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Abstract 

Motor control is a fundamental process that underlies all voluntary behavioral responses. 

Several different theories based on different principles (task dynamics, equilibrium-point 

theory, passive-motion paradigm, active inference, optimal control) account for specific 

aspects of how actions are produced, but fail to provide a unified view on this problem. Here 

we propose a concise theory of motor control based on three principles: optimal feedback 

control, control with a receding time horizon, and task representation by a series of via-points 

updated at fixed frequency. By construction, the theory provides a suitable solution to the 

degrees-of-freedom problem, i.e. trajectory formation in the presence of redundancies and 

noise. We show through computer simulations that the theory also explains the production of 

discrete, continuous, rhythmic and temporally-constrained movements, and their parametric 

and statistical properties (scaling laws, power laws, speed/accuracy tradeoffs). The theory has 

no free parameters and only limited variations in its implementation details and in the nature 

of noise are necessary to guarantee its explanatory power. 

 

Keywords: modeling, motor control, optimality, variability, time 
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Introduction 

Action is the only mean by which the nervous system can communicate evolutions of its 

internal states to the external world. In any case and irrespective of any theoretical construct, 

to produce a faint smile, a friendly handshake or a full running pattern, a voluntary (as 

opposed to a reflex) process should be triggered to create an appropriate temporal pattern of 

coordination directed to specific muscular groups (Lashley, 1951; Bernstein, 1967). Each and 

everyone could agree on this statement, yet there is no consensus on the nature of this process 

(not to say on its anatomical and physiological bases; Arber & Costa, 2018). Although formal 

debates on this issue has long since disappeared from the literature (Feldman & Levin, 1995; 

Kelso, 1995; Turvey, 1977; but for some recent revivals, see Friston, 2011; Huys, Perdikis, & 

Jirsa, 2014; Mohan, Bhat, & Morasso, 2019), one is still confronted with the same recurring 

and embarrassing questions when addressing motor control: Are there internal 

representations in the brain? Does one part of the brain act as a controller which enslaves 

other parts of the brain and the body? Does the brain manipulate position or force variables? 

In this framework, a central issue is: how not to keep contemplating and discussing these 

difficulties, and make progress in the field of motor control modeling that could be beneficial 

for understanding movement disorders, improving rehabilitation devices or inspiring human-

like robotics? 

 The goal of this article is to describe a computational theory1 for the production of 

limb movement that resolves or circumvents part of these difficulties. The starting point is a 

recent study of velocity fluctuations during slow movements (Guigon, Chafik, Jarrassé, & 

Roby-Brami, 2019). This study shows that a slow movement (with a mean speed below 10 

 
1 The term "computational" is used to designate a class of models based on the theory of 

control (including optimal control) and internal models (Todorov & Jordan, 2002; Wolpert & 

Ghahramani, 2000). Detailed reading of Todorov and Jordan (2002) is an important 

prerequisite to understand the present article. 
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cm/s) is well described by a time series of constant-duration (~0.13 s), elementary, discrete 

displacements whose amplitude is proportional to mean movement speed2. The central 

observation is that the temporal structure of movement kinematics is invariant with changes 

in movement speed, consistent with the landmark study of Vallbo and Wessberg (1993). The 

study proposes a model to explain how slow movements are produced: a regular staircase 

goal position signal at ~8 Hz is pursued by an optimal feedback controller with a temporal 

horizon of 0.28 s3. To visualize the process, imagine that you try to reach a virtual target that 

jumps to a different place every 1/8 s and that your strategy is to assume that at each time the 

target is stationary and should be reached smoothly in 0.28 s. The resulting movement will be 

a series of aborted smooth segments of 1/8 s whose velocity is proportional to the size of 

jumps. The model suggests a general theoretical account of motor control in terms of goals 

intermittently updated at this frequency and optimally pursued at this horizon. According to 

the model, any fluctuation observed in a kinematic signal (diversely called submovement, 

segment, unit, pulse, ...) should be considered a consequence of the pursuit of a temporary 

goal4. Here, a theory is derived on this basis in terms of three computational principles, and is 

shown to explain a broad range of motor phenomena: trajectory formation in discrete (point-

to-point), continuous (drawing, handwriting), rhythmic and temporally-constrained tasks, 

ubiquity of isochronous behaviors, scaling laws, power laws and speed-accuracy tradeoffs. 

The article is organized in four parts. First, we outline the context of this study. Next, we 

 
2 An illustrative representation is a regular temporal staircase signal with speed-dependent 

stair height. 
3 The notions of elementary displacement and temporal horizon are not ambiguous. They 

emerge from processing and model-based description of experimental data (Guigon et al., 

2019). Yet the reported values (0.13 s for the duration of elementary displacements, 0.28 s for 

the temporal horizon) are not universal as they were obtained from data analysis and depend 

on the choice of a cutoff frequency for low-pass filtering. 
4 Important notions related to submovement and intermittency are introduced and 

comprehensively discussed in Guigon et al. (2019). 
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present our computational theory of motor control, and a set of simulations that illustrate its 

main characteristics. Finally, we provide a thorough discussion of the results and the theory. 

Context 

The computational approach 

The computational approach to motor control5 is prototypically represented by the stochastic 

optimal feedback control (SOFC) theory of Todorov and Jordan (2002) which has reached a 

wide audience due to its conciseness, scope and explanatory power (Diedrichsen, Shadmehr, 

& Ivry, 2010; Scott, 2004). This theory provides a principled solution to the problem of 

motor coordination (Bernstein’s degrees-of-freedom problem), i.e. how redundant degrees of 

freedom at each level of the motor hierarchy (from neural space to task space) are 

coordinated to produce goal-directed actions, and accounts for many characteristics of motor 

acts (trajectories, structured variability, synergy formation, ...) as by-products of its 

principles. 

 SOFC came on top of fifty years of research that elaborated on the application of 

control, optimal control and optimal estimation theory to the description of human motor 

behaviors (Baron & Kleinman, 1969; Flash & Hogan, 1985; Hatze, 1976; Harris & Wolpert, 

1998; Hoff, 1994; Hogan, 1984; Nelson, 1983; Uno, Kawato, & Suzuki, 1989; Wolpert, 

Ghahramani, & Jordan, 1995). It contained not only a synthesis of previous proposals but 

also several new ideas on the nature of motor control. First, it abolished the long-held but 

embarrassing dichotomy between feedforward and feedback control, and replaced it by a 

more representative control/estimation architecture6. Second, it proposed to resolve 

 
5 See Discussion for a presentation of debates on motor control. 
6 In traditional control architectures, a feedforward controller generates an open-loop control 

signal (e.g. to follow a desired trajectory) and a feedback controller (e.g. a reflex) corrects 
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redundancy on a moment-by-moment basis and simultaneously for all the available degrees 

of freedom (from neural space to task space). Third it gave a central, instrumental role to 

signal-dependent motor noise (multiplicative noise on motor commands; Harris & Wolpert, 

1998; Jones, Hamilton, & Wolpert, 2002; Todorov, 2002) in the emergence of a "minimum 

intervention principle" according to which "deviations from the average trajectory are 

corrected only when they interfere with task performance" (Todorov & Jordan, 2002). A 

likely consequence of this principle is the emergence of structured patterns of variability in 

which a large variability in the contribution of individual degrees of freedom from trial to 

trial can accompany a low goal-related variability (Bernstein’s idea of "repetition without 

repetition"; concept of uncontrolled manifold; Scholz & Schöner, 1999). 

Limitations 

Despite its successes, SOFC is plagued by several limitations, four of them being quite 

revealing. First, it comes with a heavy computational burden all the more so that a specific 

controller must be built for each task at hand. For instance, a via-point experiment (e.g. 

Experiment 1 in Todorov & Jordan, 2002) would require a dedicated controller for every 

possible configuration of the via-points. The burden results from the formulation of the 

model in terms of a Linear Quadratic Gaussian (LQG) controller in which the task 

representation is embedded into the cost function. This approach blurs the distinction 

between skilled and unskilled actions, and leaves no room for multiple, eventually 

 

deviations due to perturbations (Schaal, Ijspeert, & Billard, 2003). Based on arguments 

drawn from observations on task variability and goal-directed motor corrections, Todorov 

and Jordan (2002) rejected these architectures and proposed a control scheme in which a 

feedforward command is elaborated at each time from feedback information (actual and 

predicted sensory inputs). The combination of feedforward and feedback control offers no 

room for open-loop control since control is recalculated at each time based on feedback 

information. 
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suboptimal strategies which can exist to solve a motor task (Ganesh, Haruno, Kawato, & 

Burdet, 2010; Kodl, Ganesh, & Burdet, 2011). 

 Second, as the task representation is embedded into the cost function, LQG runs 

several objectives in parallel (e.g. find a solution of lowest energy expenditure possible and 

the closest possible to a goal), and makes compromises between the objectives. Parameters 

are needed to weight the different objectives which are not easy to identify experimentally 

(how one would trade energetic expenditure for accuracy, or positional accuracy for velocity 

accuracy?), if they ever exist. 

 Third, as the time to achieve a goal is chosen in advance and decreases gradually as 

the goal draws nearer, continuous motor behaviors (e.g. tracking, drawing, writing, 

scribbling, …) and flexible adjustments following perturbations (Liu & Todorov, 2007; 

Shadmehr & Mussa-Ivaldi, 1994) are not properly explained in this framework. Ad hoc 

online updating of time is feasible (Liu & Todorov, 2007), but lacks an underlying principle. 

In fact, time representation is a deep and ubiquitous issue. Considering again a via-point 

experiment, not only the overall task duration must be chosen, but also the time to reach each 

via-point. Experimental studies have shown that the temporal organization of reaching 

through via-points obeys to an isochrony principle, i.e. the transit time between successive 

points is almost constant (Flash & Hogan, 1985; Kodl, Ganesh, & Burdet, 2011). Isochrony is 

a venerable concept corresponding to a compensatory regulation of movement speed with 

amplitude to maintain movement duration approximately constant (Binet & Courtier, 1893; 

Bryan, 1892; Denier van der Gon & Thuring, 1965; Glencross, 1975; Lacquaniti, Terzuolo, 

& Viviani, 1983; Viviani & McCollum, 1983). The origin of isochrony is unknown7 and has 

been rarely addressed in computational studies (Flash & Hogan, 1985; Flash, Meirovitch, & 

Barliya, 2013; Saito, Tsubone, & Wada, 2006). Incomplete compensation can be explained in 

 
7 Note that isochrony is found in models using classical feedback control and in related 

models (e.g. Bullock & Grossberg, 1988). 
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optimal control models by a cost of time (Harris & Wolpert, 2006; Hoff, 1994; Shadmehr, 

Orban de Xivry, Xu-Wilson, & Shih, 2010). Yet, in these models, complete compensation 

and strict temporal invariance (isochrony) are irrational and would require an infinite 

contribution of the cost of time. 

 Fourth, SOFC (and in fact all optimal control models) produces smooth movements of 

any duration whereas the smoothness of experimentally recorded movements decreases with 

increasing movement duration (Salmond, Davidson, & Charles, 2017; Shmuelof, Krakauer, 

& Mazzoni, 2012; review in Guigon et al., 2019). The discrepancy is due to the intrinsically 

time-invariant nature of optimal trajectories generated by the models. In the same vein, 

optimal control provides no account for movement intermittency (Doeringer & Hogan, 1998; 

Guigon et al., 2019; Vallbo & Wessberg, 1993), and the constant rate of peak velocity, peak 

acceleration and peak jerk in motor behaviors (Guigon et al., 2019; Shmuelof et al., 2012; 

Vallbo & Wessberg, 1993). 

Three computational principles 

Three principles are proposed to exploit the power of the computational approach (Todorov 

& Jordan, 2002), and overcome the above-mentioned limitations. They are derived from 

experimental and theoretical observations on slow movements which suggest that a motor 

task is represented by a time series of goals updated at a fixed frequency and optimally 

pursued at a fixed horizon (Guigon et al., 2019). The principles are described in the 

framework of control theory. Motor control is considered as a control problem in which the 

behavior of a controlled object is governed by a controller through a control policy and a set 

of goals to achieve. The 3 principles are the following: 
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The control policy is a "universal" optimal feedback control 

policy 

An optimal feedback control (OFC) policy is a function that takes as input the best estimated 

state of the controlled object (as given by an optimal state estimator), a goal state and a time 

to reach the goal, and provides the best control (relative to a cost function) that drives the 

controlled object to the goal in the given time (Bryson & Ho, 1975). In the most general 

(nonlinear, continuous-time) setting, an OFC policy 𝒖(𝑡) to reach a goal 𝒙𝐺(𝑡) (which is a 

function of time since it can change at any time) can be formally written at each time 𝑡 

𝒖(𝑡) = 𝑼(𝑡), 

where 𝑼 is the function defined in [𝑡, 𝑇(𝑡)] by 

𝑼(𝑡′) = 𝑎𝑟𝑔𝑚𝑖𝑛𝒖′  ∫ 𝐿(𝒙(𝜃), 𝒖′(𝜃)) 𝑑𝜃

𝑇(𝑡)

𝑡

     (Equation 1) 

for a dynamics of the controlled object given by 

�̇�(𝑡) = 𝒇(𝒙(𝑡), 𝒖(𝑡)) + 𝒏𝑑𝑦𝑛(𝑡),       (Equation 2) 

where 𝒙 is the state of the controlled object8 (italic is used for scalars, bold italic for vectors, 

and bold for matrices, dot is for time derivative), 𝑇 the time to reach the goal (which is 

considered a function of time; see below for the choice of 𝑇), 𝒇 the dynamics of the object, 

𝒏𝒅𝒚𝒏 a noise on the dynamics, and 𝐿 a cost function. Boundary conditions are given by 

𝒙(𝑡) = 𝒙(𝑡), 

and 

𝒈(𝒙(𝑇(𝑡)), 𝒙𝐺(𝑡)) = 0,     (Equation 3) 

 
8 The state of the object corresponds to the smallest possible subset of variables that are 

necessary to describe the behavior of the object (e.g. position, velocity, ...). 
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where 𝒈 is a function that specifies the final boundary conditions9, and the best estimated 

state 𝒙 is defined by 

�̇�(𝑡) = 𝒇(𝒙(𝑡), 𝒖(𝑡)) + 𝐊(𝑡)(𝒚(𝑡) − 𝐎𝒙(𝑡)),    (Equation 4) 

where 𝐊 is the Kalman gain, 𝐎 the observation matrix, and 

𝒚(𝑡) = 𝐎𝒙(𝑡) + 𝒏𝑜𝑏𝑠(𝑡),       (Equation 5) 

where 𝒏𝑜𝑏𝑠 is an observation noise term (see Stengel, 1984 for a mathematical description of 

optimal estimation and Kalman filtering). Equations 1 to 5 define an architecture that belongs 

to the class of control/estimation architectures (Figure 1A; Todorov, 2004). The fact that 

𝒙𝐺(𝑡) is a function of time does not mean that it prescribes a "desired trajectory". The actual 

trajectory corresponding to 𝒙𝐺(𝑡) is not 𝒙𝐺(𝑡), but a concatenation of pieces of trajectory 

produced by the control policy to reach 𝒙𝐺(𝑡) at each time 𝑡.  

