions
are not necessary for the computation since the similarity of these trajectories can be ensured by another
partition.
To remove these partitions, the algorithm represented by the Figure 3.3 is composed of two MapReduce jobs
followed by a job to distribute the histogram. This last job is equivalent to the one described in the previous
subsection 3.2.B. By noting the set of trajectories having the key x ∈ L(R)∩L(S) by Γ (x), the purpose of the
job SuperPartition is to compute the set of keys y ∈ L(R) ∩ L(S) \ x such as Γ (x) ⊆ Γ (y). We will denote by
I(x), the set of keys verifying this property.
The aim of the second job is to check for any y ∈ I(x) whether the inclusion is strict. The three scenarios are
as follows. If Γ (x) ⊂ Γ (y) for at least one key y then the key x can be removed from the histogram since the
join will be provided by the key y. The second case is the following, if for all y ∈ I(x), Γ (x) = Γ (y) then only
one of the key of x ∪ I(x) is necessary and should be present in the reduced histogram. Finally, if I(x) = ∅
then no other key produces the join of this set of trajectories and the key x has to be present in the reduced
histogram.

Output
Dataset

SuperPart.
Mapper

Distributed
Histogram

SuperPart.
Reducer

Super.
Partition

RSubPart.
Mapper

RSubPart.
Reducer

Optimized
Global

Histogram

Distribute
Mapper

Distribute
Reducer

Optimized
Distributed
Histogram

SuperPartition (3.A) RemoveSubPartition (3.B) DistributeHistogram (3.C)

Fig. 3.3: Histogram reduction steps

3.3.A Preparation for histogram reduction

This job is described by the algorithm 3.A. Each map function takes a split as input. The identi�er of split is
retrieved and the distributed histogram of step Ë associated is fetched and stored. The example of step Ë is
used for the example of this job. The distributed histogram is represented in the Table 3 and a working example
in 3.A.

Using the histogram, the map1 function will send only two pairs. These pairs are then combined using in-
tersections on the sets of emitted keys in order to compute I(H0

0 ). The key H0
0 is then sent to the Reducer

to complete the intersection between all sets of keys. For the key H0
0 , the set is empty, so there is no other

key whose partition contains the partition of H0
0 . For the key H

3
1 , the partition is as follows {T2, T3}, this

partition is contained by the partition of the key H0
0 . Therefore, I(H

3
1 ) has for only one element H0

0 .

Analysis of job ComputeSuperPartititon: Each fragment is made up of a set of split. The cost of the init
function is as follows. The term cr/w ∗ |Histj(R onσ S)| corresponds to the time, for a map function, to read the
necessary histogram for its corresponding split of data.

T ime(3.A.Mapper.init) = O
(
NM
max
i=0

{Γmapi }∑
j

cr/w ∗ |Histj(R onσ S)|
)
.
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Algorithm 3.A: SuperPartition � Step A of MapReduce job Ì

Map: <id, tag, trajectory, lsh_keys> → <x, (lsh_keys, Hist(Γ )(x), splitId)>
init:

splitId ← getCurrentSplitId ();
Read and store the distributed histogram associated to the current splitId.

Compute for each trajectory the set of keys present in the histogram, noted lsh_keys.
Get the tuples associated to each key in the histogram.
Emit a pair <x, (lsh_keys, Hist(Γ )(x), splitId)> for all x ∈ lsh_keys .

Combine: <x, (lsh_keys, Hist(Γ )(x), splitId)*> → <x, (Imapi (x), Hist(Γ )(x), splitId)>

Compute the intersection of the lsh_keys denoted by Imap
i (x).

