Sébastien Rivault
email: sebastien.rivault@univ-orleans.fr

Mostafa Bamha
email: mostafa.bamha@univ-orleans.fr

Sébastien Limet
email: sebastien.limet@univ-orleans.fr

Sophie Robert
email: sophie.robert@univ-orleans.fr

A Scalable MapReduce Similarity Join Algorithm Using LSH

Keywords: Similarity-Join operations, Local Sensitive Hashing (LSH), MapReduce model, Data Skew, Hadoop framework

Similarity Joins are recognized to be among the most useful data processing and analysis operations.

A similarity join is used to retrieve all data pairs whose distances are smaller than a predened threshold λ.

In this paper, we introduce the MRS-join algorithm to perform similarity joins on large trajectories datasets.

The MapReduce model and a randomized LSH (Local Sensitive Hashing) keys redistribution approach are used to balance load among processing nodes while reducing communications and computations to almost all relevant data by using distributed histograms.

A cost analysis of MRS-join algorithm shows that our approach is insensitive to data skew and guarantees perfect balancing properties, in large scale systems, during all stages of similarity join computations. These performances have been conrmed by a series of experiments using the Fréchet distance on large datasets of trajectories from real world and synthetic data benchmarks.

Introduction

Parallel joins have been widely studied and eciently implemented on distributed architectures [35,[START_REF] Hassan | Towards scalability and data skew handling in groupby-joins using mapreduce model[END_REF][START_REF] Hassan | Handling data-skew eects in join operations using mapreduce[END_REF].

However, all the existing parallel join approaches cannot be used in the case of similarity-joins because no hashing or sorting technique makes it possible to nd all potentially similar data pairs. So, all the data pairs must be compared which requires a Cartesian product computation. This can have a disastrous eect on performance and limit the scalability for large datasets processing [START_REF] Metwally | V-smart-join: A scalable mapreduce framework for all-pair similarity joins of multisets and vectors[END_REF]. Therefore, it is of utmost importance to eciently implement scalable similarity join algorithms on large scale systems.

The aim of this paper is to focus on similarity joins on trajectories or time series. Trajectories or time series are seen as polygonal lines where each point belongs to R d with d the dimension of the trajectory. A similarity join consists in nding all the pairs of trajectories having a similarity distance smaller than a given threshold.

Given two collections of trajectories R and S, the goal is to compute

R λ S = {(U, V) ∈ R × S | sim(U, V) ≤ λ}
Completeness: The algorithm must be able to generate all the pairs of trajectories having a strong similarity, Insensitive to data skew: The algorithm must be insensitive to data skew while guaranteeing perfect balancing properties during all the stages of similarity join computations.

The motivation for these criteria comes from the huge amount of data collected by dierent applications. For example, a taxi or an Uber generates a sequence of locations throughout its taxi ride. This sequence of points in the space forms a trajectory. This leads to massive amounts of location data. For instance, the dataset ECML/PKDD (Porto) 1 contains 1.7 million trajectories from the rides of 442 taxis during one year. Uber is likely to generate trajectory dataset orders of magnitude larger than those generated from only 442 taxis. The amount easily exceeds the storage capacity and the processing capability of a single machine. Accordingly, a cluster of machines and scalable distributed algorithms are needed to process such large scale trajectory data.

There are multiple and useful query operations on trajectory dataset like nding all taxis which share a route similar to a given trajectory. The trajectory similar search could help decision-making when building new roads, recommending faster taxi rides or more ecient customer care. It is also useful in domains like sports analytics or weather forecast. It also allows to build many advanced mining and learning tasks such as clustering and classication.

In this paper, we present an algorithm called MRS-Join (MapReduce Similarity Join) with provable guarantees that Scalability, Completeness and Insensitivity to data skew are met. We guarantee perfect balancing properties, among cluster processing nodes, during all MapReduce computation steps by using distributed histograms and randomized communication templates. To guarantee the scalability of the algorithm, it is not necessary to compute the distance between all the pairs of trajectories. Recently, a Locale sensitive hashing (LSH) family has been introduced for trajectories [START_REF] Driemel | Locality-Sensitive Hashing of Curves[END_REF] for the Dynamic Time Warping (DTW) and the Fréchet distance. LSH is a hashing technique where near points are more likely to have a common partition than distant points. In the literature, the standard use of LSH to nd strongly similar objects, is very ecient if the number of required iterations of LSH is low. We will, therefore, use this LSH family to reduce the search space and show results in terms of performance and quality.

The quality of the results is measured in terms of recall and precision. The recall is the fraction of the number of pairs of close trajectories correctly generated by the algorithm over the exact number of close trajectories, whereas precision corresponds to the fraction of the number of pairs of close trajectories correctly generated over the number of pairs of trajectories predicted as close.

In the literature, there is no distributed and scalable similarity join algorithm for trajectories using LSH. Many in-memory ltering-based similarity join algorithms provide exact algorithms [START_REF] Xie | Distributed trajectory similarity search[END_REF][START_REF] Yuan | Distributed In-memory Trajectory Similarity Search and Join on Road Network[END_REF] however, these results do not apply on very large datasets.

In the massively-parallel computation model, [START_REF] Hu | Output-optimal parallel algorithms for similarity joins[END_REF] presents an algorithm relying on LSH to approximate similarity joins to achieve output-optimal guarantees on the maximum load. However, this algorithm assumes that the dataset is not skewed. We primarily review that work and adapt it to our settings.

The remaining of this paper is organized as follows: Section 2 presents requirements for the understanding of the MRS-join algorithm. Section 3 describes the MRS-join algorithm with its complexity analysis. Experimental results presented in Section 4 conrm the eciency of our approach. We then conclude in Section 5.

Preliminaries

This section is organized as follows: Section 2.1 describes the MapReduce programming model; Section 2.2 explains the Fréchet distance and its computation; Section 2.3 introduces LSH and its associated algorithm for trajectories processing; Section 2.4 presents an algorithm called "Standard" which is the best approach to perform similarity join in high dimension using LSH; Section 2.5 explains distributed histograms and randomized communication templates.

MapReduce programming model

MapReduce [START_REF] Dean | MapReduce: simplied data processing on large clusters[END_REF] is a simple yet powerful framework for implementing distributed applications without having extensive prior knowledge of issues related to data redistribution, task allocation or fault tolerance in large scale distributed systems.

1 Ecml/pkdd porto taxi data.

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

Google's MapReduce programming model presented in [START_REF] Dean | MapReduce: simplied data processing on large clusters[END_REF] is based on two functions: map and reduce, that the programmer is supposed to provide to the framework. These two functions should have the following parameters:

map:

(k 1 , v 1) -→ list(k 2 , v 2), reduce: (k 2 , list(v 2)) -→ list(k 3 , v 3).
The user must write the map function that has two input parameters, a key k 1 and an associated value v

combine: (k 2 , list(v 2)) -→ (k 2 , list(v 3)).
To cover a large range of application needs in terms of computation and data redistribution, in Hadoop framework, the user can optionally implement two additional functions: init() and close() called before and after each map or reduce task. The user can also specify a partition function to send each key k 2 generated in map phase to a specic Reducer destination. The Reducer destination may be computed using only a part of the input key k 2 . The partition function is dened as: partition:

k 2 -→ Integer,
where the output of partition should be a positive number strictly smaller than the number of Reducers task.

