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In this paper, we propose a nonparametric estimation strategy for the conditional density function of Y given X, from independent and identically distributed observations (Xi, Yi) 1≤i≤n . We consider a regression strategy related to projection subspaces of L 2 generated by non compactly supported bases. This rst study is then extended to the case where Y is not directly observed, but only Z = Y + ε, where ε is a noise with known density. In these two settings, we build and study collections of estimators, compute their rates of convergence on anisotropic space on non-compact supports, and prove related lower bounds. Then, we consider adaptive estimators for which we also prove risk bounds.

Introduction

The purpose of this paper is to estimate the conditional density of a response Y given a variable X, with or without directly observing Y . We may assume that a noise ε spoils the response so that only Z = Y +ε is available. From independent and identically distributed couples of variables (X i , Y i ) 1≤i≤n rst, and (X i , Z i ) 1≤i≤n in a second step, we estimate the conditional density π(x, y) of Y given X dened by π(x, y)dy = P(Y ∈ dy|X = x). In this framework, the regression function E[Y |X = x] is often studied, but this information is more restrictive than the entire distribution of Y given X, in particular when the distribution is asymmetric or multimodal. Thus the problem of conditional density estimation is found in various application elds: meteorology, insurance, medical studies, geology, astronomy (see [START_REF] Nguyen | Nonparametric method for sparse conditional density estimation in moderately large dimensions[END_REF] and [START_REF] Izbicki | Converting high-dimensional regression to high-dimensional conditional density estimation[END_REF] and references therein).

1.1. Bibliographical elements on conditional density estimation. The estimation of the conditional density has often been studied with kernel strategies, initiated by [START_REF] Rosenblatt | Conditional probability density and regression estimators[END_REF]. The idea is to dene the estimator as a quotient of two kernel density estimators: we can cite among others [START_REF] Youndjé | Propriétés de convergence de l'estimateur à noyau de la densité conditionnelle[END_REF], [START_REF] Fan | Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems[END_REF], [START_REF] Hyndman | Nonparametric estimation and symmetry tests for conditional density functions[END_REF], De [START_REF] De Gooijer | On conditional density estimation[END_REF], [START_REF] Fan | A crossvalidation method for estimating conditional densities[END_REF]. Also with kernel tools, [START_REF] Ferraty | Estimating some characteristics of the conditional distribution in nonparametric functional models[END_REF] or [START_REF] Laksaci | Convergence en moyenne quadratique de l'estimateur à noyau de la densité conditionnelle avec variable explicative fonctionnelle[END_REF] are interested in the conditional density estimation when X is a functional random variable. Using histograms on partitions, [START_REF] Györ | Nonparametric estimation of conditional distributions[END_REF] estimate the conditional distribution of Y given X consistently in total variation, see also [START_REF] Sart | Estimating the conditional density by histogram type estimators and model selection[END_REF]. Then several papers proposed strategies to estimate the conditional density π as an anisotropic function under the Mean Integrated Squared error criterion. They give oracle inequalities and adaptive minimax results. For instance [START_REF] Efromovich | Conditional density estimation in a regression setting[END_REF] uses a Fourier decomposition to construct a blockwise-shrinkage Efromovich-Pinsker estimator, whereas [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF] and Akakpo and Lacour (2011) use projection estimators and model selection. Next, [START_REF] Efromovich | Oracle inequality for conditional density estimation and an actuarial example[END_REF] developed a strategy relying on conditional characteristic function estimation, and [START_REF] Chagny | Warped bases for conditional density estimation[END_REF] studied a warped basis estimator while [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] used a Lepski-type method. Specic methods for higher dimensional covariates were recently developed by [START_REF] Fan | Approximating conditional density functions using dimension reduction[END_REF], [START_REF] Holmes | Fast kernel conditional density estimation: a dual-tree Monte Carlo approach[END_REF], [START_REF] Cohen | Partition-based conditional density estimation[END_REF], [START_REF] Izbicki | Nonparametric conditional density estimation in a highdimensional regression setting[END_REF], [START_REF] Otneim | Conditional density estimation using the local Gaussian correlation[END_REF], [START_REF] Nguyen | Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation[END_REF].

The problem of estimating the conditional density when the response is observed with noise has been much less studied. [START_REF] Ioannides | Estimating the conditional mode of a stationary stochastic process from noisy observations[END_REF] considers the estimation of the conditional density of Y given X for strongly mixing processes when both X and Y are noisy, in order to estimate the conditional mode. Using a quotient of deconvoluting kernel estimators, he establishes a convergence rate for an ordinary smooth noise (see Assumption A5 below for the denition of ordinary smooth and supersmooth noise) when x belongs to a compact set.

1.2. About non compact support specicity. Our specic aim in this paper is to deal with variables lying in a non-compact domain. Many authors assume that X and Y belong to a bounded and known interval. In practice, this interval is estimated from the data and so it is not deterministic. As explained in [START_REF] Reynaud-Bouret | Adaptive density estimation: a curse of support?[END_REF], "this problem is not purely theoretical since the simulations show that the support-dependent methods are really aected in practice by the size of the density support, or by the weight of the density tail". They show in their paper that the minimax rate of convergence for density estimation may deteriorate when the support becomes innite and they name it the "curse of support". This phenomenon had been previously highlighted by [START_REF] Juditsky | On minimax density estimation on R[END_REF], and has been extended in the mutivariate case by [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF]. When using a R-supported basis for density estimation, [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] obtain a nonstandard variance order; however it is associated to a nonstandard bias, which leads to classical rates; the same kind of result holds for R + -Laguerre basis, see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]. For regression function estimation, [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] introduce a specic method adapted to the non-compact case, which allows them to obtain new minimax results; our study is inspired by their work.

1.3. Conditional density as a mixed regression-density framework. Here we study the estimation of a conditional density: we can think of it as a regression issue in the rst direction and a density issue in the second. We show that the rate of convergence is again modied in the case of a non-compact support. To do this, we dene an estimator π(D) m , m = (m 1 , m 2 ), by minimization of a least squares contrast on a subspace S m with nite dimension. This estimator is a classical projection estimator expanded on an orthogonal basis (ϕ j ⊗ ϕ k ) 0≤j≤m 1 -1,0≤k≤m 2 -1 . The coecients are written with the same kind of formula as in standard linear regression, with the use of matrix

Ψ m = Ψ m (X) = 1 n t Φ m Φ m , where Φ m = (ϕ j (X i )) 1≤i≤n,0≤j≤m-1 .
The point is to use specic bases adapted to the non-compact problem. Two cases are of special interest: the case where the support is R, for which we use the Hermite basis, and the case where the support is R + , for which we use the Laguerre basis. This last case is very useful in various applications as reliability, economics, survival analysis. Note that we also consider the trigonometric basis to include the compactly-supported case in our study. We detail the properties of the Hermite and Laguerre bases in Section 2. In particular, these bases are associated to Sobolev-type functional spaces, and this allows us to dene the smoothness of the target function.

Moreover a second motivation to study the non-compactly supported case is to allow an extension to the noisy case, when Y is not directly observed. Indeed the classical use of Fourier transform for nonparametric deconvolution requires to work on the whole real line. And actually these two bases can be used in the deconvolution setting when considering noisy observations, see [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] for Laguerre deconvolution and [START_REF] Sacko | Hermite density deconvolution[END_REF] for the Hermite case. Note that a conditional density is an intrinsically anisotropic object, with possibly anisotropic smoothness. That is why we use bases with dierent cardinalities m 1 in the x-direction and m 2 in the y-direction, where m = (m 1 , m 2 ).

1.4. Anisotropic (conditional) model selection. In this paper we compute the integrated squared risk for our estimator, in particular the variance is of order m 1 √ m 2 /n instead of m 1 m 2 /n in the compact case. We derive the anisotropic rate of convergence for the conditional density estimation with non-compact support. We recover classical rates in the compacted supported case, and obtain dierent ones in the Hermite and Laguerre cases, for which we provide lower bounds, under some condition. Moreover, we tackle the problem of model selection: what is the better choice for m 1 and m 2 , and how to select it only from the data? Here we use the Goldenshluger-Lepski method [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF], which consists in minimizing some penalized dierences criterion over a collection of models M n . In our framework this collection has to be random because of the very importance of the normal matrix Ψ m 1 if we do not assume that the distribution of X has a lower-bounded density, contrary to what is almost always supposed in regression or conditional distribution issues. Instead, similarly to the non-compact regression case, our results depend on a condition on Ψ m 1 called stability condition, which bounds the operator norm Ψ -1 m 1 op in term of n and m 1 . Here we improve the condition required by [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] for the adaptive procedure in the regression context. Despite this inherent diculty of the role of Ψ m 1 , we provide an adaptive method with no unknown quantity, and easy to implement. This is worthy since adaptive penalized methods in complex models often involve unknown quantities in the penalty. For example [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF] have a penalty which depends on an upperbound on π, or on a lowerbound on the design density. Here we avoid it by a judicious use of conditioning.

1.5. Extensions to noisy case. Last but not least, we extend all the previous results to the noisy case, where Y is not observed, and only Y + ε is available. As usual, we assume that the distribution of ε is known for identiability reasons. This brings us to a deconvolution issue in the y-direction: see [START_REF] Meister | Deconvolution problems in nonparametric statistics[END_REF] for an overview on nonparametric deconvolution. We divide our study of this noisy case in two parts. In the rst part (see Section 4), we consider the case where all the variable are positive, including the noise. In another part (see Section 5), we consider variables in R, with the classical hypothesis that the characteristic function of the noise does not vanish. We study both cases of ordinary smooth noise and supersmooth noise. For these two noisy cases (variables in R + or in R), we provide new estimators π(L) m and π(H) m and study their integrated risk. The rates of convergence are more involved than in the direct (non-noisy) case since they depend on the smoothness of the noise density. Indeed the smoother the noise distribution, the smoother the distribution of Z, so that the true signal is dicult to recover. We also propose an adaptive model selection and we obtain again an oracle inequality, using an entirely known penalty term. Thus (unlike [START_REF] Ioannides | Estimating the conditional mode of a stationary stochastic process from noisy observations[END_REF]) our method reaches an automatic squared bias-variance compromise, without requiring the knowledge of the regularity order of the function to estimate. 1.6. Content of the paper. The paper is organized as follows. After describing in Section 2 the study framework (notation, bases functions and their useful properties, regularity spaces, model of the observations), Section 3 is devoted to the denition and study of the estimation procedure in the direct case (the Y i 's are observed). A risk bound is given in this setting, and the rates of convergence of the estimators both in the usual and in new bases are given, together with Laguerre and Hermite lower bounds as these cases correspond to nonstandard rates. Section 4 denes and studies the estimator corresponding to the noisy case when all random variables are nonnegative and the Laguerre basis is used, while the more general R-supported case is considered in Section 5, relying on an estimator dened in the Hermite basis. Lastly, Section 6, states a general adaptive result, based on a Goldenshluger-Lepski method, see [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. A few concluding remarks are stated in Section 7. All proofs are postponed in Section 8, while some useful results are given in Appendix.

Model and assumptions

2.1. Notation. We denote by f the density of the covariate X, so that the joint density of (X, Y ) is f (x)π(x, y). We consider the weighted L 2 norm of a bivariate measurable function T , dened by:

(1)

T 2 f := T 2 (x, y)f (x)dxdy
and the associated dot product T 1 , T 2 f = T 1 (x, y)T 2 (x, y)f (x)dxdy. The usual (non-weighted) L 2 norm is denoted by . 2 . We also introduce the empirical norm of T :

(2)

T 2 n := 1 n n i=1
T 2 (X i , y)dy.

Note that for any deterministic function T , E T 2 n = T 2 f . For two functions x → t(x) and y → s(y), dened on R or R + , we set (t ⊗ s)(x, y) = t(x)s(y).

Let M n be a subset of {1, . . . , n} × {1, . . . , n} and let m = (m 1 , m 2 ) denote an element of M n . We construct a sequence (π m ) m∈Mn of estimators of π, each πm belonging to a subspace S m = S m 1 ⊗ S m 2 where each linear space S m i , i = 1, 2 is generated by m i functions,

S m i = span{ϕ j , j = 0, . . . , m i -1}, i = 1, 2,
and the ϕ j are known orthonormal functions with respect to the standard L 2 -scalar product:

ϕ j , ϕ k = ϕ j (u)ϕ k (u)du = δ j,k .
Here δ j,k is the Kronecker symbol, equal to 0 if j = k and to 1 if j = k. Thus S m is spanned by {ϕ j ⊗ ϕ k , j = 0, . . . , m 1 -1, k = 0, . . . , m 2 -1}. A key quantity associated to the basis (ϕ j ) j is

(3)

L(m) = sup t∈Sm t 2 ∞ / t 2 2 = sup x∈R m-1 j=0 ϕ 2 j (x).
Clearly, for the tensorized basis, L(m) = L(m 1 )L(m 2 ).

Lastly, for a non necessarily square matrix M with real coecients, we dene its operator norm M op as λ max (M t M ) where t M is the transpose of M and λ max denotes the largest eigenvalue. Its Frobenius norm is dened by M 2 F = Tr(M t M ) where Tr(A) denotes the trace of the square matrix A.

2.2. Bases. We give now the examples of basis functions we consider in the sequel: the trigonometric basis as an example of compactly supported basis for comparison with previous results, and the Laguerre and Hermite bases which are respectively R + and R-supported.

