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The dualities that map hard-to-solve, interacting theories to free, non-interacting ones often trig-
ger a deeper understanding of the systems to which they apply. However, simplifying assumptions
such as Lorentz invariance, low dimensionality, or the absence of axial gauge fields, limit their ap-
plication to a broad class of systems, including topological semimetals. Here we derive several axial
field theory dualities in 2+1 and 3+1 dimensions by developing an axial slave-rotor approach capable
of accounting for the axial anomaly. Our 2+1-dimensional duality suggests the existence of a dual,
critical surface theory for strained three-dimensional non-symmorphic topological insulators. Our
3+1-dimensional duality maps free Dirac fermions to Dirac fermions coupled to emergent U(1) and
Kalb-Ramond vector and axial gauge fields. Upon fixing an axial field configuration that breaks
Lorentz invariance, this duality maps free to interacting Weyl semimetals, thereby suggesting that
the quantization of the non-linear circular photogalvanic effect can be robust to certain interac-
tions. Our work emphasizes how axial and Lorentz-breaking dualities improve our understanding
of topological matter.

I. INTRODUCTION

A defining property of massless relativistic fermions
is that their momentum is either aligned or anti-aligned
with their spin. This quantum-mechanical degree of free-
dom is distinguished by axial gauge fields, which dramat-
ically affect observables in a broad set of physical sys-
tems: from strained graphene and Weyl semimetals [1, 2],
to the quark-gluon plasma created in heavy ion colli-
sions [3]. For example, in 3+1 dimensions the absence of
axial charge conservation due to quantum fluctuations,
known as the axial anomaly [4], significantly enhances
the magnetoconductivity of Weyl semimetals [5]. Within
the quark-gluon plasma an axial chemical potential can
generate a current parallel to a magnetic field, an oth-
erwise absent phenomenon known as the chiral magnetic
effect [6].

Although axial gauge fields are physically ubiquitous,
quantum field theory dualities are typically formulated
without them. A quantum field theory duality is a map
that renders two quantum field theories equivalent [7].
They are especially useful when a strongly interacting
theory that is hard to solve is mapped onto a free quan-
tum field theory. An important recent example is the
map proposed by Son [8] between a free 2+1-dimensional
Dirac cone and 2+1-dimensional quantum electrodynam-
ics (QED3), see Ref. [9] for a review. It is a fermionic
generalization of an older 2+1-dimensional boson-vortex
duality [10, 11], and its discovery suggested that the com-
posite fermions describing the fractional quantum Hall
state of a half-filled Landau level can be Dirac parti-
cles [12]. Son’s fermionic duality has also been formu-
lated as a duality between two surface theories, which
correspond to two dual 3D topological insulator bulk
theories [13, 14]. This duality is embedded within a
larger duality web [15–18], where different bosonic and
fermionic theories can be related to each other by dual-

ity transformations. There are variations that consider
more than one fermionic flavor [16, 19–23], as well as
proposed extensions to 3+1 dimensions [24–28].

The description of a growing variety of systems in
terms of axial gauge fields challenges us to develop du-
alities that can be used to understand their interact-
ing phases. Moreover, it is known that the parity
anomaly [29] is central to Son’s 2+1-dimensional dual-
ity [30], yet a comparable understanding of the axial
anomaly in putative 3+1 dimenisional fermionic duali-
ties is still lacking. Our goal is to formulate dualities
that help answer these questions.

In this work we derive several axial field theory duali-
ties in 2+1 and 3+1 dimensions, summarized in Figs. 1
and 2. In 2+1 dimensions the helicity operator is well
defined [31], unlike chirality [32]. This implies that a
(helical) gauge field can distinguish Dirac fermions by
their helicity [33]. The duality we derive maps two heli-
cal Dirac fermions coupled to external vector and helical
gauge fields, into two helical Dirac fermions coupled to
mixed Chern-Simons terms that couple the emergent vec-
tor and helical U(1) fields with the external fields. Our
2+1-dimensional duality suggests the existence of a sur-
face theory dual to the surface Dirac fermion doublet
found in strained 3D non-symmorphic topological insu-
lators [34].

In 3+1 dimensions the duality we derive maps two
Weyl fermions coupled to a vector (Aµ) and an axial
gauge field (A5,µ) to an interacting theory with two emer-
gent U(1) vector fields (aµ and a5,µ) and two emergent
Kalb-Ramond fields (Bµν andB5,µν). The latter are anti-
symmetric tensor gauge fields that originated in string
theory [35, 36], and that appear in recent descriptions
of 3+1-dimensional topological insulator theories [37–
41]. Interestingly, our 3+1-dimensional duality applies
to specific configurations of A5,µ which describe differ-
ent topological states, such as the 3D quantum Hall ef-
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FIG. 1. Schematic summary of the 2+1-dimensional axial du-
alities discussed in this work. (a) A theory of two helical mass-
less fermions ψ is coupled an external vector (Aµ) and helical
gauge fields (A5,µ). Physically, this can describe the double
Dirac surface state of a strained non-symmorphic topological
insulator. Depending on the realization of time-reversal sym-
metry, this theory maps to two different extensions of QED3

of neutral fermions f , with mutual Chern-Simons coupling
the two external fields with two emergent vector and helical
fields, aµ and a5,µ. (b) These dualities suggest the existence
of dual surface theories for the double Dirac surface state of
a strained non-symmorphic topological insulator.

fect [42–44], and Weyl semimetals [45]. For example, the
latter is recovered by choosing a constant A5,µ on one
side of the duality [46–49], which breaks Lorentz sym-
metry and sets the Weyl node separation in momentum
and energy space. In this case we find a duality between
a Weyl semimetal, described by Lorentz-breaking QED
with a constant axial four-vector [47, 50, 51], and Lorentz
breaking QED with a dynamical gauge field coupled to
a Carroll-Field-Jackiw term [52]. We show that this du-
ality satisfies a requirement imposed by Son’s fermionic
duality. The non-interacting side of our Weyl semimetal
duality is known to display an exactly quantized circu-
lar photogalvanic effect [53], a non-linear photocurrent
generated by circularly polarized light. Our duality im-
plies that the dual interacting theory must present the
same quantized circular photogalvanic effect. This is
in contrast to the effect of more conventional Coulomb
interactions which correct the quantization constant if
present [54].

To derive the dualities presented here we have devel-
oped an axial slave-rotor transformation that generalizes
the slave-rotor technique [55, 56], and incorporates the
chiral anomaly in 3+1 dimensions. It is inspired by the
work in Ref. [57], where this technique has been used to
derive Son’s duality and to emphasize the key role played
by the parity anomaly [29].

