
HAL Id: hal-03276700
https://hal.science/hal-03276700

Submitted on 2 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible Querying using Disjunctive Concepts
Grégory Smits, Marie-Jeanne Lesot, Olivier Pivert, Ronald R Yager

To cite this version:
Grégory Smits, Marie-Jeanne Lesot, Olivier Pivert, Ronald R Yager. Flexible Querying using Disjunc-
tive Concepts. International Conference on Flexible Query Answering Systems, Sep 2021, Bratislava,
Slovakia. �hal-03276700�

https://hal.science/hal-03276700
https://hal.archives-ouvertes.fr

Flexible Querying using Disjunctive Concepts

Grégory Smits1, Marie-Jeanne Lesot2, Olivier Pivert1, and Ronald R. Yager3,4

1University of Rennes – IRISA, UMR 6074, Lannion, France
{gregory.smits,olivier.pivert}@irisa.fr

2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
marie-jeanne.lesot@lip6.fr

3Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
4Machine Intelligence Institute, Iona College, New Rochelle, NY

yager@panix.com

Abstract. A DB querying system is said to be flexible if it adapts to
the end user expectations and expertise. This paper introduces a novel
strategy to fuzzy querying that reduces the gap between complex search
conditions end users have in mind and formal queries understood by the
underlying DB system. In the Flexible Querying By Example paradigm,
the proposed strategy, called DCQ standing for Disjunctive Concept
Querying, extends a flexible querying system with subjective disjunc-
tive concepts: it proposes two stored procedures that can be embedded
in any relational database management system to build a formal query
from a few user-given examples that represent the diversity of what the
user is looking for. The first procedure infers the membership function of
the implicit imprecise concept underlying the provided examples, with
the specificity of allowing for complex disjunctive concepts: it is able to
both capture properties shared by most of the selected representative
tuples as well as specific properties possessed by only one specific rep-
resentative tuple. The second procedure allows to exploit the resulting
fuzzy concept in a query.

Keywords: Fuzzy querying, disjunctive fuzzy concept, fuzzy measure,
Choquet integral

1 Introduction

End users expect a lot from their stored data and from querying systems that
make the link between users and data. As a first interaction with a querying
system, users have in fine to express their information need using a formal query
language: SQL in our case as relational data are considered. Faithfully translating
concrete information needs into SQL queries is however a difficult task, and, to be
considered as smart, a DataBase (DB) querying system should help users express
what they are looking for. The Querying By Example (QBE) paradigm alleviates
the user task, only requiring he/she provides a few input tuple examples or the
evaluation of a few data instances. The difficulty is then to understand the
underlying user need, which often corresponds to imprecise, complex, context-
dependent and subjective concepts.

2 Smits et al.

Table 1: Accomodation DB: excerpt of the housing relation extension
housing: {loan INT, surf INT, nbR INT, loc TEXT, outSurf INT}

loan surf nbR loc outSurf

t1 500 25 2 historical center 0
t2 500 30 2 center 0
t3 475 40 3 center 0
t4 400 80 4 suburb 10
t5 450 60 3 suburb 100
t6 400 100 5 outskirts 500
t7 800 25 3 historical center 0
t8 500 20 1 center 10
.

Table 2: User given examples of ideal housing
loan surf nbR loc outSurf

ih1 400 30 2 center 0
ih2 450 40 3 center 10
ih3 400 80 4 suburb 10
ih4 400 100 5 outskirts 500

As an illustrative example, consider a DB about accommodations for rent
described by precise attribute values as surface, number of rooms, distance to
center, loan, etc., and illustrated in Table 1, and a user looking for an ideal hous-
ing to start a professional life, for which he/she provides the instances given in
Table 2. Several very different accommodations may satisfy this vague subjective
concept of an ideal housing. The user may indeed be interested in a small flat
without garden nor balcony if it is located close to the central and vibrant part
of the city, or in a larger flat close to his/her office in the suburb or may even
be willing to live in a small house with garden in the outskirts.

Other examples of such complex concepts are for instance: atypical holidays,
safe investment, promising student, good employee, etc. Such complex searches
are generally disjunctive by nature as very different tuples may satisfy a given
concept, for various reasons. The key issue is then to infer automatically the
definition of the concept underlying the provided representative examples and
to retrieve the data instances satisfying it.

To the best of our knowledge, this issue of extending a flexible querying
system with subjective disjunctive concepts using a QBE strategy has not been
studied so far.

