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NON COMPACT ESTIMATION OF THE CONDITIONAL DENSITY FROM

DIRECT OR NOISY DATA

F. COMTE AND C. LACOUR

Abstract. In this paper, we propose a nonparametric estimation strategy for the conditional
density function of Y givenX, from independent and identically distributed observations (Xi, Yi)1≤i≤n.
We consider a regression strategy related to projection subspaces of L2 generated by non com-
pactly supported bases. This �rst study is then extended to the case where Y is not directly
observed, but only Z = Y + ε, where ε is a noise with known density. In these two settings,
we build and study collections of estimators, compute their rates of convergence on anisotropic
space on non-compact supports, and prove related lower bounds. Then, we consider adaptive
estimators for which we also prove risk bounds.

Key words and phrases. Anisotropic Sobolev spaces. Conditional density. Deconvolution. Hermite
basis. Laguerre basis. Noisy data. Nonparametric estimation.
AMS 2020 Classi�cation. 62G05-62G07-62G08.

1. Introduction

The purpose of this paper is to estimate the conditional density of a response Y given a variable
X, with or without directly observing Y . We may assume that a noise ε spoils the response so
that only Z = Y +ε is available. From independent and identically distributed couples of variables
(Xi, Yi)1≤i≤n �rst, and (Xi, Zi)1≤i≤n in a second step, we estimate the conditional density π(x, y)
of Y given X de�ned by

π(x, y)dy = P(Y ∈ dy|X = x).

In this framework, the regression function E[Y |X = x] is often studied, but this information is
more restrictive than the entire distribution of Y given X, in particular when the distribution is
asymmetric or multimodal. Thus the problem of conditional density estimation is found in various
application �elds: meteorology, insurance, medical studies, geology, astronomy (see Nguyen (2018)
and Izbicki and Lee (2017) and references therein).

1.1. Bibliographical elements on conditional density estimation. The estimation of the
conditional density has often been studied with kernel strategies, initiated by Rosenblatt (1969).
The idea is to de�ne the estimator as a quotient of two kernel density estimators: we can cite among
others Youndjé (1996), Fan et al. (1996), Hyndman and Yao (2002), De Gooijer and Zerom (2003),
Fan and Yim (2004). Also with kernel tools, Ferraty et al. (2006) or Laksaci (2007) are interested
in the conditional density estimation whenX is a functional random variable. Using histograms on
partitions, Györ� and Kohler (2007) estimate the conditional distribution of Y given X consistently
in total variation, see also Sart (2017). Then several papers proposed strategies to estimate the
conditional density π as an anisotropic function under the Mean Integrated Squared error criterion.
They give oracle inequalities and adaptive minimax results. For instance Efromovich (2007)
uses a Fourier decomposition to construct a blockwise-shrinkage Efromovich-Pinsker estimator,
whereas Brunel et al. (2007) and Akakpo and Lacour (2011) use projection estimators and model
selection. Next, Efromovich (2010) developed a strategy relying on conditional characteristic
function estimation, and Chagny (2013) studied a warped basis estimator while Bertin et al. (2016)
used a Lepski-type method. Speci�c methods for higher dimensional covariates were recently
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developed by Fan et al. (2009), Holmes et al. (2010), Cohen and Le Pennec (2013), Izbicki and
Lee (2016), Otneim and Tjostheim (2018), Nguyen et al. (2021).

The problem of estimating the conditional density when the response is observed with noise
has been much less studied. Ioannides (1999) considers the estimation of the conditional density
of Y given X for strongly mixing processes when both X and Y are noisy, in order to estimate the
conditional mode. Using a quotient of deconvoluting kernel estimators, he establishes a conver-
gence rate for an ordinary smooth noise (see Assumption A5 below for the de�nition of ordinary
smooth and supersmooth noise) when x belongs to a compact set.

1.2. About non compact support speci�city. Our speci�c aim in this paper is to deal with
variables lying in a non-compact domain. Many authors assume that X and Y belong to a
bounded and known interval. In practice, this interval is estimated from the data and so it is
not deterministic. As explained in Reynaud-Bouret et al. (2011), "this problem is not purely
theoretical since the simulations show that the support-dependent methods are really a�ected in
practice by the size of the density support, or by the weight of the density tail". They show in
their paper that the minimax rate of convergence for density estimation may deteriorate when
the support becomes in�nite and they name it the "curse of support". This phenomenon had
been previously highlighted by Juditsky and Lambert-Lacroix (2004), and has been extended in
the mutivariate case by Goldenshluger and Lepski (2014). When using a R-supported basis for
density estimation, Belomestny et al. (2019) obtain a nonstandard variance order; however it is
associated to a nonstandard bias, which leads to classical rates; the same kind of result holds
for R+-Laguerre basis, see Comte and Genon-Catalot (2018). For regression function estimation,
Comte and Genon-Catalot (2020) introduce a speci�c method adapted to the non-compact case,
which allows them to obtain new minimax results; our study is inspired by their work.

1.3. Conditional density as a mixed regression-density framework. Here we study the
estimation of a conditional density: we can think of it as a regression issue in the �rst direction
and a density issue in the second. We show that the rate of convergence is again modi�ed in
the case of a non-compact support. To do this, we de�ne an estimator π̂(D)

m , m = (m1,m2), by
minimization of a least squares contrast on a subspace Sm with �nite dimension. This estimator
is a classical projection estimator expanded on an orthogonal basis (ϕj ⊗ ϕk)0≤j≤m1−1,0≤k≤m2−1.
The coe�cients are written with the same kind of formula as in standard linear regression, with
the use of matrix

Ψ̂m = Ψ̂m(X) =
1

n
tΦ̂m Φ̂m, where Φ̂m = (ϕj(Xi))1≤i≤n,0≤j≤m−1.

The point is to use speci�c bases adapted to the non-compact problem. Two cases are of special
interest: the case where the support is R, for which we use the Hermite basis, and the case
where the support is R+, for which we use the Laguerre basis. This last case is very useful in
various applications as reliability, economics, survival analysis. Note that we also consider the
trigonometric basis to include the compactly-supported case in our study. We detail the properties
of the Hermite and Laguerre bases in Section 2. In particular, these bases are associated to
Sobolev-type functional spaces, and this allows us to de�ne the smoothness of the target function.
Moreover a second motivation to study the non-compactly supported case is to allow an extension
to the noisy case, when Y is not directly observed. Indeed the classical use of Fourier transform
for nonparametric deconvolution requires to work on the whole real line. And actually these two
bases can be used in the deconvolution setting when considering noisy observations, see Mabon
(2017) for Laguerre deconvolution and Sacko (2020) for the Hermite case. Note that a conditional
density is an intrinsically anisotropic object, with possibly anisotropic smoothness. That is why
we use bases with di�erent cardinalities m1 in the x-direction and m2 in the y-direction, where
m = (m1,m2).
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1.4. Anisotropic (conditional) model selection. In this paper we compute the integrated
squared risk for our estimator, in particular the variance is of order m1

√
m2/n instead of m1m2/n

in the compact case. We derive the anisotropic rate of convergence for the conditional density
estimation with non-compact support. We recover classical rates in the compacted supported case,
and obtain di�erent ones in the Hermite and Laguerre cases, for which we provide lower bounds,
under some condition. Moreover, we tackle the problem of model selection: what is the better
choice for m1 and m2, and how to select it only from the data? Here we use the Goldenshluger-
Lepski method (Goldenshluger and Lepski, 2011), which consists in minimizing some penalized
di�erences criterion over a collection of models Mn. In our framework this collection has to
be random because of the very importance of the normal matrix Ψ̂m1 if we do not assume that
the distribution of X has a lower-bounded density, contrary to what is almost always supposed in
regression or conditional distribution issues. Instead, similarly to the non-compact regression case,
our results depend on a condition on Ψ̂m1 called stability condition, which bounds the operator
norm ‖Ψ̂−1

m1
‖op in term of n and m1. Here we improve the condition required by Comte and

Genon-Catalot (2020) for the adaptive procedure in the regression context. Despite this inherent
di�culty of the role of Ψ̂m1 , we provide an adaptive method with no unknown quantity, and easy
to implement. This is worthy since adaptive penalized methods in complex models often involve
unknown quantities in the penalty. For example Brunel et al. (2007) have a penalty which depends
on an upperbound on π, or on a lowerbound on the design density. Here we avoid it by a judicious
use of conditioning.

1.5. Extensions to noisy case. Last but not least, we extend all the previous results to the
noisy case, where Y is not observed, and only Y + ε is available. As usual, we assume that the
distribution of ε is known for identi�ability reasons. This brings us to a deconvolution issue in the
y-direction: see Meister (2009) for an overview on nonparametric deconvolution. We divide our
study of this noisy case in two parts. In the �rst part (see Section 4), we consider the case where
all the variable are positive, including the noise. In another part (see Section 5), we consider
variables in R, with the classical hypothesis that the characteristic function of the noise does
not vanish. We study both cases of ordinary smooth noise and supersmooth noise. For these
two noisy cases (variables in R+ or in R), we provide new estimators π̂(L)

m and π̂(H)
m and study

their integrated risk. The rates of convergence are more involved than in the direct (non-noisy)
case since they depend on the smoothness of the noise density. Indeed the smoother the noise
distribution, the smoother the distribution of Z, so that the true signal is di�cult to recover.
We also propose an adaptive model selection and we obtain again an oracle inequality, using an
entirely known penalty term. Thus (unlike Ioannides (1999)) our method reaches an automatic
squared bias-variance compromise, without requiring the knowledge of the regularity order of the
function to estimate.

1.6. Content of the paper. The paper is organized as follows. After describing in Section 2 the
study framework (notation, bases functions and their useful properties, regularity spaces, model
of the observations), Section 3 is devoted to the de�nition and study of the estimation procedure
in the direct case (the Yi's are observed). A risk bound is given in this setting, and the rates of
convergence of the estimators both in the usual and in new bases are given, together with Laguerre
and Hermite lower bounds as these cases correspond to nonstandard rates. Section 4 de�nes and
studies the estimator corresponding to the noisy case when all random variables are nonnegative
and the Laguerre basis is used, while the more general R-supported case is considered in Section 5,
relying on an estimator de�ned in the Hermite basis. Lastly, Section 6, states a general adaptive
result, based on a Goldenshluger-Lepski method, see Goldenshluger and Lepski (2011). A few
concluding remarks are stated in Section 7. All proofs are postponed in Section 8, while some
useful results are given in Appendix.
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2. Model and assumptions

2.1. Notation. We denote by f the density of the covariate X, so that the joint density of (X,Y )
is f(x)π(x, y). We consider the weighted L2 norm of a bivariate measurable function T , de�ned
by:

(1) ‖T‖2f :=

∫∫
T 2(x, y)f(x)dxdy

and the associated dot product 〈T1, T2〉f =
∫∫

T1(x, y)T2(x, y)f(x)dxdy. The usual (non-weighted)
L2 norm is denoted by ‖.‖2. We also introduce the empirical norm of T :

(2) ‖T‖2n :=
1

n

n∑
i=1

∫
T 2(Xi, y)dy.

Note that for any deterministic function T , E‖T‖2n = ‖T‖2f . For two functions x 7→ t(x) and
y 7→ s(y), de�ned on R or R+, we set (t⊗ s)(x, y) = t(x)s(y).

Let Mn be a subset of {1, . . . , n} × {1, . . . , n} and let m = (m1,m2) denote an element of
Mn. We construct a sequence (π̂m)m∈Mn of estimators of π, each π̂m belonging to a subspace
Sm = Sm1 ⊗ Sm2 where each linear space Smi , i = 1, 2 is generated by mi functions,

Smi = span{ϕj , j = 0, . . . ,mi − 1}, i = 1, 2,

and the ϕj are known orthonormal functions with respect to the standard L2-scalar product:

〈ϕj , ϕk〉 =

∫
ϕj(u)ϕk(u)du = δj,k.

Here δj,k is the Kronecker symbol, equal to 0 if j 6= k and to 1 if j = k. Thus Sm is spanned by
{ϕj ⊗ ϕk, j = 0, . . . ,m1 − 1, k = 0, . . . ,m2 − 1}. A key quantity associated to the basis (ϕj)j is

(3) L(m) = sup
t∈Sm

(
‖t‖2∞/‖t‖22

)
= sup

x∈R

m−1∑
j=0

ϕ2
j (x).

Clearly, for the tensorized basis, L(m) = L(m1)L(m2).
Lastly, for a non necessarily square matrixM with real coe�cients, we de�ne its operator norm

‖M‖op as
√
λmax(M tM) where tM is the transpose ofM and λmax denotes the largest eigenvalue.

Its Frobenius norm is de�ned by ‖M‖2F = Tr(M tM) where Tr(A) denotes the trace of the square
matrix A.

2.2. Bases. We give now the examples of basis functions we consider in the sequel: the trigono-
metric basis as an example of compactly supported basis for comparison with previous results,
and the Laguerre and Hermite bases which are respectively R+ and R-supported.
• Trigonometric basis functions are supported by [0, 1], with t0(x) = 1[0,1](x), and for j ≥ 1,

t2j−1(x) =
√

2 cos(2πjx)1[0,1](x), t2j(x) =
√

2 sin(2πjx)1[0,1](x). For the basis (tj)0≤j≤m−1, if m
is odd, then L(m) = m with L(m) de�ned by (3).

• The Laguerre functions are de�ned as follows:

`j(x) =
√

2Lj(2x)e−x1x≥0 with Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
.

The functions `j are orthonormal, and are bounded by
√

2 (see 22.14.12 in Abramowitz and Stegun
(1964)). So

∑m−1
j=0 `2j (x) ≤ 2m and as `j(0) =

√
2, it holds that the supremum value 2m is reached
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in 0 and L(m) = 2m. The convolution product of two Laguerre functions has the following useful
property (see 22.13.14 in Abramowitz and Stegun (1964)):

(4) `j ? `k(x) =

∫ x

0
`j(u)`k(x− u)du =

1√
2

(`j+k(x)− `j+k+1(x)), ∀x ≥ 0.

Moreover, by Comte and Genon-Catalot (2018), Lemma 8.2, if

(5) ∃C > 0, ∀x ≥ 0, E
(

1√
Y
|X = x

)
< C

then for j ≥ 1

(6) ∀x ≥ 0, E(`2j (Y )|X = x) =

∫ ∞
0

`2j (y)π(x, y)dy ≤ c√
j
.

For instance, condition (5) holds if Y = g(X) + U with g ≥ 0, X and U independent, and

EU−1/2 < ∞. Under (5), for m ≥ 1, for x ≥ 0, E
(∑m−1

j=0 ϕ2
j (Y )|X = x

)
≤ c′
√
m for c′ > 0 a

constant.

• The Hermite functions are de�ned as follows:

hj(x) =
1√

2jj!
√
π
Hj(x)e−x

2/2, with Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
).

The functions hj are orthonormal, and are bounded by 1/π1/4. The Hermite functions have the
following Fourier transform:

(7) ∀x ∈ R, h∗j (x) :=

∫
eixuhj(u)du =

√
2π(i)jhj(x), where i2 = −1.

