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Abstract: We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3

with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-
pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal
structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we
mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally
activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission
color, decay time and quantum yield vary over large ranges. For deeper characterization, we select
Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide in-
sight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-
to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from
1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1

(445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation
times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission
paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet
harvesting can be highly favorable for improvement of the device performance.

Keywords: dimeric copper(I) complexes; P∩N phosphine ligands; X-ray structures; combined
thermally activated delayed fluorescence (TADF) and phosphorescence; combined singlet and triplet
harvesting; high emission quantum yields; tunability of photophysical properties; zero-field splitting
(ZFS); spin-lattice relaxation (SLR); triplet substate decay components

1. Introduction

Potential applications of luminescent materials in organic light emitting diodes (OLEDs)
have strongly stimulated the development of emitters that are suited for exploiting all
singlet (25%) and triplet (75%) excitons [1] generated in the emission layer. Essentially, there
are two different mechanisms that are already used for harvesting 100% of the excitons,
namely the triplet harvesting mechanism [2–6] and the singlet harvesting mechanism [7–12]. For
light generation based on the triplet harvesting mechanism, brightly and fast phospho-
rescent emitting compounds are required, such as Ir(III) or Pt(II) complexes [2–6,13–28].
While for singlet harvesting, the molecules have to show efficient thermally activated
delayed fluorescence (TADF) at ambient temperature. Examples are found among Cu(I),
Ag(I), Au(III), W(VI) and Zn(II) complexes [7,9–12,29–65] or specifically designed organic
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molecules [66–79]. For completeness, it is also referred to a very recently proposed mech-
anism, the direct singlet harvesting (DSH) mechanism [80,81]. This strategy, being based
on compounds with very small energy gap of ∆E(S1-T1) � kBT (kB = Boltzmann con-
stant), allows also for 100% exciton harvesting and additionally for drastic reduction of
the emission decay time. In this report, however, we want to focus on complexes that
exhibit at ambient temperature both thermally activated delayed fluorescence (TADF) and
phosphorescence. Thus, they may be regarded as singlet and triplet harvesting materi-
als. This effect of combined TADF-phosphorescence emission, suited for decreasing the
overall emission decay time, has already been addressed in the literature [50,51,82–89].
In particular, Cu(I) and Ag(I) dimers, in which the metal centers are linked by P∩N lig-
ands can show this effect [34,50,87,90–95] and very probably also the complexes reported
recently [96]. To evaluate the class of materials of Cu2X2(P∩N)3 complexes (with X = Cl,
Br, I), we study eight compounds with respect to their crystal structures and, especially,
their emission properties at T = 300 K and 77 K, respectively. These data allow us to select
one prominent material, Cu2I2(P∩N)3, 1-I with P∩N = 2-diphenylphosphino-pyridine
(Ph2Ppy), that shows distinct TADF and phosphorescence at ambient temperature even at
high emission quantum yield of ΦPL = 81% at relatively short decay time. Therefore, we
investigate the emission behavior of this material as a detailed case study over the large
temperature range of 1.2 ≤ T ≤ 300 K. Thus, we obtain deep insight into properties of
the lowest triplet state T1 including its zero-field splitting (ZFS), spin-lattice relaxation
(SLR) dynamics and we determine the TADF activation energy gap ∆E(S1-T1) between the
lowest excited singlet state S1 and the T1 state, as well as the S1→S0 fluorescence rate. The
experimental results are largely supported by SOC-TDDFT computations. Indeed, as will
be shown, the combined TADF-phosphorescence decay time is distinctly shorter than the
TADF-only decay. This is due to the relatively fast phosphorescence rate and the small
∆E(S1-T1) gap. Potentially, such materials showing both singlet and triplet harvesting
character are attractive for applications that require short photoluminescence decay.

2. Results and Discussion
2.1. Syntheses and Structural Characterization

Previously, we have reported on the preparation of complexes 1-X (X = Cl, Br, I) and
3-I (Scheme 1) [34]. In the present work, we additionally report on the new complexes
2-X (with X = Cl, Br, I) and 3-Br. They were prepared analogously by reactions of the
respective ligands 2 and 3 [97] with copper(I) halides in dichloromethane. For ligand 3,
the pure chloride complex could not be obtained. 1-X and 2-X give yellow, while 3-X red
powders. Once precipitated, the complexes are only slightly soluble in standard, weakly
or non-coordinating solvents, hence, no NMR spectra could be measured. Therefore, the
complexes were characterized exclusively by elemental analysis. In addition, for complexes
1-Br, 2-I and 3-I the crystal structures could be determined.

Scheme 1. Synthesis of the di-nuclear copper complexes.
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Single crystals suitable for X-ray diffraction could be obtained by slow gas-phase
diffusion of diethyl ether into the filtered reaction solution of 1-Br, 2-I and 3-I. To our
knowledge, no bromide of this class of di-nuclear copper compounds has been structurally
characterized. Therefore, the structure of 1-Br provides the first structural data and com-
pletes the series of accessible halides. Together with the crystal structures of 1-Cl and 1-I
reported in reference [34], it is now possible to compare all three halides of a homologous
series of complexes of the type Cu2X2(P∩N)3. All so far structurally characterized com-
plexes of this type have in common a butterfly-shaped Cu2X2 core surrounded by three
P∩N ligands (Figure 1). Two ligands coordinate exclusively via the phosphorus atom to
Cu(I), while the third ligand is bound in a bridging manner with both the nitrogen and
phosphorus atoms to two Cu(I) centers.

Figure 1. Molecular structure of Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I (hydrogen atoms
and solvent molecules are omitted for clarity; displacement parameters are drawn at 50% probability level).

Interestingly, not all halides 1-X are isostructural (Table 6 below and [34]): 1-Br/Cl
crystallize in the monoclinic space group P21/n, whereas 1-I is triclinic P1. Nevertheless, all
structures are similar and show the expected trend for a series chloride→ iodide, with only
very small differences between 1-Cl and 1-Br (Table 1). For example, the Cu–Cu distances
are almost identical for 1-Cl (2.878(1) Å) and 1-Br (2.883(1) Å), whereas 1-I features a
shorter Cu–Cu distances of 2.7694(5) Å. On first sight, it seems a contradictory observation
that the biggest anion causes the smallest intermetallic separation. However, this fact is
due the most acute angles Cu1–X–Cu2 of around 62 ◦C for 1-I, whereas for 1-Cl, we find
around 73◦C. The respective angle for the bromide 1-Br lies between these values (≈69 ◦C).
Together with a significant longer Cu–X bond distance (Cu–Cl: 2.39–2.44; Cu–Br: 2.51–2.57;
Cu–I: 2.65–2.81 Å) this leads to the shortest Cu–Cu distance for 1-I. All Cu–Cu distances are
around or slightly above the sum of the van-der-Waals radii (r(Cu) = 1.40 Å [98]) indicative
of only neglectable cuprophilic interactions.