II. AXIAL SLAVE-ROTOR APPROACH

Our goal is to derive dualities between theories that
contain two types of fermions, either with opposite he-
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FIG. 2. Schematic summary of the 3+1-dimensional axial du-
alities discussed in this work. (a) A massless Dirac fermion
in 3+1-dimensions ψ, coupled to an external vector (Aµ) and
chiral (A5,µ) gauge fields is dual to a neutral Dirac fermion
f coupled to vector and axial dynamical gauge fields (aµ and
a5,µ), and a vector and axial Kalb-Ramond fields (Bρσ and
B5,ρσ) through terms of the form εµνρσFµνBρσ, known as BF
terms. The last term accounts for the chiral anomaly. (b)
When A5,µ is set to a constant (−bµ), Lorentz symmetry
is broken and the non-interacting theory describes a Weyl
semimetal with Weyl node separation set by bµ. Its dual is
an interacting Weyl semimetal theory with a BF, and mixed
Carroll-Field-Jackiw terms. This duality suggests that an in-
teracting Weyl theory can display a quantized photogalvanic
effect.

licity in 2+1 dimensions, or with opposite chirality in
3+1 dimensions. We therefore start by generalizing the
slave-rotor approach [55, 56] to incorporate chirality and
helicity. The method allows us to describe interactions in
terms of two emergent Abelian gauge fields, and can be
viewed as the U(1)V × U(1)A descendant of the SU(2)
non-Abelian constructions in Refs. [58, 59]. In our case,
U(1)V is associated to a vector gauge symmetry while
U(1)A is associated to an axial gauge symmetry.

Our starting point is a system that can be decomposed
into two independent sectors, that we call L and R, such
that the total Hilbert space H is

H ≡ HL ⊕HR. (1)

Here Hχ is the Hilbert space associated to each sector
χ = L,R. These sectors are defined by the number oper-
ators at a given site r, nχ, which are independently con-
served at classical level. To describe the physical fermions
ψχ, we introduce two independent rotor fields θχ, conju-
gate to nr,χ, satisfying the following relations

ψr,χ = e−iθr,χfr,χ, ψ†r,χ = f†r,χ e
iθr,χ , (2)

such that

[θr,χ, nr,χ] = i. (3)

The operators eiθr,χ create a charged, spinless boson in
the χ sectors. The operators f†r,χ create neutral spinons
that carry the electron’s spin. In using Eq. (2) we pay the
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price of enlarging the Hilbert space [55, 56]. To recover
the physical Hilbert space in each sector it is necessary
to impose the constraint

f†r,χfr,χ = nr,χ + 1. (4)

These constraints act independently on eachHχ, and will
be imposed at the level of the action with a Lagrange
multiplier. As in previous works [25, 30], we assume here
that 〈eiθr,L〉 6= 0 and 〈eiθr,R〉 6= 0, which implies the
absence of a Mott insulating phase [60].

III. 2+1 FERMION-FERMION DUALITY WITH
AN AXIAL GAUGE FIELD

A. Formulation of the duality

In 2+1 dimensions there is no notion of chirality. How-
ever, two Dirac fermions can form a reducible 4× 4 rep-
resentation of the Clifford algebra, such that the 2 × 2
irreducible blocks that compose this representation can
be labeled by their helicity (left and right), to which an
axial gauge field can couple to. In what follows we use
the axial slave-rotor approach presented in the previous
section to connect two theories involving massless Dirac
fermions of opposite helicities. The first theory is a non-
interacting theory of two helical massless Dirac fermions
in Euclidean spacetime, defined as

Sh =

∫
d3x ψ̄γµ(∂µ − iAµ − iA5,µγ5)ψ (5a)

≡
∫
d3x

[
ψ̄L σ

µ
L(∂µ − iAµ,L)ψL

+ ψ̄R σ
µ
R(∂µ − iAµ,R)ψR

]
, (5b)

where Aµ is an external electromagnetic field, A5,µ is an
axial gauge field, ψ = (ψL, ψR)T is a four-component
spinor, σµL = (I, σi), σµR = (I,−σi), and

Aµ,L = Aµ +A5,µ, (6a)

Aµ,R = Aµ −A5,µ. (6b)

We find this theory to be dual to neutral Dirac fermions
f coupled to an emergent vector and axial gauge field,
aµ and a5,µ, respectively. These emergent gauge fields
are coupled with the external Aµ and A5,µ fields through
mixed Chern-Simons terms. If time-reversal symmetry is
absent, then the dual theory to Eqs. (5) takes the follow-
ing form

S
(1)
cQED3

=

∫
d3x f̄γµ(∂µ − iaµ − iγ5a5,µ)f

+
i

2π
adA+

i

2π
a5dA5 −

i

4π
ada− i

4π
a5da5 + · · · .

(7a)

Here we make use of the short hand differential form
notation ada = εµνρaµ∂νaρ. In the ellipses (+ · · · ) we in-
clude higher-derivative kinematic Maxwell terms, which

can be neglected to lowest order, and are not relevant for
our discussion. When the axial gauge fields are switched
off, the duality between Eqs. (5) and (7a) reduce to two
copies of Son’s duality [8, 20], one for each helicity. If
time-reversal symmetry is preserved then the dual the-
ory of Eqs. (5) is given by

S
(2)
cQED3

=

∫
d3x f̄γµ(∂µ − iaµ − iγ5a5,µ)f

+
i

2π
adA5 +

i

2π
a5dA−

i

2π
ada5 + · · · . (7b)

These are the main results of this section, and are sum-
marized in Fig. 1.

B. Derivation of the duality

We begin by defining a lattice version of the gapless
Hamiltonian of Eq. (5), given by two decoupled Hamil-
tonians

H = HL +HR, (8)

where the Hamiltonian of each sector is given by

Hχ =
∑
r

[
ψ†r,χ

(
−iχ̂σs −mχσ

z

2

)
e−iAr,r+ŝ,χψr+ŝ,χ + h.c.

]
+
∑
r

ψ†r,χ [(m0 + 2mχ)σz − iA0,r,χ]ψr,χ. (9)

Here r = {x, y} is the site index, Ar,r+ŝ,χ is introduced
through a Peierls substitution on the lattice link (r, r+ ŝ)
with ŝ ≡ (x̂, ŷ). We have also introduced the scalar χ̂ that
takes the value χ̂ = +1 and χ̂ = −1 for chiralities χ = L
and χ = R, respectively. The parameter m0 sets the
gap at the Γ point, while a combination of m0 and mχ

sets the gaps at momenta Ki = (0, π), (π, 0) and (π, π).
When m0 = 0, the low-energy theory around Γ takes the
form of a gapless Dirac fermion

Hχ = χ̂

∫
d3k ψ̄k,χ σ

iki ψk,χ. (10)

For a finite m0, the theory becomes that of a massive
Dirac fermion that may be integrated out. The resulting
effective field theory takes the form of a Chern-Simons
theory [29]

Seff = −i sgn(m0)

8π

∫
d3x εµνρAµ,χ∂νAρ,χ

≡ −i sgn(m0)

8π

∫
d3x AχdAχ. (11)

where in the second line we have defined a short-hand
notation for the Chern-Simons term.

Accordingly, the low-energy theories around Ki are
gapped Dirac fermions with masses set by a combination
of m0 and mχ. We are interested in the limit of small
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m0, for which the combined effective action including Ki

is [29]

Seff,χ = i
sgn(mχ)

8π

∫
d3x AχdAχ. (12)

The role of time-reversal symmetry is explicit when we
set A5,µ = 0, and therefore Aµ,L = Aµ,R = Aµ. If a
Chern-Simons term AdA is present in the total effective
action, this implies a finite Hall conductivity and the
breaking of time-reversal symmetry. The total effective
action is obtained by combining Eq. (11) and Eq. (12)
for both χ sectors:

Seff =
i

8π

∫
d3x (−sgn(m0) + sgn(mL))AdA

± (−sgn(m0) + sgn(mR))AdA. (13)

The relative sign betweenm0 andmχ determines whether
a Chern-Simons term AdA is allowed within each sector,
and therefore sets their respective Hall conductivities.
The ± represents the freedom to choose the relative sign
between the Hall conductivities of the L and R sectors.