• Trigonometric basis functions are supported by [0, 1], with t 0 (x) = 1 [0,1] (x), and for j ≥ 1,

t 2j-1 (x) = √ 2 cos(2πjx)1 [0,1] (x), t 2j (x) = √ 2 sin(2πjx)1 [0,1] (x). For the basis (t j ) 0≤j≤m-1 , if m is odd, then L(m) = m with L(m) dened by (3).
• The Laguerre functions are dened as follows:

j (x) = √ 2L j (2x)e -x 1 x≥0 with L j (x) = j k=0 (-1) k j k x k k! .
The functions j are orthonormal, and are bounded by √ 2 (see 22.14.12 in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]). So m-1 j=0 2 j (x) ≤ 2m and as j (0) = √ 2, it holds that the supremum value 2m is reached in 0 and L(m) = 2m. The convolution product of two Laguerre functions has the following useful property (see 22.13.14 in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]):

(4)

j k (x) = x 0 j (u) k (x -u)du = 1 √ 2 ( j+k (x) -j+k+1 (x)), ∀x ≥ 0.
Moreover, by [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], Lemma 8.2, if

(5)

∃C > 0, ∀x ≥ 0, E 1 √ Y |X = x < C then for j ≥ 1 (6) ∀x ≥ 0, E( 2 j (Y )|X = x) = ∞ 0 2 j (y)π(x, y)dy ≤ c √ j .
For instance, condition (5) holds if Y = g(X) + U with g ≥ 0, X and U independent, and

EU -1/2 < ∞. Under (5), for m ≥ 1, for x ≥ 0, E m-1 j=0 ϕ 2 j (Y )|X = x ≤ c √ m for c > 0 a constant.
• The Hermite functions are dened as follows:

h j (x) = 1 2 j j! √ π H j (x)e -x 2 /2 , with H j (x) = (-1) j e x 2 d j dx j (e -x 2 ).
The functions h j are orthonormal, and are bounded by 1/π 1/4 . The Hermite functions have the following Fourier transform:

(7) ∀x ∈ R, h * j (x) := e ixu h j (u)du = √ 2π(i) j h j (x)
, where i 2 = -1.

Moreover, from [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF] or [START_REF] Markett | Norm estimates for (C, δ) means of Hermite expansions and bounds for δ eff[END_REF], it holds (8)

|h j (x)| ≤ Ce -ξx 2 , for |x| ≥ 2j + 1,
where C and ξ are positive constants independent of x and j, 0 < ξ < 1 2 . Note that with (7), h * j satises the same inequality, with constant multiplied by √ 2π. Relying on these results, we can prove the following Lemma, (see Section 8.1): Lemma 1. There exists a constant

K > 0 such that sup x∈R m-1 j=0 h 2 j (x) ≤ K √ m, for any m ≥ 1.
As a consequence, for this basis L(m) ≤ K √ m. In the sequel, ϕ j = t j or ϕ j = j or ϕ j = h j . Note that, for simplicity, we tensorize twice the same basis but we could mix two dierent bases.

2.3. Anisotropic Laguerre and Hermite Sobolev spaces. To study the bias term, we assume that π belongs to a Sobolev-Laguerre or a Sobolev-Hermite space. In dimension d = 1, these functional spaces have been introduced by Bongioanni and Torrea (2009) to study the Laguerre operator. The connection with Laguerre or Hermite coecients was established later and are summarized in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]. They were extended to multidimensional case in [START_REF] Dussap | Anisotropic multivariate deconvolution using projection on the Laguerre basis[END_REF]. Following the same idea, we dene Sobolev-Laguerre balls on R 

W s (A, L) :=    g ∈ L 2 (A), k∈N d a 2 k (g)k s ≤ L    , k s = k s 1 1 . . . k s d d , with a k (g) := g, ϕ k = g, ϕ k 1 ⊗• • •⊗ϕ k d , the Laguerre coecients of g if ϕ k = k = k 1 ⊗• • •⊗ k d or the Hermite coecients of g if ϕ k = h k = h k 1 ⊗ • • • ⊗ h k d .
We refer to [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] for details about this space and the link with usual Sobolev space. Note in particular that when d = 1 and s is an integer, g belongs to the Sobolev-Hermite space if and only if g admits derivatives up to order s and the functions g, g , . . . , g (s) , x s-k g (k) , k = 0, . . . , s -1 belongs to L 2 (A)

Assuming that g belongs to W s (A, L), the approximation term decreases to 0 with polynomial rate. Indeed, for m = (m 1 , . . . , m d ) ∈ (N * ) d and g m the orthogonal projection of g on S m , we have:

g -g m 2 2 = k∈N d ,∃q,kq≥mq a 2 k (g) ≤ d q=1 k∈N d ,kq≥mq a 2 k (g)k sq q k -sq q ≤ L d q=1 m -sq q .
Remark. In the present bivariate context, mixed cases involving basis ( j ) j≥0 in one direction and basis (h j ) j≥0 in the other, with coecients of a function g dened by a k (g) := g, k 1 ⊗ h k 2 would be possible. The link between regularity spaces dened by the rate of decay of the coefcients and derivability properties is then undocumented, contrary to the "homogeneous" case described in Denition 1.

Supersmooth sub-classes. We mention here that in the context of Laguerre one-dimensional developements, functions ψ dened as mixtures of Gamma densities constitute a class of supersmooth functions in the sense that ψ -ψ m 2 has exponential rate of decrease, see Lemma 3.9 in [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF]. Continuous mixtures are also studied in section 3.2 of [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF].

We choose to be more explicit in the context of Hermite expansions. Let us dene

ψ p,σ (x) = x 2p σ 2p+1 √ 2πc 2p exp(- x 2 2σ 2 )
where c 2p = E[N 2p ] for N ∼ N (0, 1), σ 2 = 1 (cases with σ 2 = 1 have nite developments in the basis, and null bias for m i larger that p). It is proved in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] (Proposition 12) that, for i = 1, 2,

ψ p,σ -(ψ p,σ ) m i 2 ≤ C(p, σ 2 )m p-1/2 i exp(-λ 0 m i ), λ 0 = log σ 2 + 1 σ 2 -1 2 > 0,
where (ψ p,σ ) m i are the orthogonal projections of ψ p,σ on S m i . By tensorization, we can thus consider the class W SS s,λ (L) for s = (s 1 , s 2 ) and λ = (λ 1 , λ 2 ) for real numbers s 1 , s 2 and positive λ 1 , λ 2 , of functions g such that,

(9) g -g m 2 ≤ L(m -s 1 1 exp(-λ 1 m 1 ) + m -s 2 2 exp(-λ 2 m 2 ))
where m = (m 1 , m 2 ). Mixed cases with ordinary smooth decay in one direction and super smooth in the other may also be possible.

2.4. Direct and noisy cases. In the sequel, we consider two settings.

• In the direct case, we observe independent and identically distributed couples of variables (X k , Y k ), k = 1, . . . n with the same law as (X, Y ). It is studied in section 3, under the Assumption Assumption A1. The random variables (X i , Y i ) 1≤i≤n are i.i.d. and the X i , i = 1 . . . , n are almost surely distinct.

• In the noisy case, the observations are (X k , Z k ), k = 1, . . . n with the same distribution as (X, Z), where Z can be written as Z = Y + ε. This case is studied in Section 4 (nonnegative random variables and Laguerre basis) and Section 5 (general case and Hermite basis), under the additional assumption: Assumption A2. The distribution of ε is known, ε is independent of X and independent of Y conditionally to X.

Notice that this implies the independence of Y and ε.

In both direct and noisy settings, we estimate the function π on R×R or R + ×R + . In the direct case, we also consider the case of π estimated on [0, 1] × [0, 1] already studied in the literature for comparison.

We state a general result of adaptive model selection gathering all cases in Section 6.

3. Minimum contrast estimation procedure without noise 3.1. Denition of the contrast and estimators in the direct case. We consider the contrast function

γ (D) n (T ) := T 2 n - 2 n n i=1 T (X i , Y i ),
where T 2 n is dened by (2) and the estimator (10) π for m = (m 1 , m 2 ). This contrast function has already been considered in [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF]. It can be understood by computing its expectation, for any deterministic function T :

Eγ (D) n (T ) = T 2 f -2 T (x, y)π(x, y)f (x)dx = T -π 2 f -π 2 f ,
where T 2 f is dened by (1), and by observing that it is minimum for T = π. To give an explicit formula for π

(D) m , we dene (11) Φ m = (ϕ j (X i )) 1≤i≤n,0≤j≤m-1 , Ψ m = 1 n t Φ m Φ m . Note that Ψ m := E( Ψ m ) = ( ϕ j , ϕ k f ) 0≤j,k≤m-1 . We nd, assuming that Ψ m 1 is invertible, π (D) m (x, y) = m 1 -1 j=0 m 2 -1 k=0 a (D) j,k ϕ j (x)ϕ k (y), A (D) m = ( a (D) j,k ) 0≤j≤m 1 -1,0≤k≤m 2 -1 with (12) A (D) m = 1 n Ψ -1 m 1 t Φ m 1 Θ m 2 (Y), with Θ m (Y) = (ϕ j (Y i )) 1≤i≤n,0≤j≤m-1 .
Remark. In the Laguerre and Hermite case, conditions ensuring a.s. inversibility of Ψ m 1 are weak: m 1 ≤ n and a.s. distinct observations, see [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF]. The same conditions work in the trigonometric case. These conditions are ensured by Assumption A1 and n ≥ m 1 , taken for granted in the sequel.

3.2. Bound on the empirical MISE of π m . First we study the quadratic (empirical) risk of the estimator π m , on a given space S m = S m 1 ⊗ S m 2 as described in Sections 2.1 and 2.2. We denote π m,n the orthogonal projection of π on S m for the empirical norm, and π m the orthogonal projection for the L 2 -norm. Then we can write ( 13) π

(D) m -π 2 n = π (D) m -π m,n 2 n + π m,n -π 2 n , and then note that π m,n -π 2 n = inf T ∈Sm T -π 2 n ≤ π m -π 2 n . Thus E( π m,n -π 2 n ) ≤ π m -π 2
f . Note that the following Lemma (proved in Section 8.2) is useful, here and further: Lemma 2. Assume that Assumption A1 holds and n ≥ m 1 . Then it holds that

E[ π (D) m (X i , y)|X] = π m,n (X i , y) = m 1 -1 j=0 m 2 -1 k=0 [D m ] j,k ϕ j (X i )ϕ k (y) with (14) D m = 1 n Ψ -1 m 1 t Φ m 1 ϕ k (y)π(X i , y)dy 1≤i≤n,0≤k≤m 2 -1
.

Using this result, we obtain the following risk bound (proved in Section 8.3).

Proposition 1. Let π m be dened by ( 10)-( 12), and assume that Assumption A1 is fullled.

Then, for any

m = (m 1 , m 2 ) such that m 1 ≤ n, (15) E π (D) m -π 2 n ≤ π -π m 2 f + m 1 L(m 2 ) n .
If moreover (6) holds for Laguerre basis, then

(16) E π (D) m -π 2 n ≤ π -π m 2 f + c m 1 √ m 2 n ,
where c is a positive constant.

The bound in ( 15) is obtained under weak conditions with explicit and optimal constants. It involves a bias term π-π m 2 f and a variance term

m 1 L(m 2 )/n. Recall that m 1 L(m 2 ) = Φ 2 0 m 1 m 2 for trigonometric basis (Φ 2 0 = 1 for odd m 2 ) or Laguerre basis (Φ 2 0 = 2), and m 1 L(m 2 ) ≤ cm 1 √ m 2
for Hermite basis. Consequently, the order of the variance is not the same for all bases. Note that for any estimator π m , we can set

π + m (x, y) = sup( π m (x, y), 0) = π m (x, y)1 πm(x,y)≥0 , and we have π + m -π 2 n ≤ π + m -π 2
n so the π + m is well dened, nonnegative, and inherits of the risk bound proved for π m .

Remark. The variance order m 1 √ m 2 /n in the Hermite case is coherent with the following facts:

• when estimating a regression function b(•) in a model V i = b(U i ) + η i , for i.i.d. centered η i independent of U i , from observations (U i , V i ) 1≤i≤n
with a least square projection estimator on the space S m 1 generated by h 0 , . . . , h m 1 -1 , the resulting integrated variance is of order m 1 /n, see [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF]. • when estimating a density f U from n i.i.d. observations U 1 , . . . , U n with a projection estimator on S m 2 generated by h 0 , . . . , h m 2 -1 , the integrated variance of the estimator is of order √ m 2 /n, see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF];

The same kind of property can hold in the Laguerre basis under the additional condition E(1/ √ Y |X) < +∞ for the density estimator.

3.3. Anisotropic rates. In this setting, we obtain the following bound: Proposition 2. Assume that the density f of X is bounded, and that π belongs to W s (A, L) with s = (s 1 , s 2 ), see Section 2.3, and consider the estimator π (D) m dened by ( 10)-( 12) under Assumption A1 in Laguerre or Hermite basis. Then choosing, in the Laguerre basis

m o = (m o 1 , m o 2 ) with m o 1 ∝ n s 2 s 1 s 2 +s 1 +s 2 and m o 2 ∝ n s 1 s 1 s 2 +s 1 +s 2 , provides E( π (D) m o -π 2 n ) = O(n -s s+2 ), 1 s = 1 2 1 s 1 + 1 s 2 .
If s 1 = s 2 = s, the rate becomes n -s s+2 . If moreover (6) holds for Laguerre basis, or if the basis is the Hermite basis, then choosing

(17) m 1 ∝ n s 2 s 1 s 2 +s 1 /2+s 2 and m 2 ∝ n s 1 s 1 s 2 +s 1 /2+s 2 ,
we obtain

E( π (D) m -π 2 n ) = O n - 1 1+ 1 s 1 + 1 2s 2
Note that these rates are dierent from the rates on periodic Sobolev spaces associated to the trigonometric basis (or on Besov spaces associated to piecewise polynomials basis), n -2 ᾱ/(2 ᾱ+2) for regularity α = (α 1 , α 2 ), that we may also recover, see [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF]; a lower bound corresponding to this rate is proved in [START_REF] Lacour | Adaptive estimation of the transition density of a markov chain[END_REF].

We remark that, under the assumptions of Proposition 2, if π ∈ W SS s,λ (L), see (9), then choosing

m i ∝ [log(n) -(s i + 3/2) log log(n)]/λ i gives E( π (D) m -π 2 n ) = O log 3/2 (n) n .
This is an almost parametric rate, which is classical over analytic classes for instance.