 In this formulation, the control policy (Equation 1) is deterministic and is the same 

irrespective of the task at hand, i.e. it is aware of the task only through constraints that set the 

goals (boundary conditions 𝒙𝐺(𝑡); Equation 3) to achieve for this task. Such a control policy 

is called "universal" to indicate that it is a general purpose process independent of any 

specific task, without any other connotations. In order to justify this choice, we must prove 

that this formulation has the same explanatory power as the stochastic formulation used by 

Todorov and Jordan (SOFC), and alleviates some limitations of SOFC. 

Figure 1. A. Control/estimation architecture corresponding to Equations 1-5. 

B. Normalized boxcar function. C. Example of a step function. Here, the update 

times are regularly spaced with step duration 𝑇𝑠𝑡𝑒𝑝. 

 
9 A usual function 𝒈 is 𝒈(𝒙(𝑇(𝑡)), 𝒙𝐺(𝑡)) = 𝒙(𝑇(𝑡)) − 𝒙𝐺(𝑡), but other functions can be 

used as well. Equation 3 indicates that the goal 𝑥𝐺(𝑡) is a goal state, which means that a goal 

can be possibly specified for every state variable (e.g. position, but also velocity, ...). 
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 SOFC elaborates a stochastic control policy10 which is optimal with respect to the 

statistics of the noise on the dynamics (Equation 2) and observation (Equation 5), based on 

𝑼(𝑡′) = 𝑎𝑟𝑔𝑚𝑖𝑛𝒖′  〈∫ 𝐿(𝒙(𝜃), 𝒖′(𝜃), 𝐏(𝜃)) 𝑑𝜃

𝑇(𝑡)

𝑡

〉 

where 𝐏 is a set of parameters that specifies the task at hand, and 〈 〉 the mathematical 

expectation operator over noise. In this framework, the task is represented by an objective 

(quantity to minimize) rather than by a constraint (condition to fulfill; Equation 3) (Nelson, 

1983). Interestingly, the very mechanism which is responsible for the explanatory power of 

SOFC (Todorov & Jordan, 2002) is not univoquely related to a formulation as an LQG 

controller. The only requirements for the occurrence of the minimum intervention principle 

(see explanation above) are the presence of signal-dependent motor noise and a properly 

functioning optimal state estimator, irrespective of the stochastic or deterministic nature of 

the controller, and the formulation in terms of objectives or constraints (Guigon, Baraduc, & 

Desmurget, 2008b). More specifically, the fundamental observation that motor variability is 

organized along redundant task dimensions (Scholz & Schöner, 1999; Figure 1 in Todorov & 

Jordan, 2002) does not necessitate a full-blown formulation in terms of stochastic optimality. 

The mathematical formulation of SOFC requires a strikingly large number of terms 

(Equations 2 and 3 in Todorov & Jordan 2002, Supplementary Notes), but most of these 

terms could be removed without qualitative consequences on the results reported by Todorov 

and Jordan (Guigon et al., 2008b). Simulations have shown that a deterministic controller that 

handles control-dependent objectives and state-dependent, task-related constraints separately 

and a LQG controller account equally well for structured patterns of motor variability 

(Guigon et al., 2008b). The main difference between the two approaches is the fact that, in 

 
10 The distinction between stochastic and deterministic processes concerns only the control 

policy. In all OFC formulations, optimal state estimation is present and stochastic by 

construction. 
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the former case, the controller is not stochastic, i.e. it is unaware of the statistics of noise. In 

fact, it remains to be proven that stochastic optimality is a necessary concept in motor 

control. 

 The proposed formulation (Equations 1 to 5) alleviates two limitations of SOFC. 

First, the computational burden of building a specific control policy for each task at hand is 

replaced by the burden of building a unique universal policy which is not more complex than 

any task specific policy11. Second, the parameters which are necessary to weight multiple 

simultaneous objectives in SOFC are absent when constraints are used rather than objectives, 

which eliminates extra parameters and extra rules to set them. 

 This discussion might appear uselessly technical. However, as long as principles are 

concerned, it is important to address the efficiency and conciseness of theoretical constructs. 

In practice, the two formulations discussed above have the same explanatory power. 

The time to reach a goal is constant irrespective of the time 

already spent for this goal 

Except in highly specific laboratory conditions, neither the world nor the body should be 

considered as stationary, e.g. due to noise and uncertainties, there is no such thing as a fixed 

target or fixed posture. Accordingly there is no such thing as the onset, the middle or the end 

of an action, but only an ongoing state that continuously evolves toward ever changing goals. 

Temporal flexibility is necessary to account for these facts and is afforded by the function 

𝑇(𝑡) (Equation 1). The typical choice 𝑇(𝑡) = 𝑇0, where 𝑇0 is a constant (finite fixed horizon), 

offers no flexibility as the remaining time to achieve a goal at each time 𝑡 is 𝑇0 − 𝑡 which 

decreases gradually as time passes and the goal draws nearer. In this framework, different 𝑇0 

are used to obtain movements of different durations which leads to the possibility of smooth 

 
11 The central problem of how an optimal control policy is built and stored by the nervous 

system remains unsolved. 
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movements of any duration in contradiction with the fact that movement smoothness 

decreases with increasing movement duration, and only the fastest movements are likely to 

be smooth. An alternative choice is 𝑇(𝑡) = ∞ (infinite horizon formulation; Qian, Jiang, 

Jiang, & Mazzoni, 2013; Rigoux & Guigon, 2012). In this case, movement duration is an 

emergent characteristic of optimal control, which provides a principled solution to the 

problem of flexibility. Yet the problem of smoothness remains open. A third choice, retained 

here as a principle, is 𝑇(𝑡) = 𝑡 + 𝑇𝐻, where 𝑇𝐻 is a constant (finite receding horizon), which 

provides a constant time 𝑇𝐻 to achieve a goal at each time (Berio, Calinon, & Fol Leymarie, 

2017; Bye & Neilson, 2008, 2010; Guigon et al., 2019). We use the self-explanatory term 

receding horizon for 𝑇𝐻
12. In this case, the control policy becomes stationary (independent of 

time), produces isochronous behaviors, and is intrinsically flexible as any novel goal is 

automatically pursued at horizon 𝑇𝐻. Allowing 𝑇𝐻 to vary would lead to the above mentioned 

problem of smoothness. The receding horizon is thus considered fixed, not only within a 

movement, but in fact across all movements and tasks. The value of 𝑇𝐻 (0.28 s) was 

identified in a study of slow movements (Guigon et al., 2019). The most important point is 

not the value of 𝑇𝐻 by itself, but the fact that it must be considered a constant rather than an 

open parameter. How movements of different durations are obtained in the framework of the 

receding horizon is the object of the third principle (see below). 

A task is defined by a sequence of goals played at a fixed and 

unique frequency 

A strong proposal of Todorov and Jordan is that motor behavior is based on the pursuit of 

goals rather than tracking of prescribed trajectories. Accordingly, a task can be defined by a 

discrete sequence of successive, non overlapping goal states (Equation 3), e.g. a sequence of 

 
12 The concept of receding horizon belongs to the framework of model predictive control 

(Garcia, Prett, & Morari, 1989). No technical information on this framework is needed to 

understand the model. 
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via-points (Flash & Hogan, 1985; Kodl et al., 2011; Experiment 1 in Todorov & Jordan, 

2002; Wada & Kawato, 1995). In this framework, the most general definition of a task is a 

time series 𝒙𝐺(𝑡) of 𝑁 goal states 𝒙𝑘
𝐺, updated at times 𝑡𝑘, given by 

𝒙𝐺(𝑡) = ∑ 𝒙𝑘
𝐺

𝑁−1

𝑘=1

boxcar(𝑡, 𝑡𝑘 , 𝑡𝑘+1) + 𝒙𝑁
𝐺boxcar(𝑡, 𝑡𝑁 ,∞)        (Equation 6) 

for 𝑡 ∈ [𝑡1,∞[, where boxcar(𝑡, 𝑎, 𝑏) is the function which is 1 for 𝑡 ∈ [𝑎, 𝑏] and 0 elsewhere 

(Figure 1B; https://en.wikipedia.org/wiki/Boxcar_function). The boxcar function allows a 

single goal to be selected at each time. We only consider time series with a constant time 

interval called 𝑇𝑠𝑡𝑒𝑝, i.e. ∀𝑘, 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝑠𝑡𝑒𝑝. The resulting time series 𝒙𝐺(𝑡) is a step 

function (https://en.wikipedia.org/wiki/Step_function), where each step corresponds to a goal 

that is pursued for a certain time (example in Figure 1C). The goal states are called via-points 

except the last one which is called target. If any possible task is to be described by 

Equation 6, a principle should be provided for the choice of goal states and update times 

(value of 𝑇𝑠𝑡𝑒𝑝) for a given task. The proposed principle is based on observations on slow 

movements (Guigon et al., 2019), and is summarized in five rules: 

- rule 1: if the task involves state-space constraints (e.g. spatial constraints), the goal states 

are chosen to match the constraints. For instance, a tracking task would be represented by a 

series of goals extracted from the trajectory to follow; 

- rule 2: if there are no state-space constraints (e.g. scribbling), the goal states are chosen at 

will; 

- rule 3: if the task involves temporal constraints (e.g. follow the beat of metronome), the 

update times are chosen to match the constraints (e.g. Figure 1C with 𝑇𝑠𝑡𝑒𝑝 = period of the 

metronome);  

- rule 4: if there are no temporal constraints (e.g. scribbling), the goal states are updated with 

a fixed period 𝑇𝐺 = 0.13 𝑠, i.e. 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝐺 (e.g. Figure 1C with 𝑇𝑠𝑡𝑒𝑝 = 𝑇𝐺). 

https://en.wikipedia.org/wiki/Boxcar_function
https://en.wikipedia.org/wiki/Step_function


 15 

- rule 5: the presence of state-space and temporal constraints does not prevent from 

considering additional goal states updated with period 𝑇𝐺. 

 The central element of the proposed principle is in rule 4 which gives a unique recipe 

to specify the time course of a motor act without a direct specification of its duration. The 

actual duration is an emergent consequence of the interaction between 𝑇𝐺 and 𝑇𝐻, and an 

increasing function of 𝑁 (number of goal states). The principle states that 𝑇𝐺 is the same 

across all movements and tasks. The value of 𝑇𝐺 (0.13 s) was identified in Guigon et al. 

(2019), to account for velocity fluctuations at ~8 Hz during slow movements. As for 𝑇𝐻, the 

most important point is not the value of 𝑇𝐺 by itself, but the fact that it must be considered a 

constant rather than an open parameter (see Table 1 for a summary on time notations). 

 Note that when the goals are updated with the period 𝑇𝐺 and pursued at horizon 𝑇𝐻 

(which is longer than 𝑇𝐺), a goal may not be reached before the occurence of the next one. 

 In the LQG formulation used by Todorov and Jordan, the sequence of goals is 

integrated in the cost function and the resulting trajectory corresponds to the best way to run 

through the sequence. In the present approach, the sequence of goals is decided upstream of 

actual control which allows for multiple, possibly suboptimal task representations. 

Simulations 

We present a set of simulations that obey to the three proposed principles. They attempt to 

reproduce observed characteristics of motor behavior during different tasks. The architecture 

of the model (Figure 1A) is the same for all the simulations, and the simulations differ only 

by the sequence of goals used to describe the tasks (Figure 1C). The detailed functioning of 

the model is the following. A simulation duration ∆ and a timestep of simulation 𝛿 are 

chosen. At each time 𝑡 in [0, ∆], a goal 𝒙𝐺(𝑡) and the estimated state 𝒙(𝑡) are available and a 

control policy 𝒖(𝑡) is calculated over the interval [𝑡, 𝑡 + 𝑇𝐻] to reach the current goal (𝒙𝐺(𝑡)) 
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at time 𝑡 + 𝑇𝐻 starting from the estimated state at time 𝑡 (Equations 1 and 3). Then the new 

state 𝒙(𝑡 + 𝛿) and new estimated state 𝒙(𝑡 + 𝛿) at time 𝑡 + 𝛿 due to the control, observation 

and noise at time 𝑡 are calculated from current state 𝒙(𝑡) and current estimated state 𝒙(𝑡) 

(Equations 2, 4 and 5). The process is repeated at time 𝑡 + 𝛿 and stopped when current time 

is ∆. Note that the simulation duration ∆ defines the period of time during which the behavior 

of the model is simulated and has no influence on this behavior. ∆ is chosen to cover the 

duration of the sequence of goals (see Table 1 for a summary on time notations). 

 The principles do not specify a unique model. Some freedom remains on how 

sequences of goals are built (in allocentric or egocentric coordinates) and on the nature of 

constraints at each goal (e.g. position, velocity, force, ...). The possible variations of the 

model are systematically tested. 

 There are no free parameters in the deterministic simulations and only noise 

parameters in the stochastic simulations. The noise parameters are given with no justification 

(the noise parameters not specified are 0), but a specific section (the last one) is dedicated to 

the study of noise and variability. 

Methods 

One-dimensional inertial point 

The three computational principles were applied to an inertial point actuated by a linear 

muscle in the presence of noise, with a quadratic cost function, and a Kalman filter for 

optimal state estimation. The rationale for this choice (in particular the absence of 

redundancy) is the following. As the model inherits properties from the model of Todorov 

and Jordan (2002), we deem it not necessary to address issues already considered in their 

work (kinematic redundancy, muscular redundancy, formation of uncontrolled manifolds and 

synergies). 
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 The dynamics of the point was given by Equation 2, with the state vector 𝒙 =

[𝑝 𝑣 𝑎 𝑒] (𝑝 position, 𝑣 velocity, 𝑎 muscular activation, 𝑒 muscular excitation), the control 

vector 𝒖 = [𝑢], and the vectorial function 𝒇 defined by 

{

�̇� = 𝑣
𝑚�̇� = 𝑎

𝜏�̇� = −𝑎 + 𝑒
𝜏�̇� = −𝑒 + 𝑢

 

where 𝑚 is the mass of the point and 𝜏 the muscle time constant. This formulation 

corresponds to a linear, second-order (Newtonian) dynamics coupled to a linear, second-order 

(low-pass filtering) force generator, and widely used in motor control models (Harris & 

Wolpert, 1998; Todorov & Jordan, 2002; van der Helm & Rozendaal, 2000). 

 The cost function was defined by 

𝐿(𝒙,𝒖) = 𝑢2. 

State estimation obeyed to Equation 4 and observation to Equation 5. The Kalman gain was 

calculated following Guigon et al. (2008b) for sources of noise described below. 

