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Quantum anomalies describe the breaking of a classical symmetry by quantum fluctuations [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF]. The chiral anomaly, the nonconservation of the chiral charge of three-dimensional Weyl fermions, is relevant to different domains in physics since Weyl fermions mediate the pion-decay into photons [START_REF] Stephen | Axial-Vector Vertex in Spinor Electrodynamics[END_REF][START_REF] Bell | A PCAC puzzle: π 0 → γγ in the σ-model[END_REF] and are emergent quasiparticles in Weyl semimetals [START_REF] Turner | Beyond band insulators: Topology of semimetals and interacting phases[END_REF][START_REF] Hosur | Recent developments in transport phenomena in Weyl semimetals[END_REF][START_REF] Miransky | Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals[END_REF][START_REF] Jia | Weyl semimetals, Fermi arcs and chiral anomalies[END_REF][START_REF] Burkov | Topological semimetals[END_REF][START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]. The physics is particularly transparent in the Landau level picture pioneered by Nielsen and Ninomiya [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF], requiring only basic quantum mechanics. In a magnetic field B, the conical Weyl dispersion evolves into Landau levels with a degeneracy proportional to |B| [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF]. Since momentum along the direction of the magnetic field remains a good quantum number, the Landau levels disperse in that direction, with the zeroth Landau level having a linear dispersion with a sign determined by the chirality; all other Landau levels have a quadratic dispersion. The zeroth Landau level of the left-and right-handed Weyl fermions furthermore connect at high energy. Consequently, an electric field (E) with a component along the dispersion transfers lefthanded fermions to right-handed fermions (or vice versa) resulting in a nonconservation of left and right particle numbers proportional to E • B [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF][START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF][START_REF] Barry | Anomalies for pedestrians[END_REF].

Other fields, such as chiral pseudo-electromagnetic fields, torsion or curvature activate the chiral anomaly beyond E and B [START_REF] Parrikar | Torsion, parity-odd response, and anomalies in topological states[END_REF][START_REF] Sun | Chiral viscoelastic response in Weyl semimetals[END_REF][START_REF] Zubkov | Emergent gravity and chiral anomaly in dirac semimetals in the presence of dislocations[END_REF][START_REF] Cortijo | Elastic gauge fields in Weyl semimetals[END_REF][START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] You | Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings[END_REF][START_REF] Landsteiner | Gravitational Anomaly and Transport Phenomena[END_REF][START_REF] Gooth | Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP[END_REF][START_REF] Ferreiros | Mixed axial-torsional anomaly in weyl semimetals[END_REF][START_REF] Lepori | Axial anomaly in multi-Weyl and triple-point semimetals[END_REF]. Weyl semimetals are ideal to probe the chiral anomaly in the presence of chiral pseudoelectromagnetic fields. To motivate this, recall that their low-energy degrees of freedom are pairs of chiral Weyl quasiparticles at topologically protected band touchings (Weyl nodes), separated in energy-momentum space by a four-vector b µ [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]. A space-and time-dependent b µ , as in strained or inhomogenously magnetized Weyl semimetals [START_REF] Cortijo | Elastic gauge fields in Weyl semimetals[END_REF] or Helium-3 [START_REF] Bevan | Momentum creation by vortices in superfluid 3 He as a model of primordial baryogenesis[END_REF][START_REF] Klinkhamer | Emergent CPT violation from the splitting of Fermi points[END_REF], generates chiral pseudomagnetic (B 5 = ∇×b) and pseudoelectric (E 5 = -∂ t b-∇b 0 ) fields, which couple with opposite signs to opposite chiralities [START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Liu | Chiral gauge field and axial anomaly in a Weyl semimetal[END_REF][START_REF] Chernodub | Condensed matter realization of the axial magnetic effect[END_REF][START_REF] Schuster | Dissipationless conductance in a topological coaxial cable[END_REF][START_REF] Huang | Topological responses from chiral anomaly in multi-Weyl semimetals[END_REF]. These pseudofields enhance or generalize phenomena ranging from transport to interface physics [START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Zhou | Topological invariants of metals and the related physical effects[END_REF][START_REF] Sumiyoshi | Torsional Chiral Magnetic Effect in a Weyl Semimetal with a Topological Defect[END_REF][START_REF] Cortijo | Strain-induced chiral magnetic effect in Weyl semimetals[END_REF][START_REF] Westström | Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials[END_REF][START_REF] Gorbar | Pseudomagnetic lens as a valley and chirality splitter in Dirac and Weyl materials[END_REF][START_REF] Gorbar | Second-order chiral kinetic theory: Chiral magnetic and pseudomagnetic waves[END_REF][START_REF] Gorbar | Pseudomagnetic helicons[END_REF][START_REF] Roy | Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations[END_REF][START_REF] Shengyuan | Chirality-Dependent Hall Effect in Weyl Semimetals[END_REF][START_REF] Jiang | Topological imbert-fedorov shift in weyl semimetals[END_REF][START_REF] Cortijo | Emergent gravity in the cubic tight-binding model of Weyl semimetal in the presence of elastic deformations[END_REF]. Unlike B, which generates Landau levels dispersing in opposite directions for opposite chiralities, B 5 generates pseudo-Landau levels that disperse in the same direction for both chiralities [START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Liu | Chiral gauge field and axial anomaly in a Weyl semimetal[END_REF][START_REF] Chernodub | Condensed matter realization of the axial magnetic effect[END_REF][START_REF] Landsteiner | Notes on anomaly induced transport[END_REF].

