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Condensed matter systems realizing Weyl fermions exhibit striking phenomenology derived from
their topologically protected surface states as well as chiral anomalies induced by electromagnetic
fields. More recently, inhomogeneous strain or magnetization were predicted to result in chiral
electric E5 and magnetic B5 fields, which modify and enrich the chiral anomaly with additional
terms. In this work we develop a lattice-based approach to describe the chiral anomaly, which
involves Landau and pseudo-Landau levels and treats all anomalous terms on equal footing, while
naturally incorporating Fermi arcs. We exemplify its potential by physically interpreting the largely
overlooked role of Fermi arcs in the covariant (Fermi level) contribution to the anomaly and revisiting
the factor of 1/3 difference between the covariant and consistent (complete band) contributions to
the E5 ·B5 term in the anomaly. Our framework provides a versatile tool for the analysis of anomalies
in realistic lattice models as well as a source of simple physical intuition for understanding strained
and magnetized inhomogeneous Weyl semimetals.

Quantum anomalies describe the breaking of a clas-
sical symmetry by quantum fluctuations [1]. The chi-
ral anomaly, the nonconservation of the chiral charge
of three-dimensional Weyl fermions, is relevant to differ-
ent domains in physics since Weyl fermions mediate the
pion-decay into photons [2, 3] and are emergent quasipar-
ticles in Weyl semimetals [4–9]. The physics is particu-
larly transparent in the Landau level picture pioneered by
Nielsen and Ninomiya [10], requiring only basic quantum
mechanics. In a magnetic field B, the conical Weyl dis-
persion evolves into Landau levels with a degeneracy pro-
portional to |B| [10]. Since momentum along the direc-
tion of the magnetic field remains a good quantum num-
ber, the Landau levels disperse in that direction, with
the zeroth Landau level having a linear dispersion with
a sign determined by the chirality; all other Landau lev-
els have a quadratic dispersion. The zeroth Landau level
of the left- and right-handed Weyl fermions furthermore
connect at high energy. Consequently, an electric field
(E) with a component along the dispersion transfers left-
handed fermions to right-handed fermions (or vice versa)
resulting in a nonconservation of left and right particle
numbers proportional to E ·B [1, 10, 11].

Other fields, such as chiral pseudo-electromagnetic
fields, torsion or curvature activate the chiral anomaly
beyond E and B [12–22]. Weyl semimetals are ideal to
probe the chiral anomaly in the presence of chiral pseudo-
electromagnetic fields. To motivate this, recall that their
low-energy degrees of freedom are pairs of chiral Weyl
quasiparticles at topologically protected band touchings

(Weyl nodes), separated in energy-momentum space by a
four-vector bµ [9]. A space- and time-dependent bµ, as in
strained or inhomogenously magnetized Weyl semimet-
als [15] or Helium-3 [23, 24], generates chiral pseudomag-
netic (B5 = ∇×b) and pseudoelectric (E5 = −∂tb−∇b0)
fields, which couple with opposite signs to opposite chi-
ralities [16, 17, 25–28]. These pseudofields enhance or
generalize phenomena ranging from transport to inter-
face physics [16, 17, 29–39]. Unlike B, which gener-
ates Landau levels dispersing in opposite directions for
opposite chiralities, B5 generates pseudo-Landau lev-
els that disperse in the same direction for both chiral-
ities [16, 17, 25, 26, 40].

Applying the Landau level picture to chiral fields leads
to puzzling conclusions: for example, because of the
chirality independent dispersion of the zeroth pseudo-
Landau level due to B5, E increases (or decreases) the
number of fermions for both chiralities at a rate propor-
tional to E · B5, giving an apparent nonconservation of
the total charge. This is expressed as the so-called co-
variant anomaly [1, 40]

∂µJ
µ
5,cov =

1

2π2
(E ·B + E5 ·B5) , (1)

∂µJ
µ
cov =

1

2π2
(E5 ·B + B5 ·E) . (2)

Neither the covariant chiral (Jµ5,cov = JµL,cov−J
µ
R,cov) nor

vector (Jµcov = JµL,cov +JµR,cov) currents are conserved. In
field theory, to explicitly restore charge conservation, the
covariant currents are supplemented by Bardeen poly-
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nomials δjµ, which act like boundary conditions for the
accumulated charge at the cut-off energy [41–44]. This
procedure defines the consistent anomaly [1, 40]

∂µJ
µ
5 =

1

2π2

(
E ·B +

1

3
E5 ·B5

)
, (3)

∂µJ
µ =0. (4)

The consistent anomaly conserves charge, and thus de-
termines observables [42, 45] by discarding unphysical re-
sponses [40–42, 46]. The Bardeen polynomials, however,
sacrifice intuition of the covariant picture based on Lan-
dau levels and obfuscate the restoration of charge con-
servation in specific lattice implementations.