Since each χ sector is described by the Hamiltonian
considered in Ref. [30], we can use the two independent
slave-rotor transformations, introduced in the previous
section, to find the dual theory of Eqs. (5). For each χ,
the derivation follows the method in Ref. [30], but here we
will keep track of the signs of the different Chern-Simons

terms that are induced via the parity anomaly. Because
both sectors remain decoupled, we detail the derivation
for the dual action for the L sector only. At the end, we
will combine both chiral sectors into a single theory by
considering the role of time-reversal symmetry.

Using the slave-rotor transformation Eq. (2) we can
write the imaginary-time action (τ = it) that corre-
sponds to HL as

S =

∫ β

0

dτ
∑
r,s

[
f†r,L∂τfr,L − inr,L(∂τθr,L +Ar,0,L)

+(m0 + 2mL)f†r,Lσzfr,L + iλr,L(f†r,Lfr,L − nr,L − 1)

+f†r,L

(
−iσs −mLσ

z

2

)
e−i(Ar,r+ŝ,L+∆sθr,L)fr+ŝ,L

+h.c.] , (14)

where ∆sθr,L = θr+ŝ,L − θr,L and λr,L is a Lagrange
multiplier field that imposes the constraint Eq. (4). To
decouple the f fermions from the rotor and external
gauge fields, θr,χ and Ar,χ, respectively, we introduce
a Hubbard-Stratonovich field hL ≡ ζLe

iaL defined on
the lattice [61, 62]. Since the amplitude fluctuations are
gapped, we can fix the magnitude ζL to its saddle point
value and consider only phase fluctuations. In this case,
Eq. (14) can be rewritten as follows:

S =

∫ β

0

dτ
∑
r,s

[
f†r,L(∂τ + iar,0,L)fr,L − inr,L(∂τθr,L +Ar,0,L + ar,0,L) + (m0 + 2mL)f†r,Lσzfr,L

+

[
ζLf

†
r,L

(
−iσs −mLσ

z

2

)
eiar,r+ŝ,Lfr+ŝ,L + h.c.

]
− ζL cos (∆ŝθr,L +Ar,r+ŝ,L + ar,r+ŝ,L)

]
, (15)

where we have identified the Lagrange multiplier with
the temporal component of the emergent gauge field,
ar,0,L ≡ λr,L. We now may use the Villain approximation
to approximate the last cosine as [63]

eζ cos(α) ≈
∑
J

e−iJα−(1/2ζ)J2

, (16)

at the expense of introducing a boson current Jr,r+ŝL .
After this step, the full action consists of two terms

S = Sf + Sθ, (17)

where

Sf =

∫ β

0

dτ
∑
r,s

[
f†r,L(∂τ + iar,0,L)fr,L

+ (m0 + 2mL)f†r,Lσzfr,L

+ ζLf
†
r,L

(
−iσs −mLσ

z

2

)
eiar,r+ŝ,Lfr+ŝ,L + h.c.

]
,

(18)

and

Sθ =

∫ β

0

dτ
∑
r,s

[
iJr,0L (∂τθr,L +Ar,0,L + ar,0,L)

+ iJr,r+ŝL (∆ŝθr,L +Ar,r+ŝ,L + ar,r+ŝ,L)

+
1

2ζL

(
Jr,r+ŝL

)2
]
, (19)

where we have identified nr,L as the temporal component

(Jr,0L ) of the bosonic current Jr,r+ŝL . In the continuum
limit (i.e., long-wavelength limit) when m0 = 0, Eq. (18)
becomes

Sf =

∫
d3x f̄L σ

µ
L(∂µ + iaµ,L)fL. (20)

In this limit, ∆ŝ becomes the standard spatial derivative
and by integrating out θL in Eq. (19), we obtain

∂µJ
µ
L = 0. (21)
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A solution to this equation is given by

JµL =
1

4π
εµλν∂νbλ,L, (22)

which we can insert back into Eq. (19). The low-energy
action now reads

S =

∫
d3x

[
f̄L σ

µ
L(∂µ + iaµ,L)fL

]
− i

4π
bµ,Ld(aL +AL)

+
1

128π2ζL
F (bL)µνF (bL)µν , (23)

where we have defined the field-strength as F (b)µν =
∂µbν − ∂νbµ.

To obtain an action with a single statistical field, we
first separate the fermionic high- and low-energy modes.
The former are gapped and can be integrated out by the
help of Eq. (12) resulting in

S =

∫
d3x

[
f̄L σ

µ
L(∂µ + iaµ,L)fL

]
− i

4π
bLd(aL +AL)

+ i
sgn(mL)

8π
aLdaL + · · · . (24)

The ellipses in last line contain the kinematical Maxwell
term, which is of higher-order in derivatives and can be
neglected in the low-energy limit. We can now integrate
out one of the statistical gauge fields, keeping track of
the mass (see Appendix. B). This amounts to the re-
placement

bµ,L → sgn(mL)aµ,L, (25)

which delivers

S =

∫
d3x

[
f̄L σ

µ
L(∂µ + iaµ,L)fL

]
− i sgn(mL)

4π
aLdAL

− i sgn(mL)

8π
aLdaL + · · · . (26)

Finally, by combining the L and R sectors, we arrive at

S =

∫
d3x

[
f̄L σ

µ
L(∂µ + iaµ,L)fL + f̄R σ

µ
R(∂µ + iaµ,R)fR

]
− i

4π
sgn(mL)aLdAL −

i

8π
sgn(mL)aLdaL

− i

4π
sgn(mR)aRdAR −

i

8π
sgn(mR)aRdaR + · · · . (27)

Each sector is an instance of Son’s duality. Because we
kept track of mχ, the dependence on the sign of the mass
of the mutual Chern-Simons term in this construction is
explicit, and signals the choice related to the presence or
absence of a finite Hall conductivity [9, 64].

Depending on the relative sign of mL and mR, we can
arrive at two different dualities. Physically, the differ-
ent sign choices represent different realizations of time-
reversal symmetry, as discussed after Eq. (13). If they
are equal, we find, using the relations in Appendix A,

the dual theory

S(1) =

∫
d3x f̄γµ(∂µ + iaµ + iγ5a5,µ)f

− i

2π
adA− i

2π
a5dA5 −

i

4π
ada− i

4π
a5da5 + · · · .

(28a)

If the signs of mL and mR are opposite, the dual theory
is

S(2) =

∫
d3x f̄γµ(∂µ + iaµ + iγ5a5,µ)f

− i

2π
adA5 −

i

2π
a5dA−

i

2π
ada5 + · · · . (28b)

After replacing a→ −a and a5 → −a5, we obtain the du-
alities given in Eqs. (7). The dualities between Eqs. (5)
and (7) are the main result of this section. They encom-
pass the generalization of the fermion-fermion duality [8]
in the presence of axial fields.