Applying the Landau level picture to chiral fields leads to puzzling conclusions: for example, because of the chirality independent dispersion of the zeroth pseudo-Landau level due to B 5 , E increases (or decreases) the number of fermions for both chiralities at a rate proportional to E • B 5 , giving an apparent nonconservation of the total charge. This is expressed as the so-called covariant anomaly [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF][START_REF] Landsteiner | Notes on anomaly induced transport[END_REF] 

∂ µ J µ 5,cov = 1 2π 2 (E • B + E 5 • B 5 ) , (1) 
∂ µ J µ cov = 1 2π 2 (E 5 • B + B 5 • E) . (2) 
Neither the covariant chiral (J µ 5,cov = J µ L,cov -J µ R,cov ) nor vector (J µ cov = J µ L,cov + J µ R,cov ) currents are conserved. In field theory, to explicitly restore charge conservation, the covariant currents are supplemented by Bardeen poly-nomials δj µ , which act like boundary conditions for the accumulated charge at the cut-off energy [START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF][START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF][START_REF] Bardeen | Anomalous Ward Identities in Spinor Field Theories[END_REF][START_REF] Gorbar | Origin of Bardeen-Zumino current in lattice models of Weyl semimetals[END_REF]. This procedure defines the consistent anomaly [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF][START_REF] Landsteiner | Notes on anomaly induced transport[END_REF] 

∂ µ J µ 5 = 1 2π 2 E • B + 1 3 E 5 • B 5 , (3) 
∂ µ J µ =0. ( 4 
)
The consistent anomaly conserves charge, and thus determines observables [START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF][START_REF] Gorbar | Chiral magnetic plasmons in anomalous relativistic matter[END_REF] by discarding unphysical responses [START_REF] Landsteiner | Notes on anomaly induced transport[END_REF][START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF][START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF][START_REF] Vazifeh | Electromagnetic Response of Weyl Semimetals[END_REF]. The Bardeen polynomials, however, sacrifice intuition of the covariant picture based on Landau levels and obfuscate the restoration of charge conservation in specific lattice implementations. Despite the field theory of the consistent and covariant anomalies being well understood for a long time [START_REF] Landsteiner | Notes on anomaly induced transport[END_REF], a simple physical picture of their origin on a lattice, with guaranteed charge conservation, is still missing. In this work we provide such a picture using as building blocks the Landau and pseudo-Landau levels. It leads to our two main results: first, we identify the Fermi arcs as a source for the covariant anomaly terms of Eq. ( 2) and relate them to the Bardeen polynomials. Second, we show that when B 5 > B the Fermi surface twists into a bowtie shape, a property central to our understanding of how the term E • B 5 redistributes charge within the sample. Our picture allows us to address as well the 1/3 disparity between the second term in Eq. ( 3) and Eq. ( 1). We argue that a necessary condition for its identification is a B 5 profile that spatially separates chiral charge creation and annihilation. Similar to how Landau levels simplified our understanding of the chiral anomaly [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF], we use pseudo-Landau levels (developed in Ref. 17) to provide a unified and simple lattice picture of the consistent and covariant anomalies with specific implications for experiment.

Our starting point is the Weyl semimetal model [START_REF] Vazifeh | Electromagnetic Response of Weyl Semimetals[END_REF] H

=v [sin(k y )σ x -sin(k x )σ y ] τ z + v sin(k z )τ y + mτ x + t i [1 -cos(k i )] τ x + v µ u µ b µ , (5) 
with a = 1 the lattice constant, σ i (τ i ) spin (orbital) Pauli matrices, and ). Our results also apply to generalizations of Eq. ( 5) that model Dirac (e.g., Cd 3 As 2 , Na 3 Bi) and Weyl (e.g., TaAs family) materials [START_REF] Wang | Dirac semimetal and topological phase transitions in A3Bi (A =Na, K, Rb)[END_REF][START_REF] Wang | Three-dimensional Dirac semimetal and quantum transport in Cd3As2[END_REF][START_REF] Weng | Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides[END_REF]. We further define γ µ = (τ x , iσ y τ y , -iσ x τ y , iτ z ) and γ 5 = iγ 0 γ 1 γ 2 γ 3 = σ z τ y , such that u µ = γ 0 γ µ γ 5 and the spacedependent chiral charge density is The charge density, ρ(x), is obtained by replacing γ 5 with the identity in Eq. [START_REF] Miransky | Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals[END_REF]. While our lattice model [START_REF] Hosur | Recent developments in transport phenomena in Weyl semimetals[END_REF] includes a τ x term that explicitly breaks conservation of ρ 5 , we show in the Supplemental Material how this effect is controlled. The Hamiltonian (5) (with v = 1) derives from an effective field theory with action [START_REF] Jia | Weyl semimetals, Fermi arcs and chiral anomalies[END_REF] where ψ = ψ † γ 0 and repeated indices are summed. S yields two species of Weyl fermions of opposite chiralities, coupled to an external chiral field b µ and a vector field A µ , and separated by b µ for m = 0. The lattice regularization is given by the Wilson map k i → sin k i [START_REF]We restrict our analysis to isotropic Weyl nodes[END_REF], and m → m + t i (1 -cos k i ) [START_REF] Heinz | Lattice Gauge Theories: An Introduction[END_REF].