Despite the field theory of the consistent and covariant
anomalies being well understood for a long time [40], a
simple physical picture of their origin on a lattice, with
guaranteed charge conservation, is still missing. In this
work we provide such a picture using as building blocks
the Landau and pseudo-Landau levels. It leads to our two
main results: first, we identify the Fermi arcs as a source
for the covariant anomaly terms of Eq. (2) and relate
them to the Bardeen polynomials. Second, we show that
when B5 > B the Fermi surface twists into a bowtie
shape, a property central to our understanding of how
the term E · B5 redistributes charge within the sample.
Our picture allows us to address as well the 1/3 disparity
between the second term in Eq. (3) and Eq. (1). We argue
that a necessary condition for its identification is a B5

profile that spatially separates chiral charge creation and
annihilation. Similar to how Landau levels simplified our
understanding of the chiral anomaly [10], we use pseudo-
Landau levels (developed in Ref. 17) to provide a unified
and simple lattice picture of the consistent and covariant
anomalies with specific implications for experiment.

Our starting point is the Weyl semimetal model [46]

H =v [sin(ky)σx − sin(kx)σy] τz + v sin(kz)τy +mτx

+ t
∑
i

[1− cos(ki)] τx + v
∑
µ

uµbµ, (5)

with a = 1 the lattice constant, σi (τi) spin (orbital) Pauli
matrices, and uµ = (σzτy,−σxτx,−σyτx, σz). For small
bµ = (b0,b) and m2 < v2|b2−b20|, the model has one pair
of Weyl nodes near Γ [46, 47]. Unless stated otherwise,
we set m = 0 and t = 2v/

√
3. When b is oriented along

a reciprocal lattice vector, this parameter choice gives
two Weyl nodes located at ±b[1 + O(b20)] + O(b5j ) and

energies±vb0[1+O(b2j )]+O(b30). Our results also apply to
generalizations of Eq. (5) that model Dirac (e.g., Cd3As2,
Na3Bi) and Weyl (e.g., TaAs family) materials [48–50].
We further define γµ = (τx, iσyτy,−iσxτy, iτz) and γ5 =
iγ0γ1γ2γ3 = σzτy, such that uµ = γ0γµγ5 and the space-
dependent chiral charge density is

J0
5 (x) ≡ ρ5(x) =

∑
n∈occ.

〈ψn(x)|γ5|ψn(x)〉. (6)

(b)

(c)

(a)

FIG. 1. Anomalies due to E·B and E·B5. (a) The spectrum of
Hamiltonian (5) for a slab finite along y, showing the coexist-
ing Fermi arcs and Landau levels of B = Bẑ. The color scale
denotes the wave function’s position along y. (b), (c) The
Landau (pseudo-Landau) levels of B (B5) on the red (blue)
triangle plane show the anomaly in the presence of E = Ez ẑ
(E = Exx̂), where the spectral flow at the Fermi surface is
shown by green (orange) arrows. We implement E using the
gauge choice k → k − Et. The left panels show the occupa-
tion at t = 0, while the right panels show the dispersion for
t > 0 with Ex,zt = 0.08 and the same momenta occupied as
in the left panels, cf. Supplemental Material. Here L = 100
and `B = 1/

√
B = 11.2.

The charge density, ρ(x), is obtained by replacing γ5 with
the identity in Eq. (6). While our lattice model (5) in-
cludes a τx term that explicitly breaks conservation of
ρ5, we show in the Supplemental Material how this effect
is controlled.

The Hamiltonian (5) (with v = 1) derives from an
effective field theory with action

S =

∫
d4x ψ̄

[
γµ
(
i∂µ −Aµ − bµγ5

)
−m

]
ψ, (7)

where ψ̄ = ψ†γ0 and repeated indices are summed. S
yields two species of Weyl fermions of opposite chirali-
ties, coupled to an external chiral field bµ and a vector
field Aµ, and separated by bµ for m = 0. The lattice reg-
ularization is given by the Wilson map ki → sin ki [51],
and m→ m+ t

∑
i (1− cos ki) [52].

Spatial and temporal variations of b generate the chi-
ral fields B5 = ∇ × b and E5 = −∂0b. The simplest
realization of B5 occurs at the boundary of any Weyl
semimetal with vacuum, where the Weyl node separa-
tion bµ goes to zero [17, 26, 40]. For example, for a
slab along y, b(y) = bz[Θ(y − L/2)−Θ(y + L/2)]ẑ gives
B5(y) = bz[δ(y − L/2) − δ(y + L/2)]x̂, localized at the
surface, which generates surface pseudo-Landau levels
dispersing along ±kx, with opposite signs at each sur-
face [17]. Their Fermi surface traces an arc, establishing
the correspondence between surface pseudo-Landau lev-
els induced by B5 and topological surface states. Analo-
gously, a uniform external magnetic field B = Bẑ parallel
to the Weyl node separation leads to a spectrum hosting
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bulk Landau levels dispersing along ±kz, where the sign
is set by the Weyl node chirality. When both B and a
surface B5 are present, Landau and pseudo-Landau lev-
els coexist and the Fermi surface at the Fermi energy
εF (set to εF = 0 hereafter) traces a rectangle [53], see
Fig. 1(a) [54, 55].