Although the isoelectronic pyridyl and pyrimidyl moieties are expected to have similar
steric characteristics, the structure of 2-I (monoclinic) is not isostructural to 1-I (triclinic) [34].
3-I crystallizes as the dichloromethane solvate. It should be noted that another form
of complex 3-I has been reported previously which does not differ considerably in its
structural parameters (compare Table 1) [34]. For all halides and P∩N ligands summarized
in Table 1, the Cu–P and Cu–N distances lie in a very narrow range of 2.24–2.29 Å and
2.08–2.14 Å, respectively.
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Table 1. Selected bond lengths (Å) and bond angles (◦) for Cu2X2(Ph2Ppy)3, 1-X (with X = Cl, Br, I),
Cu2I2(Ph2Ppym)3, 2-I and Cu2I2(Ph2Piqn)3, 3-I.

Compound 1-Cl a 1-Br 1-I a 2-I 3-I·CH2Cl2 3-I a

Cu1–Cu2 2.878(1) 2.883(1) 2.7694(5) 2.693(1) 2.799(1) 2.7204(6)
Cu1–P1 2.242(1) 2.240(1) 2.2514(6) 2.263(1) 2.292(1) 2.2555(8)
Cu1–P2 2.248(1) 2.258(1) 2.2522(7) 2.249(1) 2.291(1) 2.2404(9)
Cu2–P3 2.224(1) 2.237(1) 2.2507(7) 2.244(1) 2.285(1) 2.2468(9)
Cu2–N 2.106(3) 2.098(4) 2.104(1) 2.101(3) 2.140(3) 2.076(2)
Cu1–X1 2.395(1) 2.570(1) 2.6733(7) 2.684(1) 2.699(1) 2.6930(5)
Cu1–X2 2.426 (1) 2.522(1) 2.6803(5) 2.718(1) 2.641(1) 2.6954(5)
Cu2–X1 2.436(1) 2.509(1) 2.7280(6) 2.647(1) 2.714(1) 2.6277(5)
Cu2–X2 2.390(1) 2.543(1) 2.6446(5) 2.702(1) 2.687(1) 2.6802(5)

X1–Cu1–X2 98.38(4) 101.89(3) 107.63(2) 106.85(2) 107.02(2) 108.86(2)
X1–Cu2–X2 98.25(3) 103.00(3) 107.07(1) 108.41(2) 105.31(2) 111.32(2)
N–Cu2–P3 123.23(8) 123.35(9) 117.47(2) 115.9(1) 111.8(1) 120.35(2)
P1–Cu1–P2 123.80(4) 123.90(5) 119.87(2) 118.40(4) 118.8(1) 118.16(3)

Cu1–X1–Cu2 73.42(3) 69.17(2) 61.68(1) 60.69(1) 62.27(2) 61.48(1)
Cu1–X2–Cu2 73.13(3) 69.40(2) 62.67(1) 59.59(1) 63.38(2) 60.80(1)

a—values from Ref. [34].

2.2. Computational Investigations

An overview of the emission data, as presented below, shows that the compound
Cu2I2(Ph2Ppy)3, 1-I (Figure 2) exhibits particularly interesting properties with respect to a
distinct combination of TADF and phosphorescence and shows high emission quantum
yield at short emission decay time. Accordingly, we will discuss this compound’s photo-
physical properties in deeper detail below. In this section, we first investigate this material
by computational methods to shed light on the electronic properties.

Figure 2. Chemical structure of Cu2I2(Ph2Ppy)3, 1-I.

Initially, the compound was optimized in the singlet ground state. The calculated
results reveal good agreement with the data from the X-ray structure (Table 2). Although
the Cu–Cu bond length is slightly overestimated, the general structural motifs like the
butterfly shape of the Cu2I2 core with an equilateral CuI2 triangle are nicely reproduced.
Further geometry optimization was performed in the lowest triplet state using unrestricted
DFT. In a next step, time-dependent DFT (TDDFT) calculations with and without self-
consistent spin-orbit coupling using the ZORA Hamiltonian [99] (SOC-TDDFT [100]) were
carried out for the S0 and T1 geometries with ADF2014 [101] solving for the lowest six spin-
mixed excitations. Due to computational constraints, the basis set for these calculations was
chosen to be DZP, a double-zeta plus polarization basis set [102]. The TDDFT calculations at
the S0 geometry show that the S1 and T1 states correspond to a nearly pure excitation (98%
and 97%) from the highest occupied molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO) as similarly reported in [34]. As depicted in Figure 3, the HOMO
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is localized on the Cu2I2 core with significant contributions of the iodides, while the LUMO
is localized on the bridging organic ligand. This leads to a classification of the HOMO-
LUMO transition as being of (I+M)LCT character, abbreviated shortly as metal-to-ligand
charge transfer (MLCT) transition.

Table 2. Selected bond lengths [Å] and angles [◦] for Cu2I2(Ph2Ppy)3 1-I as obtained from DFT
calculations (B3LYP/TZVP) for the S0 and T1 minimum compared to the values from the X-ray
structure determination. The atom numbering scheme is analogous to Cu2Br2(Ph2Ppy)3 1-Br shown
in Figure 1.

Exp a Calculations Geometry
S0

T1

Cu1–Cu2 2.77 2.86 2.59
Cu2–I1 2.73 2.71 2.67
Cu1–I1 2.67 2.76 2.76
Cu1–P2 2.25 2.36 2.36
Cu1–P1 2.25 2.36 2.35
Cu2–P3 2.25 2.33 2.37
Cu2–N1 2.10 2.22 2.03

I1–Cu1–I2 107.6 106.8 102.5
I1–Cu2–I2 107.1 108.9 103.4

Cu1–I1–Cu2 61.7 63.2 56.9
Cu1–I2–Cu2 62.7 62.3 55.9
P1–Cu1–Cu2 87.1 85.5 85.0
P2–Cu1–P1 119.9 119.7 117.3

a—taken from ref. [34].