Moreover, from Askey and Wainger (1965) or Markett (1984), it holds

(8) |hj(x)| ≤ Ce−ξx2
, for |x| ≥

√
2j + 1,

where C and ξ are positive constants independent of x and j, 0 < ξ < 1
2 . Note that with (7), h∗j

satis�es the same inequality, with constant multiplied by
√

2π.
Relying on these results, we can prove the following Lemma, (see Section 8.1):

Lemma 1. There exists a constant K > 0 such that supx∈R
∑m−1

j=0 h2
j (x) ≤ K

√
m, for any m ≥ 1.

As a consequence, for this basis L(m) ≤ K
√
m.

In the sequel, ϕj = tj or ϕj = `j or ϕj = hj . Note that, for simplicity, we tensorize twice the
same basis but we could mix two di�erent bases.

2.3. Anisotropic Laguerre and Hermite Sobolev spaces. To study the bias term, we assume
that π belongs to a Sobolev-Laguerre or a Sobolev-Hermite space. In dimension d = 1, these
functional spaces have been introduced by Bongioanni and Torrea (2009) to study the Laguerre
operator. The connection with Laguerre or Hermite coe�cients was established later and are
summarized in Comte and Genon-Catalot (2018). They were extended to multidimensional case
in Dussap (2021). Following the same idea, we de�ne Sobolev-Laguerre balls on Rd+ and Sobolev-
Hermite balls on Rd.

De�nition 1. (Sobolev-Laguerre or Hermite ball). Let L > 0 and s ∈ (0,+∞)d, we de�ne the
Sobolev-Laguerre with A = Rd+ or Sobolev-Hermite with A = Rd ball of order s = (s1, . . . , sd) and
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radius L by:

Ws(A,L) :=

g ∈ L2(A),
∑
k∈Nd

a2
k(g)ks ≤ L

 , ks = ks11 . . . ksdd ,

with ak(g) := 〈g, ϕk〉 = 〈g, ϕk1⊗· · ·⊗ϕkd〉, the Laguerre coe�cients of g if ϕk = `k = `k1⊗· · ·⊗`kd
or the Hermite coe�cients of g if ϕk = hk = hk1 ⊗ · · · ⊗ hkd .

We refer to Belomestny et al. (2019) for details about this space and the link with usual Sobolev
space. Note in particular that when d = 1 and s is an integer, g belongs to the Sobolev-Hermite
space if and only if g admits derivatives up to order s and the functions g, g′, . . . , g(s), xs−kg(k), k =
0, . . . , s− 1 belongs to L2(A)

Assuming that g belongs to Ws(A,L), the approximation term decreases to 0 with polynomial
rate. Indeed, for m = (m1, . . . ,md) ∈ (N∗)d and gm the orthogonal projection of g on Sm, we
have:

‖g − gm‖22 =
∑

k∈Nd,∃q,kq≥mq

a2
k(g) ≤

d∑
q=1

∑
k∈Nd,kq≥mq

a2
k(g)k

sq
q k
−sq
q ≤ L

d∑
q=1

m
−sq
q .

Remark. In the present bivariate context, mixed cases involving basis (`j)j≥0 in one direction
and basis (hj)j≥0 in the other, with coe�cients of a function g de�ned by ak(g) := 〈g, `k1 ⊗ hk2〉
would be possible. The link between regularity spaces de�ned by the rate of decay of the coef-
�cients and derivability properties is then undocumented, contrary to the "homogeneous" case
described in De�nition 1.

Supersmooth sub-classes. We mention here that in the context of Laguerre one-dimensional
developements, functions ψ de�ned as mixtures of Gamma densities constitute a class of super-
smooth functions in the sense that ‖ψ−ψm‖2 has exponential rate of decrease, see Lemma 3.9 in
Mabon (2017). Continuous mixtures are also studied in section 3.2 of Comte and Genon-Catalot
(2018).

We choose to be more explicit in the context of Hermite expansions. Let us de�ne

ψp,σ(x) =
x2p

σ2p+1
√

2πc2p

exp(− x2

2σ2
)

where c2p = E[N2p] for N ∼ N (0, 1), σ2 6= 1 (cases with σ2 = 1 have �nite developments in the
basis, and null bias for mi larger that p). It is proved in Belomestny et al. (2019) (Proposition
12) that, for i = 1, 2,

‖ψp,σ − (ψp,σ)mi‖2 ≤ C(p, σ2)m
p−1/2
i exp(−λ0mi), λ0 = log

[(
σ2 + 1

σ2 − 1

)2
]
> 0,

where (ψp,σ)mi are the orthogonal projections of ψp,σ on Smi .
By tensorization, we can thus consider the class WSSs,λ(L) for s = (s1, s2) and λ = (λ1, λ2)

for real numbers s1, s2 and positive λ1, λ2, of functions g such that,

(9) ‖g − gm‖2 ≤ L(m−s11 exp(−λ1m1) +m−s22 exp(−λ2m2))

where m = (m1,m2). Mixed cases with ordinary smooth decay in one direction and super smooth
in the other may also be possible.
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2.4. Direct and noisy cases. In the sequel, we consider two settings.
• In the direct case, we observe independent and identically distributed couples of variables

(Xk, Yk), k = 1, . . . n with the same law as (X,Y ). It is studied in section 3, under the Assumption

Assumption A1. The random variables (Xi, Yi)1≤i≤n are i.i.d. and the Xi, i = 1 . . . , n are
almost surely distinct.

• In the noisy case, the observations are (Xk, Zk), k = 1, . . . n with the same distribution as
(X,Z), where Z can be written as

Z = Y + ε.

This case is studied in Section 4 (nonnegative random variables and Laguerre basis) and Section 5
(general case and Hermite basis), under the additional assumption:

Assumption A2. The distribution of ε is known, ε is independent of X and independent of Y
conditionally to X.

Notice that this implies the independence of Y and ε.

In both direct and noisy settings, we estimate the function π on R×R or R+×R+. In the direct
case, we also consider the case of π estimated on [0, 1]× [0, 1] already studied in the literature for
comparison.

We state a general result of adaptive model selection gathering all cases in Section 6.

3. Minimum contrast estimation procedure without noise

3.1. De�nition of the contrast and estimators in the direct case. We consider the contrast
function

γ(D)
n (T ) := ‖T‖2n −

2

n

n∑
i=1

T (Xi, Yi),

where ‖T‖2n is de�ned by (2) and the estimator

(10) π̂
(D)
m := arg min

T∈Sm

γ(D)
n (T )

for m = (m1,m2). This contrast function has already been considered in Brunel et al. (2007). It
can be understood by computing its expectation, for any deterministic function T :

Eγ(D)
n (T ) = ‖T‖2f − 2

∫
T (x, y)π(x, y)f(x)dx = ‖T − π‖2f − ‖π‖2f ,

where ‖T‖2f is de�ned by (1), and by observing that it is minimum for T = π.

To give an explicit formula for π̂(D)
m , we de�ne

(11) Φ̂m = (ϕj(Xi))1≤i≤n,0≤j≤m−1, Ψ̂m =
1

n
tΦ̂m Φ̂m.

Note that Ψm := E(Ψ̂m) = (〈ϕj , ϕk〉f )0≤j,k≤m−1. We �nd, assuming that Ψ̂m1 is invertible,

π̂
(D)
m (x, y) =

m1−1∑
j=0

m2−1∑
k=0

â
(D)
j,k ϕj(x)ϕk(y), Â

(D)
m = (â

(D)
j,k )0≤j≤m1−1,0≤k≤m2−1

with

(12) Â
(D)
m =

1

n
Ψ̂−1
m1

tΦ̂m1Θ̂m2(Y), with Θ̂m(Y) = (ϕj(Yi))1≤i≤n,0≤j≤m−1 .

Remark. In the Laguerre and Hermite case, conditions ensuring a.s. inversibility of Ψ̂m1 are
weak: m1 ≤ n and a.s. distinct observations, see Comte and Genon-Catalot (2020). The same
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conditions work in the trigonometric case. These conditions are ensured by Assumption A1 and
n ≥ m1, taken for granted in the sequel.

3.2. Bound on the empirical MISE of π̂m. First we study the quadratic (empirical) risk of
the estimator π̂m, on a given space Sm = Sm1 ⊗ Sm2 as described in Sections 2.1 and 2.2.

We denote πm,n the orthogonal projection of π on Sm for the empirical norm, and πm the
orthogonal projection for the L2-norm. Then we can write

(13) ‖π̂(D)
m − π‖2n = ‖π̂(D)

m − πm,n‖2n + ‖πm,n − π‖2n,
and then note that

‖πm,n − π‖2n = inf
T∈Sm

‖T − π‖2n ≤ ‖πm − π‖2n.

Thus
E(‖πm,n − π‖2n) ≤ ‖πm − π‖2f .

Note that the following Lemma (proved in Section 8.2) is useful, here and further:

Lemma 2. Assume that Assumption A1 holds and n ≥ m1. Then it holds that E[π̂
(D)
m (Xi, y)|X] =

πm,n(Xi, y) =
∑m1−1

j=0

∑m2−1
k=0 [Dm]j,kϕj(Xi)ϕk(y) with

(14) Dm =
1

n
Ψ̂−1
m1

tΦ̂m1

(∫
ϕk(y)π(Xi, y)dy

)
1≤i≤n,0≤k≤m2−1

.

Using this result, we obtain the following risk bound (proved in Section 8.3).

Proposition 1. Let π̂m be de�ned by (10)-(12), and assume that Assumption A1 is ful�lled.
Then, for any m = (m1,m2) such that m1 ≤ n,

(15) E‖π̂(D)
m − π‖2n ≤ ‖π − πm‖2f +

m1L(m2)

n
.

If moreover (6) holds for Laguerre basis, then

(16) E‖π̂(D)
m − π‖2n ≤ ‖π − πm‖2f + c

m1
√
m2

n
,

where c is a positive constant.

The bound in (15) is obtained under weak conditions with explicit and optimal constants. It
involves a bias term ‖π−πm‖2f and a variance termm1L(m2)/n. Recall thatm1L(m2) = Φ2

0m1m2

for trigonometric basis (Φ2
0 = 1 for odd m2) or Laguerre basis (Φ2

0 = 2), and m1L(m2) ≤ cm1
√
m2

for Hermite basis. Consequently, the order of the variance is not the same for all bases.
Note that for any estimator π̂m, we can set π̂+

m(x, y) = sup(π̂m(x, y), 0) = π̂m(x, y)1π̂m(x,y)≥0,

and we have ‖π̂+
m − π‖2n ≤ ‖π̂+

m − π‖2n so the π̂+
m is well de�ned, nonnegative, and inherits of the

risk bound proved for π̂m.

Remark. The variance order m1
√
m2/n in the Hermite case is coherent with the following facts:

• when estimating a regression function b(·) in a model Vi = b(Ui) + ηi, for i.i.d. centered ηi
independent of Ui, from observations (Ui, Vi)1≤i≤n with a least square projection estimator
on the space Sm1 generated by h0, . . . , hm1−1, the resulting integrated variance is of order
m1/n, see Comte and Genon-Catalot (2020).
• when estimating a density fU from n i.i.d. observations U1, . . . , Un with a projection
estimator on Sm2 generated by h0, . . . , hm2−1, the integrated variance of the estimator is
of order

√
m2/n, see Comte and Genon-Catalot (2018);
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The same kind of property can hold in the Laguerre basis under the additional condition E(1/
√
Y |X) <

+∞ for the density estimator.

3.3. Anisotropic rates. In this setting, we obtain the following bound:

Proposition 2. Assume that the density f of X is bounded, and that π belongs to Ws(A,L)

with s = (s1, s2), see Section 2.3, and consider the estimator π̂
(D)
m de�ned by (10)-(12) under As-

sumption A1 in Laguerre or Hermite basis. Then choosing, in the Laguerre basis mo = (mo
1,m

o
2)

with

mo
1 ∝ n

s2
s1s2+s1+s2 and mo

2 ∝ n
s1

s1s2+s1+s2 ,

provides

E(‖π̂(D)
mo − π‖2n) = O(n−

s̄
s̄+2 ),

1

s̄
=

1

2

(
1

s1
+

1

s2

)
.

If s1 = s2 = s, the rate becomes n−
s
s+2 . If moreover (6) holds for Laguerre basis, or if the basis is

the Hermite basis, then choosing

(17) m?
1 ∝ n

s2
s1s2+s1/2+s2 and m?

2 ∝ n
s1

s1s2+s1/2+s2 ,

we obtain

E(‖π̂(D)
m? − π‖2n) = O

(
n
− 1

1+ 1
s1

+ 1
2s2

)
Note that these rates are di�erent from the rates on periodic Sobolev spaces associated to the

trigonometric basis (or on Besov spaces associated to piecewise polynomials basis), n−2ᾱ/(2ᾱ+2)

for regularity α = (α1, α2), that we may also recover, see Brunel et al. (2007); a lower bound
corresponding to this rate is proved in Lacour (2007).

We remark that, under the assumptions of Proposition 2, if π ∈ WSSs,λ(L), see (9), then
choosing m?

i ∝ [log(n)− (si + 3/2) log log(n)]/λi gives

E(‖π̂(D)
m? − π‖2n) = O

(
log3/2(n)

n

)
.

This is an almost parametric rate, which is classical over analytic classes for instance.

Proof of Proposition 2. We start from Inequality (15). For the bias term, we have, as f is
upper bounded by ‖f‖∞ < +∞, that

‖π − πm‖2f ≤ ‖f‖∞‖π − πm‖22.

We can then use regularity assumptions on π on Laguerre or Hermite Sobolev spaces to get
the order of the bias term, with the result recalled in Section 2.3. This gives ‖π − πm‖22 ≤
L[m−s11 +m−s22 ]. Therefore

E‖π̂(D)
m − π‖2n ≤ C(m−s11 +m−s22 +

m1m2

n
).

Let τ(m1,m2) = m−s11 +m−s22 + m1m2
n . Then solving in m1,m2 the sytem

∂τ(m1,m2)

∂m1
=
∂τ(m1,m2)

∂m2
= 0

gives the �rst result. The second result is obtained analogously, by using the new variance order
m1
√
m2/n. �
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We mention that we may prove a risk bound measured in L2(A, f(x)dxdy)-norm, in the spirit
of Comte and Genon-Catalot (2020), but this would require the so-called "stability condition"
(see also Cohen et al. (2013)), namely

(18) L(m1)‖Ψ−1
m1
‖op ≤ d0

log(n)

n
,

for a well de�ned constant d0; we omit this result for sake of conciseness. Condition (18) also
appears in the model selection setting, see Section 6.

3.4. Lower bound. As the rate obtained in Proposition 2 is not standard, we need to check if
it is optimal in some sense. The answer can be positive, but on Sobolev-Laguerre or Hermite
regularity spaces taking the weighted norm into account.
More precisely, we consider as weighted Laguerre or Hermite Sobolev spaces regularity spaces the
ones de�ned by:

(19) W f
s (A,R) = {g ∈ L2(A, f(x)dxdy),∀m,m1,m2 ≥ 1, ‖g − g(f)

m ‖2f ≤ R(m−s11 +m−s22 )}

where g(f)
m is the orthogonal projection in L2(A, f(x)dxdy) of g on Sm = Sm1 ⊗ Sm2 .

Note that the rates in Proposition 2 are unchanged by considering that π belongs toW f
s (A,R),

without requiring f bounded. On the other hand, for f bounded, Ws(A,L) ⊂ W f
s (A,R) with

R = L‖f‖∞.
We assume that the regularity orders (s1, s2) are integer. We denote byWs1(A1, R) the univari-

ate Laguerre-Sobolev or Hermite-Sobolev ball, where A1 = R+ in the Laguerre case, and A1 = R
in the Hermite case.