u µ = (σ z τ y , -σ x τ x , -σ y τ x , σ z ). For small b µ = (b 0 , b) and m 2 < v 2 |b 2 -b 2 0 |,
J 0 5 (x) ≡ ρ 5 (x) = n∈occ. ψ n (x)|γ 5 |ψ n (x) . ( 6 
S = d 4 x ψ γ µ i∂ µ -A µ -b µ γ 5 -m ψ,
Spatial and temporal variations of b generate the chiral fields B 5 = ∇ × b and E 5 = -∂ 0 b. The simplest realization of B 5 occurs at the boundary of any Weyl semimetal with vacuum, where the Weyl node separation b µ goes to zero [START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Chernodub | Condensed matter realization of the axial magnetic effect[END_REF][START_REF] Landsteiner | Notes on anomaly induced transport[END_REF]. For example, for a slab along y, b(y

) = b z [Θ(y -L/2) -Θ(y + L/2)]ẑ gives B 5 (y) = b z [δ(y -L/2) -δ(y + L/2)]
x, localized at the surface, which generates surface pseudo-Landau levels dispersing along ±k x , with opposite signs at each surface [START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF]. Their Fermi surface traces an arc, establishing the correspondence between surface pseudo-Landau levels induced by B 5 and topological surface states. Analogously, a uniform external magnetic field B = B ẑ parallel to the Weyl node separation leads to a spectrum hosting bulk Landau levels dispersing along ±k z , where the sign is set by the Weyl node chirality. When both B and a surface B 5 are present, Landau and pseudo-Landau levels coexist and the Fermi surface at the Fermi energy ε F (set to ε F = 0 hereafter) traces a rectangle [START_REF]The Fermi surface rectangle becomes a parallelogram for general orientations of B[END_REF], see Fig. 1(a) [START_REF] Bulmash | Quantum oscillations in Weyl and Dirac semimetal ultrathin films[END_REF][START_REF] Ominato | Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states[END_REF].

The coexistence of Landau and pseudo-Landau levels provides an ideal platform to discuss the anomalies. Applying E = E z ẑ pumps charges of one chirality to the other, connecting Landau levels of B through the band bottom and realizing the E • B term in Eq. (3) [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF] [see Fig. 1(b)]. Similarly, since the pseudo-Landau levels disperse along ±k x on each surface, applying E = E x x depletes charges from one surface and generate charges on the other [Fig. 1(c)]. We can interpret [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF] this as an anomaly of each surface state due to E • B 5 . In contrast to the chiral anomaly in the absence of chiral fields, where the total charge is locally conserved, the spatial separation of the two surfaces leads to an apparent violation of local charge conservation, as in Eq. ( 2). Our pseudo-Landau level picture demonstrates the surface origin of the covariant anomaly, ∼ E • B 5 .

Our picture tracks how charge is explicitly conserved. The spectral flow between the pseudo-Landau levels at each surface happens via the bulk Landau levels connecting them, fixing local charge conservation. The effect of E results in an adiabatic shift of k x , which via positionmomentum locking [START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF] generates a Hall current

δj = - 1 2π 2 b z E x ŷ. ( 8 
)
We can interpret this as the net current flowing along ŷ between surfaces through the bottom of the band. In the bulk, b z is constant leading to ∇ • δj = 0 and no accumulation of charge. At the surface, the Weyl node separation varies, leading to a finite divergence of the spatial current, positive on one surface and negative on the other. Similarly, more general profiles of B and B 5 can be understood in terms of Landau and pseudo-Landau levels. For instance, a uniform bulk By construction, the corresponding current J µ cov misses information from states away from the Fermi level, and thus it is not conserved as dictated by Eq. ( 2), cf. Supplemental Material. The consistent current, J µ , is obtained from the covariant current by adding the Bardeen polynomials δj µ such that ∂ µ (J µ cov +δj µ ) = ∂ µ J µ = 0 [START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF][START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF]. Using Eq. ( 2) and the definition of the pseudo-fields,

δj 0 = 1 2π 2 b • B, δj = 1 2π 2 (b 0 B -b × E) . (9) 
Comparing ( 9) to (8) of our first example (Fig. 1), we identify the latter as a part of the Bardeen polynomials [START_REF] Landsteiner | Notes on anomaly induced transport[END_REF]. The benefit of the Landau level approach is its intuitive interpretation: in the first example, E 5 = 0 and the finite E • B 5 pumps charge from one surface to another via the anomalous Hall effect [Eq. ( 8)] through

∂ t J 0 cov = E • B 5 /(2π 2 ).
Our second example, Fig. 2, can be interpreted similarly. In the bulk charge grows as Moving on to spatio-temporally varying Weyl node separations, consider first b = -E 5 tẑ, yielding uniform E 5 ẑ. A B = 0 activates the second term of (2), suggesting that charge is created at the Fermi surface at a rate E 5 • B/(2π 2 ). For our lattice model ( 5), E 5 shifts the band bottom, pushing charge above a fixed energy [Fig. 3(a)]. Rigid shifts of the band conserve total charge, giving the consistent picture of the anomaly. However, if one insists on only considering the low-energy gray region in Fig. 3(a), the charge appears to emerge from the vacuum, as expected from the covariant anomaly. The connection between these pictures is shown in Fig. 3(b), where charge growth near the Fermi surface equals charge loss near the band bottom, which in turn equals the Bardeen polynomial δj 0 , Eq. ( 9).