The coexistence of Landau and pseudo-Landau levels
provides an ideal platform to discuss the anomalies. Ap-
plying E = Ez ẑ pumps charges of one chirality to the
other, connecting Landau levels of B through the band
bottom and realizing the E ·B term in Eq. (3) [10] [see
Fig. 1(b)]. Similarly, since the pseudo-Landau levels dis-
perse along ±kx on each surface, applying E = Exx̂ de-
pletes charges from one surface and generate charges on
the other [Fig. 1(c)]. We can interpret [10] this as an
anomaly of each surface state due to E ·B5. In contrast
to the chiral anomaly in the absence of chiral fields, where
the total charge is locally conserved, the spatial separa-
tion of the two surfaces leads to an apparent violation
of local charge conservation, as in Eq. (2). Our pseudo-
Landau level picture demonstrates the surface origin of
the covariant anomaly, ∼ E ·B5.

Our picture tracks how charge is explicitly conserved.
The spectral flow between the pseudo-Landau levels at
each surface happens via the bulk Landau levels connect-
ing them, fixing local charge conservation. The effect of
E results in an adiabatic shift of kx, which via position-
momentum locking [17] generates a Hall current

δj = − 1

2π2
bzExŷ. (8)

We can interpret this as the net current flowing along
ŷ between surfaces through the bottom of the band. In
the bulk, bz is constant leading to ∇ · δj = 0 and no
accumulation of charge. At the surface, the Weyl node
separation varies, leading to a finite divergence of the
spatial current, positive on one surface and negative on
the other.

Similarly, more general profiles of B and B5 can be
understood in terms of Landau and pseudo-Landau lev-
els. For instance, a uniform bulk B5 ‖ ẑ arises from
b = B5yx̂. Its spectrum [Fig. 2(a)] shows a characteris-
tic butterfly Fermi surface, obtained from the rectangu-
lar Fermi surface Fig. 1(a) by noticing that the two bulk
Landau levels have lengths B±B5. When B5 > B, the
Fermi surface twists, leading to Fig. 2(a) (found to lead
to peculiar quantum oscillation signals in an unrelated
context [56]). An E = Eẑ parallel to B5 [Figs. 2(b) and
(c)] makes the bulk gain charge above the Fermi level
(upward arrows), while the surface loses charge (down-
ward arrows). This is consistent with the lattice numerics
[Fig. 2(e)] where the spatial profile of the charge relative
to that at t = 0 is shown for different times.

Our previous examples (Figs. 1 and 2) are a conse-
quence of the covariant anomaly which only considers
the depletion and growth of charges at the Fermi level.

(a) (b)

(c)

FIG. 2. Anomaly due to E · B5 with a constant bulk
B5 = B5ẑ. (a) Energy spectrum with the same color coding
and boundary conditions as Fig. 1. (b) The pseudo-Landau
levels of B5 show an anomaly when E = Eẑ with the spectral
flow indicated by the green arrows. The left panel shows the
occupation at kx = 0.2 [gray plane in (a)] at t = 0; in the right
panel Et = 0.05. (c) Left: The spatial profile of the charge
δρ relative to that at t = 0, normalized by the total charge ρ0
for different times (colors), showing a surface to bulk charge
redistribution. The y axis is chosen such that only the (pos-
itive) bulk contribution is visible, which is exactly canceled
by the (negative) surface contribution. Right: Derivative of
the density with respect to the vector potential A for differ-
ent times, which equals ∂Azρ = B5/(2π

2) in the bulk (dashed
line). The derivatives with respect to vector potential and
time are related via ∂tρ = −E · ∂Aρ. In (a) and (b), L = 100
and `5 = 1/

√
B5 = 11.1; in (c), L = 200 and `5 = 15.8.

FIG. 3. Anomaly due to E5 ·B. (a) Occupation at kx = 0.2
and B ‖ E5 ‖ ẑ for different times [different colors, (b)],
where dark (light) colors represent filled (empty) states and
the gray shaded region is the low-energy regime, isolating the
covariant anomaly. We implement E5 by b→ b−E5t and use
the same boundary conditions as Fig. 1 with L = 100 lattice
sites and `B = 11.2. (b) The charge in the gray low-energy
regime ρlow linearly increases with E5t. Since the total charge
is conserved, the charge in the band bottom decreases at the
same rate (not shown).

