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Some representations of real numbers using integer sequences

The paper describes three models of the real eld based on subsets of the integer sequences. The three models are compared to the Harthong-Reeb line. Two of the new models, contrary to the Harthong-Reeb line, provide accurate integer views on real numbers at a sequence of growing scales B n (B ≥ 2).

Introduction

Modeling and computing with real numbers is a fundamental task in computer science. It remains a challenging issue and usually requires a trade-o between accuracy and eciency. Floating-point numbers are widely used to model real numbers but they fail to form a eld and though they are scattered in a wide interval, there is only nitely many of them. Proof assistants need more faithful models. The approaches used are either abstract, simply relying on some axiom systems (PVS, Coq standard library) or concrete, actually implementing the real numbers as a concrete datatype together with some operations. In the latter case, real numbers can be derived from Cauchy sequences (HOL Light, Isabelle, C-CoRN Coq library, NASA PVS Library), Dedekind cuts (Mizar, HOL4, ProofPower-HOL) and Non-Standard Analysis (ACL2(r), Isabelle nonstandard library). The reader can nd more information on these models in the survey [START_REF] Boldo | Formalization of real analysis: a survey of proof assistants and libraries[END_REF]. The main objective of our research on real number models is not to propose a new model but rather to have a model that makes it possible to switch from the discrete calculus to the continuous one, especially when dramatic changes occur. For instance, Euclidean rigid motions and their digital versions have distinct topological and set theoretical properties like homology preservation and bijectivity which are ensured in the former case and not in the latter case. Among the dierent kinds of models cited above, those that allow to examine how the convergence from a discrete representation to a continuous one unfolds are those using sequences (of rationals or integers) to obtain real numbers. Indeed, with convergent sequences one could get snapshots of the convergence process by choosing some indices in the sequences. Nevertheless, to be usable, the convergence speed of the sequences has to be known. This is the case with the HOL Light model. But this model only ensures that for any sequence, there exists a parameter that controls the convergence speed. In other words, the speed depends on the real. Thus, the model will be hardly tractable in situations appealing to many reals which is generally the case. Another solution would be to use the standard positional notation. It comes down to have a Cauchy sequence with the advantage that the convergence speed is known and common to all reals. But the positional notation badly behaves with operations. Let us borrow an example from [START_REF] Ciaaglione | Certied reasoning on real numbers and objects in co-inductive type theory[END_REF]: deciding what is the rst digit of the product 3 × 0.333 . . . is not possible, even if you postpone the decision until reading n digits in the right term. If you choose 9, you are wrong if you are computing 3 × (1/3) but if you choose 1 you are wrong in all the other cases. To work around this issue, one of the easiest solution is to allow negative digits in the positional notation.This is the choice made in [START_REF] Ciaaglione | A certied, corecursive implementation of exact real numbers[END_REF] with a signed-digit positional model with base 2 (the model is implemented in Coq).

The real number models presented in this paper originate in a discrete model of the continuum proposed and developed by [CWF + 09, CWF + 12] see also Chollet's PhD thesis, [START_REF] Chollet | Non classical formalisms for the computing treatment of the topology and the discrete geometry[END_REF]. The model of the continuum, studyed by Chollet, is called the Harthong-Reeb line. It is based on the one hand on the works of [START_REF] Harthong | Une théorie du continu[END_REF] and Reeb [START_REF] Diener | Analyse non standard[END_REF] in nonstandard analysis and, in the other hand on the works of [START_REF] Schmieden | Eine erweiterung der innitesimalrechnung[END_REF], [START_REF] Laugwitz | Ω-calculus as a generalization of eld extension: An alternative approach to nonstandard analysis[END_REF], in constructive mathematics. The Harthong-Reeb line is equipped with an algebraic structure in correspondence with the ordered commutative eld structure of the real numbers and implemented in the Coq system [START_REF] Magaud | Formalizing a discrete model of the continuum in Coq from a discrete geometry perspective[END_REF]. Thanks to this model, [START_REF] Chollet | Foundational aspects of multiscale digitization[END_REF] are able to build a multiscale arithmetic representation of the plane curve y = x(t) solution of the Cauchy problem x ′ = F (t, x), x(t 0 ) = x 0 . A few years later, [START_REF] Mazo | Multi-scale arithmetization of linear transformations[END_REF] proposed a multiscale representation of the ane transformations whose snapshots are the arithmetic quasi-ane transforms developed by M.A. Da-Col, see for instance [START_REF] Da Col | Quasi-linear transformations and discrete tilings[END_REF]. Nevertheless, these multiscale representations come up against the same pitfall: the scale in Chollet's model is not correlated with the accuracy.

Therefore, only qualitative, asymptotic results can be stated. It is impossible to give any quantitative guaranty at a given scale.

In order to connect a real number with each of its representations at the dierent scales in the Harthong-Reeb line, mixing the model with the sequences of rationals provided by a positionnal numeration system is a natural solution.

Rather than the model developed by Ciaaglione which only comes with base 2 and a few functions, we choose to incorporate inside the Harthong-Reeb line the representations of real numbers dened by [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] see also her PhD thesis, [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF]. Incorporating such ecient representations in the Harthong-Reeb line allows to bridge the gap between the abstract formal description of the Harthong-Reeb line and an actual ecient and usable concrete implementation.

Given a scale n ∈ Z (also called order ), such a representation x n ∈ Z is linked to the represented real number x by the following inequality:

|x n -B n x| < 1, (1) 
where B ≥ 2 is the base of the representations. Though the presentation is very dierent, it can be seen that such representations could be expressed with a positional encoding. This step is not done in this paper and will be accomplished in a future work. In the work of V. Menissier-Morain, besides the fact that there is a tight link between the real numbers and their representations, we also nd a set of operations, algebraic and transcendental functions to deal with such representations. Hence, this paper is devoted to compare, and in a certain way to merge, Chollet's model of the continuum with the representations of V.

Menissier-Morain together with their algebraic operations.

The paper is organized as follows.

- are integer sequences derived from rational Cauchy sequences.

-Section 3.2 is devoted to the quotient spaces dened from the sets of integer sequences using the same equivalence relation that permits to build the Harthong-Reeb line. Each quotient space comes with an ordered ring, or eld, structure.

-Eventually, Section 3.3 establishes the isomorphisms between the quotient spaces (except the Harthong-Reeb line) and the ordered eld of the real numbers.

2 Background

The Harthong-Reeb line

Basically, in the Harthong-Reeb line model, a real number x is a sequence of integers, each term of the sequence providing a view on x at a growing scale as we go through the sequence. The construction of the Harthong-Reeb line is rather intuitive. For short, real numbers are modeled by sequences of rationals which in turn are converted to integers thanks to a given sequence of increasing scales.

In the sequel, given an equivalence relation ∼ on a set X, we denote by [a] the equivalence class of a ∈ X and by ċ any representative of the class c ∈ X/ ∼ (all the operations dened below are well-dened, that is, they do not depend on the choice of the representatives).

Firstly, we present the classes of rational sequences and their operations.

Using the Landau notations, we consider the subsets O(1) and o(1) of the rational sequences and we denote by Q lim the quotient space O(1)/o(1) of the bounded sequences of rationals up to the sequences converging toward 0. For any (π, ρ) ∈ Q lim , we set:

π + ρ def = [ π + ρ] , π × ρ def = [ π × ρ] ,
where, on the right hand side of the equalities, + and × are the term-wise operations on the rational sequences. In a general way, throughout this article, the operations and relations on integer sequences denoted as an operation or a relation on integers are performed term-wise. The restriction of Q lim to the classes of the Cauchy sequences is noted Q Cau . It is well-known that the limit operator provides an isomorphism from (Q Cau , +, ×) to (R, +, ×).

Next, we have to transform rationals in integers. Let ω = ⟨ω n ⟩ be an increasing sequence of positive integers ω n , n ∈ N. Such a sequence is called an innitely large number. We consider the subsets O(ω) and o(ω) of Z N (Landau notations) and we dene the Harthong-Reeb line, HR ω , as the quotient space O(ω)/o(ω). We denote by = ω the corresponding equivalence relation. The Harthong-Reeb line is equipped with the following operations.

u + v def = [ u + v] , (2) u × ω v def = [( u × v) ÷ ω] , (3) 
where ÷ denotes the (term-wise) integer division: a ÷ b = ⌊a/b⌋.

The set HR ω is also equipped with a partial order relation, ≤ ω :

[⟨x n ⟩] ≤ ω [⟨y n ⟩] if ∀p ∈ N, ∃n 0 ∈ N, n ≥ n 0 =⇒ p(x n -y n ) ≤ ω n . (4)
The relation ≤ ω is well-dened (the choice of the representatives does not matter). 

ϕ ω : HR ω → Q lim ψ ω : Q lim → HR ω ϕ ω (u) = [ u/ω] ψ ω (π) = [⌊ω × π⌋]
We end this section about the Harthong-Reeb line by an example. Let ω be the sequence ⟨10 n ⟩. To obtain the image of Since one of the goals of this article is to compare the Harthong-Reeb line with sequences, dened in Sections 2.2 and 3, that are indexed by Z, from now on we assume that the sequences in HR ω are dened on Z. Actually, the values of the sequences for the negative indexes is not meaningful since equality between Harthong-Reeb numbers is asymptotically evaluated (toward positive innity).

The Harthong-Reeb line is so unconstrained that it is spoiled with undesirable numbers that have no inverse and are neither zero nor positive nor negative (Appendix D gives some topological insight about this problem). Furthermore, because of the lack of constraint and contrary to a positional numeration system, the view x n of a real number x at a given scale n provided by the model does not necessarily give an accurate approximation of x. Only the whole integer sequence (x n ) can give such an information. Indeed, since the model can be described using Landau notations, it only relies on convergence properties. For all these reasons, It is necessary to constrain the Harthong-Reeb model. This will be done in Section 3 by adopting the bound property and the algorithms presented in the following subsection.

Representations of real numbers

In this section we describe the work of [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] about arbitrary precision approximations of real numbers.

Let B ∈ N, B ≥ 2. Notice that we assume that B is set for the rest of this article.

Let x ∈ R. A sequence ⟨x n ⟩ n∈Z of integers is a tight representation1 of x if, for any n, the bound property of x by x n for order n is satised:

x n -1 < B n x < x n + 1.