Proof of Proposition 2. We start from Inequality (15). For the bias term, we have, as f is

upper bounded by f ∞ < +∞, that π -π m 2 f ≤ f ∞ π -π m 2 2 .
We can then use regularity assumptions on π on Laguerre or Hermite Sobolev spaces to get the order of the bias term, with the result recalled in Section 2.3. This gives

π -π m 2 2 ≤ L[m -s 1 1 + m -s 2 2 ]. Therefore E π (D) m -π 2 n ≤ C(m -s 1 1 + m -s 2 2 + m 1 m 2 n ). Let τ (m 1 , m 2 ) = m -s 1 1 + m -s 2 2 + m 1 m 2 n . Then solving in m 1 , m 2 the sytem ∂τ (m 1 , m 2 ) ∂m 1 = ∂τ (m 1 , m 2 ) ∂m 2 = 0
gives the rst result. The second result is obtained analogously, by using the new variance order

m 1 √ m 2 /n.
We mention that we may prove a risk bound measured in L 2 (A, f (x)dxdy)-norm, in the spirit of [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF], but this would require the so-called "stability condition" (see also Cohen et al. (2013)), namely

(18) L(m 1 ) Ψ -1 m 1 op ≤ d 0 log(n) n ,
for a well dened constant d 0 ; we omit this result for sake of conciseness. Condition (18) also appears in the model selection setting, see Section 6.

3.4. Lower bound. As the rate obtained in Proposition 2 is not standard, we need to check if it is optimal in some sense. The answer can be positive, but on Sobolev-Laguerre or Hermite regularity spaces taking the weighted norm into account.

More precisely, we consider as weighted Laguerre or Hermite Sobolev spaces regularity spaces the ones dened by:

(19) W f s (A, R) = {g ∈ L 2 (A, f (x)dxdy), ∀m, m 1 , m 2 ≥ 1, g -g (f ) m 2 f ≤ R(m -s 1 1 + m -s 2 2 )} where g (f ) m is the orthogonal projection in L 2 (A, f (x)dxdy) of g on S m = S m 1 ⊗ S m 2 .
Note that the rates in Proposition 2 are unchanged by considering that π belongs to W f s (A, R), without requiring f bounded. On the other hand, for f bounded,

W s (A, L) ⊂ W f s (A, R) with R = L f ∞ .
We assume that the regularity orders (s 1 , s 2 ) are integer. We denote by W s 1 (A 1 , R) the univariate Laguerre-Sobolev or Hermite-Sobolev ball, where A 1 = R + in the Laguerre case, and A 1 = R in the Hermite case.

Theorem 1. Let R be a positive real and L be a large enough positive real. Then, for any density

f ∈ W s 1 (A 1 , R) ∩ L ∞ (A 1 )
, there exists a constant c such that for any estimator πn , A = R 2 or A = R 2 + and for n large enough, sup

π∈W f s (A,L) E π πn -π 2 f ≥ cψ 2 n where ψ 2 n = n - 1 1+ 1 s 1 + 1 2s 2 if, for m 1 = ψ -2/s 1 n , (20) L(m 1 ) Ψ -1 m 1 op ≤ ψ -2
n . This result proves the optimality of the rate obtained in Proposition 2 for Hermite basis or Laguerre basis under (6).

Let us comment condition (20). This condition is stronger than the stability condition, which restricts the collection of models for the adaptive method and would appear for controlling the integrated risk instead of the empirical one: see [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] where it is also proved that

Ψ -1 m 1 op ≤ cm β 1 if f has some polynomial decay. Recall that in the Laguerre case, L(m 1 ) = 2m 1 and in the Hermite case, L(m 1 ) = K √ m 1 . Therefore, if in addition Ψ -1 m 1 op = cm β 1 , then (20) is fullled if β + 1 ≤ s 1 in the Laguerre case and if β + 1/2 ≤ s 1 in the Hermite case. 4. Indirect Laguerre case Now, the observations are (X k , Z k ) with Z k = Y k + ε k , k = 1, .
. . , n, under Assumptions A1 and A2. In this Section, we assume that X k ≥ 0, Y k ≥ 0, ε k ≥ 0 a.s., thus it is legit to use the Laguerre basis, dened on R + only. This framework of non-negative variables can be found in many applications, in particular in survival analysis. Note in particular that ε is not centered. More precisely we assume Assumption A3. The distribution of the noise ε admits a density with respect to the Lebesgue measure, denoted by f ε . Moreover X ≥ 0, Y ≥ 0, ε ≥ 0 a.s. 4.1. Denition of the estimators in the noisy-Laguerre case. In this context, computations rely on property (4), specically fullled by the Laguerre functions, see also [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] and [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] in regression and density context respectively. First we denote by π Z|X (x, z) the conditional density of Z given X. We have

π Z|X (x, z) = π(x, z -u)f ε (u)du.
This means that we can estimate the conditional density of Z given X and then invert the convolution link to obtain the coecients of π.

Let us dene the matrix the m 2 × m 2 lower triangular matrix G m 2 = (g j,k ) 0≤j,k≤m 2 -1 with coecients

g j,k = 1 √ 2 ( f ε , j-k 1 j-k≥0 -f ε , j-k-1 1 j-k-1≥0 ) . The diagonal elements of G m 2 are f ε , 0 / √ 2 = +∞ 0 f ε (u)e -u du > 0.
As a consequence G m 2 is invertible. Relying on equation ( 4), in this noisy model we nd

π Z|X (x, z) = j≥0 k≥0 π Z|X , j ⊗ k j (x) k (z) = j≥0 k≥0 p≥0 π, j ⊗ k f ε , p j (x) k (z -u) p (u)du = j,k,p≥0 π, j ⊗ k f ε , p j (x)2 -1/2 ( p+k (z) -p+k+1 (z)) = j,k≥0   k p=0 2 -1/2 ( f ε , k-p -f ε , k-p-1 ) π, j ⊗ p   j (x) k (z) = j,k≥0 ( π, j ⊗ p ) p≥0 t G ∞ k j (x) k (z) (21)
In other words, we have

π Z|X (x, z) = j,k≥0   k p=0 π, j ⊗ p g k,p   j (x) k (z).
The partial L 2 -projection on S (∞,m 2 ) of π Z|X can thus be written

(π Z|X ) (∞,m 2 ) (x, z) = j≥0 m 2 -1 k=0 ( π, j ⊗ p ) 0≤p≤m 2 -1 t G m 2 k j (x) k (z),
thanks to the triangular structure of G m 2 . This explains why a two-step strategy gives in this basis:

π (L) m (x, y) = m 1 -1 j=0 m 2 -1 k=0 a (L) j,k j (x) k (y), A (L) m = ( a (L) j,k ) 0≤j≤m 1 -1,0≤k≤m 2 -1 with (22) A (L) m = 1 n Ψ -1 m 1 t Φ m 1 Θ m 2 (Z) t G -1 m 2 , with Θ m (Z) = ( j (Z i )) 1≤i≤n,0≤j≤m-1
where Ψ m 1 and Φ m 1 are dened by (11).

4.2. Bound on the empirical MISE of π (L) m . Let us note that

E[ A (L) m |X] = 1 n Ψ -1 m 1 t Φ m 1 E[ Θ m 2 (Z)|X] t G -1 m 2 .
A rst useful property is given by the lemma:

Lemma 3. We have E[ Θ m 2 (Z)|X] t G -1 m 2 = E[ Θ m 2 (Y)|X] and thus E[ π (L) m |X] = π m,n .
Thanks to this result, we can prove the following risk bound (see Section 8.6).

Proposition 3. Assume that Assumptions A1, A2 and A3 hold. Then the estimator π (L) m dened by ( 22) satises:

E( π (L) m -π 2 n ) ≤ π -π m 2 f + G -1 m 2 2 op m 1 L(m 2 ) n where L(m 2 ) = 2m 2 here. If in addition the condition (23) ∃C > 0, ∀x, E 1 √ Z |X = x < C holds, then (24) E( π (L) m -π 2 n ) ≤ π -π m 2 f + C G -1 m 2 2 op m 1 √ m 2 n .
As G m 2 is lower triangular, its eigenvalues are given by the diagonal terms, which are all equal to

2 -1/2 f ε , 0 = R + e -u f ε (u)du ≤ 1. Therefore G -1 m 2 2 op = λ max (G -1 m 2 t G -1 m 2 ) ≥ [λ max (G -1 m 2 )] 2 ≥ 1.
Therefore, as expected, the variance order in the inverse problem increases compared to the variance order in the direct case. Moreover, it is proved in Lemma 3.4 of [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] that

m 2 → G -1 m 2 2 op is increasing. Note that condition (23) holds if condition (5) holds or if E(1/ √ ε) is nite. 4.3.
Rates in the noisy-Laguerre case. Now let us assess the order of the variance term and more specically of G -1 m 2 2 op . [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] show that we can recover the order of this spectral norm, under the conditions on the density f ε . First we dene an integer α ≥ 1 such that

d j dx j f ε (x)| x=0 = 0 if j = 0, 1, . . . , α -2 B α = 0 if j = α -1.
Consider the two following assumptions: Assumption A4.

(1)

f ε ∈ L 1 (R + ) is α times dierentiable and f (α) ε ∈ L 1 (R + ). (2) The Laplace transform of f ε , z → E [e -zε ]
has no zero with non-negative real part except for the zeros of the form ∞ + ib, b ∈ R.

It follows from [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] that, under Assumptions A4, there exists positive constants

C and C such that: C m 2α 2 ≤ G -1 m 2 2 op ≤ Cm 2α 2 .
For example a Gamma distribution with Γ(p, θ) satises Assumptions A4 for α = p (α = 1

for an exponential distribution). If f ε follows a β(a, b) and b > a, then G -1 m 2 2 op = O(m 2a 
2 ) (see [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF]). On the contrary an Inverse Gamma distribution does not satisfy Assumptions A4 because there exists no value of α such that the derivative is nonzero at 0. These assumptions allow to deduce from Proposition 3 the following rates of convergence of the estimator.

Proposition 4. Assume that f is bounded. Under Assumptions A1A4, for π ∈ W s (R 2 + , L), and m = (m 1 , m 2 ) such that

m 1 ∝ n s 2 /[(2α+1)s 1 +s 2 +s 1 s 2 ] and m 2 ∝ n s 1 /[(2α+1)s 1 +s 2 +s 1 s 2 ] then E[ π (L) m -π 2 ] ≤ C(s, L, f ∞ )n -1/[ 2α+1 s 2 + 1 s 1 +1] .

Indirect Hermite case

Now we consider the general case where we observe (X i , Z i ) 1≤i≤n from Z i = Y i + ε i and all variables take values in R. Then, we dene the estimator in the Hermite basis, and use standard deconvolution methods in the y-direction, while still the regression strategy in the x-direction.

5.1. Assumption related to the noise. We denote by f * ε the characteristic function of the noise ε:

∀u ∈ R f * ε (u) = E[e -iuε ].
The following assumptions are required for f * ε :

Assumption A5.

(1) Function

f * ε never vanishes, i.e. ∀u ∈ R, f * ε (u) = 0. (2) There exist α ∈ R, β > 0, 0 ≤ γ ≤ 2, (α > 0 if γ = 0), β < ξ if γ = 2 for ξ dened in (8),
and

k 0 , k 1 > 0 such that ∀u ∈ R, k 0 (u 2 + 1) -α/2 exp(-β|u| γ ) ≤ |f * ε (u)| ≤ k 1 (u 2 + 1) -α/2 exp(-β|u| γ ) If γ = 0,
the noise is called ordinary smooth, and super smooth for γ > 0, β > 0. For instance, Laplace or Gamma distributions are ordinary smooth. On the other hand, Gaussian or Cauchy noises are supersmooth.

Remark. If f ε is a density, it is known that γ ≤ 2 (at least for α = 0). 1 5.2. Denition of the contrasts in the noisy-Hermite case. To begin with, we recall that the Fourier transform t * of t ∈ S m is dened by

t * (u) = e ixu t(x)dx.
For a bivariate function T ∈ S m , we denote by T ( * ,2) the Fourier transform with respect to the second variable :

T ( * ,2) (x, u) = e iyu T (x, y)dy.
Denition 2. For any function t ∈ S m , we denote by v t the inverse Fourier transform of

t * /f * ε (-.), i.e. v t (x) = 1 2π e -ixu t * (u) f * ε (-u) du.
For any bivariate function T ∈ S m , we denote by Φ T the following bivariate function

Φ T (x, z) = 1 2π e -iuz T ( * ,2) (x, u) f * ε (-u) du
We can also write

Φ ( * ,2) T (x, u) = T ( * ,2) (x, u)/f * ε (-u).
1 According to [START_REF] Lukacs | Characteristic functions[END_REF], Theorem 4.1.1, the only characteristic function φ with φ(u) = 1 + o(u 2 ), as u → 0, is the function φ(u) = 1 for all u. This rules out characteristic functions of the form e -β|u| γ with γ > 2. This implies that if

|f * ε (u)| 2 = c exp(-2β|u| γ ) then necessarily γ ≤ 2. Indeed, |f * ε (u)| 2
is the characteristic function of a probability density function (it is a characteristic function of ε1 -ε 1 where ε 1 is an independent copy of ε1).

Note that v h k is well dened for all ordinary smooth noise distributions and for a wide range of super-smooth distributions also, thanks to property (8) of the Hermite basis and Assumption A5-(2). Moreover, the operators v and Φ are linked via the formula

Φ t⊗s (x, y) = t(x)v s (y), Φ h j ⊗h k (x, y) = h j (x)v h k (y)
and are helpful because of the following properties.

∀t ∈ S m , E[v t (Z 1 )|Y 1 ] = t(Y 1 ) and E[v t (Z 1 )|X 1 ] = t(z)π(X 1 , z)dz, ∀T ∈ S m E[Φ T (X 1 , Z 1 )|X 1 ] = E[T (X 1 , Y 1 )|X 1 ] = T (X 1 , z)π(X 1 , z)dz.
Now we can dene our estimators by: ( 25)

π (H) m = arg min T ∈Sm γ (H) n (T ),
with the following contrast γ

(H) n : (26) γ (H) n (T ) = 1 n n i=1 R T 2 (X i , y)dy -2Φ T (X i , Z i ) .
The interest of this contrast can be easily understood by the computation of E[γ (H) n (T )]. Indeed, using the previous properties, we can write

E[γ (H) n (T )] = E[ T 2 (X, y)dy -2Φ T (X, Z)] = T 2 (x, y)f (x)dxdy -2E[T (X, Y )] = [(T (x, y) -π(x, y)) 2 -π 2 (x, y)]f (x)dxdy = T -π 2 f -π 2 f .
We obtain the following new estimator of π:

π (H) m (x, y) = m 1 -1 j=0 m 2 -1 k=0 a (H) j,k h j (x)h j (y) A (H) m = ( a (H) j,k ) 0≤j≤m 1 -1,0≤k≤m 2 -1 with (27) A (H) m = 1 n Ψ -1 m 1 t Φ m 1 Υ m 2 (Z), with Υ m 2 (Z) = v h j (Z i ) 1≤i≤n,0≤j≤m 2 -1 , with Ψ m 1 , Φ m 1 still dened by (11).
Note that if X i ∈ R + and Y i ∈ R we may use a product basis ( j ⊗h k ) j,k for estimation purpose. The formulae above would still hold.