Hadoop's default partition function is based on hashing the whole input key k 2 .

Fréchet distance

Let U, V be two trajectories dened by theirs vertices U 0 , ...U n and V 0 , ..., V m . We denote by U i,j the subcurve (U i , U i+1 , ..., U j) from U . The continuous Fréchet distance is dened by viewing a trajectory as a continuous function U, V : [1, n] → R d and interpolating between vertices with

U i+τ = (1 -τ) * U i + τ * U i+1 with τ ∈ [0, 1].
2 HDFS: Hadoop Distributed File System.

Let Φ n be the set of all continuous and non-decreasing functions φ from [0, 1] to [1, n]. Then the continuous distance of Fréchet is dened as follows:

d F (U, V) = inf φ1∈Φ |U | φ2∈Φ |V | max t ∈ [0,1] U φ1(t) -V φ2(t)
Alt and Godau were the rst in 1995 [START_REF] Alt | Computing the fréchet distance between two polygonal curves[END_REF] to introduce a polynomial algorithm computing Fréchet distance in a discrete manner. The discrete distance of Fréchet is an approximation of the continuous distance that considers only the leash length when the man and his dog are located on the vertices of their respective trajectory. In the literature, it is proven that the discrete distance of Fréchet between two trajectories cannot be decided in strictly subquadratic time in the number of vertices of the trajectories unless the Strong Exponential Time Hypothesis is false [6]. Accordingly, the most ecient algorithms are quadratic [START_REF] Buchin | Four soviets walk the dog: Improved bounds for computing the fréchet distance[END_REF]. By taking some realistic assumptions on the shape of the input curves, it is possible to approximate the distance in near-linear time [START_REF] Driemel | Approximating the fréchet distance for realistic curves in near linear time[END_REF].

More recently, during the ACM SIGSPATIAL GIS Cup 2017, the challenge was to develop an exact and ecient algorithm to select close trajectories and test quickly if two trajectories have a distance less than a threshold distance. Winner of the ACM SIGSPATIAL GIS Cup 2017 presented an algorithm using several heuristics [START_REF] Werner | ACM SIGSPATIAL GIS cup 2017: range queries under fréchet distance[END_REF].

The following lters are applied in the order where λ denotes a threshold distance.

1. For two trajectories, if the distance between two points with the same index on each trajectory is always less than λ then the Fréchet distance is necessarily smaller than λ [START_REF] Buchin | Ecient trajectory queries under the fréchet distance (GIS cup)[END_REF]; 2. This heuristic seeks to construct a traversal of U and V by minimizing the distance between the component of the traversal. The distance between U 0 and V 0 is computed; then for U i and V j , we match U i and V j for (i , j) ∈ {(i + 1, j), (i, j + 1), (i + 1, j + 1)} minimizing ||U i -V j || 2 . We exclude options that make i > n or j > m. If the two indexes arrive at the last points of each trajectory and the minimum distance at each iteration is less than the threshold distance, then the overall distance is less than the threshold distance [START_REF] Baldus | A fast implementation of near neighbors queries for fréchet (GIS cup)[END_REF];

3. For all the points of a trajectory, if there does not exist at least one point in the other trajectory having a distance less than λ, then the global distance is necessarily greater than λ. The heuristic [START_REF] Baldus | A fast implementation of near neighbors queries for fréchet (GIS cup)[END_REF] uses this idea to lter out trajectories that are at a distance greater than λ;

4. If none of the previous lters returns a result, the discrete Fréchet distance is computed using the recursive implementation of the Alt and Godau algorithm [START_REF] Alt | Computing the fréchet distance between two polygonal curves[END_REF] described in [START_REF] Baldus | A fast implementation of near neighbors queries for fréchet (GIS cup)[END_REF].

In the literature, improvements have been made, and a procedure using the concept of simplication is shown in [START_REF] Ceccarello | Fresh: Fréchet similarity with hashing[END_REF]. We use this procedure in order to speed up the Fréchet distance computation.

Local Sensitive Hashing (LSH)

Indyk and Motwani introduced an approximate search method [START_REF] Indyk | Approximate nearest neighbors: Towards removing the curse of dimensionality[END_REF] to simplify the search for the nearest neighbor in a high dimensional Euclidean space by using a hash function ensuring that close points are more likely collide than distant points. This strategy was subsequently extended to several distances and types of objects; it is characterized by the following denition.

Let two trajectories U and V , a distance measure d and the threshold distance λ. Given an approximation factor c > 1 and two probabilities p 1 and p 2 such that 0 ≤ p 2 ≤ p 1 ≤ 1, H is a family of LSH functions, if it satises the following conditions for any hash function chosen uniformly g ∈ H:

1. If d(U, V) ≤ λ then P (g(U) = g(V)) ≥ p 1 2. If d(U, V) ≥ c * λ then P (g(U) = g(V)) ≤ p 2
Several LSH families have been introduced in the literature for the Fréchet distance. The oldest one was described by Indyk [START_REF] Indyk | Approximate nearest neighbor algorithms for frechet distance via product metrics[END_REF]. However, this strategy has exponential space complexity, which makes it impractical for our application.

Recently a LSH family, called G σ , was introduced by Driemel, Silvestri and Ceccarello [START_REF] Ceccarello | Fresh: Fréchet similarity with hashing[END_REF][START_REF] Driemel | Locality-Sensitive Hashing of Curves[END_REF]. It uses grids and transforms a trajectory into a sequence of grid points.

A grid G t σ of dimension d is dened by its origin t and its resolution σ. More formally, the canonical denition of a grid is as follows:

G t σ = (x 1 , ..., x d) ∈ R d | ∀ i ∈ [1..d] ∃ j ∈ N : x i = j * σ + t i
The origin of the grid is chosen randomly in the half-open hypercube [0, σ[d whereas the grid resolution parameter σ is xed to σ = 4 * d * λ as in the experiments of LSH strategy in the paper [START_REF] Ceccarello | Fresh: Fréchet similarity with hashing[END_REF]. The value σ = 4 * d * λ

is not proven to be optimal, but produces good results in practice as our experiments will show.

For a given grid G t σ , the hash function associated to G t σ takes a trajectory U and produce a sequence of grid nodes as follows:

1. For each point of the trajectory, nd the nearest grid node, 2. Add the node to the result sequence if it is dierent from the last added node.

The LSH family G σ is dened by

G σ = G t σ | ∀t ∈ [0, σ[d .
In the context of LSH, an element of this family is called a hash function (in other words G t σ denotes both the grid and its associated hash function). A LSH strategy consists in choosing an element of G σ . To generate a good proportion of all similar pairs of trajectories, several hash functions are used. We denote by L K the number of iterations of the LSH strategy. For each iteration i, 1 ≤ i ≤ L K , a hash function g i is uniformly and independently selected from G σ . Since, the LSH family may report trajectories with distance in (λ, σ], R σ S will denote the similarity join output predicted by LSH.