Theorem 1. Let R be a positive real and L be a large enough positive real. Then, for any density
f ∈ Ws1(A1, R) ∩ L∞(A1), there exists a constant c such that for any estimator π̂n, A = R2 or
A = R2

+ and for n large enough,

sup
π∈W f

s (A,L)

Eπ
[
‖π̂n − π‖2f

]
≥ cψ2

n

where

ψ2
n = n

− 1

1+ 1
s1

+ 1
2s2

if, for m?
1 = bψ−2/s1

n c,
(20) L(m?

1)‖Ψ−1
m?1
‖op ≤ ψ−2

n .

This result proves the optimality of the rate obtained in Proposition 2 for Hermite basis or
Laguerre basis under (6).

Let us comment condition (20). This condition is stronger than the stability condition, which
restricts the collection of models for the adaptive method and would appear for controlling the
integrated risk instead of the empirical one: see Comte and Genon-Catalot (2020) where it is also
proved that ‖Ψ−1

m1
‖op ≤ cmβ

1 if f has some polynomial decay. Recall that in the Laguerre case,

L(m1) = 2m1 and in the Hermite case, L(m1) = K
√
m1. Therefore, if in addition ‖Ψ−1

m1
‖op = cmβ

1 ,
then (20) is ful�lled if β + 1 ≤ s1 in the Laguerre case and if β + 1/2 ≤ s1 in the Hermite case.

4. Indirect Laguerre case

Now, the observations are (Xk, Zk) with Zk = Yk + εk, k = 1, . . . , n, under Assumptions A1
and A2. In this Section, we assume that Xk ≥ 0, Yk ≥ 0, εk ≥ 0 a.s., thus it is legit to use the
Laguerre basis, de�ned on R+ only. This framework of non-negative variables can be found in
many applications, in particular in survival analysis. Note in particular that ε is not centered.
More precisely we assume
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Assumption A3. The distribution of the noise ε admits a density with respect to the Lebesgue
measure, denoted by fε. Moreover X ≥ 0, Y ≥ 0, ε ≥ 0 a.s.

4.1. De�nition of the estimators in the noisy-Laguerre case. In this context, computations
rely on property (4), speci�cally ful�lled by the Laguerre functions, see also Comte et al. (2017)
and Mabon (2017) in regression and density context respectively. First we denote by πZ|X(x, z)
the conditional density of Z given X. We have

πZ|X(x, z) =

∫
π(x, z − u)fε(u)du.

This means that we can estimate the conditional density of Z given X and then invert the
convolution link to obtain the coe�cients of π.

Let us de�ne the matrix the m2 × m2 lower triangular matrix Gm2 = (gj,k)0≤j,k≤m2−1 with
coe�cients

gj,k =
1√
2

(〈fε, `j−k〉1j−k≥0 − 〈fε, `j−k−1〉1j−k−1≥0) .

The diagonal elements of Gm2 are 〈fε, `0〉/
√

2 =
∫ +∞

0 fε(u)e−udu > 0. As a consequence Gm2 is
invertible. Relying on equation (4), in this noisy model we �nd

πZ|X(x, z) =
∑
j≥0

∑
k≥0

〈πZ|X , `j ⊗ `k〉`j(x)`k(z)

=
∑
j≥0

∑
k≥0

∑
p≥0

〈π, `j ⊗ `k〉〈fε, `p〉`j(x)

∫
`k(z − u)`p(u)du

=
∑

j,k,p≥0

〈π, `j ⊗ `k〉〈fε, `p〉`j(x)2−1/2 (`p+k(z)− `p+k+1(z))

=
∑
j,k≥0

 k∑
p=0

2−1/2(〈fε, `k−p〉 − 〈fε, `k−p−1〉)〈π, `j ⊗ `p〉

 `j(x)`k(z)

=
∑
j,k≥0

[
(〈π, `j ⊗ `p〉)p≥0

tG∞
]
k
`j(x)`k(z)(21)

In other words, we have

πZ|X(x, z) =
∑
j,k≥0

 k∑
p=0

〈π, `j ⊗ `p〉gk,p

 `j(x)`k(z).

The partial L2-projection on S(∞,m2) of πZ|X can thus be written

(πZ|X)(∞,m2)(x, z) =
∑
j≥0

m2−1∑
k=0

[
(〈π, `j ⊗ `p〉)0≤p≤m2−1

tGm2

]
k
`j(x)`k(z),

thanks to the triangular structure of Gm2 . This explains why a two-step strategy gives in this
basis:

π̂
(L)
m (x, y) =

m1−1∑
j=0

m2−1∑
k=0

â
(L)
j,k `j(x)`k(y), Â

(L)
m = (â

(L)
j,k )0≤j≤m1−1,0≤k≤m2−1

with

(22) Â
(L)
m =

1

n
Ψ̂−1
m1

tΦ̂m1Θ̂m2(Z) tG−1
m2
, with Θ̂m(Z) = (`j(Zi))1≤i≤n,0≤j≤m−1

where Ψ̂m1 and Φ̂m1 are de�ned by (11).
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4.2. Bound on the empirical MISE of π̂
(L)
m . Let us note that

E[Â
(L)
m |X] =

1

n
Ψ̂−1
m1

tΦ̂m1E[Θ̂m2(Z)|X] tG−1
m2
.

A �rst useful property is given by the lemma:

Lemma 3. We have E[Θ̂m2(Z)|X] tG−1
m2

= E[Θ̂m2(Y)|X] and thus E[π̂
(L)
m |X] = πm,n.

Thanks to this result, we can prove the following risk bound (see Section 8.6).

Proposition 3. Assume that Assumptions A1, A2 and A3 hold. Then the estimator π̂
(L)
m de�ned

by (22) satis�es:

E(‖π̂(L)
m − π‖2n) ≤ ‖π − πm‖2f +

‖G−1
m2
‖2opm1L(m2)

n
where L(m2) = 2m2 here. If in addition the condition

(23) ∃C > 0,∀x, E
(

1√
Z
|X = x

)
< C

holds, then

(24) E(‖π̂(L)
m − π‖2n) ≤ ‖π − πm‖2f + C

‖G−1
m2
‖2opm1

√
m2

n
.

As Gm2 is lower triangular, its eigenvalues are given by the diagonal terms, which are all equal
to 2−1/2〈fε, `0〉 =

∫
R+ e

−ufε(u)du ≤ 1. Therefore

‖G−1
m2
‖2op = λmax(G−1

m2

tG−1
m2

) ≥ [λmax(G−1
m2

)]2 ≥ 1.

Therefore, as expected, the variance order in the inverse problem increases compared to the
variance order in the direct case. Moreover, it is proved in Lemma 3.4 of Mabon (2017) that
m2 7→ ‖G−1

m2
‖2op is increasing.

Note that condition (23) holds if condition (5) holds or if E(1/
√
ε) is �nite.

4.3. Rates in the noisy-Laguerre case. Now let us assess the order of the variance term and
more speci�cally of ‖G−1

m2
‖2op. Comte et al. (2017) show that we can recover the order of this

spectral norm, under the conditions on the density fε. First we de�ne an integer α ≥ 1 such that

dj

dxj
fε(x)|x=0 =

{
0 if j = 0, 1, . . . , α− 2
Bα 6= 0 if j = α− 1.

Consider the two following assumptions:

Assumption A4.

(1) fε ∈ L1(R+) is α times di�erentiable and f
(α)
ε ∈ L1(R+).

(2) The Laplace transform of fε, z 7→ E [e−zε] has no zero with non-negative real part except
for the zeros of the form ∞+ ib, b ∈ R.

It follows from Comte et al. (2017) that, under Assumptions A4, there exists positive constants
C and C ′ such that:

C ′m2α
2 ≤ ‖G−1

m2
‖2op ≤ Cm2α

2 .

For example a Gamma distribution with Γ(p, θ) satis�es Assumptions A4 for α = p (α = 1
for an exponential distribution). If fε follows a β(a, b) and b > a, then ‖G−1

m2
‖2op = O(m2a

2 ) (see
Mabon (2017)). On the contrary an Inverse Gamma distribution does not satisfy Assumptions
A4 because there exists no value of α such that the derivative is nonzero at 0.

These assumptions allow to deduce from Proposition 3 the following rates of convergence of the
estimator.
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Proposition 4. Assume that f is bounded. Under Assumptions A1�A4, for π ∈Ws(R2
+, L), and

m? = (m?
1,m

?
2) such that

m?
1 ∝ ns2/[(2α+1)s1+s2+s1s2] and m?

2 ∝ ns1/[(2α+1)s1+s2+s1s2]

then

E[‖π̂(L)
m? − π‖2] ≤ C(s, L, ‖f‖∞)n

−1/[ 2α+1
s2

+ 1
s1

+1]
.

5. Indirect Hermite case

Now we consider the general case where we observe (Xi, Zi)1≤i≤n from Zi = Yi + εi and all
variables take values in R. Then, we de�ne the estimator in the Hermite basis, and use standard
deconvolution methods in the y-direction, while still the regression strategy in the x-direction.

5.1. Assumption related to the noise. We denote by f∗ε the characteristic function of the
noise ε:

∀u ∈ R f∗ε (u) = E[e−iuε].

The following assumptions are required for f∗ε :

Assumption A5.

(1) Function f∗ε never vanishes, i.e. ∀u ∈ R, f∗ε (u) 6= 0.
(2) There exist α ∈ R, β > 0, 0 ≤ γ ≤ 2, (α > 0 if γ = 0), β < ξ if γ = 2 for ξ de�ned in (8),

and k0, k1 > 0 such that ∀u ∈ R,

k0(u2 + 1)−α/2 exp(−β|u|γ) ≤ |f∗ε (u)| ≤ k1(u2 + 1)−α/2 exp(−β|u|γ)

If γ = 0, the noise is called ordinary smooth, and super smooth for γ > 0, β > 0. For instance,
Laplace or Gamma distributions are ordinary smooth. On the other hand, Gaussian or Cauchy
noises are supersmooth.
Remark. If fε is a density, it is known that γ ≤ 2 (at least for α = 0).1

5.2. De�nition of the contrasts in the noisy-Hermite case. To begin with, we recall that
the Fourier transform t∗ of t ∈ Sm is de�ned by

t∗(u) =

∫
eixut(x)dx.

For a bivariate function T ∈ Sm, we denote by T (∗,2) the Fourier transform with respect to the
second variable :

T (∗,2)(x, u) =

∫
eiyuT (x, y)dy.

De�nition 2. For any function t ∈ Sm, we denote by vt the inverse Fourier transform of
t∗/f∗ε (−.), i.e.

vt(x) =
1

2π

∫
e−ixu

t∗(u)

f∗ε (−u)
du.

For any bivariate function T ∈ Sm, we denote by ΦT the following bivariate function

ΦT (x, z) =
1

2π

∫
e−iuz

T (∗,2)(x, u)

f∗ε (−u)
du

We can also write Φ
(∗,2)
T (x, u) = T (∗,2)(x, u)/f∗ε (−u).

1 According to Lukacs (1970), Theorem 4.1.1, the only characteristic function φ with φ(u) = 1+o(u2), as u→ 0,

is the function φ(u) = 1 for all u. This rules out characteristic functions of the form e−β|u|
γ

with γ > 2. This
implies that if |f∗ε (u)|2 = c exp(−2β|u|γ) then necessarily γ ≤ 2. Indeed, |f∗ε (u)|2 is the characteristic function of
a probability density function (it is a characteristic function of ε1 − ε′1 where ε′1 is an independent copy of ε1).



14 F. COMTE AND C. LACOUR

Note that vhk is well de�ned for all ordinary smooth noise distributions and for a wide range of
super-smooth distributions also, thanks to property (8) of the Hermite basis and Assumption A5-
(2). Moreover, the operators v and Φ are linked via the formula

Φt⊗s(x, y) = t(x)vs(y), Φhj⊗hk(x, y) = hj(x)vhk(y)

and are helpful because of the following properties.

∀t ∈ Sm, E[vt(Z1)|Y1] = t(Y1) and E[vt(Z1)|X1] =

∫
t(z)π(X1, z)dz,

∀T ∈ Sm E[ΦT (X1, Z1)|X1] = E[T (X1, Y1)|X1] =

∫
T (X1, z)π(X1, z)dz.

Now we can de�ne our estimators by:

(25) π̂
(H)
m = arg min

T∈Sm

γ(H)
n (T ),

with the following contrast γ(H)
n :

(26) γ(H)
n (T ) =

1

n

n∑
i=1

[∫
R
T 2(Xi, y)dy − 2ΦT (Xi, Zi)

]
.

The interest of this contrast can be easily understood by the computation of E[γ
(H)
n (T )]. Indeed,

using the previous properties, we can write

E[γ(H)
n (T )] = E[

∫
T 2(X, y)dy − 2ΦT (X,Z)] =

∫∫
T 2(x, y)f(x)dxdy − 2E[T (X,Y )]

=

∫∫
[(T (x, y)− π(x, y))2 − π2(x, y)]f(x)dxdy = ‖T − π‖2f − ‖π‖2f .

We obtain the following new estimator of π:

π̂
(H)
m (x, y) =

m1−1∑
j=0

m2−1∑
k=0

â
(H)
j,k hj(x)hj(y) Â

(H)
m = (â

(H)
j,k )0≤j≤m1−1,0≤k≤m2−1

with

(27) Â
(H)
m =

1

n
Ψ̂−1
m1

tΦ̂m1Υ̂m2(Z), with Υ̂m2(Z) =
(
vhj (Zi)

)
1≤i≤n,0≤j≤m2−1

,

with Ψ̂m1 , Φ̂m1 still de�ned by (11).
Note that if Xi ∈ R+ and Yi ∈ R we may use a product basis (`j⊗hk)j,k for estimation purpose.

The formulae above would still hold.

5.3. Bound on the empirical MISE of π̂
(H)
m and rates. Here we can prove the following

bound:

Proposition 5. Under Assumptions A1, A2 and A5, we have E[π̂
(H)
m |X] = πm,n and

E‖π̂(H)
m − π‖2n ≤ ‖π − πm‖2f +

m1∆(m2)

n
, where ∆(m2) =

1

π

(
4

∫
|u|≤
√

2m2

du

|f∗ε (u)|2
+ c

)
and c is a constant only depending on ξ (see (8)) and on f∗ε .

Note that, under Assumption A5, we can compute that

∆(m2) ≤ kmα+ 1−γ
2

2 exp[2β(2m2)γ/2].

By computations similar to the ones to prove Proposition 2, we obtain the following rates.
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Proposition 6. Assume that f is bounded and Assumptions A1, A2 and A5 hold.
Let π ∈Ws(R2, L).

(1) If γ = 0, then for m?
i ∝ nsi/[(α+1/2)s1+s2(s1+1)], i = 1, 2, we have

E‖π̂(H)
m? − π‖2n ≤ Cn

− 1

1+
α+1/2
s2

+ 1
s1 .

(2) If γ, β > 0, then for m?
1 = (log n)2s2/(γs1) and m?

2 = (1/2) (log n/4β)2/γ, we have

E‖π̂(H)
m? − π‖2n ≤ C (log n)−2s2/γ .

