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Tribute to Jean Marcoux † (1940-2008)

By Aymon Baud Jean examining the Smithian platy limestones of Wadi Shu 'yab, Sumeini area, 2004 Jean Marcoux, in memory of whom this Guidebook is dedicated, spent at least 2-4 weeks each winter, from 1989 to 2007, studying the Tethyan margin in Oman. He participated actively in researches on the areas presented in this field guidebook. In 1989 he became full Professor in Geology at the Paris VII University. He was teaching on different student degrees, from general geology for beginners to geology of the Earth and paleogeography for Master students. In 1993, Jean was elevated Professeur de 1ère classe at Paris VII University. Jean was also very engaged in his country and became Chief Editor of the Bulletin de la Société géologique de France from 1997 to 1999 and his scientific contribution to Geosciences earned him the prestigious Prix Fontannes of the Geological Society of France in 1999. An excellent teacher, Jean Marcoux first was a field geologist who could feel as comfortable in sedimentology as in tectonics, in magnetostratigraphy as in paleontology. He had an easy communication and got well with his colleagues and always wanted to share his enthusiasm and encyclopedic knowledge. He was always ready to do something for his friends, for his colleagues and helped many young geologists who wanted to start a scientific career.

For the Tethys research Program managed by J. Dercourt and starting in 1989, Jean was in charge of the Triassic palaeogeographical and palaeoenvironmental maps working group (Anisian and Norian maps) and participated in the Permian map (Murgabian) working group. A team from Lausanne and Bern Universities, with our lamented colleague Tjerk Peters, invited him, in early 1989 to work on Oman exotics with the financial support of the Tethys program. From that time, Jean became very active on Permian and Triassic researches in Oman, participating with enthusiasm in three Congresses hold in Muscat (1990Muscat ( , 2001Muscat ( and 2005) ) with talks and co-organization of fieldtrips. He was adviser of PhD students from Lausanne: A. Pillevuit on Oman Exotics and S. Richoz on PT boundary.

Each winter, from 1995 to 2002 Jean and I organized 2-4 weeks of field studies on Permian and Triassic of Oman, working with PhD students V. Atudorei and S. Richoz, with French colleagues from BRGM, with colleagues from Milano, from Lyon and, sometimes, L. Krystyn joined us. Working with Jean in the Wadi Wasit area in 1998, we discovered some ammonoids from a block in the breccias we believed Permian in age. For determination we gave these ammonoids to L. Krystyn. Two years later Leo called us saying the ammonoids are basal Triassic in age and asking the coordinate of this finding and this was the start of the Wasit block story we will visit during our field workshop.

Part A -Introduction to the Permian -Triassic of the Oman Mountains 1-Prelude.

Geological studies carried out in Oman by many projects have provided a profound insight into its geological history, as summarized by the 1/500000-scale map of the northern chain (Glennie et al., 1974) and by the 1/1000000-scale map of the whole Oman (Le Métour et al., 1993a;Béchennec et al., 1993a). The alpine northern Oman Mountains, extending for 700 km from the Musandam Peninsula in the north to the Batain coast in the southeast, was uplifted at the end of the Miocene along the northeastern edge of the Arabian Peninsula. Six major structural units are identified from the base up (Fig. 1): 1-The Crystalline Basement of Late Proterozoic age. 2-The Sedimentary Basement of latest Proterozoic to Ordovician age. 3-The Middle Permian-Late Cretaceous carbonate Arabian Platform (Hajar Unit). 4-The Sumeini and Hawasina nappes mainly made up of continental slope and basin. deposits thrusted onto the Arabian Platform during the Late Cretaceous. 5-The Samail Ophiolite, a fragment of Neotethys oceanic lithosphere obducted onto the Oman continental margin in the Late Cretaceous. 6-The post-nappes sedimentary cover of end-Cretaceous-Tertiary age. 

2-Permian birth and evolution of the Arabian passive margin

Our analysis is based on our own data (Baud et al., 2001a, b, Richoz et al., 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF] on Béchennec (in Baud et al., 2001a), on [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al. (1997), on [START_REF] Weidlich | Permian reef and shelf carbonates of the Arabian platform and Neo-Tethys as recorders of climatic and oceanographic changes[END_REF], Weidlich and Benecker (2003) and new data from field works with B. Beauchamp in 2007and 2009, with S. Grasby in 2007, with C. Henderson and A. Nicora in 2007 and their new conodont determinations.

Summary.

At the end of the Palaeozoic the continents were gathered together to form the Pangean supercontinent and in its southern half, Oman and the Arabian Peninsula formed part of the Gondwana continent (fig. 2) as well as Africa, Iran, India, etc. (Scotese and McKerrow, 1990). During the Late Carboniferous-Earliest Permian period, the Gondwana continent was subjected to glaciation (Al Khlata tillite in Oman).

The Neotethyan opened with the northward drifting of the Iran/Mega Lhasa microcontinent [START_REF] Baud | [END_REF](Baud et al., , 2001) followed a rifting -extensional phase in the Sakmarian (hypothesis developed by Saidi, 1997, Besse et al., 1998, Angiolini et al., 2003aet b, and by Maury et al., 2003) or in the Roadian-Wordian (hypothesis presented here in fig. 3, and developed by [START_REF] Baud | [END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997, Baud et al., 2001a, b). Thermal subsidence, with the development of the continental margin, is well recorded in the Wordian-Capitanian carbonate succession and continued during the Lopingian. Tectonic instability of the margin, with bock tilting, platform drowning and (fault) breccia deposits start at the dawn of the Triassic with the main climax during the Dienerian and the Smithian. A renewed tectonic instability with plume related volcanism started offshore in the Carnian with the creation of atoll like isolated carbonate platforms (Kawr) and the opening of a new basin (Umar). At the end of the Triassic, all the known parts of the continental margin and adjacent ocean and atoll areas were finalized.

The precursors of Neotethyan tectonism.

The end of the glacial period in the Early Permian resulted in a global rise in sea level, which subsequently submerged part of the continent. This is reflected in the marine siliciclastic and carbonate deposits laid down during the Early Permian (Sakmarian-Artinskian) identified in the Haushi-Huqf area and Interior Oman (Saiwan Fm., Dubreuilh et al. 1992;Miller and Furnish, 1957;Hudson and Sudbury, 1959;[START_REF] Angiolini | Early Permian (Sakmarian) brachiopods from southeastern Oman: Geobios[END_REF] and in the Djebel Qamar, north of Oman Mountains (Asfar Fm., [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997). Furthermore, reworked blocks of Early Permian (Artinskian) shallow-marine carbonate are also identified in Hawasina units of the Batain plain [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997) documenting the northeasternward extension of a rim basin. However, such marine deposits are unknown in the central and southeastern part of the Oman mountains (Djebel Akhdar and Saih Hatat) indicating that, at this time, this region constituted a positive zone; this is probably in relation with a flexural doming precursor of the Neotethyan tectonism, initiating a shoulder and concomitant rim basins where the marine deposits laid down.