This paper introduces a cooperative querying strategy, called DCQ that
stands for Disjunctive Concept Querying, to help users define fuzzy queries to
retrieve from a relational DB tuples that best satisfy such complex concepts of
a disjunctive nature. More precisely, we devise a Fuzzy Querying By Examples
(FQBE) strategy that eases the concept definition step as it only requires the
user to give a few representative examples of what he/she could be interested

Flexible Querying using Disjunctive Concepts 3

in. From these examples, a membership function describing the associated im-
precise underlying concept is automatically inferred exploiting the chocolate
method [9]: a fuzzy measure is first built to quantify the extent to which combi-
nations of attribute values match the underlying concept, as well as a measure
quantifying the relevance of each attribute value individually. These two quan-
tities are then aggregated using a Choquet integral, to determine the degree
to which a point satisfies the concept. The paper proposes two stored proce-
dures that can be embedded into any Relational DataBase Management System
(RDBMS, PostgreSQL in our case). These two procedures, dedicated respec-
tively to the definition of complex disjunctive fuzzy concepts and their use to
fuzzy querying, can then serve as technical tools to develop enhanced DB query-
ing or recommendation systems that better integrate the end user in data to
knowledge translation processes.

The paper is structured as follows. Section 2 discusses related works and pro-
vides a reminder about the chocolate method the paper proposition exploits.
Section 3 describes the proposed DCQ method and Section 4 a Proof-Of-Concept
implementation of this strategy within a RDBMS.

2 Related Works

This section briefly reminds the main existing approaches to address the task of
answering Query by Examples in data bases. It then describes some general works
in the AI community regarding the definition and automatic learning of concepts
based on some examples. It finally presents in more details the chocolate
concept modeling approach on which the proposed DCQ strategy relies.

2.1 Flexible Querying and FQBE

Query by Example is a paradigm (initially introduced by M. Zloof [13] in the
70’s) that makes it possible to interact with a data base and acquire results
based on: i) one or several input tuples provided by the user or ii) the positive
or negative evaluation of prototypical examples reflecting the content of the
database.

To the best of our knowledge, three types of fuzzy QBE approaches can be
found in the literature. The first one, by De Calmès et al. [3], presented by the
authors as a case-based reasoning approach, looks for those items in the database
that are similar to at least one example (wrt. all the attributes) and dissimilar
to all counter-examples (wrt. at least one attribute). The goal of this approach
is not to infer an interpretable fuzzy query expressing the preferences of the user
but just to retrieve items based on a measure that combines similarity (with
positive examples) and dissimilarity (with counter-examples).

In [12], Zadrozny et al. present a clustering-based approach that provides
items iteratively until the user is satisfied. The new items to be assessed are
selected with a k-NN algorithm. Positive and negative evaluations are used to
find association rules determining whether some fuzzy predicates (from a list of

4 Smits et al.

predefined linguistic terms) are relevant to the user. Then for each attribute,
at best one linguistic term is selected to express the user preferences for this
attribute, only if the support, confidence and lift for the association rule that
found it are “high enough.” As can be seen, this approach resorts to an iterative
evaluation of examples until the user is satisfied, without ever evaluating a fuzzy
query.

In [6], the authors propose an approach that infers a fuzzy query from user-
assessed prototypical examples, based on an algorithm determining the fuzzy
predicates that best represent the positive examples (and at the same time dis-
cards the negative ones). As in [12], they consider a fuzzy vocabulary for each
attribute domain in the database. This vocabulary makes it possible to formu-
late, in a linguistic way, descriptions of the attribute values shared by positive
examples that are not shared by counter-examples (defined as characterizations).

All these approaches aim to infer simple conjunctive fuzzy queries, sometimes
not even explicitly. The DCQ technique we propose in the present paper makes
it possible to build a fuzzy query involving complex fuzzy concepts that cannot
be easily expressed by a conjunctive/disjunctive combination of atomic fuzzy
terms. Moreover, it does not require the user to provide counter-examples but
only a limited number of positive examples.

2.2 Concept Modeling

The issue of concept modelling, at the core of the QBE paradigm, has been widely
studied from a general perspective in artificial intelligence and data management,
for instance in the framework of Formal Concept Analysis [11], as well as its
fuzzy extensions [2], or as fuzzy prototypes [8,5]. In both cases, concepts are
based on a conjunctive view, imposing that all members of the concept have
common attribute values. Only a few works during the 70’s and the 80’s consider
disjunctive concepts, both in the cognitive science [1] and the AI fields [4,7].
Whereas the conjunctive normal form seems to be the most appropriate way to
model knowledge taxonomies, it is also clear that more sophisticated aggregation
operators have to be defined to infer complex search conditions from a tiny set
of user-provided prototypical examples that roughly illustrate what he/she is
looking for.