Figure 3. HOMO (left) and LUMO (right) of Cu2I2(Ph2Ppy)3, 1-I at the B3LYP/DZP level for the ground state S0 geometry.
Iso-contour values are set to 0.03 with blue/purple color representing the sign of the wave function. Color code: P (orange),
Cu (brown), I (violet), N (blue), C (grey), H (white). In the right plot, the two iodine atoms are exactly on top of each other.

Taking spin-orbit coupling (SOC) into account, also the energetic separations between
the three triplet substates, the zero field splittings (ZFSs) and the radiative lifetimes of
these states can be assessed (Table 3). At the S0 geometry, a moderate agreement with the
experimental data is observable. The calculated vertical excitation energies are somewhat
underestimated and the small computed singlet-triplet splitting, although predicting 1-I as
a TADF material, underestimate the experimental ∆E(S1-T1) gap. Clearly, several important
aspects are not taken into account at this level of theory. First, the inclusion of the differ-
ence in zero-point energies of ground and excited state may alter transition energies by
0.1–0.2 eV, usually leading to red shifted emission energies. Second, one generally expects
excited state geometry relaxation to occur [103–105]. To investigate its impact, simulations
were also carried out at the optimized T1 state geometry. As Table 3 shows, this leads
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to a strongly red shifted emission, probably being significantly influenced by the strong
shortening of the Cu–Cu bond length (Table 2). Experimentally, a strong dependence of the
emission wavelength on the molecular environment was observed. For example, related
Cu2I2(P∩N)3 [(P∩N) = (2-diphenylphosphino)-4-alkyl-pyridine] complexes, as presented
in [34], show strong red shifts going from the powder material to PMMA (poly(methyl
methacrylate)) matrices and, finally, to solvents (also compare [37]). In the latter environ-
ments, large scale atomic rearrangements can easily occur. We find that the computed
bond length reduction at the T1 optimized geometry is accompanied by a 30 ◦C rotation
of the P∩N ligand around the Cu1–P2 axis (Table 2). While the former geometry change
could also be realized in a polycrystalline environment, the latter one would likely be
sterically hindered. Another influence is the effect of the dielectric environment, which
probably is important due to the charge transfer character of the emission. Since a realistic
modeling of the environment of the complex within the powder material is challenging,
we performed SOC-TDDFT calculations with the COSMO continuum [106] solvent model
(parameters: dielectric constant of dichloromethane (DCM) ε = 8.9, radius of solvent
molecules r(sol) = 2.94 Å) for the S0 geometry to obtain information about the general
trends. Estimates of the radiative lifetimes are based on transition energies and transition
dipole matrix elements as outlined in [107]. Corrections due to the refractive index of the
molecular environment (n(DCM) = 1.42) were accounted for by the empty spherical cavity
model [108]. Table 3 reveals a strong blue shift of ≈0.4 eV (≈3000 cm−1) compared to a gas
phase environment. The observed blue shift can probably be explained by the considerable
dipole moment change by the charge transfer from the Cu2I2 core to the bridging ligand.

Table 3. SOC-TDDFT (B3LYP/DZP) vertical excitation energies [eV] and radiative lifetime calculated
for 100% quantum yield in µs (in brackets) for the S1 state and the three substates of the T1 state
of Cu2I2(Ph2Ppy)3, 1-I. Singlet-triplet splittings ∆(S1−T1) [cm−1] obtained from the average triplet
energy and zero field splittings ZFS [cm−1] are also given. Results are presented for calculations at
the S0 optimized geometry with and without solvent effects and at the T1 geometry in gas phase.

Geometry I(T1) II(T1) III(T1) S1 ∆(S1−T1) ZFS

∆E(III−I)

S0
2.418

(752.4) 2.420 (95.1) 2.424 (6.5) 2.437 (1.6) 129 52

S0(solvent) 2.796
(92.5) 2.797 (8.1) 2.801 (1.3) 2.816 (0.2) 144 39

T1
1.452
(>103)

1.453
(>103) 1.456 (54.4) 1.507 (2.8) 411 32

Exp a 2.54 (≈210) 2.54 (≈210) 2.54
(12)

≈2.588 b

(0.445)
380 3

a—compare Figure 8, below. b—estimated from the blue flank of the emission spectrum at T = 1.3 K + ∆(S1-T1) =
380 cm−1 (Figure 5, below).

The calculated data, presented in Table 3, show considerably different energies, de-
pending on the model and the state geometry chosen [109]. For comparison to emission
data, we focus on the T1 state geometry. Although the calculated transition energies
are underestimated (in gas phase environment), it is usually accepted that energy differ-
ences display the experimental situation more realistically. The corresponding emission
data are presented below in Section 2.4 and in Figure 8. It is seen that the energy gap
∆E(S1-T1) is very well reproduced in the T1 state geometry, while the ZFS value ∆E(III–II,I)
is overestimated. This might be related to the model restricted to a too small number
of spin-state-mixing of higher lying states. However, the very small splitting of ∆E(II–I)
or the almost degenerate situation for the two low-lying triplet substates I and II is well
reproduced by the SOC-TDDFT model (Table 3 and Figure 8, below).
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2.3. Luminescence Properties of Cu2X2(P∩N)3 Complexes with X = Cl, Br, I. An Overview

In this section, we will discuss the emission behavior of eight Cu2X2(P∩N)3 com-
plexes studied at 300 K and 77 K and give an overview over the large scale of varying
emission properties.

The complexes studied are not soluble in common, non-coordinating organic solvents.
Therefore, all measurements were performed with powders. Usually, investigations of
solid-state samples are not convenient for studies of detailed emission properties, due to
the influence of processes like triplet-triplet annihilation or energy transfer. However, for
Cu(I) complexes, usually a self-trapping mechanism takes place that leads to quasi-isolated
molecules embedded in the neat material without any significant excited state resonance
interaction with the environment [37,110,111].