2.3

The first stage of the Neotethyan extension (Fig. 2). The first stage of the Neotethyan extension begins in the Late-Early/Early-Middle Permian and is documented by: 1. An angular unconformity between the Early Permian Saiwan Fm. and the Middle Permian Gharif Fm., in the Haushi-Huqf area;

2. An angular unconformity between the Early Permian Asfar Fm. and the Late-Early/ Middle Permian Qamar Fm., in the Djebel Qamar area (Northwestern part of the Oman Mountains); 3. Horst and graben tectonics clearly identified in the Oman Mountains (Djebel Akhdar and Saih Hatat) by the differential erosion between blocks [START_REF] Le Métour | Géologie de l'Autochtone des Montagnes d'Oman : la fenêtre du Saih Hatat[END_REF][START_REF] Rabu | Géologie de l'autochtone des montagnes d'Oman : La fenêtre du Djebel Akdar. La semelle métamorphique de la Nappe ophiolitique de Semail dans les parties orientales et centrale des Montagnes d'Oman : une revue[END_REF] and by the syn-rift-type deposits of the lower part of the Saiq Formation.

Global sea level rose to a maximum during the Late-Early Permian (Kungurian, [START_REF] Haq | Chronology of fluctuating sea levels since the Triassic[END_REF]; however, only rare shallow-marine carbonate of this age is found in Oman, as reworked blocks in proximal turbiditic facies of the Hawasina units on the Batain Coast (Béchennec et al., 1992a) where probably the former "rim basin" persisted: then most of Oman remained emergent (Fig. 2). Subsequently, resulting of rapid erosion of the shoulder initiated in Late-Early Permian, the terrigenous siliciclastics deposits of the Gharif Fm. (Kubergandian-Murghabian of Broutin et al., 1995) and of the base of the Qamar and Saiq Fms. were laid down in a continental environment.

Figure 2: Geological sketch 3D from mantle (green) to upper crust (orange) of the rifting of the Cimmerides from Gondwana margin in Late Cisuralian time (modified from [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF].

2.4 From rifting to break-up, the Neotethyan opening 2.4.1 Rifting (horst and graben tectonics) on the margin of the Arabian Peninsula (fig. 2).

When the Djebel Akhdar became a stable platform in Guadalupian time, the horst and graben tectonics initiated in Late-Early/Early-Middle Permian developed a climax in the Saih Hatat. This gave rise to considerable thickness variations between the relatively condensed carbonate successions on the horsts and very thick successions in the grabens where the deposits in places, are made of conglomerates and olistoliths of shallow-marine carbonate. Furthermore, two intervals of volcanic and volcaniclastic rocks are related to this tectonism [START_REF] Le Métour | Géologie de l'Autochtone des Montagnes d'Oman : la fenêtre du Saih Hatat[END_REF]. This is particularly well developed in the Hulw graben (Saih Hatat) where the earliest interval located at the base of the carbonate succession is about 500m thick and is mainly made of tuffite and tuff with accessory andesite-rhyodacite. The later interval, 20 to 150m thick, is located in the middle part of the Saiq carbonate succession; it essentially comprises basalt, trachyandesite and rhyodacite with accessory tuff and dolerite and rhyodacite plugs. The intermediate to acid rocks of the earlier episode correspond to sub-alkaline rhyodacite, whilst those of the later one are transitionnal in character, probably corresponding to a magmatic suite that was differentiated from an alkaline to transitional magma [START_REF] Le Métour | Géologie de l'Autochtone des Montagnes d'Oman : la fenêtre du Saih Hatat[END_REF][START_REF] Béchennec | Igneous rocks in the Hawasina Nappes and the Hajar supergroup, Oman mountains: Their significance in the birth and evolution of the composite extentional margin of Eastern Tethys[END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997, Lapierre et al. 2004[START_REF] Chauvet | Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up[END_REF].

Thermal subsidence of the northeastern margin of the Arabian Peninsula

At the dawn of the Wordian (Middle Permian), the "Fusulinid Sea" transgressed over most of Oman with the exception of the Djebel Ja'alan and the Huqf-Dhofar axis; this transgression enabled the establishment of a vast carbonate platform in Djebel Akhdar, a 700m-thick succession of cyclic shallow marine carbonate, the Saiq Fm (Middle-Late Permian, basal Triassic, this vol., see also Baud et al. 2001, 2005, Richoz et al. 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]; a similar succession occurs in Saih Hatat (Chauvet, 2007, Weidlich andBernecker, 2003 andthis vol.) in the Musandam (Bih Formation, Maurer et al. 2009) as well as in the Interior Oman and in the Haushi area (Khuff Fm., Dubreuil et al., 1992;Angiolini et al. 1998Angiolini et al. , 2003)). Clearly, for us, this transgression was the result of the breakup of the Neotethyan rift (Fig. 3) and the associated thermal subsidence.

2.4.3

The breakdown of the Gondwana: formation of the Arabian passive margin (fig. 3).

In Middle Permian (Wordian), breakdown of this part of the Gondwanaland became established with northward drifting of the Iran/Mega Lhasa microcontinent [START_REF] Baud | [END_REF]; subsequently the most striking effect of the climax of the Neotethyan extension was the formation of a continental slope (Sumeini) and a basin (Hawasina) that constituted with the adjacent Arabian Platform, the southern continental passive margin of the Neo-Tethys. Furthermore early-rifted blocks detached from the edge Arabian shield edge formed isolated proximal platforms along the continental slope (later they were incorporated in the Hawasina Nappes).

The continental margin slope deposits are clearly identified (with slumps and intraformational breccia) in the northwestern part of the Oman Mountains (Djebel Sumeini), where they form the basal part of the Maqam Fm. dated as Middle Permian (Wordian, [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997;or Roadian, Krystyn, this vol.). Different type of deep water black limestones are also identified in the basinal units of the Batain Plain (southeastern part of the Oman Mountains), the "Qarari Limestone" (Shackleton et al., 1990;Béchennec et al., 1992a;Wyns et al., 1992) with a base dated as Roadian (Middle Permian, [START_REF] Immenhauser | Stratigraphy, sedimentology and depositional environments of the Permian to uppermost Cretaceous Batain Group, eastern-Oman[END_REF] and the top as Wuchiapingian.

The distal isolated platform identified as nappes in Baid and Djebel Qamar areas by [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF]Béchennec et al., 1992b;[START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997, are [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF] overlain in unconformity by the Late Early-Early Middle Permian shallow-marine carbonate Qamar Fm. with his quartz-sandstone basal member. The Baid unit is truncated at the base and is made of about 100 m of the Middle-Late Permian (Capitanian-Wuchiapingian) shallow-marine carbonate (Baid Fm., [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997, Baud et al., 2001). The distal paleogeographic position of these Permian tilted blocks in regard with the Arabian Platform is documented by: (1) The differences in terms of facies (open marine with ammonoids) with those restricted to the others parts of the Oman Mountains (Djebel Akhdar, Saih Hatat, Musandam);

(2) The presence of reworked boulders originating from these isolated platforms in the calcirudites of the proximal units of the basinal Hawasina Nappes. [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF][START_REF] Béchennec | Igneous rocks in the Hawasina Nappes and the Hajar supergroup, Oman mountains: Their significance in the birth and evolution of the composite extentional margin of Eastern Tethys[END_REF]Béchennec et al., 1992a-b-c, Pillevuit, 1993, Pillevuit et al., 1997). These volcanic rocks are either of MORB type or alkali basalt-related; however N-MORB (depleted) have not been found as most of the studied samples range from MORB to enriched MORB (Maury et al., 2003, Lapierre et al. 2004[START_REF] Chauvet | Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up[END_REF]. The volcanic succession is filled and overlain by red ammonoid limestones dated as Middle Permian (Capitanian) followed by radiolarian chert and shales newly dated as Lopingian in Buday'ah (this volume) and occurring in Rustaq and also Al Ashkharah areas [START_REF] De Wever | Découverte de radiolaires permiennes au bord Sud de la Tethys (nappes d'Hawasina[END_REF]Béchennec et al., 1992a-c). In the Wadi Wasit area, the volcanic series is capped by red cephalopods-bearing carbonate, dated Middle Permian (Wordian, [START_REF] Blendinger | Permian cephalopod limestones, Oman Mountains: evidence for a Permian seaway along the northern margin of Gondwana: Palaeogeography[END_REF]Pillevuit et al. 1997, Baud et al. 2001b), by shales and breccia with reworked blocks of Middle Permian to basal Triassic platform carbonate (Béchennec et al., 1992b;[START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Pillevuit et al., 1997[START_REF] Weidlich | Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms[END_REF][START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF], Twitchett et al., 2004).