Emit a pair <x, (Imap
i (x), Hist(Γ )(x), splitId)>

Reduce: <x, (Imapi (x), Hist(Γ )(x), splitId)*> → <x, (I(x), Hist(Γ )(x), splitId*)>
Compute I(x), the intersection of the received Imap

i (x).
Remove x from I(x).
Compute the union of splitIds.
Emit a pair <x, (I(x), Hist(Γ )(x), splitId*)> for any received key x.

splitId Distributed histogram

1 <H0
0 , (2, 2)>

2 <H0
0 , (2, 2)>

2 <H3
1 , (1, 1)>

Table 3: Distributed histogram using the output of step Ë.
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Example 3.A: ComputeSuperPartititon job example.

The cost of the Mappers is as follows. The term cr/w ∗ |Γ
map
i | is the time for the Mapper i to read its fragment

from HDFS. At most, a pair is sent for each key of each trajectory, which corresponds to the term L2
K ∗ ‖Γ

map
i ‖.

These intermediate results are then sorted at a cost of L2
K ∗ ‖Γ

map
i ‖ ∗ log(L2

K ∗ ‖Γ
map
i ‖).

T ime(3.A.Mapper) = T ime(3.A.Mapper.init) +O
(
NM
max
i=0

cr/w ∗ |Γ
map
i |+ L2

K ∗ ‖Γ
map
i ‖+ L2

K ∗ ‖Γ
map
i ‖ ∗ log(L2

K ∗ ‖Γ
map
i ‖)

)
.

Using the combine function, intermediate results can be reduced and the communication phase optimized.
The cost is as follows.

Time(3.A.Combiner) = O
(
NM
max
i=0

L2
K ∗ ‖Γ

map
i ‖+

{Γmapi }∑
j

(cc ∗ |Histj(R onσ S)|)
)
.

The term L2
K ∗‖Γ

map
i ‖ corresponds to the size of the input of the function combine on the Mapper i. The second

term
∑{Γmapi }
j (cc ∗ |Histj(R onσ S)| corresponds to the communication cost for the Mapper i.

T ime(3.A.Reducer) = O
(
NR
max
i=0

NM ∗ ‖Histredi (R onσ S)‖+ cr/w ∗ |Histredi (R onσ S)|
)
.

The job ComputeSuperPartititon will have the following global cost:
T ime(3.A) = T ime(3.A.Mapper) + T ime(3.A.Combiner) + T ime(3.A.Reducer).
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3.3.B Histogram reduction step

For each input of its split, the RemoveSubMapper, presented by the 3.B algorithm, emits a primary pair <(x,
0), (ε, I(x), Hist(Γ )(x), splitId*>)> for each input key. For some element y of its set I(x) a secondary pair
<(y, 1), (x, ∅, Hist(Γ )(x), ∅> ) is emitted. When sorting, adding this integer to the sent key allows the primary
pairs to arrive before the secondary pairs. The primary pair (<x, 0>) is saved by the Reducer and the emitters
of the secondary pairs are deleted from I(x). At the end of the execution of a key, if its set I(x) is empty then
it has to be present in the reduced histogram. Indeed, if I(x) is empty then the partition x is not included
in another partition. Moreover, due to the added relation order in the map function at the line 4, the case
where one partition is equal to all the others is solved.
To optimize the size of the intermediate results, a Combiner is implemented using the following two observations.
For a given key x ∈ L(R) ∩ L(S), all the elements y of I(x) have frequencies greater than or equal to the
frequencies of x since Γ (x) ⊆ Γ (y). Moreover, I(x) has at most a size equal to LK − 1 by its construction. As
the purpose of the Reducer is to remove emitters from I(x), i.e partitions containing the partition of x, the
Combiner can search and send only the secondary pairs with the maximum frequency if the number of pairs is
less than LK − 1. The following example 3.B continues from the previous example. The key H0

0 will only send

Algorithm 3.B: RemoveSubPartition � Step B of MapReduce job Ì

Map: <x, (I(x), Hist(Γ )(x), splitId*)> → <x | y, 0 | 1, (ε|x , I(x)|, Hist(Γ )(x), splitId*|)>
Emits a pair <(x, 0), (ε,Hist(Γ )(x), I(x), splitId*)>.
foreach y ∈ I(x) do

4 if y <x then
Emit a pair <(y, 1), (x, Hist(Γ )(x), ∅, ∅)>

end

end

Combine: <(x, label), (ε | emitter, I(x) |, Hist(Γ )(x)|Hist(Γ )(emitter), splitId*|)>
→ <(x, label), (ε | emitter, I(x)|, Hist(Γ )(x)|Hist(Γ )(emitter), splitId*|)>
Emits the primary pairs (x, 0) without any processing.
The secondary pairs (x, 1) are discarded if:
- the frequency of the pair is not maximum,
- the number of pair with the maximum frequency is greater than LK − 1.