Let π ∈WSSs,λ(L), see (9), and γ = 0, then for m?
i = [log(n)− (α+ si) log log(n)]/λi, i = 1, 2

E‖π̂(H)
m? − π‖2n ≤ C

(log n)1+α

n
.

Here we �nd a usual phenomenon in deconvolution: if the noise is supersmooth and the target
function is only Sobolev, the rate of convergence is logarithmic. For more details about the rates
see Comte and Lacour (2013).

6. Adaptive estimators with Goldenschluger-Lepski method

In the previous sections, we have described collections of estimators π̂m and computed their
rates of convergence for optimal m = m?. Nevertheless these values of m? depend of the smooth-
ness s of the unknown conditional density π. Now we aim at selecting m in a purely data-driven
way. In this section, we de�ne adaptive estimators of the conditional density for the three settings
described previously, and prove a risk bound for them, showing that they realize the adequate
compromise between bias and variance.

More precisely, we de�ne the collections of models and estimators, and give a general result
with superscript (Sup) where (Sup) = (D) (direct case), or (Sup) = (L) (Laguerre-noisy case) or
(Sup) = (H) (Hermite-noisy case).

6.1. Collection of models. First we de�ne

(28) V (D)(m) = K0
m1L(m2)

n
, V (L)(m) = K0

m1L(m2)‖G−1
m2
‖2op

n
, V (H)(m) = K0

m1∆(m2)

n
,

where K0 is a numerical constant (K0 = 12(1 + ε) for ε > 0 suits, from the proof here).
These terms are of order of the variance of the corresponding estimators in the trigonometric

(L(m2) = m2 for odd m2) or in the Hermite case (L(m2) = K
√
m2). For the Laguerre case, we

have L(m2) = 2m2 while we know that, under condition (5) the optimal order is
√
m2. These

quantities will be used as penalty in a criterion to be minimized.
Then we consider the following collection of models

M(Sup)
n =

{
m ∈ {1, . . . , n}2, V (Sup)(m) ≤ 1, L(m1)‖Ψ−1

m1
‖op ≤

d?

2

n

log2(n)

}
where d? a well-chosen numerical constant such that d?/ log(n) ≤ d with d = (3 log(3/2)− 1)/10

and d? ≤ εC(ε2)/42, C(ε2) = min(
√

1 + ε2−1, 1). Recall that Ψm1 = E(Ψ̂m1) = (〈ϕj , ϕk〉f )0≤j,k≤m1−1.
Moreover, note that for a non-zero vector x = t(x0, . . . , xm1−1) ∈ Rm1 , then txΨm1x =∫

(
∑m1−1

j=0 xjϕj(x))2f(x)dx > 0 under our assumptions, so that Ψm1 is invertible.
We also introduce its empirical random counterpart

(29) M̂(Sup)
n = {m ∈ {1, . . . , n}2, V (Sup)(m) ≤ 1, L(m1)‖Ψ̂−1

m1
‖op ≤ d?

n

log2(n)
}.

Note that m1 7→ L(m1)‖Ψ̂−1
m1
‖op is increasing, and m 7→ V (Sup)(m) also, with respect to each

variable. Thus both collection are such that, if they contain m and m′, then they also contain
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m ∧m′ de�ned as component-wise minimum.

Comments.
1. The de�nition of the collection of models involves two constraints. The �rst one is standard
and means that the variance remains bounded. As this term is known, it is the same for the two
sets, M(Sup)

n and M̂(Sup)
n . The second constraint must be compared to the so-called "stability

condition" introduced by Cohen et al. (2013), Cohen et al. (2019) and also used in Comte and
Genon-Catalot (2020): L(m1)‖Ψ−1

m1
‖op ≤ d

2
n

log(n) . Obviously, it is here slightly reinforced. How-
ever, when dealing with adaptive estimation, Comte and Genon-Catalot (2020) had a stronger
condition: L(m1)‖Ψ−1

m1
‖2op ≤ d? n

log(n) . The improvement here is substantial, speci�cally for non

campactly supported bases where ‖Ψ−1
m1
‖op can be large. This is due to conditional preliminary

result. As the matrix Ψm is unknown, it has to be replaced by its empirical version and leads to
a random model collection M̂(Sup)

n .
2. Let us now mention speci�c properties in the direct case. If the support of the basis used for
estimation along x is compact, say [0, 1], then we can assume that f(x) ≥ f0, ∀x ∈ [0, 1]. In that
case ‖Ψ−1

m1
‖op ≤ 1/f0, see Comte and Genon-Catalot (2020). The collection of models no longer

need to involve neither ‖Ψ−1
m1
‖op nor ‖Ψ̂−1

m1
‖op and reduces to the standard one, and is similar to

Brunel et al. (2007). However, the penalty we obtain here, V (D)(m), does not depend on f0 nor
‖π‖∞, and this is an important improvement compared to this work.

Now we present constraints on the model collection.

Case (D). Assume that, for any c1 > 0, there exists Σ > 0 such that

(30)
∑

m∈{1,...,n}2
e−c1m1L(m2) ≤ Σ < +∞.

Case (L). Assume that, for any c1 > 0, there exists Σ > 0 such that

(31)
∑
m

‖G−1
m2
‖2ope

−c1m1L(m2) ≤ Σ < +∞

Case (H). Let δ(m2) := sup
|z|≤
√

2m2

1

|f∗ε (z)|2
+ c, and assume that, for any c1 > 0, there exists Σ > 0

such that

(32)
∑
m

δ(m2) exp

(
−c1m1

∆(m2)

δ(m2)

)
≤ Σ < +∞.

Let us comment these conditions. First, condition (30) if ful�lled for all our bases.
Under Assumption A4, ‖G−1

m2
‖2op = O(m2α

2 ) and condition (31) is ful�lled.
Now we discuss condition (32). In the ordinary smooth case where δ = γ = 0,

δ(m2) exp(−c1m1
∆(m2)

δ(m2)
) ∼ mα

2 exp(−c1m1
√
m2)

is indeed summable and condition (32) is ful�lled. In the super-smooth case, with Lemma 1 in

Comte and Lacour (2013), ∆(m2) ∼ Cm
α+(1−γ)/2
2 exp(βm

γ/2
2 ); then condition (32) is ful�lled if

γ < 1/2; otherwise, the penalty must be slightly changed, see Comte and Lacour (2013).
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6.2. General adaptive estimator and result.

Assumption A6. The conditional density π of Y given X is bounded on R2.

For m = (m1,m2) and m′ = (m′1,m
′
2), we de�ne Sm∧m′ := (Sm1 ∩ Sm′1)⊗ (Sm2 ∩ Sm′2) where

Smi∧m′i := Smi ∩ Sm′i is well de�ned with trigonometric, Laguerre and Hermite bases, which are
our leading examples. These collections are regular and nested in each direction, with at most one
model for each mi. Thus Sm∧m′ is well de�ned, and we denote by π̂(Sup)

m,m′ the minimum contrast
estimator on Sm∧m′ .

We propose a model selection relying on the strategy initiated by Goldenshluger and Lepski
(2011) adapted to model selection in the spirit of Chagny (2013). Let then

A(Sup)(m) = sup
m′∈M̂(Sup)

n

(
‖π̂(Sup)

m′,m − π̂
(Sup)
m′ ‖

2
n − V (Sup)(m′)

)
+

with V (Sup)(m′) de�ned by (28) and a+ = max(a, 0) denotes the positive part of a. We select the
model m with the following rule

m̂(Sup) = arg min
m∈M̂(Sup)

n

{
A(Sup)(m) + V (Sup)(m)

}
.

Our �nal estimator is
π̃(Sup) = π̂

(Sup)

m̂(Sup) .

The �rst result is obtained conditionally on X1, . . . , Xn.

Theorem 2. Assume that Assumption A1 and A6 hold. Assume that condition (30) for (Sup) =
(D), Assumptions A2, A3 and condition (31) for (Sup) = (L) and Assumptions A2, A5 and

condition (32) for (Sup) = (H) hold. Then, for any m ∈ M̂(Sup)
n , we have a.s.

(33) E
[
‖π − π̃(Sup)‖2n |X

]
≤ C inf

m∈M̂(Sup)
n

{‖π − πm,n‖2n + V (Sup)(m)}+
C ′

n
,

where C is a numerical constant and C ′ is a constant which depends on ‖π‖∞, Σ, but not on
(X1, . . . , Xn) nor on n.

The same assumptions and the method of proof used in the direct case lead to the following
non conditional result.

Corollary 1. Under the Assumptions of Theorem 2, for any m ∈M(Sup)
n , we have

(34) E‖π − π̃(Sup)‖2n ≤ C inf
m∈M(Sup)

n

{‖π − πm‖2f + V (Sup)(m)}+
C ′′

n
,

where C is a numerical constant and C ′′ is a constant which depends on ‖π‖∞, Σ.

Inequality (34) states that the estimator is adaptive in the sense it performs a squared-bias/variance

compromise over the collectionM(Sup)
n , up to the multiplicative constant C and the additive neg-

ligible term C”/n. In the direct case (D), and for compactly supported basis along x, optimal
rates are then automatically reached under f(x) ≥ f0 > 0 for x in the support, see section 3.3.
Compared to previous results, we mention that the penalty term does not depend on f0 nor ‖f‖∞.
Moreover, the additional novelty is that more general non compact supports are admitted, with
size of the model collection depending on ‖Ψ−1

m1
‖op. The optimal rate may not be reached, de-

pending on the order of this term. We emphasize that the results obtained in the noisy cases are
entirely new.
Note that a compactly supported basis case be used in x and the Hermite basis for deconvolving
in y, even if this would make the bias term of particular feature.
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7. Concluding remarks

We have proposed in this paper adaptive estimation method for the conditional density of Y
givenX = x, when the observations are (Xi, Yi)1≤i≤n so-called direct observations, or (Xi, Zi)1≤i≤n
with Zi = Yi + εi so-called noisy observations. The di�culty in the noisy case, is to use the same
basis in the two directions, the regression direction in x and the density direction with decon-
volving in y. Indeed, until recently, e�cient regression methods with projection spaces rely on
compactly supported bases, while deconvolution requires Fourier transforms and inversions which
are more convenient with non compact support. This is why we �rst studied conditional density
estimation in the direct case with possibly non compactly supported bases, which, thanks to the
ideas in Comte and Genon-Catalot (2020) and Goldenshluger and Lepski (2011) conducted to new
risk bounds for simple (�xed projection space) and adaptive estimator. Then, our two extensions
to noisy cases, either with R+-supported or with real valued variables, lead to new estimators and
risk bounds.

Now, the most standard basis for deconvolution is the sinus cardinal basis, ϕm,j =
√
mϕ(mx−j)

for j ∈ Z, and ϕ(x) = sin(πx)/(πx), and the question of using this basis in regression setting
remains unsolved. Another extension would be to take into account multidimensional covariates;
this has been studied in deconvolution setting with Laguerre basis in Dussap (2021), but the
regression context is to be considered.

8. Proofs

8.1. Proof of Lemma 1. We �rst use (7) to write

m−1∑
j=0

h2
j (x) =

1

2π

m−1∑
j=0

|h∗j (x)|2

Now by splitting h∗j (x) =
∫
|u|≤
√

2m+1 e
iuxhj(u)du+

∫
|u|>
√

2m+1 e
iuxhj(u)du and using (8), we get,

for j ≤ m− 1,

|h∗j (x)|2 ≤ 2〈hj , ei·x1|.|≤√2m+1〉
2 + 2C

∫
|u|>
√

2m+1
e−ξu

2
du.

Thus
m−1∑
j=0

h2
j (x) ≤ 2‖1|.|≤√2m+1‖

2
2+2Cme−ξ(2m+1)/2

∫
e−ξu

2/2du = 2
√

2m+ 1+
2
√

2πC√
ξ

Cme−ξ(2m+1)/2.

This implies the result of Lemma 1 with K = K(C, ξ).�

8.2. Proof of Lemma 2. We compute πm,n, the orthogonal projection of π w.r.t. the empirical
scalar product. We have

πm,n(Xi, y) =

m1−1∑
j=0

m2−1∑
k=0

[Dm]j,kϕj(Xi)ϕk(y)

where Dm is such that 〈πm,n−π, ϕj⊗ϕk〉n = 0 for 0 ≤ j ≤ m1−1 and 0 ≤ k ≤ m2−1. Therefore
writing that the terms

〈π, ϕj ⊗ ϕk〉n =
1

n

n∑
i=1

∫
π(Xi, y)ϕj(Xi)ϕk(y)dy =

1

n

n∑
i=1

ϕj(Xi)

∫
π(Xi, y)ϕk(y)dy

=
1

n

[
tΦ̂m1

(∫
π(Xi, y)ϕk(y)dy

)
1≤i≤n,0≤k≤m2−1

]
j,k

,
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and

〈πm,n, ϕj ⊗ ϕk〉n =
1

n

n∑
i=1

m1−1∑
j′=0

m2−1∑
k′=0

[Dm]j′,k′ϕj(Xi)ϕj′(Xi)

∫
ϕk(y)ϕk′(y)dy

=

m1−1∑
j′=0

[Dm]j′,k
1

n

n∑
i=1

ϕj(Xi)ϕj′(Xi) =

m1−1∑
j′=0

[Dm]j′,k[Ψ̂m1 ]j,j′ =
[
Ψ̂m1Dm

]
j,k

are equal, implies formula (14). The last part of the result follows from(∫
ϕk(y)π(Xi, y)dy

)
1≤i≤n,0≤k≤m2−1

= E
(

Θ̂m2(Y)|X
)
, X = (X1, . . . , Xn),

where Θm2(Y) is de�ned by (12). �

8.3. Proof of Proposition 1. We start from equation (13). By elementary algebraic computa-
tion, we �nd

‖π̂m − πm,n‖2n =
1

n

n∑
i=1

∫
(π̂m(Xi, y)− πm,n(Xi, y))2 dy

=
1

n

n∑
i=1

∫ ∑
j,k

([Âm]j,k − [Dm]j,k)ϕj(Xi)ϕk(y)

2

dy

=
1

n

m2−1∑
k=0

n∑
i=1

m1−1∑
j=0

([Âm]j,k − [Dm]j,k)ϕj(Xi)

2

= Tr
[
t(Âm −Dm)Ψ̂m1(Âm −Dm)

]
.

Replacing the matrix coe�cients by their formula, we get

‖π̂m−πm,n‖2n =
1

n2
Tr
[
t
(

Θ̂m2(Y)− E
(

Θ̂m2(Y)|X
))

Φ̂m1Ψ̂−1
m1

tΦ̂m1

(
Θ̂m2(Y)− E

(
Θ̂m2(Y)|X

))]
.

Then

(35) E
[
‖π̂m − πm,n‖2n|X

]
=

1

n2

n∑
i=1

m2−1∑
j=0

E
[
(ϕj(Yi)− E(ϕj(Yi)|Xi))

2 |Xi

]
[Φ̂m1Ψ̂−1

m1

tΦ̂m1 ]i,i.