By construction, the corresponding current Jµcov misses
information from states away from the Fermi level, and
thus it is not conserved as dictated by Eq. (2), cf. Supple-
mental Material. The consistent current, Jµ, is obtained
from the covariant current by adding the Bardeen poly-
nomials δjµ such that ∂µ(Jµcov+δjµ) = ∂µJ

µ = 0 [41, 42].
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(a)

(b)

(d)

(c)

(e)

FIG. 4. Anomaly due to E5 ·B5. (a) The Weyl node separa-
tion (10) and its corresponding B5. (b) Energy spectrum with
a real space color encoding that reflects the periodic bound-
ary conditions. (c), (d) Where B5 > 0 [red in (d)], a parallel
E5 pushes left- and right-handed chiral charges above and
below the Fermi level respectively, annihilating chiral charge.
Where B5 < 0 (blue), chiral charge is created. (e) The spatial
distribution of chiral charge creation and annihilation follows
and equals B5 (red solid line) for charges ρFS

5 traversing the
original Fermi surface (blue dashed line). With all bands,
the total chiral charge creation is ∼ 1/3 of that at the Fermi
surface, as predicted by the consistent anomaly (black dot-
ted line). We use L = 360, a B5 broadening ξ = 6 and peak
height cB = 1.25, and a delta function broadening η = 10−6v,
cf. Supplemental Material.

Using Eq. (2) and the definition of the pseudo-fields,

δj0 =
1

2π2
b ·B, δj =

1

2π2
(b0B− b×E) . (9)

Comparing (9) to (8) of our first example (Fig. 1), we
identify the latter as a part of the Bardeen polynomi-
als [40]. The benefit of the Landau level approach is
its intuitive interpretation: in the first example, E5 = 0
and the finite E · B5 pumps charge from one surface to
another via the anomalous Hall effect [Eq. (8)] through
∂tJ

0
cov = E ·B5/(2π

2). Our second example, Fig. 2, can
be interpreted similarly. In the bulk charge grows as
∂tJ

0
cov = E ·B5/(2π

2) locally while at the surface charge
is depleted since B5 has the opposite sign. The corre-
sponding current (9) pumps charge from the surface to
the bulk. Since b = B5yx̂, there are local currents in
the bulk δj ∼ B5Eyŷ and ∇ · δj = B5 · E/(2π2) is pre-
cisely the growth rate of local charge [Fig. 2(c)], reconcil-
ing the Fermi surface (covariant) picture with the charge
conserving (consistent) picture on the lattice [57].

Moving on to spatio-temporally varying Weyl node
separations, consider first b = −E5tẑ, yielding uniform

E5 ‖ ẑ. A B 6= 0 activates the second term of (2), sug-
gesting that charge is created at the Fermi surface at a
rate E5 · B/(2π2). For our lattice model (5), E5 shifts
the band bottom, pushing charge above a fixed energy
[Fig. 3(a)]. Rigid shifts of the band conserve total charge,
giving the consistent picture of the anomaly. However,
if one insists on only considering the low-energy gray re-
gion in Fig. 3(a), the charge appears to emerge from the
vacuum, as expected from the covariant anomaly. The
connection between these pictures is shown in Fig. 3(b),
where charge growth near the Fermi surface equals charge
loss near the band bottom, which in turn equals the
Bardeen polynomial δj0, Eq. (9).

We end by addressing the factor of 1/3 disparity be-
tween the prefactors of the E5 ·B5 anomalies. This dif-
ference implies that the band bottom current must add
−2/3 to the Fermi surface contribution, irrespective of
the precise pseudo-field profile. One may argue that this
factor arises from the topological nature of the Bardeen
polynomials [44], yet we find that topology alone does
not explain the conditions which give 1/3 for a generic
lattice model.

To illustrate the conditions for isolating the 1/3, con-
sider [36]

b =
cB
2

[
erf

(
y − L

4√
2ξ

)
− erf

(
y + L

4√
2ξ

)
− 1

]
x̂+ bz ẑ,

(10)
with cB a constant and erf(x) the error function
[Fig. 4(a)]. In a periodic system of length L in the
y direction, this profile realizes interfaces at ±L/4 be-
tween two Weyl semimetals with different node separa-
tions, connected by regions where b smoothly changes to
give B5 = B5(y)ẑ with B5(y) = cB√

2πξ
[e−(y−

L
4 )2/(2ξ2) −

e−(y+
L
4 )2/(2ξ2)]. This profile maintains the useful prop-

erty that the two chiralities (eigenstates of γ5) are
well separated in momentum space [Fig. 4(c)]. Adding
E5 ‖ B5 to produce a chiral anomaly, chiral charge (6)
is created/annihilated in spatially separated regions
[Fig. 4(d)], at a rate that closely follows the spatial pro-
file of B5 as expected from Eq. (3) [Fig. 4(e)]. The Fermi
surface contribution to the chiral charge is calculated as

dρFS5 (y)

db
=
∑
n

〈ψn|γ5Πy|ψn〉〈ψn|∂bH|ψn〉δ(µ− εn).