Task representation: series of goals and boundary conditions 

A task was represented by a time series of goal states (Equation 6). There are two ways to 

define a sequence. The next goal can be defined relative to the current goal or relative to the 

current (estimated) state of the system. It corresponds broadly to the distinction between 

allocentric and egocentric coding of goals. Thus we considered an absolute goal setting 

policy when 

𝒙𝑘
𝐺 = 𝒙𝑘−1

𝐺 + 𝜶𝑘      (Equation 7) 

and a relative goal setting policy when 

𝒙𝑘
𝐺 = 𝒙(𝑡𝑘) + 𝜶𝑘 ,   (Equation 8) 

where 𝜶𝑘 is an arbitrary sequence. 
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 In the most general setting, final boundary conditions were defined by Equation 3. 

The choice of function 𝒈 is a fundamental issue. For instance, different boundary conditions 

should probably be used for discrete and continuous movements, e.g. it may not be necessary 

or effective to impose a zero-velocity constraint at a via-point in a continuous movement. Yet 

there is no self-evident principle for the choice of 𝒈 (e.g. what is an appropriate velocity 

constraint at a via-point in a continuous movement?), and it is necessary to consider and test 

different possibilities. There are two aspects in the construction of boundary conditions. First, 

the states to be constrained are chosen, the remaining unconstrained states being 

automatically determined by the optimal control process. For a 4 dimensional problem 

(position, velocity, activation, excitation), there are 15 different configurations, but only three 

were considered: 

- the full-state constraint, i.e. 

{
 
 

 
 𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) − 𝑣
𝐺(𝑡) = 0

𝑎(𝑡 + 𝑇𝐻) − 𝑎
𝐺(𝑡) = 0

𝑒(𝑡 + 𝑇𝐻) − 𝑒
𝐺(𝑡) = 0

 

- the partial-position constraint, i.e. 

𝑝(𝑡 + 𝑇𝐻) − 𝑝
𝐺(𝑡) = 0   (Equation 9) 

- the partial-position/velocity constraint, i.e. 

{
𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) − 𝑣
𝐺(𝑡) = 0

  (Equation 10) 

Second, in the full-state constraint, the desired values of the constrained states are chosen. It 

is in general easy to set positional constraints (e.g. positions of via-points) and sometimes 

possible to set velocity constraints (e.g. stationary via-points). For the other states, two 

conservative methods were considered: 

- a zero-value method (the states go to 0), e.g. when only the position goal is known 
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{
 

 
𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) = 0

𝑎(𝑡 + 𝑇𝐻) = 0

𝑒(𝑡 + 𝑇𝐻) = 0

  (Equation 11) 

or when the position and velocity goals are known 

{
 

 
𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) − 𝑣
𝐺(𝑡) = 0

𝑎(𝑡 + 𝑇𝐻) = 0

𝑒(𝑡 + 𝑇𝐻) = 0

  (Equation 12) 

- a current-value method (the states keep their current value), e.g. when only the position goal 

is known 

{
 

 
𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) − 𝑣(𝑡) = 0

𝑎(𝑡 + 𝑇𝐻) − 𝑎(𝑡) = 0

𝑒(𝑡 + 𝑇𝐻) − 𝑒(𝑡) = 0

  (Equation 13) 

or when the position and velocity goals are known 

{
 

 
𝑝(𝑡 + 𝑇𝐻) − 𝑝

𝐺(𝑡) = 0

𝑣(𝑡 + 𝑇𝐻) − 𝑣
𝐺(𝑡) = 0

𝑎(𝑡 + 𝑇𝐻) − 𝑎(𝑡) = 0

𝑒(𝑡 + 𝑇𝐻) − 𝑒(𝑡) = 0

  (Equation 14) 

This description of boundary constraints applied to the via-points (goal states 1 to 𝑁 − 1; 

Equation 6). The target (goal state 𝑁; Equation 6) was considered as stationary and always 

obeyed to Equation 11. 

 In summary, a task representation was defined by a series of goal, a goal setting 

policy (absolute or relative), a boundary constraint (full-state, partial-position, partial-

position/velocity) and a boundary method for the full-state constraint (zero- or current-value). 

It should be noticed that the full-state constraint defined by Equation 11 or Equation 13 is not 

similar to the partial-position constraint (Equation 9). In the latter case, the values of velocity, 

activation, and excitation are constrained by optimization. For a similar reason, the full-state 
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constraint defined by Equation 12 or Equation 14 is not similar to the partial-position/velocity 

constraint (Equation 10). 

 The apparent complexity in the construction of task representations is due to the fact 

that there are many implementation details and we deem it necessary to evaluate their 

contribution to the functioning of the model. 

Noise 

In the proposed framework, variability is modeled by the presence of white noise sources. 

We assumed that every process is possibly corrupted by noise and noise can be described by 

the standard deviation (𝜎) of a Gaussian variable. The dynamics (subscript m for motor; 

Equation 2) and observation (subscript s for sensory; Equation 5) noises were described in 

terms of signal-independent (SIN) and signal-dependent (SDN) terms (𝑆𝐼𝑁𝑚, 𝜎𝜉; 𝑆𝐷𝑁𝑚, 𝜎𝜀; 

𝑆𝐼𝑁𝑠, 𝜎
𝜔; 𝑆𝐷𝑁𝑠, 𝜎

𝜖; Guigon et al., 2008b; Todorov, 2005). Other sources of noise were 

considered for: 

- 𝑇𝐻, i.e. initially and at every 𝑇𝐺, the nominal receding horizon 𝑇𝐻 became (1 + 𝜎𝜁𝜁)𝑇𝐻, 

where 𝜁 is a realization of a standard normal variable and 𝜎𝜁 a parameter; 

- 𝑇𝐺, i.e. at every 𝑇𝐺, the nominal goal time 𝑇𝐺 became (1 + 𝜎𝛾𝛾)𝑇𝐺, where 𝛾 is a realization 

of a standard normal variable and 𝜎𝛾 a parameter; 

- 𝑝𝐺 , i.e. initially the nominal position goal 𝑝𝐺  became (1 + 𝜎𝜒𝜒)𝑝𝐺, where 𝜒 is a realization 

of a standard normal variable and 𝜎𝜒 a parameter. 

 The dynamics and observation noises were termed execution noises as they act 

continuously during the movement. The other noises were termed planning noises as they act 

before the movement and possibly discretely during the movement (at each 𝑇𝐺). 
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Parameters 

Parameters were 𝑚 = 1 kg, 𝜏 = 0.05 s, 𝑇𝐻 = 0.28 s, 𝑇𝐺 = 0.13 s, and 𝐎 was the 4 × 4 

identity matrix. For calculating the Kalman gain, the ratio 𝜎𝜉/𝜎𝜔 was 0.001. 

Solutions 

The optimal feedback control policy and the Kalman gain were calculated analytically as 

described in Guigon et al. (2008b), and simulated numerically with the time step 𝛿 =

0.001 s. A complete mathematical background is given in the Online Supplemental Material. 

Two-dimensional inertial point 

To simulate drawing movements, independent inertial points moving along perpendicular 

directions in the plane were considered (same formulation, same parameters). 

Data analysis 

Simulations produced time series of position that were analyzed to determine movement 

characteristics. Movement duration was defined by the time between the beginning of the 

simulation and the end of the movement obtained by a velocity threshold (0.05 m/s). 

Endpoint variability was defined as the standard deviation of the position at the end of the 

movement. Timing variability was defined as the standard deviation of movement duration. 

Fastest point-to-point movements: smoothness and isochrony 

The fastest point-to-point movement was obtained when, starting from initial state 𝒙0 =

[0 0 0 0], a stationary target goal 𝒙𝐺 = [𝑝 0 0 0], (𝑝 is the prescribed movement amplitude; 

full-state constraint; Equation 11) was set at time 𝑡 = 0 and pursued at horizon 𝑇𝐻 

(Figure 2A, dotted lines). The resulting trajectory was regular (Figure 2A) with a bell-shaped 

velocity profile (Figure 1B). As movement amplitude increased, peak velocity increased and 

movement duration remained constant (Figure 2B). These movements correspond to a unique 
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class of smooth movements with biphasic acceleration profiles (Figure 2B, inset). They were 

close to minimum-jerk movements, with a jerk ratio of 1.5 (ratio between integrated jerk and 

jerk of the corresponding minimum-jerk trajectory). Note that the goal time 𝑇𝐺 played no role 

in these simulations since there were no via-points. 

 Two points should be noticed. First, by construction a movement obtained by control 

with a receding horizon never really stops in the sense that there always remains the same 

time to complete a movement irrespective of the remaining distance to the goal. In practice, 

movement duration can be properly defined by setting a threshold below which velocity 

fluctuations are negligible. The same consideration also applies to experimental recordings. 

Second, humans can produce movements that are faster than those described here (~0.4 s vs 

~0.2 s in Hoffman & Strick, 1986). Much faster displacements (~0.2 s) can be obtained in the 

model in the framework of rhythmic movements (see Figure 12). The movements described 

by Hoffman and Strick (1986) have large overshoots and terminal oscillations, and could be 

considered as aborted rhythmic movements. 

Figure 2. Simulation of the fastest point-to-point movements. A. Position 

profiles. Amplitude of 0.1 m (black), 0.2 m (red), 0.3 m (green), 0.4 m (blue). 

Dotted lines show task representation. B. Velocity profiles. Inset: acceleration 

profiles. 

Slow point-to-point movements: segmentation 

A slow movement of mean speed 𝑠 was obtained with the full-state constraint, either the 

zero-value (Equation 12) or the current-value (Equation 14) method, and the absolute goal 

setting policy (Equation 7). The time series of goal states was built according to rules 1 and 

4: goal states were chosen along the desired spatial path of the movement and updated with 

period 𝑇𝐺. Starting from initial state 𝒙0 = [0 0 0 0], the first goal state was 𝒙1
𝐺 = [𝑠𝑇𝐺 𝑠 0 0], 

and the following goal states were given by Equation 7 with 𝜶𝑘 = [𝑠𝑇𝐺 0 0 0]. Accordingly, 
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the position constraint was a staircase temporal signal of base 𝑇𝐺 and height 𝑠𝑇𝐺 (dotted 

lines; Figure 3A), and the velocity constraint a constant signal of size 𝑠 (dotted lines; 

Figure 3B). The simulated position and velocity profiles are shown in Figure 3 (plain lines) 

for 4 mean speeds. We showed previously that this model provides an accurate account of 

properties of slow movements (Guigon et al., 2019). Note that these movements can be 

terminated by setting a stationary target goal (Equation 6).  

 The relative goal setting policy (Equation 8) lead to slow movements which did not 

comply with the required mean speed. The partial-position/velocity constraint (Equation 10) 

lead to slow movements with smaller velocity fluctuations. As the value of 𝑇𝐻 was derived 

from the size of these fluctuations (Guigon et al., 2019), it raises the possibility for a lower 

value of 𝑇𝐻. Yet an independent cross-check of the value of 𝑇𝐻 was obtained in the study of 

drawing movements (see below). 

Figure 3. Simulation of slow point-to-point movements. A. Position profiles. 

Mean speed of 0.025 m/s (black), 0.05 m/s (red), 0.075 m/s (green), 0.1 m/s 

(blue). Simulations with full-state constraint, zero-value method, and absolute 

goal setting policy. B. Velocity profiles. Dotted lines show task representation in 

position and velocity. 

Point-to-point movements of intermediate duration 

Point-to-point movements that are neither very fast nor very slow have been ubiquitously 

reported in the literature. For instance, the mean movement speed in the original data of Fitts 

(1954) was in the range 10-100 cm/s (amplitude 5-40 cm, duration 0.18-0.73 s). The velocity 

profile of such movements is more or less irregular and asymmetric with one or more peaks 

(Darling, Cole, & Abbs, 1988; Morasso, Mussa-Ivaldi, & Ruggiero, 1983; Salmond et al., 

2017). Following the proposed principles, the duration of a movement is related to the 

number and position of via-points used to define it. There is a priori an infinite number of 

ways to set via-points. In keeping with the study of slow movements, we considered 
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movements built using via-points specified by a fraction of movement amplitude (rules 1, 2 

and 4). For a movement of amplitude 𝐴 and fraction 𝑓 (in [0;1]), we took 𝛼𝑘 = 𝑓𝐴 to define 

the position of the kth via-point (Equation 7 or Equation 8). A via-point whose position 

exceeded 𝐴 was set at 𝐴, and considered as a target (Equation 6). Simulations were run for 

one amplitudes and 10 fractions (between 0.3 and 1), with full-state constraint and zero-value 

method (Equation 11), for absolute (Equation 7; Figure 4A) and relative (Equation 8; 

Figure 4D) goal setting policy. 

 For the absolute goal setting policy, the via-points were equally distributed along the 

movements (Figure 4A), and the trajectories were regular (Figure 4B) with velocity profiles 

that became more irregular as movement duration increased (Figure 4C). The fastest 

movement was identical to those described in Figure 2 and the slowest movement was similar 

to those described in Figure 3. For the relative goal setting policy, the distribution of via-

points along the movements was time-dependent (in fact, speed-dependent; Figure 4D), and 

the trajectories were as described for the absolute goal setting policy (Figure 4E,F). The main 

quantitative difference between the two goal setting policies is observed on the time to peak 

velocity which scales with duration in one case (Figure 4C), but not in the other (Figure 4F). 

This difference will be important in the study of scaling laws and Fitts’ laws (see below). 

Figure 4. A. Position of via-points (plain square) for 10 movements of the same 

amplitude (diamond: start point; circle: target) with the absolute goal setting 

policy. B. Trajectories of the movements described in A. C. Velocity profiles of 

the movements described in A. D. Same as A the relative goal setting policy. 

E. Trajectories of the movements described in D. F. Velocity profiles of the 

movements described in D. 

Drawing movements: isochrony and power laws 

A shape was described by a sequence of appropriately placed via-points updated at period 𝑇𝐺 

(rules 2 and 4). For instance, four points at the vertex of a square presented sequentially at 
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interval 𝑇𝐺 generated a circle figure (partial-position constraint, Equation 9; absolute goal 

setting policy, Equation 7; Figure 5A). The corresponding times serie of positional goals is 

shown in Figure 5B. No velocity goals were imposed at the via-points. Tangential velocity 

was inversely correlated with curvature and cycle duration was constant (Figure 5E). A more 

precise circle drawing was obtained with an 8-points sequence (Figure 5C,D). Drawing had 

similar scaling properties, but was slower (Figure 5E). Cycle duration increased linearly with 

the number of via-points (Figure 5E, inset). 

 For the same via-points, the partial-position/velocity (Equation 10) and the full-state 

constraints (Equations 11-14) lead to polygons rather than circles. The relative goal setting 

policy (Equation 8) was not appropriate to obtain a specific geometric shape. 

Figure 5. Drawing circles. A. A 10-cm radius circle defined by 4 via-points 

(colored squares; color code from left to right on the colorbar), 30 turns, 

counterclockwise rotation. Mean cycle duration was 0.52 s. Calibration is 10 cm. 