C. Effective actions in the massive case

Let us now check the equivalence between the effective
actions that result from Eqs. (5) and (7) when a mass
term is added. It is sufficient to focus on a single sector
of Eqs. (5); we choose χ = L as the derivation for χ = R
is analogous. For the ψ fermions, by adding an arbitrary
mass term mAψ̄LψL we obtain the effective action [29]:

SA,eff =
i

8π

∫
d3x (sgn(mA) + sgn(mL))ALdAL.(29)

For the f fermions, we can similarly add a mass term
mB f̄LfL to Eq. (26) and integrate out the fermions to
obtain

SB,eff =

∫
d3x

i

8π
(sgn(mB)− sgn(mL))aLdaL

− i sgn(mL)

4π
aLdAL. (30)

Following the steps outlined in Appendix B, we can in-
tegrate out the field aL to obtain

SB,eff =
i

8π

∫
d3x(−sgn(mB) + sgn(mL))ALdAL,(31)

which coincides with Eq. (29) if we identify mA = −mB .
This identification implies that the mass term has oppo-
site signs on opposite sides of the duality, recovering a
known property of fermion-fermion dualities [13, 65].

IV. 3+1 DUALITY FERMION-FERMION
DUALITY WITH AN AXIAL GAUGE FIELD

A. Formulation of the duality

Here we extend the axial slave-rotor approach to con-
nect two theories involving massless Dirac fermions in
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3+1 dimensions, each composed of two Weyl fermions
with opposite chiralities. Our 3+1-dimensional duality
connects a free Dirac fermion coupled to external vector
(Aµ) and axial (Aµ,5) fields, given by

Sc1 =

∫
d4xψ̄γµ(∂µ − iAµ − iγ5A5,µ)ψ, (32)

in Euclidean space, to an interacting theory with two
emergent fields U(1) fields, a vector (aµ) and an axial
field (a5,µ), and two Kalb-Ramond fields (Bµν and B5,µν)
that read

Sc2 =

∫
d4x f̄γµ(∂µ + iaµ + ia5,µγ5)f

− iεµνρσ[Fµν(A+ a)Bρσ + Fµν(A5 + a5)B5,ρσ] +

+
i

4π2
εµνρσa5,µ (Aν∂ρAσ +A5,ν∂ρA5,σ)

+
i

4π2
εµνρσaµ (A5,ν∂ρAσ +Aν∂ρA5,σ) + · · · , (33)

where Fµν(A + a) = ∂µ(Aν + aν) − ∂ν(Aµ + aµ). This
duality reduces to that derived in Ref. [25] once the ex-
ternal and emergent axial fields are switched off. It in-
cludes the particularly interesting case when A5,µ is cho-
sen to be a constant, −bµ. This theory breaks Lorentz
invariance [50, 51], and describes a Weyl semimetal with
two nodes separated in momentum space by 2bµ [see
Fig. 2(b)] [46, 47, 66]. It reads

SW1
=

∫
d4xψ̄γµ(∂µ + iAµ + iγ5bµ)ψ. (34)

We find that its dual theory is given by

SW2
=

∫
d4x f̄γµ(∂µ + iaµ + ibµγ5)f

− iεµνρσFµν(a−A)Bρσ

− i

4π2
εµνρσbµ[aν∂ρ(Aσ + aσ)− 2Aν∂ρAσ] + · · · .(35)

These are the main results of this section, and are sum-
marized in Fig. 2.

B. Derivation of the duality

The derivation of the 3+1-dimensional duality pro-
ceeds similarly to the one in the previous section. The
main difference is the role played by the chiral anomaly,
which is relevant for massless fermions in even spacetime
dimensions.

We start by considering a three-dimensional tight-
binding model on a cubic lattice for fermions coupled to
an external electromagnetic field Aµ and an axial gauge
field A5,µ. The corresponding Hamiltonian is given by

Hψ =
∑
r,s

[
ψ†r

(
−mγ0 + γ0γs

2

)
e−i(Ar,r+ŝ+γ5A5,r,r+ŝ)ψr+ŝ

]
+h.c.+

∑
r

ψ†r
[
3mγ0 − iAr,0 − iγ5A5,r,0

]
ψr, (36)

where r = {x, y, z} is the site index, Ar,r+ŝ and A5,r,r+ŝ

are introduced through a Peierls substitution on the
lattice link (r, r + ŝ) with ŝ ≡ (x̂, ŷ, ẑ), ψr is a four-
component spinor and γµ are the Dirac matrices in the
(Euclidean) chiral basis, defined as γx = −σy ⊗ σx,
γy = −σy ⊗ σy, γz = −σy ⊗ σz, γ

0 = σx ⊗ I, with
γ5 = −γ0γxγyγz = −σz ⊗ I the chiral matrix.

This Hamiltonian interpolates between different topo-
logical phases depending on the value of the parameters
and the configuration of the gauge fields. For example,
upon choosing constant components of the chiral gauge
field (A5,r,0 = b0 and A5,r,r+ŝ ≡ bŝ) and expanding the
exponential that contains the latter to first order, this
model realizes the Hamiltonian in Ref. [67]. It features
a Weyl semimetal and topological insulator phases, de-
pending on the relative magnitude of −b2 = b20 − b2 and
m2 (see Refs. [67–69] for a discussion).

The imaginary-time action corresponding to Hamilto-
nian (36) can be written as follows:

S =

∫ β

0

dτ
∑
r,s

[
ψ†r,L∂τψr,L + ψ†r,R∂τψr,R − inr,L(Ar,0 +A5,r,0)− inr,R(Ar,0 −A5,r,0)

+ ψ†r,L
σs

2
e−i(Ar,r+ŝ+A5,r,r+ŝ)ψr+ŝ,L − ψ†r,R

σs

2
e−i(Ar,r+ŝ−A5,r,r+ŝ)ψr+ŝ,R

+ 3m
(
ψ†r,Lψr,R + ψ†r,Rψr,L

)
− m

2

(
ψ†r,Le

−i(Ar,r+ŝ−A5,r,0)ψr+ŝ,R + ψ†r,Re
−i(Ar,r+ŝ+A5,r,0)ψr+ŝ,L + h.c.

)]
. (37)

The terms proportional to m mix both chiralities. Upon choosing m = 0 and expanding close to the Γ point, the
low-energy action realizes a massless Dirac fermion coupled to two gauge fields [67]:

S =

∫
d4x ψ̄γµ(∂µ − iAµ − iA5,µγ5)ψ =

∫
d4x

[
ψ̄L σ

µ
L(∂µ − iAµ,L)ψL + ψ̄R σ

µ
R(∂µ − iAµ,R)ψR

]
, (38)

with σµL = (I, σi), and σµR = (I,−σi). As in the 2+1-dimensional case, we employ the axial slave-rotor approach to
derive the dual theory of Eq. (38). As in the 2+1-dimensional case we are interested in the massless limit, and so we
again neglect terms proportional to m by choosing this parameter to be small. By substituting Eq. (2) in the action
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(37), we have

S =

∫ β

0

dτ
∑
r,s

[
f†r,L∂τfr,L + f†r,R∂τfr,R − inr,L(∂τθr,L +Ar,0,L)− inr,R(∂τθr,R +Ar,0,R)

+ iλr,L(f†r,Lfr,L − nr,L − 1) + iλr,R(f†r,Rfr,R − nr,R − 1)

+ f†r,L (σs/2) e−i(Ar,r+ŝ,L+∆sθr,L)fr+ŝ,L + f†r,R (−σs/2) e−i(Ar,r+ŝ,R+∆sθr,R)fr+ŝ,R + h.c.
]
. (39)

As before, λr,L and λr,R are the Lagrange multiplier
fields that impose the constraints Eq. (4). To decou-
ple the rotor field and the gauge field from the fermions
in the terms in the third row in Eq. (39) we intro-
duce two Hubbard-Stratonovich fields hL ≡ ζLe

iaL and
hR ≡ ζReiaR defined on the lattice. By considering their
magnitudes ζL/R constant, Eq. (39) can be rewritten as
follows:

S =

∫ β

0

dτ
∑

r,s,χ=L,R

[
f†r,χ(∂τ + iar,0,χ)fr,χ

− inr,χ(∂τθr,χ +Ar,0,χ + ar,0,χ)

+ χ̂
(
ζχf
†
r,χ(σs/2)eiar,r+ŝ,χfr+ŝ,χ + h.c.