Near Nahkl the volcanic series includes blocks of Middle Permian shallow-marine carbonate and is overlain by pelagic limestone [START_REF] Weidlich | Permian reef and shelf carbonates of the Arabian platform and Neo-Tethys as recorders of climatic and oceanographic changes[END_REF]. In the Rustaq area the volcanic succession is also capped by a condensed carbonate sequence (Hallstatt facies type) dated as Middle Permian (Wordian, [START_REF] Blendinger | Permian cephalopod limestones, Oman Mountains: evidence for a Permian seaway along the northern margin of Gondwana: Palaeogeography[END_REF], Pillevuit et al. 1997, Baud et al. 2001b, Richoz et al., 2005). Following the peak of the thermal subsidence in the Wordian-Capitanian, a stable carbonate platform became established on the Arabian Peninsula. The Saiq, Khuff and Hagil Fms, show a strong regressive tendency at the end of the Guadalupian, with restricted environment facies and a reduced biophase, mainly associated with a global fall in sea level at this time [START_REF] Haq | Chronology of fluctuating sea levels since the Triassic[END_REF], and climate changes [START_REF] Isozaki | Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction[END_REF]. During the Lopingian, the subsidence as recorded in the Saiq mega-cycle B (up to 300m of shallowing upward cycles) is still well active. high carbonate productivity on the platform and a very active subsidence at the base of slope (Watts, 1985;Baud et al. 2001;Richoz et al. 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF].

3-The

On the Baid Exotic block, after karstification of part of the tilted Permian carbonate platform and the Dienerian drowning event, the Dienerian-Smithian deep-water red ammonoid limestone is filling fissures and cavities (Hallstatt breccia) and is deposited over the Permian limestones [START_REF] Tozer | Triassic ammonoids from Djebel Sefra and Wadi Alwa, Oman, and their significance[END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997, Baud et al. 2001[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF].

In the proximal deep-water basin (Wadi Wasit units) the Lopingian allodapic limestones are partly eroded by a submarine avalanche breccia (Dienerian) containing Permian to basal Triassic megablocks. One of these blocks with a unique Permian-basal Triassic record has been analyzed in [START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF] and Twittchett et al. (2004). Upper Dienerian-Smithian deep-water platy limestone overlay the Lower Dienerian mega-block breccia.

In the distal Hawasina basin (Buday'ah), the Upper Permian radiolarian chert deposits are overlain by Changhsingian siliceous shales and calcareous shales followed by Griebachian laminated platy limestones and shales and Dienerian-Smithian papery limestones (see this vol.).

3.2

The Olenekian to Rhaetian evolution of the margin (Fig. 5a).

On the Arabian platform we note dolostone successions (350m for the Sudair Fm.; 500-800m for the Mahil Fm.; 850m for the Ghail, Milaha and basal Ghalilah Fms., in Musandam, Spathian to Rhaetian). A low subsidence is indicated by shallowing upward sequences with frequent sub-aerial exposures. Emersion and laterite deposits at the end of the Triassic follow a first order sea level fall.

Due to climate change at the dawn of the Spathian (Galfetti et al., 2007) terrigenous deposits start on the Arabian platform with yellow to green clay recorded in the Mahil and the Sudair Fms., respectively in the Saih Hatat/Djebel Akhdar and in the Interior Oman and are the main component of the Maqam D unit (Spathian-Anisian yellow to green shales) on the slope of the continental margin. It is followed by Ladinian radiolarites pointing to stable deep-sea condition. During the Carnian-Norian time, a pervasive instability is documented by coarse calcirudites interbedded in the chert and calcarenite succession of Maqam D and E units [START_REF] Watts | Triassic carbonate submarine fans bounding the Arabian carbonate margin[END_REF][START_REF] Watts | Sumeini group, Oman. Evolution of a Mesozoic carbonate slope on a south Tethyan continental margin[END_REF], Bechenec et al, 1993b, Baud et al, 2001b, Richoz et al. 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. Pillevuit et al., 1997).

Figure 5a: 2D sketch of the Oman margin during Late Triassic (modified from

On the Baid tilted block, the tectonic instability is also documented by angular unconformities and by clast-supported breccia with Late Permian remains, in the Hallstatt type succession from Olenekian up to Lower Jurassic [START_REF] Tozer | Triassic ammonoids from Djebel Sefra and Wadi Alwa, Oman, and their significance[END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997, Krystyn in Baud et al. 2001). The Smithian calcimicrobial mounds have been described by Baud et al., 2005 and recently by [START_REF] Woods | Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic)[END_REF] In some area of the distal deep-water basin (Hawasina basin in Diba zone and the Central Oman Mountains), volcanic rocks are interbedded in the Ladinian-Norian basal cherty member of the Matbat Fm. (Béchennec et al., 1992c;Le Métour et al., 1992b), giving clear evidence of a renewed extensional regime.

The Late Triassic evolution of the distal part of the Hawasina Basin is documented by the creation of the Misfah distal Platform and by the Umar Basin. A strong subsidence is reflected by the huge thickness of the Late Triassic shallow-marine carbonate deposited on the distal platform. The Kawr and Umar Groups which crop out as several tectonic units at the summit of the stacked Hawasina Nappes, comprise a thick basal volcanic unit that display the characteristic of intraplate magmatic series and range from intraplate tholeiites to alkali basalt [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF][START_REF] Béchennec | Igneous rocks in the Hawasina Nappes and the Hajar supergroup, Oman mountains: Their significance in the birth and evolution of the composite extentional margin of Eastern Tethys[END_REF][START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997;Maury et al., 2003). In the Misfah setting this volcanic unit is overlain by a Norian marly nodular limestone (Subayb Formation,) and by a thick (600m) shallowmarine carbonate Formation (Misfah, [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Norian-Rhaetian in age (Krystyn in Baud et al. 2001b). The presence of hardgrounds and, in places, microkarsts on top of the platform sequence reflect the end-Triassic sea level fall.

In the adjacent Umar Basin, the Late Triassic sedimentary succession consists of pelagic limestone and radiolarian chert without any terrigenous influx; the only clastic sediments are calcirudite and megabreccia made of reworked boulders of shallow-marine carbonate originating from the Misfah Platform.