∂ t J 0 cov = E • B 5 /( 2π 
We end by addressing the factor of 1/3 disparity between the prefactors of the E 5 • B 5 anomalies. This difference implies that the band bottom current must add -2/3 to the Fermi surface contribution, irrespective of the precise pseudo-field profile. One may argue that this factor arises from the topological nature of the Bardeen polynomials [START_REF] Gorbar | Origin of Bardeen-Zumino current in lattice models of Weyl semimetals[END_REF], yet we find that topology alone does not explain the conditions which give 1/3 for a generic lattice model.

To illustrate the conditions for isolating the 1/3, consider [START_REF] Roy | Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations[END_REF] ]. This profile maintains the useful property that the two chiralities (eigenstates of γ 5 ) are well separated in momentum space [Fig. 4(c)]. Adding E 5 B 5 to produce a chiral anomaly, chiral charge ( 6) is created/annihilated in spatially separated regions [Fig. 4(d)], at a rate that closely follows the spatial profile of B 5 as expected from Eq. (3) [Fig. 4(e)]. The Fermi surface contribution to the chiral charge is calculated as

b = c B 2 erf y -L 4 √ 2ξ -erf y + L 4 √ 2ξ -1 x + b z ẑ, (10) 
dρ F S 5 (y) db = n ψ n |γ 5 Π y |ψ n ψ n |∂ b H|ψ n δ(µ -ε n ).
(11) with Π y the projector to the position y, cf. Supplemental Material. Comparing the chiral charge pumped at the Fermi surface and that in the full spectrum to the expected value proportional to B 5 , we see that they are close, but neither perfectly reproduces the field theory prediction.

To determine the factors behind this mismatch we note that the erf profile minimizes the spatial overlap between regions of chiral charge creation and annihilation (∂ρ 5 /∂b z > 0 and < 0 at y ≈ +L/4 and y ≈ -L/4 respectively). However, for both chiralities, there exist regions in momentum space [light/dark regions in Fig. 4(b)] where the states are not well-localized in real space. These regions spread out with increasing ξ, such that the erf profile evolves into a sinusoid-like function, resulting in a poorer match between the B 5 (y) profile and the chiral charge response, cf. Supplemental Material. The sensitivity of the result to these regions, highlighted by the failure of the sinusoid-like profile where no clear spatial separation exists, implies that the value 1/3 is modified by such effects for generic profiles of B 5 . This detrimental overlap is minimized if L ξ a is satisfied, allowing the intriguing possibility that an exact 1/3 may be recovered in this limit. Finally, all anomaly terms present finite size and quadratic corrections to the low-energy field theory [START_REF] Jia | Weyl semimetals, Fermi arcs and chiral anomalies[END_REF], which we discuss in the Supplemental Material.

In summary, we have provided an intuitive lattice picture that is based on Landau and pseudo-Landau levels and connects the covariant and consistent anomalies. We explicitly identified the Hall current as the Bardeen polynomial that connects the covariant anomalies of the Fermi arcs and restores charge conservation, most notably when the Fermi surface knots into a bowtie. We expect that the bowtie Fermi surface and its response to external fields will be important to understand strained Weyl semimetals experimentally, in particular their transport properties.

Our work highlights that measuring the consistent or covariant anomaly (e.g., the factor of 1/3) depends on whether the experimental probe is sensible to only the Fermi surface or rather the entire Fermi sea. Additionally, perturbations such as strain allow other model parameters to depend on position, e.g, the Fermi velocity, as well as additional terms in Eq. ( 7) [START_REF] Arjona | Rotational strain in Weyl semimetals: A continuum approach[END_REF]. Our work motivates the study of these questions to interpret incipient experiments in strained Weyl semimetals.

For completeness, we provide a summary of the relevant facts of consistent and covariant anomalies derived from quantum field theory. As discussed in the main text electric and magnetic fields that satisfy E•B = 0 generate an anomalous imbalance between left and right movers. Additionally pseudo-magnetic (B 5 ) and pseudo-electric (E 5 ) field-the fields that couple with opposite signs to opposite chiralities-will result in the same chiral imbalance, since the contributions of the two chiralities to the chiral current J µ 5,cov = J µ L,cov -J µ R,cov (µ = 0, 1, 2, 3) will add up. However, these considerations imply also that the vector current

J µ cov = J µ L,cov +J µ R,cov is not conserved. Mathematically ∂ µ J µ 5,cov = 1 2π 2 (E • B + E 5 • B 5 ) , (12a) 
∂ µ J µ cov = 1 2π 2 (E • B 5 + E 5 • B) , (12b) 
a result which can be obtained either diagrammatically [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF][START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF] or semiclassically [START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Liu | Chiral gauge field and axial anomaly in a Weyl semimetal[END_REF][START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF]. Eqs. ( 12) define the covariant chiral anomaly [START_REF] Landsteiner | Notes on anomaly induced transport[END_REF][START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF] of the covariant vector and axial currents J µ cov and J µ 5,cov respectively. This result is troublesome: a theory which does not conserve charge is unphysical, yet the fields B 5 and E 5 can be physically realized in the solid state [START_REF] Pikulin | Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals[END_REF][START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF][START_REF] Liu | Chiral gauge field and axial anomaly in a Weyl semimetal[END_REF]. At the quantum field theory level curing the nonconservation of charge amounts to acknowledging that Eqs. [START_REF] Parrikar | Torsion, parity-odd response, and anomalies in topological states[END_REF] are determined solely by the Fermi surface, but that counteracting currents are necessary at energies comparable to the cut-off energy [START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF]. To ensure this constraint is satisfied, two additional Chern-Simons currents, δj µ and δj µ 5 , known as Bardeen polynomials, are added, which transfer the necessary charge and guarantee charge conservation [START_REF] Bardeen | Anomalous Ward Identities in Spinor Field Theories[END_REF]. They relate the covariant currents (J µ cov , J µ 5,cov ) to the physical consistent currents (J µ , J µ 5 ) through J µ 5 = J µ 5,cov + δj µ 5 and J µ = J µ cov + δj µ , respectively, and take the form