As summarized in Table 4, all studied di-nuclear Cu2X2(P∩N)3 complexes show
relatively intense photoluminescence under UV excitation with broad emission bands
in the green to red spectral range assigned to (iodide+metal)-to-ligand charge transfer,
(I+M)LCT transitions, as predicted by DFT calculations presented in the previous section.
The HOMO resides on the Cu(I)-halide core, while the LUMO is largely localized on the
bridging (P∩N) ligand (Figure 3). Thus, modification of the ligand, in particular, of an
extension of the ligand’s aromatic system leads to a red shift of the MLCT transition [34].
There is a clear trend of the emission maxima depending on the halides. In each series,
the emission maxima are blue shifted from Cl to Br to I complexes. For example, Figure 4
shows the emission spectra of the 1-X series. For ambient temperature, the peak maxima
are blue shifted from 1-Cl to 1-I by about 1200 cm−1. The flank of the excitation spectra in
the region above about 400 nm shows a similar trend. This observation is rationalized by
a reduction of the ligand field strength of the halides in the series Cl− > Br− > I− (being
contrary to the trend of electronegativity) and thus, by a larger HOMO-LUMO energy
gap [34,112]. The photoluminescence quantum yields at T = 300 K lie between ΦPL = 9%
and 81%. At ambient temperature, the emission decay times are found in the lower µs time
regime between 1.2 to 8.8 µs. However, with respect to photophysical interpretations, it is
usually better to compare radiative decay times τr = τ/ΦPL. In the series of compounds
given in Table 4, they lie between 4.7 × 104 s−1 (21 µs) and 1.25 × 105 s−1 (8 µs).

Table 4. Luminescence data of a series of P∩N linked Cu(I) dimer complexes.

Compound λmax(300 K) a

[nm]
ΦPL(300 K) b

[%]
τ(300 K) a

[µs]
kr(300 K) c

[s−1]
knr(300K) d

[s−1]
λmax(77 K) a

[nm]
ΦPL(77 K) b

[%]
τ(77 K) a

[µs]
kr(77 K) c

[s−1]
knr(77 K) d

[s−1]

Cu2Cl2(Ph2Ppy)3 1-Cl 577 37 7.9 4.7 × 104 8.0 × 104 592 71 65 1.1 × 104 4.5 × 103

Cu2Br2(Ph2Ppy)3 1-Br 545 53 8.8 6.0 × 104 5.3 × 104 567 89 110 8.1 × 103 1.0 × 103

Cu2I2(Ph2Ppy)3 1-I 539 81 6.5 1.25 × 105 2.92 × 104 552 92 32 2.88 × 104 2.5 × 103

Cu2Cl2(Ph2Ppym)3 2-Cl 616 9 1.2 7.5 × 104 7.6 × 105 626 14 30 4.7 × 103 2.9 × 104

Cu2Br2(Ph2Ppym)3 2-Br 583 33 2.5 1.3 × 105 2.7 × 105 584 56 29 1.9 × 104 1.5 × 104

Cu2I2(Ph2Ppym)3 2-I 565 13 1.7 e (2.7 f) 7.6 × 104 5.1 × 105 575 67 17.4 e 3.9 × 104 1.9 × 104

Cu2Br2(Ph2Piqn)3 3-Br 660 11 2.0 e 5.5 × 104 4.5 × 105 668 24 42 e 5.7 × 103 1.8 × 104

Cu2I2(Ph2Piqn)3 3-I 636 38 3.3 e 1.2 × 105 1.9 × 105 645 59 22 2.7 × 104 1.9 × 104

a—excitation wavelength λexc = 372 nm; b—accuracy at 77 K: ± 10%, at 300 K: ± 5 % (relative error), (excitation wavelength λexc = 400 nm);
c—determined according to kr = ΦPL/τ; d—determined according to knr = (1-ΦPL)/τ; e—the decay curve deviates from mono-exponential
behavior. The lifetime given represents the main component; f—long component.

Upon cooling to 77 K, the emission quantum yields increase remarkably, for example,
for compound 2-I by a factor of more than five. Such a behavior is not unusual, since
non-radiative deactivation processes frequently become less important with temperature
reduction [113]. Moreover, the emission bands of all complexes are red shifted. Most
affected is the 1-X series with shifts of about 440 cm−1 (54 meV, 1-Cl and 1-I) and about
710 cm−1 (88 meV, 1-Br), while for the compounds 2-X and 3-X, values below around
300 cm−1 (37 meV) are observed. These energy separations frequently display approxi-
mately the energy gap ∆E(S1-T1) that is responsible for thermal activation of the TADF
emission. Interestingly, the value of 440 cm−1 (54 meV) found for Cu2I2(Ph2Ppy)3, 1-I
corresponds well to the calculated one of 411 cm−1 (51 meV, Table 3). Concomitantly, the
radiative rates of the emission decrease strongly (increasing decay times) with cooling, for
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example, by a factor of about 16 for compound 2-Cl. These effects, red shift and radiative
rate decrease, occurring upon cooling, are consequences of freezing out the additional
emission decay channel via the energetically higher lying S1 state. In other words, TADF
emission is largely frozen out. Thus, at sufficiently low temperature, mostly at T = 77 K but
sometimes only below T = 50 K [29], all compounds exhibit only phosphorescence.

Figure 4. Emission and excitation spectra of Cu2Cl2(Ph2Ppy)3, 1-Cl, Cu2Cl2(Ph2Ppy)3, 1-Br and
Cu2I2(Ph2Ppym)3, 1-I (powder, 300 K, λexc = 350 nm).

The spectral changes of the emission bands with temperature variation are shown
in Figure 5a for compound 1-I. At low temperature (1.3 K to almost 77 K), only T1→S0
phosphorescence is occurring, while with further temperature increase to T = 300 K, the
emission band center is blue shifted, mainly observable by a blue-side flank growing in
above around T = 70 K (Figure 5b). The corresponding additional band is assigned to the
thermally activated fluorescence from the higher lying S1 state. Apparently, already the
spectral changes displayed in Figure 5 indicate that at ambient temperature, the emission
consists of overlapping TADF and phosphorescence. The appearance of a phosphorescence
contribution even at ambient temperature is additionally based on the relatively fast
radiative rate of kr(T1→S0, 77 K). Such a behavior of combined TADF and phosphorescence
is not very frequently observed [48], but see refs. [50,51,83,86,114]. Mostly, however, the
TADF channel dominates strongly [48]. For a more detailed discussion see Section 2.4.