4-Carbon isotope stratigraphy (S. Richoz, Fig. 5b)

Many studies have concentrated on the Permian-Triassic boundary interval for a long time (see a review in [START_REF] Corsetti | Summary of Early Triassic carbon isotope records[END_REF], Yin et al., 2007, Richoz et al., in press), but recently the Lower Triassic received more attention [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF][START_REF] Tong | Lower Triassic inorganic Carbon isotope excursion in Chaohu, Anhui Province, China[END_REF][START_REF] Tong | Early Triassic carbon isotope excursions from south China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF][START_REF] Zuo | Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China[END_REF][START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], Horacek et al., 2007a,b,c, 2009, in press, Galfetti et al., 2007a,b).

In order to obtain a better image of the carbon isotopic variations in the Upper Permian and Lower Triassic, high-resolution carbon isotope values were measured on 16 sections in Iran, Turkey and Oman [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. A reliable synthetic curve (fig. 5b) for the Tethyan realm was obtained. In Oman, 9 sections, from the platform to the basin, were measured. 4 sections (Sal and Wadi Wasit and Wadi Maqam in Richoz et al., 2005, Richoz 2006, Richoz et al., in press;Wasit Block in Krystyn et al., 2003) with a good biostratigraphic control help us to better constrain the synthetic curve. In the other hand, the synthetic curve allows to improve the correlation potential of other sections as the Wadi Sahtan one (Richoz et al., 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF] or Saiq Plateau (presented here).

In Oman, Permian δ 13 C carb values from various sections fluctuate between +3‰ and 6.6‰. [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. Isotopic values return then to negative values during the Sapthian. A last positive shift occurs at the Olenekian/Anisian boundary [START_REF] Baud | Late Permian and Early Triassic evolution of the Northern Indian margin: carbon isotope and sequence stratigraphy[END_REF][START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], but it is not well recorded in Oman. Isotopic values are then homogenous around +2‰ during all the Middle Triassic.

It appears clear that great disturbance in the isotopic record occurs during Lower Triassic time. The only such other large variations are recorded in Proterozoic time (Brazier et al., 1996). The classical image of a unique, large extinction with a very long recovery time has to be reviewed. The wellknown Permian-Triassic boundary negative excursion is probably more the precursor of a long time of chemical change in the ocean.

Part B -Description of the visited outcrops

The Permian -Triassic stratigraphic nomenclature we make use of (Fig. 6)

Figure 6: Permian-Triassic Time scale with standard and Tethyan stages names (modified from [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF].

In the last ten years, many changes occurred in the Permian-Triassic time scale and zonations as documented in a recent time-table (Fig. 6). The Tethyan stage names used in some part of this guidebook are shown according to their correlative standard stages. 9): Starting at 9 a.m., February 22, from Hotel Ibis (Muscat), we will follow the Sultan Qaboos highway towards Muscat. At Wadi Aday roundabout, we will turn right and follow the road to Quriyat. We will pass Wadi Aday which crosscuts Permian-Jurassic rocks of the Autochthonous B in approximate north-south direction. After about 3 km we will stop to investigate Permian-Triassic strata of the Saiq and Mahil formations in small wadis (Fig. 89). Figure 9: Geological map of the study area (Le Metour et al., 1986). The excursion will cover members of the Saiq Formation (Sq2a: light pink, Sq2b: orange, Sq3: light brown) and the basal Mahil formation (Ma). See text for details.

Introduction: With emphasis on the end-Permian mass extinction and the Early Triassic recovery phase, we examine during this excursion sedimentary rocks of the Late Permian -Early Triassic Saiq Formation from the eastern rim of the Arabian Plate at Wadi Aday. The thick sequence of carbonate and siliciclastic deposits offers the opportunity (1) to study the impact of the end-Permian mass extinction on carbonate production and (2) to discuss how perturbations of Early Triassic ocean chemistry influenced the recovery patterns of biota of epeiric carbonate platforms.

Stable carbon isotope data and biota of the mostly dolomitized carbonates indicate repetetive perturbations of the biogenic carbonate factory as evidenced by a negative carbon isotope shift at the PTB, followed by positive and negative excursions during the Early Triassic recovery. The described sequence at the rim of the Arabian plate differs from inner platform settings, where a shorter recovery phase has been observed for shallow-water benthos. Our findings support the idea of differences in the kinematics of the end-Permian mass extinction. In the vicinity of the epeiric Arabian platform, recovery of calcified bentic metazoans was rapid in inner platform areas and prolonged at the rim due to oceanic perturbations of the Tethys. Having the aforementioned ramp model in mind, carbonates of the Saiq Formation in the Saih Hatat (Fig. 10) differ from the carbonates of the Saiq Plateau ( see excursion Feb. 23) in terms of facies associations and carbonate secreting metazoans to some extent. The carbonates of the Saiq formation in the Saih Hatat display a vertical succession from Guadalupian photozoan carbonate to Lopingian heterozoan carbonate and to Early Triassic predominantly heterozoan carbonate producing associations with photozoan intervals at the base (Fig. 11). Dolomitized carbonates of the Middle to Late Triassic Mahil Formation are dominated by photozoan carbonates (terminology used in the sense of [START_REF] Beauchamp | Permian warm-to very cold-water carbonates and cherts in northwest Pangea[END_REF]. The Middle Permian to Early Triassic depositional history of the eastern rim of the Arabian plate was addressed for the Saih Hatat by Weidlich andBernecker (2003, 2007) and [START_REF] Weidlich | Permian reef and shelf carbonates of the Arabian platform and Neo-Tethys as recorders of climatic and oceanographic changes[END_REF][START_REF] Weidlich | Meteoric diagenesis in carbonates below karst unconformities: heterogeneity and control factors[END_REF]. The excursion is based on results submitted for publication by Weidlich and Bernecker. Close to the rim of the Arabian Plate, the Lopingian -Early Triassic was a time of intense tectonic activity during rifting of the Neo-Tethys. In the study area, volcanic rocks, breccias with a high fitting of the clasts and slumping structures documented rift pulses. Synsedimentary faults locally dissected the carbonate platform and caused drastic lateral facies changes. 

Geology of the

Changhsingian carbonates and PTB:

In the visited transects, textures and microfabrics of the sedimentary rocks have been mostly well preserved despite pervasive dolomitization (mimetic nonplanar equidimensional replacement dolostone) and metamorphism (obduction of the Semail ophiolite). Post-obduction tectonism is responsible for northward tilt of strata.

The focus of this excursion is on the uppermost 20 m of the Changhsingian Saiq Formation , where the age-diagnostic foraminifer Colaniella nana has been found. The almost completely dolomitized carbonates are well exposed in a wadi southeast of Wadi Aday. There, Lopingian carbonates, with bed thicknesses between 5 to 80 cm, form resistant cliffs with weathered surfaces in dark greyish, brownish or blackish colours. Synsedimentary rift pulses, a consequence of the renewed opening of the Neo-Tethys, affected the Lopingian platform carbonates at the eastern rim of the Arabian plate in several dimensions. Evidence for tectonic instability during or soon after the deposition of the carbonates comprises, on the metre scale, bedded platform carbonates intercalated with breccias and on the cm-scale mineralized and sediment-filled fissures and microbreccias.