(5)

In other words, ⟨x n ⟩ is a tight representation of x if, for any n, x n = ⌊xB n ⌋ or x n = ⌈xB n ⌉. In particular,

lim x n /B n = x; if ⟨x n ⟩ is a tight representation of x, then, for any n < -log B (|x|), either x n = 0 or x n = ε where ε = 1 if x is positive and ε = -1 if x is negative;
the tight representations of a given integer coincide for the positive indices; the rational q admits for tight representation the sequence ⟨q n ⟩ n∈N where q n = ⌊B n q⌋ ; given x, y ∈ R with tight representations ⟨x n ⟩ and ⟨y n ⟩, the real x + y admits for tight representation the sequence ⟨z n ⟩ n∈N where

z n = x n+w + y n+w B w with w = 1 if B ≥ 4, 2 if B = 2 or 3.
The binary operator over integer sequences

(⟨x n ⟩ , ⟨y n ⟩) → ⟨z n = ⌊(x n+w + y n+w )/B w ⌉⟩ is denoted by + B .
The computation of the product tight representation needs the denition of the most signicant digit (msd):

msd(⟨x n ⟩ n∈Z ) = min{n ∈ Z , |x n | > 1}.
For any tight representation ⟨x n ⟩ of a non-zero number, msd(⟨x n ⟩) is nite whereas msd(⟨0⟩) = +∞. Given two tight representations ⟨x n ⟩ and ⟨x ′ n ⟩ of x, msd(⟨x n ⟩) and msd(⟨x ′ n ⟩) may dier from one unit 2 . Moreover, for any n ≥ msd(⟨x n ⟩) one has

B n-msd(⟨xn⟩) ≤ |x n | ≤ 2B n-msd(⟨xn⟩)+1 . (6)
Actually, the computation of the product of two tight representations only needs the following bounded version of the function msd:

msd * (⟨x n ⟩ , n) def = msd(⟨x n ⟩) if |x 0 | > 1, inf(msd(⟨x n ⟩), sup(0, n)) otherwise. (7)
Observe that the condition |x 0 | > 1 is equivalent to msd(x) ≤ 0, in which case ⟨x n ⟩ is the tight representation of a non-zero number and msd(x) is nite. If |x 0 | ≤ 1, that is msd(⟨x n ⟩) > 0, and if n > 0, the computation of msd * (x, n) is done by an incremental search starting from 1 with at most n steps. That way, contrary to the function msd, the value of msd * (⟨0⟩ , n) is nite, equal to 0 if n ≤ 0 and equal to n otherwise. Given x, y ∈ R with tight representations ⟨x n ⟩ and ⟨y n ⟩, the real x × y 2 For instance, with B = 10 and x = √ 2, we have msd(

√ 2B n ) = 1 and msd( √ 2B n ) = 0.
admits for tight representation the sequence ⟨z n ⟩ n∈N where3 

z n = sign(x px ) × sign(y py ) × 1 + |x px y py | B px+py-n with p x = max n -msd * (⟨y n ⟩ , n -w 2 + v) + v, n + w 2 and p y = max n -msd * (⟨x n ⟩ , n -w 2 + v) + v, n + w 2 and (v, w) =      (3, 2) if B ≥ 4, (3, 3) if B = 3, (4, 3) if B = 2.
The binary operator over integer sequences

(⟨x n ⟩ , ⟨y n ⟩) → z n = sign(x px y py ) × (1 + |x px y py |)/B px+py-n (8) is denoted by • B .
Given x ∈ R, the reader will nd in [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF], algorithms to compute tight representations of 1/x, k √ x, exp(x), log b (x), arctan(x), sin(x), cos(x), etc.

To get a tight representation of the quotient of two reals, one can combine a product and an inverse operation. Nevertheless, it can be useful to compute the division directly. In Appendix E, we give the formula yielding the quotient of two numbers from their respective tight representations.

Taking the same example as in Sec. 2.1 and according to [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF], a tight representation of √ 3 for B = 10 is given by the sequence ⟨ √ (x 2n )⟩ where ⟨x n ⟩ = ⟨3, 30, 300, • • • ⟩ is a tight representation of 3 and √ (x) = ⌊ √ x⌋ is returned by the algorithm {int z = x; int y = z+1; while (z < y) {y = z; z = (y+x÷y)÷2; } return y; }.

The obtained tight representation is the sequence 1, 17, 173, 17320, 173205,

• • • .
3 From integer sequences to real numbers

Four sets of integer sequences

In this section, we dene a subset of the integer sequences ⟨B⟩ that corresponds to the tight representations of the real numbers as dened in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] (see Section 2.2) but without using any real number. We will also introduce another subset ⟨B⟩ , slightly bigger than the rst one, that has the advantage to have a simpler characterization. In the following, we set ω = ⟨B n ⟩ n∈Z and we will compare these two sets ⟨B⟩ and ⟨B⟩ with O(ω) which is used to dene HR ω (see Section 2.1), and with the Cauchy sequences of O(ω).

The set ⟨B⟩ of tight representations of real numbers

The goal of V. Ménissier-Morain in her thesis and in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] was to dene accurate integer sequences from real numbers together with arithmetic operations on these sequences. Thus, the construction goes from reals to integer sequences.

In this article, we want to do the converse: from integer sequences to reals.

More precisely, our goal is to prove that the so called tight representations of real numbers provide a construction of the real eld (as Cauchy sequences or Dedekind cuts do, for instance). The consequence is that we have to nd a new denition of these tight representations. Indeed, in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF], the denition of the tight representations of real numbers relies on the bound property (5) which involves the real represented by the integer sequence. So, the bound property cannot be used in the construction of the real eld. The following theorem provides a formula that makes it possible to dene the tight representations of real numbers in a construction of the real eld, that is without any real variable in the formula.

Theorem 1.

An integer sequence ⟨x n ⟩ is a tight representation of a real number if and only if

∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B i B k x n -x n+k ≤ (B i -1)(B k + 1). (9) 
Furthermore, the real x of which such a sequence ⟨x n ⟩ is the tight representation is unique, the rational sequence ⟨x n /B n ⟩ is convergent and x = lim ⟨x n /B n ⟩.

We prove the above theorem in two steps. The rst part (the only if part) corresponds to Lemma 1, whereas the second part (the if part) corresponds to Lemma 2. Lemma 1. If the sequence ⟨x n ⟩ is a tight representation of a real number, then ⟨x n ⟩ satises Equation (9).

Proof. Let n ∈ Z. From the bound property (5), we get for any k ∈ Z:

B n x = x n + ε n (10) B n+k x = x n+k + ε n+k , (11) 
where ε n and ε n+k lie in (-1, 1).

Then, multiplying Equation (10) by B k and subtracting Equation (11), we obtain:

B k x n -x n+k < B k |ε n | + 1. Taking i such that B i > 1/(1 -|ε n |) (thus i ≥ 1), we derive that B i B k x n -x n+k < (B i -1)B k + B i . ( 12 
)
Assuming now k ∈ N, we observe that both sides of Equation ( 12) are integers. We derive that, for any k ∈ N,

B i B k x n -x n+k ≤ (B i -1)(B k + 1).
In order to establish the if part of Theorem 1, i. e. that Equation (9) implies the bound property (5) for some real x, we need to characterize such a real starting from the integer sequence ⟨x n ⟩. This is done by exhibiting a Cauchy sequence.

Proposition 1. Let ⟨x n ⟩ be an integer sequence satisfying Equation (9). Then, the sequence ⟨x n /B n ⟩ is a Cauchy sequence.

Proof. Let m ∈ Z. Let us prove that, for a suciently large integer n and any

k ∈ N, | xn B n -x n+k B n+k | ≤ 1 B m :
x n B n -

x n+k B n+k ≤ 1 B n+k B k x n -x n+k ≤ 1 B n+k × (B i -1)(B k + 1) B i thanks to (9) ≤ 1 B n+k × B k+1 ≤ 1 B n-1 .
Thus, it is sucient to choose n ≥ m + 1.

We can now complete the proof of Theorem 1.

Lemma 2. Let ⟨x n ⟩ be an integer sequence satisfying Equation (9). Then, ⟨x n ⟩ satises the bound property (5) for the real x that is the limit of the Cauchy sequence ⟨x n /B n ⟩.

Proof. Let x be the limit of the Cauchy sequence

⟨x n /B n ⟩ and m ∈ Z. Let i ∈ Z such that, for any k ∈ N, B i B k x m -x m+k ≤ (B i -1)(B k + 1). Let k i ∈ N such that, for any k ≥ k i , |x -x m+k B m+k | ≤ 1 2B m+i . Then, for any k ≥ k i , |B m x -x m | ≤ B m x - x m+k B m+k + 1 B k x m+k -x m B k ≤ 1 2B i + (B i -1)(B k + 1) B k+i from (9) ≤ 1 - 1 2B i + 1 B k (1 - 1 B i ).
Since the integer k can be chosen arbitrarily large, the bound property holds:

|B m x -x m | < 1.
Thanks to Theorem 1, and because any real number has a tight representation (for instance, the sequence ⟨⌊xB n ⌋⟩), we can dene a subset of the integer sequences that represent real numbers without using any real variable.

Denition 1 (Tight B-adic sequence). A tight B-adic sequence is an integer sequence ⟨x n ⟩ such that:

∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B i B k x n -x n+k ≤ (B i -1)(B k + 1).
The set of all tight B-adic sequences is denoted by ⟨B⟩. The real number represented by a tight B-adic sequence ⟨x n ⟩ is denoted lim B ⟨x n ⟩ , or more simply, lim B ⟨x n ⟩.

Remark 1. If we strengthen Equation ( 9) by putting ∀k ∈ Z instead of ∀k ∈ N, Lemma 1 is no more valid while Lemma 2 remains true. That way, we have the possibility of dening a subset of tight B-adic sequences that are zero below some threshold unlike the tight representations dened in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] for which we can just assert that they lie in the set {0, 1} or in the set {-1, 0}.

Indeed, since

B i B k x n -x n+k ≤ (B i -1)(B k +1) =⇒ |x n+k | ≤ 1- 1 B i B k + 1 +B k |x n | and lim k→-∞ 1 - 1 B i B k + 1 + B k |x n | < 1, the assumption ∀k ∈ Z, B i B k x n -x n+k ≤ (B i -1)(B k + 1) implies x n = 0 when n is near -∞.
The next section presents a set of integer sequences whose denition is simpler than the denition of tight B-adic sequences and that are almost tight representations of real numbers.