B. Time series of positional goals in x (thick) and y (thin) for A. C. A 10-cm 

radius circle defined by 8 via-points (colored diamonds), 30 turns, 

counterclockwise rotation. Mean cycle duration was 1.04 s. D. Time series of 

positional goals in x (thick) and y (thin) for C. E. Relationship 

curvature/tangential velocity (left axis, closed symbols) and curvature/cycle 

duration (right axis, open symbols). Squares correspond to 4 via-points, diamond 

to 8 via-points. Dashed line from Viviani and McCollum (1983), fig. 3A. Inset: 

relationship between the number of via-points and cycle duration. Simulations 

with partial-position constraint, absolute goal setting policy, in the presence of 

𝑆𝐷𝑁𝑚 (𝜎𝜀 = 1). 

 Studies of drawing curved shapes revealed a simple power law relationship 

𝑉(𝑡) ∝  𝐶(𝑡)−𝛽 

between tangential velocity 𝑉 and curvature 𝐶 with 𝛽 ≈ 1/3 (Lacquaniti, Terzuolo, & 

Viviani, 1983). An ellipse defined by the four vertices of a rectangle (with an aspect ratio of 

2) is shown in Figure 6A and complies with the one-third power law (Figure 6B). 

 Huh and Sejnowski (2015) showed that there exists a continuum of power laws 

related to the frequency content of shapes (see also Zago, Matic, Flash, Gomez-Marin, & 
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Lacquaniti, 2018). We built a via-point representation of 12 shapes (rules 2 and 4) 

corresponding to frequencies 𝜈 = 2/33, 2/5, 3/5, 2/3, 4/5, 4/3, 3/2, 2 (ellipse), 5/2, 3, 4, 5 

according to the equation 

𝑙𝑜𝑔(𝑟) = 𝜇𝑠𝑖𝑛(𝜈𝜃) 

in polar coordinates (𝑟, 𝜃), 𝜇 is a parameter (chosen to obtain the shapes shown in Huh and 

Sejnowski, fig. 4). The exponent 𝛽 of the power law varied with frequency with a trend close 

to that reported experimentally (Figure 6C). The one-third power law was observed only for 

ellipses. A parametric analysis of these results shows that the chosen values of 𝑇𝐻 and 𝑇𝐺 

provide the best account of experimental data over the range [0.18-0.48] for 𝑇𝐻 and [0.13-

0.23] for 𝑇𝐺 (Appendix A, Figure A1). 

Figure 6. A. Ellipse defined by 4 via-points, 40 turns, counterclockwise rotation, 

arbitrary dimension. Same conventions as in Figure 5A. B. Instantaneous 

relationship between tangential velocity and curvature for the ellipse in A. 𝛽 =
0.328 (𝑅2 = 0.98). C. Relationship between frequency content 𝜈 and power law 

exponent 𝛽 for 12 shapes. Dotted line from Huh and Sejnowski (2015), dashed 

line from Zago et al. (2018). Horizontal and vertical plain lines indicate the case 

of an ellipse (𝜈 = 2, 𝛽 ≈ 1/3). Simulations with partial-position constraint, 

absolute goal setting policy, in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 1). 

Handwriting 

The word "flow" was used for comparison with Huys et al. (2014). It was described as a time 

series of 21 via-points (Figure 7A): the letter f was represented by two symmetrical 

rectangular triangles (dark blue), the letter l by an isocele triangle (light blue), the letter o by 

a smaller triangle (green) and the letter w by a kind of w (yellow to red). The methods were 

as described for drawing. The writing was smooth (Figure 7B), made of strokes (Figure 7C), 

and isochronous (by construction), consistent with experimental observations (Denier van der 

Gon, & Thuring, 1965; Hollerbach, 1981; Viviani & Terzuolo, 1982). This simulation is 

provided here for illustrative purpose. The via-points were chosen by hand. No general recipe 
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for building word representations was searched for. In fact, there are no specific 

characteristics of handwriting that could be used to challenge the theory. 

Figure 7. Writing the word "flow". A. Via-point representation of the word. The 

via-points are shown as nodes of a graph connected by colored edges. The order 

is indicated by the color gradient. B. Written word. The colors correspond to the 

via-point representation. C. Velocity profile. No spatial unit is necessary since 

writing is isochronous. Simulation with partial-position constraint, absolute goal 

setting policy, in the absence of noise. 

Scaling laws 

Scaling laws correspond to ubiquitous relationships between movement characteristics (e.g. 

amplitude and duration; Fitts, 1954; Gordon, Ghilardi, Cooper, & Ghez, 1994). For instance, 

the fastest point-to-point movements of Figure 2 have constant duration and time to peak 

velocity, and linearly increasing peak velocity and peak acceleration with amplitude 

(Figure 8A). We call this pattern an isochronous scaling law. To analyze the diversity of 

scaling laws, we considered movements built as described for movements of intermediate 

duration (Figure 4A,D). Simulations were run for 4 amplitudes and 10 fractions (between 0.5 

and 1), with full-state constraint and zero-value method (Equation 11), for absolute 

(Equation 7; Figure 8B) and relative (Equation 8; Figure 8C) goal setting policy. For 𝑓 < 1, 

there was one via-point for absolute goal setting policy (Appendix B, Figure B1A), and one 

or two via-points for relative goal setting policy (Figure B1B). We observed that each 

fraction 𝑓 corresponded to a specific isochronous scaling law (one color; Figure 8B,C). For 

each amplitude, movement duration increased and peak velocity/acceleration decreased as 𝑓 

decreased. As already observed (Figure 4C,F), the two goal setting policies differed on the 

time to peak velocity: it scaled with 𝑓 for absolute goal setting policy and was constant for 

relative goal setting policy (Figure 8B,C). The scaling laws remained similar for the current-

value method (Equation 13). 



 28 

Figure 8. A. Scaling laws for the fastest point-point movements (data from 

Figure 2). (circle) movement duration, left side axis; (square) time to peak 

velocity, right side axis. B. A family of isochronous scaling law obtained with 

full-state constraint, zero-value method and absolute goal setting policy. Each 

point corresponds to a movement of a given amplitude and a specific position of 

via-points. Each color corresponds to four movements (amplitudes 0.1, 0.2, 0.3, 

0.4 m) with a specific fraction (10 fractions between 0.5 and 1) of amplitude 

between the via-points. For instance a fraction of 0.6 means that the four 

movements have one via-point at 0.06, 0.12, 0.18 and 0.24 m, respectively. 

C. Same as B with relative goal setting policy. 

 From a family of isochronous scaling laws (Figure 8B,C), different types of scaling 

strategies could be obtained (Figure 9): 

- via-points at a decreasing fraction of amplitude with absolute goal setting policy gave 

movements with increasing duration, time to peak velocity, peak velocity, and peak 

acceleration (Figure 9A; Gordon et al., 1994); 

- via-points at a fixed distance with absolute goal setting policy gave movements with 

increasing duration, peak velocity and time to peak velocity, but constant peak acceleration 

(Figure 8B; non-dominant strategy in Sainburg & Schaeffer, 2004); 

- via-points at a decreasing fraction of amplitude with relative goal setting policy gave 

movements with increasing duration, peak velocity and peak acceleration, but constant time 

to peak velocity (Figure 9C; dominant strategy in Sainburg & Schaeffer, 2004).  

 The model can thus account for the fact that the kinematic landmarks of a movement 

do not systematically scale with changes in movement duration (Baraduc, Thobois, Gan, 

Broussolle, & Desmurget, 2013; Sainburg & Schaeffer, 2004; Sarlegna, Blouin, Bresciani, 

Bourdin, Vercher, & Gauthier, 2003; Torres & Andersen, 2006; Worringham, 1991). The 

model does not provide a rationale for the different strategies, but this issue will become 

clearer in the framework of Fitts’ law (see below). 

Figure 9. Three scaling strategies. A. Absolute goal setting policy, via-points at 

fraction 0.9, 0.8, 0.7 and 0.6, for amplitude 0.1, 0.2, 0.3, 0.4 m, respectively. 
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B. Absolute goal setting policy, via-points at 0.11 m for all amplitudes. 

C. Relative goal setting policy, via-points at fraction 0.9, 0.8, 0.7 and 0.6, 

respectively. Same conventions as in Figure 8. Below each scaling strategie, the 

position of the via-points for each amplitude is shown (same format as in 

Figure 4A,D). 

Discrete and rhythmic movements 

There exists a classical distinction between discrete and rhythmic movements (Guiard, 1993; 

Hogan & Sternad, 2007). An open question is whether the model can account for this 

distinction. To produce a rhythmic behavior, we considered a sequence of two alternating 

position goals (distance 0.2 m) at a fixed frequency (corresponding to an internally generated 

periodic signal) as a task representation (rules 1 and 3), with partial-position constraint 

(Equation 9). At 1.5 Hz, position, velocity and acceleration traces were almost sinusoidal 

(Figure 10A). There were no dwell periods (i.e. periods of near-zero velocity) and 

harmonicity (defined as the ratio between minimum and maximum acceleration; Guiard, 

1993) was close to one. At 0.7 Hz, kinematics was much more irregular with consistent dwell 

periods and near zero harmonicity (Figure 10B). Dwell time and amplitude decreased with 

frequency (Figure 10C), and harmonicity increased with frequency (Figure 10D). 

Qualitatively, nonzero dwell times were found for frequencies below 1 Hz, i.e. for 

unidirectional displacements longer than 0.5 s, consistent with Sternad, Marino, Charles, 

Duarte, Dipietro, & Hogan (2013). The corresponding movements are considered as discrete 

(Hogan & Sternad, 2007). We note that movements of such durations (> 0.5 s) could be 

produced using via-points (see Figure 8; rule 5) and would not encompass a dwell time. 

Using either the partial-position/velocity or the full-state constraint lead to qualitatively 

similar results at high frequencies and a shift to nonzero dwell times around 2 Hz. These 

results do not depend on the goal time 𝑇𝐺 since the goals were updated at imposed 

frequencies. 
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 These results show that the distinction between discrete and rhythmic movements 

could correspond to a change in behavior (appearance of dwell periods) with required 

movement frequency of one and the same control process. Further analysis of rhythmic 

movements is given in Appendix C. 

Figure 10. Rhythmic movements. A. (top) Position and acceleration (bottom) 

Velocity. Vertical dashed and dotted lines delimit dwell periods (velocity 

threshold at 0.01 m/s). Frequency was 1.5 Hz. Dwell time was 0.015 s. 

Harmonicity was 0.67. B. Same as A for a frequency of 0.7 Hz. Dwell time was 

0.172 s. Harmonicity was 0.28. C. Mean dwell time as a function of frequency. 

Inset: mean movement amplitude as a function of frequency. (gray circle) 1.5 Hz; 

(black circle) 0.7 Hz. D. Mean harmonicity as a function of frequency. 

Simulations with partial-position constraint, in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2). 

Simulation duration was 120 s. 

Fitts’ law 

In the presence of noise, scaling laws (see above) define a tripartite relationship between 

movement amplitude, duration and endpoint variability. We explored this relationship for 

discrete and rhythmic (reciprocal) movements. 

Discrete Fitts’ law 

We simulated series of movements of different amplitudes and with via-points at different 

positions corresponding to the scaling strategies of Figure 8B (absolute goal setting policy) 

and 8C (relative goal setting policy) in the presence of 𝑆𝐷𝑁𝑚 (see below for the influence of 

noise on Fitts’ law; Figure 16). We measured actual movement amplitude (𝐴), duration (𝑀𝑇, 

to keep a traditional notation) and endpoint variability (𝑊), and we analyzed the relationship 

between the effective index of difficulty 𝐼𝐷 = 𝑙𝑜𝑔2(2𝐴/𝑊) and 𝑀𝑇. As expected from Fitts’ 

law, 𝑀𝑇 was a linear function of 𝐼𝐷 (Figure 11A,B). We note that the actual range of 𝐼𝐷 is 

arbitrary: changing the level of noise or the definition of endpoint variability would shift the 

range of 𝐼𝐷 with no effect on 𝑀𝑇 (this remark applies to all the simulations involving a 
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calculus of 𝐼𝐷). Time to peak velocity and time after peak velocity increased with 𝐼𝐷 for 

absolute goal setting policy (Figure 11C) while time to peak velocity remained constant for 

relative goal setting policy (Figure 11D). These two strategies were observed in the study of 

discrete Fitts’ law (Poletti, Sleimen-Malkoun, Temprado, & Lemaire, 2015; Sleimen-

Malkoun, Temprado, & Berton, 2013; Temprado, Sleimen-Malkoun, Lemaire, Rey-Robert, 

Retornaz, & Berton, 2013). Note that, for each amplitude, peak velocity decreased with 𝐼𝐷 

for the relative goal setting policy (Figure 11B, inset; MacKenzie, Marteniuk, Dugas, Liske, 

& Eckmeier, 1987). Fitts’ law was observed with the zero-value method, but not with the 

current-value method. 

Figure 11. Discrete Fitts’ law. A. Movement duration as a function of 𝐼𝐷. 5 

amplitudes (0.1-0.5 m), via-points at 5 equi-spaced distances (0.11, 0.132, 0.155, 

0.178, 0.2 m). Simulations with full-state constraint, zero-value method, absolute 

goal setting policy. B. Movement duration as a function of 𝐼𝐷. 5 amplitudes (0.1-

0.5 m), via-points at 5 fractions (0.65, 0.725, 0.8, 0.875, 0.95). Simulations with 

full-state constraint, zero-value method, relative goal setting policy. Inset: peak 

velocity as a function of 𝐼𝐷. (diamond) 0.1 m; (up triangle) 0.2 m; (down 

triangle) 0.3 m; (left triangle) 0.4 m; (right triangle) 0.5 m. C. Time to peak 

(black) and time after peak (gray) velocity as a function of function of 𝐼𝐷 for data 

in A. D. Time to peak (black) and time after peak (gray) velocity as a function of 

function of 𝐼𝐷 for data in B. Simulations in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 1). 

Variability calculated over 500 trials per condition. 

Rhythmical (reciprocal) Fitts’ law 

We simulated series of rhythmical movements of a given amplitude as explained above 

(Figure 10) for frequencies in the range 0.7-2.5 Hz. As movement amplitude decreases with 

frequency (Figure 10C, inset), compensatory changes in movement amplitude with frequency 

were used to obtain the desired amplitude (Figure 12B, inset). For the given amplitude, 

movement duration and time to peak velocity increased linearly with 𝐼𝐷 for 𝐼𝐷 below 4 

(Figure 12A). Dwell time increased with 𝐼𝐷 (Figure 12B) and harmonicity decreased for 𝐼𝐷 

below 4 (Figure 12C). These observations are consistent with experimental results for low 
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𝐼𝐷s (Boyle & Shea, 2013; Buchanan, 2013). The behavior changed above 𝐼𝐷 = 4 (low 

frequencies) consistent with a transition between rhythmic and discrete movements (Huys, 

Fernandez, Bootsma, & Jirsa, 2010). The data for 𝐼𝐷 > 4 are shown, but are wrong in the 

sense that a different mechanism is involved at higher IDs (lower frequencies; see above, 

Figure 11B,D). 