2.4 Standard algorithm to perform a similarity join using LSH In order to compute a similarity join using LSH, an output optimal algorithm was described by [START_REF] Hu | Output-optimal parallel algorithms for similarity joins[END_REF]. By setting

L K = 1
p1 , the algorithm is dened in three steps:

1. Randomly and independently select L K hash functions g 1 , ..., g L K ∈ G σ , and broadcast them to all servers. 2. For each trajectory t, emit a key/value pair <(i, g i (t)), t> for all i ∈ 1, ..., L K 3. Perform an equi-join on all copies of the pairs by treating (i, g i (t)) as the join attribute value, i.e., two trajectories U, V join if g i (U) = g i (V) for all i. For a pair of trajectories U, V , output them if dist(U, V) ≤ λ.

As p 1 is not dened according to the grid resolution σ, we present in the experiments several values of the iteration's number L K and their results in terms of recall and precision parameters. During the third step (Reducer phase), the distance of Fréchet between all trajectories having a common key (join attribute value) will be computed.

Since the node sequences resulting from the LSH may require a lot of memory, a hashing function using the multiply-shift [START_REF] Thorup | High speed hashing for integers and strings[END_REF] is used to associate an integer to each sequence. i.e., if h a hashing function using the multiplyshift, a key (i, g i (t)) will be hashed by (i, h(g i (t))). To simplify notation of keys from each LSH iteration, H j i will denote the tuple (i, H j) with H j the sequence of hashed nodes of a given trajectory for i ∈ 1, ..., L K .

Distributed histograms

To reduce communication costs while guaranteeing perfect balancing properties among all processing nodes, a distributed histogram of the relation is constructed in the same manner as in [START_REF] Hassan | Handling data-skew eects in join operations using mapreduce[END_REF]. This histogram is the association between a key and its frequency in both datasets R and S. Distributed histograms are used to generate communication templates, allowing to distribute only relevant data fairly during the join phase. Distributed histograms avoid the eects of data skew, due to the fact that data will be partitioned into buckets tting in memory. For a set R, let us denote L(R) the set of keys of R and f x R the number of elements of R which have

x as key (when it is clear from context x will be omitted).

Denition 1 For a dataset R, a histogram is dened as a function Hist R that maps each element x of L(R)

to its frequency f x R .

In order to distribute only relevant data, only keys which might be present in join result are present in the histogram. A key producing a result implies that none of its frequencies in R and S are zero. The set of keys which produce a result are in L(R) ∩ L(S). Thus, we can dene a histogram for the similarity join R σ S which contains only relevant data.

Denition 2 Let Hist(R σ S) be the function:

x ∈ L(R) ∩ L(S) → (f x R , f x S).
Communication templates require a parameter which is denoted by f max . This parameter denes the number of trajectories from a relation that a Reducer will have to store and process during the join. Owing to this parameter, the trajectories having a common key will be divided into several buckets (blocks), so that, each bucket can be loaded in memory. f max is chosen in a manner that each bucket will t in Reducer's memory. This makes the MRS-join algorithm insensitive to the eects of data skew. Partitioning data into buckets guarantees that, all join tasks are generated in a manner that the input data for each join task will t in the memory of processing nodes and never exceed a user dened size, even for highly skewed datasets.

For a key x belonging to the histogram Hist(R σ S) during the join, the communication templates will distribute all buckets according to one of the following three cases:

If f x R < f max and f x S < f max (i.e. the key corresponds to low frequencies in both datasets R and S and holds in memory on a single Reducer),

If f x R > f max and f x R > f x S (i.
e. the frequency in relation R is very high and is greater than in S),

If f x S > f max and f x S > f x R (i.e.
conversely, the frequency in dataset S is higher than in R).

In the rst case, the trajectories corresponding to the key x are sent to a single Reducer, without special processing, using hashing whereas in the following two cases, a preprocessing is performed to balance the join computation on several Reducers. Thus, for a given key x, the relation corresponding to the lowest frequency is replicated on several nodes while the relation having the highest frequency is distributed over these same

nodes. An example of the second case where a key x is more frequent in the dataset R than S is shown in Figure 2.

Fig. 2: Distribution of trajectories from R and replication of trajectories from S for a given key x.

In this example, each column corresponds to the data sent to a reduce task. All trajectories having the key

x from the dataset R are divided into 3 buckets (blocks) and sent over 3 dierent Reducer tasks, whereas all trajectories corresponding to the key x from the dataset S are replicated on these tasks. To balance the load among processing nodes, the rst reduce task identied by i 0 is computed using a random integer which can be derived from the key x.

Appropriate MapReduce (Key,Value) pairs are used to ensure that the buckets are sorted in the correct order.

To this end, each emitted tuple is of the form <key, reducerId, line, bucketId>. The line value is used to ensure the order in the Reducer side. It is represented in Figure 2. The pairs are redirected by the partition function by means of the reducerId value. For a given Reducer task, the join is computed by using the following algorithm for each key corresponding to a high frequency:

Store in memory the distributed buckets (i.e. the line is at zero); Compute the join with replicated buckets (i.e. line is greater than zero).

To use this communication template, the histogram must hold in memory. We present a new way to distribute it for multiple join attribute values. Distribution is based on the appearance of the keys in the dierent splits. When building the histogram, the identiers of splits where the key appears are saved. This set of identiers holds in memory even for very large datasets since a HDFS split corresponds by default to 128Mb. Since entries are compressed, the splits are consistent during all steps. To work, the job distribution must have as many reduce tasks as the number of splits. Let <x, ((f x R , f x S), splitId*)> be an entry of the distribution job of a key

x ∈ L(R) ∩ L(S), (f x R , f x S) its entry in the histogram and splitId* the set of identiers of split where the key x was found. The algorithm is as follows for each entry of the histogram:

Mapper: Emit a pair <id, (x, (f x R , f x S))> for all id ∈ splitId * .

Reducer: Write to HDFS all received values

During the next Mapper task requiring the distributed histogram, only retrieving their split identier is needed to fetch and store in memory the Reducer corresponding output. Due to the fact that the size of distributed histogram does not depend on the global size of the entries, it ts in memory. Returns the frequencies associated to the key x ∈ L(Γ), We will describe the MRS-join algorithm while giving a cost analysis for each computation step. The O(. . .) notation only hides small constant factors: they only depend on the program's implementation, but neither on input datasets nor on processing machine parameters. MRS-join proceeds in 4 steps, including one or more MapReduce jobs. The Figure 3 represents the interactions between these dierent steps of the algorithm:

Hist(R σ S) Global histogram reduced of partitions contained in another partition. With y ∈ L(R) ∩ L(S), all key x ∈ L(R) ∩ L(S) \ y such that Γ (x) ⊂ Γ (y) are deleted. In addition, if Γ (x) = Γ (y),
Compute LSH keys of each trajectory, A histogram of the join is computed to guarantee balanced communication patterns regardless the data distribution [START_REF] Hassan | Handling data-skew eects in join operations using mapreduce[END_REF],

The histogram computed previously is reduced to optimize the communication costs to only relevant data. All keys which have their partitions included in another partition are deleted, By using histogram, an ecient and scalable communication template scheme is generated and the distance between pairs of trajectories identied as similar is computed using the most ecient algorithm in the literature [START_REF] Baldus | A fast implementation of near neighbors queries for fréchet (GIS cup)[END_REF][START_REF] Ceccarello | Fresh: Fréchet similarity with hashing[END_REF] to generate similarity-join output.