The set ⟨B⟩ of loose representations of real numbers

The goal of this section is to examine what happens if we replace the strict inequalities in the bound property by large inequalities. In doing so, we will see that we save the variable i in the intrinsic denition of a representation, going from 3 variables to 2 variables, thus obtaining a simpler statement:

∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B i B k x n -x n+k ≤ (B i -1)(B k + 1) (Denition 1 [Tight B-adic sequence]), versus ∀ n ∈ Z, ∀ k ∈ N, B k x n -x n+k ≤ B k + 1 (Denition 3 [Loose B-adic sequence]).
This simplication makes denitions and proofs much easier to carry out, at the very small cost of losing at most 1 unit beyond some index in the integer sequence, only for sequences converging toward reals with nite B-adic expansion (Proposition 2). For instance, the sequence . . . , x 0 = 3, x 1 = 7, x 2 = 20, x 3 = 60, x 4 = 180, • • • is a 3-adic sequence representing the rational x = 20 / 9 and the underlined terms are common to all tight representations of x whereas . . . , x 0 = 3,

x 1 = 7, x 2 = 21, x 3 = 61, x 4 = 181, • • • is a loose 3-adic sequence representing the rational x.
So, let us begin by naming this relaxed bound property.

Denition 2 (Loose representation). An integer sequence ⟨x n ⟩ n∈Z satises the weak bound property for the real x if, for any n ∈ Z,

x n -1 ≤ B n x ≤ x n + 1. (13) 
Such an integer sequence is called a loose representation of the real number x.

Next, for a given real x, we compare the set of its loose representations to the set of its tight representations. It is plain that any tight representation is a loose representation. We will see that the converse is almost true.

Proposition 2. Let x be a real number and ⟨x n ⟩ be a loose representation of

x. Then, 1. if x has not a nite B-adic expansion, ⟨x n ⟩ is a tight representation of x.

2. if x has a nite B-adic expansion, that is x = p/B m for some p, m ∈ Z, then there exists a tight representation ⟨y n ⟩ of x such that x n = y n for any n < m and |x n -

y n | = |x n -xB n | ≤ 1 for any n ≥ m.
Proof. Since ⟨x n ⟩ is a loose representation of x, we have

|x n -xB n | ≤ 1. ( 14 
)
1. If x has not a nite B-adic expansion, whatever the value of n, the left hand side of ( 14) is not an integer. Then, Equation ( 14) is equivalent to

|x n -xB n | < 1
, that is to the bound property (5) for x with order n.

2. Assume that x = p/B m for some p, m ∈ Z. Then, for any n < m the left hand side of ( 14) is not an integer and we conclude as above that x n satises the bound property for x at order n. In this case, we set y n = x n .

Let n be an integer greater than or equal to m. Then xB n is an integer. So, setting y n = xB n , we get |x n -y n | ≤ 1. The sequence ⟨y n ⟩ clearly satises the bound property for any n ∈ Z. Hence, the result holds.

Proposition 2 means that there is no dierence between tight representations and loose representations for irrational numbers as π or √ 2. Alike, both types of representations are also the same for the rational x = 20 / 9 and the base B = 2 for instance. If B = 3, on the one hand the terms of both the tight and loose 3-adic sequences representing x obey to equivalent rules until the index n = 2. But, on the other hand, the terms beyond the index 2 are unique for tight representations of x (written in base 3, these terms are 202, 2020, 20200, . . . ) whereas the subsequence ⟨x k ⟩ k≥2 = 201, 2021, 20201, . . . can be found in a loose representation of 20

/ 9 .
We continue the study of the loose representations of reals by giving an internal denition of theses sequences, that is a denition without reals.

Theorem 2.

An integer sequence ⟨x n ⟩ is the loose representation of a real number if and only if

∀ n ∈ Z, ∀ k ∈ N, B k x n -x n+k ≤ B k + 1. (15) 
Furthermore, the real x of which such a sequence ⟨x n ⟩ is the representation is unique, the rational sequence ⟨x n /B n ⟩ is convergent and x = lim ⟨x n /B n ⟩.

The proof of Theorem 2 is similar to the proof of Theorem 1. Therefore, to avoid a tedious repetition, we put it in Appendix A.

Alike we have dened the tight B-adic sequences as the integer sequences that are tight representations of real numbers, we can now dene the loose B-adic sequences.

Denition 3 (Loose B-adic sequence). A loose B-adic sequence is an integer

sequence ⟨x n ⟩ such that ∀ n ∈ Z, ∀ k ∈ N, B k x n -x n+k ≤ B k + 1.
The set of all loose B-adic sequences is denoted by ⟨B⟩. The real number represented by a loose B-adic sequence ⟨x n ⟩ is denoted lim B ⟨x n ⟩ , or more simply, lim B ⟨x n ⟩.

Note that, contrary to tight B-adic sequences (see Remark 1), replacing ∀k ∈ N by ∀k ∈ Z in the above denition has no eect.

Since it is plain that tight representations are loose representations, it follows that tight B-adic sequences are loose B-adic sequences. Nevertheless, it is interesting to have a proof of this inclusion relation that does not use real numbers:

⟨x n ⟩ is a tight B-adic sequence =⇒ ∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B i B k x n -x n+k ≤ (B i -1)(B k + 1) =⇒ ∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B i B k x n -x n+k ≤ B i (B k + 1) =⇒ ∀ n ∈ Z, ∃ i ∈ Z, ∀ k ∈ N, B k x n -x n+k ≤ (B k + 1) =⇒ ∀ n ∈ Z, ∀ k ∈ N, B k x n -x n+k ≤ (B k + 1) =⇒ ⟨x n ⟩ is a loose B-adic sequence.
In the following section, we compare the (tight, loose) B-adic sequences with the integer sequences used to dene the set HR ω .

Relations between the sets of integer sequences used to represent real numbers

In Section 2.1, we saw that the Harthong-Reeb line is dened as a quotient of the set O(ω) where ω is an innitely large number. Taking ω = ⟨B n ⟩, O(ω) can be specied as the set of the integer sequences ⟨x n ⟩ n∈Z such that:

∃n ∈ Z, ∃i ∈ Z, ∀k ∈ N, |x n+k | ≤ B n+k+i . ( 16 
)
We also consider a subset of O(ω), introduced in [CWF + 12]: the regular se-

quences. An integer sequence ⟨x n ⟩ is regular if the rational sequence ⟨x n /ω n ⟩ is a Cauchy sequence. In the thesis, the goal of this denition is to emphasize that the Harthong -Reeb line contains many non-regular elements which explain why the Harthong-Reeb line does not satises all the Heyting-Bridges axioms of the constructive real line. For consistency reasons, we will use the following denition.

Denition 4 (Regular sequence). An integer sequence

⟨x n ⟩ is regular if ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i B k x n -x n+k ≤ B n+k . (17) 
The equivalence of this denition with the denition given in [START_REF] Chollet | Non classical formalisms for the computing treatment of the topology and the discrete geometry[END_REF] is given in Appendix B. In particular, it is worth observing that Equation ( 17) is equivalent to (see Appendix B):

∀i ∈ Z, ∃n 0 ∈ Z, ∀n ≥ n 0 , ∀k ∈ N, B i B k x n -x n+k ≤ B n+k . ( 18 
)
Let ⟨x n ⟩ be a regular sequence and let x = lim ⟨x n /B n ⟩. We say that the sequence ⟨x n ⟩ is a free representation of x and we write x = lim B ⟨x n ⟩. The subset of O(ω) formed by the regular sequences is denoted by O reg (ω). Proof. We show the inclusions from left to right.

We saw in Section 3.1.2 that ⟨B⟩ ⊂ ⟨B⟩.

Let ⟨x n ⟩ be a loose B-adic sequence. We have

∀n ∈ Z, ∀k ∈ N, B k x n -x n+k ≤ B k + 1.
We have to prove Equation (17). So, let i ∈ Z. Noting that B k +1 ≤ B k+1 for any k ≥ 0 (since B ≥ 2), we derive that

∀n ∈ Z, ∀k ∈ N, B k x n -x n+k ≤ B k+1 .
Then, multiplying both side of the inequality by B i and putting n = i + 1,

∃n = i + 1 ∈ Z, ∀k ∈ N, B i B k x n -x n+k ≤ B n+k .
Thus, ⟨x n ⟩ ∈ O reg (ω).

Let ⟨x n ⟩ ∈ O reg (ω): ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i B k x n -x n+k ≤ B n+k .
In particular, taking i = 0,

∃n ∈ Z, ∀k ∈ N, B k x n -x n+k ≤ B n+k .
We derive that

∃n ∈ Z, ∀k ∈ N, |x n+k | ≤ B n+k 1 + B -n |x n | .
We can now choose an integer j such that

B j ≥ 1 + B -n |x n |: ∃n ∈ Z, ∃j = log B 1 + B -n |x n | ∈ Z, ∀k ∈ N, |x n+k | ≤ B n+k+j .
Thereby, according to Equation ( 16), ⟨x n ⟩ ∈ O(ω).

Now that we have compared the four subsets of the integer sequences, the next step is to look at the four quotient spaces.

Quotient spaces

We saw in Section 2.1, that the Harthong-Reeb line HR ω is the quotient space O(ω)⧸o(ω) (recall that we write = ω for the corresponding equivalence relation).

Alike, we dene the quotient spaces HR reg ω = O reg (ω)⧸o(ω), B ω = ⟨B⟩ ⧸o(ω) and B ω = ⟨B⟩⧸o(ω). In this section, we aim at propagating the algebraic structure of HR ω to the three other quotient spaces. But before that, we have to rewrite the denition of the equivalence relation = ω in a form compatible with B-adic numbers:

⟨x n ⟩ = ω ⟨y n ⟩ def ⇐⇒ ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i |x n+k -y n+k | ≤ B n+k . (19)
Alike, we rewrite the order relation ≤ ω (by abuse of notation, we confuse the order on the sequences and the order on the classes).