Biota of the Lopingian Saiq Formation include brozoans, crinoids and brachiopods, all typical of a fully marine environment and contrast to the Guadalupian members of the Saiq Formation where calcareous algae, fusulinids, calcisponges, cerioid corals, alantoconchid bivalves prevail. The Lopingian facies association consists in decreasing abundance of the following facies types:

• Bryozoan crinoid floatstone • Brachiopod floatstone • Mudstone to skeletal wackestone • Monomict lithoclastic float-/rudstone
The above described facies types exhibit a random distribution within the Lopingian section because no trend or pattern has been observed. The last bed of the Lopingian facies association is bryozoan crinoid floatstone with patches of brachiopod floatstone. This bed is capped by a prominent discontinuity surface with the following features:

• The surface has an irregular wavy habit in the field with smooth depressions and dissolutionenlarged fissures. The relief, with a maximum height of 15 cm, is a combination of syndepositional normal faults and discontinuity-related processes that will be mentioned below.

Polished slabs and thin sections provide on the sub-centimetre scale evidence for corrosive sharp edges of the discontinuity. • A characteristic phenomenon of the discontinuity is a variety of mineralization products ontop the surface and within the underlying strata. (i) Most conspicuous are brownish-blackish goethite and limonite crusts with a thickness between 0 and 2 cm. (ii) Open fractures, clast of microbreccias and burrow structures are lined by reddish-brownish and black crusts. (iii) Obvious is also the diffuse reddish-brownish penetrative staining of dark grey dolomitized limestone with a maximum depth of 5 -10 cm. (iv) Down to a depth of 1 m, intraparticle pores of skeletal grains and moulds of grains can be filled with brownish iron oxids. (v) Finely dispersed pyrite occurs with varying abundance in the sediment and pyrite in intraparticle pores and fractures. • Thalassinoides-like burrow structures developed beneath the surface prior to mineralization. The biogenic structures are filled either with wacke-/packstone resembling the surrounding sediment or crinoid packestone with iron-rich brownish matrix. • Aside from the above mentioned criteria, a sharp negative excursion in the δ 13 C carb composition of about 4‰ was detected (Figure 10). Early Triassic Saiq Formation: Synsedimentary block faulting, a result of rift events in the Neo-Tethys, created during and after the PTB the accommodation space for the following sequence:

• Facies association A -Mixed carbonate-silicilastic sediments with upward increasing carbonate content: The graben structure was filled in the deepest part with reddish or brownish siliciclastic silt-and fine-grained sandstone. The thickness of the mixed carbonate-siliciclastic facies association varies between 0 to 16 m depending on the position along the transect. Bank thicknesses are in the dimension between few milimetres to few centimetres. The lack of macrofossils and ichnofossils as well as the presence of nodules of iron and manganese oxids remain the most striking features of this facies and contrast with underlying bioclastic carbonates of Lopingian age. The reddish fine-grained siliciclastics pass into yellowish friable siltstone and fine-grained calcareous sandstone and are overlain by alternations of thin-bedded yellowish carbonaceous siltstone and dolomitized mudstone. The upper part of the sediment fill of the small graben structures reflects the change from siliciclastic-rich, friable deposits to carbonaterich thin-bedded rocks. The sequence is terminated by reddish mudstone and siltstone. Synsedimentary slumps and folds indicate the sporadic occurrence of tectonic pulses during the deposition of this unit. Petrography of the carbonaceous siltstones and dolomitized mudstone reveals that indistinctly bioturbated mudstones alternate with occasionally deposited thin packstone intervals. The deposits contain nodules of iron and manganese oxids. Low-relief thin stromatolites were observed which consist of well cemented laminae. Measured stable carbon isotopes show a drastic negative excursion as δ 13 C carb values exhibit a negative shift.

• Facies assocciation B -Bioclastic carbonate with grain-and mud-support fabrics:

Obvious is from the distance in the field an approximately 1.0 to 1.5 m thick carbonate bank with massive appearance. Upon closer examination, the following sequence becomes evident from base to top:

The lowermost unit, probably 20 cm thick, is dolomitized mudstone with burrow structures filled with bioclastic packstone. The geopetal fill comprises notably recrystallized bioclasts, the debris of crinoids and small mollusks. The main unit, about 1 m thick, is characterized by a drastic facies change, as the dolomitized unit is dominated by strongly bioturbated wacke-/packstone with recrystallized mollusks (microgastropods and thin bivalves) and grainstone with peloids, mud clasts, cortoids, echinoderm debris, smaller foraminifera and rare dasycladacean algae. Peloids also comprise fecal pellets without internal structure. Smaller foraminifera, such as Pilamminella sp. and Earlandia sp., indicate an Early Triassic age. Disarticulated crinoid ossicles have iron-stained rims and are intensely bored. Microborings resemble clionid sponges, which are known from Permian Rugosa [START_REF] Weidlich | Bioerosion in Late Permian Rugosa from reefal blocks (Hawasina Complex): Implications for reef degradation[END_REF] and have not been reported from Early Triassic strata so far. Interparticle pore space was cemented by bladed to fibrous isopachous calcite and blocky calcite. The massively bioturbated carbonate contains small unconformities which are already visible in the field. Petrographic evidence for the corrosive nature is the steep to overhanging microrelief. Some of these are overlain by microsparitic mud-to wackestone which pass into strongly bioturbated wacke-to packestone and grainstone as below. In addition, simple and straight borings are visible in the field and in thin section. The uppermost 30 cm are dominated by indistinctly bioturbated mudstone with bivalve floatstone lenses. The thin-shelled bivalves resemble Halobia sp. The facies is capped by a low-relief, erosional unconformity and is overlain by mudstone with scattered bioclastic debris at the bottom. δ 13 C values display positive excursion. A second horizon of bioclastic carbonate was observed locally (Fig. 10).

• Facies association C -Bedded dolomitized mud-to wackestone with microbialites and trace fossil horizons:

The bioclastic carbonate is overlain by an about 40 m thick alteration of thin-bedded dolomitized mudstone and silty mudstone with variable colour. XRD data point to dolostone, ankerite, calcite, quartz and muscovite as dominant minerals. An about 20 cm thick bank of laminated microbial bindstone, consisting of laterally linked low-relief hemispheroids, occurs at the base of this facies asociation. The lateral continuity is unknown since the unit is surrounded by tectonic breccias. The typical facies comprises thinly bedded yellowish, dark grey and light grey intercalations of dolomitized mudstone with bed thicknesses varying between 5 to 15 cm. Characteristic sediment structures are horizontal bedding, erosional small channels (diametre 20 to 30 cm) and liquefication of unconsolidated sediment. Locally, the sediment is intensely brecciated. Angularity and high fitting of clasts indicate a tectono-sedimentary origin of the deposits without significant lateral transport of the clasts. The uppermost 8m of this unit are increasingly dominated by beds of bioturbated mudstone or microbial bindstone. Bioturbated dolomitized mudstone beds, with a thickness of 10 to 20 cm, are dark and lightcoloured sediment containing the ichnotaxon Planolites. The thrombolites exhibit a laminated internal structure with a very low relief. The prevailing textural types are mudstone as well as peloidal wackestone and fine-grained packstone with a typical clotted fabric. Obvious are stromatactis-like cavities that are partly cemented and partly filled with geopetal sediment. From the ceiling of the cavity dolostone with brown bands indicative of multiple precipitation events and/or changing pore water chemistry has been found. The unit is capped by a brecciated bed. This facies association displays an increase in stable carbon isotope values (Fig. 10).