 The rhythmical movements obeyed to Fitts’ law, i.e. a univocal relationship was 

found between 𝐼𝐷 and movement duration for different amplitudes (Figure 13A). Peak 

velocity decreased with 𝐼𝐷 as observed experimentally (Figure 13B; Boyle & Shea, 2013). A 

rhythmical Fitts’ law was not observed for partial-position/velocity and full-state constraints. 

Figure 12. Rhythmical Fitts’ law (single amplitude). A. Movement duration 

(circle) and time to peak velocity (square) as a function of 𝐼𝐷. Amplitude was 

0.2 m. B. Dwell time. Inset: compensatory changes in amplitude as a function of 

frequency. Dotted line corresponds to 0.2 m (desired amplitude). C. Harmonicity. 

(gray lines) data from Buchanan (2013). 15 frequencies in the range 0.7-2.5 Hz. 

Simulations with partial-position constraint, in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2). 

Variability calculated over 500 trials per condition. 

 

Figure 13. Rhythmical Fitts’ law (multiple amplitudes). A. Movement duration as 

a function of 𝐼𝐷 for 3 amplitudes: (red) 0.1 m; (black) 0.2 m; (green) 0.3 m. 

B. Peak velocity as a function of 𝐼𝐷. Same parameters as in Figure 12. 

Timing 

Movements can be made toward spatial targets, but also toward temporal events (e.g. the beat 

of a metronome; Howarth, Beggs, & Bowden, 1971). There is evidence that movements 

directed at spatial and temporal goals are subserved by different processes (Howarth et al., 

1971; Huys et al., 2010). For the model, this means that the task representation used to 

produce rhythmic movements (see above) is not appropriate to explain how movements get 

synchronized with a metronome. An attempt to address this issue is the following. We 
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observe that the kinematics of a movement toward a temporal goal have peculiar features, i.e. 

its velocity profile is asymmetrical and peak velocity occurs late in the movement (Cos, 

Girard, & Guigon, 2015; Craig, Pepping, & Grealy, 2005; Port, Lee, Dassonville, & 

Georgopoulos, 1997; Rieger, 2007; Walter & Rieger, 2012). Furthermore time to peak 

velocity increases all the more so that the period of the metronome increases (Cos et al., 

2015). We assume that this property is specific to timing as it has never been reported in 

other motor conditions. We searched for a task representation of timing in terms of via-

points. The size of peak velocities depends on the distance between via-points, thus to obtain 

larger velocity peaks later in the movement, it is sufficient to consider nearby via-points at 

the begin of the movement and more distant via-points later. Accordingly, the distance 

between the via-points 𝑛 − 1 and 𝑛 was chosen to be 𝑛𝑓𝐴 where 𝐴 is the movement 

amplitude and 𝑓 a parameter in [0,1]. Simulated velocity profiles are shown in Figure 14A. 

Time to peak velocity increased with movement duration and occurred later in proportion of 

duration (Figure 14B). Variability in movement duration increased with movement duration 

in the presence of noise on the goal time (Figure 14A, inset). 𝑆𝐷𝑁𝑚 was not sufficient to 

obtain this kind of variability. 

Figure 14. Simulation of movements with late peak velocity. A. Velocity profiles. 

See Text for explanation. Colors from blue to red: 𝑓 =
0.025,0.05,0.075,0.1,0.125,0.15,0.2,0.3. Movement amplitude was 0.2 m. Inset: 

standard deviation of movement duration as a function of movement duration. 

B. Relationship between movement duration and time to peak velocity in s (left 

axis, open squares) and % of movement duration (right axis, closed squares). 

Simulations with full-state constraint, zero-value method, relative goal setting 

policy, in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2) and noise on the goal time (𝜎𝛾 =
0.005). Variability calculated over 500 trials per condition. 

 We assessed the relationship between amplitude, duration and variability for timing 

movements as we did for the study of Fitts’ law. Movement duration increased with the index 

of difficulty, but the slope was steeper than for a Fitts’ task (Figure 15A; Howarth et al., 
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1971; Huys et al., 2010). Spatial variability increased linearly with average velocity 

(Figure 15B; Schmidt, Zelaznik, Hawkins, Franck, & Quinn, 1979; Wright & Meyer, 1983). 

Temporal variability increased linearly with movement duration (Figure 15C; Bongers, 

Fernandez, & Bootsma, 2009). These results show that the model can account for specific 

characteristics of speed/accuracy tradeoff in a timing task. We note that the model is unable 

to account for the presence of pauses that precede movements toward temporal events in 

synchronization tasks (Cos et al., 2015; Donnet, Bartolo, Fernandes, Cunha, Prado, & 

Merchant, 2014; Hove & Keller, 2010). 

 The robustness of these results is the following. The results remained qualitatively 

similar under the current-value method, for partial position-velocity and partial-position 

constraint, in the absence of 𝑆𝐷𝑁𝑚. The structure of temporal variability (Figure 15C) 

disappeared in the absence of temporal noise. The results were lost with absolute goal setting, 

in the presence of 𝑆𝐷𝑁𝑠 and with noise only on the receding horizon. 

Figure 15. Tripartite relationship between amplitude, duration and variability for 

timing movements. A. Movement duration as a function 𝐼𝐷. Three movement 

amplitudes (0.2, 0.3, 0.4 m) and 10 fractions (𝑓 between 0.02 and 0.2). Gray lines 

from Howarth et al. (1971), fig. 3: (dashed) data from Fitts (1954); (solid) timing 

task. B. Spatial variability as a function of average velocity. C. Temporal 

variability as a function of movement duration. Simulations with full-state 

constraint, zero-value method, relative goal setting policy, in the presence of 

𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2) and noise on the goal time (𝜎𝛾 = 0.005). Variability calculated 

over 500 trials per condition (amplitude, fraction). 

Structure of variability and the nature of noise 

In the preceding simulations, we used sources of white Gaussian noise to explain variability. 

We address here the role of the different sources. 

 We have shown that discrete Fitts’ law can be explained by the presence of 𝑆𝐷𝑁𝑚 

(Figure 11). We assessed the basic tripartite relationship between amplitude, duration and 

variability for the different types of noise (except 𝑆𝐼𝑁𝑚 which has a deleterious effect on 
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control). The simulations confirmed the proper role of 𝑆𝐷𝑁𝑚 (Figure 16, black; see 

Figure 11A) and showed that variability produced by the other sources of noise did not 

comply to Fitts’ law, i.e. there was no univocal relationship between movement duration and 

𝐼𝐷 (Figure 16, red, green, blue, purple, yellow). 

Figure 16. Simulation of discrete Fitts’ law for different sources of noise. (black) 

𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2); (red) 𝑆𝐼𝑁𝑠 (𝜎
𝜔 = 0.0001); (green) 𝑆𝐷𝑁𝑠 (𝜎

𝜖 = 0.5); (blue) 𝑇𝐻 

(𝜎𝜁 = 0.2); (purple) 𝑇𝐺 (𝜎𝛾 = 0.2); (yellow) 𝒙𝐺 (𝜎𝜒 = 0.01). Noise standard 

deviations were chosen to obtain similar ranges of 𝐼𝐷, except for noise on 𝑇𝐺 

which cannot produce a larger variability. Only the type of noise indicated was 

present. 3 amplitudes (0.2, 0.25, 0.3 m). Variability calculated over 500 trials per 

condition. 

 When participants repeatedly produce movements of a given amplitude, movement 

duration (𝑀𝑇) covaries with peak velocity (𝑃𝑉), i.e. 𝑃𝑉 ∝ 𝑀𝑇−𝑞 with 𝑞 ≈ 0.8 (van Beers, 

Haggard, & Wolpert, 2004; see also Messier & Kalaska, 1999). This property was found in 

the model for 𝑆𝐷𝑁𝑚, noise on 𝑇𝐻 and noise on 𝑇𝐺 (Figures 17A,B,C), although the velocity 

profiles were peculiar for the two latter noises (Figure 17A, inset; 17B). 

Figure 17. A. Velocity profiles (gray lines) and peak velocity (black circle) for 

𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2). 100 trials are shown. Inset: same for 𝑇𝐻 (blue) and 𝑇𝐺 (purple) 

noise. B. Relationship between peak velocity and movement duration for the data 

in A. 500 trials are shown. C. Exponent 𝑞 of the relationship between peak 

velocity and movement duration vs 𝑅2 of the relationship. Vertical dashed line 

indicates 𝑞 = 0.8 (expected value; van Beers et al., 2004). (black) 𝑆𝐷𝑁𝑚 (𝜎𝜀 =
2); (red) 𝑆𝐼𝑁𝑠 (𝜎𝜔 = 0.00005); (green) 𝑆𝐷𝑁𝑠 (𝜎𝜖 = 0.25); (blue) 𝑇𝐻 (𝜎𝜁 =
0.18); (purple) 𝑇𝐺 (𝜎𝛾 = 0.2); (yellow) 𝒙𝐺 (𝜎𝜒 = 0.004). Standard deviations of 

noise were chosen to obtain an 𝐼𝐷 ≈ 7, except for 𝑇𝐺. Simulations with full-state 

constraint, zero-value method, absolute goal setting policy. Amplitude 0.1 m, via-

point at 0.07 m, chosen to obtain a movement duration around 0.4 s as in van 

Beers et al. (2004). Variability calculated over 500 trials. 

 We assessed basic aspects of correlation, spatial and temporal variability across 

repetitions of a movement of a given amplitude (Figure 18): 1. correlation between position 

at kinematic landmarks and endpoint position (Heath, Westwood, & Binsted, 2004; 
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Figure 18A); 2. correlation between position at normalized time and endpoint position 

(Heath, Neely, & Krigolson, 2008; Figure 18B); 3. correlation between the value of 

kinematic landmarks (Messier & Kalaska, 1999; Figure 18C); 4. positional standard deviation 

at normalized time (Liu & Todorov, 2007; Figure 18D); 5. positional standard deviation of 

kinematic landmarks (Khan, Elliot, Coull, Chua, & Lyons, 2002; Figure 18E); 6. temporal 

standard deviation of kinematic landmarks (Valdez & Amazeen, 2008; Figure 18F). Each 

panel in Figure 18 shows simulations with 6 types of noise (colored lines, circles) and 

experimental data (gray lines, triangles) which are characteristic of properties reported in the 

literature. We observed again that the presence of 𝑆𝐷𝑁𝑚 (black lines compared to gray lines) 

provides a good quantitative account of the structure of variability of point-to-point 

movements. The presence of the other sources of noise led to contrasted results in particular 

as far as correlations were concerned (Figure 18A,B,C). Interestingly, both execution and 

planning noises can account for classical observations on the time course of positional 

variance (Figure 18D; Krüger, Eggert, & Straube, 2011; Krüger, Straube, & Eggert, 2017; 

Liu & Todorov, 2007; Mosier, Scheidt, Acosta, & Mussa-Ivaldi, 2005; Osu, Morishige, 

Nakanishi, Miyamoto, & Kawato, 2015; Selen, Beek, & van Dieën, 2006) which is generally 

thought to arise from execution noise (Guigon et al., 2008b; Todorov & Jordan, 2002). 

Figure 18. A. Correlation coefficient between position at peak acceleration (PA), 

peak velocity (PV) and peak deceleration (PD) and endpoint position. The green 

curve is superimposed on the red one. Data from Heath et al. (2004), fig. 7. 

B. Correlation coefficient between spatial position at normalized times and 

endpoint position. Data from Heath et al. (2008), fig. 7. C. Mean correlation 

coefficient between kinematic markers (A, amplitude). Data from Messier and 

Kalaska (1999), fig. 11. D. Positional standard deviation at normalized times. 

Data from Liu and Todorov (2007), fig. 1e. E. Positional standard deviation at 

kinematic markers in percent of movement amplitude. Data from Khan et al. 

(2002), fig. 5. F. Temporal standard deviation at kinematic markers in percent of 

movement amplitude. Data from Valdez and Amazeen (2008), fig. 8. (gray, 

triangle) experimental data; (black) 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 2); (red) 𝑆𝐼𝑁𝑠 (𝜎𝜔 =
0.000075); (green) 𝑆𝐷𝑁𝑠 (𝜎

𝜖 = 0.4); (blue) 𝑇𝐻 (𝜎𝜁 = 0.25); (purple) 𝑇𝐺 (𝜎𝛾 =
0.2); (yellow) 𝒙𝐺 (𝜎𝜒 = 0.01). Standard deviations of noise were chosen to 
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obtain similar ranges of positional standard deviation (D), except for 𝑇𝐺. 

Simulations with full-state constraint, zero-value method, absolute goal setting. 

Amplitude 0.2 m, via-point at 0.18 m. Variability calculated over 500 trials. 

Discussion 

We presented an ensemble of simulations of motor behaviors designed following two 

guidelines. First they all involved the same control process. Second they each contained a 

specific description of a task (task representation) in terms of a spatiotemporal sequence of 

goals. The sequence was in general naturally related to the task, sometimes not so naturally 

but intuitively related to the task (movements of intermediate duration), and in a case the 

construction was more speculative (timing). If all the results may not be equally convincing, 

the overall impression is that the proposed theory has a large explanatory power that extends 

across many aspects of motor control. Several aspects of this work (submovement, 

intermittency) have been comprehensively discussed previously (Guigon et al., 2019) and are 

not addressed here. 

Disclaimer 

The present work should not be considered as a subservient extension of a dominant theory 

(computational theory of motor control; Scott, 2004; Todorov & Jordan, 2002; Todorov, 

2004; Wolpert & Ghahramani, 2000), but as the outcome of a slow and in-depth progression 

in the field of motor control (Guigon, 2010, 2011; Guigon et al., 2019; Rigoux & Guigon, 

2012). It acknowledges past and present debates on motor control (Ajemian & Hogan, 2010; 

Feldman & Levin, 1995; Friston, 2011; Mohan, Bhat, & Morasso, 2019; Turvey, 1977), 

recognizes the existence of divergent positions, and makes some attempts toward a 

reconciliation. Using a receding horizon renders the control process stationary (i.e. 

independent of time) and intrinsically flexible in agreement with the dynamical systems 
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approach to motor control (Kelso, 1995). The receding horizon also provides a natural 

continuity between movement and posture (Guigon, 2010) as in the equilibrium-point theory 

(Feldman & Levin, 1995). Yet the proposed theory remains sensitive to numerous criticisms 

attached to the representational view of action (Warren, 2006). Instead of trying to argue in 

vain against these criticisms, we developed two points based on the position/force dichotomy 

and the structured nature of motor variability that illustrate the power of the computational 

approach over other modeling frameworks. It is not a manoeuvre to bypass a debate, but a 

way to focus on technical arguments that are amenable to experimental testing rather than 

conceptual and philosophical arguments. 