Now, note that [Φ̂m1Ψ̂−1
m1

tΦ̂m1 ]i,i ≥ 0 as it is of the form teiMei = ‖M1/2ei‖22 for M positive
de�nite. Under (6) for Laguerre basis or by Lemma 1 for Hermite basis,

m2−1∑
j=0

E
[
(ϕj(Yi)− E(ϕj(Yi)|Xi))

2 |Xi

]
≤

m2−1∑
j=0

E
(
ϕ2
j (Yi)|Xi

)
≤ c
√
m2

and

E
[
‖π̂m − πm,n‖2n|X

]
≤ c
√
m2

n2
Tr
(

Φ̂m1Ψ̂−1
m1

tΦ̂m1

)
= c

m1
√
m2

n
,

as Tr
(

Φ̂m1Ψ̂−1
m1

tΦ̂m1

)
= nTr

(
Φ̂m1( tΦ̂m1Φ̂m1)−1 tΦ̂m1

)
= nTr

(
( tΦ̂m1Φ̂m1)−1 tΦ̂m1Φ̂m1

)
= nm1.

In the general case, we have
m2−1∑
j=0

E
[
(ϕj(Yi)− E(ϕj(Yi)|Xi))

2 |Xi

]
≤

m2−1∑
j=0

E
(
ϕ2
j (Yi)|Xi

)
≤ L(m2),
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and the variance bound becomes:

E
[
‖π̂m − πm,n‖2n|X

]
≤ m1 L(m2)

n
. �

8.4. Proof of Theorem 1.

8.4.1. Core of the proof. We give the proof both in the Laguerre and Hermite settings. For the
Laguerre case, we note that the assumption E(1/

√
Y |X = x) ≤ C for all x is ful�lled for π0 and

πθ below. This is why the lower bound concerns the rate associated with the variance m1
√
m2/n,

in both cases.

As usual in the proofs of lower bounds, we build a set of conditional densities (πθ) quite distant
from each other in terms of the weighted L2-norm, but whose distance between the resulting
models is small. Let us de�ne in the Laguerre case

π0(x, y) = π0(y) =
1

2
1[0,1](y) + PL(y)1]1,2](y)

where PL is a polynomial, PL(y) ≥ 0 on [1, 2],
∫ 2

1 PL(y)dy = 1/2, PL(1) = 1/2, PL(2) = 0,

P
(k)
L (1) = P

(k)
L (2) = 0 for k = 1, . . . , s2 + 1. In the Hermite setting, we de�ne

π0(x, y) = π0(y) = PH(y)1[−1,0[(y) +
1

2
1[0,1](y) +QH(y)1]1,2](y),

where PH(−1) = QH(2) = 0, PH(0) = QH(1) = 1/2, PH , QH ≥ 0 on [−1, 0] and [1, 2] respectively,∫ 0
−1 PH =

∫ 2
1 QH = 1/4, and P (k)

H (−1) = P
(k)
H (0) = Q

(k)
H (1) = Q

(k)
H (2) = 0, for k = 1, . . . , s2 + 1.

Next, we assume without loss of generality that
√
m2 is an integer and we de�ne in both

Laguerre and Hermite cases

πθ(x, y) = π0(x, y) +
δ√
n

m1−1∑
j=0

√
m2−1∑
k=0

Aj,kϕj(x)(m
1/4
2 ψ(

√
m2y − k)),

with
A = Ψ−1/2

m1
Θ, Θ = (θj,k)1≤j≤m1,1≤k≤

√
m2
∈ {0, 1}m1

√
m2 ,

for δ > 0 small enough, where ψ is a bounded function with support [0, 1] such that
∫ 1

0 ψ(u)du = 0.
Moreover, we assume that ψ admits continuous bounded derivatives up to order s2. We use the
notation Θ for the matrix with m1 lines and

√
m2 columns, and θ = vec(Θ) the associated vector

with m1
√
m2 components. Lastly, ϕj = `j in the Laguerre case and ϕj = hj in the Hermite case.

Now we shall use the following lemmas:

Lemma 4. (a) Assume that f ∈Ws1(A1, R)∩L∞(A1). Then there exists L > 0 such that π0

is a conditional density belonging to W f
s (A,L).

(b) If δ ≤ 1/(4‖ψ‖∞) and

(36) L(m1)‖Ψ−1
m1
‖op ≤ n/(m1

√
m2)

then for all θ ∈ {0, 1}m1
√
m2, πθ is a conditional density.

(c) If δ is small enough, for all θ ∈ {0, 1}m1
√
m2 , πθ − π0 belongs to W f

s (A,L) as soon as

ms1+1
1

√
m2

n
= O(1) and

m1m
s2+1/2
2

n
= O(1).

Then under the conditions of this lemma, the πθ's are conditional densities belonging to
W f

s (A, 4L).

Lemma 5. We denote ρ(θ, θ′) the Hamming distance between θ and θ′.
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• For all θ ∈ {0, 1}m1
√
m2, the Kullback divergence between the distribution of (Xi, Yi)1≤i≤n

under πθ and under π0 veri�es K(P⊗nθ , P⊗n0 ) ≤ 2δ2‖ψ‖2m1
√
m2.

• For all θ, θ′ ∈ {0, 1}m1
√
m2, ‖πθ − πθ′‖2f = δ2‖ψ‖2n−1ρ(θ, θ′)

We also recall the Varshamov-Gilbert bound (see Lemma 2.9 p.104 in Tsybakov (2009)), that
we use with K = m1

√
m2.

Lemma 6. Fix some even integer K > 0. There exists a subset {θ(0), . . . , θ(M)} of {0, 1}K and a

constant a1 > 0, such that θ(0) = (0, . . . , 0), ρ(θ(j), θ(l)) ≥ a1K, for all 0 ≤ j < l ≤ M. Moreover
it holds that, for some constant a2 > 0, M ≥ 2a2K .

Thus we have built M conditional densities πθ(0) , . . . , πθ(M) belonging to W f
s (A,R) such that

‖πθ(j) − πθ(k)‖2f ≥ (δ2‖ψ‖2a1)m1
√
m2/n and K(P⊗n

θ(j) , P
⊗n
θ(0)) ≤ [2δ2‖ψ‖2/a2 log(2))] log(M). To

conclude it is su�cient to use Theorem 2.5 of Tsybakov (2009) with m1 = m?
1 and m2 = m?

2 given
by (17). Note that m?

1

√
m?

2/n = ψ2
n is the targeted rate, and that condition (36) comes from (20).

�

8.4.2. Proof of Lemma 5. We start by proving Lemma 5 since its provides a computation useful
for the proof of Lemma 4.
• Note that the Kullback divergence between the distribution of (Xi, Yi)1≤i≤n under πθ and under
π0 veri�es

K(P⊗nθ , P⊗n0 ) ≤ nK(Pθ, P0) ≤ nχ2(πθ, π0)

where χ2(πθ, π0) =
∫∫ (πθ(x,y)−π0(x,y))2

π0(x,y) f(x)dxdy. Now, using that the ψ(
√
m2y − k) have disjoint

supports

χ2(πθ, π0) =

∫ ∫ 1

0

(πθ(x, y)− π0(x, y))2

π0(x, y)
f(x)dxdy

= 2
δ2

n

∫ ∫ 1

0

m1−1∑
j=0

√
m2−1∑
k=0

Aj,kϕj(x)m
1/4
2 ψ(

√
m2y − k)

2

f(x)dxdy

= 2
δ2

n

∫ √m2−1∑
k=0

m1−1∑
j=0

Aj,kϕj(x)

2

f(x)dx

∫ 1

0

√
m2ψ

2(
√
m2y − k)dy

= 2
δ2

n
‖ψ‖2

√
m2−1∑
k=0

m1−1∑
j,`=0

Aj,kA`,k[Ψm1 ]j,`

= 2
δ2

n
‖ψ‖2Tr[ tAΨm1A] = 2

δ2

n
‖ψ‖2Tr[ tΘΘ]

≤ 2δ2‖ψ‖2
m1
√
m2

n
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• Let θ and θ′ in {0, 1}m1
√
m2 . Denoting A′ = Ψ

−1/2
m1 Θ′,

‖πθ − πθ′‖2f =
δ2

n

∫∫ m1−1∑
j=0

√
m2−1∑
k=0

(Aj,k −A′j,k)ϕj(x)m
1/4
2 ψ(

√
m2y − k)

2

f(x)dxdy

=
δ2

n

∑
j,`,k

(Aj,k −A′j,k)(A`,k −A′`,k)[Ψm1 ]j,`

∫ √
m2ψ

2(
√
m2y − k)dy

=
δ2‖ψ‖2

n

∑
j,`,k

(Aj,k −A′j,k)[Ψm1 ]j,`(A`,k −A′`,k)

=
δ2‖ψ‖2

n
Tr
[
t(A−A′)Ψm1(A−A′)

]
=

δ2‖ψ‖2

n
Tr
[
t(Θ−Θ′)(Θ−Θ′)

]
=
δ2‖ψ‖2

n
ρ(θ, θ′).(37)

8.4.3. Proof of Lemma 4.
In this proof, for univariate functions g, h, the dot product 〈g, h〉f means naturally

∫
g(x)h(x)f(x)dx

and 〈g, h〉 =
∫
g(y)h(y)dy.

(a) First,
∫
π0(x, y)dy = 1 and π0(x, y) ≥ 0, ∀x, y and thus π0 is a conditional density. Now we

have to prove that the functions π0 are in W f
s (A,L) for some L > 0.

In the Laguerre case, it is proved in Belomestny et al. (2017), proof of Lemma 4.1, that y 7→
π0(y) is in the univariate Sobolev-Laguerre space Ws2(R+, L2) for some L2 > 0. In the Hermite
case, we use the property proved in Bongioanni and Torrea (2006) stating that the functions in
the usual Sobolev space

W s2 = {f ∈ L2(R), f admits derivatives up to order s, such that
s2∑
j=0

‖f (j)‖2 < +∞}

which have compact support also belong to Sobolev-Hermite space with same regularity index.
Thus, y 7→ π0(y) is in Ws2(R, L2) for some L2 > 0.

Now we want to prove that (x, y) 7→ π0(x, y) = π0(y) belongs to the weighted bivariate space
W f

s (A,L) for some L > 0, for s = (s1, s2). We have

(π0)
(f)
(`1,`2)(x, y) =

`1−1∑
j=0

`2−1∑
k=0

a
(f)
j,kϕj(x)ϕk(y)

avec ceux de la de�nition des πθ with

a
(f)
j,k = 〈π0, ϕj ⊗ ϕk〉f =

(∫
ϕj(x)f(x)dx

)(∫
π0(y)ϕk(y)dy

)
.
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Thus, it holds

‖π0 − (π0)
(f)
(`1,`2)‖

2
f =

∫∫  ∑
j≥`1 or k≥`2

a
(f)
j,kϕj(x)ϕk(y)

2

f(x)dxdy

≤ 2

∫ ∑
j≥0

〈ϕj , 1〉fϕj(x)

2

f(x)dx

∫ ∑
k≥`2

〈π0, ϕk〉ϕk(y)

2

dy

+2

∫ ∑
j≥`1

〈ϕj , 1〉fϕj(x)

2

f(x)dx

∫ ∑
k≥0

〈π0, ϕk〉ϕk(y)

2

dy

Now we have
∫ (∑

k≥0〈π0, ϕk〉ϕk(y)
)2
dy =

∫
π2

0(y)dy which is a �nite constant, and the regularity

of π0 implies
∫ (∑

k≥`2〈π0, ϕk〉ϕk(y)
)2
dy ≤ L2`

−s2
2 . On the other hand,

∫ ∑
j≥`1

〈ϕj , 1〉fϕj(x)

2

f(x)dx ≤ ‖f‖∞
∫ ∑

j≥`1

〈ϕj , 1〉fϕj(x)

2

dx = ‖f‖∞
∑
j≥`1

〈ϕj , f〉2.

The assumption that f ∈Ws1(A1, R) implies
∑

j≥`1〈ϕj , f〉
2 ≤ R`−s11 . In the same way

∫ ∑
j≥0

〈ϕj , 1〉fϕj(x)

2

f(x)dx ≤ ‖f‖∞‖f‖22 ≤ ‖f‖2∞.

Gathering all terms yields ‖π0 − (π0)
(f)
(`1,`2)‖

2
f ≤ L(`−s11 + `−s22 ) and thus π0 ∈ W f

s (A,L) for some
L > 0 depending on ‖f‖∞, R, s2.

(b) Since
∫
ψ = 0, we have

∫
πθ(x, y)dy = 1 and we prove hereafter that πθ(x, y) ≥ 0.

In the Laguerre case, for y ∈]1, 2], πθ(x, y) = PL(y) ≥ 0. Analogously, πθ(x, y) ≥ 0 for
y ∈ R \ [0, 1] in the Hermite case. Now, take y ∈ [0, 1] in both Laguerre and Hermite case. If for
k0 = 0, . . . ,

√
m2 − 1, y ∈ [k0/

√
m2, (k0 + 1)/

√
m2[, then

πθ(x, y) =
1

2
+

δ√
n

m1−1∑
j=0

Aj,k0ϕj(x)(m
1/4
2 ψ(

√
m2y − k0)).

Denoting ~ϕ(x) = t(ϕ0(x), . . . , ϕm1−1(x)) and ‖.‖ the Euclidean norm on Rm1 , we have∣∣∣∣πθ(x, y)− 1

2

∣∣∣∣ =
δm

1/4
2√
n

∣∣∣∣∣∣
m1−1∑
j=0

Aj,k0ϕj(x)ψ(
√
m2y − k0)

∣∣∣∣∣∣
≤ δm

1/4
2√
n
‖ψ‖∞|[ tA~ϕ(x)]k0 | =

δm
1/4
2√
n
‖ψ‖∞|[ tΘΨ−1/2

m1
~ϕ(x)]k0 |

≤ δm
1/4
2√
n
‖ψ‖∞| tek0

tΘΨ−1/2
m1

~ϕ(x)| ≤ δm
1/4
2√
n
‖ψ‖∞‖Θek0‖‖Ψ−1/2

m1
‖op

√
L(m1)

≤ δm
1/4
2√
n
‖ψ‖∞

√√√√L(m1)‖Ψ−1
m1‖op

m1∑
j=1

θ2
j,k0
≤ δ‖ψ‖∞

√
m1
√
m2L(m1)‖Ψ−1

m1‖op

n
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Then, if L(m1)‖Ψ−1
m1
‖op ≤ n/(m1

√
m2)∣∣∣∣πθ(x, y)− 1

2

∣∣∣∣ ≤ δ‖ψ‖∞
which is less than 1/4 for δ ≤ 1/(4‖ψ‖∞). For this choice of δ, we deduce πθ(x, y) ≥ 0.

(c) Next, it remains to prove that h := πθ − π belongs to W f
s (A,L); this will give πθ ∈

W f
s (A, 4L). We note that for any function h,

‖h− hf(`1,`2)‖f = ‖h− hf(`1,∞) + hf(`1,∞) − h
f
(`1,`2)‖f = ‖h− hf(`1,∞) + Π⊥fS`1⊗S∞

(h− hf(∞,`2))‖f

≤ ‖h− hf(`1,∞)‖f + ‖h− hf(∞,`2)‖f .

So, to check that πθ − π0 belongs to W f
s (A,L), we prove

(i) `s11 ‖(πθ − π0)− (πθ − π0)
(f)
(`1,∞)‖

2
f ≤ L/2 and (ii) `s22 ‖(πθ − π0)− (πθ − π0)

(f)
(∞,`2)‖

2
f ≤ L/2.