Bound on the empirical MISE of π (H)

m and rates. Here we can prove the following bound:

Proposition 5. Under Assumptions A1, A2 and A5, we have

E[ π (H) m |X] = π m,n and E π (H) m -π 2 n ≤ π -π m 2 f + m 1 ∆(m 2 ) n , where ∆(m 2 ) = 1 π 4 |u|≤ √ 2m 2 du |f * ε (u)| 2 + c
and c is a constant only depending on ξ (see ( 8)) and on f * ε .

Note that, under Assumption A5, we can compute that

∆(m 2 ) ≤ km α+ 1-γ 2 2 exp[2β(2m 2 ) γ/2 ].
By computations similar to the ones to prove Proposition 2, we obtain the following rates.

Proposition 6. Assume that f is bounded and Assumptions A1, A2 and A5 hold.

Let π ∈ W s (R 2 , L).

(1) If γ = 0, then for m i ∝ n s i /[(α+1/2)s 1 +s 2 (s 1 +1)] , i = 1, 2, we have

E π (H) m -π 2 n ≤ Cn - 1 1+ α+1/2 s 2 + 1 s 1 .
(2) If γ, β > 0, then for m 1 = (log n) 2s 2 /(γs 1 ) and m 2 = (1/2) (log n/4β) 2/γ , we have 9), and γ = 0, then for

E π (H) m -π 2 n ≤ C (log n) -2s 2 /γ . Let π ∈ W SS s,λ (L), see (
m i = [log(n) -(α + s i ) log log(n)]/λ i , i = 1, 2 E π (H) m -π 2 n ≤ C (log n) 1+α n .
Here we nd a usual phenomenon in deconvolution: if the noise is supersmooth and the target function is only Sobolev, the rate of convergence is logarithmic. For more details about the rates see [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF].

Adaptive estimators with Goldenschluger-Lepski method

In the previous sections, we have described collections of estimators πm and computed their rates of convergence for optimal m = m . Nevertheless these values of m depend of the smoothness s of the unknown conditional density π. Now we aim at selecting m in a purely data-driven way. In this section, we dene adaptive estimators of the conditional density for the three settings described previously, and prove a risk bound for them, showing that they realize the adequate compromise between bias and variance.

More precisely, we dene the collections of models and estimators, and give a general result with superscript (Sup) where (Sup) = (D) (direct case), or (Sup) = (L) (Laguerre-noisy case) or (Sup) = (H) (Hermite-noisy case).

6.1. Collection of models. First we dene

(28) V (D) (m) = K 0 m 1 L(m 2 ) n , V (L) (m) = K 0 m 1 L(m 2 ) G -1 m 2 2 op n , V (H) (m) = K 0 m 1 ∆(m 2 ) n ,
where K 0 is a numerical constant (K 0 = 12(1 + ) for > 0 suits, from the proof here). These terms are of order of the variance of the corresponding estimators in the trigonometric (L(m 2 ) = m 2 for odd m 2 ) or in the Hermite case (L(m 2 ) = K √ m 2 ). For the Laguerre case, we have L(m 2 ) = 2m 2 while we know that, under condition (5) the optimal order is √ m 2 . These quantities will be used as penalty in a criterion to be minimized. Then we consider the following collection of models

M (Sup) n = m ∈ {1, . . . , n} 2 , V (Sup) (m) ≤ 1, L(m 1 ) Ψ -1 m 1 op ≤ d 2 n log 2 (n) where d a well-chosen numerical constant such that d / log(n) ≤ d with d = (3 log(3/2) -1)/10 and d ≤ C( 2 )/42, C( 2 ) = min( √ 1 + 2 -1, 1). Recall that Ψ m 1 = E( Ψ m 1 ) = ( ϕ j , ϕ k f ) 0≤j,k≤m 1 -1 . Moreover, note that for a non-zero vector x = t (x 0 , . . . , x m 1 -1 ) ∈ R m 1 , then t xΨ m 1 x = ( m 1 -1 j=0 x j ϕ j (x)) 2 f (x)
dx > 0 under our assumptions, so that Ψ m 1 is invertible. We also introduce its empirical random counterpart ( 29)

M (Sup) n = {m ∈ {1, . . . , n} 2 , V (Sup) (m) ≤ 1, L(m 1 ) Ψ -1 m 1 op ≤ d n log 2 (n) }.
Note that m 1 → L(m 1 ) Ψ -1 m 1 op is increasing, and m → V (Sup) (m) also, with respect to each variable. Thus both collection are such that, if they contain m and m , then they also contain m ∧ m dened as component-wise minimum.

Comments.

1. The denition of the collection of models involves two constraints. The rst one is standard and means that the variance remains bounded. As this term is known, it is the same for the two sets, M (Sup) n and M (Sup) n

. The second constraint must be compared to the so-called "stability condition" introduced by Cohen et al. (2013), [START_REF] Cohen | Correction to: On the stability and accuracy of least squares approximations[END_REF] and also used in [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF]

: L(m 1 ) Ψ -1 m 1 op ≤ d 2 n log(n) .
Obviously, it is here slightly reinforced. However, when dealing with adaptive estimation, Comte and Genon-Catalot (2020) had a stronger condition:

L(m 1 ) Ψ -1 m 1 2 op ≤ d n log(n) .
The improvement here is substantial, specically for non campactly supported bases where Ψ -1 m 1 op can be large. This is due to conditional preliminary result. As the matrix Ψ m is unknown, it has to be replaced by its empirical version and leads to a random model collection M (Sup) n . 2. Let us now mention specic properties in the direct case. If the support of the basis used for estimation along x is compact, say [0, 1], then we can assume that f [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF]. The collection of models no longer need to involve neither Ψ -1 m 1 op nor Ψ -1 m 1 op and reduces to the standard one, and is similar to [START_REF] Brunel | Adaptive estimation of the conditional density in presence of censoring[END_REF]. However, the penalty we obtain here, V (D) (m), does not depend on f 0 nor π ∞ , and this is an important improvement compared to this work. Now we present constraints on the model collection.

(x) ≥ f 0 , ∀x ∈ [0, 1]. In that case Ψ -1 m 1 op ≤ 1/f 0 , see
Case (D). Assume that, for any c 1 > 0, there exists Σ > 0 such that (30) m∈{1,...,n} 2 e -c 1 m 1 L(m 2 ) ≤ Σ < +∞.

Case (L). Assume that, for any c 1 > 0, there exists Σ > 0 such that

(31) m G -1 m 2 2 op e -c 1 m 1 L(m 2 ) ≤ Σ < +∞ Case (H). Let δ(m 2 ) := sup |z|≤ √ 2m 2 1 |f * ε (z)| 2 + c
, and assume that, for any c 1 > 0, there exists

Σ > 0 such that (32) m δ(m 2 ) exp -c 1 m 1 ∆(m 2 ) δ(m 2 ) ≤ Σ < +∞.
Let us comment these conditions. First, condition (30) if fullled for all our bases.

Under Assumption A4, G -1

m 2 2 op = O(m 2α 
2 ) and condition (31) is fullled. Now we discuss condition (32). In the ordinary smooth case where δ = γ = 0,

δ(m 2 ) exp(-c 1 m 1 ∆(m 2 ) δ(m 2 ) ) ∼ m α 2 exp(-c 1 m 1 √ m 2 )
is indeed summable and condition (32) is fullled. In the super-smooth case, with Lemma 1 in [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], ∆(m 2 ) ∼ Cm

α+(1-γ)/2 2 exp(βm γ/2
2 ); then condition (32) is fullled if γ < 1/2; otherwise, the penalty must be slightly changed, see [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]. 6.2. General adaptive estimator and result. Assumption A6. The conditional density π of Y given X is bounded on R 2 .

For m = (m 1 , m 2 ) and m = (m 1 , m 2 ), we dene S m∧m := (S m 1 ∩ S m 1 ) ⊗ (S m 2 ∩ S m 2 ) where S m i ∧m i := S m i ∩ S m i is well dened with trigonometric, Laguerre and Hermite bases, which are our leading examples. These collections are regular and nested in each direction, with at most one model for each m i . Thus S m∧m is well dened, and we denote by π (Sup) m,m the minimum contrast estimator on S m∧m .

We propose a model selection relying on the strategy initiated by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] adapted to model selection in the spirit of [START_REF] Chagny | Warped bases for conditional density estimation[END_REF]. Let then

A (Sup) (m) = sup m ∈ M (Sup) n π (Sup) m ,m -π (Sup) m 2 n -V (Sup) (m )
+ with V (Sup) (m ) dened by ( 28) and a + = max(a, 0) denotes the positive part of a. We select the model m with the following rule

m(Sup) = arg min m∈ M (Sup) n A (Sup) (m) + V (Sup) (m) .
Our nal estimator is π(Sup) = π (Sup) m(Sup) . The rst result is obtained conditionally on X 1 , . . . , X n .

Theorem 2. Assume that Assumption A1 and A6 hold. Assume that condition (30) for (Sup) = (D), Assumptions A2, A3 and condition (31) for (Sup) = (L) and Assumptions A2, A5 and condition (32) for (Sup) = (H) hold. Then, for any m ∈ M (Sup) n , we have a.s.

(33) E π -π(Sup) 2 n |X ≤ C inf m∈ M (Sup) n { π -π m,n 2 n + V (Sup) (m)} + C n ,
where C is a numerical constant and C is a constant which depends on π ∞ , Σ, but not on (X 1 , . . . , X n ) nor on n.

The same assumptions and the method of proof used in the direct case lead to the following non conditional result.

Corollary 1. Under the Assumptions of Theorem 2, for any m ∈ M (Sup) n , we have

(34) E π -π(Sup) 2 n ≤ C inf m∈M (Sup) n { π -π m 2 f + V (Sup) (m)} + C n ,
where C is a numerical constant and C is a constant which depends on π ∞ , Σ.

Inequality (34) states that the estimator is adaptive in the sense it performs a squared-bias/variance compromise over the collection M (Sup) n

, up to the multiplicative constant C and the additive negligible term C"/n. In the direct case (D), and for compactly supported basis along x, optimal rates are then automatically reached under f (x) ≥ f 0 > 0 for x in the support, see section 3.3. Compared to previous results, we mention that the penalty term does not depend on f 0 nor f ∞ . Moreover, the additional novelty is that more general non compact supports are admitted, with size of the model collection depending on Ψ -1 m 1 op . The optimal rate may not be reached, depending on the order of this term. We emphasize that the results obtained in the noisy cases are entirely new. Note that a compactly supported basis case be used in x and the Hermite basis for deconvolving in y, even if this would make the bias term of particular feature.

Concluding remarks

We have proposed in this paper adaptive estimation method for the conditional density of Y given X = x, when the observations are (X i , Y i ) 1≤i≤n so-called direct observations, or (X i , Z i ) 1≤i≤n with Z i = Y i + ε i so-called noisy observations. The diculty in the noisy case, is to use the same basis in the two directions, the regression direction in x and the density direction with deconvolving in y. Indeed, until recently, ecient regression methods with projection spaces rely on compactly supported bases, while deconvolution requires Fourier transforms and inversions which are more convenient with non compact support. This is why we rst studied conditional density estimation in the direct case with possibly non compactly supported bases, which, thanks to the ideas in Comte and Genon-Catalot (2020) and [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] conducted to new risk bounds for simple (xed projection space) and adaptive estimator. Then, our two extensions to noisy cases, either with R + -supported or with real valued variables, lead to new estimators and risk bounds. Now, the most standard basis for deconvolution is the sinus cardinal basis, ϕ m,j = √ mϕ(mx-j) for j ∈ Z, and ϕ(x) = sin(πx)/(πx), and the question of using this basis in regression setting remains unsolved. Another extension would be to take into account multidimensional covariates; this has been studied in deconvolution setting with Laguerre basis in Dussap ( 2021), but the regression context is to be considered. 8. Proofs 8.1. Proof of Lemma 1. We rst use ( 7) to write

m-1 j=0 h 2 j (x) = 1 2π m-1 j=0 |h * j (x)| 2
Now by splitting h * j (x) = |u|≤ √ 2m+1 e iux h j (u)du + |u|> √ 2m+1 e iux h j (u)du and using (8), we get, for j ≤ m -1,

|h * j (x)| 2 ≤ 2 h j , e i•x 1 |.|≤ √ 2m+1 2 + 2C |u|> √ 2m+1
e -ξu 2 du.

Thus m-1 j=0 h 2 j (x) ≤ 2 1 |.|≤ √ 2m+1 2 2 +2Cme -ξ(2m+1)/2 e -ξu 2 /2 du = 2 √ 2m + 1+ 2 √ 2πC √ ξ Cme -ξ(2m+1)/2 .
This implies the result of Lemma 1 with K = K(C, ξ).