Reduce: <x, label, (ε | emitter, I(x)|, Hist(Γ )(key)|Hist(Γ )(emitter), splitId*|)>
→ <x, (Hist(Γ )(x), splitId*)>
Save the primary pair <(x, 0), (I(x), Hist(Γ )(x), splitId*)>.
For each secondary pair received, the emitter is deleted from the saved set I(x).
Emits a <x, (Hist(Γ )(x), splitId*)> pair if the saved set I(x) is empty after this processing.

a primary pair since its set I(H0
0 ) is empty. The key H

3
1 emits two pairs. A primary containing its set I(H3

1 ),
its associated histogram values, and the identi�er of its split. A secondary (H0

0 , 1) containing only the emitting
key and its associated histogram values. The Combiner in this example is not shown since it does not �lter
any pair. The Reducer computing the key H3

1 does not receive any other secondary pair. As its set I(H3
1 ) is

not empty, the key H3
1 is removed.
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Example 3.B: RemoveSubPartition job example.

Analysis of job RemoveSubPartition: The cost of theMapper phase is as follows. The term cr/w∗|Hist
map
i (R onσ S)|

corresponds to the time for theMapper i to read the histogram resulting from the previous step from the HDFS.
The term LK ∗‖Histmap

i (R onσ S)‖ refers to the maximum number of the emitted pairs by Mapper i. The last term
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LK ∗ ‖Histmap
i (R onσ S)‖ ∗ log(LK ∗ ‖Histmap

i (R onσ S)‖) represents the maximum time to sort the emitted pairs by the
Mapper i.

T ime(3.B.Mapper) = O
(
NM
max
i=0

cr/w ∗ |Hist
map
i (R onσ S)|+ LK ∗ ‖Histmap

i (R onσ S)‖

+ LK ∗ ‖Histmap
i (R onσ S)‖ ∗ log(LK ∗ ‖Histmap

i (R onσ S)‖)
)
.

Owing to the Combine phase, only LK secondary pairs are sent for each key. The cost of this phase corresponds
to the term LK ∗ ‖Histmap

i (R onσ S)‖.

T ime(3.B.Combiner) = O
(
NM
max
i=0

LK ∗ ‖Histmap
i (R onσ S)‖

)
.

The communication cost is represented by the term cc ∗ |Histredi (R onσ S)|. Thanks to the Combine phase, the time
required for the execution of the Reducer i can be increased by the term NM ∗ LK ∗ ‖Histredi (R onσ S)‖. The last
term cr/w ∗ |Hist

red

i (R onσ S)| corresponds to the cost to write the results.

T ime(3.B.Reducer) = O
(
NR
max
i=0

cc ∗ |Histredi (R onσ S)|+NM ∗ LK ∗ ‖Histredi (R onσ S)‖+ cr/w ∗ |Hist
red

i (R onσ S)|
)
.

And the overall cost of this job is:
T ime(3.B) = T ime(3.B.Mapper) + T ime(3.B.Combiner) + T ime(3.B.Reducer).

3.3.C Histogram distribution step

This job is similar to the Algorithm 2.B described in the previous section 3.2.B. The goal is always to distribute
the global histogram according to the appearance of the keys in the splits. Each split will be associated to a
histogram containing only the necessary keys. This histogram holds in memory since its size depends only on
the number of trajectories in the split. The associated algorithms are equivalent but the cost is di�erent since
the histogram has been reduced. The time required for the Mapper phase is as follows.