LSH keys computation

LSH keys of trajectories are computed using a MapReduce job where only a map phase is performed as shown in Figure 3.1.

In the input data, each trajectory is dened by a unique identier, the tag of its data source (R or S) and its sequence of points. This step computes the L K keys of each trajectory using the map function dened in the Read from HDFS the L K hash function.

Compute lsh_keys: the L K LSH keys of trajectory.

Emit a key-value: <(id, tag, trajectory, lsh_keys)>.

By noting N p , the average number of points in input trajectories, the cost of this step is at most:

T ime(1.A) = O(max N M i=0 c r/w * |Γ map i | + L K * Np * Γ map i).
The rst term c r/w * |Γ map i | is the time to read trajectories from HDFS on Mapper i. The second term L K * Np * Γ map i is the time needed to compute LSH keys of all the trajectories of the fragments aected to Mapper i. In order to reduce the number of jobs, it is possible to include this algorithm at the beginning of the following steps.

Creation and distribution of the histogram

Once the keys have been computed for each trajectory, a histogram of the relation is computed. A histogram is the association between a key and its frequency both in R and S datasets. The aim of histograms is to identify the keys associated to high frequencies (these keys are generally those having a large eect on load imbalance among processing nodes). Identifying these keys will allow us to generate appropriate communication templates to avoid the eects of data skew while guaranteeing perfect balancing of load, among processing nodes, during all the steps of MapReduce similarity-join computations.

To distribute the trajectories equitably and eciently using histograms, it is necessary to load the histogram in memory. The size of the global histogram depends on the size of the entry to be processed. Therefore, it is impossible to guarantee that it can hold in memory. However, when joining, a map function only processes its split data, it will not need the entire histogram. Therefore, a second job DistributeHistogram is needed to distribute the histogram entries according to their appearance in the dierent splits. These two jobs are represented by Figure 3.2 and will be described in the next two subsections.

3.2.A Creation of the histogram step

The MapReduce job of histogram creation is described in Algorithm 2.A and a working example is shown in Figure 2.A. In order to compute frequencies of each key, the map phase emits for each trajectory and for all

x ∈ lsh_keys a tuple of the form (0 | 1, 0 | 1, splitId). The rst two values depend on the data source of the trajectory. For a trajectory belonging to the dataset R, the tuple will be of the form (1, 0, splitId).

The Combiner computes the local frequencies of the current split lf R and lf S for each key by summing each column separately. Reducers sum up the frequencies received and lter out keys with zero frequency for a data source. The set of splitId where the key was found is saved in order to be able Compute the union of splitIds.

Emit the pair <x, (f R , f S , splitId*)> if the key is present in R and S.

(T0, R, [H 0 0 , H 1 1]) (T1, S, [H 0 0 , H 2 1]) map 1 <H 0 0 ,(1, 0, 1)> <H 1 1 ,(1, 0, 1)> <H 0 0 ,(0, 1, 1)> <H 2 1 ,(0, 1, 1)> group                        <H 1 1 ,(1, 0, 1)> <H 3 1 ,(1, 1, 2)> reduce1 <H 3 1 ,(1, 1, {2})> (T2, R, [H 0 0 , H 3 1]) (T3, S, [H 0 0 , H 3 1]) map 2 <H 0 0 ,(1, 0, 2)> <H 3 1 ,(1, 0, 2)> <H 0 0 ,(0, 1, 2)> <H 3 1 ,(0, 1, 2)> <H 2 1 ,(0, 1, 1)> <H 0 0 ,(1, 1, 1)> <H 0 0 ,(1, 1, 2)> reduce2 <H 0 0 ,(2,

T ime(2.A.Mapper

) = O N M max i=0 c r/w * |Γ map i | + L K * Γ map i + L K * Γ map i * log(L K * Γ map i) .
Emitted pairs are then combined, partitioned and sent to the dierent Reducers. The term L K * Γ map

3.2.B Histogram distribution

The global histogram is then distributed using DistributeHistogram job described in the 2.B algorithm. By setting the number of reduce tasks to be equal to the number, {Γ } , of splits of Γ , the output of a reduce task j corresponds to the histogram needed for the split Γ split j . For the following tasks requiring the histogram, it will therefore suce to retrieve their splitId and read the output of this job associated with their splitId.

+ {Γ } * Hist map i (R σ S) * log({Γ } * Hist map i (R σ S)) + cc * |Hist map i (R σ S)| * {Γ } .
Each fragment processed by a reduce function corresponds to a necessary histogram of a split. There are several reduce tasks executed on the Reducer i. Each of these tasks has an identier j such as j ∈ 0.. {Γ } , since the number of reduce tasks is set to be equal to the number of split. By noting {F i }, the set of reduce tasks executed on the Reducer i, the cost of this step is as follows.

T ime(2.B.Reducer

) = O N R max i=0 {F i } j Hist j (R σ S) + c r/w * |Hist j (R σ S)| .
The rst term Hist j (R σ S) corresponds to the cost of executing a reduce task on Reducer i. The second term c r/w * |Hist (R σ S)| is required time to write output of a reduce task. Thus, this job will have the following cost: T ime(2.B) = T ime(2.B.Mapper) + T ime(2.B.Reducer).

Reduction of the global histogram step

In order to reduce the intermediate results of the next Similarity join step and therefore decrease the number of trajectories comparisons, it is possible to reduce the overall histogram. Indeed, by reducing the histogram, the trajectories will be less replicated on the Reducers.

The aim of this step is therefore to delete all the partitions which are contained in another. All these partitions are not necessary for the computation since the similarity of these trajectories can be ensured by another partition.

To remove these partitions, the algorithm represented by the Figure 3.3 is composed of two MapReduce jobs followed by a job to distribute the histogram. This last job is equivalent to the one described in the previous subsection 3.2.B. By noting the set of trajectories having the key x ∈ L(R) ∩ L(S) by Γ (x), the purpose of the job SuperPartition is to compute the set of keys y ∈ L(R) ∩ L(S) \ x such as Γ (x) ⊆ Γ (y). We will denote by I(x), the set of keys verifying this property.

The aim of the second job is to check for any y ∈ I(x) whether the inclusion is strict. The three scenarios are as follows. If Γ (x) ⊂ Γ (y) for at least one key y then the key x can be removed from the histogram since the join will be provided by the key y. The second case is the following, if for all y ∈ I(x), Γ (x) = Γ (y) then only one of the key of x ∪ I(x) is necessary and should be present in the reduced histogram. Finally, if I(x) = ∅ then no other key produces the join of this set of trajectories and the key x has to be present in the reduced histogram. Using the histogram, the map 1 function will send only two pairs. These pairs are then combined using intersections on the sets of emitted keys in order to compute I(H 0 0). The key H 0 0 is then sent to the Reducer to complete the intersection between all sets of keys. For the key H 0 0 , the set is empty, so there is no other key whose partition contains the partition of H 0 0 . For the key H 3 1 , the partition is as follows {T 2 , T 3 }, this partition is contained by the partition of the key H 0 0 . Therefore, I(H splitId ← getCurrentSplitId ();

Read and the distributed histogram associated to the current splitId.