8.2. Proof of Lemma 2. We compute π m,n , the orthogonal projection of π w.r.t. the empirical scalar product. We have

π m,n (X i , y) = m 1 -1 j=0 m 2 -1 k=0 [D m ] j,k ϕ j (X i )ϕ k (y)
where D m is such that π m,n -π, ϕ j ⊗ ϕ k n = 0 for 0 ≤ j ≤ m 1 -1 and 0 ≤ k ≤ m 2 -1. Therefore writing that the terms

π, ϕ j ⊗ ϕ k n = 1 n n i=1 π(X i , y)ϕ j (X i )ϕ k (y)dy = 1 n n i=1 ϕ j (X i ) π(X i , y)ϕ k (y)dy = 1 n t Φ m 1 π(X i , y)ϕ k (y)dy 1≤i≤n,0≤k≤m 2 -1 j,k
, and

π m,n , ϕ j ⊗ ϕ k n = 1 n n i=1 m 1 -1 j =0 m 2 -1 k =0 [D m ] j ,k ϕ j (X i )ϕ j (X i ) ϕ k (y)ϕ k (y)dy = m 1 -1 j =0 [D m ] j ,k 1 n n i=1 ϕ j (X i )ϕ j (X i ) = m 1 -1 j =0 [D m ] j ,k [ Ψ m 1 ] j,j = Ψ m 1 D m j,k
are equal, implies formula ( 14). The last part of the result follows from

ϕ k (y)π(X i , y)dy 1≤i≤n,0≤k≤m 2 -1 = E Θ m 2 (Y)|X , X = (X 1 , . . . , X n ),
where Θ m 2 (Y) is dened by (12).

8.3. Proof of Proposition 1. We start from equation ( 13). By elementary algebraic computation, we nd

π m -π m,n 2 n = 1 n n i=1 ( π m (X i , y) -π m,n (X i , y)) 2 dy = 1 n n i=1   j,k ([ A m ] j,k -[D m ] j,k )ϕ j (X i )ϕ k (y)   2 dy = 1 n m 2 -1 k=0 n i=1   m 1 -1 j=0 ([ A m ] j,k -[D m ] j,k )ϕ j (X i )   2 = Tr t ( A m -D m ) Ψ m 1 ( A m -D m ) .
Replacing the matrix coecients by their formula, we get

π m -π m,n 2 n = 1 n 2 Tr t Θ m 2 (Y) -E Θ m 2 (Y)|X Φ m 1 Ψ -1 m 1 t Φ m 1 Θ m 2 (Y) -E Θ m 2 (Y)|X . Then (35) E π m -π m,n 2 n |X = 1 n 2 n i=1 m 2 -1 j=0 E (ϕ j (Y i ) -E(ϕ j (Y i )|X i )) 2 |X i [ Φ m 1 Ψ -1 m 1 t Φ m 1 ] i,i . Now, note that [ Φ m 1 Ψ -1 m 1 t Φ m 1 ] i,i ≥ 0 as it is of the form t e i M e i = M 1/2 e i 2 2
for M positive denite. Under (6) for Laguerre basis or by Lemma 1 for Hermite basis,

m 2 -1 j=0 E (ϕ j (Y i ) -E(ϕ j (Y i )|X i )) 2 |X i ≤ m 2 -1 j=0 E ϕ 2 j (Y i )|X i ≤ c √ m 2 and E π m -π m,n 2 n |X ≤ c √ m 2 n 2 Tr Φ m 1 Ψ -1 m 1 t Φ m 1 = c m 1 √ m 2 n , as Tr Φ m 1 Ψ -1 m 1 t Φ m 1 = nTr Φ m 1 ( t Φ m 1 Φ m 1 ) -1 t Φ m 1 = nTr ( t Φ m 1 Φ m 1 ) -1 t Φ m 1 Φ m 1 = n m 1 .
In the general case, we have

m 2 -1 j=0 E (ϕ j (Y i ) -E(ϕ j (Y i )|X i )) 2 |X i ≤ m 2 -1 j=0 E ϕ 2 j (Y i )|X i ≤ L(m 2 ),
and the variance bound becomes:

E π m -π m,n 2 n |X ≤ m 1 L(m 2 ) n .
8.4. Proof of Theorem 1.

8.4.1. Core of the proof. We give the proof both in the Laguerre and Hermite settings. For the Laguerre case, we note that the assumption E(1/ √ Y |X = x) ≤ C for all x is fullled for π 0 and π θ below. This is why the lower bound concerns the rate associated with the variance m 1 √ m 2 /n, in both cases.

As usual in the proofs of lower bounds, we build a set of conditional densities (π θ ) quite distant from each other in terms of the weighted L 2 -norm, but whose distance between the resulting models is small. Let us dene in the Laguerre case

π 0 (x, y) = π 0 (y) = 1 2 1 [0,1] (y) + P L (y)1 ]1,2] (y)
where P L is a polynomial, P L (y) ≥ 0 on [1, 2],

2 1 P L (y)dy = 1/2, P L (1) = 1/2, P L (2) = 0, P (k) L (1) = P (k)
L (2) = 0 for k = 1, . . . , s 2 + 1. In the Hermite setting, we dene

π 0 (x, y) = π 0 (y) = P H (y)1 [-1,0[ (y) + 1 2 1 [0,1] (y) + Q H (y)1 ]1,2] (y),
where

P H (-1) = Q H (2) = 0, P H (0) = Q H (1) = 1/2, P H , Q H ≥ 0 on [-1, 0] and [1, 2] respectively, 0 -1 P H = 2 1 Q H = 1/4, and 
P (k) H (-1) = P (k) H (0) = Q (k) H (1) = Q (k)
H (2) = 0, for k = 1, . . . , s 2 + 1. Next, we assume without loss of generality that √ m 2 is an integer and we dene in both Laguerre and Hermite cases

π θ (x, y) = π 0 (x, y) + δ √ n m 1 -1 j=0 √ m 2 -1 k=0 A j,k ϕ j (x)(m 1/4 2 ψ( √ m 2 y -k)), with A = Ψ -1/2 m 1 Θ, Θ = (θ j,k ) 1≤j≤m 1 ,1≤k≤ √ m 2 ∈ {0, 1} m 1 √ m 2 ,
for δ > 0 small enough, where ψ is a bounded function with support [0, 1] such that 1 0 ψ(u)du = 0. Moreover, we assume that ψ admits continuous bounded derivatives up to order s 2 . We use the notation Θ for the matrix with m 1 lines and √ m 2 columns, and θ = vec(Θ) the associated vector with m 1 √ m 2 components. Lastly, ϕ j = j in the Laguerre case and ϕ j = h j in the Hermite case. Now we shall use the following lemmas:

Lemma 4.

(a) Assume that f ∈ W s 1 (A 1 , R) ∩ L ∞ (A 1 ). Then there exists L > 0 such that π 0 is a conditional density belonging to W f s (A, L). (b) If δ ≤ 1/(4 ψ ∞ ) and (36) L(m 1 ) Ψ -1 m 1 op ≤ n/(m 1 √ m 2 ) then for all θ ∈ {0, 1} m 1 √ m 2 , π θ is a conditional density. (c) If δ is small enough, for all θ ∈ {0, 1} m 1 √ m 2 , π θ -π 0 belongs to W f s (A, L) as soon as m s 1 +1 1 √ m 2 n = O(1) and m 1 m s 2 +1/2 2 n = O(1).
Then under the conditions of this lemma, the π θ 's are conditional densities belonging to W f s (A, 4L).

Lemma 5. We denote ρ(θ, θ ) the Hamming distance between θ and θ .

• For all θ ∈ {0, 1} m 1 √ m 2 , the Kullback divergence between the distribution of (X i , Y i ) 1≤i≤n

under π θ and under π 0 veries K(P ⊗n θ , P ⊗n

0 ) ≤ 2δ 2 ψ 2 m 1 √ m 2 . • For all θ, θ ∈ {0, 1} m 1 √ m 2 , π θ -π θ 2 f = δ 2 ψ 2 n -1 ρ(θ, θ )
We also recall the Varshamov-Gilbert bound (see Lemma 2.9 p.104 in Tsybakov ( 2009)), that we use with

K = m 1 √ m 2 .
Lemma 6. Fix some even integer K > 0. There exists a subset {θ (0) , . . . , θ (M ) } of {0, 1} K and a constant a 1 > 0, such that θ (0) = (0, . . . , 0), ρ(θ (j) , θ (l) ) ≥ a 1 K, for all 0 ≤ j < l ≤ M. Moreover it holds that, for some constant a 2 > 0, M ≥ 2 a 2 K .

Thus we have built M conditional densities π θ (0) , . . . , π θ (M ) belonging to

W f s (A, R) such that π θ (j) -π θ (k) 2 f ≥ (δ 2 ψ 2 a 1 )m 1 √ m 2 /n and K(P ⊗n θ (j) , P ⊗n θ (0) ) ≤ [2δ 2 ψ 2 /a 2 log(2))] log(M ).
To conclude it is sucient to use Theorem 2.5 of [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] with m 1 = m 1 and m 2 = m 2 given by ( 17). Note that m 1 m 2 /n = ψ 2 n is the targeted rate, and that condition (36) comes from (20).

8.4.2. Proof of Lemma 5. We start by proving Lemma 5 since its provides a computation useful for the proof of Lemma 4.

• Note that the Kullback divergence between the distribution of (X i , Y i ) 1≤i≤n under π θ and under π 0 veries K(P ⊗n θ , P ⊗n 0 ) ≤ nK(P θ , P 0 ) ≤ nχ 2 (π θ , π 0 )

where χ 2 (π θ , π 0 ) = (π θ (x,y)-π 0 (x,y)) 2 π 0 (x,y) f (x)dxdy. Now, using that the ψ(

√ m 2 y -k) have disjoint supports χ 2 (π θ , π 0 ) = 1 0 (π θ (x, y) -π 0 (x, y)) 2 π 0 (x, y) f (x)dxdy = 2 δ 2 n 1 0   m 1 -1 j=0 √ m 2 -1 k=0 A j,k ϕ j (x)m 1/4 2 ψ( √ m 2 y -k)   2 f (x)dxdy = 2 δ 2 n √ m 2 -1 k=0   m 1 -1 j=0 A j,k ϕ j (x)   2 f (x)dx 1 0 √ m 2 ψ 2 ( √ m 2 y -k)dy = 2 δ 2 n ψ 2 √ m 2 -1 k=0 m 1 -1 j, =0 A j,k A ,k [Ψ m 1 ] j, = 2 δ 2 n ψ 2 Tr[ t AΨ m 1 A] = 2 δ 2 n ψ 2 Tr[ t ΘΘ] ≤ 2δ 2 ψ 2 m 1 √ m 2 n • Let θ and θ in {0, 1} m 1 √ m 2 . Denoting A = Ψ -1/2 m 1 Θ , π θ -π θ 2 f = δ 2 n   m 1 -1 j=0 √ m 2 -1 k=0 (A j,k -A j,k )ϕ j (x)m 1/4 2 ψ( √ m 2 y -k)   2 f (x)dxdy = δ 2 n j, ,k (A j,k -A j,k )(A ,k -A ,k )[Ψ m 1 ] j, √ m 2 ψ 2 ( √ m 2 y -k)dy = δ 2 ψ 2 n j, ,k (A j,k -A j,k )[Ψ m 1 ] j, (A ,k -A ,k ) = δ 2 ψ 2 n Tr t (A -A )Ψ m 1 (A -A ) = δ 2 ψ 2 n Tr t (Θ -Θ )(Θ -Θ ) = δ 2 ψ 2 n ρ(θ, θ ). (37) 8.4.3. Proof of Lemma 4.
In this proof, for univariate functions g, h, the dot product g, h f means naturally g(x)h(x)f (x)dx and g, h = g(y)h(y)dy.

(a) First, π 0 (x, y)dy = 1 and π 0 (x, y) ≥ 0, ∀x, y and thus π 0 is a conditional density. Now we have to prove that the functions π 0 are in W f s (A, L) for some L > 0. In the Laguerre case, it is proved in [START_REF] Belomestny | Correction to: Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF], proof of Lemma 4.1, that y → π 0 (y) is in the univariate Sobolev-Laguerre space W s 2 (R + , L 2 ) for some L 2 > 0. In the Hermite case, we use the property proved in [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] stating that the functions in the usual Sobolev space W s 2 = {f ∈ L 2 (R), f admits derivatives up to order s, such that s 2 j=0 f (j) 2 < +∞} which have compact support also belong to Sobolev-Hermite space with same regularity index. Thus, y → π 0 (y) is in W s 2 (R, L 2 ) for some L 2 > 0.

Now we want to prove that (x, y) → π 0 (x, y) = π 0 (y) belongs to the weighted bivariate space W f s (A, L) for some L > 0, for s = (s 1 , s 2 ). We have

(π 0 ) (f ) ( 1 , 2 ) (x, y) = 1 -1 j=0 2 -1 k=0 a (f ) j,k ϕ j (x)ϕ k (y)
avec ceux de la denition des π θ with a (f )

j,k = π 0 , ϕ j ⊗ ϕ k f = ϕ j (x)f (x)dx π 0 (y)ϕ k (y)dy .
Thus, it holds

π 0 -(π 0 ) (f ) ( 1 , 2 ) 2 f =   j≥ 1 or k≥ 2 a (f ) j,k ϕ j (x)ϕ k (y)   2 f (x)dxdy ≤ 2   j≥0 ϕ j , 1 f ϕ j (x)   2 f (x)dx   k≥ 2 π 0 , ϕ k ϕ k (y)   2 dy +2   j≥ 1 ϕ j , 1 f ϕ j (x)   2 f (x)dx   k≥0 π 0 , ϕ k ϕ k (y)   2 dy Now we have k≥0 π 0 , ϕ k ϕ k (y)
2 dy = π 2 0 (y)dy which is a nite constant, and the regularity

of π 0 implies k≥ 2 π 0 , ϕ k ϕ k (y) 2 dy ≤ L 2 -s 2 2 . On the other hand,   j≥ 1 ϕ j , 1 f ϕ j (x)   2 f (x)dx ≤ f ∞   j≥ 1 ϕ j , 1 f ϕ j (x)   2 dx = f ∞ j≥ 1 ϕ j , f 2 .
The assumption that

f ∈ W s 1 (A 1 , R) implies j≥ 1 ϕ j , f 2 ≤ R -s 1 1 . In the same way   j≥0 ϕ j , 1 f ϕ j (x)   2 f (x)dx ≤ f ∞ f 2 2 ≤ f 2 ∞ .
Gathering all terms yields π 0 -(π 0 )

(f ) ( 1 , 2 ) 2 f ≤ L( -s 1 1 + -s 2 2 ) and thus π 0 ∈ W f s (A, L) for some L > 0 depending on f ∞ , R, s 2 .
(b) Since ψ = 0, we have π θ (x, y)dy = 1 and we prove hereafter that π θ (x, y) ≥ 0.