⟨x n ⟩ ≤ ω ⟨y n ⟩ def ⇐⇒ ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i (x n+k -y n+k ) ≤ B n+k . (20)

Canonical maps between the quotient spaces

The inclusion relations of Proposition 3 result in inclusion relations between the classes of the equivalence relation = ω and the classes of its restrictions to the subsets ⟨B⟩, ⟨B⟩ and O reg (ω). Indeed, for any two sets A ⊂ B, any equivalence relation E ⊂ B × B and any x ∈ A, {y ∈ A | (x, y) ∈ E} ⊂ {y ∈ B | (x, y) ∈ E}, that is the class of x ∈ A for the restriction of E to A is included in the class of x for E. These inclusions between equivalence classes result in turn in three canonical maps between the quotient spaces: Denition 5 (Inclusions). The inclusions between the classes of the relation = ω in the spaces B ω , B ω , HR reg ω (⟨B n ⟩) and HR ω are denoted inc 1 , inc 2 and inc 3 respectively:

B ω inc1 --→ B ω inc2 --→ HR reg ω inc3 --→ HR ω x -→ y = [ ẋ] -→ z = [ ẏ] -→ t = [ ż]
where, given a class a in the source space, [ ȧ] denotes the unique class, in the destination space, including a (formally, the denotation stands for the class in the destination space of a representative in the source space of a)

Actually, the map inc 3 is simply the identity function.

Proposition 4. For any x, y

∈ O(ω), (x = ω y ∧x ∈ O reg (ω)) =⇒ y ∈ O reg (ω).
In other words, putting z = [x], for any class z ∈ HR reg ω , inc 3 (z) = z.

Proof. Let x = ⟨x n ⟩, y = ⟨y n ⟩ be two sequences in O(ω) such that x = ω y and x is regular. Let i ∈ Z. Since x is regular, by Formula (18), there exists n 0 ∈ Z, such that for n ≥ n 0 and any k ∈ N, 

B i+2 B k x n -x n+k ≤ B n+k .
B 2 B i B k y n -y n+k ≤ 3B n+k .
Since B 2 > 3, we are done: y is regular.

The following proposition expresses the fact that a class of = ω in a given set obviously contains at most one class of the restriction of = ω to a subset. Proposition 5. The three maps inc 1 , inc 2 and inc 3 are one-to-one.

We end the comparison between the four quotient spaces by showing that any class of regular sequences contains a loose B-adic sequence and any class of loose B-adic sequences contains a tight B-adic sequence. Conversely, there exist elements in the Harthong-Reeb line that do not contain any regular sequence. Proposition 6. The two maps inc 1 , inc 2 are onto. The map inc 3 is not onto.

Proof. Using reals, the proof is easy: given a regular sequence a, let x = lim B a.

The real x has a tight representation ⟨x n ⟩ (which is also a loose representation). Then, a is equivalent to ⟨x n ⟩ since lim B a = lim B ⟨x n ⟩. So, inc 2 is onto. Alike, inc 1 is onto. Conversely, the integer sequence ⟨(-B) n ⟩ belongs to O(B n ). But it has no limit. Thus, it is not equivalent to a regular sequence. Nevertheless, writing a proof without using reals is much longer. For instance, in order to prove that inc 2 is onto, we have to exhibit a process to build a loose B-adic sequence from a regular one, both sequences being equivalent, but without appealing to the limits.

inc 1 is onto. Let a = ⟨a n ⟩ be a loose B-adic sequence. Put b n = an+2 B 2 if B = 2 and b n = an+1 B otherwise. Let n ∈ Z and k ∈ N. Then, assuming B = 2, B 2 B k b n -b n+k ≤ B 2 B k a n+2 B 2 - a n+k+2 B 2 ≤ B k a n+2 -a n+k+2 + B 2 2 B k + 1 ≤ 1 + B 2 2 B k + 1 for a ∈ ⟨B⟩ ≤ B 2 -1 B k + 1 .
Thus, b = ⟨b n ⟩ is a tight B-adic sequence. The proof in the case B ≥ 3 is similar.

Let us now verify that the sequences a and b are equivalent. We only treat the case B = 2, the other case being similar.

So, let i ∈ Z, n ∈ Z.

B i |a n -b n | ≤ B i a n - a n+2 B 2 + 1 2 B i ≤ B i-2 B 2 a n -a n+2 + 1 2 B i ≤ B i-2 B 2 + 1 + 1 2 B i for a ∈ ⟨B⟩ ≤ B i 3 2 + 1 B 2 ≤ 2B i . Thus, for any n ≥ i + 1, B i |a n -b n | ≤ B n , that is a = ⟨B n ⟩ b. Eventually, b ∈ inc 1 -1 (a) which proves that inc 1 is onto.
The map inc 2 is onto.

The idea is to build a loose B-adic sequence from a regular one by pruning the latter sequence in order to satisfy Equation (15). Since the proof is rather long, it is given in Appendix C. inc 3 is not onto.

The proof is given in Appendix D. Actually, we prove a stronger result.

We dene a natural topology over O(ω) and we show that the set of regular sequences is not a dense subset of the space O(ω) for this topology whereas non regular sequences form a dense subset of O(ω).

Field structures

We saw in Section 2.2, that HR ω is equipped with an ordered commutative ring structure, (HR ω , +, × ω , ≤ ω ). This section aims at propagating this structure to the subsets B ω , B ω and HR reg ω (ω). Since inc 3 is not onto, we need to verify that HR reg ω (ω) is stable for the operators + and× ω . Lemma 3. The subset inc 3 (HR reg ω ) of HR ω is stable for the operators + and × ω .

Proof.

Addition Let a = ⟨a n ⟩ and b = ⟨b n ⟩ be two regular sequences. Since the addition in HR ω is derived from the term-wise addition, it is sucient to prove that the sequence ⟨a n + b n ⟩ is regular, that is, for any i ∈ Z, B k (a n + b n ) -(a n+k + b n+k ) is less than B n+k /B i for suciently large n and any k ∈ N.

Let i ∈ Z. Because a and b are regular, B k a n -a n+k and B k b n -b n+k are less than B n+k /B i+1 for suciently large n and for any k ∈ N.

Then, for B ≥ 2,

B k (a n + b n ) -(a n+k + b n+k ) ≤ 2 B n+k B i+1 ≤ B n+k B i . ( 24 
) Multiplication Recall that the product × ω in HR ω is dened by [u] × ω [v] = [(u × v) ÷ ω]
where [•] stands for the equivalence class and ×, ÷ are the term-wise multiplication and integer division, respectively.

Let a = ⟨a n ⟩ and b = ⟨b n ⟩ be two regular sequences. By abuse of notation, we write a × ω b for the sequence ⟨(a n b n ) ÷ ω⟩ (with ω = B n ). In order to prove that inc 3 (HR reg ω ) is stable for × ω , it is sucient to prove that a × ω b is regular.

So, let i ∈ Z. We shall prove that

B k (a n × ω b n ) -(a n+k × ω b n+k ) ≤ B n+k /B i
for suciently large n and any k ∈ N.

Firstly we split B k (a n × ω b n ) -(a n+k × ω b n+k ) in three terms. B k (a n × ω b n ) -(a n+k × ω b n+k ) = B k ((a n b n ) ÷ B n ) -(a n+k b n+k ) ÷ B n+k = B k a n b n B n + ε 1 - a n+k b n+k B n+k + ε 2 where ε 1 , ε 2 ∈ (-1, 1) ≤ b n B n B k a n -a n+k + a n+k B n+k B k b n -b n+k + 2B k ≤ M b B k a n -a n+k + M a B k b n -b n+k + 2B k , where M a = sup m am B m and M b = sup m bm B m .
Since the sequences a and b are regular, and thus in O(B n ), M a < ∞ and M b < ∞. Hence, there exists i 0 ∈ N such that B i0 > 3 max(M a , M b ). Furthermore, by Formula (18), for any i and for suciently large n,

B i0+i B k a n -a n+k ≤ B n+k and B i0+i B k b n -b n+k ≤ B n+k .
Taking n ≥ log B 6 + i, we also have 6B k+i ≤ B n+k . Therefore, the three terms M b B k a n -a n+k , M a B k b n -b n+k and 2B k are less than, or equal to B n+k /3B i which proves the result.

We can now extend the operators +, × ω and the binary relation ≤ ω to the sets HR reg ω , ⟨B⟩ and ⟨B⟩ (denoting by inc 1 -1 , resp. inc 2 -1 , the inverse function of inc 1 , resp. inc 2 , and by inc 3 -1 the partial inverse function of inc 3 dened on the set inc 3 (HR reg ω )).

Denition 6 (Operations).

1. ∀x, y ∈ HR reg

ω x + y def = inc 3 -1 (inc 3 (x) + inc 3 (y)) x × ω y def = inc 3 -1 (inc 3 (x) × ω inc 3 (y)) x ≤ ω y def ⇐⇒ inc 3 (x) ≤ ω inc 3 (y). 2. ∀x, y ∈ B ω , x + y def = inc 2 -1 (inc 2 (x) + inc 2 (y)) x × ω y def = inc 2 -1 (inc 2 (x) × ω inc 2 (y)) x ≤ ω y def ⇐⇒ inc 2 (x) ≤ ω inc 2 (y). 3. ∀x, y ∈ B ω , x + y def = inc 1 -1 (inc 1 (x) + inc 1 (y)) x × ω y def = inc 1 -1 (inc 1 (x) × ω inc 1 (y)) x ≤ ω y def ⇐⇒ inc 1 (x) ≤ ω inc 1 (y).
By Denition 6, we directly have the following properties.

Proposition 7.

The map inc 1 :

(B ω , +, × ω , ≤ ω ) → ( B ω , +, × ω , ≤ ω ) is an isomorphism. The map inc 2 : ( B ω , +, × ω , ≤ ω ) → (HR reg ω , +, × ω , ≤ ω ) is an isomorphism. The map inc 3 : (HR reg ω , +, × ω , ≤ ω ) → (HR ω , +, × ω , ≤ ω ) is a one-to-one morphism.
The three morphisms inc 3 , inc 2 and inc 1 transfer the properties of HR ω to the other structures. Actually, B ω , B ω and HR reg ω have a richer structure than HR ω : their order relation is total and they are elds, not only rings.

Proposition 8. The order ≤ ω is total in B ω , B ω and HR reg ω .