Compute for each trajectory the set of keys present in the histogram, noted lsh_keys.

Get the tuples associated to each key in the histogram.

Emit a pair <x, (lsh_keys, Hist(Γ)(x), splitId)> for all x ∈ lsh_keys .

Combine: <x, (lsh_keys, Hist(Γ)(x), splitId)*> → <x, (I map Compute the union of splitIds.

Emit a pair <x, (I (x), Hist(Γ)(x), splitId*)> for any received key x.

splitId Distributed histogram 1 <H 0 0 , (2, 2)> 2 <H 0 0 , (2, 2)> 2 <H 3 1 , (1, 1)>
Table 3: Distributed histogram using the output of step .

(T 0 , R, [H 0 0 , H 1 1]) (T 1 , S, [H 0 0 , H 2 1]) map 1 <H 0 0 , ({H 0 0 },2,2,1)> <H 0 0 , ({H 0 0 },2,2,1)> combine <H 0 0 , ({H 0 0 },2,2,1)> reduce 1 <H 0 0 , (∅, 2, 2, {1, 2})> (T 2 , R, [H 0 0 , H 3 1]) (T 3 , S, [H 0 0 , H 3 1]) map 2 <H 0 0 , ({H 0 0 ,H 3 1 },2,2,2)> <H 3 1 , ({H 0 0 ,H 3 1 },1,1,2)> <H 0 0 , ({H 0 0 ,H 3 1 },2,2,2)> <H 3 1 , ({H 0 0 ,H 3 1 },1,1,2)> combine <H 0 0 , ({H 0 0 ,H 3 1 },2,2,2)> <H 3 1 , ({H 0 0 ,H 3 1 },1,1,2)> reduce 2 <H 3
* Γ map i * log(L 2 K * Γ map i). T ime(3.A.Mapper) = T ime(3.A.Mapper.init) + O N M max i=0 c r/w * |Γ map i | + L 2 K * Γ map i + L 2 K * Γ map i * log(L 2 K * Γ map i) .
Using the combine function, intermediate results can be reduced and the communication phase optimized.

The cost is as follows.

T ime(3.

A.Combiner) = O N M max i=0 L 2 K * Γ map i + {Γ map i } j (cc * |Hist j (R σ S)|) .

3.3.B Histogram reduction step

For each input of its split, the RemoveSubMapper, presented by the 3.B algorithm, emits a primary pair <(x, 0), (ε, Hist(Γ)(x), splitId*>)> for each input key. For some element y of its set I(x) a secondary pair <(y, 1), (x, ∅, Hist(Γ)(x), ∅>) is emitted. When sorting, adding this integer to the sent key allows the primary pairs to arrive before the secondary pairs. The primary pair (<x, 0>) is saved by the Reducer and the emitters of the secondary pairs are deleted from I(x). At the end of the execution of a key, if its set I(x) is empty then it has to be present in the reduced histogram. Indeed, if I(x) is empty then the partition x is not included in another partition. Moreover, due to the added relation order in the map function at the line 4, the case where one partition is equal to all the others is solved.

To optimize the size of the intermediate results, a Combiner is implemented using the following two observations. For a given key x ∈ L(R) ∩ L(S), all the elements y of I(x) have frequencies greater than or equal to the frequencies of x since Γ (x) ⊆ Γ (y). Moreover, I(x) has at most a size equal to L K -1 by its construction. As the purpose of the Reducer is to remove emitters from I(x), i.e partitions containing the partition of x, the Combiner can search and send only the secondary pairs with the maximum frequency if the number of pairs is less than L K -1. -the frequency of the pair is not maximum, -the number of pair with the maximum frequency is greater than L K -1.

Reduce: <x, label, (ε | emitter, I(x)|, Hist(Γ)(key)|Hist(Γ)(emitter), splitId*|)> → <x, (Hist(Γ)(x), splitId*)> Save the primary pair <(x, 0), (I (x), Hist(Γ)(x), splitId*)>. For each secondary pair received, the emitter is deleted from the saved set I(x). Emits a <x, (Hist(Γ)(x), splitId*)> pair if the saved set I(x) is empty after this processing. a primary pair since its set I(H 0 0) is empty. The key H 3 1 emits two pairs. A primary containing its set I(H 3 1), its associated histogram values, and the identier of its split. A secondary (H 0 0 , 1) containing only the emitting key and its associated histogram values. The Combiner in this example is not shown since it does not lter any pair. The Reducer computing the key H 3 1 does not receive any other secondary pair. As its set I(H 3 1) is not empty, the key

H 3 1 is removed. <H 0 0 , (∅, 2, 2, {1,2})> map 1 <(H 0 0 , 0), (ε, ∅, 2, 2, {1, 2})> group <(H 0 0 , 0), (ε, ∅, 2, 2, {1, 2})> <(H 0 0 , 1), (H 3 1 , ∅, 1, 1, ∅)> reduce1 <H 0 0 , (2, 2, {1, 2})> <H 3 1 , ({H 0 0 }, 1, 1, {2})> map 2 <(H 3 1 , 0), (ε, {H 0 0 }, 1, 1, {2})> <(H 0 0 , 1), (H 3 1 , ∅, 1, 1, ∅)> <(H 3 1 , 0), (ε, {H 0 0 }, 1, 1, {2})> reduce2
i (R σ S)| + L K * Hist map i (R σ S) + L K * Hist map i (R σ S) * log(L K * Hist map i (R σ S)) .
Owing to the Combine phase, only L K secondary pairs are sent for each key. The cost of this phase corresponds

to the term L K * Hist map i (R σ S) . T ime(3.B.Combiner) = O N M max i=0 L K * Hist map i (R σ S) .
T ime(3.B.Reducer) = O N R max i=0 cc * |Hist red i (R σ S)| + N M * L K * Hist red i (R σ S) + c r/w * |Hist red i (R σ S)| .
And the overall cost of this job is:

3.3.C Histogram distribution step

This job is similar to the Algorithm 2.B described in the previous section 3. Compute for each trajectory the set of keys present in the histogram, noted lsh_keys.

Generate for each lsh_keys the communication templates according to the frequencies saved in the histogram. Only the relevant data is sent using the communication templates dened previously (2.5).

Emit pairs according to communication templates (subsection 2.5).

Partition: <(x, reducerId, line, bucket), (trajectory, lsh_keys)> → Integer

Redirect each pair to the computed reducerId.

Reduce: <(x, reducerId, line, bucket), (trajectory, lsh_keys)> → (id R , id S)>

Compute the join of the trajectories using to the communication templates.

For each pair of trajectories coming from R and S:

-Check if this pair of trajectories is computed by another key using emitted sets lsh_keys.

-Compute the intersection of the sets lsh_keys.

-A key is dynamically computed to know which Reducer lters this pair of trajectories. 0.A -If the current key correspond to computed the key, compute the Fréchet distance (subsection 2.2) and output the pair (id R , id S) if the distance is lower than λ. T ime(4.A.