• Facies association D -Thinly bedded yellowish silty dolostone and black calcite: Above the brecciated bed the texture changes towards alterations of extremly thin-bedded (1.5 to 2.5 cm) yellowish dolostone and silty dolostone and black calcite. This unit attains a total thickness of about 60 m. The sequence starts with yellowish dolostone mudstone followed by black calcite. Most of the yellow mudstone is finely laminated dolostone and ankerite with varying perecentages of quartz and muscovite; it contains dark grey layers which are heavily faulted from time to time. The basal black calcite is heavily bioturbated; the dominant biogenic structures, which resemble Planolites and Thalassinoides, are mostly parallel to bedding. Higher up in the section, beds yield individual burrow structures that exhibit a spreitenbauten-like fabric. The black calcite is strongly recrystallized; petrographic analysis of representative samples confirmed that sea floor cements might have played a significant role in the formation of the black calcite. It consists of centimetre-scale calcite crystals with pronounced twin lamellae. These precipitates resemble Olenekian seafloor cements of the Union Wash Formation of the southwestern U.S. (Woods et al., 1999). This facies association displays a negative and positive shift of δ 13 C carb (Fig. 10). The sequence is interrupted by two conglomeratic beds. Slumps and debris flow deposits are associated with the dark calcite. The black calcite is capped by a pronounced subaerial exposure horizon [START_REF] Weidlich | Meteoric diagenesis in carbonates below karst unconformities: heterogeneity and control factors[END_REF] followed by Middle Triassic ooid bioclast grain-and packstone. 3) -( 4) Paired photomicrographs (plane-polarized and cross-polarized light) synsedimentary seafloor cement. ( 5) -( 6) Paired photomicrographs (plane-polarized and cross-polarized light) synsedimentary seafloor cement.

Conclusions:

The results of this excursion shed new light on the complexity of the Early Triassic post-extinction recovery. A sequence of about 130 m of Late Permian-Early Triassic sediments accumulated at the rim of the Arabian platform. Based on our data, we propose the following sequence of events for the end-Permian mass extinction and the Early Triassic recovery:

(1) Biogenic carbonate production dominated by members of the heterozoan carbonate factory; collapse of carbonate sedimentation at the end of Permian.

(2) During the early aftermath of the mass extinction, siliciclastic sediment accumulation dominated while carbonates were corroded.

(3) Re-start of carbonate production in a "marine abiotic default mode".

(4) Rapid but short-lived recovery pulse of benthic heterozoan carbonate production.

(5) Switch to abiotic and microbial carbonate production, trace fossils indicate presence of uncalcified benthos, limited carbonate production by microbes.

(6) Return to abiotic default mode of carbonate production during 2 nd negative carbon isotope excursion, absence of trace fossils indicates deterioration of environmental conditions.

(7) Recovery of photozoan carbonate production after subaerial exposure and reflooding of the Arabian plate.

Unfavourable Early Triassic oceanographic conditions were suggested for the Neo-Tethys, including oceanic anoxia and variations of calcium carbonate saturation (e.g., [START_REF] Baud | The Lower Triassic anachronistic carbonate facies in space and time: Global and Planetary Change[END_REF][START_REF] Woods | Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic)[END_REF] under postulation of rapid recovery (Twitchett et al., 2004). Permian-Triassic sections of the inner platform described from Saudi Arabia (e.g., [START_REF] Vaslet | The Permian-Triassic Khuff formation of central Saudi Arabia[END_REF] and Iran (e.g., [START_REF] Insalaco | Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore fars, Iran: depositional system, biostratigraphy and stratigraphic architecture[END_REF] support this interpretation and have in common with our data that the end-Permian mass extinction seriously hit calcified benthic metazoans in all environments. By contrast, Early Triassic facies developments at the eastern rim of the Arabian plate (our data set) parallels only to some extent the epeiric inner platform development. Special feature of the platform rim setting, as described before, are 1) Fe-and Mn mineral crusts on the PTB discontinuity surface followed by condensed sediments with Fe-and Mn-nodules, 2) limited importance of microbialites which are a common and repetitive phenomenon elsewhere [START_REF] Baud | The Lower Triassic anachronistic carbonate facies in space and time: Global and Planetary Change[END_REF] and 3) pulsed, shortlived recovery of the heterozoan carbonate production which was followed by a thick sequence of abiotically precipitated carbonate. We conclude that inner platform environments of the Arabian plate recovered faster than platform rim settings. This discrepancy was already described as differential severity of the end-Permian massextinction and the Early Triassic recovery period [START_REF] Weidlich | Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms[END_REF]. Our observation coincides with the statement of [START_REF] Miller | Epicontinental seas versus open-ocean settings: the kinematics of mass extinction and origination[END_REF] who recognized differences in the kinematics of mass extinctions. Their statistical data set suggests higher extinction rates for end-Permian taxa of 'open-ocean-facing settings' and higher origination rates for Early Triassic 'epicontinental' taxa. Due to gentle regional diP, the high quality and easy access of the outcrops, each strata of the Saiq and Mahil Formations can be followed over hundreds of metres (Fig. 20). According to the geological map of Nakhl, contact faults are concentrated in the northern and western part of the Saiq Formation outcrops (Fig. 21).

Figure 21: Geological map of the Saiq Plateau (Extract from the geological map of Nakhl, from [START_REF] Rabu | Geological map of Nakhl[END_REF]. Saiq Formation in pink and Mahil Formation in violet.

The Permian-Triassic section is more than 1000m thick and consists of dolomitized shallow water carbonate (Middle-Upper Permian to upper Triassic) except the basal part (Middle Permian) that escapes to dolomitization processes and consists of shallow water fossiliferous limestones (Units A2 to A4, Fig. 23). The three stops of the day will be close to and below the abandoned quarry .

The Saiq Formation (Fig. 22). The Saiq Formation on the Saiq Plateau has been studied first by [START_REF] Montenat | La transgression permienne et son substratum dans le jebel Akhdar (Montagnes d'Oman, Peninsule Arabique[END_REF]. The basal part of the Saiq Formation, not shown on the figure, has been described by [START_REF] Rabu | Géologie de l'autochtone des montagnes d'Oman : La fenêtre du Djebel Akdar. La semelle métamorphique de la Nappe ophiolitique de Semail dans les parties orientales et centrale des Montagnes d'Oman : une revue[END_REF] and consists of 20 to 30m thick transgressive sediments with basal conglomerate, siltstone followed by marls and bioclastic limestone lenses dated of Lower Guadalupian (Roadian? -Wordian) by foraminifers. [START_REF] Coy | Dolomitisation of the Akhdar Group: the Arabian platform of Oman[END_REF] studied the dolomitization of the Akhdar Group on the Saiq Plateau with an extensive description of the lithology and the diagenetic processes. In 2004, he leaded an excursion of the Geological Society of Oman with a description of the upper Saiq depositional model [START_REF] Coy | Geological excursion tho the Saiq Plateau[END_REF]. The top part of the Saiq Formation is defined by following base of the Mahil Formation. The BRGM team [START_REF] Rabu | Géologie de l'autochtone des montagnes d'Oman : La fenêtre du Djebel Akdar. La semelle métamorphique de la Nappe ophiolitique de Semail dans les parties orientales et centrale des Montagnes d'Oman : une revue[END_REF], Le Metour, 1990) who studied extensively the Geology of Oman autochthonous for the official Geological map proposed to fix the base of the Mahil Formation at the first terrigenous level (sandstones or clay mudstone) red, orange or yellow in colour, appearing with a change of colour from dark to light of the stratified dolostone succession.