(11)
with Πy the projector to the position y, cf. Supplemen-
tal Material. Comparing the chiral charge pumped at
the Fermi surface and that in the full spectrum to the
expected value proportional to B5, we see that they are
close, but neither perfectly reproduces the field theory
prediction.

To determine the factors behind this mismatch we note
that the erf profile minimizes the spatial overlap be-
tween regions of chiral charge creation and annihilation
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(∂ρ5/∂bz > 0 and < 0 at y ≈ +L/4 and y ≈ −L/4
respectively). However, for both chiralities, there ex-
ist regions in momentum space [light/dark regions in
Fig. 4(b)] where the states are not well-localized in real
space. These regions spread out with increasing ξ, such
that the erf profile evolves into a sinusoid-like function,
resulting in a poorer match between the B5(y) profile
and the chiral charge response, cf. Supplemental Mate-
rial. The sensitivity of the result to these regions, high-
lighted by the failure of the sinusoid-like profile where
no clear spatial separation exists, implies that the value
1/3 is modified by such effects for generic profiles of B5.
This detrimental overlap is minimized if L � ξ � a is
satisfied, allowing the intriguing possibility that an exact
1/3 may be recovered in this limit. Finally, all anomaly
terms present finite size and quadratic corrections to the
low-energy field theory (7), which we discuss in the Sup-
plemental Material.

In summary, we have provided an intuitive lattice pic-
ture that is based on Landau and pseudo-Landau lev-
els and connects the covariant and consistent anoma-
lies. We explicitly identified the Hall current as the
Bardeen polynomial that connects the covariant anoma-
lies of the Fermi arcs and restores charge conservation,
most notably when the Fermi surface knots into a bowtie.
We expect that the bowtie Fermi surface and its re-
sponse to external fields will be important to understand
strained Weyl semimetals experimentally, in particular
their transport properties.

Our work highlights that measuring the consistent or
covariant anomaly (e.g., the factor of 1/3) depends on
whether the experimental probe is sensible to only the
Fermi surface or rather the entire Fermi sea. Addition-
ally, perturbations such as strain allow other model pa-
rameters to depend on position, e.g, the Fermi velocity,
as well as additional terms in Eq. (7) [58]. Our work mo-
tivates the study of these questions to interpret incipient
experiments in strained Weyl semimetals.
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Supplemental Material

Summary of consistent and covariant anomalies

For completeness, we provide a summary of the rele-
vant facts of consistent and covariant anomalies derived
from quantum field theory. As discussed in the main text
electric and magnetic fields that satisfy E·B 6= 0 generate
an anomalous imbalance between left and right movers.
Additionally pseudo-magnetic (B5) and pseudo-electric
(E5) field—the fields that couple with opposite signs to
opposite chiralities—will result in the same chiral imbal-
ance, since the contributions of the two chiralities to the
chiral current Jµ5,cov = JµL,cov − J

µ
R,cov (µ = 0, 1, 2, 3) will

add up. However, these considerations imply also that
the vector current Jµcov = JµL,cov+JµR,cov is not conserved.
Mathematically

∂µJ
µ
5,cov =

1

2π2
(E ·B + E5 ·B5) , (12a)

∂µJ
µ
cov =

1

2π2
(E ·B5 + E5 ·B) , (12b)

a result which can be obtained either diagrammati-
cally [1, 41] or semiclassically [16, 17, 25, 42]. Eqs. (12)
define the covariant chiral anomaly [40, 41] of the covari-
ant vector and axial currents Jµcov and Jµ5,cov respectively.

This result is troublesome: a theory which does not
conserve charge is unphysical, yet the fields B5 and E5

can be physically realized in the solid state [16, 17, 25].
At the quantum field theory level curing the nonconser-
vation of charge amounts to acknowledging that Eqs. (12)
are determined solely by the Fermi surface, but that
counteracting currents are necessary at energies com-
parable to the cut-off energy [41]. To ensure this con-
straint is satisfied, two additional Chern-Simons currents,
δjµ and δjµ5 , known as Bardeen polynomials, are added,
which transfer the necessary charge and guarantee charge
conservation [43]. They relate the covariant currents
(Jµcov, J

µ
5,cov) to the physical consistent currents (Jµ, Jµ5 )

through Jµ5 = Jµ5,cov + δjµ5 and Jµ = Jµcov + δjµ, respec-
tively, and take the form

δj0 =
1

2π2
A5 ·B; δj =

1

2π2

(
A0

5B−A5 ×E
)

; (13)

δj05 =
1

6π2
A5 ·B5; δj5 =

1

6π2

(
A0

5B5 −A5 ×E5

)
,

(14)

where the chiral gauge field Aµ5 defines the pseudo-fields
B5 = ∇ ×A5 and E5 = −∇A0