Analysis

Mapper) = O N M max i=0 c r/w * |Γ map i | + {Γ map i } j (c r/w * |Hist j (R σ S)|) + L K * R map i + L K * S map i + L K * R map i * log(L K * R map i) + L K * S map i * log(L K * S map i) + L K * cc * (|R map i | + |S map i |) .
We recall that, in this step, only relevant data is sent by Mappers because of the distributed histogram. Records associated to a highly frequent key are redistributed according to our ecient dynamic partition/replicate schema to balance load among reducers and to avoid the eect of data skew. Records associated with low frequency key are redistributed using default hashing functions.

The cost of the Reducer phase is as follows. By noting t f the complexity of computing the Fréchet distance, the term t f * R Reducer's i join output on the HDFS. MRS-join algorithm has asymptotic optimal complexity when:

max N M max i=0 ({Γ map i } j c r/w * |Hist j (R σ S)|), L 2 K * Γ map i * log(L 2 K * Γ map i) ≤ max N M max i=0 (||R map i || * log ||R map i ||, |S map i || * log ||S map i ||), N R max i=0 t f * R red i σ S red i) ,
where the term

{Γ map i } j c r/w * |Hist j (R σ S)| is the cost to read distributed histograms and the term L 2 K * Γ map i * log(L 2 K * Γ map i
) is the optional cost to optimize the global histogram. This is due to the fact that, all other terms in T ime(MRS-join) are bounded by those of bound inf . We recall that the sizes of distributed histograms are very small compared to input datasets sizes and all the terms of T ime(MRS-join) remains very small when compared against naive algorithms requiring pairwise comparison of all trajectories.

Remark: In practice, data imbalance related to the use of hashing functions can be due to:

a bad choice of used hash function. This imbalance can be avoided by using the hashing techniques presented in the literature which have the property of distributing uniformly with a very high probability [START_REF] Carter | Universal classes of hash functions[END_REF],

an intrinsic data imbalance which appears when some values of the join attribute appears more frequently than others. There is no way for a clever hash function to avoid load imbalance that results from these repeated values. However, this case cannot arise here since we applied hashing functions to histograms which contain only distinct values or to randomized keys.

Experiments

In this section, we discuss the eciency and the strength of our theoretical analysis by experimenting MRS-Join algorithm on real world and synthetic datasets by measuring recall, precision and eciency. This analysis was performed on a cluster of 11 machines. Each machine has the following characteristics: Intel(R) Xeon(R) CPU E5-2650 @2.60GHz, 16Gb of memory and 300Gb of HDD disk. Experiments are performed on the top of Hadoop 3.2.1 framework using 6Gb of Heap memory for Map/Reduce tasks.

The Taxis dataset

The rst ECML / PKDD (Porto) 1 dataset used describes the mobility of 442 taxis during a year. The dataset contains 1.7 million trajectories. Each trajectory corresponds to travel of a passenger with one of the taxis. The GPS locations of the taxi during a trip were recorded every 15 seconds in the WGS84 format. The length of the trajectory varies between 1km and 15km. To simulate a R-S join, a random label (R or S) has been assigned to each trajectory. The Table 4.1 shows that most of similar pairs were found by LSH. In the following

Data skew eects on Similarity-join processing using synthetic datasets

To show when the Standard version fails, we present results on a dataset with an imbalance in the data distribution. To create this dataset, we took the previous dataset and added trajectory copies. The number of added copies follows a Zipf distribution [START_REF] Florence | Human Behaviour and the Principle of Least Eort[END_REF]. The Zipf factor varies from 0 (for a uniform distribution) to 1.6 (for a highly skewed distribution). The

Conclusion

In this article, we have introduced MRS-join an ecient and scalable MapReduce Similarity-join, for trajectories, using LSH and randomized communication templates to avoid the eects of data skew even for highly skewed large datasets. The MRS-Join cost analysis and experiments, using real world and synthetic benchmarks datasets, show that the overhead related to the use of distributed histograms remains very small compared to the gain in performance by reducing communication and data processing to only relevant data (this avoids pairwise comparison of all trajectories) while guaranteeing perfect balancing properties during all the stages of similarity join computation. We recall that in the MRS-join, all MapReduce generated buckets never exceed a user dened size. This makes the algorithm scalable and insensitive to data skew. It also solves the limitations of existing approaches to handle large datasets whenever data associated to a MapReduce key cannot t in the available reducer's local memory.

i)

 have an entry in the histogram, Hist(R σ S) Global histogram reduced to contain only the keys of L(R) ∩ L(S).

 σ S) Fragment of Hist (R σ S) aected to Mapper i, Hist red i (R σ S) Fragment of Hist (R σ S) aected to Reducer i, Hist j (R σ S) Part of Hist(R σ S) needed by split Γ split j ; all the keys of L(R) ∩ L(S) ∩ L(Γ split j) have an entry in the histogram. Note that the size of this histogram depends of the number of trajectories in a split, Hist(Γ)(x)

Γ

 only one key among x ∪ y is saved. This histogram is smaller compared to Hist(R σ S), Hist j (R σ S) Part of Hist(R σ S) required to compute the split Γ split j , Subset of Γ corresponding to keys that are present in the reduced histogram Hist(R σ S), L K Number of iterations of the LSH strategy (it also corresponds to the number of LSH keys per trajectory), N M Number of Mappers, N R Number of Reducers, c r/w Read/write cost of a page of data from Distributed File System (DFS), c c Communication cost per page of data.

Fig. 3 :Fig. 3 . 1 :

 331 Fig. 3: MapReduce Similarity-join computation steps.

Fig. 3 . 2 :

 32 Fig. 3.2: Distributed computation steps.

 to distribute the global histogram during the job DistributeHistogram. For the sake of clarity, in the following examples the sequence of points forming a trajectory is never represented. Algorithm 2.A: CreateHistogram Step A of MapReduce job Map: <id, tag, trajectory, lsh_keys> → <x, (0 | 1, 0 | 1, splitId)> splitId ← getCurrentSplitId (); Emit a pair according to its data source for any x ∈ lsh_keys: -<x, (1, 0, splitId)> when the trajectory belongs to R -<x, (0, 1, splitId)> when the trajectory belongs to S Combine: <x, (token R , token S , splitId)*> → <x, (lf R , lf S , splitId)> Compute local frequencies by summing up tokens. Emit a pair <x, (lf R , lf S , splitId)>. Reduce: <x, (lf R , lf S , splitId)*> → <x, (f x R , f x S , splitId*)> Compute the global frequencies in R and S.

 2, {1, 2})> Example 2.A: Execution example of the CreateHistogram job. Analysis of CreateHistogram job: The cost of the map phase is as follows. The term c r/w * |Γ map i | is the time, for the Mapper i, to read its associated Γ map i fragment from HDFS. The term L K * Γ map i is the number of pairs emitted by Mapper i. The last term L K * Γ map i * log(L K * Γ map i) is the time required to sort the emitted pairs by the map function.

 i is the cost to compute the local frequencies. The term cc * |Hist(Γ map i)| is the required time for communication phase between Mappers and Reducers. T ime(2.A.Combiner) = O N M max i=0 L K * Γ map i + cc * |Hist(Γ map i)| . The dierent partitions are retrieved from the Mappers, the term Hist red i (Γ) is the necessary time to compute the sum of the local frequencies and the union of splitId on the Reducer i. The term c r/w * |Hist red i (R σ S)| is the cost for Reducer i to write the histogram to the HDFS.) + c r/w * |Hist red i (R σ S)| . This job will have the following cost: T ime(2.A) = T ime(2.A.Mapper) + T ime(2.A.Combiner) + T ime(2.A.Reducer).