T ime(3.C.Mapper) = O
(
NM
max
i=0

cr/w ∗ |Hist
map

i (R onσ S)|+ ‖{Γ}‖ ∗Hist
map

i (R onσ S)+

‖{Γ}‖ ∗ ‖Histmap

i (R onσ S)‖ ∗ log(‖{Γ}‖ ∗ ‖Hist
map

i (R onσ S)‖) + cc ∗ |Hist
map

i (R onσ S)| ∗ ‖{Γ}‖
)
.

The term cr/w ∗ |Hist
map

i (R onσ S)| corresponds to the time to read the fragments of the reduced histogram on
the Mapper i from the HDFS. The Mapper i emits a maximum of ‖{Γ}‖ ∗ Histmap

i (R onσ S) couples. These pairs
are sorted at a cost of ‖{Γ}‖ ∗ ‖Histmap

i (R onσ S)‖ ∗ log(‖{Γ}‖ ∗ ‖Hist
map

i (R onσ S)‖). The intermediate results are then
communicated to the Reducers at a time corresponding to the term cc ∗ |Hist

map

i (R onσ S)| ∗ ‖{Γ}‖.
The reduce phase will have the following complexity. The term ‖Histj(R onσ S)‖ corresponds to the execution

time of a reduce function on the Reducer i. Each Reducer j emits the necessary histogram of the split Γ split
j ,

this cost corresponds to the term cr/w ∗ |Histj(R onσ S)|.

T ime(3.C.Reducer) = O
(
NR
max
i=0

{Fi}∑
j

‖Histj(R onσ S)‖+ cr/w ∗ |Histj(R onσ S)|
)
.

And, this job will have the following cost:
T ime(3.C) = T ime(3.C.Mapper) + T ime(3.C.Reducer).

3.4 Similarity-Join computation step

This job is composed of amap phase and a reduce phase as shown in the Figure 3.4. The goal of this algorithm is
to compute the similarity-join by using distributed histogram allowing us to generate e�cient communication
templates to redistribute only relevant data while guaranteeing perfect balancing properties even for highly
skewed input datasets. The similarity-join computation steps are described in the Algorithm 4.A. The phase of
map corresponds to the communication templates presented in the subsection 2.5. The Reducer computes the
join between buckets by �ltering out false positive trajectories. Some pairs of trajectories are present in several
keys. To avoid duplicate computation of the Fréchet distance, the minimal key is computed dynamically.
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Fig. 3.4: Similarity join computation step.

Algorithm 4.A: Similarity join computation step � MapReduce job Í

Map: <id, tag, trajectory, lsh_keys> → <(x, reducerId, line, bucket), (trajectory, lsh_keys)>

init:
splitId ← getCurrentSplitId ();
Read and store the distributed histogram.

Compute for each trajectory the set of keys present in the histogram, noted lsh_keys.
Generate for each lsh_keys the communication templates according to the frequencies saved in the
histogram. Only the relevant data is sent using the communication templates de�ned previously
(2.5).
Emit pairs according to communication templates (subsection 2.5).

Partition: <(x, reducerId, line, bucket), (trajectory, lsh_keys)> → Integer

Redirect each pair to the computed reducerId.
Reduce: <(x, reducerId, line, bucket), (trajectory, lsh_keys)> → (idR, idS)>

Compute the join of the trajectories using to the communication templates.
For each pair of trajectories coming from R and S:
- Check if this pair of trajectories is computed by another key using emitted sets lsh_keys.
- Compute the intersection of the sets lsh_keys.
- A key is dynamically computed to know which Reducer �lters this pair of trajectories. 0.A
- If the current key correspond to computed the key, compute the Fréchet distance (subsection
2.2) and output the pair (idR, idS) if the distance is lower than λ.