5 − ∂0A5. Together with
Eqs. (12) results in the consistent anomaly [41, 42]

∂µJ
µ
5 =

1

2π2

(
E ·B +

1

3
E5 ·B5

)
; ∂µJ

µ = 0. (15)

Eqs. (12) and (15) summarize the two versions of the
quantum anomalies.
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We note that the consistent and covariant currents
have been discussed in the context of the two-dimensional
quantum Hall effect [59]. In this case the edge current is
the sum of the edge consistent current plus the anomaly
inflow from the 2+1D bulk Chern Simons term, which
combined form the covariant edge current [60]. In a sim-
ilar way, consistent and covariant currents can be defined
for a 3+1D Weyl fermion living at the edge of a 4+1D
quantum Hall effect.

Details of the lattice calculations

We are interested in the response of a Weyl semimetal
to external fields E and E5. A time-dependent vector po-
tential A = −Et gives an electric field, and analogously a
time-dependent node separation b = −E5t. We express
the time-derivative of any expectation value f in terms
of the response to changes in A and b,

df

dt
= −E · ∂Af −E5 · ∂bf, (16)

which is especially handy when evaluating time-
derivatives proportional to E and E5, such as ∂µj

µ and
∂µj

µ
5 where f corresponds to the densities ρ or ρ5.

The response of the density to external fields E and E5

is the response to a shift A→ A + dA and b→ b + db
respectively. Explicitly, the chiral density at site y reads

ρ5(y) =
∑
n∈occ.

〈ψn|γ5Πy|ψn〉, (17)

where Πy projects onto site y. When performing an in-
finitesimal shift of the Weyl node separation b→ b+db,
the single-particle states change as

|ψn(b+ db)〉 = |ψn〉+ db ·
∑
m6=n

|ψm〉〈ψn|∂bH|ψm〉
εn − εm

(18)

resulting in a change of the chiral density

dρ5(y)

db
=
∑
n∈occ.

∑
m6=n

〈ψn|γ5Πy|ψm〉〈ψn|∂bH|ψm〉
εn − εm

+ h.c.

(19)
Note that the sum goes over the states n that are initially
occupied at a node separation b.

The Fermi surface contribution, on the other hand, just
counts the subset of states that are lifted above the Fermi
level when shifting b→ b+db, minus the states that are
pushed below the Fermi level, dρFS5 = dρ+5 − dρ

−
5 with

dρ+5 (y) =
∑
εn<µ,

εn+dεn>µ

〈ψn|γ5Πy|ψn〉 (20)

dρ−5 (y) =
∑
εn>µ,

εn+dεn<µ

〈ψn|γ5Πy|ψn〉 (21)

or, expressed in terms of Heaviside functions,

dρ±5 (y) =±
∑
n

〈ψn|γ5Πy|ψn〉Θ(±dεn)

× [Θ(µ− εn)−Θ(µ− (εn + dεn))] . (22)

To first order in perturbation theory, the infinitesimal
change in the energies is

dεn = db · 〈ψn|∂bH|ψn〉 (23)

and the sum of Heaviside functions reduces to

Θ(µ− εn)−Θ(µ− (εn + dεn)) = dεnδ(µ− εn), (24)

which finally gives

dρFS5 (y)

db
=
∑
n

〈ψn|γ5Πy|ψn〉〈ψn|∂bH|ψn〉δ(µ− εn)

(25)
as used in the main text. Numerically, we use a
Lorentz approximation to the delta function, δ(x) =
lim
η→0

η/(π(η2 + x2)).

The quest for 1/3

Two effects challenge the calculation of the chiral
anomaly due to E5 · B5 on a lattice. First, B5 always
averages to zero over the whole sample [17], which im-
plies that a length scale ξ exists that characterizes the
typical size of the variations in B5. Second, a mass term
m changes the response of the chiral charge ∂µj

µ
5 .

Effect of ξ

We demonstrate the lattice effect set by the length ξ
explicitly by using the same profile of the node separa-
tion b as in the main text (10). In Fig. 5 (a) and (b), we
show how the responses of the total chiral charge ρ5 and
the charge around the Fermi surface ρFS5 are affected by
different sizes of ξ respectively. The two conditions for ξ
discussed in the main text that allow for the identifica-
tion of 1/3 are both demonstrated explicitly. When ξ ≈ a
the variation of B5 occurs on the scale of the lattice con-
stant forcing the density variations Eqs. (19) and (25) to
interpolate smoothly between lattice sites such that the
quantum field theory predictions breaks down. When
ξ � L is not satisfied, tails of the regions with positive
and negative B5(y) (positive and negative chiral charge
creation) overlap, leading to notable finite size effect and
again conflicting with the field theory predictions.
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FIG. 5. (a) Responses ∂ρ5/∂bz and (b) ∂ρFS
5 /∂bz for our

lattice model [Eq. (5)] with periodic boundary conditions in
y-directions of length L = 360 and cB = 1.25, cf. Eq. (10).
We show results for different widths ξ of the regions with non-
zero B5. The best matching of the field theory predictions are
found for ξ = 6, which mostly satisfies the condition a� ξ �
L. For ξ = 2, the condition a � ξ is not satisfied, making
lattice scale effects extremely relevant and deviating from the
field theory limit. For ξ = 30, tails of the two chiral charge
pumping regions centered at ±L/4 overlap, leading to notable
finite size effects.