Biostratigraphically not well constrained, the Saiq-Mahil boundary has been associated with the Permian-Triassic Boundary (PTB). Using the chemostratigraphy with the carbon isotope curve tool, we have been able to show that the expected PTB was situated about 100m below the Saiq -Mahil boundary in the Wadi Sathan section [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], Baud et al., 1999, Richoz et al., 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. On the Saiq Plateau, the Saiq -Mahil boundary outcrops well in an abandoned quarry North and above the village of Saiq , along a mountain road to the village of Hajirate.

Figure 22: Saiq -lower Mahil composite section on the Saiq Plateau. On the left is the statigraphic column published by [START_REF] Kohrer | Characterization of Khuff Geobodies in Outcrop and Subsurface of Oman: Al Ajar[END_REF]; on the right is our composite section with our stratigraphic units and the proposed sequences (red and blue triangles) of [START_REF] Kohrer | Characterization of Khuff Geobodies in Outcrop and Subsurface of Oman: Al Ajar[END_REF] correlated boundary does not correspond to the boundary chosen by Kohrer et al., 1999 that is situated about 100m below and their Mahil Sequences KS2-KS1 correspond to our Saiq Member C (Fig. 22). This Saiq Plateau composite section (Middle Permian-Lower Triassic) consists of a 800m thick succession of limestone and dolostone arranged in shallowing upward cycles (Fig. 9). The Saiq This Formation, about 725m thick, has been subdivided in three Members (A, B and C) and contains four main Transgressive-Regressive cycles (T-R 2 nd order cycle). These three Members have been correlated and are more or less corresponding to the Weidlich (2003) supersequences P2 to P4 and are corresponding with the following [START_REF] Kohrer | Characterization of Khuff Geobodies in Outcrop and Subsurface of Oman: Al Ajar[END_REF] sequences: Member A with KS6-KS5, Member B with KS4-KS3, Member C and the lower part of the Mahil Formation with KS2-KS1.

Discussion (Fig. 23).

The main recent progress in the study of the Saiq and Mahil Formations have been presented by Baud et al., 2001[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], Richoz et al, 2005, Richoz et al. in press from the Wadi Sathan.

(North-West of the Djebel Akhdar). Weidlich andBernecker (2003, 2007) [START_REF] Insalaco | Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore fars, Iran: depositional system, biostratigraphy and stratigraphic architecture[END_REF], 2-4 Al Husseini 2006, 5-Kohrer et al., 2009, 6-our data, 7-Le Metour, 1988, 8-Weidlich & Bernecker, 2003 and this vol.

Description

The lower part of the Saiq Formation with the Member A (corresponding to P2 in [START_REF] Weldlich | Supersequence and composite sequence carbonate platform growth: Permian and Triassic outcrop data of the Arabian platform and Neo-Tethys[END_REF], 400m thick, has been subdivided in 4 units from the base up:

-The A1 unit, partly terrigenous (the lower Saiq of [START_REF] Rabu | Géologie de l'autochtone des montagnes d'Oman : La fenêtre du Djebel Akdar. La semelle métamorphique de la Nappe ophiolitique de Semail dans les parties orientales et centrale des Montagnes d'Oman : une revue[END_REF] is not examined here.

-The A2 to A4 units (=Kohrer's KS6 sequence), are an about 150m thick pile of limestones that escape to late dolomisation processes and consists of shallowing upward transgressive sequences (Fig. 9). Concentration of iron oxides and paleokarstic pockets at the top record a local emersion of the shallow shelf.

The paleontological content is given in [START_REF] Montenat | La transgression permienne et son substratum dans le jebel Akhdar (Montagnes d'Oman, Peninsule Arabique[END_REF], with description of the Middle Permian foraminifera, calcareous algae, incertae sedis and marcofauna as bivalves, brachiopods, crinoids and bryozoans. Concerning the age, these units were dated by these authors as Neoschwagerina schuberti zone of Middle Murgabian corresponding to a Wordian age, that is supported by the recent finding of the conodonts Hindeodus excavatus and Hindeodus wordensis by C. Henderson and A. Nicora (Nicora et al., 2009) that ranges from mid-Roadian to Lower Capitanian in the type Middle Permian of West Texas [START_REF] Wardlaw | Guadalupian Conodont Biostratigraphy of the Glass and Del Norte Mountains[END_REF].

-The A5 and A6 units (=Kohrer's KS5 sequence), 230 m thick, made of banded light to dark grey dolostone that are partly fossiliferous with large fusulinids beds, bivalve beds and in the upper part by a spectacular giant bivalve Alatoconchida sp. level (Fig. 24). 2006) and to [START_REF] Gaillot | The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications[END_REF].

The upper part of the Saiq Formation (300 m) consist of two Member noted B and C (Fig. 22). Both Members are mainly made up of dolomitized high-energy calcareous sands.

The Member B is about 190m thick. Its lower part with B1 and B2 units (=Kohrer's KS4 sequence) is characterized by a thick sequence of high-energy dolopackstone to dolograinstone documenting major flooding of the shelf. The upper part with B3 and B4 units (=Kohrer's KS3 sequence) is made of well-bedded dolostone.

The B4a unit is the regressive part of the Member B. The base consists of metric-bedded dark bioclastic dolostone with rugose corals colony of Wentzelella-type. Within the upper 5 m, there are many levels with solitary rugose corals of Wentzelella-type, bryozoan and crinoid concentrations, which probably represent the last skeletal carbonate just below the extinction event surface (E1, Fig. 11).

A possible Late Wuchiapingian -Changhsingian age [START_REF] Gaillot | The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications[END_REF] of the B4a unit is based on the discovery of Paradagmarita monodi in another correlative Saiq section by [START_REF] Lys | Biostratigraphie du Carbonifere et du Permien en Mésogée[END_REF] and by the presence of Hemigordiopsis sp. in correlative unit of Wadi Sathan section [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF].

Stop 1 (Fig. 25). This stop concerns the unit B4b (Fig. 25) that crop out about 100m below the abandoned quarry. This unit contains the Permian-Triassic transition (PTT) and start with a 30cm thick dolorudstone with some pebbly layers of mudclasts overlain by 1m of laminated micropeloid dolo boundstone (microbialite?). Above the colour change from dark brown to light grey as shown by the Fig. 25, there are 6m of thin-bedded (5 to 30cm thick) dolo-wackestones and mudstones with occasional laminations. Isotope stratigraphy (S. Richoz, Figs 26a andb).

The Saiq and Mahil Formations are composed mainly of dolostone. As shown by [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF] in the Wadi Sathan, within the basal Unit A2 of the Saiq Formation where a front of dolomitization occurs, the dolomitization processes do not affect significantly the carbon isotopic composition of the primary carbonate sediments and the dolostone have generally a typical marine carbon isotope signature. The δ 18 O values of dolostone are however significantly affected and about 3‰ lower than their counterparts from limestones.

As in other part of the Neotethys, δ13C display in Saiq Plateau very high positive values up to 5.6‰ in Upper Permian. In Wadi Sahtan, a first negative shift occurs there between Units B3 and B4 with a drop from 4.6‰ to 3.4‰ (Richoz et al., 2005;[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]) and a rapid negative shift of 2.8‰ appears within an 8 m thick interval of the transition between B and C Members. We have not enough samples here in Saiq Plateau to characterize this first part of the decrease. Looking on chemostratigraphy provided by [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]Richoz et al., 2005 and in press (Fig. 26a andb), the very similar lithological and isotopic evolution between the Wadi Sathan section and the Saiq Plateau section help us for very precise correlations.