 B: Execution example of DistributeHistogram job. Analysis of DistributeHistogram job: Each Mapper reads its fragment of the histogram, thus the cost is c r/w * |Hist map i (R σ S)|. For each entry in the histogram, there is a maximum of {Γ } pairs sent. The cost of this step corresponds to the term {Γ } * Hist map i (R σ S) . The term {Γ } * Hist map i (R σ S) * log({Γ } * Hist map i (R σ S)) corresponds to the time required to sort the intermediate results on the Mapper i. The intermediate results are then sent; at the cost of cc * |Hist map i (R σ S)| * {Γ } . Therefore, this mapper's step requires at most: T ime(2.B.Mapper) = O N M max i=0 c r/w * |Hist map i (R σ S)| + {Γ } * Hist map i (R σ S)

Fig. 3 . 3 :

 33 Fig. 3.3: Histogram reduction steps

3 1)

 1 has for only one element H 0 0 . Analysis of job ComputeSuperPartititon: Each fragment is made up of a set of split. The cost of the init function is as follows. The term c r/w * |Hist j (R σ S)| corresponds to the time, for a map function, to read the necessary histogram for its corresponding split of data. T ime(3.A.Mapper.init) = O N M max i=0 {Γ map i } j c r/w * |Hist j (R σ S)| .Algorithm 3.A: SuperPartition Step A of MapReduce job Map: <id, tag, trajectory, lsh_keys> → <x, (lsh_keys, Hist(Γ)(x), splitId)> init:

i

 (x), Hist(Γ)(x), splitId)> Compute the intersection of the lsh_keys denoted by I map i (x).

 , Hist(Γ)(x), splitId)> Reduce: <x, (I map i (x), Hist(Γ)(x), splitId)*> → <x, (I(x), Hist(Γ)(x), splitId*)> Compute I(x), the intersection of the received I map i (x). Remove x from I(x).

1 , 2 K

 12 ({H 0 0 },1,1,{2})> Example 3.A: ComputeSuperPartititon job example. The cost of the Mappers is as follows. The term c r/w * |Γ map i | is the time for the Mapper i to read its fragment from HDFS. At most, a pair is sent for each key of each trajectory, which corresponds to the term L * Γ map i . These intermediate results are then sorted at a cost of L 2 K

The term L 2 K

 2 * Γ map i corresponds to the size of the input of the function combine on the Mapper i. The second term {Γ map i } j (cc * |Hist j (R σ S)| corresponds to the communication cost for the Mapper i.

T

 ime(3.A.Reducer) = O N R max i=0 N M * Hist red i (R σ S) + c r/w * |Hist red i (R σ S)| .The job ComputeSuperPartititon will have the following global cost: T ime(3.A) = T ime(3.A.Mapper) + T ime(3.A.Combiner) + T ime(3.A.Reducer).

 The following example 3.B continues from the previous example. The key H 0 0 will only send Algorithm 3.B: RemoveSubPartition Step B of MapReduce job Map: <x, (I(x), Hist(Γ)(x), splitId*)> → <x | y, 0 | 1, (ε|x , I(x)|, Hist(Γ)(x), splitId*|)> Emits a pair <(x, 0), (ε, Hist(Γ)(x), I(x), splitId*)>. foreach y ∈ I(x) do 4 if y <x then Emit a pair <(y, 1), (x, Hist(Γ)(x), ∅, ∅)> end end Combine: <(x, label), (ε | emitter, I(x) |, Hist(Γ)(x)|Hist(Γ)(emitter), splitId*|)> → <(x, label), (ε | emitter, I(x)|, Hist(Γ)(x)|Hist(Γ)(emitter), splitId*|)> Emits the primary pairs (x, 0) without any processing. The secondary pairs (x, 1) are discarded if:

Example 3 .

 3 B: RemoveSubPartition job example. Analysis of job RemoveSubPartition: The cost of the Mapper phase is as follows. The term c r/w * |Hist map i (R σ S)| corresponds to the time for the Mapper i to read the histogram resulting from the previous step from the HDFS. The term L K * Hist map i (R σ S) refers to the maximum number of the emitted pairs by Mapper i. The last term L K * Hist map i (R σ S) * log(L K * Hist map i (R σ S)) represents the maximum time to sort the emitted pairs by the Mapper T ime(3.B.Mapper) = O N M max i=0 c r/w * |Hist map

 The communication cost is represented by the term cc * |Hist red i (R σ S)|. Thanks to the Combine phase, the time required for the execution of the Reducer i can be increased by the term N M * L K * Hist red i (R σ S) . The last term c r/w * |Hist red i (R σ S)| corresponds to the cost to write the results.

T

 ime(3.B) = T ime(3.B.Mapper) + T ime(3.B.Combiner) + T ime(3.B.Reducer).

j

 2.B. The goal is always to distribute the global histogram according to the appearance of the keys in the splits. Each split will be associated to a histogram containing only the necessary keys. This histogram holds in memory since its size depends only on the number of trajectories in the split. The associated algorithms are equivalent but the cost is dierent since the histogram has been reduced. The time required for the Mapper phase is as follows. T ime(3.C.Mapper) = O S) * log({Γ } * Hist map i (R σ S)) + cc * |Hist map i (R σ S)| * {Γ } . The term c r/w * |Hist map i (R σ S)| corresponds to the time to read the fragments of the reduced histogram on the Mapper i from the HDFS. The Mapper i emits a maximum of {Γ } * Hist map i (R σ S) couples. These pairs are sorted at a cost of {Γ } * Hist map i (R σ S) * log({Γ } * Hist map i (R σ S)). The intermediate results are then communicated to the Reducers at a time corresponding to the term cc * |Hist map i (R σ S)| * {Γ } . The reduce phase will have the following complexity. The term Hist j (R σ S) corresponds to the execution time of a reduce function on the Reducer i. Each Reducer j emits the necessary histogram of the split Γ split j , this cost corresponds to the term c r/w * |Hist j (R σ S)|. T ime(3.C.Reducer) = O Hist j (R σ S) + c r/w * |Hist j (R σ S)| . And, this job will have the following cost: T ime(3.C) = T ime(3.C.Mapper) + T ime(3.C.Reducer).

3. 4 Fig. 3 . 4 :

 434 Fig. 3.4: Similarity join computation step.

)

 of similarity join computation job: The cost of the Mapper phase is as follows. The term c r/w * |Γ map i | is the cost for the Mapper i to read its fragment from HDFS. For each split identied by j ∈ {Γ map i }, in its fragment, the Mapper i reads its associated distributed histograms at a cost corresponding to the term c r/w * |Hist j (R σ S)|. The term L K * R map i + L K * S map i corresponds to the cost to perform search operations in the distributed histogram for a given key. The term L K * R map i * log(L K * R map i) + L K * S map i * log(L K * S map i is time to sort relevant data on Mapper i. The term L K * cc * (|R map i | + |S map i |) is time to send data using our communication templates.