Of the series of compounds studied (Table 4), especially, the iodide containing com-
plexes 1-I, 2-I and 3-I show fast radiative phosphorescence rates lying above kr(T1→S0)
= 2 × 104 s−1 (50 µs). This may be rationalized by two factors. First, significant SOC is
induced by admixtures of higher lying singlet states Sn to the T1 state. Secondly, the large
contributions of 5p-orbitals of iodide to the higher lying occupied orbitals (Figure 3) with
the high SOC constant of iodide of ξ(I) = 5069 cm−1 [115] may also play a role in speeding
up the T1→S0 transition rate [116]. This latter effect is supported by the distinctly lower
T1→S0 rate found for the chloride compounds with ξ(Cl) = 587 cm−1 [115] (Table 4).

A deeper discussion of the data summarized in Table 4 will not give more detailed
information, in particular, not the spectral features available. This is a consequence of the
very broad emission bands of MLCT character with halfwidths of ≈3500 cm−1 (440 meV)
even at T = 1.3 K. On the other hand, investigation of the emission decay behavior with
temperature variation will lead to a detailed characterization of the compounds’ electronic
structure, especially, of the lowest excited states, as will be shown in the next section.
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Figure 5. Emission spectra of Cu2I2(Ph2Ppy)3, 1-I at different temperatures (powder, λexc = 355 nm).
The spectra for different temperatures shown in (a) are super-imposed in (b) to visualize the intensity
growing in at the blue side flank with temperature increase.

2.4. Detailed Case Study of Cu2I2(Ph2Ppy)3, 1-I. the Lowest Excited Triplet and Singlet States

For a deeper case study, we selected Cu2I2(Ph2Ppy)3, 1-I (powder) due to four rea-
sons. First, this material exhibits the highest emission quantum yield of ΦPL = 81% of all
compounds summarized in Table 4. Second, 1-I emits with one of the fastest radiative
phosphorescence rate of kr(77 K) = 2.88 × 104 s−1 (τr(77 K) = 35 µs). Third, the emission
decay time is mono-exponential over the whole temperature range (apart from very low
temperature) and fourth, the emission quantum yield changes only slightly with tempera-
ture. These two latter properties are required for a detailed characterization based on the
τ(T) fitting procedure as discussed below. With respect to these properties, 1-I represents
a remarkable material and is expected to show clearly the interplay of phosphorescence
and TADF. Moreover, according to the fast rate, efficient SOC experienced by the T1 state
should lead to a well observable zero-field splitting (ZFS) of T1 into substates I, II and III,
as already predicted by the SOC-TDDFT calculations (Section 2.2). This should lead to
specific relaxation properties within the manifold of the substates, in particular, such as
effects of spin-lattice relaxation (SLR) [117].
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For the detailed characterization of the compound’s electronic structure and the
related decay rates, we study the emission decay behavior of 1-I over the large temperature
range of 1.2 ≤ T ≤ 300 K. Figure 6 displays selected emission decay curves measured
at different temperatures. At T = 1.2 K, the emission decays bi-exponentially with two
clearly different components of 10 µs and 174 µs, respectively. Such a behavior can be well
rationalized, if the lowest triplet state exhibits distinct ZFS. Thus, the short component
refers to spin-lattice-relaxation (SLR) processes within the triplet substate manifold [117],
while the longer component is ascribed to the thermalized emission that is established after
around 60 µs at T = 1.2 K (estimated from the 1.2 K decay curve reproduced in Figure
6). It is known that thermalization according to SLR processes is strongly temperature
dependent and becomes faster with temperature increase [117]. Indeed, the observed short
decay component decreases from 10 µs at T = 1.2 K to 1.7 µs at T = 10 K and is faster than
detectable (with our equipment) at T = 15 K (Figure 6). This means that SLR processes are
getting much faster than the thermalized emission decay time. Therefore, shortly after
the excitation pulse, the population numbers of the excited states behave according to a
Boltzmann distribution. We will come back to SLR properties below in this section.

Figure 6. Emission decay behavior of Cu2I2(Ph2Ppy)3, 1-I at different temperatures (powder,
λexc = 355 nm). At 1.2 K, a bi-exponentially decay can be observed showing a short component
that is determined by spin-lattice relaxation (SLR) processes between the triplet substates. The long
component represents the decay of the involved thermalized states. At higher temperatures, the
decay is mono-exponential. Note the different scales.

The decay time of the long (thermalized) component is also drastically shortened
with temperature increase (Figure 7). Due to the photophysical mechanisms involved,
the temperature dependence can be classified into three ranges: (i) Up to T ≈ 20 K, the
decay behavior is determined by the zero-field split T1 substates. At T = 1.2 K, we find
a long component of τ = 174 µs. This emission dominantly stems from the thermally
equilibrated two lower triplet substates I and II. By temperature increase the decay is
strongly shortened (by a factor of more than five) when reaching a plateau near 20 K. The
plateau decay time amounts to about 32 µs. This decrease is resulting from population
of the higher lying triplet substate III. Because this transition III(T1)→S0 exhibits a much
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faster rate than the rates from the two lower lying substates I and II, an additional decay
path is opened. (ii) Within the temperature range of the plateau, between about 20 K
and about 70 K, the triplet substates I, II and III are thermally equilibrated and emit as
T1→S0 phosphorescence with an average decay time of the three substates of 32 µs (see also
Equation (4), below). (iii) With further temperature increase from T ≈ 70 K to 300 K, the
decay time decreases to τ(300 K) = 6.5 µs. In this temperature range, the photoluminescence
quantum yield changes only slightly (Table 4). Hence, the decay time decrease can (largely)
be ascribed to a rate increase by a factor of more than four from kr(77 K) = 2.88 × 104 s−1 to
kr(300 K) = 12.5 × 104 s−1 (Table 4). This increase is induced by opening the TADF decay
path via the S1→S0 transition in addition to the still remaining phosphorescence decay
path (see also below).

Figure 7. Temperature dependence of the emission decay time of the thermally equilibrated excited
states of Cu2I2(Ph2Ppy)3 1-I. The calculated fit is based on Equation (1). As inset, we summarize the
fit parameters.