Let us �rst check condition (i). For the case `1 ≤ m1, we write, using the same computation
as (37),

‖(πθ − π0)− (πθ − π0)
(f)
(`1,∞)‖

2
f ≤ ‖πθ − π0‖2f =

δ2‖ψ‖2

n
Tr[ tΘ Θ] ≤ δ2‖ψ‖2

m1
√
m2

n

so that

`s11 ‖(πθ − π0)− (πθ − π0)
(f)
`1,∞‖

2
f ≤ δ2‖ψ‖2

`s11 m1
√
m2

n
≤ δ2‖ψ‖2

ms1+1
1

√
m2

n
= O(1)

if m
s1+1
1

√
m2

n = O(1). On the other hand, for m1 < `1, then (πθ − π0)
(f)
`1,∞ = πθ − π0 and

‖(πθ − π0)− (πθ − π0)
(f)
`1,∞‖

2
f = 0.

Therefore, (i) is proved.
Now, we turn to condition (ii). Let us be more precise on the computation of the projection of

πθ − π0. We have

(πθ − π0)
(f)
(`1,`2)(x, y) =

`1−1∑
j=0

`2−1∑
k=0

Bj,kϕj(x)ϕk(y)

with for 0 ≤ p ≤ `1 − 1, 0 ≤ q ≤ `2 − 1,

〈πθ − π0, ϕp ⊗ ϕq〉f = 〈(πθ − π0)
(f)
`1,`2

, ϕp ⊗ ϕq〉f .

Denote ψm2,k(y) = m
1/4
2 ψ(

√
m2y − k). The left hand side is equal to

〈πθ − π0, ϕp ⊗ ϕq〉f =
δ√
n

m1−1∑
j=0

√
m2−1∑
k=0

Aj,k〈ϕj , ϕp〉f 〈ψm2,k, ϕq〉

=
δ√
n

m1−1∑
j=0

√m2−1∑
k=0

Aj,k〈ψm2,k, ϕq〉

 〈ϕj , ϕp〉f .
On the other hand

〈(πθ − π0)
(f)
(`1,`2), ϕp ⊗ ϕq〉f =

`1−1∑
j=0

`2−1∑
k=0

Bj,k〈ϕj , ϕp〉fδk,q =

`1−1∑
j=0

Bj,q〈ϕj , ϕp〉f .
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So, for `1 ≥ m1, a solution is

Bj,q =
δ√
n

√
m2−1∑
k=0

Aj,k〈ψm,k, ϕq〉 for j = 0, . . . ,m1 − 1, and Bj,q = 0 for j = m1, . . . , `1 − 1.

We obtain for `1 ≥ m1,

(πθ − π0)
(f)
(`1,`2)(x, y) =

m1−1∑
j=0

`2−1∑
k=0

Bj,kϕj(x)ϕk(y)

=
δ√
n

m1−1∑
j=0

`2−1∑
k=0

√m2−1∑
p=0

Aj,p〈ψm2,p, ϕk〉

ϕj(x)ϕk(y)

=
δ√
n

m1−1∑
j=0

√
m2−1∑
p=0

Aj,p

(
`2−1∑
k=0

〈ψm2,p, ϕk〉ϕk(y)

)
ϕj(x)

=
δ√
n

m1−1∑
j=0

√
m2−1∑
p=0

Aj,pϕj(x)ψ
(S`2 )
m2,p (y),

where

ψ
(S`2 )
m2,p (y) =

`2−1∑
k=0

〈ψm2,p, ϕk〉ϕk(y)

is the L2(dy)-orthogonal projection on S`2 of y 7→ ψm2,p(y). Thus, with `1 = +∞, we obtain

‖(πθ − π0)− (πθ − π0)
(f)
(∞,`2)‖

2
f = ‖(πθ − π0)− (πθ − π0)

(f)
(m1,`2)‖

2
f

=
δ2

n
‖
m1−1∑
j=0

√
m2−1∑
p=0

Aj,pϕj(x)(ψm2,p − ψ
(S`2 )
m2,p )‖2f

=
δ2

n

√
m2−1∑
k,k′=0

[ tΘΘ]k,k′〈ψm2,k − ψ
(S`2 )

m2,k
, ψm2,k′ − ψ

(S`2 )

m2,k′
〉

=
δ2

n

m1−1∑
j=0

∥∥∥∥∥∥∥
√
m2−1∑
k=0

θj,kψm2,k −

√m2−1∑
k=0

θj,kψm2,k

(S`2 )
∥∥∥∥∥∥∥

2

=
δ2

n

m1−1∑
j=0

‖ξj − ξ
(S`2 )

j ‖2

where ξj =
∑√m2−1

k=0 θj,kψm2,k and ξ
(S`2 )

j is the L2-orthogonal projection of ξj on S`2 . We denote,
for a function h ∈ L2(R+) (Laguerre) or h ∈ L2(R) (Hermite) by

|h|2s :=
∑
k≥0

ksa2
k(h), ak(h) := 〈h, ϕk〉.

Then

‖ξj − ξ
(S`2 )

j ‖2 =
∑
p≥`2

a2
p(ξj) ≤ `

−s2
2

∑
p≥`2

a2
p(ξj)p

s2 ≤ `−s22 |ξj |2s2 .
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For the Laguerre case, we use the result proved in (Belomestny et al., 2016, Appendix), stating
that the norm |ξj |s2 is equivalent to ‖|ξj‖|s2 where ‖|ξj‖|2s2 :=

∑s2
r=0 ‖ξj‖2r and

‖ξj‖2r =

∥∥∥∥∥∥xr/2
r∑
q=0

(
r

q

)
ξ

(q)
j

∥∥∥∥∥∥
2

and here ξ(q)
j is the derivative of order q of ξj . For r ≤ s2, we have

‖ξj‖2r =

∫ xr/2 r∑
q=0

(
r

q

)√m2−1∑
k=0

θj,km
1/4
2 m

q/2
2 ψ(q)(

√
m2x− k)

2

dx

≤ 2r
r∑
q=0

(
r

q

)∫ +∞

0

xr/2 √m2−1∑
k=0

θj,km
1/4+q/2
2 ψ(q)(

√
m2x− k)

2

dx

= 2r
r∑
q=0

(
r

q

)√m2−1∑
k=0

∫ +∞

0
xrθ2

j,km
q+1/2
2 (ψ(q)(

√
m2x− k))2dx

as the ψ(q)(
√
m2x− k), ψ(q)(

√
m2x− k′) have disjoint supports for k 6= k′. As they are bounded,

we get, for r ≤ s2,

‖ξj‖2r ≤ 2rm
r+1/2
2

r∑
q=0

(
r

q

)√m2−1∑
k=0

∫ (k+1)/
√
m2

k/
√
m2

xr(ψ(q)(
√
m2x− k))2dx

≤ 2rcm
r+1/2
2

r∑
q=0

(
r

q

)√m2−1∑
k=0

∫ (k+1)/
√
m2

k/
√
m2

xrdx = 2rcm
r+1/2
2

r∑
q=0

(
r

q

)
1

r + 1
=

c22r

r + 1
m
r+1/2
2

≤ Cm
s2+1/2
2 .

For the Hermite case, we use the result in (Belomestny et al., 2019, Sec. 4.1) (see Proposition
4 and its proof, Sec. 7.4), which states that, for a compactly supported function h, the squared
norm |h|2s is equivalent to the squared norm N2

s (h) := ‖h‖2 + ‖h′‖2 + · · · + ‖h(s)‖2. Here ξj is
compactly supported and it is easy to see that the same computation as above yields for r ≤ s2,
‖ξ(r)
j ‖2 ≤ ‖ψ(r)‖2∞m

r+1/2
2 ≤ ‖ψ(r)‖2∞m

s2+1/2
2 . Consequently, in both Laguerre and Hermite cases,

we obtain

`s22 ‖(πθ − π0)− (πθ − π0)
(f)
∞,`2‖

2
f ≤

δ2

n

m1−1∑
j=0

|ξj |2s2 ≤ C(ψ, s2)
δ2

n
m1m

s2+1/2
2 ,

and this quantity is bounded using our assumption. �

8.5. Proof of Lemma 3. We check that the coe�cients of the n×m2 matrix, E(Θ̂m2(Z)|X) =

(E(`j(Zi)|Xi))1≤i≤n,0≤j≤m2−1 are the same as those of E(Θ̂m2(Y)|X) tGm2 . On the one hand, by
using Formula (21), we have for i = 1, . . . , n and j = 0, . . . ,m2 − 1,
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E(`j(Zi)|Xi) =

∫
πZ|X(Xi, z)`j(z)dz

=
∑
j′,k≥0

 k∑
p=0

〈π, `j′ ⊗ `p〉gk,p

 `j′(Xi)

∫
`k(z)`j(z)dz︸ ︷︷ ︸

=δj,k

=
∑
j′≥0

 j∑
p=0

〈π, `j′ ⊗ `p〉gj,p

 `j′(Xi)

=
∑
j′≥0

[
(〈π, `j′ ⊗ `p〉)0≤p≤m2−1

tGm2

]
j
`j′(Xi)(38)

as
[
(〈π, `j′ ⊗ `p〉)p tG∞

]
j

=
[
(〈π, `j′ ⊗ `p〉)0≤p≤m2−1

tGm2

]
j
for j = 0, . . . ,m2 − 1.

On the other hand,[
E(Θ̂m2(Y)|X)

]
i,j

= E(`j(Yi)|Xi) =

∫
π(Xi, z)`j(z)dz

=

∫ ∑
j′,k≥0

〈π, `j′ ⊗ `k〉`j′(Xi)`k(z)`j(z)dz =
∑
j′≥0

〈π, `j′ ⊗ `j〉`j′(Xi).

Therefore[
E(Θ̂m2(Y)|X) tGm2

]
i,j

=

m2−1∑
p=0

E(`p(Yi)|Xi)[Gm2 ]j,p =

m2−1∑
p=0

∑
j′≥0

〈π, `j′ ⊗ `p〉`j′(Xi)[Gm2 ]j,p

=
∑
j′≥0

m2−1∑
p=0

〈π, `j′ ⊗ `p〉[Gm2 ]j,p

 `j′(Xi)

=
∑
j′≥0

[
(〈π, `j′ ⊗ `p〉)0≤p≤m2−1

tGm2

]
j
`j′(Xi).(39)

The equality of (38) and (39) gives the result. �

8.6. Proof of Proposition 3. It follows from Lemma 3 that E(π̂
(L)
m |X) = πm,n and

‖π̂(L)
m − π‖2n = ‖π̂(L)

m − πm,n‖2n + ‖πm,n − π‖2n.

The last term is the announced bias term, and we consider the variance term:

‖π̂(L)
m − πm,n‖2n = ‖π̂(L)

m − E(π̂
(L)
m |X)‖2n

=
1

n2
Tr
[
G−1
m2

t
(

Θ̂m2(Z)− E
(

Θ̂m2(Z)|X
))

Φ̂m1Ψ̂−1
m1

tΦ̂m1

(
Θ̂m2(Z)− E

(
Θ̂m2(Z)|X

))
tG−1

m2

]
.

Recall that for the matrix-norms: ‖A‖2F = Tr( tAA) (Frobenius norm) and ‖A‖2op = λmax(tAA)

(operator norm), we have ‖AB‖2F ≤ ‖A‖2op‖B‖2F . Thus

Tr
[
G−1
m2

t
(

Θ̂m2(Z)− E
(

Θ̂m2(Z)|X
))

Φ̂m1Ψ̂−1
m1

tΦ̂m1

(
Θ̂m2(Z)− E

(
Θ̂m2(Z)|X

))
tG−1

m2

]
≤ ‖G−1

m2
‖2opTr

[
t
(

Θ̂m2(Z)− E
(

Θ̂m2(Z)|X
))

Φ̂m1Ψ̂−1
m1

tΦ̂m1

(
Θ̂m2(Z)− E

(
Θ̂m2(Z)|X

))]
.
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Therefore, we obtain, analogously to (35),

E[‖π̂(L)
m − πm,n‖2n|X] ≤

‖G−1
m2
‖2opL(m2)m1

n
.

This gives the �rst result.
Next it is easy to see that similarly to (35), we have

E
[
‖π̂(L)

m − πm,n‖2n|X
]
≤
‖G−1

m2
‖2op

n2

n∑
i=1

m2−1∑
j=0

E
[
(ϕj(Zi)− E(ϕj(Zi)|Xi))

2 |Xi

]
[Φ̂m1Ψ̂−1

m1

tΦ̂m1 ]i,i.

and condition (23) implies that
∑m2−1

j=0 E
[
(ϕj(Zi)− E(ϕj(Zi)|Xi))

2 |Xi

]
≤ C√m2, with the same

argument as for (5). As [Φ̂m1Ψ̂−1
m1

tΦ̂m1 ]i,i ≥ 0 a.s., this yields (24). As Y ≥ 0 and ε ≥ 0,

E
(

1√
Z
|X = x

)
≤ min

(
E
(

1√
Y
|X = x

)
,E(1/

√
ε)

)
,

which explains the comment. �

8.7. Proof of Proposition 5. We write again

‖π̂(H)
m − π‖2n = ‖π − πm,n‖2n + ‖π̂(H)

m − πm,n‖2n

and note that E
(

Υ̂m2(Z)|X
)

=
(∫
π(Xk, y)hj(y)dy

)
1≤k≤n,0≤j≤m2−1

so that E(π̂
(H)
m |X) = πm,n.

Next,

‖π̂(H)
m − πm,n‖2n

=
1

n2
Tr
[
t
(

Υ̂m2(Z)− E
(

Υ̂m2(Z)|X
))

Φ̂m1Ψ̂−1
m1

tΦ̂m1

(
Υ̂m2(Z)− E

(
Υ̂m2(Z)|X

))]
.

We have

E
[
‖π̂(H)

m − πm,n‖2n|X
]

=
1

n2

n∑
k=1

m2−1∑
j=0

E
[(
vhj (Zk)− E(vhj (Zk)|Xk)

)2 |Xk

]
[Φ̂m1Ψ̂−1

m1

tΦ̂m1 ]k,k.