δj 0 = 1 2π 2 A 5 • B; δj = 1 2π 2 A 0 5 B -A 5 × E ; ( 13 
)
δj 0 5 = 1 6π 2 A 5 • B 5 ; δj 5 = 1 6π 2 A 0 5 B 5 -A 5 × E 5 , (14) 
where the chiral gauge field A µ 5 defines the pseudo-fields B 5 = ∇ × A 5 and E 5 = -∇A 0 5 -∂ 0 A 5 . Together with Eqs. [START_REF] Parrikar | Torsion, parity-odd response, and anomalies in topological states[END_REF] results in the consistent anomaly [START_REF] Landsteiner | Anomalous transport of Weyl fermions in Weyl semimetals[END_REF][START_REF] Gorbar | Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons[END_REF] 

∂ µ J µ 5 = 1 2π 2 E • B + 1 3 E 5 • B 5 ; ∂ µ J µ = 0. ( 15 
)
Eqs. ( 12) and ( 15) summarize the two versions of the quantum anomalies.

We note that the consistent and covariant currents have been discussed in the context of the two-dimensional quantum Hall effect [START_REF] Stone | Gravitational anomalies and thermal Hall effect in topological insulators[END_REF]. In this case the edge current is the sum of the edge consistent current plus the anomaly inflow from the 2+1D bulk Chern Simons term, which combined form the covariant edge current [START_REF] Chandrasekharan | Anomaly cancellation in 2+1 dimensions in the presence of a domain wall mass[END_REF]. In a similar way, consistent and covariant currents can be defined for a 3+1D Weyl fermion living at the edge of a 4+1D quantum Hall effect.

Details of the lattice calculations

We are interested in the response of a Weyl semimetal to external fields E and E 5 . A time-dependent vector potential A = -Et gives an electric field, and analogously a time-dependent node separation b = -E 5 t. We express the time-derivative of any expectation value f in terms of the response to changes in A and b,

df dt = -E • ∂ A f -E 5 • ∂ b f, (16) 
which is especially handy when evaluating timederivatives proportional to E and E 5 , such as ∂ µ j µ and ∂ µ j µ 5 where f corresponds to the densities ρ or ρ 5 .

The response of the density to external fields E and E 5 is the response to a shift A → A + dA and b → b + db respectively. Explicitly, the chiral density at site y reads

ρ 5 (y) = n∈occ. ψ n |γ 5 Π y |ψ n , (17) 
where Π y projects onto site y. When performing an infinitesimal shift of the Weyl node separation b → b + db, the single-particle states change as

|ψ n (b + db) = |ψ n + db • m =n |ψ m ψ n |∂ b H|ψ m ε n -ε m (18)
resulting in a change of the chiral density

dρ 5 (y) db = n∈occ. m =n ψ n |γ 5 Π y |ψ m ψ n |∂ b H|ψ m ε n -ε m + h.c. ( 19 
) Note that the sum goes over the states n that are initially occupied at a node separation b.

The Fermi surface contribution, on the other hand, just counts the subset of states that are lifted above the Fermi level when shifting b → b + db, minus the states that are pushed below the Fermi level, dρ F S 5 = dρ + 5 -dρ - 5 with

dρ + 5 (y) = εn<µ, εn+dεn>µ ψ n |γ 5 Π y |ψ n (20) dρ - 5 (y) = εn>µ, εn+dεn<µ ψ n |γ 5 Π y |ψ n (21) 
or, expressed in terms of Heaviside functions,

dρ ± 5 (y) = ± n ψ n |γ 5 Π y |ψ n Θ(±dε n ) × [Θ(µ -ε n ) -Θ(µ -(ε n + dε n ))] . (22) 
To first order in perturbation theory, the infinitesimal change in the energies is

dε n = db • ψ n |∂ b H|ψ n (23) 
and the sum of Heaviside functions reduces to

Θ(µ -ε n ) -Θ(µ -(ε n + dε n )) = dε n δ(µ -ε n ), (24) 
which finally gives

dρ F S 5 (y) db = n ψ n |γ 5 Π y |ψ n ψ n |∂ b H|ψ n δ(µ -ε n ) (25 
) as used in the main text. Numerically, we use a Lorentz approximation to the delta function, δ(x) = lim η→0 η/(π(η 2 + x 2 )).

The quest for 1/3

Two effects challenge the calculation of the chiral anomaly due to E 5 • B 5 on a lattice. First, B 5 always averages to zero over the whole sample [START_REF] Grushin | Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels[END_REF], which implies that a length scale ξ exists that characterizes the typical size of the variations in B 5 . Second, a mass term m changes the response of the chiral charge ∂ µ j µ 5 .