)
− ζχ cos (∆ŝθr,χ +Ar,r+ŝ,χ + ar,r+ŝ,χ)] , (40)

where we have reinstated the notation that the scalar χ̂
takes the value χ̂ = +1 and χ̂ = −1 for chiralities χ = L
and χ = R, respectively. Similar to the 2+1-dimensional
case, we have defined ar,0,χ ≡ λr,χ. After employing the
Villain approximation for the last two term terms in the
above equation, the action can be decomposed in two
terms,

S = Sf + Sθ, (41)

where

Sf =

∫ β

0

dτ
∑

r,s,χ=L,R

[
f†r,χ(∂τ + iar,0,χ)fr,χ

+ χ̂
(
ζχf
†
r,χ(σs/2)eiar,r+ŝ,χfr+ŝ,χ + h.c.

)]
, (42)

and

Sθ =

∫ β

0

dτ
∑

r,s,χ=L,R

[
iJr,0χ (∂τθr,χ +Ar,0,χ + ar,0,χ)+

+ iJr,r+ŝχ (∆ŝθr,χ +Ar,r+ŝ,χ + ar,r+ŝ,χ)

+
1

2ζχ

(
Jr,r+ŝχ

)2]
, (43)

where we have identified nr,χ as the temporal compo-
nent, Jr,0χ , of the bosonic current Jr,r+ŝχ . In the long-
wavelength limit, Eq. (42) becomes

Sf =

∫
d4x f̄L σ

µ
L(∂µ + iaµ,L)fL + f̄R σ

µ
R(∂µ + iaµ,R)fR,

(44)

where σµL = (I, σi) and σµR = (I,−σi). In this limit,
∆ŝ reduces to the standard spatial derivative, and by
integrating out θL and θR in Eq. (43), we obtain

∂µJ
µ
χ = 0. (45)

A solution for these two equations is given by

Jµχ = εµνλδ∂νBλδ,χ, (46)

where Bλδ,L and Bλδ,R are antisymmetric tensor (Kalb-
Ramond) gauge fields.

At this point, it is important to recall that in 3+1 di-
mensions the path integral measure is not invariant under
the transformations Eq. (2), a fact known as the chiral
anomaly [4]. Therefore, there is an additional contribu-
tion to the effective action that takes into account the
non-conservation of chiral charge. It is of the form [4, 70]

San = i

∫
d4x θχAχ(x), (47)

where Aχ(x) = χ̂
32π2 ε

µνρσFµν(Aχ)Fρσ(Aχ). This factor
carries through our derivation modifying the current con-
servation equation Eq. (45) to

∂µJ
µ
χ −

χ̂

32π2
εµνρσFµν(Aχ)Fρσ(Aχ) = 0. (48)

Consequently, the most general form of the current is

Jµχ = εµνλδ∂νBλδ,χ +
χ̂

16π2
εµνρσAν,χFρσ(Aχ), (49)

Inserting this current back into Sθ, we can write
Eq. (41) as

S = Sf +

∫
d4x

∑
χ=L,R

εµνρσi∂νBρσ,χ(Aµ,χ + aµ,χ)

+ i
χ̂

8π2
εµνρσaµ,χAν,χ∂ρAσ,χ, (50)

where we have omitted the J2 term and used the fact
that εAAdA identically vanishes. By combining now the
two chiralities into a compact notation, we reach the final
form of the duality,

S =

∫
d4x f̄γµ(∂µ + iaµ + ia5,µγ5)f

− iεµνρσ[Fµν(A+ a)Bρσ + Fµν(A5 + a5)B5,ρσ]

+
i

4π2
εµνρσa5,µ (Aν∂ρAσ +A5,ν∂ρA5,σ)

+
i

4π2
εµνρσaµ (A5,ν∂ρAσ +Aν∂ρA5,σ) + · · · ,

(51)
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where Bρσ = (Bρσ,L + Bρσ,R)/2 and B5,ρσ = (Bρσ,L −
Bρσ,R)/2. The two last lines ensure that the anomaly is
the same on both sides of the duality, as we show in the
next section.

Finally, we remark that the kinematic terms for the
Kalb-Ramond fields, hidden in + · · · , prevent the the-
ory from gapping out due to the existence of dynamical
string-like excitations, similar to Ref. [25]. This is com-
patible with the absence of condensation of the slave ro-
tor field that prevent the formation of a Mott insulating
phase. This is an assumption that is inherent to this
approach, as anticipated in Section II.

C. Consistency of the chiral anomaly

As discussed above, the gapless ψ fermions are anoma-
lous, which implies that the combined vector and axial
gauge transformations of Eq. (32) result in the effective
action [4],

S
(1)
θ =

∫
d4x ψ̄γµ(∂µ − iAµ − iA5,µγ5)ψ

+ iθ(∂µJ
µ +

εµνλδ

8π2
Fµν(A)Fλδ(A5))

+ iθ5(∂µJ
µ
5 +

εµνλδ

16π2
[Fµν(A)Fλδ(A)

+ Fµν(A5)Fλδ(A5)]), (52)

where θ and θ5 are related to θχ in Eq. (47) by the relation
θχ = θ+ χ̂θ5. This formulation of the anomaly, known as
the covariant anomaly, might look worrisome, since the
vector current is not explicitly conserved (∂µJ

µ 6= 0).
This problem is fixed by additional current terms known
as Bardeen polynomials, which impose gauge invariance
and define the consistent anomaly that explicitly con-
serves the vector current [4, 67]. For our purposes, it is
enough to set aside this issue and work with the covariant
anomaly, keeping in mind that it has a standard solution.

By construction, the f fermion side of the duality,
Eq. (51), also contains the same chiral anomaly. By vary-
ing Eq. (51) with respect to the Kalb-Ramond fields Bµν
and B5,µν , we arrive at the constraints

Fλδ(Aχ) + Fλδ(aχ) = 0, (53)

implying that aχ = −(Aµ,χ + ∂µξχ). By inserting these
expressions back into Eq. (51), we obtain

S
(2)
θ =

∫
d4x f̄γµ(∂µ − iAµ − iA5,µγ5)f

+ iξ(∂µJ
µ +

εµνλδ

8π2
Fµν(A)Fλδ(A5))

+ iξ5(∂µJ
µ
5 +

εµνλδ

16π2
[Fµν(A)Fλδ(A)

+ Fµν(A5)Fλδ(A5)]). (54)

This shows that both theories have the same anomaly

as S
(1)
θ if we identify θ = ξ and θ5 = ξ5. Although ob-

taining the same anomaly is a consistency check, it is to

some extent not surprising. Our generalized slave-rotor
approach, and in particular Eq. (51), was built to incor-
porate the same chiral anomaly on both sides of the du-
ality. In the next section, we study a specific case of our
duality, which concerns the theory of a Weyl semimetals,
and gives us a nontrivial consistency check of our results.