Proof. Since inc 1 and inc 2 are bijective, it suces to prove the result for the set HR reg ω . Moreover, because HR ω is an ordered ring, the order ≤ ω is a total order of the subset HR reg ω if and only if any nonzero element in HR reg ω is positive or negative. So, let us consider a regular sequence x = ⟨x n ⟩ that is not equivalent to the null sequence. From the denition of = ⟨B n ⟩ (Eq. 19), we derive that there exists i ∈ Z and a sequence of indices ⟨u n ⟩ such that, for any n ∈ Z,

u n ≥ n and B i |x un | > B un . (25) 
A consequence of the existence of such a pair (i, ⟨u n ⟩) is that for large enough index n, the sign of x n is not null and constant. Indeed, from Eq. (25), we get x un ̸ = 0 for any n and from Formula (18), we derive that for large enough n, B i B k x un -x un+k ≤ B un+k for any k ≥ 0. If, for some k ≥ 1, x un+k has not the same sign as x un , then it comes that B i B k x un ≤ B un+k , that is B i |x un | ≤ B un which contradicts Eq. (25). Since there exists n 0 ∈ Z such that ∀n ≥ n 0 , x n ≥ 0 or ∀n ≥ n 0 , x n ≤ 0, we easily get from the denition of ≤ ω , Eq. ( 4), that either

[x] ≥ 0 or [x] ≤ 0 and, because [x] ̸ = 0, [x] > 0 or [x] < 0.
Proposition 9. B ω , B ω and HR reg ω are ordered commutative elds.

Proof. The proof is split in three parts.

Firstly, we prove that the tuple (inc 3 (HR reg ω ), +, × ω , ≤ ω ) is a subring of HR ω . We already have proved that inc 3 (HR reg ω ) is stable for the operators + and × ω . It remains to prove that the opposite of an element in inc 3 (HR reg ω ) is still in inc 3 (HR reg ω ). Since, obviously, [⟨-x n ⟩] is the opposite class of [⟨x n ⟩] in HR ω , it suces to prove that for any regular sequence x = ⟨x n ⟩, the sequence ⟨-x n ⟩ is regular. The proof is straightforward.

Secondly, we show that inc 3 (HR reg ω ) is a eld. At this aim, we dene a map inv : inc

3 (HR reg ω ) \ [⟨0⟩] → inc 3 (HR reg ω ) by putting inv([⟨x n ⟩]) = B 2n x n ,
where the representative ⟨x n ⟩ is chosen such as x n ̸ = 0 for any n ∈ Z (this can be achieve for instance by replacing the zero terms by ones).

Let x ∈ inc 3 (HR reg ω ) \ [⟨0⟩].
Let us prove that inv is well-dened, that is, inv(x) ∈ inc 3 (HR reg ω ) and inv(x) does not depend on the choice of the representative of x.

Let ⟨x n ⟩ ∈ x. We claim that ∃i 0 ∈ Z, ∃n 0 ∈ Z, ∀n ≥ n 0 , |x n | ≥ B n-i0 . (26)
Indeed, by hypothesis, ⟨0⟩ / ∈ x. Then, the negation of Equation ( 19) yields an integer i 1 such that for any n ∈ Z, there exists

k n ∈ N such that B i1 |x n+kn | > B n+kn . (27)
Moreover, thanks to the regularity of ⟨x n ⟩ and Equation ( 18), there exists n 0 ∈ Z such that, for any n ≥ n 0 ,

B i1+1 B kn x n -x n+kn ≤ B n+kn .
Then, splitting the absolute value,

B i1+1 |x n+kn | -B kn |x n | ≤ B n+kn . Using Equation (27), BB n+kn -B i1+1+kn |x n | ≤ B n+kn .
We derive that

B n-i1 B -1 B < |x n | . Since B ≥ 2, we have (B -1)/B ≥ 1/B. Hence, choosing i 0 = i 1 + 1, the claim is established.
Let ⟨x n ⟩ ∈ x with x n ̸ = 0 for any n ∈ Z. We now prove that the sequence B 2n /x n is regular. The integers i 0 and n 0 are those dened in the previous item. Let i ∈ Z and n ≥ n 0 . We have

B i B k B 2n x n - B 2(n+k) x n+k = B i+2n+k x n+k -B k x n |x n ||x n+k | ≤ B i+2n+k B k x n -x n+k B n-i0 B n+k-i0 ≤ B i+2q0 B k x n -x n+k .
Since x is regular, for suciently large n and any k ∈ N, we have B i+2q0 B k x n -x n+k ≤ B k+n . Thereby, we are done: the sequence B 2n /x n is regular.
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We prove that the function inv is independent of the choice of the representative. Let ⟨x n ⟩ and ⟨y n ⟩ be two representatives of x with x n ̸ = 0 and y n ̸ = 0 for any n ∈ Z. Let i x 0 , i y 0 , n x 0 and n y 0 be integers provided by Equation (26) for the sequences ⟨x n ⟩ and ⟨y n ⟩.

Let i ∈ Z and n ≥ max(n x 0 , n y 0 ). We have

B i B 2(n+k) x n+k - B 2(n+k) y n+k = B i+2(n+k) |x n+k -y n+k | |x n+k y n+k | ≤ B i+i x 0 +i y 0 |x n+k -y n+k | . Because ⟨x n ⟩ = ω ⟨y n ⟩, B i+i x 0 +i y 0 |x n+k -y n+k | ≤ B n+k
for suciently large n and any k ∈ N, which proves that B 2n /x n and B 2n /y n are equivalent: inv(x) is independent of the choice of the representative for x.

It remains to prove that inv(x) is actually the inverse of x, that is x × ω inv(x) = [ω].
Given ⟨x n ⟩ ∈ x, we compute a representative of x × ω inv(x) and show that this representative is equivalent to the unity element of the ring O(ω) which is the sequence ω = ⟨B n ⟩ itself:

    x n × B 2n xn B n     = ε 1 + x n B n ε 2 + B n where ε 1 ∈ (-1, 0] and ε 2 ∈ (- 1 2 , 1 2 ] = ε + B n where |ε| ≤ 1 + sup n |x n | B n .
The latter inequality clearly establishes that x × ω inv(x) = [ω].

Finally, thanks to the isomorphisms inc 3 (whose codomain is restricted to inc 3 (HR reg ω )), inc 2 and inc 1 , we derive that HR reg ω , B ω and B ω are also ordered commutative elds.

The following proposition shows that the operations + B and • B dened in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] (see Section 2.2) directly perform the operations of both elds (B ω , +, × ω ) and ( B ω , +, × ω ), avoiding the cost of the computation of the function inc 2 -1 (see the proof of Proposition 6).

Proposition 10. Let x, y ∈ B ω , or x, y ∈ B ω . Then,

x + y = [ ẋ + B ẏ] and x × ω y = [ ẋ • B ẏ] .
We split the proof of Proposition 10 by stating Lemma 4 (addition of integer sequences) and Lemma 5 (multiplication of integer sequences). The last part of the proof is devoted to formally switching to quotient spaces.

Lemma 4. Let x and y be two regular sequences. Then,

x + B y = ω x + y.

Proof. Let x = ⟨x n ⟩ and y = ⟨y n ⟩ be two integer sequences. Put z = x + B y and z ′ = x + y. In order to prove the proposition, we have to show that

∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i |z ′ n+k -z n+k | ≤ B n+k .
So, let i ∈ Z. By denition, z ′ n = x n + y n and z n = ⌊(x n+r + y n+r )/B r ⌉ = (x n+r + y n+r )/B r +ε with r ∈ {1, 2} (depending on the value of B) and |ε| ≤ 1 2 .

Thereby, we have :

B i |z ′ n+k -z n+k | = B i x n+k + y n+k - x n+k+r + y n+k+r B r -ε = B i B r x n+k -x n+k+r B r + B r y n+k -y n+k+r B r -ε ≤ 1 2 B i + B -r B i |B r x n+k -x n+k+r | + B i |B r y n+k -y n+k+r | .
The sequences x and y are regular. Thus, according to Equation (18), for suciently large n and for any k ∈ N, we have

B i |B r x n+k -x n+k+r | ≤ B r and B i |B r x n+k -x n+k+r | ≤ B r .
Therefore, for suciently large n ∈ Z and any k ∈ N,

B i |z ′ n+k -z n+k | ≤ 2 + 1 2 B i .
As 2 + 1 2 B i ≤ B n+k for large enough n, we are done.

Lemma 5. Let x = ⟨x n ⟩ and y = ⟨y n ⟩ be two loose B-adic sequences. Then,

x • B y = ω x × ω y.
Proof. Let x = ⟨x n ⟩ and y = ⟨y n ⟩ be two loose B-adic sequences. We set z = x • B y and z ′ = x × ω y (where ω = ⟨B n ⟩). If either x or y is zero, the result is obvious (taking the sequence ⟨0⟩ n∈Z as a representative of zero). So, until the end of the proof, we assume that x and y are not zero. Then, msd(x) and msd(y) are nite.

From the denition of the product • B (Eq. 8), we derive that, for large enough n,

z n = a + x px y py B px+py-n + ε, where |a| = 1, p x = n + v -msd(y), p y = n + v -msd(x), v ∈ {3, 4, 5} and |ε| ≤ 1 2 . It follows that |z ′ n -z n | = x n y n B n -ε ′ - a + x px y py B px+py-n -ε where |ε ′ | < 1 ≤ B px x n B py y n -B n x px B n y py B n+px+py + 2 + B n-px-py .
Provided we enforce n -p x -p y ≤ 0, that is, n ≥ msd(x) + msd(y) -2v, we get

|z ′ n -z n | ≤ B px x n B py y n -B n x px B n y py B n+px+py + 3. (28) 
We rewrite the rst term of the right hand side of the previous inequality as follows:

B px x n B py y n -B n x px B n y py B n+px+py = x n B n × B py y n -B n y py B py + y py B py × B px x n -B n x px B px . (29) 
Since x and y belong to HR ω , we have xn

B n ≤ sup p xp B p < ∞ and yn B n ≤ sup p yp B p < ∞.
Moreover, since x and y are regular, and thanks to Equation (18), for any i 0 ∈ Z and for suciently large n,

B py y n -B n y py B py ≤ B min(py,n) B max(py,n) B py B i0 ≤ B max(Py,n) B i0 ≤ B n B cx B i0 , (30) 
where c x is the constant |n -p y | = |msd(x) -v|.

Alike, for any i 0 ∈ Z and for suciently large n,

|B px x n -B n x px | B px ≤ B n B cy B i0 , (31) 
where c y is the constant |n -p x | = |msd(y) -v|.

From Formulae (28), ( 29), ( 30) and (31), we derive that, for any i 0 , i and for some large enough n,

B i |z ′ n -z n | ≤ M B i-i0 B n + 3B i , where M is a constant (M = c x sup p xp B p + c y sup p yp B p ).
Finally, taking i 0 such that M B i-i0 < 1 and enforcing n to satisfy M B i-i0 + 3B i-n ≤ 1, we get B i |z ′ n -z n | ≤ B n for any i ∈ Z and suciently large n ∈ Z. Thereby, we have proved that ⟨z n ⟩ = ω ⟨z ′ n ⟩.