In the Laguerre case, for y ∈]1, 2], π θ (x, y) = P L (y) ≥ 0. Analogously, π θ (x, y) ≥ 0 for y ∈ R \ [0, 1] in the Hermite case. Now, take y ∈ [0, 1] in both Laguerre and Hermite case. If for

k 0 = 0, . . . , √ m 2 -1, y ∈ [k 0 / √ m 2 , (k 0 + 1)/ √ m 2 [, then π θ (x, y) = 1 2 + δ √ n m 1 -1 j=0 A j,k 0 ϕ j (x)(m 1/4 2 ψ( √ m 2 y -k 0 )).
Denoting ϕ(x) = t (ϕ 0 (x), . . . , ϕ m 1 -1 (x)) and . the Euclidean norm on R m 1 , we have

π θ (x, y) - 1 2 = δm 1/4 2 √ n m 1 -1 j=0 A j,k 0 ϕ j (x)ψ( √ m 2 y -k 0 ) ≤ δm 1/4 2 √ n ψ ∞ |[ t A ϕ(x)] k 0 | = δm 1/4 2 √ n ψ ∞ |[ t ΘΨ -1/2 m 1 ϕ(x)] k 0 | ≤ δm 1/4 2 √ n ψ ∞ | t e k 0 t ΘΨ -1/2 m 1 ϕ(x)| ≤ δm 1/4 2 √ n ψ ∞ Θe k 0 Ψ -1/2 m 1 op L(m 1 ) ≤ δm 1/4 2 √ n ψ ∞ L(m 1 ) Ψ -1 m 1 op m 1 j=1 θ 2 j,k 0 ≤ δ ψ ∞ m 1 √ m 2 L(m 1 ) Ψ -1 m 1 op n Then, if L(m 1 ) Ψ -1 m 1 op ≤ n/(m 1 √ m 2 ) π θ (x, y) - 1 2 ≤ δ ψ ∞
which is less than 1/4 for δ ≤ 1/(4 ψ ∞ ). For this choice of δ, we deduce π θ (x, y) ≥ 0.

(c) Next, it remains to prove that h := π θ -π belongs to W f s (A, L); this will give π θ ∈ W f s (A, 4L). We note that for any function h,

h -h f ( 1 , 2 ) f = h -h f ( 1 ,∞) + h f ( 1 ,∞) -h f ( 1 , 2 ) f = h -h f ( 1 ,∞) + Π ⊥f S 1 ⊗S∞ (h -h f (∞, 2 ) ) f ≤ h -h f ( 1 ,∞) f + h -h f (∞, 2 ) f .
So, to check that π θ -π 0 belongs to W f s (A, L), we prove

(i) s 1 1 (π θ -π 0 ) -(π θ -π 0 ) (f ) ( 1 ,∞) 2 f ≤ L/2 and (ii) s 2 2 (π θ -π 0 ) -(π θ -π 0 ) (f ) (∞, 2 ) 2 f ≤ L/2.
Let us rst check condition (i). For the case 1 ≤ m 1 , we write, using the same computation as (37),

(π θ -π 0 ) -(π θ -π 0 ) (f ) ( 1 ,∞) 2 f ≤ π θ -π 0 2 f = δ 2 ψ 2 n Tr[ t Θ Θ] ≤ δ 2 ψ 2 m 1 √ m 2 n so that s 1 1 (π θ -π 0 ) -(π θ -π 0 ) (f ) 1 ,∞ 2 f ≤ δ 2 ψ 2 s 1 1 m 1 √ m 2 n ≤ δ 2 ψ 2 m s 1 +1 1 √ m 2 n = O(1) if m s 1 +1 1 √ m 2 n = O(1). On the other hand, for m 1 < 1 , then (π θ -π 0 ) (f ) 1 ,∞ = π θ -π 0 and (π θ -π 0 ) -(π θ -π 0 ) (f ) 1 ,∞ 2 f = 0. Therefore, (i) is proved.
Now, we turn to condition (ii). Let us be more precise on the computation of the projection of π θ -π 0 . We have

(π θ -π 0 ) (f ) ( 1 , 2 ) (x, y) = 1 -1 j=0 2 -1 k=0 B j,k ϕ j (x)ϕ k (y) with for 0 ≤ p ≤ 1 -1, 0 ≤ q ≤ 2 -1, π θ -π 0 , ϕ p ⊗ ϕ q f = (π θ -π 0 ) (f ) 1 , 2 , ϕ p ⊗ ϕ q f . Denote ψ m 2 ,k (y) = m 1/4 2 ψ( √ m 2 y -k).
The left hand side is equal to

π θ -π 0 , ϕ p ⊗ ϕ q f = δ √ n m 1 -1 j=0 √ m 2 -1 k=0 A j,k ϕ j , ϕ p f ψ m 2 ,k , ϕ q = δ √ n m 1 -1 j=0   √ m 2 -1 k=0 A j,k ψ m 2 ,k , ϕ q   ϕ j , ϕ p f .
On the other hand

(π θ -π 0 ) (f ) ( 1 , 2 ) , ϕ p ⊗ ϕ q f = 1 -1 j=0 2 -1 k=0 B j,k ϕ j , ϕ p f δ k,q = 1 -1 j=0 B j,q ϕ j , ϕ p f . So, for 1 ≥ m 1 , a solution is B j,q = δ √ n √ m 2 -1 k=0
A j,k ψ m,k , ϕ q for j = 0, . . . , m 1 -1, and B j,q = 0 for j = m 1 , . . . , 1 -1.

We obtain for 1 ≥ m 1 ,

(π θ -π 0 ) (f ) ( 1 , 2 ) (x, y) = m 1 -1 j=0 2 -1 k=0 B j,k ϕ j (x)ϕ k (y) = δ √ n m 1 -1 j=0 2 -1 k=0   √ m 2 -1 p=0 A j,p ψ m 2 ,p , ϕ k   ϕ j (x)ϕ k (y) = δ √ n m 1 -1 j=0 √ m 2 -1 p=0 A j,p 2 -1 k=0 ψ m 2 ,p , ϕ k ϕ k (y) ϕ j (x) = δ √ n m 1 -1 j=0 √ m 2 -1 p=0 A j,p ϕ j (x)ψ (S 2 ) m 2 ,p (y),
where

ψ (S 2 ) m 2 ,p (y) = 2 -1 k=0 ψ m 2 ,p , ϕ k ϕ k (y)
is the L 2 (dy)-orthogonal projection on S 2 of y → ψ m 2 ,p (y). Thus, with 1 = +∞, we obtain

(π θ -π 0 ) -(π θ -π 0 ) (f ) (∞, 2 ) 2 f = (π θ -π 0 ) -(π θ -π 0 ) (f ) (m 1 , 2 ) 2 f = δ 2 n m 1 -1 j=0 √ m 2 -1 p=0 A j,p ϕ j (x)(ψ m 2 ,p -ψ (S 2 ) m 2 ,p ) 2 f = δ 2 n √ m 2 -1 k,k =0 [ t ΘΘ] k,k ψ m 2 ,k -ψ (S 2 ) m 2 ,k , ψ m 2 ,k -ψ (S 2 ) m 2 ,k = δ 2 n m 1 -1 j=0 √ m 2 -1 k=0 θ j,k ψ m 2 ,k -   √ m 2 -1 k=0 θ j,k ψ m 2 ,k   (S 2 ) 2 = δ 2 n m 1 -1 j=0 ξ j -ξ (S 2 ) j 2 where ξ j = √ m 2 -1 k=0 θ j,k ψ m 2 ,k and ξ (S 2 ) j is the L 2 -orthogonal projection of ξ j on S 2 . We denote, for a function h ∈ L 2 (R + ) (Laguerre) or h ∈ L 2 (R) (Hermite) by |h| 2 s := k≥0 k s a 2 k (h), a k (h) := h, ϕ k . Then ξ j -ξ (S 2 ) j 2 = p≥ 2 a 2 p (ξ j ) ≤ -s 2 2 p≥ 2 a 2 p (ξ j )p s 2 ≤ -s 2 2 |ξ j | 2 s 2 .
For the Laguerre case, we use the result proved in (Belomestny et al., 2016, Appendix), stating that the norm |ξ j | s 2 is equivalent to |ξ j | s 2 where |ξ j | 2 s 2 := s 2 r=0 ξ j 2 r and

ξ j 2 r = x r/2 r q=0 r q ξ (q) j 2
and here ξ (q) j is the derivative of order q of ξ j . For r ≤ s 2 , we have

ξ j 2 r =   x r/2 r q=0 r q √ m 2 -1 k=0 θ j,k m 1/4 2 m q/2 2 ψ (q) ( √ m 2 x -k)   2 dx ≤ 2 r r q=0 r q +∞ 0   x r/2 √ m 2 -1 k=0 θ j,k m 1/4+q/2 2 ψ (q) ( √ m 2 x -k)   2 dx = 2 r r q=0 r q √ m 2 -1 k=0 +∞ 0 x r θ 2 j,k m q+1/2 2 (ψ (q) ( √ m 2 x -k)) 2 dx as the ψ (q) ( √ m 2 x -k), ψ (q) ( √ m 2 x -k ) have disjoint supports for k = k . As they are bounded, we get, for r ≤ s 2 , ξ j 2 r ≤ 2 r m r+1/2 2 r q=0 r q √ m 2 -1 k=0 (k+1)/ √ m 2 k/ √ m 2 x r (ψ (q) ( √ m 2 x -k)) 2 dx ≤ 2 r cm r+1/2 2 r q=0 r q √ m 2 -1 k=0 (k+1)/ √ m 2 k/ √ m 2 x r dx = 2 r cm r+1/2 2 r q=0 r q 1 r + 1 = c2 2r r + 1 m r+1/2 2 ≤ Cm s 2 +1/2 2 .
For the Hermite case, we use the result in (Belomestny et al., 2019, Sec. 4.1) (see Proposition 4 and its proof, Sec. 7.4), which states that, for a compactly supported function h, the squared norm |h| 2 s is equivalent to the squared norm N 2 s (h

) := h 2 + h 2 + • • • + h (s) 2
. Here ξ j is compactly supported and it is easy to see that the same computation as above yields for r ≤ s 2 , ξ

(r) j 2 ≤ ψ (r) 2 ∞ m r+1/2 2 ≤ ψ (r) 2 ∞ m s 2 +1/2 2
. Consequently, in both Laguerre and Hermite cases, we obtain

s 2 2 (π θ -π 0 ) -(π θ -π 0 ) (f ) ∞, 2 2 f ≤ δ 2 n m 1 -1 j=0 |ξ j | 2 s 2 ≤ C(ψ, s 2 ) δ 2 n m 1 m s 2 +1/2 2
, and this quantity is bounded using our assumption.

8.5. Proof of Lemma 3. We check that the coecients of the n × m 2 matrix,

E( Θ m 2 (Z)|X) = (E( j (Z i )|X i )) 1≤i≤n,0≤j≤m 2 -1 are the same as those of E( Θ m 2 (Y)|X) t G m 2 .
On the one hand, by using Formula (21), we have for i = 1, . . . , n and j = 0, . . . , m 2 -1,

E( j (Z i )|X i ) = π Z|X (X i , z) j (z)dz = j ,k≥0   k p=0 π, j ⊗ p g k,p   j (X i ) k (z) j (z)dz =δ j,k = j ≥0   j p=0 π, j ⊗ p g j,p   j (X i ) = j ≥0 ( π, j ⊗ p ) 0≤p≤m 2 -1 t G m 2 j j (X i ) (38) as ( π, j ⊗ p ) p t G ∞ j = ( π, j ⊗ p ) 0≤p≤m 2 -1 t G m 2 j for j = 0, . . . , m 2 -1. On the other hand, E( Θ m 2 (Y)|X) i,j = E( j (Y i )|X i ) = π(X i , z) j (z)dz = j ,k≥0 π, j ⊗ k j (X i ) k (z) j (z)dz = j ≥0 π, j ⊗ j j (X i ). Therefore E( Θ m 2 (Y)|X) t G m 2 i,j = m 2 -1 p=0 E( p (Y i )|X i )[G m 2 ] j,p = m 2 -1 p=0 j ≥0 π, j ⊗ p j (X i )[G m 2 ] j,p = j ≥0   m 2 -1 p=0 π, j ⊗ p [G m 2 ] j,p   j (X i ) = j ≥0 ( π, j ⊗ p ) 0≤p≤m 2 -1 t G m 2 j j (X i ). (39) 
The equality of ( 38) and (39) gives the result. 8.6. Proof of Proposition 3. It follows from Lemma 3 that E( π (L) m |X) = π m,n and

π (L) m -π 2 n = π (L) m -π m,n 2 n + π m,n -π 2 n .
The last term is the announced bias term, and we consider the variance term:

π (L) m -π m,n 2 n = π (L) m -E( π (L) m |X) 2 n = 1 n 2 Tr G -1 m 2 t Θ m 2 (Z) -E Θ m 2 (Z)|X Φ m 1 Ψ -1 m 1 t Φ m 1 Θ m 2 (Z) -E Θ m 2 (Z)|X t G -1 m 2 .
Recall that for the matrix-norms:

A 2 F = Tr( t A A) (Frobenius norm) and A 2 op = λ max ( t A A) (operator norm), we have AB 2 F ≤ A 2 op B 2 F . Thus Tr G -1 m 2 t Θ m 2 (Z) -E Θ m 2 (Z)|X Φ m 1 Ψ -1 m 1 t Φ m 1 Θ m 2 (Z) -E Θ m 2 (Z)|X t G -1 m 2 ≤ G -1 m 2 2 op Tr t Θ m 2 (Z) -E Θ m 2 (Z)|X Φ m 1 Ψ -1 m 1 t Φ m 1 Θ m 2 (Z) -E Θ m 2 (Z)|X .
Therefore, we obtain, analogously to ( 35),

E[ π (L) m -π m,n 2 n |X] ≤ G -1 m 2 2 op L(m 2 )m 1 n .
This gives the rst result.