Time in motor control 

A central difficulty of the computational approach to motor control is how time is processed 

during the course of an action. By construction, no movement is possible without choosing in 

advance a time horizon (Equation 1). If no other principle is available, the time horizon 

remains fixed along the course of the movement, leading to a nonstationary control policy 

and an absence of flexibility in time. A paradoxical aspect of the proposed theory is to 

address these difficulties by setting two rigidly defined time constants (receding horizon, 

update period of goals). Control with a receding horizon benefits from an automatic updating 

of the time to achieve goals, which is necessary when perturbations are encountered (Liu & 

Todorov, 2007; Pélisson, Prablanc, Goodale, & Jeannerod, 1986; Shadmehr & Mussa-Ivaldi, 

1994). Although the initial time horizon is set to the receding horizon, actual movement 

duration is an emergent property of the interaction between the controller and the 

environment. Movement duration also depends on self-selected goals (via-points) updated at 

a fixed period. Simple rules for the choice of via-points produce realistic scaling laws, 

speed/accuracy tradeoffs, and synchronization movements. A time series of spatial goals is an 
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appropriate proxy for the specification of movement duration, precision and timing. The 

theory provides a principled approach to time processing in motor control which is consistent 

with the existence of isochronous behaviors and the nonsmooth aspect of most movements 

expect the fastest ones. 

Isochrony 

A core property of the model is the production of isochronous actions. The origin of 

isochrony is unknown, but is considered here as a native characteristic of the model that 

underlies all other emergent properties. This view is consistent with the idea that time is 

given priority over space in motor control (Ashton, 1976; Lashley, 1951). For instance, in 

speech production, consistent timing is essential for intelligibility of speech (Faulkner & 

Rosen, 1999) and is preserved in patients with Parkinson’s disease at the expense of 

amplitudes and velocities of lip displacements (Caligiuri, 1987; Connor, Abbs, Cole, & 

Gracco, 1989; Walsh & Smith, 2012). In the production of rhythmic arm movements, Levy-

Tzedek, Ben Tov, & Karniel (2011) have shown that the participants exerted a stronger 

control on movement frequency than on amplitude or velocity. 

 Isochrony is not a priori a unitary concept. It has been observed for fast, discrete 

movements (Bryan, 1892; Jeannerod, 1984) and for slower, continuous motor activities 

(drawing, handwriting; Denier van der Gon & Thuring, 1965; Lacquaniti, Terzuolo, & 

Viviani, 1983; Viviani & McCollum, 1983). In the former case, isochrony could be a direct 

consequence of control with a receding horizon. In the latter, it could be due to both the 

receding horizon and the representation of task by series of goals updated at a fixed 

frequency, i.e. isochronous actions are those that have the same number of via-points 

irrespective of their amplitude (Figure 5). The failure to keep being perfectly isochronous in 

drawing circle of increasing size (Bennequin, Fuchs, Berthoz, & Flash, 2009; Viviani & 
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Cenzato, 1985; Viviani & Schneider, 1991) could be explained by a strategic increase in the 

number of via-points with the perimeter of the circle to avoid an excessive increase in 

energetic expenditure, peak velocity, or variability (speed/accuracy tradeoff). Interestingly, 

the principles that lead to isochrony also account for the existence of power laws (Figure 6; 

Huh & Sejnowski, 2015; Lacquaniti et al., 1983; Zago et al., 2018). Accordingly, the 

framework proposed by Bennequin et al. (2009) to explain isochrony and power laws in 

terms of multiple geometries might be unwarrantedly complex. 

 An open question is whether an optimality principle could account for isochrony. As 

noted previously, a cost of time (Harris & Wolpert, 2006; Hoff, 1994; Shadmehr et al., 2010) 

could explain the compensatory regulation of movement speed with amplitude to maintain 

movement duration approximately constant. Yet we would never obtain a strict isochrony 

since it is not a rational behavior to spend more cost to keep a constant duration. A possible 

normative account of isochrony can be derived in the framework of reward/effort-based 

optimal motor control (Rigoux & Guigon, 2012). We assume that the utility of producing an 

action of intensity 𝐼 (e.g. force, amplitude) and duration 𝑇 to obtain a reward 𝜌 is 𝐽 = 𝜌/𝑇 −

𝜀𝐼2/𝑇2 (which is a simplified version of the model developed in Rigoux & Guigon, 2012; 𝜀 

is a conversion factor) which defines a trade-off between the benefits and costs of an action. 

Maximum utility (with respect to 𝑇) is 𝐽∗ = 𝜌2/4𝜀𝐼2 and is obtained for 𝑇∗ = 2𝜀𝐼2/𝜌. We 

also assume that the reward 𝜌 can be interpreted as a "motivational investment", i.e. how hard 

we are ready to work for a given action, and we search for a function 𝜌 = 𝜌(𝐼) which 

maximizes 

∫
𝐽∗(𝐼)

𝜌(𝐼)
𝑑𝐼 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 15) 

(ratio between utility and investment across the range of action intensities). Using the 

calculus of variations, the function 𝜌 should obey to the differential equation 
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𝐼2𝜌′(𝐼) − 2𝐼𝜌(𝐼)  =  0, 

which gives 𝜌(𝐼) = 𝐾𝐼2 where 𝐾 is a constant. The optimal utility is 𝐽∗ = 𝐾𝜌/4 and the 

optimal time is 𝑇∗ = 2/𝐾 which is constant. In this framework, isochrony is the outcome of 

an optimization process (Equation 15). Although it is interesting to have a normative 

explanation of isochrony, it is unclear whether this explanation is superior and more 

informative than a basic explanation based on the role of isochrony in the synchronization of 

multiple neural and behavioral events. 

Handwriting 

Morasso and Mussa-Ivaldi (1982) distinguished muscle-oriented and space-oriented models 

of trajectory formation. In the former models, geometrical and mechanical (elastic) properties 

of muscles create parametric oscillatory dynamics that produce curved trajectories, e.g. 

drawings, letters (Hollerbach, 1981; Singer & Tishby, 1994). These models foreshadowed 

refined developments in the framework of the dynamical approach to motor control in which 

interactions on multiple time scales and between multiple dynamical patterns produce 

sequential, coordinated actions (e.g. handwriting; Huys et al., 2014; Perdikis, Huys, & Jirsa, 

2011; for a different, but related work, see also Friston, Mattout, & Kilner, 2011). The latter 

space-oriented models are based on trajectory control in space either through combinations of 

motor primitives (strokes; Bullock, Grossberg, & Mannes, 1993; Edelman & Flash, 1987; 

Morasso & Mussa-Ivaldi, 1982) or through via-point representations (Gilet, Diard, & 

Bessière, 2011; Meulenbroek, Rosenbaum, Thomassen, Loukopoulos, & Vaughan, 1996; 

Wada & Kawato, 1995; the present model). Most of these models produce realistic writing 

patterns, and many characteristic properties of handwriting such as isochrony and 

curvature/velocity relationship easily emerge. A more challenging issue is the absolute time 

scale of writing processes, e.g. the duration of individual strokes. Although it is difficult to 
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pinpoint a single number (due to the heterogeneity of acquisition and data processing 

methods, in particular the filtering cutoff frequency), a realistic range is 0.1-0.3 s (Teulings & 

Stelmach, 1991). The value obtained here is ~0.19 s (16 velocity peaks in 3 s; Figure 6C) and 

is constant by construction. None of the models discussed above (nor other models) can 

account for the existence of a fixed duration of strokes because the processing time scale is in 

general determined by some free parameters (coefficients of a dynamics, stiffness, …). The 

strength of the present theory is to enable the coexistence of processing at a constant time 

scale on the one hand and full temporal flexibility on the other hand. 

Fitts’ law 

The fact that the model accounts for Fitts’ law is not a surprise. The tripartite relationship 

between amplitude, duration and variability appears to be a ubiquitous consequence of 

control in the presence of multiplicative motor noise (Guigon et al., 2008a; Harris & Wolpert, 

1998; Hoff & Arbib, 1992; Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Qian et al., 

2013; Rigoux & Guigon, 2012; Tanaka, Krakauer, & Qian, 2006). The main contribution of 

the theory is to explain 3 types of Fitts’ law (discrete, rhythmic, temporal) and the kinematics 

of movements that obey to these laws. This corresponds to a major improvement in the 

computational description of Fitts’ law since previous models accounted for a single type of 

Fitts’ law and only in terms of unrealistic smooth movements of arbitrary duration (Guigon et 

al., 2008a; Harris & Wolpert, 1998; Jean & Berret, 2017). 

Motor variability 

Variability is a central theme in the study of motor control that goes beyond Fitts’ law. 

Common observations are that no two movements toward the same goal are exactly the same 

and variability calculated along repeated trajectories is not uniform (structured variability; 

Darling et al., 1988; Todorov & Jordan, 2002). Although most motor control theorists often 
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cite Bernstein and agree with his claim that "the global structure of the movement remains 

the same, while the (details of the) movements never exactly repeat themselves" (citation 

from Meijer & Bruijn, 2007; original article of Bernstein in Feldman & Meijer, 1999), 

observations on motor variability and its structure have raised little interest and contributed 

little to theoretical constructs except in the computational framework (for an exception see 

Martin, Reimann, & Schöner, 2019). It could be revealing to see how variability emerges in 

other frameworks. 

 Admittedly, the methodology used for the study of variability has obvious limitations. 

First, noise is modeled as a white Gaussian stochastic process, although other types of noise 

exist. Second, part of the motor variability may not be uniquely related to the presence of 

noise (e.g. existence of trial-to-trial corrective processes; van Beers, Brenner, & Smeets, 

2013) or to the presence of uncorrelated noise (e.g. existence of long-range correlations in 

series of motor actions; Slifkin & Eder, 2012). Yet, despite these limitations, consistent 

conclusions can be drawn. First, signal-dependent (multiplicative) motor noise is a major 

determinant of variability (Figures 16, 17, 18) consistent with previous experimental and 

theoretical results (Guigon et al., 2008b; Harris & Wolpert, 1998; Jones, Hamilton, & 

Wolpert, 2002; Meyer et al., 1988; Todorov, 2002; Todorov & Jordan, 2002). Second, 

planning noise contributes to movement variability, in particular for the production of 

temporal variability (Churchland, Afshar, & Shenoy, 2006; van Beers et al., 2004), and 

possibly for the emergence of speed/accuracy tradeoff (Al Borno, Vyas, Shenoy, & Delp, 

2020). 

Discrete and rhythmic movements 

There is strong evidence that discrete and rhythmic movements are not of the same nature, 

i.e. neither a rhythmic movement results from the concatenation of discrete segments nor a 
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discrete movement can be identified to a truncated rhythmic movement (Guiard, 1993; Hogan 

& Sternad, 2007; van Mourik & Beek, 2004). Theoretical considerations on this distinction 

based on motor primitives (e.g. central pattern generators) have been reviewed by Degallier 

and Ijspeert (2010). The central theme was related to nonlinear dynamical equations whose 

solution corresponds to discrete or rhythmic patterns depending on parameters (Degallier, 

Righetti, Natale, Nori, Metta, & Ijspeert, 2008; de Rugy & Sternad, 2003; Huys, Studenka, 

Rheaume, Zelaznik, & Jirsa, 2008; Jirsa & Kelso, 2005; Ronsse, Sternad, & Lefèvre, 2009; 

Schaal, Kotosaka, & Sternad, 2000; Schöner, 1990). None of the described models can 

account for the changes in characteristics of rhythmic movements with frequency and the 

transition to discrete movements at lower frequencies (Guiard, 1993; Sternad et al., 2013). 

 An alternative approach was described by Biess, Nagurka, & Flash (2006) who 

defined discrete and rhythmic movements as solutions to optimal control problems with 

different boundary conditions. Our view of the difference between discrete and rhythmic 

movements is consistent with this idea. In this framework, rhythmicity is not the consequence 

of a continuous, autonomous dynamics, but of a discrete, periodic guidance. It should be 

noted that the transition between rhythmic and discrete movements observed around 1 Hz in 

the model does not correspond to a qualitative change in behavior (e.g. a bifurcation). A 

velocity threshold was used to detect "artificial" dwell periods, but in fact, the underlying 

velocity pattern changed with frequency along a continuum. 

 According to the theory, the computational specificity of rhythmic movements is 

related to the management of constraints, i.e. goals are defined only by positional constraints 

(Equation 9). Discrete movements require a broader set of constraints for the extra demands 

of termination, and accordingly, larger computational resources. This view is consistent with 

the observation that the neural substrate of rhythmic movements is a subset of the neural 

substrate of discrete movements (Schaal, Sternad, Osu, & Kawato, 2004). 
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What makes the theory work? 

The first principle (optimal feedback control) is responsible for the basic machinery of motor 

control (Todorov & Jordan, 2002) and the present model adds nothing specific to this point. 

The second principle (receding horizon) imposes a strong constraint on movement 

production: movements comply with a universal relationship between duration and jerkiness 

(Salmond et al., 2017; Shmuelof et al., 2012). Avoiding the production of unrealistic 

movements (e.g. smooth long-duration movements) probably contributes to the performance 

of the theory. The third principle is more enigmatic. It was adopted to explain velocity 

fluctuations during slow movements (Guigon et al., 2019) and seems effective to specify the 

kinematics and duration of a large class of movements. In fact, updating of goals at ~8 Hz is 

equally efficient to produce point-to-point movements of different durations and arbitrary 

drawing movements, and account for their properties (scaling law, speed/accuracy tradeoffs, 

power laws). The reason for this is unclear but it is satisfying to note that no additional 

hypothesis was needed to extend the model beyond the scope of slow movements. 

Relation to previous models 

The current theory is based on two concepts (intermittency, receding horizon) which are used 

in the modeling framework developed by Bye and Neilson (2008, 2010). In their formalism, 

intermittency corresponds to successive 100-ms refractory periods. During a refractory 

period, processing of incoming information is delayed to the next period and a trajectory 

between predicted initial state and predicted target state is planned over a variable horizon. At 

the end of the refractory period, the planned trajectory is executed and a new refractory 

period starts in parallel. Accordingly, an action consists in a concatenated sequence of fixed 

duration submovements. Depending on the task, the variable horizon is either a receding 

horizon or a fixed horizon. For instance, a fixed horizon is used in tasks calling for temporal 
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and spatial accuracy. On the one hand, our theory agrees with the view of Bye and Neilson 

that intermittent processes at a 100-ms time scale (close to 𝑇𝐺) are fundamental in motor 

control. For Bye and Neilson, the rationale for intermittency is to account for the well-

documented psychological refractory period (Pashler, 1994). We could endorse this view 

since we have no independent reason for intermittency except that it helps accounting for the 

characteristics of kinematic fluctuations (Guigon et al., 2019). On the other hand, there is a 

clear difference between the variable horizon of Bye and Neilson which can be either a fixed 

or a receding horizon, is task-dependent, and varies as a parameter, and our receding horizon 

which is task-independent and is not a varying parameter. Bye and Neilson (2008) have 

shown that logarithmic and linear speed-accuracy tradeoffs rely on receding and fixed 

horizon control, respectively. In contrast, all speed-accuracy tradeoffs and their associated 

kinematics emerge from receding horizon control in our modeling framework. 