Effect of ξ

We demonstrate the lattice effect set by the length ξ explicitly by using the same profile of the node separation b as in the main text [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF]. In Fig. 5 (a) and(b), we show how the responses of the total chiral charge ρ 5 and the charge around the Fermi surface ρ FS 5 are affected by different sizes of ξ respectively. The two conditions for ξ discussed in the main text that allow for the identification of 1/3 are both demonstrated explicitly. When ξ ≈ a the variation of B 5 occurs on the scale of the lattice constant forcing the density variations Eqs. [START_REF] Landsteiner | Gravitational Anomaly and Transport Phenomena[END_REF] and [START_REF] Liu | Chiral gauge field and axial anomaly in a Weyl semimetal[END_REF] to interpolate smoothly between lattice sites such that the quantum field theory predictions breaks down. When ξ L is not satisfied, tails of the regions with positive and negative B 5 (y) (positive and negative chiral charge creation) overlap, leading to notable finite size effect and again conflicting with the field theory predictions. 5)] with periodic boundary conditions in y-directions of length L = 360 and cB = 1.25, cf. Eq. ( 10). We show results for different widths ξ of the regions with nonzero B5. The best matching of the field theory predictions are found for ξ = 6, which mostly satisfies the condition a ξ L. For ξ = 2, the condition a ξ is not satisfied, making lattice scale effects extremely relevant and deviating from the field theory limit. For ξ = 30, tails of the two chiral charge pumping regions centered at ±L/4 overlap, leading to notable finite size effects.

Effect of a finite mass

The response of the chiral and total charge to fields E and E 5 computed on a lattice can deviate from the expectation based on the simplest quantum field theory due to corrections set by the mass term, as mentioned in the main text. In this section, we carefully investigate one example, the electromagnetic contribution to the chiral anomaly on a lattice, ∂ µ j µ 5 = E • B/(2π 2 ) and argue how a mass term influences the chiral anomaly. We further show that the mass term does not play the same role for the covariant anomaly ∂ µ J µ cov = E 5 • B/(2π 2 ). The main source of lattice corrections to the anomaly is that the Wilson fermion Hamiltonian [START_REF] Kenneth | Confinement of quarks[END_REF] used for all tight-binding calculations, Eq. ( 5), has a momentumdependent mass term

M k = m + t i (1 -cos k i ), (26) 
that ensures the absence of copies of the Weyl nodes, or doublers, on the lattice [START_REF] Kenneth | Confinement of quarks[END_REF]. When t > 0, the minimum of M k is at the Γ point and its maximum at (π, π, π); for m = 0, as set in the main text, the term is zero at k = 0 and increases away from Γ. The term M k sets the momentum-independent mass term m in the action (7) that couples both chiralities and changes the response to electric and magnetic fields [START_REF] Jackiw | Radiatively Induced Lorentz and CPT Violation in Electrodynamics[END_REF][START_REF] Pérez-Victoria | Exact Calculation of the Radiatively Induced Lorentz and CPT Violation in QED[END_REF][START_REF] Grushin | Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semimetals[END_REF]. Such a term results in an additional classical contribution to the chiral anomaly, ∂ µ j µ 5,class = 2mi ψγ 5 ψ [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF], that is zero in all equilibrium situations we consider, which we confirm numerically. Instead, another consequence of m affects the chiral anomaly: when m = 0 in the field theory, the eigenfunctions of the corresponding Hamiltonian are no longer eigenfunctions of the chiral matrix γ 5 . Instead, close to the Weyl node of chirality χ, the overlap with γ 5 for the low-energy eigenstates with a linear dispersion can be obtained analytically to be with b 2 = b µ b µ , i.e., the chiral density around the Weyl is reduced by a nonzero mass term. We note that a similar factor appears in the effective action for this model and is related to the Weyl node separation [START_REF] Pérez-Victoria | Exact Calculation of the Radiatively Induced Lorentz and CPT Violation in QED[END_REF][START_REF] Grushin | Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semimetals[END_REF].

ψ χ |γ 5 |ψ χ = χ 1 - m 2 |b 2 | , (27) (a) (b) (c) (d) (e) 
On a lattice, the eigenstates of the Hamiltonian (5) are only eigenstates of γ 5 for those momenta k where M k = 0. In particular, the overlap with γ 5 of states of chirality χ = ± close to the Weyl nodes at χk W is

ψ χ χk W |γ 5 |ψ χ χk W = χ 1 - M 2 k W |b 2 | , (28) 
i.e., it scales with the value of M k at the Weyl nodes, m ≡ M k W . In the presence of m = 0 the eigenstates are not strictly eigenstates of γ 5 yet in order to define the chiral anomaly using Eq. ( 6) we effectively assume that they are. An alternative definition of chirality that does not possess this problem is to partition the Brillouin zone into two and declare left and right chiral charges as done in Ref. [START_REF] Roy | Chern numbers and chiral anomalies in Weyl butterflies[END_REF]. While it has the advantage of having a clear definition of chirality, it does not reduce to any representative matrix at the field theory level and so we retain the first definition. With these definitions it is tempting to upgrade the chiral anomaly to

∂ µ j µ 5 = 1 2π 2 1 - m2 b 2 E • B. (29) 
It is interesting to note that a similar equation would be obtained if one interprets the prefactor as an effective renormalization of the chiral electric charge e 5 = e 1 -m2 /b 2 that would enter the chiral anomaly throughout the coupling to an external chiral gauge field e 5 A µ,5 in analogy with ordinary charge [START_REF] We | Juan for this observation[END_REF]. We have unsuccessfully attempted to derive Eq. ( 29) from the effective field theory responses for the action Eq. ( 7) discussed in [START_REF] Jackiw | Radiatively Induced Lorentz and CPT Violation in Electrodynamics[END_REF][START_REF] Pérez-Victoria | Exact Calculation of the Radiatively Induced Lorentz and CPT Violation in QED[END_REF][START_REF] Grushin | Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semimetals[END_REF]. However, our numerical results on the corrections presented below suggest a richer structure when the mass is non-zero, which has motivated us to leave the precise connection between the quantum field theory discussed in these works and our results for a separate study. At the end of the section we specify the conditions where our numerics coincide with the massless field theory expectation validating our results in the main text, up to a given order in momentum.