Next it is easy to see that similarly to (35), we have

E π (L) m -π m,n 2 n |X ≤ G -1 m 2 2 op n 2 n i=1 m 2 -1 j=0 E (ϕ j (Z i ) -E(ϕ j (Z i )|X i )) 2 |X i [ Φ m 1 Ψ -1 m 1 t Φ m 1 ] i,i .
and condition (23 s., this yields (24). As Y ≥ 0 and ε ≥ 0,

) implies that m 2 -1 j=0 E (ϕ j (Z i ) -E(ϕ j (Z i )|X i )) 2 |X i ≤ C √ m 2 , with the same argument as for (5). As [ Φ m 1 Ψ -1 m 1 t Φ m 1 ] i,i ≥ 0 a.
E 1 √ Z |X = x ≤ min E 1 √ Y |X = x , E(1/ √ ε) ,
which explains the comment. 8.7. Proof of Proposition 5. We write again

π (H) m -π 2 n = π -π m,n 2 n + π (H) m -π m,n 2 n and note that E Υ m 2 (Z)|X = π(X k , y)h j (y)dy 1≤k≤n,0≤j≤m 2 -1 so that E( π (H) m |X) = π m,n . Next, π (H) m -π m,n 2 n = 1 n 2 Tr t Υ m 2 (Z) -E Υ m 2 (Z)|X Φ m 1 Ψ -1 m 1 t Φ m 1 Υ m 2 (Z) -E Υ m 2 (Z)|X .
We have

E π (H) m -π m,n 2 n |X = 1 n 2 n k=1 m 2 -1 j=0 E v h j (Z k ) -E(v h j (Z k )|X k ) 2 |X k [ Φ m 1 Ψ -1 m 1 t Φ m 1 ] k,k . Now, let us study m 2 -1 j=0 E v h j (Z k ) -E(v h j (Z k )|X k ) 2 |X k m 2 -1 j=0 v h j (Z k ) -E(v h j (Z k )|X k ) 2 = m 2 -1 j=0 1 2π [e -iZ k u -E(e -iZ k u |X k ) h * j (u) f * ε (-u) du 2 = m 2 -1 j=0 i j √ 2π h j (u) [e -iZ k u -E(e -iZ k u |X k )] f * ε (-u) du 2 with (7) ≤ 1 2π m 2 -1 j=0 h j (u) [e -iZ k u -E(e -iZ k u |X k )] f * ε (-u) (1 |u|≤ √ 2m 2 + 1 |u|> √ 2m 2 )du 2 Now, since (h j ) 0≤j≤m 2 -1 is an orthonormal basis, m 2 -1 j=0 h j (u) [e -iZ k u -E(e -iZ k u |X k )] f * ε (-u) 1 |u|≤ √ 2m 2 du 2 ≤ e -iZ k u -E(e -iZ k u |X k ) f * ε (-u) 1 |u|≤ √ 2m 2 2 du ≤ 4 |u|≤ √ 2m 2 du |f * ε (u)| 2 .
On the other hand, using (8), we have, for |u| > √ 2m 2 = (2m 2 -1) + 1 > √ 2j + 1 for any j ≤ m 2 -1, |h j (u)| ≤ Ce -ξu 2 and thus, as, under Assumption A5, η = ξ -β > 0,

m 2 -1 j=0 h j (u) [e -iZ k u -E(e -iZ k u |X k )] f * ε (-u) 1 |u|> √ 2m 2 du 2 ≤ m 2 -1 j=0 4 |u|> √ 2m 2 Ce -(β+η)u 2 |f * ε (u)| du 2 ≤ C m 2 -1 j=0 e -4ηm 2 Ce -(β+η/2)u 2 |f * ε (u)| du 2 ≤ c,
for a constant c depending on f ε but not on m 2 .

Gathering the two parts, we obtain

m 2 -1 j=0 E v h j (Z k ) -E(v h j (Z k )|X k ) 2 |X k ≤ ∆(m 2 )
and thus

E π (H) m -π m,n 2 n |X ≤ 1 n 2 n k=1 ∆(m 2 )[ Φ m 1 Ψ -1 m 1 t Φ m 1 ] k,k = m 1 ∆(m 2 ) n .
8.8. Proof of Theorem 2. In this proof, we shall denote by

E X [ • ] = E[ • |X].
Let m be an arbitrary element of M (Sup) n

. First, we write

π(Sup) -π 2 n ≤ 3 π (Sup) m -π (Sup) m,m 2 n + π (Sup) m,m -π (Sup) m 2 n + π (Sup) m -π 2 n ≤ 3((A (Sup) (m) + V (Sup) ( m)) + (A (Sup) ( m) + V (Sup) (m)) + π (Sup) m -π 2 n ) ≤ 6A (Sup) (m) + 6V (Sup) (m) + 3 π (Sup) m -π 2
n . The bound on E( π (Sup) m -π 2 n ) follows from Proposition 1 for (Sup) = (D) and Proposition 3 for (Sup) = (L) or Proposition 5 for (Sup) = (H). The term V (Sup) (m) has in each case the order of the variance.

We have to study A(m). Thus the result of Theorem 2 follows if we can prove the result:

Proposition 7. Under the assumptions of Theorem 2, conditionnally to X = (X 1 , . . . , X n ), we have

E X (A (Sup) (m)) ≤ 12 π m,n -π 2 n + C n .
Proof of Proposition 7. We decompose A (Sup) (m) as follows

A (Sup) (m) ≤ 3 sup m ∈ M (Sup) n ( π (Sup) m -π m ,n 2 n -V (Sup) (m )/6) + + 3 sup m ∈ M (Sup) n π m ,n -π (m,m ),n 2 n +3 sup m ∈ M (Sup) n ( π (Sup) m,m -π (m,m ),n 2 n -V (Sup) (m )/6) +
and Proposition 7 holds if we have

(a) E X sup m ∈ M (Sup) n ( π (Sup) m -π m ,n 2 n -V (Sup) (m )/6) + ≤ C n (b) E X sup m ∈ M (Sup) n ( π (Sup) m,m -π (m,m ),n 2 n -V (Sup) (m )/6) + ≤ C n (c) sup m ∈ M (Sup) n π m ,n -π (m,m ),n 2 n ≤ π -π m,n 2 n .
We state here a Lemma proved in Section 8.9.

Lemma 7.

π (Sup) m -π m,n n = sup T ∈Bm < π (Sup) m -π m,n , T > n = sup T ∈Bm ν (Sup) n (T ),
where

B m = {T ∈ S m , T n = 1} and Case (D) ν (D) n (T ) = 1 n n i=1 [T (X i , Y i ) -E X (T (X i , Y i ))], Case (L) ν (L) n (T ) = 1 n n i=1 [Ψ T (X i , Z i ) -E X (Ψ T (X i , Z i ))],
where for

T (x, y) = j,k b j,k ϕ j (x)ϕ k (y) and B = (b j,k ) 0≤j≤m 1 -1,0≤k≤m 2 -1 , (40) Ψ T (x, z) = m 1 -1 j=0 m 2 -1 k=0 [BG -1 m 2 ] j,k ϕ j (x)ϕ k (z). Case (H) ν (H) n (T ) = 1 n n i=1 [Φ T (X i , Z i ) -E X (Φ T (X i , Z i ))],
where Φ T (x, z) is dened by Denition 2.

Moreover, note that the following result holds.

Lemma 8.

If T ∈ S m then T 2 ∞ ≤ L(m 1 )L(m 2 ) T 2 2 , and T 2 2 ≤ Ψ -1 m 1 op T 2 n . Proof of Lemma 8. If T (x, y) = j,k b jk ϕ j (x)ϕ k (y), then |T (x, y)| 2 ≤ j,k b 2 j,k j ϕ 2 j (x) k ϕ 2 k (y) ≤ T 2 2 L(m 1 )L(m 2 ),
which gives the rst inequality. Moreover, we have T 2 2 = Tr( t BB), where B is the matrix (b jk ), and

T 2 n = Tr( t B Ψ m 1 B). Then T 2 2 ≤ Ψ -1/2 m 1 2 op T 2 n ≤ Ψ -1 m 1 op T 2 n , which is the second inequality.
Proof of (a). First, using Lemma 7,

T (Sup) 1 := E X sup m ∈ M (Sup) n π (Sup) m -π m ,n 2 n - V (Sup) (m ) 6 + ≤ m ∈ M (Sup) n E X π (Sup) m -π m ,n 2 n - V (Sup) (m ) 6 + ≤ m∈ M (Sup) n sup T ∈Sm, T n=1 [ν n (T ) (Sup) ] 2 - V (Sup) (m) 6 + .
Now we consider separately the three dierent cases.

Direct case (D). We use Talagrand inequality recalled in Lemma 9, conditionally to X. Remember that we have already proved (see the proof of Proposition 1), that

E   sup T ∈Bm 1 n n i=1 [T (X i , Y i ) -E X (T (X i , Y i ))] 2 |X   = E π m -π m,n 2 n |X ≤ m 1 L(m 2 ) n := H 2 . Moreover 1 n n i=1 E(T 2 (X i , Y i )|X) ≤ π ∞ T 2 n so that v = π ∞ .
To compute b, we use Lemma 8:

T 2 ∞ ≤ L(m 1 )L(m 2 ) Ψ -1 m 1 op ≤ d n L(m 2 ) log 2 (n) =: b 2
Thus we apply Lemma 9 (Talagrand) so that for K 0 ≥ 12(1 + 2 2 ) we get

T (D) 1 ≤ c 0 ( π ∞ ) n m∈{1,...,n} 2 e -c 1 m 1 L(m 2 ) + L(m 2 ) log 2 (n) e -c 2 log(n) √ m 1 1 n , where c 2 = 2 C( 2 )K 1 /(7 √ d ). Thus, use that m 1 ≥1 e -κ √ m 1 ≤ Se -κ to get m 1 ≥1 e -c 2 log(n) √ m 1 ≤ S/n c 2 and choose d such that c 2 ≥ 2 i.e. √ d ≤ C( 2 )K 1 /7. So, using that for m ∈ M (D)
n , L(m 2 ) ≤ n/K 0 , the result holds for a well chosen constant d under condition (30).

Noisy-Laguerre case (L). Now we can apply Talagrand Inequality (Theorem 9) to

ν (L) n (T ) = 1 n n i=1 [Ψ T (X i , Z i ) -E X (Ψ T (X i , Z i ))] .
First, we get from the proof of Proposition 3,

E sup T ∈Sm, T n=1 ν 2 n (T )|X = E( π(L) m -π m,n 2 n |X) ≤ m 1 L(m 2 ) G -1 m 2 2 op n := H 2 .
Next we have

1 n n i=1 E[Ψ 2 T (X i , Z i )|X] = 1 n n i=1 Ψ 2 T (X i , z)π Z|X (X i , z)dz ≤ π ∞ n n i=1 Ψ 2 T (X i , z)dz, as π Z|X (x, z) = π(x, z -u)f ε (u)du ≤ π ∞ . Thus, 1 n n i=1 E[Ψ 2 T (X i , Z i )|X] ≤ π ∞ n n i=1   j,k [BG -1 m 2 ] j,k ϕ j (X i )ϕ k (z)   2 dz = π ∞ j,j ,k [BG -1 m 2 ] j,k [BG -1 m 2 ] j ,k [ Ψ m 1 ] j,j = π ∞ Tr[ t G -1 m 2 t B Ψ m 1 BG -1 m 2 ] ≤ π ∞ G -1 m 2 2 op Tr[ t B Ψ m 1 B] = π ∞ G -1 m 2 2 op T 2 n which implies that v = π ∞ G -1 m 2 2 
op . Lastly we write

Ψ T ∞ = sup x,z | j,k [BG -1 m 2 ] j,k ϕ j (x)ϕ k (z)| ≤ L(m 1 )L(m 2 ) BG -1 m 2 2 F ≤ L(m 1 )L(m 2 ) G -1 m 2 2 op B 2 F
and by Lemma 8,

B 2 F = Tr[ t B B] = T 2 2 ≤ Ψ -1 m 1 op T 2 n .
Therefore, we get

Ψ T 2 ∞ ≤ L(m 1 )L(m 2 ) G -1 m 2 2 op Ψ -1 m 1 op T 2 n ≤ d n log 2 (n) L(m 2 ) G -1 m 2 2 op := b 2 by using that m ∈ M (L)
n (second constraint). Therefore, by applying Talagrand Inequality (Theorem 9) that for K 0 ≥ 12(1 + 2 2 ), we get

T (L) 1 ≤ c 0 ( π ∞ ) n m∈ Mn G -1 m 2 2 op e -c 1 m 1 L(m 2 ) + L(m 2 ) G -1 m 2 2 op log 2 (n) e -c 2 log(n) √ m 1 ,
where c 2 is the same as in case (D). So, using that m ∈ M

(m) n , L(m 2 ) G -1 m 2 2 op ≤ n/K 0 (rst constraint), the result holds if (31) holds.
Case Noisy-Hermite (H).