Limitations of the theory 

A limitation of the theory is the versatility in task representation (series of goals, nature of 

boundary conditions) afforded by the third computational principle. A series of goals could 

be chosen by hand to obtain any desired motor behavior. Playing with all available states 

(and not solely position and velocity) would still increase the size of the space of 

representations. Thus, although the model has no free parameters, an open question is 

whether extended variations in implementation details and in the nature of noise are 

necessary to guarantee its explanatory power. A summary of all the simulations is given in 

Table 2. Several patterns appear. First, the full-state constraint applies to discrete point-to-

point movements (gray lines). For these movements, partial constraints on the position or 

velocity of via-points lead to poorer results. The value method plays no specific role except 

for discrete Fitts’ law. We could remove this notion and consider only the zero-value method. 
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Second, continuous and rhythmic movements (white lines) involve the partial-position 

constraint and poorer results were obtained with other types of constraint. Third, the goal 

setting policy is a relevant dimension for discrete movements. Fourth, signal-dependent 

motor noise is central to movement variability although temporal noise is also required to 

explain temporal variability. 

 Another limitation is related to the (im)possibility to falsify the theory. We have 

presented all what the theory can explain, but what about aspects that cannot be explained? 

We have not found any property that we have tried to reproduce and for which we have 

obtained a wrong prediction. Yet as neither a confirmation bias nor bad faith can be definitely 

excluded, we need to be careful on this issue. 

 The scope of the theory is not known precisely. Although the theory was developed 

exclusively in relation to movements of the upper limbs, there is no reason why it would not 

apply to other bodily movements (leg, trunk, head, face, ...). Yet it is unclear how a task like 

locomotion can be cast in the proposed framework. It is also unclear whether it could apply to 

eye movements. Saccades share a number of properties with limb movements (kinematics, 

scaling laws, Fitts’ law) and are successfully modeled in the framework of optimal control 

(Harris & Wolpert, 1998, 2006; Saeb, Weber, & Triesch, 2011; van Beers, 2008). However, 

there is a striking absence of isochrony in saccade production13 which appears incompatible 

with the principles of the theory. 

 By construction, the theory leaves no room for a role of stiffness in the production of 

movements. As in many other computational models, the role of stiffness is thought to be 

restricted to a contribution to the compensation of external perturbations. Yet this view does 

not acknowledge the complex and refined contribution of stiffness to motor control (Burdet, 

 
13 Yet, other eye movements such as eyelid movements (Evinger, Shaw, Peck, Manning, & 

Baker, 1984) and saccades without gaze-evoked blinks (Powers, Basso, & Evinger, 2013) are 

isochronous. 
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Osu, Franklin, Milner, & Kawato, 2001). Recent models have attempted to give a more 

precise account of the role of stiffness in the framework of optimal control models (Berret & 

Jean, 2020; Mitrovic, Klanke, Osu, Kawato, & Vijayakumar, 2010). 

Debates on motor control 

The debate about motor control has a large spectrum, but has in fact been centered on two 

Shakespearian dilemma: To control or not to control? To model or not to model? At one end 

of the spectrum, an ensemble of theoretical constructs (named below DA, dynamical 

approach) based on the ecological approach of Gibson (1966, 1986), physical theories of 

self-organized pattern formation (Haken, 1983) and dynamical system theory (Strogatz, 

1994) claim that neither a centralized control nor a centralized representation are necessary 

for motor coordination, and behavioral motor patterns emerge from abstract, 

phenomenological nonlinear dynamics corresponding to interactions between the brain, the 

body and the environment (Kelso, 1995; Warren, 2006). At the other end, the computational 

approach views the nervous system (or part of it) as a computing device that builds models 

of the body and the environment, and controls changes in body states to achieve goals in the 

environment (Kawato, 1999; Todorov & Jordan, 2002). In between, the Passive Motion 

Paradigm14 (PMP; Mohan & Morasso, 2011) combines classical feedback control and 

forward modeling, the Equilibrium Point Theory (EPT; Feldman & Levin, 1995) is closely 

related to classical feedback control theory15, but denies the existence of internal models, and 

the Active Inference theory (AIT) exploits the notion of internal (generative) model, but 

views motor control as an inference problem rather than a control problem (Friston, 2011). 

 
14 Whether the PMP should be considered as a "computational" method or not is discussed in 

Mohan and Morasso (2011). 
15 The control theoretical framework is not intrinsically incompatible with "non-

computational" approaches, e.g. some dynamical models can be cast in terms of the control 

theory (Sternad, 2000, pp 415-416). 
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Available discussions have in general been restricted to these dilemma, and have failed to 

provide decisive, convincing arguments for or against a particular theory. 

 Interestingly, a line of reasoning based on the distinction between position and force 

control (Ostry & Feldman, 2003) lead to sharper and less consensual arguments. On the one 

hand, models of movement control based on the direct specification of forces fail to properly 

take into account the existence of posture-stabilizing mechanisms (von Holst & Mittelstaedt, 

1950/1973), and incorrectly predict patterns of muscular coactivation for postural 

maintenance following a displacement (Ostry & Feldman, 2003). On the other hand, 

production of movement based on position control is intrinsically compatible with postural 

control as a direct consequence of a postural resetting mechanism (Feldman & Levin, 1995). 

In DA, EPT, PMP and AIT, the basic unified mechanism of movement production and 

postural control is determined by an autonomous dynamical system, and is based on a local 

fixed-point dynamics16, i.e. a restoring force17 is exerted which is a function of the distance to 

a (static or moving) equilibrium point with a constant or state-dependent (possibly nonlinear) 

gain (stiffness). This description fits with the notion of position control. According to these 

theories, postural maintenance should correspond to such fixed-point dynamics. Yet, there is 

strong evidence that posture cannot be uniquely described by this kind of process. For whole 

body posture, ankle stiffness is in general too low to guarantee passive stabilization, which 

calls for the existence of an active, predictive postural control mechanism (Amiri & Kearney, 

2020; Bottaro, Casadio, Morasso, & Sanguineti, 2005; Casadio, Morasso, & Sanguineti, 

2005; Loram, Kelly, & Lakie, 2001; Loram & Lakie, 2002; Morasso & Schieppati, 1999; 

Morasso & Sanguineti, 2002). Studies on the manual stabilization of unstable objects 

revealed two strategies: a high-stiffness strategy and a low-stiffness, intermittent, predictive 

 
16 In the dynamical approach, the dynamics can also be governed by a limit-cycle attractor. 
17 In most cases, a second-order dynamics is used which allows to use the term "force". Yet 

this term is not quite appropriate for an abstract dynamics. 
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strategy (Lakie, Caplan, & Loram, 2003; Saha & Morasso, 2012). These observations 

indicate that theories based on position control would need to be amended to account for the 

need of predictive control, which in fact would violate their very principles. The 

computational approach is less sensitive to this debate between position and force control 

because it is versatile and can be cast in different ways, e.g. as predictive control of a 

positional variable (Guigon, 2010). 

 The ultimate goal of a theorist is, on the one hand, to design an overarching theory in 

his field of research and, one the other hand, to elaborate an argumentative discourse that 

supports his theory and can dismiss alternative, concurrent proposals. Although the two tasks 

are important on their own, the latter should not be used shamelessly to conceal difficulties in 

the former. At its inception (Kugler, Kelso, & Turvey, 1980), the dynamical approach was 

conceived as a formal alternative to the cognitive/information-processing theory of action, 

but with no proper content. With the advent of the finger "wipers" task (Kelso, 1984; Kelso, 

Holt, Rubin, & Kugler, 1981), ensuing modeling (Haken, Kelso, & Bunz, 1985) and later 

developments (review in Beek, Peper, & Stegeman, 1995; Kelso, 1995), the dynamical 

approach became a well-established theory of action encompassing behavioral and neural 

levels (Jirsa, Friedrich, Haken, & Kelso, 1994; Schöner, 1990, 1994). Yet its explanatory 

power remains largely limited to variations around the original task (Sternad, 1998, 2000). 

Recent works (Huys et al., 2014; Warren, 2006) involved long arguments and long 

methodological developments, but produced little insights outside the historical scope of the 

theory. In the meantime, several critical issues remain unsolved. The first issue is related to 

the possibility that common principles apply to rhythmic and discrete actions (Beek et al., 

1995; Daffertshofer, van Veen, Ton, & Huys, 2014). The second issue concerns the lack of a 

general method to guide the design of a dynamical system for reproducing a given behavior 

(Ijspeert, Nakanishi, Hoffmann, Pastor, & Schaal, 2013). A possible solution would be to use 
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computational tools (optimization, machine learning techniques) to discover or learn 

appropriate dynamics (Ijspeert et al., 2013; Schaal, Mohajerian, & Ijspeert, 2007), but it is 

not in the spirit of the dynamical approach. The third issue is related to the very nature of 

emergent trajectories defined in general in an abstract space (e.g. relative phase in Haken et 

al., 1985; but for a definition in task or body space, see Haken et al. 1985; Saltzman & Kelso, 

1987; Schaal et al., 2007) and how they can be translated into actual displacements of a 

necessarily mechanical object (e.g. a finger). The trajectories should thus be considered as an 

input to a trajectory-following system. At this stage, the difficulty is not solely related to the 

lack of flexibility of trajectory-based control (Schaal et al., 2007), but more deeply to the fact 

that remaining redundancies below the level of trajectory definition (e.g. in muscle or neural 

space) are neither considered nor exploited (Todorov & Jordan, 2002). The fourth issue is the 

intrinsic temporal and spatial invariance of the solutions of autonomous dynamical systems 

which can be interesting in robotics (Schaal et al., 2007), but is not consistent with human 

motor behavior (Gentner, 1987; Smith, Goffman, Zelaznik, Ying, & McGillem, 1995). The 

last two issues also apply to the Equilibrium-Point Theory (Feldman & Levin, 1995) and the 

Active Inference theory (Friston, 2011; Friston et al., 2011) since they are cast in terms of a 

trajectory-following problem. The Passive Motion Paradigm is by construction more 

computational and versatile than DA, EPT and AIT, and in fact, by different aspects, not so 

far from optimal control models (Mohan & Morasso, 2011). Yet this theory would need to be 

further develop toward an overarching account of motor control. 

Conclusion 

In keeping with the theory of Todorov and Jordan (2002), the present theory explains 

characteristics of motor control as by-products of computational principles (optimal feedback 

control, receding horizon, task representation by a series of goals). None of the principles is 
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new (Guigon et al., 2019; Todorov & Jordan, 2002), but their assemblage in an overarching 

theory of motor control is new. These principles are sufficient to provide a detailed account 

of a large set of motor behaviors (discrete, continuous, rhythmic and timing actions) and 

properties (scaling laws, power laws, speed-accuracy tradeoffs). The theory significantly 

extends our understanding of action production in the framework of control theory. 
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Tables 

Time Explanation 

Δ duration of a simulation 

𝑡 current time during the simulation 

𝛿 timestep of the simulation — for numerical integration 

𝑇𝐻 receding horizon — in the model the value of 𝑇𝐻 is constant (0.28 s) 

𝑇0 fixed horizon — used only to contrast with the receding horizon 

𝑇(𝑡) time interval to reach a goal at time 𝑡 (Equation 1) — the value of 𝑇(𝑡) can 

be: 𝑇0 (fixed horizon control); ∞ (infinite horizon control); or 𝑡 + 𝑇𝐻 

(receding horizon control) — only the receding horizon control is used 

𝑇𝐺 period at which goals are updated in the absence of temporal constraints — 

in the model the value of 𝑇𝐺 is constant (0.13 s) 

𝑇𝑠𝑡𝑒𝑝 period at which goals are updated in general (Figure 1C) — the value of 

𝑇𝑠𝑡𝑒𝑝 is: 𝑇𝐺 in the absence of temporal constraints; any value in the presence 

of temporal constraints (e.g. period of a metronome) 

𝑡𝑘 (𝑘=1,...𝑁)  times at which goals are updated (Equation 6) — 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝑠𝑡𝑒𝑝 

 

Table 1. Summary on time notations. 

 

 constr var VP TA VM GS noise Fig comment 

fastest full-state 𝑝 — (11) — — — 1 — 

slow full-state 𝑝𝑣 (12/

14) 

— Z/C A — 2 Does not work with relative goal setting. 

Works with partial pv constraints. 

interm. full-state 𝑝 (11) (11) Z/C A/R — 3 — 

drawing partial 

position 
𝑝 (9) — — A 𝑆𝐷𝑁𝑚  4,5 Poorer fit with partial pv and full-state 

constraints, and with relative goal setting. 

writing partial 

position 
𝑝 (9) — — A 𝑆𝐷𝑁𝑚  6 Poorer fit with partial pv and full-state 

constraints, and with relative goal setting. 

scaling 

laws 

full-state 𝑝 (11) (11) Z/C A 

 

— 7,8 Poorer scaling with partial p and pv 

constraints. 

      R — 7,8 Loss of invariance of time to peak velocity 

for partial p and pv constraints. 

rhythmic partial 

position 

𝑝 — (9) — — 𝑆𝐷𝑁𝑚  9 Qualitatively similar results with partial pv 

and full-state constraints. 

discrete 

Fitts 

full-state 𝑝 (11) (11) Z A 

 
𝑆𝐷𝑁𝑚  10 Loss of Fitts’ law with current-value 

method. Fundamental role of 𝑆𝐷𝑁𝑚. 

      R 𝑆𝐷𝑁𝑚  10 Loss of Fitts’ law with current-value 
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method. 

rhythmic 

Fitts 

partial 

position 

𝑝 — (9) — — 𝑆𝐷𝑁𝑚  11,12 Loss of Fitts’ law with partial pv and full-

state constraints. 

timing full-state 𝑝 (11) (11) Z/C R 𝑇𝐺  13,14 Importance of temporal noise to account 

for temporal variability. 

perturb. full-state 𝑝 (11) (11) Z/C A — 15 — 

 

Table 2. Comparison between the simulations. constr: boundary constraint; var: 

variable; 𝑝: position; 𝑣: velocity; VP: via-point; TA: target; VM: value method; 

Z: zero-value; C: current-value; GS: goal setting policy; A: absolute; R: relative. 

Number in parentheses refer to equations. Gray lines indicate discrete 

movements. 

Appendix A — Parametric study of power laws 

A parametric analysis of the power laws obtained in drawing (Figure 6) has been performed. 