This corresponds to the underlying principle of the chocolate approach [9]
that allows to relax this classical constraint, as detailed in the next subsection.

Another axis of discussion regarding concept modelling and learning relates to
the relations between concepts, depending whether they are defined in opposition
one to another or independently. The first case is considered when building
prototypes or performing a classification task, it requires the availability of both
examples and counter-examples. It is also applied in most QBE approaches, as
discussed in the previous section. Dealing with each concept individually, as is
the case for FCA or chocolate, means that only representatives of the current
concept are required. chocolate in particular alleviates the requirements on
the user, as it considers that only very few representative examples are available.

Flexible Querying using Disjunctive Concepts 5

2.3 The CHOCOLATE Approach

The chocolate method [9] is a procedure to infer a membership function to
describe a concept C from a user-provided set EC of representative examples:
EC constitutes a partial extent for the underlying and implicit concept C. This
section summarises chocolate three steps (see [9] for a detailed description).

Throughout the paper, the following notations are used: R is a universal
relation or the result of a join query, whose schema is R : {A1, A2, . . . , Am},
each attribute, categorical or numerical, Ai ∈ R is associated with a definition
domain Di. Each tuple t ∈ R (t ∈ A1 × A2 × . . . Am) is defined by the values
it takes on the m attributes, t.Ai denotes the value taken by t on attribut Ai.
A property is defined as a couple made of an attribute and a value, denoted
(Ai, p). A tuple t is said to possess a property (Ai, p) if t.Ai = p and a set of
properties s if ∀(Ai, p) ∈ s, t.Ai = p. Reciprocally, the properties of t are all the
couples (Ai, t.Ai) for i = 1 . . .m.

Relevance of individual attribute values The importance of a property
(Ai, p) wrt. a partial concept extension EC serves to determine whether p is rep-
resentative of the values taken by Ai in EC : the more p is shared, for attribute Ai,
by representative elements of the concept, the more important it is. It is thus
measured as

δi(p) =
|{x ∈ EC/x.Ai = p}|

|EC |
. (1)

The strict comparison imposed by the binary matching condition x.Ai = p can be
replaced by a relaxed comparison, considering the condition simi (p, x.Ai) ≥ ηi,
where simi is an appropriate similarity measure on the domain of attribute Ai

and ηi a similarity threshold.

Representativity of attribute value sets Once the properties have been
individually evaluated, the importance of sets of such properties is quantified.
Whereas an individual value is considered important if it frequently appears
in the partial concept extent, the importance of a subset of values depends
on its size and whether it appears at least once in the partial concept extent.
The fuzzy measure µ thus serves to quantify the extent to which the subset
of attribute values matches one of the representative data points in EC . The µ
score is maximal if the assessed set of properties exactly corresponds to one of
the representative data points in EC . Denoting s = {(Ai, pi), i = 1 . . . |s|} such a
set of properties, the binary approach defines µ as:

µ(s) = max
x∈EC

1

m
|{(Ai, pi) ∈ s/x.Ai = pi}|, (2)

where m denotes the number of attributes. As for the δi functions, the strict
comparison t.Ai = pi can be relaxed as simi (p, x.Ai) ≥ ηi.

6 Smits et al.

Aggregation The final step combines the evaluations of atomic properties and
set of properties. chocolate uses the Choquet integral to perform this ag-
gregation of the δi and µ evaluations. It especially takes into account, when
comparing a set of properties wrt. representative data points (using the µ func-
tion), if these evaluated properties are individually specific to one data point or
shared by many. This makes it possible to differentiate between a set of prop-
erties possessed by only a single representative data point and another set of
properties of the same size but shared by several representative data points.

The candidate sets of properties are defined as the set of the most promis-
ing ones, according to their individual δ values: let Hj denote the subset of
the j properties that best match the representative data points from EC , i.e. the
j properties with maximal δ values. Let κj(x) denote the jth value among the δi,
i.e. the matching degree of the jth most representative property possessed by x
wrt. concept C. chocolate defines the membership degree of a data point x to
concept C based on the set of representative examples EC as

SC(x) =

m∑
j=1

(µ(Hj)− µ(Hj−1))κj(x). (3)

3 Proposed DCQ Method for Querying by Example
Disjunctive Concepts

This section explains how to build a fuzzy QBE approach based on the choco-
late strategy , so as to extend a classical RDBMS with disjunctive fuzzy concept
querying capabilities. An implementation of DCQ in a RDBMS (PostgreSQL in
our case) is then presented, describing in turn the two stored procedures: the
first one infers the membership function of a concept from a set of user-selected
examples, implementing the chocolate strategy. The second one can be in-
tegrated into a selection statement to retrieve the tuples that best satisfy the
concept.