For the mono-exponential ranges of the decay curves (Figure 6), it can be concluded
that the emitting states are in fast thermal equilibration with respect to the individual
decay times of the states involved. This is not only valid for the SLR processes but also
for down- and up-inter-system crossing (ISC) processes between the T1 and the S1 states.
Down-ISC will probably occur within around 10 ps or even shorter [103–105,118–121],
while the up-ISC time (also named RISC time) is strongly temperature dependent [122]
and may be estimated very roughly to around 30 ns at 80 K and to about 0.2 ns at ambient
temperature. For completeness, it is mentioned that very fast ISC processes are probably
based on direct SOC of higher lying singlet states to T1 substates as is displayed in a high
allowedness of the T1→S0 transition. This is in contrast to the situation of molecules with
weak SOC with respect to the lowest triplet state, as it seems to be valid for most organic
molecules. For these, spin-vibronic processes will probably dominate the ISC rate [123].

Thus, with respect to the emission decay times of many µs, fast thermalization is well
realized for the Cu(I) compounds discussed here. Accordingly, it is justified to describe
the temperature dependence of the emission decay time τ(T), as shown in Figure 7, by a
modified Boltzmann distribution of the four thermally equilibrated excited states, the three
T1 substates I, II and III and the S1 state [19,50,87,124].

τ(T) =
1 + exp

(
−∆E(II−I)

kBT

)
+ exp

(
−∆E(III−I)

kBT

)
+ exp

(
−∆E(S1−I)

kBT

)
k(I) + k(II) exp

(
−∆E(II−I)

kBT

)
+ k(III) exp

(
−∆E(III−I)

kBT

)
+ k(S1) exp

(
−∆E(S1−I)

kBT

) (1)
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Herein, ∆E(II–I) and ∆E(III–I) are the ZFS values and ∆E(S1–I) is the energy gap
between the S1 state and the T1 state (for ∆E(S1–T1) >> ∆E(III–I)). k(I), k(II), k(III) and k(S1)
are the transition rates of the respective states to the electronic ground state S0. kB is the
Boltzmann constant.

If we assume constant ΦPL over the whole temperature range, as approximately
justified (Table 4), very good fit of Equation (1) to the measured decay times is realized
(Figure 7). As photophysical fit parameters we find ∆E(II–I) ≈ 0 cm−1 (meaning < 1 cm−1)
and ∆E(III–I) = 3 cm−1 (0.37 meV). These values are smaller than the ones obtained from
our SOC-TDDFT computations, but the splitting pattern is well reproduced (Table 3).
For the manifold of the three triplet substates we expect further that for T < 1 K, a low-
temperature plateau of the emission decay time τ(T) will be adapted near 210 µs. Although,
the individual decay times of the substates I and II cannot be determined directly, we
will roughly set τ(I) ≈ τ(II) ≈ 210 µs. This is not unreasonable, since any larger deviation
from this approach would not fit to the set of experimental data and the fitting procedure.
Moreover, from the fit, we obtain k(III) = 8.3 × 104 s−1, corresponding to formally 12 µs
(compare Figure 8, below and Table 5). Since the III→S0 decay path is much faster than the
I,II→S0 decays, state III involvement is already of importance at T = 1.2 K by reducing the
decay time from ≈ 210 µs to 174 µs as found experimentally (Figure 6).

Figure 8. Energy level diagram, decay data and rates for Cu2I2(Ph2Ppy)3, 1-I powder. The T1

substates I and II emit independently at T = 1.2 K with τ(I) ≈ τ(II) ≈ 210 µs. The transition rate
k(III→S0) amounts to 8.3 × 104 s−1, corresponding to τ(III) = 12 µs. The spin-lattice relaxation time
at T = 1.2 K is determined to τ(SLR) = 59 µs. The T1→S0(0-0) energy is estimated from the blue
energy flank of the phosphorescence band as displayed in Figure 5. At T = 300 K, the total emission
is composed of phosphorescence (20%) and TADF (80%), leading to a combined decay time of 6.5 µs
at ΦPL = 81%.

The short decay component of 10 µs observed at T = 1.2 K (Figure 6) is assigned to
the direct mechanism of SLR [117] from substate III to both substates I and II. Using the fit
data presented above, we can determine the SLR rate k(SLR) for these processes by

k(SLR) = k(obs) − k(III→S0) (2)

Herein, k(obs) corresponds to the observed decay component of 10 µs and k(III→S0) is
the rate of the III→S0 transition with 8.3× 104 s−1. Accordingly, we find k(SLR) = 1.7 × 104 s−1
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corresponding to τ(SLR) = 59 µs. This means, the SLR process is relatively slow. Values of
similar size have, for example, been reported for Ir(III)complexes [125,126].

The fitting procedure gives also ∆E(S1-T1) = 380 cm−1 (47 meV), the energy gap that
is crucial for TADF properties. The computed value for the T1 state geometry fits relatively
well (411 cm−1, 51 meV, Table 3). Moreover, the rate of the S1→S0 fluorescence, also
resulting from the fit, amounts to k(S1→S0) = 2.25 × 106 s−1 (445 ns, Figures 7 and 8).
However, the corresponding prompt fluorescence decay cannot be measured directly, since
the S1–T1 ISC is orders of magnitude faster. It amounts to around 10 ps [103–105,118–121]
as already discussed above. The computations lead to a value of 1/k(S1–S0) = τ(S1–S0)
= τ(S1) = 1.5 µs for the prompt fluorescence (Table 3), thus, being overestimated by a
factor of about three. Even the experimental S1→S0 transition rate is relatively slow for an
“allowed” fluorescence, but this is in line with the distinct CT character of the transition.
At small HOMO-LUMO overlap, one obtains small exchange interaction and hence, a
small ∆E(S1-T1) gap (as required for TADF materials), however, as well as a slow S1→S0
transition rate [37,48]. For completeness, it is remarked that design of materials with faster
S1→S0 transition rates and small gaps ∆E(S1-T1) is highly attractive and indeed, became
possible recently [40–44,52].

Table 5. Energies, emission quantum yields and decay data of Cu2I2(Ph2Ppy)3, 1-I (powder). Note
the different temperatures.