To gain insight on the above expectation numerically, we investigate how the chiral anomaly changes with m. Differentiating between the total charge and the charge around the Fermi surface, we compute the response to external fields E and E 5 via Eqs. ( 19) and ( 25) on a lattice with periodic boundary conditions and a constant B.

We show the response of the chiral charge ρ 5 in Fig. 6(a) and (b). In panel (a), we show the convergence with system size, whereas in panel (b), we show that, in the limit of L → ∞, the response of the chiral charge scales with 1 -m2 /b 2 as dictated by Eq. ( 29).

Taking into account just states around the Fermi surface via Eq. ( 25), the chiral charge ρ FS 5 responds approximately in the same way as shown in Fig. 6(b), cf. panel (c). Thus, the consistent and covariant anomalies are the same for the term E • B, even in the presence of a mass m. In panel (d), we show the response of the total charge around the Fermi surface to a field E 5 : due to the covariant anomaly, ∂ρ FS /∂A 5 = 0. In contrast to ∂ρ FS 5 /∂A, the contribution ∂ρ FS /∂A 5 is not much affected by m = 0.

The chiral-symmetry breaking term M k has more intricate consequences for the anomaly in the chiral charge due to E 5 • B 5 . We find numerically that the dependence of ∂ρ 5 /∂b z and ∂ρ FS 5 /∂b z on m are different. In Fig. 7(a), we show the response of the total chiral charge for different values of m with the profile of b according to Eq. [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF]. It allows us to obtain panel (b), where the value of the integral over the curves in Fig. 7(a) as a function of m is compared to the result expected from the massless quantum field theory, i.e. the 1/3 prefactor difference between the second term of equations ( 13) and [START_REF] Cortijo | Elastic gauge fields in Weyl semimetals[END_REF] shown as a dashed line. ∂ρ 5 /∂b z is closest to the massless field theory prediction for a value m ∼ 0.1v, close to m = 0. This contrasts with the E • B analyzed above where the massless field theory expectation was reached when m = 0. Finally, the effect of m on ∂ρ FS 5 /∂b z is shown in Fig. 7(c) and (d) for various values of the level broadening η. The integral over one peak decreases with m, as visible in Fig. 7(e), different from the total charge contribution.

In conclusion, the massless quantum field theory expectation is recovered numerically when m ∼ m ∼ 0. This is satisfied when quadratic corrections are negligible and we choose m ∼ 0, a regime which is largely satisfied by our parameter choices in the main text. The small yet rich deviations that we have quantified numerically (Figs. 6 and7) indicate that further effort beyond the scope of this work is required to precisely connect with quantum field theory expectations with a finite mass.
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 3 the model has one pair of Weyl nodes near Γ [46, 47]. Unless stated otherwise, we set m = 0 and t = 2v/ √ When b is oriented along a reciprocal lattice vector, this parameter choice gives two Weyl nodes located at ±b[1 + O(b 2 0 )] + O(b 5 j ) and energies ±vb 0 [1+O(b 2 j )]+O(b 3 0
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 1 FIG. 1. Anomalies due to E•B and E•B5. (a) The spectrum of Hamiltonian (5) for a slab finite along y, showing the coexisting Fermi arcs and Landau levels of B = B ẑ. The color scale denotes the wave function's position along y. (b), (c) The Landau (pseudo-Landau) levels of B (B5) on the red (blue) triangle plane show the anomaly in the presence of E = Ez ẑ (E = Ex x), where the spectral flow at the Fermi surface is shown by green (orange) arrows. We implement E using the gauge choice k → k -Et. The left panels show the occupation at t = 0, while the right panels show the dispersion for t > 0 with Ex,zt = 0.08 and the same momenta occupied as in the left panels, cf. Supplemental Material. Here L = 100 and B = 1/ √ B = 11.2.