3.1 Underlying Principles of DCQ

DCQ initiates the definition of a concept with the few user-given representative
tuples. Identifying these representative tuples directly from the concerned rela-
tion extension is not conceivable in terms of system usability. DCQ is thus based
on a user interface where some selected tuples are suggested to the user who
just has to select those of interest. An illustration of such a graphical interface
is provided Figure 3 in the Proof-of-Concept section. From the whole relation
extension, choosing which tuples to suggest is a research topic in itself that is
outside the scope of this paper.

Once a few tuples of interest have been selected by the user, he/she can then
ask the system to infer a membership function that best covers the properties
they possess. The user only has to name his/her concept, for instance idealHous-
ing for the example mentioned in the introduction. A query is then executed on

Flexible Querying using Disjunctive Concepts 7

?
Act
or

12:00 PM
DBQ with Complex Concepts

http://www.dbq-cc.com

Find

Representative
Examples of the

Searched Answers

Concept Membership
Function Inference

RDB

User Function

+

Derived Fuzzy Query

Fuzzy Relation

of Answers

Fig. 1: Fuzzy QBE system handling complex search concepts

the DBMS to retrieve the tuples that best satisfy the concept. Tuples are then
returned to the user in a decreasing order of their satisfaction degree wrt. the
search concept. Figure 1 sketches the components of the query architecture.

3.2 Concept Definition Inference

Once the few representative tuples of the fuzzy concept to define have been
selected by the user, the procedure that builds it membership function can be
triggered. This procedure has the following prototype:

CREATE PROCEDURE infer concept(label TEXT, rel name TEXT, rep ex HSTORE []);

where the parameters are respectively the label given to the concept to infer,
the name of the considered relation, that can even be a view to the result of
a join query and an array of dictionaries where each dictionary represents a
user-selected representative example.

Example 1. The following example shows how to call the infer concept procedure
that builds the membership function of the concept idealHousing from the user-
selected representative examples introduced in Table 21.
CALL infer concept(‘idealHousing’, ‘housing ads’, {

‘ ”loan”=>400, ”surf”=>30, ”nbR”=>2, ”loc”=>”center”, ”outSurf”=>0 ’,

‘ ”loan”=>450, ”surf”=>40, ”nbR”=>3, ”loc”=>”center”, ”outSurf”=>10 ’,

‘ ”loan”=>400, ”surf”=>80, ”nbR”=>4, ”loc”=>”suburb”, ”outSurf”=>10 ’,

‘ ”loan”=>400, ”surf”=>100, ”nbR”=>5, ”loc”=>”outskirts”, ”outSurf”=>500 ’});

The procedure infer concept creates a user function that implements the inferred
membership function. This user function, that can then be integrated into the
selection statement of a query, has the following prototype:

1 The hstore module of Postgresql is used to store key/value pairs using the syntax
”key”=>”value”.

8 Smits et al.

Input: t, EC . t ∈ R, EC ⊂ R
Output: µC(t) . ∈ [0, 1]

1 Function concept name():
2 µC(t)←− 0; ds←− [];
3 foreach (Ai, pi) ∈ t do
4 ds[i]←− δi(pi);
5 end
6 sortDesc(ds);
7 foreach j ∈ 1..m do
8 Hj ←− ds[1 : j];
9 Hj−1 ←− ds[1 : j − 1];

10 µ(Hj)←− maxt′∈EC
1
m
× |{(Ai, pi) ∈ Hj , t

′.Ai = pi}|;
11 µ(Hj−1)←− maxt′∈EC

1
m
× |{(Ai, pi) ∈ Hj−1, t

′.Ai = pi}|;
12 µC(t)←− µC(t) + (µ(Hj)− µ(Hj−1))× ds[j];
13 end
14 return µC(t);

15 End Function
Algorithm 1: Pseudo-code of the proposed function to implement the
chocolate strategy

CREATE FUNCTION concept name() RETURNS DECIMAL ;

where concept name is the name given to the concept by the user, idealHousing
for the considered example.