Now, let us study
∑m2−1

j=0 E
[(
vhj (Zk)− E(vhj (Zk)|Xk)

)2 |Xk

]
m2−1∑
j=0

(
vhj (Zk)− E(vhj (Zk)|Xk)

)2
=

m2−1∑
j=0

(
1

2π

∫
[e−iZku − E(e−iZku|Xk)

h∗j (u)

f∗ε (−u)
du

)2

=

m2−1∑
j=0

(
ij√
2π

∫
hj(u)

[e−iZku − E(e−iZku|Xk)]

f∗ε (−u)
du

)2

with (7)

≤ 1

2π

m2−1∑
j=0

(∫
hj(u)

[e−iZku − E(e−iZku|Xk)]

f∗ε (−u)
(1|u|≤

√
2m2

+ 1|u|>
√

2m2
)du

)2

Now, since (hj)0≤j≤m2−1 is an orthonormal basis,

m2−1∑
j=0

(∫
hj(u)

[e−iZku − E(e−iZku|Xk)]

f∗ε (−u)
1|u|≤

√
2m2

du

)2

≤
∫ ∣∣∣∣e−iZku − E(e−iZku|Xk)

f∗ε (−u)
1|u|≤

√
2m2

∣∣∣∣2 du
≤ 4

∫
|u|≤
√

2m2

du

|f∗ε (u)|2
.
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On the other hand, using (8), we have, for |u| >
√

2m2 =
√

(2m2 − 1) + 1 >
√

2j + 1 for any
j ≤ m2 − 1, |hj(u)| ≤ Ce−ξu2

and thus, as, under Assumption A5, η = ξ − β > 0,

m2−1∑
j=0

(∫
hj(u)

[e−iZku − E(e−iZku|Xk)]

f∗ε (−u)
1|u|>

√
2m2

du

)2

≤
m2−1∑
j=0

4

(∫
|u|>
√

2m2

Ce−(β+η)u2

|f∗ε (u)|
du

)2

≤ C ′
m2−1∑
j=0

e−4ηm2

(∫
Ce−(β+η/2)u2

|f∗ε (u)|
du

)2

≤ c,

for a constant c depending on fε but not on m2.
Gathering the two parts, we obtain

m2−1∑
j=0

E
[(
vhj (Zk)− E(vhj (Zk)|Xk)

)2 |Xk

]
≤ ∆(m2)

and thus

E
[
‖π̂(H)

m − πm,n‖2n|X
]
≤ 1

n2

n∑
k=1

∆(m2)[Φ̂m1Ψ̂−1
m1

tΦ̂m1 ]k,k =
m1∆(m2)

n
. �

8.8. Proof of Theorem 2. In this proof, we shall denote by EX[ · ] = E[ · |X].

Let m be an arbitrary element of M̂(Sup)
n . First, we write

‖π̃(Sup) − π‖2n ≤ 3
(
‖π̂(Sup)

m̂ − π̂(Sup)
m̂,m ‖

2
n + ‖π̂(Sup)

m̂,m − π̂
(Sup)
m ‖2n + ‖π̂(Sup)

m − π‖2n
)

≤ 3((A(Sup)(m) + V (Sup)(m̂)) + (A(Sup)(m̂) + V (Sup)(m)) + ‖π̂(Sup)
m − π‖2n)

≤ 6A(Sup)(m) + 6V (Sup)(m) + 3‖π̂(Sup)
m − π‖2n.

The bound on E(‖π̂(Sup)
m −π‖2n) follows from Proposition 1 for (Sup) = (D) and Proposition 3 for

(Sup) = (L) or Proposition 5 for (Sup) = (H). The term V (Sup)(m) has in each case the order
of the variance.

We have to study A(m). Thus the result of Theorem 2 follows if we can prove the result:

Proposition 7. Under the assumptions of Theorem 2, conditionnally to X = (X1, . . . , Xn), we
have

EX(A(Sup)(m)) ≤ 12‖πm,n − π‖2n +
C

n
.

Proof of Proposition 7. We decompose A(Sup)(m) as follows

A(Sup)(m) ≤ 3 sup
m′∈M̂(Sup)

n

(‖π̂(Sup)
m′ − πm′,n‖2n − V (Sup)(m′)/6)+ + 3 sup

m′∈M̂(Sup)
n

‖πm′,n − π(m,m′),n‖2n

+3 sup
m′∈M̂(Sup)

n

(‖π̂(Sup)
m,m′ − π(m,m′),n‖2n − V (Sup)(m′)/6)+

and Proposition 7 holds if we have

(a) EX

[
sup

m′∈M̂(Sup)
n

(‖π̂(Sup)
m′ − πm′,n‖2n − V (Sup)(m′)/6)+

]
≤ C

n

(b) EX

[
sup

m′∈M̂(Sup)
n

(‖π̂(Sup)
m,m′ − π(m,m′),n‖2n − V (Sup)(m′)/6)+

]
≤ C

n

(c) sup
m′∈M̂(Sup)

n

‖πm′,n − π(m,m′),n‖2n ≤ ‖π − πm,n‖2n.
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We state here a Lemma proved in Section 8.9.

Lemma 7. ‖π̂(Sup)
m − πm,n‖n = sup

T∈Bm

< π̂
(Sup)
m − πm,n, T >n= sup

T∈Bm

ν(Sup)
n (T ),

where Bm = {T ∈ Sm, ‖T‖n = 1} and

Case (D) ν(D)
n (T ) =

1

n

n∑
i=1

[T (Xi, Yi)− EX(T (Xi, Yi))],

Case (L) ν(L)
n (T ) =

1

n

n∑
i=1

[ΨT (Xi, Zi)− EX(ΨT (Xi, Zi))],

where for T (x, y) =
∑

j,k bj,kϕj(x)ϕk(y) and B = (bj,k)0≤j≤m1−1,0≤k≤m2−1,

(40) ΨT (x, z) =

m1−1∑
j=0

m2−1∑
k=0

[BG−1
m2

]j,kϕj(x)ϕk(z).

Case (H) ν(H)
n (T ) =

1

n

n∑
i=1

[ΦT (Xi, Zi)− EX(ΦT (Xi, Zi))],

where ΦT (x, z) is de�ned by De�nition 2.

Moreover, note that the following result holds.

Lemma 8. If T ∈ Sm then ‖T‖2∞ ≤ L(m1)L(m2)‖T‖22, and ‖T‖22 ≤ ‖Ψ̂−1
m1
‖op‖T‖2n.

Proof of Lemma 8. If T (x, y) =
∑

j,k bjkϕj(x)ϕk(y), then

|T (x, y)|2 ≤
∑
j,k

b2j,k
∑
j

ϕ2
j (x)

∑
k

ϕ2
k(y) ≤ ‖T‖22L(m1)L(m2),

which gives the �rst inequality. Moreover, we have ‖T‖22 = Tr(tBB), where B is the matrix (bjk),
and ‖T‖2n = Tr(tBΨ̂m1B). Then

‖T‖22 ≤ ‖Ψ̂−1/2
m1
‖2op‖T‖2n ≤ ‖Ψ̂−1

m1
‖op‖T‖2n,

which is the second inequality.�

Proof of (a).
First, using Lemma 7,

T(Sup)
1 := EX

[
sup

m′∈M̂(Sup)
n

(
‖π̂(Sup)

m′ − πm′,n‖2n −
V (Sup)(m′)

6

)
+

]

≤
∑

m′∈M̂(Sup)
n

EX

[(
‖π̂(Sup)

m′ − πm′,n‖2n −
V (Sup)(m′)

6

)
+

]

≤
∑

m∈M̂(Sup)
n

[(
sup

T∈Sm,‖T‖n=1
[νn(T )(Sup)]2 − V (Sup)(m)

6

)
+

]
.

Now we consider separately the three di�erent cases.
Direct case (D). We use Talagrand inequality recalled in Lemma 9, conditionally to X. Re-
member that we have already proved (see the proof of Proposition 1), that

E

( sup
T∈Bm

1

n

n∑
i=1

[T (Xi, Yi)− EX(T (Xi, Yi))]

)2

|X

 = E
[
‖π̂m − πm,n‖2n|X

]
≤ m1L(m2)

n
:= H2.
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Moreover
1

n

n∑
i=1

E(T 2(Xi, Yi)|X) ≤ ‖π‖∞‖T‖2n

so that v = ‖π‖∞. To compute b, we use Lemma 8:

‖T‖2∞ ≤ L(m1)L(m2)‖Ψ̂−1
m1
‖op ≤ d?

nL(m2)

log2(n)
=: b2

Thus we apply Lemma 9 (Talagrand) so that for K0 ≥ 12(1 + 2ε2) we get

T(D)
1 ≤ c0(‖π‖∞)

n

∑
m∈{1,...,n}2

(
e−c1m1L(m2) +

L(m2)

log2(n)
e−c2 log(n)

√
m1

)
.

1

n
,

where c2 = 2εC(ε2)K1/(7
√
d?). Thus, use that

∑
m1≥1 e

−κ√m1 ≤ Se−κ to get
∑

m1≥1 e
−c2 log(n)

√
m1 ≤

S/nc2 and choose d? such that c2 ≥ 2 i.e.
√
d? ≤ εC(ε2)K1/7. So, using that for m ∈ M̂(D)

n ,
L(m2) ≤ n/K0, the result holds for a well chosen constant d? under condition (30).

Noisy-Laguerre case (L).
Now we can apply Talagrand Inequality (Theorem 9) to

ν(L)
n (T ) =

1

n

n∑
i=1

[ΨT (Xi, Zi)− EX(ΨT (Xi, Zi))] .

First, we get from the proof of Proposition 3,

E

(
sup

T∈Sm,‖T‖n=1
ν2
n(T )|X

)
= E(‖π̂(L)

m − πm,n‖2n|X) ≤
m1L(m2)‖G−1

m2
‖2op

n
:= H2.

Next we have

1

n

n∑
i=1

E[Ψ2
T (Xi, Zi)|X] =

1

n

n∑
i=1

∫
Ψ2
T (Xi, z)πZ|X(Xi, z)dz ≤

‖π‖∞
n

n∑
i=1

∫
Ψ2
T (Xi, z)dz,

as πZ|X(x, z) =
∫
π(x, z − u)fε(u)du ≤ ‖π‖∞. Thus,

1

n

n∑
i=1

E[Ψ2
T (Xi, Zi)|X] ≤ ‖π‖∞

n

n∑
i=1

∫ ∑
j,k

[BG−1
m2

]j,kϕj(Xi)ϕk(z)

2

dz

= ‖π‖∞
∑
j,j′,k

[BG−1
m2

]j,k[BG−1
m2

]j′,k[Ψ̂m1 ]j,j′ = ‖π‖∞Tr[ tG−1
m2

tBΨ̂m1BG−1
m2

]

≤ ‖π‖∞‖G−1
m2
‖2opTr[ tBΨ̂m1B] = ‖π‖∞‖G−1

m2
‖2op‖T‖2n

which implies that v = ‖π‖∞‖G−1
m2
‖2op. Lastly we write

‖ΨT ‖∞ = sup
x,z
|
∑
j,k

[BG−1
m2

]j,kϕj(x)ϕk(z)| ≤
√
L(m1)L(m2)‖BG−1

m2‖2F

≤
√
L(m1)L(m2)‖G−1

m2‖2op‖B‖2F
and by Lemma 8,

‖B‖2F = Tr[ tBB] = ‖T‖22 ≤ ‖Ψ̂−1
m1
‖op‖T‖2n.



32 F. COMTE AND C. LACOUR

Therefore, we get

‖ΨT ‖2∞ ≤ L(m1)L(m2)‖G−1
m2
‖2op‖Ψ̂−1

m1
‖op‖T‖2n ≤

d? n

log2(n)
L(m2)‖G−1

m2
‖2op := b2

by using that m ∈ M̂(L)
n (second constraint).

Therefore, by applying Talagrand Inequality (Theorem 9) that for K0 ≥ 12(1 + 2ε2), we get

T(L)
1 ≤ c′0(‖π‖∞)

n

∑
m∈M̂n

(
‖G−1

m2
‖2ope

−c′1m1L(m2) +
L(m2)‖G−1

m2
‖2op

log2(n)
e−c2 log(n)

√
m1

)
,

where c2 is the same as in case (D). So, using that m ∈ M̂(m)
n , L(m2)‖G−1

m2
‖2op ≤ n/K0 (�rst

constraint), the result holds if (31) holds.

Case Noisy-Hermite (H).

We now proceed to the application of Talagrand inequality to ν
(H)
n (T ) conditionally to X =

(X1, . . . , Xn), where we already saw that

EX sup
T∈Sm,‖T‖n=1

[ν(H)
n (T )]2 = EX‖π̂

(H)
m − EXπ̂

(H)
m ‖2n ≤

m1∆(m2)

n
:= H2.

Next we determine v. Let T =
∑

j,k bj,kϕj ⊗ ϕk ∈ Sm, B = (bj,k)j,k, such that ‖T‖n = 1.

1

n

n∑
i=1

EX[Φ2
T (Xi, Zi)] =

1

n

n∑
i=1

∫
Φ2
T (Xi, z)πZ|X(Xi, z)dz ≤ ‖πZ|X‖∞

1

n

n∑
i=1

∫
Φ2
T (Xi, z)dz

≤ ‖π‖∞
1

n

n∑
i=1

∑
j,k,j′,k′

bj,kbj′,k′(T )ϕj(Xi)ϕj′(Xi)

∫
vϕk(z)vϕk′ (z)dz

= ‖π‖∞Tr
[
tBΨ̂m1B(〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1

]
.

As Σ0 := tBΨ̂m1B is square symmetric positive de�nite and S0 := (〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1 is
symmetric, we can prove that Tr(Σ0S0) ≤ ‖S0‖opTr(Σ0). Indeed, S0 = tPDS0P with DS0 =
diag(di(S0))i diagonal and P orthogonal, and

Tr[Σ0S0] = Tr[Σ0
tPDS0P ] = Tr[PΣ0

tPDS0 ]

=

m2∑
i=1

di(S0)[PΣ0
tP ]i,i with [PΣ0

tP ]i,i = ‖Σ1/2
0 Pei‖2 ≥ 0

≤ max
i

(|di(S0)|)
m2∑
i=1

[PΣ0
tP ]i,i = max

i
(|di(S0)|)Tr(PΣ0

tP ) = max
i

(|di(S0)|)Tr(Σ0).

Therefore

Tr
[
tBΨ̂m1B(〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1

]
≤ ‖(〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1‖opTr

[
tBΨ̂m1B

]
.

Then Tr
[
tBΨ̂m1B

]
= ‖T‖2n = 1 and we have to bound the operator norm. First

‖(〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1‖op = sup
x∈Rm2 ,‖x‖=1

tx(〈vϕk , vϕk′ 〉)0≤k,k′≤m2−1x = sup
t∈Sm2 ,‖t‖=1

‖vt‖2.
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Next, as vt = (1/2π)(t∗/f∗ε )∗(−.), we have

‖vt‖2 =
1

2π

∫ ∣∣∣∣ t∗(z)f∗ε (z)

∣∣∣∣2 dz
≤ 1

2π
sup

|z|≤
√

2m2

1

|f∗ε (z)|2

∫
|t∗(z)|2 dz +

1

2π

∫
|z|>
√

2m2

∣∣∣∣ t∗(z)f∗ε (z)

∣∣∣∣2 dz
≤ sup

|z|≤
√

2m2

1

|f∗ε (z)|2
+

m2−1∑
j=0

1

2π

∫
|z|>
√

2m2

∣∣∣∣ϕ∗j (z)f∗ε (z)

∣∣∣∣2 dz
≤ sup

|z|≤
√

2m2

1

|f∗ε (z)|2
+ c = δ(m2),

by proceeding as in the proof of Proposition 5. As a consequence,

sup
T∈Sm,‖T‖n=1

(
1

n

n∑
i=1

EX[Φ2
T (Xi, Zi)]

)
≤ sup
|z|≤
√

2m2

1

|f∗ε (z)|2
+ c := v.