  B 5 ẑ arises from b = B 5 yx. Its spectrum [Fig. 2(a)] shows a characteristic butterfly Fermi surface, obtained from the rectangular Fermi surface Fig. 1(a) by noticing that the two bulk Landau levels have lengths B ± B 5 . When B 5 > B, the Fermi surface twists, leading to Fig. 2(a) (found to lead to peculiar quantum oscillation signals in an unrelated context[START_REF] Bovenzi | Twisted Fermi surface of a thin-film Weyl semimetal[END_REF]). An E = E ẑ parallel to B 5 [Figs.2(b) and (c)] makes the bulk gain charge above the Fermi level (upward arrows), while the surface loses charge (downward arrows). This is consistent with the lattice numerics [Fig.2(e)] where the spatial profile of the charge relative to that at t = 0 is shown for different times.Our previous examples (Figs.1 and 2) are a consequence of the covariant anomaly which only considers the depletion and growth of charges at the Fermi level.
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 2 FIG. 2. Anomaly due to E • B5 with a constant bulk B5 = B5 ẑ. (a) Energy spectrum with the same color coding and boundary conditions as Fig. 1. (b) The pseudo-Landau levels of B5 show an anomaly when E = E ẑ with the spectral flow indicated by the green arrows. The left panel shows the occupation at kx = 0.2 [gray plane in (a)] at t = 0; in the right panel Et = 0.05. (c) Left: The spatial profile of the charge δρ relative to that at t = 0, normalized by the total charge ρ0 for different times (colors), showing a surface to bulk charge redistribution. The y axis is chosen such that only the (positive) bulk contribution is visible, which is exactly canceled by the (negative) surface contribution. Right: Derivative of the density with respect to the vector potential A for different times, which equals ∂A z ρ = B5/(2π 2 ) in the bulk (dashed line). The derivatives with respect to vector potential and time are related via ∂tρ = -E • ∂ A ρ. In (a) and (b), L = 100 and 5 = 1/ √ B5 = 11.1; in (c), L = 200 and 5 = 15.8.
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 4 FIG. 4. Anomaly due to E5 • B5. (a) The Weyl node separation (10) and its corresponding B5. (b) Energy spectrum with a real space color encoding that reflects the periodic boundary conditions. (c), (d) Where B5 > 0 [red in (d)], a parallel E5 pushes left-and right-handed chiral charges above and below the Fermi level respectively, annihilating chiral charge. Where B5 < 0 (blue), chiral charge is created. (e) The spatial distribution of chiral charge creation and annihilation follows and equals B5 (red solid line) for charges ρ FS 5 traversing the original Fermi surface (blue dashed line). With all bands, the total chiral charge creation is ∼ 1/3 of that at the Fermi surface, as predicted by the consistent anomaly (black dotted line). We use L = 360, a B5 broadening ξ = 6 and peak height cB = 1.25, and a delta function broadening η = 10 -6 v, cf. Supplemental Material.

  2 ) locally while at the surface charge is depleted since B 5 has the opposite sign. The corresponding current[START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF] pumps charge from the surface to the bulk. Since b = B 5 yx, there are local currents in the bulk δj ∼ B 5 Ey ŷ and ∇ • δj = B 5 • E/(2π 2 ) is precisely the growth rate of local charge [Fig. 2(c)], reconciling the Fermi surface (covariant) picture with the charge conserving (consistent) picture on the lattice [57].

  with c B a constant and erf(x) the error function [Fig. 4(a)]. In a periodic system of length L in the y direction, this profile realizes interfaces at ±L/4 between two Weyl semimetals with different node separations, connected by regions where b smoothly changes to give B 5 = B 5 (y)ẑ with B 5 (y) = c B √ 2πξ [e -(y-L 4 ) 2 /(2ξ 2 )e -(y+ L 4 ) 2 /(2ξ 2 )
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 5 FIG. 5. (a) Responses ∂ρ5/∂bz and (b) ∂ρ FS 5 /∂bz for our lattice model [Eq. (5)] with periodic boundary conditions in y-directions of length L = 360 and cB = 1.25, cf. Eq. (10). We show results for different widths ξ of the regions with nonzero B5. The best matching of the field theory predictions are found for ξ = 6, which mostly satisfies the condition a ξ L. For ξ = 2, the condition a ξ is not satisfied, making lattice scale effects extremely relevant and deviating from the field theory limit. For ξ = 30, tails of the two chiral charge pumping regions centered at ±L/4 overlap, leading to notable finite size effects.
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 6 FIG. 6. (a) Convergence of the response ∂ρ5/∂Az for a tightbinding system governed by the Hamiltonian (5) with periodic boundary conditions in y-directions of length L and a node separation b = bẑ. A magnetic field B = B ẑ that satisfies periodic boundary conditions is included, with a magnetic length B = √ 2πL. The crosses denote the numerical results from tight-binding calculations , the solid line the results of a fit with f (L) = c0 + c1 exp(-L/ξ), and the dashed line the coefficient c0, i.e., the result in the limit L → ∞. The color denotes different values of m, as shown in panel (b), and we further choose b = 0.4. (b) The response ∂ρ5/∂Az in the limit L → ∞ as a function of m2 /b 2 . The different symbols denote different combinations of b and t and the gray line shows the expectation from the lattice model (29). (c) Response of the chiral charge around the Fermi surface to E ∂ρ FS 5 /∂A, as a function of the level broadening η for b = 0.4. The dashed lines denote the result from panel (a), limL→∞ ∂ρ5/∂A. (d) Response of the total charge around the Fermi surface to an axial field, ∂ρ FS /∂A5, as a function of the level broadening η. The dashed line denotes the field theory result ∂ρ/∂A5 = B/(2π 2 ) as a guide for the eyes.
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 7 FIG. 7. (a) Response ∂ρ5/∂bz for a tight-binding system governed by the Hamiltonian (5) with periodic boundary conditions in y-directions of length L = 360. An axial field B5 = B5(y)ẑ generated by b(y), Eq. (10), with ξ = 6 and cB = 1 that satisfies periodic boundary conditions is included. The different colors denote different values of m (cf. panel (b)) and the bold red line shows the profile of B5(y). (b) The integral over y around the peak is computed numerically for different values of m. The dashed line denotes the value of the integral that is expected from quantum field theory. In (c) and (d), we show the response of the chiral charge around the Fermi surface ∂ρ FS 5 /∂bz as a function of the level broadening η with the different colors denoting different values of η. The bold red line shows the profile of B5(y), the filled region is minimal difference between B5 and ∂ρ FS 5 /∂bz. In (e), we show the numerically computed integral over y around the peak in B5 for different values of m. The dashed line denotes the value of the integral that is expected from quantum field theory.
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