D. Weyl duality and connection to the
2+1-dimensional fermionic duality

In this section we derive a duality between two Weyl
semimetal theories. In particular, we wish to derive the
dual to

Sb =

∫
d4x ψ̄γµ(∂µ + iAµ + ibµγ5)ψ. (55)

As discussed extensively in the literature (see, for exam-
ple, Refs. [42, 46, 47, 66, 69]), this theory describes two
Weyl fermions separated in energy-momentum space by
2bµ. The vector bµ is a constant vector in space-time,
and thus breaks Lorentz symmetry [50, 51].

A chiral transformation, where ψ̄ → ψ̄eiθ5(x)γ5 and
ψ → eiθ5(x)γ5ψ, can remove bµ from the fermionic ac-
tion provided we choose ∂µθ5 = −bµ. This transfor-
mation removes bµ from Eq. (55), but adds the follow-
ing Carroll-Field-Jackiw [52] term to the effective ac-
tion [46, 47, 66, 71]

Sb = − i

4π2

∫
d4x εµνρσbµAν∂ρAσ. (56)

Rotating back to real time results in the electromagnetic
current

Jµ =
δS

δAµ
=

1

2π2
εµνρσbν∂ρAσ, (57)

which describes, for example, the quantum Hall effect
proportional to the Weyl node separation, a known char-
acteristic of the Weyl semimetal phase [57].

To derive the dual of Eq. (55) from Eq. (51), we no-
tice that the field B5,µν acts as a Lagrange multiplier
by neglecting the higher-order kinetic terms ∝ (∂B5)2.
Then, by integrating B5,µν out, we obtain the condi-
tion aµ,5 = −(A5,µ + ∂µξ5). Inserting this condition in
Eq. (51), and noting that Aµ in Eq. (55) enters with an
opposite sign with respect to our original theory Eq. (32)
we arrive at

S =

∫
d4x f̄γµ(∂µ + iaµ − i(A5,µ + ∂µξ5)γ5)f

− iεµνρσF (−Aµ + aµ)Bρσ

− i

4π2
εµνρσ(A5,µ + ∂µξ5) (Aν∂ρAσ +A5,ν∂ρA5,σ)

− i

4π2
εµνρσaµ (A5,ν∂ρAσ +Aν∂ρA5,σ) + · · · . (58)

From the anomaly matching in the last section, we iden-
tify ∂µξ5 = ∂µθ5 = −bµ, and from Eq. (55) we can read



9

off that A5,µ = −bµ, leading to

S =

∫
d4x f̄γµ(∂µ + iaµ + 2ibµ)f − iεµνρσFµν(a−A)Bρσ

+
i

4π2
εµνρσbµ(2Aν − aν)∂ρAσ . (59)

To bring it to a more recognizable form, we now choose
to perform a chiral transformation to remove one bµ from
the first term, adding a term like Eq. (56) to the effective
action, but with Aµ replaced by aµ. This results in

S =

∫
d4x f̄γµ(∂µ + iaµ + ibµγ5)f − iεµνρσFµν(a−A)Bρσ

− i

4π2
εµνρσbµ[aν∂ρ(Aσ + aσ)− 2Aν∂ρAσ] + · · · . (60)

This is our final form for the dual action, and we now
ask if it recovers Eq (55) and, consequently, Eq. (57).
As before, we may integrate out Bρσ, which in this case
imposes that aµ = Aµ+∂µζ. Inserting it into Eq. (60) the
terms with ∂µζ drop out, and the last two rows cancel,
resulting in the effective action Eq. (55), but with the
replacement b→ −b.

We find that the sign change that maps b to −b is im-
plied by Son’s 2+1-dimensional duality. To see this, we
recall that the Weyl theory in Eq. (55) can be viewed as
a collection of 2+1-dimensional massive Dirac theories
with masses parametrized by the momentum along the
Weyl node separation [45, 57] (see also Appendix C).
The points where the mass vanishes set the location of
the two Weyl nodes. Each 2+1-dimensional theory is in-
dependently subject to Son’s duality, which requires the
masses to change sign [13, 65]. As we describe in detail
in Appendix C, inverting the sign of the masses of the
2+1-dimensional Dirac theories results in a Hall conduc-
tivity where b→ −b, consistent with what we observe in
our Weyl duality. If we had obtained the same response
at both sides of the Weyl duality, it would have con-
tradicted how the mass enters in Son’s fermion-fermion
duality. Therefore, the mapping b → −b acts as a con-
sistency check of our Weyl duality.

V. PHYSICAL IMPLICATIONS OF AXIAL
GAUGE FIELD DUALITIES

Axial gauge fields exist in different physical systems
ranging from condensed matter to high-energy physics.
In this section, we discuss the implications of our 2+1-
and 3+1-dimensional dualities for several condensed mat-
ter systems: 2D surfaces of 3D non-symmorphic topolog-
ical insulators, 3D Weyl semimetals, and the 3D Hall
effect.

A. Surfaces of 3D non-symmorphic topological
insulators

In 2+1 dimensions, axial gauge fields can emerge in 2D
materials like graphene [1, 33, 72, 73], but also at the sur-

face of 3D non-symmorphic Dirac insulators [34], where
our duality finds special significance. Non-symmorphic
Dirac insulators are three-dimensional insulators with
two non-symmorphic glide symmetries that topologically
protect a doubly degenerate Dirac cone at the surface.
The surface theory is described by a 4×4 Dirac Hamilto-
nian, i.e. two copies of the surface state of a time-reversal
symmetric topological insulator [74]. This effective the-
ory naturally allows us to introduce an axial gauge field
that couples with opposite signs to each copy. Similar
to graphene, this axial gauge field arises from the pres-
ence of strain at the boundary of the non-symmorphic
topological insulator.

Son’s original 2+1-dimensional duality suggested the
existence of a dual theory of the surface of a 3D time-
reversal invariant topological insulator [13, 14]. In a sim-
ilar way, our 2+1-dimensional duality suggests that the
boundary of strained non-symmorphic topological insu-
lators has a dual metallic boundary phase characterized
by an emergent neutral fermion f coupled to two emer-
gent gauge fields, described by Eqs. (7). The existence of
the axial field is crucial for these theories, differentiating
them from a simple doubling of Son’s dual theory. They
therefore suggest the existence of a dual strain-induced
critical phase for the surface of 3D non-symmorphic topo-
logical insulators.

It may be possible to explicitly show the duality be-
tween surface theories in strained non-symmorphic topo-
logical insulators by extending the bulk electromagnetic
duality used in Ref. [13]. Their construction viewed Son’s
duality as a duality between two surface theories at the
surface of two dual bulk topological insulators. By incor-
porating bulk crystalline symmetries to this construction
one could account for axial fields at the boundary, and
derive a duality between surface theories with axial gauge
fields. This is a possibility we leave for future work.