Analysis of similarity join computation job: The cost of the Mapper phase is as follows. The term cr/w ∗|Γ
map
i | is

the cost for theMapper i to read its fragment from HDFS. For each split identi�ed by j ∈ {Γmap
i }, in its fragment,

theMapper i reads its associated distributed histograms at a cost corresponding to the term cr/w∗|Histj(R onσ S)|.
The term LK ∗ ‖Rmap

i ‖ + LK ∗ ‖Smap
i ‖ corresponds to the cost to perform search operations in the distributed

histogram for a given key. The term LK ∗ ‖R
map

i ‖ ∗ log(LK ∗ ‖R
map

i ‖) +LK ∗ ‖S
map

i ‖ ∗ log(LK ∗ ‖S
map

i ‖) is time to sort
relevant data on Mapper i. The term LK ∗ cc ∗ (|R

map

i | + |Smap

i |) is time to send data using our communication
templates.

T ime(4.A.Mapper) = O
(
NM
max
i=0

cr/w ∗ |Γ
map
i |+

{Γmapi }∑
j

(cr/w ∗ |Histj(R onσ S)|) + LK ∗ ‖Rmap
i ‖+ LK ∗ ‖Smap

i ‖

+ LK ∗ ‖R
map

i ‖ ∗ log(LK ∗ ‖R
map

i ‖) + LK ∗ ‖S
map

i ‖ ∗ log(LK ∗ ‖S
map

i ‖) + LK ∗ cc ∗ (|R
map

i |+ |Smap

i |)
)
.

We recall that, in this step, only relevant data is sent by Mappers because of the distributed histogram. Records
associated to a highly frequent key are redistributed according to our e�cient dynamic partition/replicate
schema to balance load among reducers and to avoid the e�ect of data skew. Records associated with low
frequency key are redistributed using default hashing functions.
The cost of the Reducer phase is as follows. By noting tf the complexity of computing the Fréchet distance,

the term tf ∗ ‖R
red

i onσ S
red

i ‖ corresponds to the cost to �lter out false positive emitted by the LSH strategy on

the Reducer i. The term cr/w∗|R
red

i onλ S
red

i | refers to the required time for the Reducer i to write results in HDFS.

T ime(4.A.Reducer) = O
(
NR
max
i=0

tf ∗ ‖R
red

i onσ S
red

i ‖+ cr/w ∗ |R
red

i onλ S
red

i |
)
.

Therefore, the overall cost of this job is:
T ime(4.A) = T ime(4.A.Mapper) + T ime(4.A.Reducer).
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Analysis of MRS-join algorithm: The global cost of MRS-join algorithm is therefore the sum of all previous
steps.

Using LSH, the MapReduce similarity join computation of two relations R and S requires at least the following
lower bound:

boundinf = Ω
(
NM
max
i=0

(
(cr/w + ccomm) ∗ (|Rmapi |+ |Smapi |) + ||Rmapi || ∗ log ||Rmapi ||+ ||Smapi || ∗ log ||Smapi ||

)
+

NR
max
i=0

(
tf ∗ ‖Rredi onσ Sredi ‖+ cr/w ∗ |Rredi onλ Sredi |

))
,

where cr/w ∗ (|R
map
i | + |Smapi |) is the cost of reading input relations from HDFS on node i. The term ||Rmapi || ∗

log ||Rmapi || + ||Smapi || ∗ log ||Smapi || represents the cost to sort input relations records on map phase. The term
ccomm∗(|Rmapi |+|Smapi |) represents the cost to communicate data fromMappers to Reducers, the term tf ∗‖Rredi onσ
Sredi ‖ is time to compute Fréchet distance on Reducer i and cr/w ∗ |Rredi onλ Sredi | represents the cost to store
Reducer 's i join output on the HDFS.