Property Value

E0-0(T1–S0) a 20,500 cm−1

2.541 eV

E0-0(S1–S0) b 20,880 cm−1

2.588 eV
ΦPL(300 K) 81%
ΦPL(77 K) 92%

k(S1–S0) 2.25 × 106 s−1

(445 ns)

k(T1–S0), plateau 3.1 × 104 s−1

(32 µs)

kr(T1–S0) 2.88 × 104 s−1

(35 µs)
k(TADF + phos), 300 K

observed
15.4 × 104 s−1

6.5 µs

k(TADF-only), 300 K 11.9 × 104 s−1

(8.4 µs)

∆E(S1–T1) 380 cm−1

(47 meV)
∆E(II–I) <1 cm−1

∆E(III–I,II) 3 cm−1

(0.37 meV)

k(III–S0) 8.3 × 104 s−1

(12 µs)
k(I–S0) ≈
k(II–S0)

≈4.76 × 103 s−1

(≈210 µs)
k(SLR) c

at 1.2 K
1.7 × 104 s−1

(59 µs)
a—estimated from the blue flank of the emission spectrum at T = 1.3 (Figure 5); b—E0-0(T1–S0) + ∆E(S1-T1);
c—spin-lattice relaxation rate between the triplet substates III and I, II at T = 1.2 K.

Interestingly, the emission intensity at ambient temperature represents a combined
phosphorescence and TADF. According to the Supporting Information of ref. [87] and [82],
we find for the ratio of phosphorescence intensity Int(T1) to the total emission inten-
sity Int(tot)
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Int(T1)

Int(tot)
=

1

1 + τ(T1)
3·τ(S1)

· exp
(
−∆E(S1−T1)

kBT

) (3)

For the phosphorescence decay time τ(T1), we can insert the value given by the plateau
displayed in Figure 7 with τ(plateau) = 32 µs or we can calculate it from the average decay
time determined from the three triplet substates according to [19,117,127].

τ(T1) = 3
(

1
τ(I)

+
1

τ(II)
+

1
τ(III)

)−1
(4)

with τ(I) ≈ τ(I) ≈ 210 µs and τ(III) = 12 µs, we also obtain τ(T1) = 32 µs, as expected.
Inserting into Equation (3) the mean value of τ(T1) = 32 µs, τ(S1) = 0.445 µs and

∆E(S1-T1) = 380 cm−1, we find for ambient temperature the percentage of phosphorescence
intensity relative to the total emission intensity of≈20%. Thus, the fractional emission inten-
sity of the TADF-only emission amounts to≈80%. Accordingly, compound Cu2I2(Ph2Ppy)3
1-I shows two emission decay paths, as already indicated by the relatively fast phospho-
rescence rate and by the temperature dependent development of the emission spectra
(Figure 5). The rate of the TADF-only process is expressed by

kr(TADF-only) = kr(com) − kr(T1) (5)

With the values of the radiative combined rate of kr(com) = 1.25 × 105 s−1

(kr(com) = ΦPL/τ = 0.81/(6.5 µs), Table 4) and the radiative phosphorescence rate of
kr(T1) = 2.88 × 104 s−1 (τr = 35 µs, Table 4), we obtain for the radiative TADF-only process
kr(TADF-only) = 9.62 × 104 s−1 corresponding to τr = 10.4 µs decay time. Hence, the
radiative decay time of the combined process, phosphorescence and TADF, is significantly
shorter than the TADF-only process. This is valid for the radiative as well as for the mea-
sured decays. The combined emission decays by 23 % faster than the TADF-only emission.
This is a favorable result and may help in future design strategies to shorten the overall
emission decay time of emitter materials to reduce OLED device stability problems [68].

Essential properties of Cu2I2(Ph2Ppy)3, 1-I worked out above are summarized in
Table 5 and visualized by an energy level diagram in Figure 8.

3. Summarizing Conclusions

In this report, we present an overview over a series of P∩N linked Cu(I) dimers
of the type of Cu2X2(P∩N)3 with respect to their X-ray structures and with particular
focus on photo-luminescence data. Within the series of eight different compounds, the
emission color varies from green to red, the ambient temperature radiative decay time τr

covers a range from 8 to 21 µs and the emission quantum yield ΦPL lies between 9 and
81%. All compounds studied show combined TADF and phosphorescence at ambient
temperature. This is due to relatively large spin-orbit coupling (SOC) experienced by the
lowest lying triplet state T1. Around T = 70 K, the TADF component is largely frozen out
and only phosphorescence is observed. The set of data described in the first part, leads
us to select a specific compound, namely Cu2I2(Ph2Ppy)3 1-I, for deeper photophysical
characterizations by DFT and SOC-TDDFT computations and for emission measurements
over the large temperature range of 1.2≤ T≤ 300 K. Thus, the interplay of phosphorescence
and TADF is clarified and properties of the lowest excited singlet and triplet states can be
revealed in detail. For example, we determine the S1→S0 transition rate, the ∆E(S1−T1)
gap, detailed triplet state features, such as the T1→S0 transition rate as well as the rates
from the substates, zero-field splitting (ZFS) of the T1 state and the spin-lattice relaxation
(SLR) rate between triplet substates. Interestingly, the investigation of the decay time as
function of temperature allows us to determine electronic splitting features of the order of
less than 1 cm−1 (0.1 meV), although the spectral halfwidth of about 3500 cm−1 (0.43 eV) is
by a factor of 3500 larger.
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Thus, this presentation proceeds from an overview over properties of a series of
related Cu(I) dimers to detailed photophysical characterization at the state of art. More-
over, it becomes evident that the occurrence of a combined emission process at ambient
temperature, consisting of distinct phosphorescence and TADF, or if applied in an OLED,
consisting of combined singlet and triplet harvesting, leads to significant shortening of the
overall photoluminescent decay time. This is a favorable result and may help in future
design to improve the performance of OLED devices with respect to decrease of roll-off
and stability problems and even increase of the external quantum efficiency (EQE).

4. Materials and Methods
4.1. General

All commercially available solvents and starting materials were used without further
purification. 2-(Diphenylphosphino)pyridine was purchased from Acros Organics. 2-
(Diphenylphosphino)pyrimidine, 2,1-(diphenylphosphino)isoquinoline, 3, [97] complexes
1-X (X = Cl, Br, I) and 3-I were prepared according to described procedures [34]. Elemental
analyses were carried out by the Center for Chemical Analysis of the Faculty of Natural
Sciences of the University Regensburg. Single-crystal structure analysis was carried out on
a Bruker Smart X2S (1-Br), Bruker X8 APEX-II (2-I) and STOE-IPDS (3-I) diffractometer with
graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The structures were solved by
direct methods (SHELXS-97 [128,129], SIR-92 [130]) and refined by full-matrix least-squares
on F2 (SHELXL-97 [131,132] and SHELXL-2014/7 [133]). The H atoms were calculated
geometrically and a riding model was applied in the refinement process. Crystallographic
details can be found in Table 6.