The function concept name implements the chocolate strategy [9], re-
minded in Section 2.3. The implementation of this function, that returns the
satisfaction degree of a tuple to evaluate wrt. the considered search concept, is
given in Alg. 1 in pseudo-code (its implementation in the pl/python language
contains technical tricky aspects that do not help for its understanding).

3.3 Querying with Disjunctive Fuzzy Concepts

The user functions representing the inferred disjunctive fuzzy concepts can then
be embedded into SQL queries in the following way:

SELECT *, get mu() as mu

FROM rel name

WHERE concept name() > 0;

As underlined in [10], relying on user functions to implement fuzzy predicates
and their direct use in selection statements may lead to a significant computation
cost overhead. Query engines do not leverage existing indexes when a selection
statement involves a user-function, and therefore perform a sequential search on
the whole relation to identify tuples satisfying the predicate. A way to avoid
this extra-cost is to perform a so-called derivation of the fuzzy query so as to
translate it into a Boolean query whose execution can be natively optimised by
the RDBMS query engine. A derived query aims at retrieving the tuples that
may somewhat satisfy the initial fuzzy query. The membership degree within

Flexible Querying using Disjunctive Concepts 9

the concerned fuzzy predicate is then computed only for these tuples. As shown
in the prototype query given hereafter, the selection clause now contains the
Boolean condition, whose execution can be optimized by the query engine, and
the user function to compute the concept membership degree is involved in the
projection statement only:

SELECT *, concept name() as mu

FROM rel name

WHERE (derivedConditionOn A1) OR

(derivedConditionOn A2) OR

. . .

(derivedConditionOn Am);

where derivedConditionOn Ai is the derived Boolean condition regarding attributeAi.
The derived condition aims at selecting the tuples whose value on attribute Ai

is shared with at least one of the representative examples.
To obtain a derived condition, two aspects have to be taken into account,

the nature of Ai (numerical vs. categorical), and the type of comparison used
(binary strict one or similarity-based relaxed one).

When a strict comparison is used then the derived condition is of the form:
(Ai IN V)

where V = {x.Ai, x ∈ EC}, C being the involved concept and EC its partial
extent. When Ai is numerical and a relaxed comparison is used, the derived
condition is of the form:

(Ai BETWEEN v− AND v+)

where v− = infv∈Di,t∈EC simi(t.Ai, v) ≥ ηi
and v+ = supv∈Di,t∈EC simi(t.Ai, v) ≥ ηi.

Example 2. The user query looking for idealHousing is thus translated into the
following fuzzy query:

SELECT *, get mu() as mu

FROM housing

WHERE idealHousing() > 0;

whose derived version is:
SELECT *, idealHousing() as mu

FROM rel name

WHERE (loan IN (400, 450)) OR

(surf BETWEEN 30 AND 100) OR

(nbR IN (2, 3, 4, 5)) OR

(loc IN (‘center’, ‘suburb’, ‘outskirts’));

Considering, for a sake of clarity, a strict equality comparison between values
of the tuple to evaluate and those of the representative tuples used to infer
the concept membership function, Table 3 gives a very short excerpt of the
fuzzy relation returned by the previous query. Applied on a toy example, the
extract of the fuzzy relation given in Table 3 shows the interesting behaviour of
the CHOCOLATE approach to quantify the satisfaction of a tuple regarding a

10 Smits et al.

Table 3: Excerpt of the returned fuzzy relation containing the retrieved ideal-
Housing instances associated with their membership degrees (column mu)

loan surf nbR loc outSurf mu

.
500 25 2 historical center 0 0.15
500 30 2 center 0 0.25
400 40 3 center 0 0.3
400 80 4 suburb 40 0.3
650 80 4 outskirts 1000 0.1
.

complex disjunctive concept. One can indeed remark that the second and third
tuple match the concept (with respective score of 0.25 and 0.3) for different
reasons. For the second tuple, it is due to the fact that it shares 4 properties with
one of the representative tuples (Tab. 2) and one of the them (loc = center) is
possessed by two representative examples of the concept. For the third evaluated
tuple, despite the fact that it shares 3 properties (surf, nbR and loc) with one
of the representative example, it also possesses a property (loan = 400) that
seems to be important as it is possessed by 3 of the 4 representative examples.
The Choquet-based approach thus captures and aggregates the importance of
properties taken individually and combined conjunctively.