MRS-join algorithm has asymptotic optimal complexity when:

max
(
NM
max
i=0

(

{Γmapi }∑
j

cr/w ∗ |Histj(R onσ S)|), L2
K ∗ ‖Γ

map
i ‖ ∗ log(L2

K ∗ ‖Γ
map
i ‖)

)
≤ max

(
NM
max
i=0

(||Rmapi || ∗ log ||Rmapi ||, |Smapi || ∗ log ||Smapi ||), NR
max
i=0

tf ∗ ‖Rredi onσ Sredi ‖)
)
,

where the term
∑{Γmapi }
j cr/w ∗|Histj(R onσ S)| is the cost to read distributed histograms and the term L2

K ∗‖Γ
map
i ‖∗

log(L2
K ∗ ‖Γ

map
i ‖) is the optional cost to optimize the global histogram. This is due to the fact that, all other

terms in Time(MRS-join) are bounded by those of boundinf . We recall that the sizes of distributed histograms
are very small compared to input datasets sizes and all the terms of Time(MRS-join) remains very small when
compared against naive algorithms requiring pairwise comparison of all trajectories.

Remark: In practice, data imbalance related to the use of hashing functions can be due to:

� a bad choice of used hash function. This imbalance can be avoided by using the hashing techniques presented
in the literature which have the property of distributing uniformly with a very high probability [9],

� an intrinsic data imbalance which appears when some values of the join attribute appears more frequently
than others. There is no way for a clever hash function to avoid load imbalance that results from these
repeated values. However, this case cannot arise here since we applied hashing functions to histograms which
contain only distinct values or to randomized keys.

4 Experiments

In this section, we discuss the e�ciency and the strength of our theoretical analysis by experimenting MRS-
Join algorithm on real world and synthetic datasets by measuring recall, precision and e�ciency. This analysis
was performed on a cluster of 11 machines. Each machine has the following characteristics: Intel(R) Xeon(R)
CPU E5-2650 @2.60GHz, 16Gb of memory and 300Gb of HDD disk. Experiments are performed on the top of
Hadoop 3.2.1 framework using 6Gb of Heap memory for Map/Reduce tasks.

4.1 The Taxis dataset

The �rst ECML / PKDD (Porto)1 dataset used describes the mobility of 442 taxis during a year. The dataset
contains 1.7 million trajectories. Each trajectory corresponds to travel of a passenger with one of the taxis. The
GPS locations of the taxi during a trip were recorded every 15 seconds in the WGS84 format. The length of the
trajectory varies between 1km and 15km. To simulate a R-S join, a random label (R or S) has been assigned to
each trajectory. The Table 4.1 shows that most of similar pairs were found by LSH. In the following Table, True
positive denotes the number of close trajectories correctly generated and False positive denotes the number of
distances computed by the algorithm on far trajectories. We notice that False positive number remains very
small compared to naive algorithms which require pairwise comparisons of all trajectories of input datasets.
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LK True positive Exact False positive ·108 Recall Precision
16 18086086 18827613 6,3 0.961 0.028
32 18557037 18827613 9,9 0.985 0.018
64 18734572 18827613 10,5 0.995 0.017

Table 4.1: Similarity-Join results using the Porto taxi database benchmark.

Execution time for the taxi dataset, for both standard and MRS-Join algorithm, are similar to those observed
for synthetic datasets of the same size.

4.2 Similarity-Join processing using synthetic datasets

Synthetic datasets were generated to study the scalability of the algorithm. Between 1 and 10 million trajectories
were generated. Each million represents approximately 1GB on the HDFS. The dataset generator was designed
such that each trajectory represents a car on a very long highway. All cars start randomly at one point on the
highway. Each car has its own speed. On average, each trajectory is made up of 20 points. In the Figure 4.1,
the execution times of the MRS-join algorithm are compared to the Standard version (subsection 2.4). For the
experiment, the number of iterations of the LSH strategy was set at 32.
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Fig. 4.1: E�ects of the dataset size on Hadoop join
processing time.
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Fig. 4.2: Size of the dataset e�ect on the commu-
nication cost.