We now proceed to the application of Talagrand inequality to ν (H) n (T ) conditionally to X = (X 1 , . . . , X n ), where we already saw that

E X sup T ∈Sm, T n=1 [ν (H) n (T )] 2 = E X π(H) m -E X π(H) m 2 n ≤ m 1 ∆(m 2 ) n := H 2 . Next we determine v. Let T = j,k b j,k ϕ j ⊗ ϕ k ∈ S m , B = (b j,k ) j,k , such that T n = 1. 1 n n i=1 E X [Φ 2 T (X i , Z i )] = 1 n n i=1 Φ 2 T (X i , z)π Z|X (X i , z)dz ≤ π Z|X ∞ 1 n n i=1 Φ 2 T (X i , z)dz ≤ π ∞ 1 n n i=1 j,k,j ,k b j,k b j ,k (T )ϕ j (X i )ϕ j (X i ) v ϕ k (z)v ϕ k (z)dz = π ∞ Tr t B Ψ m 1 B( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 .
As Σ 0 := t B Ψ m 1 B is square symmetric positive denite and S 0 := ( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 is symmetric, we can prove that Tr(Σ 0 S 0 ) ≤ S 0 op Tr(Σ 0 ). Indeed, S 0 = t P D S 0 P with D S 0 = diag(d i (S 0 )) i diagonal and P orthogonal, and

Tr[Σ 0 S 0 ] = Tr[Σ 0 t P D S 0 P ] = Tr[P Σ 0 t P D S 0 ] = m 2 i=1 d i (S 0 )[P Σ 0 t P ] i,i with [P Σ 0 t P ] i,i = Σ 1/2 0 P e i 2 ≥ 0 ≤ max i (|d i (S 0 )|) m 2 i=1 [P Σ 0 t P ] i,i = max i (|d i (S 0 )|)Tr(P Σ 0 t P ) = max i (|d i (S 0 )|)Tr(Σ 0 ). Therefore Tr t B Ψ m 1 B( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 ≤ ( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 op Tr t B Ψ m 1 B .
Then Tr t B Ψ m 1 B = T 2 n = 1 and we have to bound the operator norm. First

( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 op = sup x∈R m 2 , x =1 t x( v ϕ k , v ϕ k ) 0≤k,k ≤m 2 -1 x = sup t∈Sm 2 , t =1 v t 2 .
Next, as v t = (1/2π)(t * /f * ε ) * (-.), we have

v t 2 = 1 2π t * (z) f * ε (z) 2 dz ≤ 1 2π sup |z|≤ √ 2m 2 1 |f * ε (z)| 2 |t * (z)| 2 dz + 1 2π |z|> √ 2m 2 t * (z) f * ε (z) 2 dz ≤ sup |z|≤ √ 2m 2 1 |f * ε (z)| 2 + m 2 -1 j=0 1 2π |z|> √ 2m 2 ϕ * j (z) f * ε (z) 2 dz ≤ sup |z|≤ √ 2m 2 1 |f * ε (z)| 2 + c = δ(m 2 )
, by proceeding as in the proof of Proposition 5. As a consequence,

sup T ∈Sm, T n=1 1 n n i=1 E X [Φ 2 T (X i , Z i )] ≤ sup |z|≤ √ 2m 2 1 |f * ε (z)| 2 + c := v. Lastly, for T (x, y) = j,k b j,k ϕ j (x)ϕ k (y) sup T ∈Sm, T n=1 sup x,z |Φ T (x, z)| 2 = sup T ∈Sm, T n=1 sup x,z j,k b j,k ϕ j (x)v ϕ k (z) 2 ≤ sup T ∈Sm, T n=1 sup x,z Tr[ t B B] j ϕ 2 j (x) k |v ϕ k (z)| 2 ≤ sup T ∈Sm, T n=1 sup x,z Ψ -1 m 1 op Tr[ t B Ψ m 1 B]L(m 1 )∆(m 2 ) = Ψ -1 m 1 op L(m 1 )∆(m 2 ) ≤ d n log(n) ∆(m 2 ) := b 2 as Tr[ t B Ψ m 1 B] = T 2 n = 1 and using that m ∈ M (H) n . As a consequence, by Talagrand inequality, m E sup T ∈Sm, T n=1 [ν (H) n (T )] 2 -V (H) (m) + ≤ c 0 n m δ(m 2 ) exp(-c 1 m 1 ∆(m 2 ) δ(m 2 ) ) + ∆(m 2 ) log 2 (n) exp(-c 2 log(n) √ m 1 ) ,
where c 2 is the same as previously. As for m ∈ M (H) n , we have ∆(m 2 ) ≤ n, and the choice of d manage with the second sum. The rst one is handled with condition (32).

Consequently

E X sup m ∈ M (H) n ( π(H m -π m ,n 2 n -V (H) (m )/6) + ≤ C/n.
This ends the proof of case (H).

We proved (a) in the three cases.

Proof of (b).

To prove (b) we simply write, using rst the fact that V (.) is nondecreasing with respect to both m 1 and m 2 , and secondly that we assumed that m ∧ m was still in the collection,

sup m ∈ M (Sup) n ( π (Sup) m,m -π (m,m ),n 2 n -V (Sup) (m )/6) + ≤ sup m ∈ M (Sup) n ( π (Sup) m,m -π (m,m ),n 2 n -V (Sup) (m ∧ m )/6) + ≤ sup m"∈ M (Sup) n ( π (Sup) m" -π m",n 2 n -V (Sup) (m")/6) + .
Therofore, the bound on the expectation follows from (a).

Proof of (c)

We already noticed that E( π

(D) m |X) = E( π (L) m |X) = E( π (H) m |X) = π m,n
, so the bias terms are exactly the same in the three cases.

Let us dene Proj

(n)

Sm denotes the empirical projection on S m which associates to (x, y) → T (x, y) the function (x, y) → (Proj

(n) Sm T )(x, y) = m 1 -1 j=0 m 2 -1 k=0   ( t Φ m 1 Φ m 1 ) -1 t Φ m 1 ϕ k (z)T (X i , z)dz 1≤i≤n 0≤k≤m 2 -1   j,k ϕ j (x)ϕ k (y).
For any bivariate function T , the following holds: Thus we obtain (c).

8.9. Proof of Lemma 7. We prove now that

π (Sup) m -E X π (Sup) m n = sup T ∈Sm, T n=1 π (Sup) m -E X π (Sup) m , T n = sup T ∈Sm, T n=1 ν (Sup) n (T ).
The rst equality is standard (bound the scalar product by the norm and choose T to see that the upper bound is reached). For the second equality, we denote T (x, y) = m 1 -1 j=0 m 2 -1 k=0 B j,k ϕ j (x)ϕ k (y), so that

π (Sup) m -π m,n , T n = j,j ,k,k ( A (Sup) m -E X A (Sup) m ) jk B j k ϕ j ⊗ ϕ k , ϕ j ⊗ ϕ k > n = j,j ,k ( A (Sup) m -E X A (Sup) m ) jk B j k ( Ψ m 1 ) j,j = Tr t ( A (Sup) m -E X A (Sup) m ) Ψ m 1 B .
For the rest of the proof, we study separately the three cases.

Direct case. Recall that

A (D) m = 1 n Ψ -1 m 1 t Φ m 1 Θ m 2 (Y). Then π (D) m -π m,n , T n = 1 n Tr t ( Θ m 2 (Y) -E X Θ m 2 (Y)) Φ m 1 B = 1 n n i=1 jk (ϕ k (Y i ) -E X (ϕ k (Y i )))ϕ j (X i )B jk = 1 n n i=1 [T (X i , Y i ) -E X T (X i , Y i )].
Laguerre case. In this case A (L)

m = 1 n Ψ -1 m 1 t Φ m 1 Θ m 2 (Z) t G -1 m 2 , then π (L) m -π m,n , T n = 1 n Tr G -1 m 2 t ( Θ m 2 (Z) -E X Θ m 2 (Z)) Φ m 1 B = 1 n n i=1 jk (ϕ k (Y i ) -E X (ϕ k (Y i )))ϕ j (X i )(BG -1 m 2 ) jk = 1 n n i=1 [Ψ T (X i , Z i ) -E X Ψ T (X i , Z i )].
Hermite case. Here we use that A (H) } and write

m = 1 n Ψ -1 m 1 t Φ m 1 Υ m 2 (Z). Thus π (H) m -π m,n , T n = 1 n Tr t ( Υ m 2 (Z) -E X Υ m 2 (Z)) Φ m 1 B = 1 n n i=1 jk (v ϕ k (Z i ) -E X (v ϕ k (Z i )))ϕ j (X i )B jk = 1 n n i=1 [Φ T (X i , Z i ) -E X Φ T (X i , Z i )].
E[ π (Sup) m -π 2 n ] = E[E X [ π (Sup) m -π 2 n ]1 Λ (Sup) n ] + E[ π (Sup) m -π 2 n 1 (Λ (Sup) n ) c ] := T 1 + T 2 .
We rst study T 1 . On Λ (Sup) n

, we have

inf m∈ M (Sup) n π m,n -π 2 n + V (Sup) (m) ≤ inf m∈M (Sup) n π m,n -π 2 n + V (Sup) (m) ≤ inf m∈M (Sup) n π m -π 2 n + V (Sup) (m) .
So, for the rst term, we have, using Theorem 2 and the denition of

Λ (Sup) n , E X [ π (Sup) m -π 2 n 1 Λ (Sup) n ≤ C inf m∈M (Sup) n { π -π m,n 2 n + V Sup (m)} + C n ,
and taking the expectation yields

E[E X [ π (Sup) m -π 2 n 1 Λ (Sup) n ] ≤ C inf m∈M (Sup) n { π -π m 2 f + V Sup (m)} + C n .
Now, T 2 is bounded thanks to the two facts:

(1) P[(Λ (Sup) n

) c ] ≤ C/n 2 for d well chosen, (2) π 

m 1 t Φ m 1 Θ m 2 (Y) t Θ m 2 (Y) ≤ 1 n 2 Φ m 1 Ψ -1 m 1 t Φ m 1 op Tr[ Θ m 2 (Y) t Θ m 2 (Y)] ≤ 1 n n i=1 m 2 -1 k=0 ϕ 2 k (Y i ) ≤ L(m 2 ) ≤ K 0 n Similarly, for m ∈ M (L) n , π (L) m 2 n = 1 n 2 Tr Φ m 1 Ψ -1 m 1 t Φ m 1 G -1 m 2 Θ m 2 (Z) t Θ m 2 (Z) t G -1 m 2 ≤ L(m 2 ) G -1 m 2 2 op ≤ K 0 n and for m ∈ M (H) n , π (H) m 2 n = 1 n 2 Tr Φ m 1 Ψ -1 m 1 t Φ m 1 Υ m 2 (Z) t Υ m 2 (Z) ≤ ∆(m 2 ) ≤ K 0 n.
To bound π 2 n , as π is bounded, we have and L(m 1 ) Ψ -1

m 1 op > d n log 2 (n) ≤ m∈M (Sup) n P L(m 1 )( Ψ -1 m 1 op -Ψ -1 m 1 op ) ≥ d 2 n log 2 (n) ≤ m∈M (Sup) n P L(m 1 )( Ψ -1 m 1 -Ψ m 1 op ) > L(m 1 ) Ψ -1 m 1 op = m∈M (Sup) n P ( Ψ -1 m 1 -Ψ m 1 op ) > Ψ -1 m 1 op ≤ m∈M (Sup) n P Ψ -1/2 m 1 Ψ m 1 Ψ -1/2 m 1 -Id m 1 op > 1 2 ,
where the last inequality follows from Proposition 4 (ii) in [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF].

Then the matrix Chernov Inequality (see Tropp ( 2012)) gives, for 0 ≤ δ ≤ 1,

(42) P Ψ -1/2 m 1 Ψ m 1 Ψ -1/2 m 1 -Id m 1 op > δ ≤ 2m 1 exp -c(δ) n L(m 1 )( Ψ -1 m 1 op ∨ 1)
, where c(δ) = (1 + δ) log(1 + δ) -δ, which for δ = 1/2 yields c(1/2) = (3/2) log(3/2) -1/2 = 5d, c(1/2) ∼ 0.11. Thus, under the condition L(m 1 ) Ψ -1 m 1 op ≤ d n/ log 2 (n) ≤ dn/ log(n), for n large enough, in the denition of M (Sup) n , we get

P((Λ (Sup) n ) c ) ≤ m∈M (Sup) n 2m 1 n 5 ≤ 2 |M (Sup) n | n 4 ≤ 2 n 2 .
This ends the proof.

Appendix

Lemma 9 (Talagrand Inequality). Let Y 1 , . . . , Y n be independent random variables and let F be a countable class of uniformly bounded measurable functions. Then for 2 > 0 This inequality comes from a concentration Inequality in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] and arguments that can be found in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. Usual density arguments show that this result can be applied to the class of functions of type F = B m (0, 1).

E sup f ∈F |ν n,Y (f )| 2 -2(1 + 2 2 )H 2 + ≤ 2 K 1 v n e -K 1 2 nH 2 v + 49b 2 4K 1 n 2 C 2 ( 2 ) e -2K 1 C( 2 )
Lemma 10. Let (X i , Y i ) 1≤i≤n be i.i.d. couples of random variables. Then (Y i ) 1≤i≤n are independent conditionally to (X 1 , . . . , X n ).

This Lemma legitimates the application of Talagrand inequality conditionally to (X 1 , . . . , X n ).

Proof of Lemma 10. First Y 1 , . . . , Y n are independent conditionally to X 1 , . . . , X n if, for all measurable (bounded or nonnegative) functions f i : R → R,

(43) E n i=1 f i (Y i )|X 1 , . . . , X n = n i=1 E [f i (Y i )|X 1 , . . . , X n ] .
As collection of test functions of X 1 , . . . , X n for caracterization of the conditional expectation, we consider g(X 1 , . . . , X n ) = n i=1 g i (X i ) for measurable functions g i : R → R, bounded or nonnegative (density argument: measurable function as monotone limit of linear combinations of indicators of measurable partitions and take as a borelian A of the partition in the product σ-algebra the cartesian product A = A 1 × • • • × A n which are generators). Therefore (43) holds if

E n i=1 f i (Y i ) n i=1 g i (X i ) = E n i=1 E(f i (Y i )|X 1 , . . . , X n ) n i=1 g i (X i ) .

  d + and Sobolev-Hermite balls on R d . Denition 1. (Sobolev-Laguerre or Hermite ball). Let L > 0 and s ∈ (0, +∞) d , we dene the Sobolev-Laguerre with A = R d + or Sobolev-Hermite with A = R d ball of order s = (s 1 , . . . , s d ) and radius L by:

8. 10 .

 10 Proof of Corollary 1. De-conditionning is justied by Lemma 10 stated and proved

  Tr Φ m 1 Ψ -1

π 2 (

 2 X 1 , y)dy ≤ π ∞ π(X 1 , y)dy = π ∞ < +∞,and the result of (2) holds. Now we study point (1). We haveP((Λ (Sup) n ) c ) = P M (Sup) 

  Y k )) ≤ v.

To check that this equality holds, let us start from the right-hand-side term.

where the last line follows by independence of the (X 1 , Y 1 ), . . . , (X n , Y n ). This ends the proof of Lemma 10.