B. Weyl semimetals and the quantized circular
photogalvanic effect

One interesting consequence of the duality between
Eqs. (34) and (35) concerns their non-linear responses.
In Fourier space, Eq. (34) describes a Weyl semimetal
with nodes separated both in energy and momentum
space. Upon shining circularly polarized light, such a
Weyl semimetal responds with an exactly quantized cir-
cular photogalvanic effect, which is the part of the in-
duced photocurrent that changes sign with the sense of
circular polarization [53]. The photocurrent shows a fre-
quency plateau, quantized to the Weyl monopole charge
C in units of πe3/h2. If the duality between Eq. (34) and
Eq. (35) holds, then Eq. (35) also displays a quantized
circular photogalvanic effect.

This correspondence is important because the quan-
tized circular photogalvanic effect is in general corrected
by electron-electron interactions [54], unlike the quan-
tized Hall conductivity of a two-dimensional insulator.
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The duality between Eq. (34) and Eq. (35) implies that
the interactions between the neutral f fermions with the
gauge and Kalb-Ramond field conspire to deliver a quan-
tized circular photogalvanic effect as a response to the
external field Aµ.

Although it is tempting to regard Eq. (35) as the first
example of an interacting theory with a quantized non-
linear response, and among the few that display this ef-
fect [53, 75, 76], it is important to be cautious. The cor-
respondence between responses follows straightforwardly
when we are allowed to integrate out the Kalb-Ramond
field Bρσ. This leads to the condition aµ → Aµ and the
two theories and their responses map onto each other,
as discussed in Sec. IV D. The implications of the dual-
ity become more profound when higher-order derivative
terms in Bρσ cannot be neglected. In this case it is not
obvious that Eq. (35) shows a quantized non-linear re-
sponse, and hence the equivalence implied by the duality
is more significant.

Additionally, these observations do not imply full pro-
tection from interaction corrections. If screened Coulomb
or Hubbard electron-electron interactions are present
(hidden in + · · · ), these can still correct the circular pho-
togalvanic effect in perturbation theory [54]. To be pre-
cise, our duality between Eq. (34) and (35) implies that
the types of interactions that couple Aµ to f fermions,
the Kalb-Ramond Bµν and statistical gauge field aµ in
Eq. (35), do not correct the quantized circular photogal-
vanic effect.

C. 3D quantum Hall effect

The action Eq. (34) is also connected to a 3D quantum
Hall effect by choosing the spatial part of the axial gauge
field bµ to be constant and equal to a half integer multiple
of a reciprocal lattice vector νi = n

2Gi [42, 47]. In this
case the effective action Eq. (34) results in a 3D Hall

conductivity σxy = ne2

haG
, where aG = 2π/|G| is the lattice

constant along Gi [42]. This Hall conductivity is that of
a layered quantum Hall system, i.e., a stack of 2D Hall
insulators, each with conductivity ne2/h, stacked along
the reciprocal real-space direction corresponding to G.
Our duality then suggests that this theory has a dual 3D
Hall theory Eq. (35) with bµ replaced by (0, νi).

For it to be a duality between 3D Hall insulators, we
have to consider the possible mechanisms that can gap
out the theories at both sides of the duality. Recently,
Ref. [44] proposed a possible route via a hydrodynamic
BF field theory of a 3D fractional quantum Hall effect
in Weyl semimetals. In this work, vortex condensation
gaps out the Weyl nodes in a magnetic Weyl semimetal
without breaking translational symmetry. The bosonic
sector of the effective field theory describes quasiparti-
cles excitation that couple to an emergent and dynam-
ical vector field cµ and loop excitations that couple to
a Kalb-Ramond field bµν . Additionally, the statistical
gauge field aµ couples the bosonic and fermionic sectors.

Our Eq. (35) suggests a close connection with the the-
ories discussed in Ref. [44]. For example, in the bosonic
sector in Eq. (35), we could introduce the following min-
imal couplings: JµνBµν + Jµν5 B5,µν , where Jµν and Jµν5

represent distinct loop currents. Together with the ki-
netic terms of the Kalb-Ramond fields, they describe dy-
namical loop currents and an eventual vortex conden-
sation. We thus expect that combining the method in
Ref. [44] with axial field dualities can lead to gapped 3D
quantum Hall phases and loop excitations induced by
dynamical strain that generalize those of Ref. [44].

VI. DISCUSSION AND CONCLUSIONS

In this work, we have explored the role of axial gauge
fields in the formulation of fermion-fermion dualities. By
considering axial fields we have extended known 2+1-
dimensional dualities and proposed new 3+1-dimensional
dualities. They are formulated in Sections III A and IV A,
and summarized in Figs. 1 and 2. Our 2+1-dimensional
dualities suggest the existence of dual surface theories
of 3D non-symmorphic topological insulator surfaces. In
3+1-dimensions our dualities suggest that the quantiza-
tion of photo-currents of Weyl semimetals is more robust
than expected. They may also be used as a building block
to describe gapped 3D Hall phases.

To derive these dualities, we have extended the slave-
rotor approach to include axial gauge fields. In 3+1 di-
mensions, this extension allows one to monitor the role
of the chiral anomaly. It also has the benefit that the
theories derived from it are not necessarily anisotropic.
However, anisotropic methods, such as the wire [12, 77],
or layered constructions [24, 78] could lead to alterna-
tive derivations of our dualities. Additionally, an alter-
native and promising route to derive our 2+1 duality is
to extend the bulk electromagnetic duality that applies
to the 3D time-reversal-invariant topological insulators
to 3D non-symmorphic topological insulators. Similarly,
it may be useful to view our 3+1-dimensional duality as
the boundary of a 4+1-dimensional insulator.

However, the slave-rotor approach has known draw-
backs, specifically the approximations that have been al-
ready discussed on a previous derivations of Son’s dual-
ity [57]. For example, the mean-field solution that we dis-
cuss is not unique since other Hubbard-Stratonovich de-
couplings are possible. The slave-rotor construction also
relies on the absence of condensation of the rotor field or,
equivalently, a Mott insulating phase. Due to the gapped
nature of the Chern-Simons term, this is not an issue in
2+1 dimensions [57]. In 3+1 dimensions, vortex conden-
sation is avoided due to the existence of kinetic terms of
the Kalb-Ramond fields [25]. Despite these limitations,
the equivalence of the effective actions at both sides of the
duality, and their consistency with the 2+1-dimensional
fermion-fermion duality support their plausibility.

Our work shows that the known web of dualities [15]
could be extended to include theories with axial fields
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and theories with broken Lorentz invariance [50, 51].
These types of theories seem to lie outside the focus of
current duality research, despite their relevance to ex-
tensions of the standard model [50, 51], and topological
condensed-matter systems such as Weyl semimetals [47],
nodal-line semimetals [79], and strained Dirac and Weyl
systems [1, 2]. It is also tempting to speculate that the
3+1 duality presented in this work can be connected to a
recently proposed boson-fermion duality [28]. Lastly, the
slave-rotor approach can incorporate non-Abelian gauge
fields following Refs. [58, 59], which may serve to derive
known dualitites [22, 26, 80–84], as well as novel axial
non-Abelian dualities.