We recall that the MRS-join algorithm requires three reads of the inputs to compute the similarity join. The
�rst one is used to compute the histogram, the second to optimize the histogram and �nally the last one to
compute similarity join. Although these multiple steps seem to have a signi�cant cost, the gain induced by
sending only relevant data makes it possible to drastically reduce the data transmitted by the Mappers during
the communication phase of the joining step. The Figure 4.2 presents the comparison of the data transmitted
during the communication phase between the Standard algorithm and the MRS-join algorithm. The Figure 4.1
presents the comparison of the processing time between the Standard and the MRS-join algorithm.
To show when the LSH strategy needs more iterations, we compute the similarity join on trajectories of 20 and
50 points on average, the results are shown in the Tables 4.2 and 4.3.

4.3 Data skew e�ects on Similarity-join processing using synthetic datasets

To show when the Standard version fails, we present results on a dataset with an imbalance in the data
distribution. To create this dataset, we took the previous dataset and added trajectory copies. The number of
added copies follows a Zipf distribution [14]. The Zipf factor varies from 0 (for a uniform distribution) to 1.6
(for a highly skewed distribution). The Figure 4.3 shows the data skew e�ect on the execution time for the

1 Ecml/pkdd porto taxi data.
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
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LK True positive Exact False positive ·108 Recall Precision
8 361362 365824 3 0.9878 0.0011
16 365725 365824 5,7 0.999 0.0006
32 365808 365824 9,2 0.999 0.0004
64 365812 365824 12,7 0.999 0.0003

Table 4.2: Results using 106 trajectories composed of 20 points on average.

LK True positive Exact False positive ·106 Recall Precision
8 7095 9605 3,2 0.739 0.002
16 8611 9605 8 0.897 0.001
32 9235 9605 14,7 0.961 0.0006
64 9473 9605 24 0.986 0.0003

Table 4.3: Results using 106 trajectories composed of 50 points on average.

standard and MRS-join algorithms. We see that, for a Zipf parameter varying from 1.0 to 1.6, the Standard
algorithm jobs fail due to lack of memory. Since all the trajectories having the same join key are forwarded to
the same Reducer, Standard algorithm is very sensitive to data skew which limits its scalability. This cannot
happen in MRS-join because the join computations for a highly frequent key, are partitioned into buckets
and transmitted to distinct Reducers in a random manner. This makes MRS-join algorithm insensitive to the
imbalance of data. Figure 4.4 shows that the number of distances computed by each reduce tasks following a
highly skewed distribution, remains well distributed on the di�erent nodes of the cluster.
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Fig. 4.3: Data skew e�ect on the Hadoop join processing time
using 106 of trajectories.
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5 Conclusion

In this article, we have introduced MRS-join an e�cient and scalable MapReduce Similarity-join, for trajec-
tories, using LSH and randomized communication templates to avoid the e�ects of data skew even for highly
skewed large datasets. TheMRS-Join cost analysis and experiments, using real world and synthetic benchmarks
datasets, show that the overhead related to the use of distributed histograms remains very small compared to
the gain in performance by reducing communication and data processing to only relevant data (this avoids
pairwise comparison of all trajectories) while guaranteeing perfect balancing properties during all the stages of
similarity join computation. We recall that in the MRS-join, all MapReduce generated buckets never exceed a
user de�ned size. This makes the algorithm scalable and insensitive to data skew. It also solves the limitations
of existing approaches to handle large datasets whenever data associated to a MapReduce key cannot �t in the
available reducer's local memory.
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Future work will be devoted to MapReduce sequences similarity processing in large datasets using pre�x �l-
tering and/or similar techniques based on randomized MapReduce data redistribution to balance load among
processing nodes while guaranteeing the scalability of the proposed solutions in large scale systems.
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6 Annexe

Algorithm 0.A: getKey � Dynamic key generation of the reduce step in the Algorithm 4.A of Job Í.

getKey : (lsh_keysR, lsh_keysS) → x ∈ L(R) ∩ L(S)
E← lsh_keysR ∩ lsh_keysS
sum←

∑
e∈E e

index ← sum % |E|
return E[index]
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