Effect of a finite mass

The response of the chiral and total charge to fields E
and E5 computed on a lattice can deviate from the ex-
pectation based on the simplest quantum field theory due
to corrections set by the mass term, as mentioned in the
main text. In this section, we carefully investigate one
example, the electromagnetic contribution to the chiral
anomaly on a lattice, ∂µj

µ
5 = E ·B/(2π2) and argue how

a mass term influences the chiral anomaly. We further
show that the mass term does not play the same role for
the covariant anomaly ∂µJ

µ
cov = E5 ·B/(2π2).

The main source of lattice corrections to the anomaly
is that the Wilson fermion Hamiltonian [61] used for all
tight-binding calculations, Eq. (5), has a momentum-
dependent mass term

Mk = m+ t
∑
i

(1− cos ki), (26)

that ensures the absence of copies of the Weyl nodes, or
doublers, on the lattice [61]. When t > 0, the minimum
of Mk is at the Γ point and its maximum at (π, π, π);
for m = 0, as set in the main text, the term is zero at
k = 0 and increases away from Γ. The term Mk sets the
momentum-independent mass term m in the action (7)

(a)

(c) (d)

(b)

FIG. 6. (a) Convergence of the response ∂ρ5/∂Az for a tight-
binding system governed by the Hamiltonian (5) with periodic
boundary conditions in y-directions of length L and a node
separation b = bẑ. A magnetic field B = Bẑ that satisfies
periodic boundary conditions is included, with a magnetic
length `B =

√
2πL. The crosses denote the numerical results

from tight-binding calculations , the solid line the results of
a fit with f(L) = c0 + c1 exp(−L/ξ), and the dashed line the
coefficient c0, i.e., the result in the limit L → ∞. The color
denotes different values of m̄, as shown in panel (b), and we
further choose b = 0.4. (b) The response ∂ρ5/∂Az in the limit
L→∞ as a function of m̄2/b2. The different symbols denote
different combinations of b and t and the gray line shows the
expectation from the lattice model (29). (c) Response of the
chiral charge around the Fermi surface to E ∂ρFS

5 /∂A, as a
function of the level broadening η for b = 0.4. The dashed
lines denote the result from panel (a), limL→∞ ∂ρ5/∂A. (d)
Response of the total charge around the Fermi surface to an
axial field, ∂ρFS/∂A5, as a function of the level broadening
η. The dashed line denotes the field theory result ∂ρ/∂A5 =
B/(2π2) as a guide for the eyes.

that couples both chiralities and changes the response
to electric and magnetic fields [62–64]. Such a term re-
sults in an additional classical contribution to the chiral
anomaly, ∂µj

µ
5,class = 2miψ̄γ5ψ [1], that is zero in all

equilibrium situations we consider, which we confirm nu-
merically. Instead, another consequence of m affects the
chiral anomaly: when m 6= 0 in the field theory, the
eigenfunctions of the corresponding Hamiltonian are no
longer eigenfunctions of the chiral matrix γ5. Instead,
close to the Weyl node of chirality χ, the overlap with
γ5 for the low-energy eigenstates with a linear dispersion
can be obtained analytically to be

〈ψχ|γ5|ψχ〉 = χ

√
1− m2

|b2|
, (27)
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(a) (b)

(c) (d)

(e)

FIG. 7. (a) Response ∂ρ5/∂bz for a tight-binding system gov-
erned by the Hamiltonian (5) with periodic boundary con-
ditions in y-directions of length L = 360. An axial field
B5 = B5(y)ẑ generated by b(y), Eq. (10), with ξ = 6 and
cB = 1 that satisfies periodic boundary conditions is included.
The different colors denote different values of m̄ (cf. panel (b))
and the bold red line shows the profile of B5(y). (b) The in-
tegral over y around the peak is computed numerically for
different values of m̄. The dashed line denotes the value of
the integral that is expected from quantum field theory. In
(c) and (d), we show the response of the chiral charge around
the Fermi surface ∂ρFS

5 /∂bz as a function of the level broad-
ening η with the different colors denoting different values of
η. The bold red line shows the profile of B5(y), the filled re-
gion is minimal difference between B5 and ∂ρFS

5 /∂bz. In (e),
we show the numerically computed integral over y around the
peak in B5 for different values of m̄. The dashed line denotes
the value of the integral that is expected from quantum field
theory.

with b2 = bµb
µ, i.e., the chiral density around the Weyl is

reduced by a nonzero mass term. We note that a similar
factor appears in the effective action for this model and
is related to the Weyl node separation [63, 64].