Proof of Proposition 10. We develop the case x, y ∈ B ω for the addition. The case x, y ∈ B ω and the proof for the multiplication are similar. So, let x, y ∈ B ω . Then, ẋ and ẏ are regular sequences. Therefore, we derive from Lemma 4 that ẋ + B ẏ = ω ẋ + ẏ. We set ϕ = inc 3 • inc 2 . Observe that, from Proposition 14, we get ẋ + B ẏ ∈ ⟨B⟩. Hence, ϕ([ ẋ + B ẏ]) is well dened and belongs to HR ω . We have The proof is straightforward:

ẋ + B ẏ = ω ẋ + ẏ =⇒ ẋ + B ẏ ∈ [ ẋ + ẏ] where [ ẋ + ẏ] ∈ HR ω =⇒ ẋ + B ẏ ∈ [ ẋ] + [ ẏ] by Equation (2) =⇒ ẋ + B ẏ ∈ ϕ(x) +
⟨x n ⟩ = ω ⟨y n ⟩ ⇐⇒ ∀i ∈ Z, ∃n 0 ∈ Z, n ≥ n 0 =⇒ B i |x n -y n | ≤ B n ⇐⇒ ∀i ∈ Z, ∃n 0 ∈ Z, n ≥ n 0 =⇒ x n B n - y n B n ≤ 1 B i ⇐⇒ lim x n B n = lim y n B n ⇐⇒ x = y.
As a consequence of Proposition 11, we can dene a new map, lim B , from the eld HR reg ω , resp. B ω , B ω , to the eld of real numbers:

lim B : HR reg ω (resp. B ω , B ω ) -→ R x = [⟨x n ⟩] -→ lim x n B n
In the next section, we show that the functions lim B are isomorphisms.

Isomorphisms between the real number eld and the representation elds

Our last result asserts that the addition, the multiplication and the order relation of the three elds HR reg ω , B ω , B ω correspond, via the map lim B to the addition, the multiplication and the order of the real eld R. Since we have already shown that (HR reg ω , +, × ω , ≤ ω ), ( B ω , +, × ω , ≤ ω ) and (B ω , +, × ω , ≤ ω ) are isomorphic, we just now examine the map lim B : B ω → R.

Theorem 3.

The function lim B : (B ω , +, × ω , ≤ ω ) → (R, +, ×, ≤) is a order-preserving isomorphism.

Proof. lim B is onto: for any x ∈ R, ⌊xB n ⌋ is a preimage of x. lim B is one-to-one. This is just the if part of Proposition 11. lim B is a morphism. We have seen in Proposition 10, that the operations + and × ω of the eld B ω are identical to the operations + B and • B described in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF]. Hence, the results obtained in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] and recalled in Section 2.2, show that, for any classes x, y in B ω , we have lim B (x + y) = lim B (x) + lim B (y) and lim B (x

× ω y) = lim B (x) × lim B (y). lim B is increasing. Let x, y ∈ B ω . Let ⟨x n ⟩ ∈ x and ⟨y n ⟩ ∈ y. Then, x ≤ ω y =⇒ ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N, B i (x n+k -y n+k ) ≤ B n+k =⇒ ∀i ∈ Z, ∃n ∈ Z, ∀k ∈ N,
x n+k B n+k -

y n+k B n+k ≤ 1 B i =⇒ ∀i ∈ Z, lim B (x) -lim B (y) ≤ 1 B i =⇒ lim B (x) -lim B (y) ≤ 0 =⇒ lim B (x) ≤ lim B (y).

Conclusion

In this article we built an isomorphism between the B-adic sequences and the real eld. This new isomorphism is in line with a rather long series of eorts in nonstandard and constructive mathematics to represent real numbers with sequences of integers. The advantage of the representations proposed in this article over a model like the Harthong-Reeb line is that, at each scale provided by the choice of the base B, the term of the B-adic sequence is almost the best one in terms of precision.

In the near future, we wish to make the link between our model and the one developed by [START_REF] Ciaaglione | Certied reasoning on real numbers and objects in co-inductive type theory[END_REF] for the base 2 and founded on the positional numeral system. A Proof of Theorem 2 Theorem 2 binds the integer sequences ⟨x n ⟩ satisfying the weak bound property (13) for some real x with a predicat on integer sequences, Equation (15). It makes it possible to construct the eld R from loose B-adic sequences. The proof of Theorem 2 is similar to the proof of Theorem 1. Lemma 6. Let (x n ) be the loose representation of a real number. Then,

∀n ∈ Z, k ∈ Z, |B k x n -x n+k | ≤ B k + 1. (15) 
Proof. Assuming (x n ) is a loose representation of a real number x, the weak bound property (13) is satised. Hence, for any n ∈ Z and any k ∈ Z,

x n -1 ≤ xB n ≤ x n + 1, and x n+k -1 ≤ xB n+k ≤ x n+k + 1.
These two equations lead to

(B k x n -x n+k ) -(B k + 1) ≤ 0 ≤ (B k x n -x n+k ) + (B k + 1),
which can be rewritten as

B k x n -x n+k ≤ B k + 1.
Proposition 12. Let (x n ) be an integer sequence satisfying Equation (15).

Then, the sequence (x n /B n ) is a Cauchy sequence.

Proof. Let m ∈ N. Let us prove that, for suciently large n and any k ≥ 0,

| xn B n -x n+k B n+k | ≤ 1 B m .
x n B n -

x n+k B n+k ≤ 1 B n+k B k x n -x n+k ≤ 1 B n+k × (B k + 1) thanks to (15) ≤ 1 B n+k × B k+1 ≤ 1 B n-1 .
Thus, it is sucient to choose n ≥ m + 1.

Lemma 7. Let (x n ) be an integer sequence satisfying Equation (15). Then,

(x n ) satises the weak bound property |x - x m B m | ≤ 1 B m ,
where x is the limit of the Cauchy sequence ⟨x n /B n ⟩.

Proof. Let x be the limit of the Cauchy sequence ⟨x n /B n ⟩ and m ∈ Z. For any positive real a, there exists an integer k a ≥ 1 such that, for any k ≥ k a , |x -

x m+k B m+k | ≤ a B m . Then, |x - x m B m | ≤ x - x m+k B m+k + 1 B m+k x m+k -x m B k ≤ a B m + B k + 1 B m+k from (15) ≤ 1 + a + 1 B k B m . ( 32 
)
Since Inequality (32) is satised for any a > 0 and any k ≥ k a , we derive that

x -

x m B m ≤ 1 B m .

B Equivalence of the denitions of regular sequences

We compare the denition of a regular sequence given in [START_REF] Chollet | Non classical formalisms for the computing treatment of the topology and the discrete geometry[END_REF] with the denition given in this article (Denition 4). Firstly, let us recall Chollet's denition of regular sequences:

∀p ∈ N \ {0}, ∃n 0 ∈ N, ∀ℓ ≥ n 0 , ∀m ≥ n 0 , x ℓ ω ℓ - x m ω m ≤ 1 p . (33) 
We give below a stronger formulation of our denition of regular sequences.

Lemma 8. An integer sequence ⟨x n ⟩ is regular (in the sense of Denition 4) if

and only if ∀i ∈ Z, ∃n 0 ∈ Z, ∀n ≥ n 0 , ∀k ∈ N, B i B k x n -x n+k ≤ B n+k . (34) 
Proof. The if part is obvious (taking n = n 0 in Equation ( 34)). Conversely, let i ∈ Z. From Equation (17), we get an integer n 0 such that, for any k ∈ Z,

B i+1 B k x n0 -x n0+k ≤ B n0+k .
Thus, for any n ≥ n 0 and any k ≥ 0, we have

B i+1 B n-n0 x n0 -x n ≤ B n B i+1 B n+k-n0 x n0 -x n+k ≤ B n+k .
By combining the two equations above in order to eliminate x n0 , we get

B i+1 B k x n -x n+k ≤ 2B n+k .
Since we assume B ≥ 2, the result holds.

We can now establish the equivalence of both denitions of regular sequences.

Proposition 13. Let B be an integer greater than or equal to 2. Then, the following statements are equivalent:

(1) ∀p ∈ N \ {0}, ∃n 0 ∈ N, ∀ℓ ≥ n 0 , ∀m ≥ n 0 , x ℓ B ℓ -

x m B m ≤ 1 p . (2) ∀i ∈ Z, ∃n 0 ∈ Z, ∀n ≥ n 0 , ∀k ∈ N, B i B k x n -x n+k ≤ B n+k .
Proof.

(1) =⇒ (2) Let i ∈ Z. Taking p = B i , ℓ = n and m = n + k, we directly obtain the second statement from the rst one.

(2) =⇒ (1) Let p ≥ 1 and take i such that B i ≥ p. From (2), there exists n 0 ∈ Z such that, for any n ≥ n 0 and any k ≥ 0,

x n B n - x n+k B n+k ≤ 1 B i ≤ 1 p .
In particular, taking n = min(ℓ, m) and k = |ℓ -m|, we get the rst statement.

C Building a loose B-adic sequence from a regular sequence Let x = ⟨x n ⟩ be a regular sequence. Making the change i ← i + 1, and dividing by B n in Formula (18), we get

∀i ∈ Z, ∃n 0 ∈ Z, ∀n ≥ n 0 , ∀k ∈ N, B k x n B n-i - x n+k B n-i ≤ B k-1 . (35) 
Observing that, for any integers i, j, m, n,

B j-i x n B n-i - x m B m-j = B (j-i)-(m-n) B m-n x n B n-i - x m B n-i ,
we derive from Eq. ( 35), that, for any i ∈ Z, there exists n 0 ∈ Z such that for any m ≥ n ≥ n 0 and any j ∈ Z,

B j-i x n B n-i - x m B m-j ≤ B j-i-1 . Consequently, B j-i x n B n-i - x m B m-j ≤ B j-i-1 + 1 2 B j-i + 1 2 .
Finally, since B ≥ 2 and the left hand side of the previous inequality is an integer, we get

∀i ∈ Z, ∃n 0 ∈ Z, ∀n, m ≥ n 0 , ∀j ∈ Z, B j-i x n B n-i - x m B m-j ≤ B j-i .
Then, for any i ∈ Z, we dene γ(i) as the smallest integer n ≥ i such that

∀j ∈ Z, ∀m ≥ n, B j-i x n B n-i - x m B m-j ≤ B j-i . (36) 
This mapping γ is monotonically increasing. Indeed, let i < k. Let us show that Formula (36) is satised putting n = γ(k), which, by denition of γ, implies that γ(k) ≥ γ(i).