4 Proof-Of-Concept of DCQ

A Proof-Of-Concept (POC) has been implemented2 for a database containing
1,200 descriptions of accommodations to rent, each accommodation being de-
scribed on 11 attributes. This POC aims at comparing the proposed strategy
with two classical distance-based approaches.

4.1 Selection of the Suggested Tuples

The first question to address is to identify the tuples from the database to be
suggested to the user. The idea is to cover as much as possible the diversity of
the available data. It has been empirically decided to suggest up to 40 tuples.
To do so a clustering algorithm based on affinity propagation has been employed
to build 40 clusters whose centroids constitute the suggested examples. Figure 2
illustrates the use of this algorithm on two attributes (distance to center and
loan) to show how centroids are identified.

4.2 Answers Retrieval

The user then peruses the suggested tuples to select those illustrating what
he/she is looking for. Once five tuples have been selected (Fig. 3) to represent

2 It is available at the url http://51.210.243.246:8081/fuzzy queries/

Flexible Querying using Disjunctive Concepts 11

Fig. 2: Illustration of the clustering-based identification of the tuples to suggest

Fig. 3: QBE user interface showing the five tuples selected to initiate the search

his/her concept of ideal housing, the infer concept function is called to infer the
membership function of the search concept and to store it so that it can be latter
reused.

A derived fuzzy query involving the user concept, as described in the previ-
ous section, is then submitted to retrieve the tuples that best satisfy the user
requirements.

5 Conclusion and Perspectives

This paper introduces a technical solution to allow end users query relational
data using complex search conditions materialized by fuzzy disjunctive concepts
and their associated membership function. Functionalities have been first added
to a classical RBMS so that it handles selection statements involving the satisfac-
tion of such complex concepts. To ease the definition of complex search concepts,
a query by example principle is envisaged. End users just have to select a few
tuples that represent the diversity of what they are looking for. The approach
then learns the important atomic properties as well as combinations of them pos-
sessed by at least one user-given representative example. A prototype has been
developed to compare the proposed strategy to concept learning with two others
based on the distance wrt.the closest or all the representative examples. Ongoing
works aim at collecting and analysing the results of the ongoing experimentation
with end users to have a subjective assessment of the proposed system on a real

12 Smits et al.

use case. An implementation of the approach to movie recommendation is also
in progress and may constitute an interesting solution to the cold-start problem.

References

1. Anisfeld, M.: Disjunctive concepts? The Journal of general psychology 78(2), 223–
228 (1968)

2. Bělohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. of the 3rd
Int. Conf. on Concept Lattices and Their Applications, CLA05. pp. 34–45 (2005)

3. De Calmès, M., Dubois, D., Hullermeier, E., Prade, H., Sedes, F.: Flexibility and
fuzzy case-based evaluation in querying: An illustration in an experimental set-
ting. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 11(01), 43–66 (sep 2003)

4. Iba, G.A.: Learning disjunctive concepts from examples (1979)
5. Lesot, M.J., Rifqi, M., Bouchon-Meunier, B.: Fuzzy prototypes: From a cognitive

view to a machine learning principle. In: Bustince, H., Herrera, F., Montero, J.
(eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models,
pp. 431–452. Springer (2008)

6. Moreau, A., Pivert, O., Smits, G.: Fuzzy query by example. In: Proc. of ACM
Symposium on Applied Computing, SAC’18. pp. 688–695 (2018)

7. Murray, K.S.: Multiple convergence: An approach to disjunctive concept acquisi-
tion. In: Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI. pp. 297–300
(1987)

8. Rifqi, M.: Constructing prototypes from large databases. In: Proc. of the Int. Conf.
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU’96). pp. 300–306 (1996)

9. Smits, G., Yager, R., Lesot, M.J., Pivert, O.: Concept membership modeling us-
ing a choquet integral. In: Proc. of the Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU’20). pp. 359–372
(2020)

10. Smits, G., Pivert, O., Girault, T.: Reqflex: fuzzy queries for everyone. Proceedings
of the VLDB Endowment 6(12), 1206–1209 (2013)

11. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Ordered sets, pp. 445–470. Springer (1982)

12. Zadrozny, S., Kacprzyk, J., Wysocki, M.: On a novice-user-focused approach to
flexible querying: The case of initially unavailable explicit user preferences. Proc. of
the 2010 10th Int. Conf. on Intelligent Systems Design and Applications, ISDA’10
pp. 696–701 (2010)

13. Zloof, M.M.: Query-by-example: A data base language. IBM Syst. J. 16(4), 324–343
(1977), https://doi.org/10.1147/sj.164.0324