Table 6. Crystal data and data collection and structure refinement details for 1-Br, 2-I and 3-I.

1-Br 2-I 3-I·CH2Cl2

Empirical formula C51H42Br2Cu2N3P3 C48H39Cu2I2N6P3·CH2Cl2 C63H48Cu2I2N3P3·CH2Cl2
Mr, g mol−1 1076.69 1258.57 1405.78
Size, mm3 0.40 × 0.25 × 0.11 0.28 × 0.18 × 0.08 0.20 × 0.18 × 0.15

Crystal system monoclinic monoclinic triclinic
Space group P21/n C2/c P1

a, Å 14.202(2) 42.494(5) 12.4000(13)
b, Å 18.139(3) 11.0172(14) 15.5224(17)
c, Å 17.628(3) 22.311(3) 16.3296(17)

α, deg 90 90 97.462(12)
β, deg 98.223(5) 103.076(3) 106.923(12)
γ, deg 90 90 92.752(13)
V, Å3 4494.5(11) 10174(2) 2969.3(6)

ρcalcd., g cm−1 1.591 1.643 1.572
Z 4 8 2

µ(Mo-Kα), mm−1 2.87 2.29 1.97
T, K 300 293 123

Θ range, deg 1.6–25.1 3.0–28.5 2.2–27.0
Measured reflections 27,865 14,027 42,450

Independent reflections 7896 9516 11,932
Reflections with I > 2σ(I)) 5151 7611 7253

Absorption correction multi-scan multi-scan analytical
Tmin/Tmax 0.39, 0.74 0.894, 0.914 0.725, 0.769

Restraints/refined param. 0/550 0/617 0/685
R1 (I ≥ 2σ(I)) 0.047 0.031 0.034

wR2 0.092 0.083 0.074
ρfin (max/min), e Å−3 1.15/−0.65 0.60/−0.54 1.81/−1.45

CCDC no. 2,034,780 2,034,779 2,034,781

4.2. Photophysical Measurements

The complexes were investigated as powders. Emission spectra and decay curves
were measured by use of a Fluorolog 3 spectrometer (Horiba Jobin Yvon, Munich, Germany)
equipped with a cooled photomultiplier tube. The spectra were corrected with respect to
the wavelength dependence of the instrument. The decay behavior of the phosphorescence
was recorded using a multichannel scaler card (P7887, Fast ComTec, Munich, Germany)
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with a time resolution of 250 ps. For excitation, the third harmonic of a pulsed Nd:YAG laser
(355 nm, pulse width < 8 ns) was used. A Konti IT (CryoVac, Troisdorf, Germany) cryostat
was applied for the variation of temperature between 1.2 K and 300 K. Quantum yield
measurements at ambient temperature and at 77 K were carried out with an integrating
sphere applying a C9920-02 system (Hamamatsu, Herrsching am Ammersee, Germany).

4.3. Computational Investigations

Density functional theory (DFT) geometry optimizations were performed with the
Turbomole [134] package using a basis set of triple-zeta plus polarization (def2-TZVP)
quality [135] and the hybrid B3LYP exchange-correlation functional [136]. For iodine the
corresponding effective core potential [137] was employed. Time-dependent DFT (TDDFT)
calculations were carried out with ADF2014 [101] as mentioned in the main text.

4.4. Syntheses

General Procedure for the syntheses of complexes 2-X and 3-Br according to a simpli-
fied literature method: The copper(I) halide salt (2 equivalents) and the ligand (3 equiv-
alents) were suspended in dichloromethane (15 mL) and stirred 12 h under ambient
conditions. To the filtered reaction solution diethyl ether was added. The formed solid was
filtered off, washed with diethyl ether and dried in vacuum. As soon as the complexes
were precipitated form the reaction mixture, they were not sufficiently soluble in common
weakly or non-coordinating solvents to perform NMR-spectroscopy. Slow gas phase diffu-
sion of diethyl ether into a solution which was obtained by filtration of the crude reaction
mixture gave single crystal suitable for X-ray diffraction.
[(2-Diphenylphosphino)pyrimidine)3Cu2Cl2] (2-Cl). 2 (150 mg, 0.57 mmol), CuCl (38 mg, 0.38 mmol).
Yield: 127 mg, 0.128 mmol, 68%, yellow powder. Anal. Calcd for C48H39Cu2Cl2N6P3
(990.79 g·mol−1): C, 58.19; H, 3.97; N, 8.48. Found: C, 58.45; H, 4.12; N, 8.43.
[(2-Diphenylphosphino)pyrimidine)3Cu2Br2] (2-Br): 2 (150 mg, 0.57 mmol) CuBr (54 mg, 0.38 mmol).
Yield: 156 mg, 0.144 mmol, 74%, yellow powder. Anal. Calcd for C48H39Cu2Br2N6P3
(1079.70 g·mol−1): C, 53.40; H, 3.64; N, 7.78. Found: C, 53.24; H, 3.53; N, 7.76.
[(2-Diphenylphosphino)pyrimidine)3Cu2I2] (2-I): 2 (150 mg, 0.57 mmol) CuI (72 mg, 0.38 mmol).
Yield: 176 mg, 0.150 mmol, 79%, yellow powder. Anal. Calcd for C48H39Cu2I2N6P3· 12 CH2Cl2
(1173.69 g·mol−1): C, 47.90; H, 3.32; N, 6.91. Found: C, 47.73; H, 3.44; N, 6.75.
[(2-Diphenylphosphino)isoquinoline)3Cu2Br2] (3-Br). 3 (75 mg, 0.24 mmol) CuBr (23 mg, 0.16 mmol).
Yield: 72 mg, 0.059 mmol, 75%, yellow powder. Anal. Calcd for C63H48Cu2Br2N3P3· 12CH2Cl2
(1205.84 g·mol−1): C, 60.08; H, 3.89; N, 3.31. Found: C, 60.29; H, 4.08; N, 3.23.
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