We start by splitting the inequality of Formula (36) in two parts:

B j-i x γ(k) B γ(k)-i - x m B m-j ≤ B j-k B k-i x γ(k) B γ(k)-i - x γ(k) B γ(k)-k + B j-k x γ(k) B γ(k)-k - x m B m-j . ( 37 
)
Observe that the second part of the right hand side of the previous inequality is upper-bounded by B j-k by denition of γ. We now look at the rst part of the expression putting x γ(k)

B γ(k)-i =

x γ(k)

B γ(k)-i + ϵ 1 and

x γ(k) B γ(k)-k = x γ(k) B γ(k)-k + ϵ 2 where |ϵ 1 | , |ϵ 2 | ≤ 1 2 . Then, B k-i x γ(k) B γ(k)-i - x γ(k) B γ(k)-k ≤ B k-i ϵ 1 + ϵ 2 ≤ 1 2 B k-i + 1 2 . ( 38 
)
Now, we have to examine two cases.

Hence, |x px | < y py .

Moreover, from Equation (45), we derive that |y py | -1 ̸ = 0. Then, using the bound property of x, resp. y, of order p x , resp. p y , we obtain: 

F Binary operations on loose B-adic sequences

The goal of this section of the appendix is to study whether the relaxation of the bound property into a weak bound property has consequences on some propositions proved in [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF] or in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF] which are of prime importance for our work. For each proposition, we use a red font when a modication was done compare to the initial version in [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF] or in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF].

Firstly, let us recall the denitions of the bound property and of the weak bound property.

Denition 7 (Bound property). Let x ∈ R. A sequence ⟨x n ⟩ of integers is a tight representation of x if, for any n, the bound property of x by x n for order n is satised: (x n -1) B n < x < (x n + 1) B n .

(5)

Let B = 2 and x = 1/2. Then, B n x = B n-1 . So, putting x n = B n-1 -1 if n ≤ 2 and x n = B n-1 + 1 otherwise, we obtain a loose representation of x. In this case, msd ⟨x n ⟩ = 3 whereas log B (x) = -1. Hence, msd ⟨x n ⟩ + log B (x) > 1. Moreover, x 3 = 5. Hence, for n = msd ⟨x n ⟩ = 3, |x n |/B n-msd⟨xn⟩ > 2B. Now, we can change the sequence ⟨x n ⟩ by setting x n = B n-1 + 1 if n ≤ 1 and x n = B n-1 -1 otherwise. We still have a loose representation of x where msd ⟨x n ⟩ = 1 and |x n |/B n-msd⟨xn⟩ < 1 for any n > msd ⟨x n ⟩. (48)

Besides, x -m+k satises the weak bound property for order -m + k of x:

x -m+k -1 ≤ B -m+k x ≤ x -m+k + 1.

Thus, we also have

|x -m+k | -1 ≤ B -m+k |x| ≤ |x -m+k | + 1. ( 49 
)
Observe that in the previous equation, an equality can occur only if B -m+k x is an integer.

From Eq. ( 48) and (49), we derive that |x -m+k | -1 < B k+1 (51)

In particular, for any k < 0, |x -m+k | < B k+1 + 1 ≤ 2. That is, |x -m+k | ∈ {0, 1}. Therefore, msd ≥ -m (to lighten the notation, we write msd instead of msd(⟨x n ⟩)).

In the other hand, if k ≥ 0, Equations ( 50) and (51) concern integers. Thus, they can be rewritten as Proposition 16 (multiplication). Let ⟨x n ⟩ and ⟨y n ⟩ be the loose representations of x, y ∈ R\{0}. Then, the real x×y admits for loose representation the sequence

  In Section 2, we recall the denitions of the Harthong-Reeb line and the representations of V. Menissier-Morain let us called them tight representations in the sequel with their operations.-We propose in Section 3.1 a characterization of sequences that are tight representations of some real. The characterization does not appeal to real numbers (contrary to Eq. 1 which is used by V. Menissier-Morain). We also dene the loose representations which are obtained by replacing the strict inequality in Eq. (1) by a (non strict) inequality. In addition to the two previous sets of integer sequences and to Chollet's sequences, regular sequences are considered. Regular sequences, introduced in [CWF + 12],

√ 3 in

 3 HR ω , we need a sequence of rationals converging toward √ 3. So, using the Babylonian algorithm, we set b(0) = 3 and b(n + 1) = (b(n) + 3/b(n))/2 for any n ∈ N. Then, the projection of b on Q lim represents the real √ 3 in Q lim . Finally, the morphism ψ ω yields the Harthong-Reeb number which represents √ 3 in HR ω . It is the class (for the relation = ω ) of the sequence ⟨⌊10 n b(n)⌋⟩, that is the sequence 3, 20, 175, 1732, 17320, 173205, • • • up to sequences dominated by 10 n asymptotically.

  These two subsets O(ω) and O reg (ω) of the integer sequences are related to the (tight, loose) B-adic sequences by the following inclusion relations. Proposition 3. For any integer B ≥ 2, ⟨B⟩ ⊂ ⟨B⟩ ⊂ O reg (ω) ⊂ O(ω).

  x = ω y and thanks to Formula (19), there exists n ≥ n 0 ∈ Z such that, for any k ∈ N,B i+2 |x n+k -y n+k | ≤ B n+kand, (22) B i+2 |y n -x n | ≤ B n . (23) Then, adding Equations (21), (22) and B k × Equation (23), we get

  ϕ(y) by Denition 5=⇒ ẋ + B ẏ ∈ ϕ(x + y) by Proposition 7 =⇒ ϕ([ ẋ + B ẏ]) = ϕ(x + y) where [ ẋ + B ẏ] ∈ B ω =⇒ [ ẋ + B ẏ] = x + y by Proposition 5,which is the stated result.

  numbersUntil now, we have extended the structure of the Harthong-Reeb line to the (free, loose, tight) representations of real numbers. To end this study, it remains to verify that the obtained elds are isomorphic to the real numbers eld.Firstly, let us show that the equivalence relation = ω inherited from the construction of HR ω actually corresponds to the identication of representations of the same real number.3.3.1 A natural equivalence relation for (free, loose, tight) representationsOn the one hand, the Harthong-Reeb line HR ω was dened in [CWF + 12] as the quotient set O(ω)⧸o(ω). On the other hand, it is natural to identify (free, loose, tight) representations of reals numbers that represents the same real number.Actually, these two equivalence relations are identical for the free representations 4 and thus for the other kinds of representation.Proposition 11. Let ⟨x n ⟩, ⟨y n ⟩ be two free representations of some real numbers x and y. Then ⟨x n ⟩ = ω ⟨y n ⟩ if and only if x = y. Proof. Let ⟨x n ⟩ , ⟨y n ⟩ ∈ O reg (ω). Put x = lim ⟨x n /B n ⟩ and y = lim ⟨y n /B n ⟩ (recall that by denition of O reg (ω), ⟨x n /B n ⟩ and ⟨y n /B n ⟩ are Cauchy sequences).

  Moreover, now that the theoretical foundations are laid properly, we plan to extend the already-existing Coq formalization of the Harthong-Reeb line, to integrate B-adic sequences as a new implementation for elements of the Harthong-Reeb line and to formally check that all properties of the Harthong-Reeb line are veried by this implementation. In parallel, we want to take advantage of the determinism and the accuracy of the B-adic sequences over the too much unconstrained elements of the Harthong-Reeb line to resume the study of the digitalization of the ane transforms, especially rigid motions. One of the goals of such a study will be to understand how the periodic structures highlighted by the works on quasi-ane transforms evolve when the resolution under which the Euclidean world is seen in the digital space grows.

  |x px | -1 |y py | + 1 < B px-py x y < |x px | + 1 |y py | -1 . (46)Let us put α =|xp x |-1 |yp y |+1 B py-px+n and β = |xp x |+1|yp y |-1 B py-px+n . Then, Eq. (46) can be rewritten asα < B n x y < β.Besides, we have0 < β -α = 2 |x px | + |y py | |y py | 2 -1 B py-px+n < 2 |x px | + |y py | |y py | 2 -|x px | 2 B py-px+n ≤ 2 1 |y py | -|x px | B py-px+n < 2 B py-px+n B py-my -2B 1+px-mx ≤ 2 B k -2B .Hence, in both cases B = 2 and k = 3 or B > 2 and k = 2, we get 0 < β -α < 1. It follows that ⌊β⌋ veries the bound property for |x|/|y| and sign(x px ) × sign(y py ) × ⌊β⌋ veries the bound property for x/y.

  In view of these counterexamples, we have to adapt the results of Ménissier-Morain to encompass the loose representations of real numbers. Proposition 15. [Mén95, Property 7], [Mén05, Property 15] Let x ∈ R \ {0} and ⟨x n ⟩ be a loose representation of x. Then, 1. msd(⟨x n ⟩) exists; 2. msd(⟨x n ⟩) = -⌊log B |x|⌋ + ϵ where ϵ ∈ {0, 1, 2};3. for any n ≥ msd(⟨x n ⟩),B n-msd(⟨xn⟩) -ζ 1 ≤ |x n | ≤ ζ 2 +(2B)B n-msd(⟨xn⟩) ,(47)whereζ 1 = 1 if log B |x| ∈ Z ∧ |x n | = |x|B n -1 and ζ 1 = 0 otherwise; ζ 2 = 1 if |x| = 2B 1-msd(⟨xn⟩) ∧ |x n | = |x|B n +1 and ζ 2 = 0 otherwise. Proof. Let x ∈ R \ {0} and m = ⌊log B |x|⌋. Let ⟨x n ⟩ be a loose representation of x. By denition of ⌊.⌋, B m ≤ |x| < B m+1 .

  |x -m+k | + 1 if |x| = B m and k ≥ 0 B k < |x -m+k | + 1 otherwise.

  |x -m+k | ≤ B k+1 , andB k -ζ 1 ≤ |x -m+k | ,(52)whereζ 1 = 1 if |x| = B m ∧ |x -m+k | = |x|B -m+k -1 and ζ 1 = 0 otherwise. Then, because B k -1 ≥ 2 for any B ≥ 2 and k ≥ 2, one has msd ≤ -m + 2, that is, msd = -m + ε where ε ∈ {0, 1, 2}.By denition of the most signicant digit, we have |x msd -1 | ≤ 1. Thus, the right part of Equation (49), taking -m + k = msd -1, gives |x| ≤ 2B × B -msd . Then, the left part of Equation (49), where -m+ k = n ≥ msd, yields |x n | ≤ 1 + 2B × B n-msd if |x| = 2B × B -msd , |x n | < 1 + 2B × B n-msd otherwise.Since the last equation only involves integers, it is equivalent to|x n | ≤ ζ 2 + 2B × B n-msd , where ζ 2 = 1 if |x| = 2B 1-msd ∧ |x n | = B n + 1 and ζ 2 = 0 otherwise.Moreover, for any n ≥ msd, Equation (52) can be rewritten asB n-msd +(msd +m) -ζ 1 ≤ |x n | .Thereby, for msd +m ≥ 0,B n-msd -ζ 1 ≤ |x n | .We saw that the extension of the most signicant digit to loose representations slightly change its properties. Surprisingly, these changes do not propagate to the multiplication algorithm [Mén95, Algorithm 4 and Theorem 14], [Mén05, Algorithm 4 and Theorem 16]).