Lastly, for T (x, y) =
∑

j,k bj,kϕj(x)ϕk(y)

sup
T∈Sm,‖T‖n=1

sup
x,z
|ΦT (x, z)|2 = sup

T∈Sm,‖T‖n=1
sup
x,z

∣∣∣∣∣∣
∑
j,k

bj,kϕj(x)vϕk(z)

∣∣∣∣∣∣
2

≤ sup
T∈Sm,‖T‖n=1

sup
x,z

Tr[ tBB]
∑
j

ϕ2
j (x)

∑
k

|vϕk(z)|2

≤ sup
T∈Sm,‖T‖n=1

sup
x,z
‖Ψ̂−1

m1
‖opTr[ tBΨ̂m1B]L(m1)∆(m2)

= ‖Ψ̂−1
m1
‖opL(m1)∆(m2) ≤ d?n

log(n)
∆(m2) := b2

as Tr[ tBΨ̂m1B] = ‖T‖2n = 1 and using that m ∈ M̂(H)
n .

As a consequence, by Talagrand inequality,∑
m

E

[(
sup

T∈Sm,‖T‖n=1
[ν(H)
n (T )]2 − V (H)(m)

)
+

]

≤ c′′0
n

∑
m

{
δ(m2) exp(−c′′1m1

∆(m2)

δ(m2)
) +

∆(m2)

log2(n)
exp(−c2 log(n)

√
m1)

}
,

where c2 is the same as previously. As for m ∈ M̂(H)
n , we have ∆(m2) ≤ n, and the choice of d

manage with the second sum. The �rst one is handled with condition (32).
Consequently

EX

[
sup

m′∈M̂(H)
n

(‖π̂(H
m′ − πm′,n‖

2
n − V (H)(m′)/6)+

]
≤ C/n.

This ends the proof of case (H).�
We proved (a) in the three cases.

Proof of (b).
To prove (b) we simply write, using �rst the fact that V (.) is nondecreasing with respect to both
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m1 and m2, and secondly that we assumed that m ∧m′ was still in the collection,[
sup

m′∈M̂(Sup)
n

(‖π̂(Sup)
m,m′ − π(m,m′),n‖2n − V (Sup)(m′)/6)+

]

≤

[
sup

m′∈M̂(Sup)
n

(‖π̂(Sup)
m,m′ − π(m,m′),n‖2n − V (Sup)(m ∧m′)/6)+

]

≤

[
sup

m”∈M̂(Sup)
n

(‖π̂(Sup)
m” − πm”,n‖2n − V (Sup)(m”)/6)+

]
.

Therofore, the bound on the expectation follows from (a).

Proof of (c)

We already noticed that E(π̂
(D)
m |X) = E(π̂

(L)
m |X) = E(π̂

(H)
m |X) = πm,n, so the bias terms are

exactly the same in the three cases.
Let us de�ne Proj

(n)
Sm

denotes the empirical projection on Sm which associates to (x, y) 7→ T (x, y)

the function (x, y) 7→ (Proj
(n)
Sm
T )(x, y) =

m1−1∑
j=0

m2−1∑
k=0

(tΦ̂m1Φ̂m1)−1 tΦ̂m1

(∫
ϕk(z)T (Xi, z)dz

)
1≤i≤n

0≤k≤m2−1


j,k

ϕj(x)ϕk(y).

For any bivariate function T , the following holds:

(41) Proj
(n)
Sm1∧m′1

⊗Sm2∧m′2
T = Proj

(n)
Sm′1
⊗Sm′2

(
Proj

(n)
Sm1⊗Sm2

T
)
.

Then

‖πm′,n − π(m,m′),n‖n = ‖Proj
(n)
Sm′1
⊗Sm′2

π − Proj
(n)
Sm1∧m′1

⊗Sm2∧m′2
π‖n

= ‖Proj
(n)
Sm′1
⊗Sm′2

π − Proj
(n)
Sm′1
⊗Sm′2

Proj
(n)
Sm1⊗Sm2

π‖n

≤ ‖π − Proj
(n)
Sm1⊗Sm2

π‖n.

Thus we obtain (c).

8.9. Proof of Lemma 7. We prove now that

‖π̂(Sup)
m − EXπ̂

(Sup)
m ‖n = sup

T∈Sm,‖T‖n=1
〈π̂(Sup)

m − EXπ̂
(Sup)
m , T 〉n = sup

T∈Sm,‖T‖n=1
ν(Sup)
n (T ).

The �rst equality is standard (bound the scalar product by the norm and choose T to see that the
upper bound is reached). For the second equality, we denote T (x, y) =

∑m1−1
j=0

∑m2−1
k=0 Bj,kϕj(x)ϕk(y),

so that

〈π̂(Sup)
m − πm,n, T 〉n =

∑
j,j′,k,k′

(Â
(Sup)
m − EXÂ

(Sup)
m )jkBj′k′ 〈ϕj ⊗ ϕk, ϕj′ ⊗ ϕk′ >n

=
∑
j,j′,k

(Â
(Sup)
m − EXÂ

(Sup)
m )jkBj′k (Ψ̂m1)j,j′

= Tr
[
t(Â

(Sup)
m − EXÂ

(Sup)
m ) Ψ̂m1 B

]
.
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For the rest of the proof, we study separately the three cases.
Direct case. Recall that Â(D)

m = 1
nΨ̂−1

m1

tΦ̂m1Θ̂m2(Y). Then

〈π̂(D)
m − πm,n, T 〉n =

1

n
Tr
[
t(Θ̂m2(Y)− EXΘ̂m2(Y))Φ̂m1 B

]
=

1

n

n∑
i=1

∑
jk

(ϕk(Yi)− EX(ϕk(Yi)))ϕj(Xi)Bjk

=
1

n

n∑
i=1

[T (Xi, Yi)− EXT (Xi, Yi)].

Laguerre case. In this case Â(L)
m = 1

nΨ̂−1
m1

tΦ̂m1Θ̂m2(Z) tG−1
m2

, then

〈π̂(L)
m − πm,n, T 〉n =

1

n
Tr
[
G−1
m2

t(Θ̂m2(Z)− EXΘ̂m2(Z))Φ̂m1 B
]

=
1

n

n∑
i=1

∑
jk

(ϕk(Yi)− EX(ϕk(Yi)))ϕj(Xi)(BG
−1
m2

)jk

=
1

n

n∑
i=1

[ΨT (Xi, Zi)− EXΨT (Xi, Zi)].

Hermite case. Here we use that Â(H)
m = 1

nΨ̂−1
m1

tΦ̂m1Υ̂m2(Z). Thus

〈π̂(H)
m − πm,n, T 〉n =

1

n
Tr
[
t(Υ̂m2(Z)− EXΥ̂m2(Z))Φ̂m1 B

]
=

1

n

n∑
i=1

∑
jk

(vϕk(Zi)− EX(vϕk(Zi)))ϕj(Xi)Bjk

=
1

n

n∑
i=1

[ΦT (Xi, Zi)− EXΦT (Xi, Zi)]. �

8.10. Proof of Corollary 1. De-conditionning is justi�ed by Lemma 10 stated and proved in
Appendix.

Let Λ
(Sup)
n = {M(Sup)

n ⊂ M̂(Sup)
n } and write

E[‖π̂(Sup)
m̂ − π‖2n] = E[EX[‖π̂(Sup)

m̂ − π‖2n]1
Λ

(Sup)
n

] + E[‖π̂(Sup)
m̂ − π‖2n1(Λ

(Sup)
n )c

] := T1 + T2.

We �rst study T1. On Λ
(Sup)
n , we have

inf
m∈M̂(Sup)

n

{
‖πm,n − π‖2n + V (Sup)(m)

}
≤ inf

m∈M(Sup)
n

{
‖πm,n − π‖2n + V (Sup)(m)

}
≤ inf

m∈M(Sup)
n

{
‖πm − π‖2n + V (Sup)(m)

}
.

So, for the �rst term, we have, using Theorem 2 and the de�nition of Λ
(Sup)
n ,

EX[‖π̂(Sup)
m̂ − π‖2n1Λ

(Sup)
n

≤ C inf
m∈M(Sup)

n

{‖π − πm,n‖2n + V Sup(m)}+
C ′

n
,

and taking the expectation yields

E[EX[‖π̂(Sup)
m̂ − π‖2n1Λ

(Sup)
n

] ≤ C inf
m∈M(Sup)

n

{‖π − πm‖2f + V Sup(m)}+
C ′

n
.
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Now, T2 is bounded thanks to the two facts:

(1) P[(Λ
(Sup)
n )c] ≤ C/n2 for d well chosen,

(2) ‖π̂(Sup)
m̂ − π‖2n ≤ C n for m̂ ∈ M̂(Sup)

n .

First let us prove point (2). We prove that, ∀m ∈ M̂(D)
n , ‖π̂(D)

m − π‖2n ≤ 2(K0n+ ‖π‖∞). Indeed
we have

‖π̂(D)
m ‖2n =

1

n2
Tr
(

Φ̂m1Ψ̂−1
m1

tΦ̂m1Θ̂m2(Y) tΘ̂m2(Y)
)

≤ 1

n2
‖Φ̂m1Ψ̂−1

m1

tΦ̂m1‖opTr[Θ̂m2(Y) tΘ̂m2(Y)]

≤ 1

n

n∑
i=1

m2−1∑
k=0

ϕ2
k(Yi) ≤ L(m2) ≤ K0n

Similarly, for m ∈ M̂(L)
n ,

‖π̂(L)
m ‖2n =

1

n2
Tr
(

Φ̂m1Ψ̂−1
m1

tΦ̂m1G
−1
m2

Θ̂m2(Z) tΘ̂m2(Z) tG−1
m2

)
≤ L(m2)‖G−1

m2
‖2op ≤ K0 n

and for m ∈ M̂(H)
n ,

‖π̂(H)
m ‖2n =

1

n2
Tr
(

Φ̂m1Ψ̂−1
m1

tΦ̂m1Υ̂m2(Z) tΥ̂m2(Z)
)

≤ ∆(m2) ≤ K0 n.

To bound ‖π‖2n, as π is bounded, we have∫
π2(X1, y)dy ≤ ‖π‖∞

∫
π(X1, y)dy = ‖π‖∞ < +∞,

and the result of (2) holds.

Now we study point (1). We have

P((Λ(Sup)
n )c) = P

({
M(Sup)

n ⊂ M̂(Sup)
n

}c)
= P(∃m ∈M(Sup)

n , such that m /∈ M̂(Sup)
n )

≤
∑

m∈M(Sup)
n

P
(
L(m1)‖Ψ−1

m1
‖op ≤

d?

2

n

log2(n)
and L(m1)‖Ψ̂−1

m1
‖op > d?

n

log2(n)

)

≤
∑

m∈M(Sup)
n

P
(
L(m1)(‖Ψ̂−1

m1
‖op − ‖Ψ−1

m1
‖op) ≥ d?

2

n

log2(n)

)

≤
∑

m∈M(Sup)
n

P
(
L(m1)(‖Ψ̂−1

m1
−Ψm1‖op) > L(m1)‖Ψ−1

m1
‖op

)
=

∑
m∈M(Sup)

n

P
(

(‖Ψ̂−1
m1
−Ψm1‖op) > ‖Ψ−1

m1
‖op

)

≤
∑

m∈M(Sup)
n

P
(
‖Ψ−1/2

m1
Ψ̂m1Ψ−1/2

m1
− Idm1‖op >

1

2

)
,
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where the last inequality follows from Proposition 4 (ii) in Comte and Genon-Catalot (2020).
Then the matrix Chernov Inequality (see Tropp (2012)) gives, for 0 ≤ δ ≤ 1,

(42) P
(
‖Ψ−1/2

m1
Ψ̂m1Ψ−1/2

m1
− Idm1‖op > δ

)
≤ 2m1 exp

(
−c(δ) n

L(m1)(‖Ψ−1
m1‖op ∨ 1)

)
,

where c(δ) = (1 + δ) log(1 + δ)− δ, which for δ = 1/2 yields c(1/2) = (3/2) log(3/2)− 1/2 = 5d,
c(1/2) ∼ 0.11. Thus, under the condition L(m1)‖Ψ−1

m1
‖op ≤ d?n/ log2(n) ≤ dn/ log(n), for n large

enough, in the de�nition ofM(Sup)
n , we get

P((Λ(Sup)
n )c) ≤

∑
m∈M(Sup)

n

2m1

n5
≤ 2
|M(Sup)

n |
n4

≤ 2

n2
.

This ends the proof. �

Appendix

Lemma 9 (Talagrand Inequality). Let Y1, . . . , Yn be independent random variables and let F be
a countable class of uniformly bounded measurable functions. Then for ε2 > 0

E
[

sup
f∈F
|νn,Y (f)|2 − 2(1 + 2ε2)H2

]
+
≤ 2

K1

(
v

n
e−K1ε2

nH2

v +
49b2

4K1n2C2(ε2)
e−

2K1C(ε2)ε
7

nH
b

)
,

with C(ε2) = (
√

1 + ε2 − 1) ∧ 1, K1 = 1/6, and

sup
f∈F
‖f‖∞ ≤ b, E

[
sup
f∈F
|νn,Y (f)|

]
≤ H, sup

f∈F

1

n

n∑
k=1

Var(f(Yk)) ≤ v.

This inequality comes from a concentration Inequality in Klein and Rio (2005) and arguments
that can be found in Birgé and Massart Birgé and Massart (1998). Usual density arguments show
that this result can be applied to the class of functions of type F = Bm(0, 1).

Lemma 10. Let (Xi, Yi)1≤i≤n be i.i.d. couples of random variables. Then (Yi)1≤i≤n are indepen-
dent conditionally to (X1, . . . , Xn).

This Lemma legitimates the application of Talagrand inequality conditionally to (X1, . . . , Xn).
Proof of Lemma 10. First Y1, . . . , Yn are independent conditionally to X1, . . . , Xn if, for all
measurable (bounded or nonnegative) functions fi : R→ R,

(43) E

[
n∏
i=1

fi(Yi)|X1, . . . , Xn

]
=

n∏
i=1

E [fi(Yi)|X1, . . . , Xn] .

As collection of test functions of X1, . . . , Xn for caracterization of the conditional expectation,
we consider g(X1, . . . , Xn) =

∏n
i=1 gi(Xi) for measurable functions gi : R → R, bounded or

nonnegative (density argument: measurable function as monotone limit of linear combinations
of indicators of measurable partitions and take as a borelian A of the partition in the product
σ-algebra the cartesian product A = A1× · · · ×An which are generators). Therefore (43) holds if

E

[
n∏
i=1

fi(Yi)
n∏
i=1

gi(Xi)

]
= E

[
n∏
i=1

E(fi(Yi)|X1, . . . , Xn)
n∏
i=1

gi(Xi)

]
.
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To check that this equality holds, let us start from the right-hand-side term.

E

[
n∏
i=1

E(fi(Yi)|X1, . . . , Xn)
n∏
i=1

gi(Xi)

]
= E

[
n∏
i=1

gi(Xi)E(fi(Yi)|X1, . . . , Xn)

]

= E

[
n∏
i=1

E(gi(Xi)fi(Yi)|X1, . . . , Xn)

]
= E

 n∏
i=1

E(gi(Xi)fi(Yi)|Xi)︸ ︷︷ ︸
=ψi(Xi)


=

n∏
i=1

E[ψi(Xi)] as the Xi are independent

=

n∏
i=1

E [E(gi(Xi)fi(Yi)|Xi)] =

n∏
i=1

E [gi(Xi)fi(Yi)] = E

[
n∏
i=1

gi(Xi)fi(Yi)

]
where the last line follows by independence of the (X1, Y1), . . . , (Xn, Yn). This ends the proof of
Lemma 10. �
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