Additionally, it was recently discovered that chiral
semimetals can have protected band crossing with de-
generacy larger than two [85–89]. The excitations
around these nodes, known as multifold fermions, can
be described by Lorentz-breaking generalizations of Weyl
fermions with monopole charge larger than one. To our
knowledge, no dualities for multifold fermions exist. The
slave-rotor construction can be a viable method to un-
cover them, both in 2+1 and 3+1 dimensions.

Finally, it is tempting to generalize our approach
to higher-dimensional synthetic systems, such as 4+1-
dimensional topological semimetals, where the chiral

anomaly is replaced by the parity anomaly [90]. In this
context, new three-form gauge fields Cµνλ are allowed,
associated to conserved bosonic currents.

To conclude, our work emphasizes how dualities that
involve axial field and Lorentz-breaking field theories can
uncover the challenging phenomenology of interacting
phases of gapless topological matter. We expect that our
dualities can be applied broadly beyond the condensed
matter examples we used, in high-energy problems with
axial gauge fields, such as the quark-gluon plasma.
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Appendix A: Some useful relations and definitions

We list here some useful identities used in the main
text. Using that

aµ,L = aµ + a5,µ, (A1a)

aµ,R = aµ − a5,µ, (A1b)

the different 2+1-dimensional Chern-Simons terms can
be written as follows:

aLdaL − aRdaR = 4ada5, (A2a)

aLdaL + aRdaR = 2ada+ 2a5da5, (A2b)

aLdAL − aRdAR = 2adA5 + 2a5dA, (A2c)

aLdAL + aRdAR = 2adA+ 2a5dA5, (A2d)

where we have assumed it is possible to integrate by parts
allowing us to identify adA with Ada. This latter prop-
erty does not hold in 3+1 dimensions since Carroll-Field-
Jackiw terms [52] like a5adA are composed of three gauge
fields instead of two. Nonetheless, the following relations
are useful:

a(ALdaL −ARdaR) = 2a(Ada5 +A5da), (A3a)

a(ALdaL +ARdaR) = 2a(Ada+A5da5). (A3b)

Appendix B: Effective action and mass signs in
2+1-dimensional dualities

In this Appendix, we explicitly integrate out a in
Eq. (24) keeping track of the mass signs, which are im-
portant for our discussion, but disregarded in Ref. [30].
We demonstrate the procedure for the left helicity, since
the right helicity proceeds analogously. Defining /Da =
σµ(∂µ + iaµ), we write Eq. (24) as

L = f̄ /Daf + i
sgn(mL)

8π
ada− i

4π
bd(A+ a) (B1)

= f̄ /Daf + i
sgn(mL)

8π
(a− sgn(mL)b)d(a− sgn(mL)b)− i

4π
bdA− i sgn(mL)

8π
bdb (B2)

int.out.a
= f̄ /Dbsgn(mL)f −

i

4π
bdA− i sgn(mL)

8π
bdb (B3)

sgn(mL)b→a
= f̄ /Daf − i

sgn(mL)

4π
adA− i sgn(mL)

8π
ada. (B4)

In the third line, we are allowed to integrate out a because
a Chern-Simons term acts like a mass term for the gauge
field [91]. When we add a mass term m, then we can
integrate out the f fermions, obtaining

Leff = i
sgn(m)

8π
ada− i sgn(mL)

4π
adA− i sgn(mL)

8π
ada.

(B5)

Depending on the relative sign of mL and m, then we
can have a zero or non-zero Chern-Simons term for a [9]
Integrating out a in Eq. (B5) implies

a =
sgn(mL)

sgn(m)− sgn(mL)
A. (B6)

Reinserting this condition into Eq. (B5) and redefining
A/(sgn(m)− sgn(mL))→ A. we obtain

Leff = − (sgn(m)− sgn(mL))

8π
AdA. (B7)

This is the same Chern-Simons term we would obtain
from the original theory if we identify m with −m, at
opposite sides of the duality, as expected from previous
arguments [13, 65].

Appendix C: Consistency with the 2+1-dimensional
fermionic duality

We start by reminding the reader that the Weyl
semimetal theory Eq. (55), that we repeat here for con-
venience

Sb =

∫
d4xψ̄γµ(∂µ + iAµ + ibµγ5)ψ, (C1)

can be viewed as layered 2+1-dimensional Dirac theo-
ries. Consider the case when the Weyl node separation
is space-like and along the ẑ direction. This is equivalent
to choosing bµ = (0,b). Further choosing b ‖ ẑ sim-
plifies our discussion but does not affect the generality
of our conclusions. We observe that we can decompose
this theory into a sum over two 2+1-dimensional mas-
sive Dirac equations. Fourier transforming to momentum
space along b we obtain

S =

∫
d4x

[
ψ̄L σ

µ
L,‖(∂µ,‖ + iAµ,‖) + σz(kz +Az + bz))ψL

+ ψ̄R (σµR,‖
(
∂µ + iAµ,‖

)
− σz(kz +Az − bz))ψR

]
. (C2)

When Aµ = 0, the terms ±σz(kz±bz) act as a mass term
for 2+1-dimensional Dirac fermions parametrized by kz
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FIG. S1. Hall conductivity of a theory with two Weyl cones
separated in the kz direction. For each kz, the theory is equiv-
alent to two 2+1-dimensional gapped Dirac theories with kz-
dependent masses (dashed lines). The total 3D Hall conduc-
tivity is the integral of the solid curve, and is proportional to
the Weyl node separation, see Eq. (C3).

with masses m± = (±kz+bz). When kz = bz (kz = −bz),
m− = 0 (m+ = 0) the gap corresponding to chirality R
(L) closes, setting the location of the 3+1 dimensional R
(L) Weyl node.

When Aµ 6= 0, a gapped 2+1-dimensional Dirac sys-
tem with mass m responds with a Hall conductivity

σ
(2D)
xy proportional to the sign of its mass, such that

σ
(2D)
xy = sign(m)e2/2h. Depending on the value of kz, the

Hall conductivity of the Dirac fermions that compose the
Weyl semimetal can either add up or cancel each other
(see Fig. S1), resulting in a Hall effect proportional to
the Weyl node separation [46–49, 57]:

σ(3D)
xy =

∫
dkz
2π

e2

h
[sign(kz + bz)− sign(kz − bz)]

=
e2

2h

2bz
2π

. (C3)

This coincides with the current response derived from
Eq. (56) which we repeat here for convenience (in
Minkowski space):

Sb = − 1

4π2

∫
d4x εµνρσbµAν∂ρAσ. (C4)

In Son’s 2+1-dimensional duality, a Dirac mass m on one
side of the duality maps to −m in the dual theory [13, 65].
This means that if our duality is to be correct, we should
recover the Hall conductivity resulting from the masses
−m± = (∓kz− bz). In this case we should recover a Hall
conductivity given by

σ
(3D)
dual,xy =

∫
dkz
2π

e2

h
[−sign(kz + bz) + sign(kz − bz)]

= − e
2

2h

2bz
2π

. (C5)

In the main text, we showed that for our Weyl duality to
hold, bµ must map to −bµ, which is exactly the difference
between Eqs. (C3) and (C5). Hence, our Weyl duality
passes this consistency check implied by Son’s duality.
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