The qualifying adjective tight is not used in the original paper of[START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF]. Here, we use it to distinguish these representations from another kind of representations the loose representations that will be introduced in the following section.

In[START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF], the author gives a denition of zn using msd instead of msd * but she explains just below the denition that, actually, the algorithm works with the msd * function.

This fact is stated without proof in[START_REF] Chollet | Non classical formalisms for the computing treatment of the topology and the discrete geometry[END_REF].

1. If B > 2 or k -i > 1, using Eq (38) and the denition of γ(k), we derive from Eq (37) that

Because at this point we assume B > 2 or k -i > 1, we get 3

≤ B j-i and we are done.

2. If B = 2 and k = i + 1, Eq. 38 can be rewritten as

Since the left hand side of the above equation is an integer, we derive that

Then, from Eq (37), we get

for B = 2 and j -i = j -k + 1.

So, we have proved that γ is increasing. Eventually, we dene the sequence y = ⟨y i ⟩ i∈Z by

for any i ∈ Z.

From the denition of γ and because it is increasing, we derive that ∀i ∈ Z, ∀j ≥ i, B j-i y i -y j ≤ B j-i .

Hence, the sequence ⟨y i ⟩ i∈Z is a loose B-adic sequence. It remains to prove that

We have

Since the sequence x is regular, for large enough m,

Thus, Eq. 40 can be rewritten as

because the left hand side of the inequality is an integer. We conclude that the sequences x and y are equivalent. In other words, we obtain inc 2 (y) = x which establishes that inc 2 is onto.

D The Harthong-Reeb line is fat

We dene a topology over the sequences bounded by ω = ⟨B n ⟩ n∈Z up to a constant factor and we show that 1. there exists a sequence in O(ω) that is far (for this topology) from any regular sequence. In other words, the regular sequences are not dense in O(ω); 2. any regular sequence is close to non regular sequences. In other words, non regular sequences are dense in O(ω).

Let a = ⟨a n ⟩ ∈ O(ω) and i ∈ Z. We set

Then, a sequence b = ⟨b n ⟩ is equivalent to a sequence a = ⟨a n ⟩, that is b = ω a, if and only if b ∈ B(a, i) for any i ∈ Z. We consider the topology T over O(ω) generated by the set of all the balls B(a, i).

In O(ω), we choose a prototypical undesirable sequence, o = ⟨(-B) n ⟩, and we show that there is no regular sequence in its neighborhood.

Lemma 9. The ball B(o, 1) does not contain any regular sequence.

Proof. By contradiction, we consider a regular sequence b = ⟨b n ⟩ in the ball B(o, 1).

On the one hand, since b is regular, there exists an integer n 1 such that for any n ≥ n 1 (taking i = 1 and k = 1 in Eq. ( 18)),

and also,

Then, adding Equations ( 41), (42), multiplied by B, and (43), we get

That is B ≤ 3/2 which contradicts the assumption on B.

Let us now prove that non regular sequences are dense in O(ω).

Lemma 10. Let a = ⟨a n ⟩ be a regular sequence and r be a positive integer.

Then, the ball B(a, r) contains a non regular sequence.

Proof. We will prove that b = a + 1 2 B -r o belongs to B(a, r) and is non regular.

1. The sequence b belongs to B(a, r). Indeed,

2. In order to prove that b is non regular, we show the negation of Equation (18), that is:

Let i = ⌈log B 2⌉ + r and n 0 ∈ Z. Since a is regular, we can use Equation (18) to get an integer n ≥ n 0 such that

Then, we have

We are done (using k = 1 in the negation of Equation ( 18)).

E Division

Theorem 4. Let x ∈ R, y ∈ R \ {0} with tight representations ⟨x n ⟩ and ⟨y n ⟩.

Dene ⟨z n ⟩ by:

where

Then ⟨z n ⟩ is well dened and satises the bound property for x/y :

Proof. When x = 0, the denition of ⟨z n ⟩ gives z n = 0 for any n ∈ Z. Thus, the result holds in this case. We now assume x ̸ = 0 and we set m x = msd(⟨x n ⟩), m y = msd(⟨y n ⟩).

The bound property of |x|, resp. |y|, for order m x -1, resp. m y , and the denitions of m x , m y give

We derive that, for any n ≤ m x -m y -1, the integer sign(x) × sign(y) satises the bound property for x/y at order n:

If n ≥ m x -m y , then p x ≥ m x and p y ≥ m y + 1. Thus, according to Eq. ( 6), 

Denition 8 (Weak bound property). Let x ∈ R. A sequence ⟨x n ⟩ of integers is a loose representation of x if, for any n, the weak bound property of x by x n for order n is satised:

A sequence ⟨x n ⟩ of integers is a loose representation of x ∈ R without being a tight representation of x only if, for some n ∈ Z, x n = B n x ± 1, which implies that B n x is an integer. Taking this scenario into account requires to check each algorithm and property in the work of Ménissier-Morain. First of all, we check the addition algorithm. The result is that no change is needed.

Proposition 14 (addition). Let ⟨x n ⟩ and ⟨y n ⟩ be loose representations of x, y ∈ R. Then, the real x + y admits for loose representation the sequence ⟨z n ⟩ n∈N where

Proof. We show that the sequence ⟨z n ⟩ satises the weak bound property for any n.

By denition of ⌊.⌉, we have

Thanks to the weak bound property satised by ⟨x n ⟩ and ⟨y n ⟩, we derive

Equivalently,

We conclude that ⟨z n ⟩ satises the weak bound property.

Before dealing with multiplication, we need to extend the denition of the most signicant digit to loose representations. Unfortunately, doing so, we break some properties of the msd function described by [Mén95, Property 7] 5 . Indeed, it is no more true that | msd(⟨x n ⟩) + ⌊log B |x|⌋ | ≤ 1 and it is no more true that, for any n ≥ msd(⟨x n ⟩), |x n |/B n-msd⟨xn⟩ ∈ [1, 2B] as shown by the following counterexamples.

5 In [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF], the statement of the algorithm contains a typo but the proof is exactly the same as in [START_REF] Ménissier-Morain | Arithmétique exacte: conception, algorithmique et performances d'une implémentation informatique en précision arbitraire[END_REF].

⟨z n ⟩ n∈N where

Proof. Since, given a sequence ⟨z n ⟩ that is a loose representation of the real z, the sequences ⟨|z n |⟩ and ⟨-|z n |⟩ are loose representations of |z| and -|z|, we can assume without loss of generality that x > 0 and y > 0.

Firstly, observe that

and, if p x ≥ msd(⟨x n ⟩) or p y ≥ msd(⟨y n ⟩),

Indeed, by denition of p x and p y ,

if, for instance, p x ≥ msd(⟨x n ⟩), then p x +p y -n ≥ msd(⟨x n ⟩)+p y -n ≥ v.

We separate the rest of the proof in two cases, depending on the value of ζ 2 in Equation (47).

1. Let us assume that x n < xB n + 1 and y n < yB n + 1. Then, ζ 2 = 0 in Equation (47) for both terms x n and y n . In this case, we follow the proof in [START_REF] Ménissier-Morain | Arbitrary precision real arithmetic: design and algorithms[END_REF].

From the weak bound property for x and y at respective orders p x and p y , we derive that

Notice that in the case where x, resp. y, is the B-adic number B -px , resp. B -py , it is possible to have x px = 0, resp. y py = 0. Nevertheless, the reader can check that the above left inequality remains true.

The previous inequalities can be equivalently stated as follows:

1 + x px y py -(x px + y py ) B px+py-n ≤ B n x × y ≤ 1 + x px y py + (x px + y py ) B px+py-n , or B n x × y -1 + x px y py B px+py-n ≤

x px + y py B px+py-n .

Therefore, from the denition of ⌊.⌉, we get

It remains to show that

We distinguish three sub-cases (a) If p x < msd(⟨x n ⟩) and p y < msd(⟨y n ⟩), then, by denition of the most signicant digit (Eq. 53) and by denition of w,

.

(b) If, for instance, p x ≥ msd(⟨x n ⟩) and p y < msd(⟨y n ⟩), then, according to Equation (47) (taking into account the hypothesis ζ 2 = 0) and according to the denition of the most signicant digit,

Hence, by denition of p y and by Equation (54),

The last inequality comes from the denition of v.

(c) If both p x ≥ msd(⟨x n ⟩) and p y ≥ msd(⟨y n ⟩),

Thus, by denition of p x , p y and Equation (54),

x px + y py B px+py-n ≤ 4B B v ≤ 1 2 .

We have shown that, in the three sub-cases, Equation ( 55) is satised so we are done for the rst case.

2. We now assume that x n ≥ xB n + 1 or y n ≥ yB n + 1: for instance,

x n ≥ xB n + 1 (the other case is perfectly similar). Then the weak bound property for y at order p y gives x px -y py -2 B px+py-n .

(

We observe that, in Equation ( 56), the dierence between both bounds is less than or equal to 1/2: 2x px -2 B px+py-n ≤ 4B px-msd(⟨xn⟩)+1 B px+py-n ≤ 4B 1-v ≤ 1/2.

Thereby,

A ≤ B n x × y -1 + x px y py B px+py-n ≤ B, where B -A ≤ 1. We derive that B n x × y -1 + x px y py B px+py-n ≤ 1.

which establishes the result in the second case.