+

 cost to lter out false positive emitted by the LSH strategy on the Reducer i. The term c r/w * |R red i λ S red i | refers to the required time for the Reducer i to write results in HDFS. T ime(4.A.Reducer) = O c r/w * |R red i λ S red i | . Therefore, the overall cost of this job is: T ime(4.A) = T ime(4.A.Mapper) + T ime(4.A.Reducer).

4. 2 Fig. 4 . 1 :Fig. 4 . 2 :

 24142 Fig. 4.1: Eects of the dataset size on Hadoop join processing time.

Figure 4 .

 4 3 shows the data skew eect on the execution time for the 1 Ecml/pkdd porto taxi data. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i L K True positive Exact False positive •10

Figure 4 .

 4 [START_REF] Bamha | Pipelining a skew-insensitive parallel join algorithm[END_REF] shows that the number of distances computed by each reduce tasks following a highly skewed distribution, remains well distributed on the dierent nodes of the cluster.Job failed : Out of memoryJob failed : Out of memory Job failed : Out of memory

Fig. 4 . 3 :Fig. 4 . 4 :

 4344 Fig. 4.3: Data skew eect on the Hadoop join processing time using 10 6 of trajectories.

DFS data read. Sort, Combine and Partition data. DFS data write. Shuffle and Sort data

 1 . Its output is a list of intermediate key/value pairs (k 2 , v 2). This list is partitioned by the MapReduce framework depending on the values of k 2 , where all pairs having the same value of k 2 belong to the same group.The reduce function, that must also be written by the user, has two parameters as input: an intermediate key k 2 and a list of intermediate values list(v 2) associated with k 2 . It applies the user dened merge logic on list(v 2) and outputs a list of key/values list(k 3 , v 3).

		Map phase		Reduce phase
	Distributed File System (DFS) split split split split split split split split split	Mapper Mapper Mapper	bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket	Reducer Reducer Reducer	split split split split split split split Distributed File System (DFS)
		Mapper	bucket bucket bucket bucket		

Fig. 1: MapReduce processing workow. In this paper, we used an open source version of MapReduce called Hadoop developed by "The Apache Software Foundation. The Hadoop framework includes a distributed le system called HDFS 2 designed to store very large les with streaming data access patterns. For eciency reasons, in Hadoop MapReduce framework, users may also specify a Combine function, to reduce the amount of data transmitted from Mappers to Reducers during shue phase (see Fig 1). The Combine function is like a local reduce applied (at map worker) before storing or sending intermediate results to the Reducers. The parameters of combine function is:

 3 MRS-Join: A scalable Similarity-join Algorithm using LSH To compute similarity join, R λ S, of two datasets R and S for a threshold distance λ, we assume that input datasets are divided into splits (blocks) of data. These splits are stored in Hadoop Distributed File System (HDFS) and are also replicated on several nodes for reliability issues. Throughout this paper, for a dataset Γ ∈ {R, S}, we will use the following notations: Number of identiers of splits of Γ . This number, is in general, very small since only the identiers of splits are stored. We recall that HDFS default split size is 128Mb.Set of LSH keys of Γ , Γ (x), x ∈ L(Γ) Returns the partition (a subset) of Γ corresponding to the LSH key x,

	Γ			Number of entries or records in dataset Γ ,
	|Γ |			Number of pages (or blocks of data) of Γ ,
	Γ map i			Fragment (set of split(s)) of Γ aected to Mapper i,
	{Γ }			Set of identiers of split(s) of Γ ,
	{Γ }			
	Γ split j	, j ∈ {Γ }	Split identied by the integer j belonging to Γ
	Γ red i			Fragment of Γ aected to Reducer i,
	L(Γ)			
	Hist(Γ i map)	Histogram of fragment Γ map i	; i.e., each key of L(Γ map

 An example of the output of the CreateHistogram job is shown in the Figure 2.B.

	(H 0 0 ,(2, 2, {1, 2})) (H 3 1 ,(1, 1, {2}))	map 1	<1, (H 0 0 ,(2, 2))> <2, (H 0 0 ,(2, 2))> <2, (H 3 1 ,(1, 1))>	group	            	<1, (H 0 0 ,(2, 2))> <2, (H 0 0 ,(2, 2))> <2, (H 3 1 ,(1, 1))>	1 reduce reduce	<H 0 0 ,(2, 2)>

Algorithm 2.B: DistributeHistogram

Step B of MapReduce job Map: <x, (f R , f S , splitId*)> → <splitId, (x, (f R , f S))>

Emit a pair <splitId, (x, f R , f S)> for any splitId of the union computed previously.

Reduce: <splitId, (

x, (f

R , f S))*> → <x, (f R , f S)>

Emit a pair <x, (f R , f S)> for all the received values.

 Analysis of MRS-join algorithm: The global cost of MRS-join algorithm is therefore the sum of all previous steps.Using LSH, the MapReduce similarity join computation of two relations and S requires at least the following represents the cost to communicate data from Mappers to Reducers, the term t f * R red

	lower bound:							
	bound inf = Ω		N M max i=0	(c r/w + c comm) * (|R map i	| + |S map i	|) + ||R map i	|| * log ||R map i	|| + ||S map i	|| * log ||S map i	||
								+	N R max i=0	t f * R red i	σ S red i	+ c r/w * |R red i	λ S red i | ,
	where c r/w * (|R map i	| + |S map i	|) is the cost of reading input relations from HDFS on node i. The term ||R map i	|| *
	log ||R map i	|| + ||S map i	|| * log ||S map i	|| represents the cost to sort input relations records on map phase. The term
	ccomm * (|R map i S red i is time to compute Fréchet distance on Reducer i and c r/w * |R red |+|S map i |) i i λ S red i | represents the cost to store σ

Table ,

 , True positive denotes the number of close trajectories correctly generated and False positive denotes the number of distances computed by the algorithm on far trajectories. We notice that False positive number remains very small compared to naive algorithms which require pairwise comparisons of all trajectories of input datasets.

	L K True positive	Exact	False positive •10 8 Recall Precision
	16	18086086	18827613	6,3	0.961	0.028
	32	18557037	18827613	9,9	0.985	0.018
	64	18734572	18827613	10,5	0.995	

Table 4 .

 4 1: Similarity-Join results using the Porto taxi database benchmark.Execution time for the taxi dataset, for both standard and MRS-Join algorithm, are similar to those observed for synthetic datasets of the same size.

Table 4 .

 4 2: Results using 10 6 trajectories composed of 20 points on average. L K True positive Exact False positive •10 6 Recall Precision

	8 Recall Precision

Table 4 .

 4 3: Results using 10 6 trajectories composed of 50 points on average. standard and MRS-join algorithms. We see that, for a Zipf parameter varying from 1.0 to 1.6, the Standard algorithm jobs fail due to lack of memory. Since all the trajectories having the same join key are forwarded to the same Reducer, Standard algorithm is very sensitive to data skew which limits its scalability. This cannot happen in MRS-join because the join computations for a highly frequent key, are partitioned into buckets and transmitted to distinct Reducers in a random manner. This makes MRS-join algorithm insensitive to the imbalance of data.

Future work will be devoted to MapReduce sequences similarity processing in large datasets using prex ltering and/or similar techniques based on randomized MapReduce data redistribution to balance load among processing nodes while guaranteeing the scalability of the proposed solutions in large scale systems.