It involved 𝑇𝐻, 𝑇𝐺, and the nature of boundary constraints. It shows that 𝑇𝐻 = 0.28 s, 𝑇𝐺 =

0.13 s, and the partial-position constraint give the best fit to observed data (Figure A1), 

which provides an independent cross-check for 𝑇𝐻 and 𝑇𝐺. 

Figure A1. Parametric study of drawing power laws. A. Influence of 𝑇𝐻 for 𝑇𝐺 =
0.13 s and partial-position constraint: (black) 𝑇𝐻 = 0.28 s; (red) 𝑇𝐻 = 0.18 s; 

(green) 𝑇𝐻 = 0.38 s; (blue) 𝑇𝐻 = 0.48 s. B. Influence of 𝑇𝐺 for 𝑇𝐻 = 0.28 s and 

partial-position constraint: (black) 𝑇𝐺 = 0.13 s; (red) 𝑇𝐺 = 0.18 s; (green) 𝑇𝐺 =
0.23 s. C. Influence of boundary constraints for 𝑇𝐻 = 0.28 s and 𝑇𝐺 = 0.13 s: 

(black) partial-position constraint; (red) partial-position/velocity constraint with 

current-value method; (green) partial-position/velocity constraint with zero-value 

method; (blue) full-state constraint with current-value method; (purple) full-state 

constraint with zero-value method. 

Appendix B — Choice of via-points 

Figure B1. A. Position of the via-points for the point-to-point movements of 

Figure 8B. Absolute goal setting policy. B. Position of the via-points for the 
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point-to-point movements of Figure 8C. Relative goal setting policy. (diamond) 

start point; (plain square) via-point; (circle) target. 

Appendix C — Phase transition in rhythmic movements 

A cardinal observation in the study of rhythmic movements is the frequency-dependent phase 

transition in bimanual coordination (Kelso, 1984), i.e. synchronized, asymmetric (parallel) 

finger displacements are suddenly replaced by symmetric displacements as synchronization 

frequency increases. A popular explanation of this phenomenon is provided by the HKB 

model in terms of phase transition in a parameterized nonlinear dynamical system (Haken et 

al., 1985). The predictive power of this model is undeniable and striking (Kelso, 1995), yet 

its special-purpose nature is a matter of concern (Ijspeert et al., 2013). Todorov and Jordan 

(2002) proposed a partial account of phase transition in the framework of optimal feedback 

control. They observed that in a one-dimensional sinusoidal tracking task with a redundant, 

2-dof (telescopic) arm, the phase between the first segment of the arm and the endpoint 

changed abruptly with frequency (at ~2.8 Hz)18. The present theory could endorse this view 

to extend its explanatory power. Yet an alternative approach can be developed based on the 

notion of task representation. In the study of drawing movements, we have shown that the 

fastest two-dimensional drawing defined by internally updated via-points has 3 via-point and 

lasts ~0.38 s, i.e. ~2.6 Hz for repetitive drawing (Figure 5E, inset). In this framework, the 

only mean to increase movement frequency is to make a one-dimensional drawing (2 via-

points). If we consider that asymmetric and symmetric patterns abstractly correspond to 2D 

and 1D representations, respectively, phase transition is explained by the necessary change of 

dimension to increase movement frequency. A phase transition between drawing the figure 

"eight" and drawing the figure "zero" has been described by Buchanan, Kelso, & Fuchs 

 
18 Experimentally measured transition frequencies vary considerably between participants 

(Kelso, 1984). In Scholz, Kelso, & Schöner (1987), the range is 2-2.6 Hz. 
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(1996) with a critical frequency between 1.2 and 1.4 Hz. In the model, the figure "eight" can 

be drawn with different numbers of via-points (here from 8 to 4; Figure C1A,B,D,E). The 

minimum number of via-points is 4 (which can also be used to draw the figure "zero"; 

Figure C1F) corresponding to a frequency of 1.89 Hz. The discrepancy between the 

experimental and theoretical transition frequencies may be related to what is considered as a 

proper "eight" representation. For instance, a transition could occur around 1.28 Hz, between 

8 and 6 points, if the 6 points are interpreted as a "zero" rather than as a "eight" 

(Figure C1A,C). Overall, this view of phase transition is consistent with the perceptual rather 

than motoric nature of bimanual coordination (Mechsner, Kerzel, Knoblich, & Prinz, 2001). 

Figure C1. Via-point representations for drawing the figure "eight" and the figure 

"zero" (left column) and actual drawing (right column). The starting point is 

indicated by a open square, 50 turns. The actual number of via-points may be 

different from the observed number of via-points since some via-points can be 

used several times. Simulations with partial-position constraint, absolute goal 

setting policy, in the presence of 𝑆𝐷𝑁𝑚 (𝜎𝜀 = 1). 
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Here, we present the mathematical background necessary to understand the pro-
posed model.

Optimal control with terminal constraints
We consider a dynamical system

ẋ(t) = f [x(t),u(t)] (S1)

where x ∈ Rn is the state of the system and u ∈ Rm a control vector. An optimal
control problem for this system is to find the control vector u(t) for t ∈ [t0; tf ] to
minimize a performance index

J =

∫ tf

t0

L [x(t),u(t)] dt (S2)

with boundary conditions

x(t0) = x0 ψ [x(tf )] = 0. (S3)

This problem is the generic formulation corresponding to Equations 1,2,3 of the
article.
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Mayer formulation

We first show that the optimal control problem defined by Eq. S1, Eq. S2 and Eq. S3
can be equivalently written

˙̃x(t) = f̃ [x̃(t),u(t)] (S4)

J̃ = φ [x̃(tf )] (S5)

x̃(t0) = x̃0 ψ̃ [x̃(tf )] = 0 (S6)

which is called the Mayer formulation and which is simpler for numerical methods.
We consider the supplementary state variable z defined by

ż(t) = L [x(t),u(t)]

and z(t0) = 0. Thus J = z(tf ). We define the new state variable

x̃(t) =

(
z(t)
x(t)

)
.

We can reformulate the optimal control problem in the following way: find the
control vector u(t) to minimize

J̃ = φ [x̃(tf )] = z(tf ) (S7)

subject to

˙̃x(t) = f̃ [x̃(t),u(t)] =

(
L [x(t),u(t)]
f [x(t),u(t)]

)
(S8)

and

x̃(t0) = x̃0 =

(
0
x0

)
ψ̃ [x̃(tf )] =

(
0
ψ [x(tf )]

)
= 0. (S9)

Thus we can remove the integral term in the performance index. In the following
we consider the problem defined by Eq. S4, Eq. S5 and Eq. S6. For simplicity, we
remove the tilde sign.

Solution

We adjoin the constraints to the performance index with Lagrange multipliers ν and
λ(t)

J̄ = φ+ νTψ +

∫ tf

t0

λT (t) {f [x(t),u(t)]− ẋ(t)} dt.
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The Hamiltonian function is

H [x(t),u(t),λ(t)] = H(t) = λT (t)f [x(t),u(t)]. (S10)

The generalized performance index can be written

J̄ = Φ[x(tf )]− λT (tf )x(tf ) + λT (t0)x(t0) +

∫ tf

t0

{
H(t) + λ̇

T
(t)x(t)

}
dt

following integration of the λT ẋ by parts, where

Φ = φ+ νTψ (S11)

A variation of J̄ writes

δJ̄ =
[
(Φx − λT )δx

]
t=tf

+
[
λT δx

]
t=t0

+

∫ tf

t0

[(
Hx + λ̇

T
)
δx+Huδu

]
dt

for variations δx(t) and δu(t). The Lagrange mutlipliers are chosen so that the
coefficients of δx(t) and δx(tf ) vanish

λ̇
T

= −Hx = −λTfx, (S12)

with boundary conditions

λT (tf ) = φx(tf ) + νTψx(tf ). (S13)

For a stationary solution, δJ̄ = 0 for arbitrary δu(t), which implies

Hu = λTfu = 0 t0 ≤ t ≤ tf . (S14)

The problem defined by Eq. S1, Eq. S12, Eq. S13 and Eq. S14 is a two-point
boundary value problem which can be solved by classical integration methods (Bryson
1999).

Linear case

In the linear case, the problem is a first-order linear dynamical system which can be
solved explicitly. The solution consists in a 2n× 2n matrix D(t) such that(

x(t)
λ(t)

)
= D(t)C (S15)
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is the solution at time t, where C ∈ R2n is a vector determined by the boundary
conditions (Eq. S3). To simplify we use ψ [x(tf )] = x(tf )−xf , but more complex
boundary conditions can be handled as well (see below). To obtain C, we write(

x0

λ(t0)

)
= D(t0)C =

(
D11(t0) D12(t0)
D21(t0) D22(t0)

)(
C1
C2

)
and (

xf

λ(tf )

)
= D(tf )C =

(
D11(tf ) D12(tf )
D21(tf ) D22(tf )

)(
C1
C2

)
.

Thus (
D11(t0) D12(t0)
D11(tf ) D12(tf )

)(
C1
C2

)
=

(
x0

xf

)
,

which gives

C =

(
D11(t0) D12(t0)
D11(tf ) D12(tf )

)−1(
x0

xf

)
. (S16)

Complete treatement of a linear case
Here we consider the problem of controlling an inertial point actuated by a linear
muscle with a quadratic cost function. In Mayer formulation, the problem can be
written 

ẋ1 = u2/2
ẋ2 = x3
ẋ3 = x4/m
ẋ4 = (−x4 + x5)/τ
ẋ5 = (−x5 + u)/τ

The Hamiltonian (Eq. S10) writes

H = λ1u
2/2 + λ2x3 + λ3x4/m+

λ4(−x4 + x5)/τ + λ5(−x5 + u)/τ

from which the adjoint system (Eq. S12) can be obtained
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λ̇1 = −∂H
∂x1

= 0

λ̇2 = −∂H
∂x2

= 0

λ̇3 = −∂H
∂x3

= −λ2

λ̇4 = −∂H
∂x4

= −λ3/m+ λ4/τ

λ̇5 = −∂H
∂x5

= −λ4/τ + λ5/τ

The transversal condition (Eq. S14) is

Hu = λ1u+ λ5/τ = 0,

where λ1 is a constant set at 1. The corresponding boundary value problem is

ẋ2 = x3
ẋ3 = x4/m
ẋ4 = (−x4 + x5)/τ
ẋ5 = (−x5 − λ5/τ)/τ

λ̇2 = 0

λ̇3 = −λ2
λ̇4 = −λ3/m+ λ4/τ

λ̇5 = −λ4/τ + λ5/τ

(S17)

The constraints are defined by function Φ (Eq. S11) which can take different forms:

• Full constraints: position, velocity, activation, excitation

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]
+

ν4

[
x4(tf )− xf4

]
+ ν5

[
x5(tf )− xf5

]
• Partial constraints: position, velocity, activation

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]
+

ν4

[
x4(tf )− xf4

]
5



• Partial constraints: position, velocity

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]

• Partial constraints: position

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
The initial boundary conditions are

x2(t0) = x02 x3(t0) = x03 x4(t0) = x04 x5(t0) = x05 (S18)

The final boundary conditions are obtained using Eq. S13:

• Full constraints: position, velocity, activation, excitation

x2(tf ) = xf2 x3(tf ) = xf3 x4(tf ) = xf4 x5(tf ) = xf5 (S19)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = ν4 λ5(tf ) = ν5 (S20)

• Partial constraints: position, velocity, activation

x2(tf ) = xf2 x3(tf ) = xf3 x4(tf ) = xf4 (S21)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = ν4 λ5(tf ) = 0 (S22)

• Partial constraints: position, velocity

x2(tf ) = xf2 x3(tf ) = xf3 (S23)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = 0 λ5(tf ) = 0 (S24)

• Partial constraints: position

x2(tf ) = xf2 (S25)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = 0 λ4(tf ) = 0 λ5(tf ) = 0 (S26)
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From Eq. S27, the solution consists in a 2n× 2n matrix D(t) (n = 4) such that(
x(t)
λ(t)

)
= D(t)C (S27)

is the solution at time t, where C ∈ R2n is a vector determined by the initial and
final boundary conditions. Here D is the solution to the boundary value problem
(Eq. S17), which can be obtained explicitly using tools of symbolic calculus.

To obtain C, we write (
x0

λ(t0)

)
= D(t0)C = D0C

and (
xf

λ(tf )

)
= D(tf )C = DfC

and we extract what is known from these relationships in the different cases (full
constraints: Eq. S19 and Eq. S20; partial constraints on position, velocity, activa-
tion: Eq. S21 and Eq. S22; partial constraints on position, velocity: Eq. S23 and
Eq. S24; partial constraints on position: Eq. S25 and Eq. S26).

We obtain a relationship
Mq = p (S28)

where M contains elements of D0 and Df , q the vector C and some elements of ν,
and p the vector x0 and some elements of xf . Taking q = M−1p gives the vector
C.

For the case of full constraints (position, velocity, activation, excitation), there
are 8 unknowns (8 in C). We get 4 equations for x0 (Eq. S18), and 4 equations for
xf (Eq. S19), and Eq. S28 becomes



D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18

D0
21 D0

22 D0
23 D0

24 D0
25 D0

26 D0
27 D0

28

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38

D0
41 D0

42 D0
43 D0

44 D0
45 D0

46 D0
47 D0

48

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

28

Df
31 Df

32 Df
33 Df

34 Df
35 Df

36 Df
37 Df

38

Df
41 Df

42 Df
43 Df

44 Df
45 Df

46 Df
47 Df

48





C1
C2
C3
C4
C5
C6
C7
C8


=



x02
x03
x04
x05
xf2
xf3
xf4
xf5


For the case of partial constraints on position, velocity, and activation, there are

11 unknowns (8 in C, ν2, ν3, ν4). We get 4 equations for x0 (Eq. S18), 3 equations
for xf (Eq. S21), 4 equations for λ(tf ) (Eq. S22), and Eq. S28 becomes
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D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0 0 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0 0 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0 0 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0 0 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0 0 0

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

18 0 0 0

Df
31 Df

32 Df
33 Df

34 Df
35 Df

36 Df
37 Df

38 0 0 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1 0 0

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0 −1 0

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0 0 −1

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0 0 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2
ν3
ν4


=



x02
x03
x04
x05
xf2
xf3
xf4
0
0
0
0


For the case of partial constraints on position and velocity, there are 10 un-

knowns (8 in C, ν2, ν3). We get 4 equations for x0 (Eq. S18), 2 equations for xf

(Eq. S23), 4 equations for λ(tf ) (Eq. S24), and Eq. S28 becomes



D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0 0

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

18 0 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1 0

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0 −1

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0 0

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2
ν3


=



x02
x03
x04
x05
xf2
xf3
0
0
0
0


For the case of partial constraints on position, there are 9 unknowns (8 in C, ν2).

We get 4 equations for x0 (Eq. S18), 1 equation for xf (Eq. S25), 4 equations for
λ(tf ) (Eq. S26), and Eq. S28 becomes
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D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2


=



x02
x03
x04
x05
xf2
0
0
0
0
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