On a lattice, the eigenstates of the Hamiltonian (5)
are only eigenstates of γ5 for those momenta k where
Mk = 0. In particular, the overlap with γ5 of states of
chirality χ = ± close to the Weyl nodes at χkW is

〈ψχχkW
|γ5|ψχχkW

〉 = χ

√
1−

M2
kW

|b2|
, (28)

i.e., it scales with the value of Mk at the Weyl nodes,
m̄ ≡ MkW

. In the presence of m̄ 6= 0 the eigenstates
are not strictly eigenstates of γ5 yet in order to define
the chiral anomaly using Eq. (6) we effectively assume
that they are. An alternative definition of chirality that
does not possess this problem is to partition the Brillouin
zone into two and declare left and right chiral charges as
done in Ref. 65. While it has the advantage of having
a clear definition of chirality, it does not reduce to any
representative matrix at the field theory level and so we
retain the first definition.

With these definitions it is tempting to upgrade the
chiral anomaly to

∂µj
µ
5 =

1

2π2

√
1− m̄2

b2
E ·B. (29)

It is interesting to note that a similar equation would
be obtained if one interprets the prefactor as an ef-
fective renormalization of the chiral electric charge
e5 = e

√
1− m̄2/b2 that would enter the chiral anomaly

throughout the coupling to an external chiral gauge field
e5Aµ,5 in analogy with ordinary charge [66]. We have un-
successfully attempted to derive Eq. (29) from the effec-
tive field theory responses for the action Eq. (7) discussed
in [62–64]. However, our numerical results on the cor-
rections presented below suggest a richer structure when
the mass is non-zero, which has motivated us to leave the
precise connection between the quantum field theory dis-
cussed in these works and our results for a separate study.
At the end of the section we specify the conditions where
our numerics coincide with the massless field theory ex-
pectation validating our results in the main text, up to a
given order in momentum.

To gain insight on the above expectation numerically,
we investigate how the chiral anomaly changes with m̄.
Differentiating between the total charge and the charge
around the Fermi surface, we compute the response to
external fields E and E5 via Eqs. (19) and (25) on a
lattice with periodic boundary conditions and a constant
B.

We show the response of the chiral charge ρ5 in
Fig. 6(a) and (b). In panel (a), we show the conver-
gence with system size, whereas in panel (b), we show
that, in the limit of L → ∞, the response of the chiral
charge scales with

√
1− m̄2/b2 as dictated by Eq. (29).

Taking into account just states around the Fermi sur-
face via Eq. (25), the chiral charge ρFS5 responds approx-
imately in the same way as shown in Fig. 6(b), cf. panel
(c). Thus, the consistent and covariant anomalies are the
same for the term E ·B, even in the presence of a mass
m. In panel (d), we show the response of the total charge
around the Fermi surface to a field E5: due to the covari-
ant anomaly, ∂ρFS/∂A5 6= 0. In contrast to ∂ρFS5 /∂A, the
contribution ∂ρFS/∂A5 is not much affected by m̄ 6= 0.

The chiral-symmetry breaking term Mk has more in-
tricate consequences for the anomaly in the chiral charge
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due to E5 ·B5. We find numerically that the dependence
of ∂ρ5/∂bz and ∂ρFS5 /∂bz on m̄ are different. In Fig. 7(a),
we show the response of the total chiral charge for differ-
ent values of m̄ with the profile of b according to Eq. (10).
It allows us to obtain panel (b), where the value of the
integral over the curves in Fig. 7(a) as a function of m̄ is
compared to the result expected from the massless quan-
tum field theory, i.e. the 1/3 prefactor difference between
the second term of equations (13) and (15) shown as a
dashed line. ∂ρ5/∂bz is closest to the massless field the-
ory prediction for a value m̄ ∼ 0.1v, close to m = 0. This
contrasts with the E ·B analyzed above where the mass-
less field theory expectation was reached when m̄ = 0.
Finally, the effect of m̄ on ∂ρFS5 /∂bz is shown in Fig. 7(c)
and (d) for various values of the level broadening η. The
integral over one peak decreases with m̄, as visible in
Fig. 7(e), different from the total charge contribution.

In conclusion, the massless quantum field theory ex-
pectation is recovered numerically when m̄ ∼ m ∼ 0.
This is satisfied when quadratic corrections are negligible
and we choose m ∼ 0, a regime which is largely satisfied
by our parameter choices in the main text. The small
yet rich deviations that we have quantified numerically
(Figs. 6 and 7) indicate that further effort beyond the
scope of this work is required to precisely connect with
quantum field theory expectations with a finite mass.
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