Figure 26a: Correlation of the Permian-Triassic Transition between Saiq Plateau section and Wadi

Sathan section with the Carbon isotope curve record (cf. Richoz, 2006, Richoz et al., in press).

We can observe than a minimum is reached 15cm below the extinction level (Figs 25 and26). As in many other Tethyan sections a rebound of 1,1‰ is observed just above the Extinction level (Richoz et al., in press). In Tethyan realm, H. parvus is known to appear just after the minimum following this rebound (Richoz et al., in press). With this well known and adopted criteria of the C isotope shift, we assume to set the Permian Triassic Boundary (PTB) in the topmost B4 unit, between the dolo-boundstone and the dolo-wackestone between 2 and 6 m above the extinction event (E1, Figs. 25, 26a andb).

The unit B4b from the upper part of the Saiq Formation can be well correlated with the Wadi Sathan section. The Permian-Triassic transition (PTT) is placed at the base of this unit as shown on the Figs. 25 and 26. The FAD of H. parvus is know to appear just after a first small positive peak within the decreasing isotopic values (Richoz et al., in press). According this, we place the Permian-Triassic boundary interval (PTBI).

The Member C is characterized by lower positive values (Fig. 26b) around 1,7‰, progressively higher until 2,8‰ at the base of C3 before decreasing to 2,2‰ at the top of the Saiq Formation. This curve corresponds to the Griesbachian-Dienerian trend (Fig 5, Richoz 2006). We will look at the top of the Saiq Formation with the units C3 and C4 and the base of the Mahil Formation. The unit C3, 34m thick (Fig. 28) is subdivided in C3a and C3b. The C3a unit (8m) contains dolomudstone, dm thick beds of bioclastic dolopackstone with micro-bivalves and rare microgastropods and peloid-intraclast dolomitic grainstone (Fig. 30a). Oolitic dolograinstone (Fig. 30b) dominates the C3b interval (26m), forming dm thick crossbedded dolostone beds. Intensive dolomitization largely obliterated the microfacies. Where the original texture is preserved, ooids are recognized as round grains with relics of internal layering. The base of the Mahil Formation outcrops well in the abandoned quarry and is characterized by a sudden fine terrigenous input with green, brown and red clay mudstone (Fig. 31).

The Mahil Formation overlies a subaerial and exposed surface that forms the top of the Saiq Formation (E4, Fig. 32).

The lower part of this Formation, examined herein (Fig. 33), is divided in two main lithologic units, M1 and M2, further separated in subunits. Very small foraminifera and bivalves (Claraia) are present in the unit M2 of the Formation. 

Introduction

The Bai'd tectonic window is located in the Central Oman Mountains, to the south of the autochthonous units of the Arabian platform in the Saih Hatat (Fig. 20) and below the Samail ophiolite (Figure 36). It forms an anticline with a roughly N-S trending axis that exposes imbricate slices of the Hawasina sedimentary and volcanic units. The Wadi Wasit area provides one of the best and the most extensive exposures of Permian and Triassic deep-water sediments (Baud et al. 2001) in the Hawasina allochthon (Figure 36). The general stratigraphy of the Bai'd window (Permian and Triassic Al Jil Formation, sensu [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF]1992a) consists of a 250m thick Middle Permian volcano-sedimentary sequence (Pillevuit et al., 1997) of pillow basalt with 4 main intercalations, 10 to 30m thick, of cherts, of volcanic breccias, of calcareous gravity flow deposits with Lower and Middle Permian shallow shelf or reef boulders and of cephalopod red lime wackestones (Fig. 37).

Recently C. Baud et al., 2001).

The breccias sandwiched between Permian turbiditic and Lower Triassic platy limestones, are of variable thickness and are very widespread. They are channelized, clast-supported debris flows deposits (Figure 24), which cut deeply into the underlying calcareous or volcanic rocks of Middle Permian age [START_REF] Blendinger | Permian to Jurassic deep water sediments of the Eastern Oman Mountains: Their significance for the evolution of the Arabia margin of south Tethys: Facies[END_REF](Blendinger , 1995;;[START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF]Pillevuit et al., 1997). These, often dolomitized breccias consist mostly of Guadalupian reefal blocks, which originally formed the margin of the Permian carbonate platform. The reef biota of the Permian reef boulders deposited in these deep-water sediments has been compared with the El Capitan reference section of West Texas [START_REF] Weidlich | Combined quantitative analysis and microfacies studies of ancient reefs: an integrated approach to Upper Permian and Upper Triassic reef carbonates (Sultanate of Oman)[END_REF][START_REF] Weidlich | Bioerosion in Late Permian Rugosa from reefal blocks (Hawasina Complex): Implications for reef degradation[END_REF]Weidlich and Senowbari Daryan, 1996). Calcareous and dolomitic parts of the breccia tend also to be silicified, making palaeontological studies difficult, as fossils are difficult to extract.

Figure 37: Wadi Wasit composite section (modified from Pillevuit et al. 1997); section A modified from [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF]; Conodonts (see Plate 1, p. 50) recovered and determined by C. Henderson and A. Nicora (Henderson et al., 2009).

A unique, entirely calcareous breccia, which occurs 1 km south of the middle part of Wadi Wasit, includes several small-sized blocks of lowermost Triassic bivalve-bearing limestones. The largest one, with a size of about 200 m 3 , the Wasit block, will be examined in detail at our stop 2 (cc. Fig. 38). We will look at the upper part of the complete section that consists of 5 main lithologic units (Al Jil Fm.) from base up (Fig. ; 39):

-Unit 1 is a thick volcano-sedimentary sequence made up of alkali pillow basalts WPB-type [START_REF] Béchennec | Géologie des nappes d'Hawasina dans les parties orientales et centrales des montagnes d'Oman: Orléans, France[END_REF], Béchennec et al., 1991[START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Maury et al., 2003) and of tuffites with interbeds of radiolarites. These volcanic rocks are strongly enriched in the most incompatible elements and are typical of high-Ti basalts identical to plume-related alkalibasalts from intraplate continental or oceanic settings. -Units 3 and 4 (21m thick) consists of depositional sequences mainly of turbiditic lime packstones and red shales, the latter being more abundant in the upper part. The allodapic limestones are represented either by calcarenites or calcirudites and they include occasionally reddish-whitish chert nodules. The following conodonts have been recently recovered in the unit 4: Mesogondolella n. sp.

A, and Jinogondolella cf. shannoni and 2 metres higher Jinogondolella altudaensis (det. C. Henderson and A. Nicora) with an age of Late Capitanian. According to [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], Units 3 and 4 have high δ 13 C tot values between +4‰ and +5‰ consistent with usual Late Permian values.

Below (Fig. 40) is a depositional model for the Middle Permian of the Wadi Wasit basin margin that evolves with the creation and extension of the Neo-Tethys. Reefal aggradation takes place on the shelf edge and shallow part of tilted block (after [START_REF] Blendinger | Permian to Jurassic deep water sediments of the Eastern Oman Mountains: Their significance for the evolution of the Arabia margin of south Tethys: Facies[END_REF]. -Unit 5 from 10 to up 50m thick is represented by a massive dolomitized breccia with blocks of reefal limestones. It consists of a gravity flow deposit partly composed of reef boulders. The reef biota of the Permian reef boulders deposited in these deep water sediments have been intensively studied by a team from the Erlangen Paleontological Institution and also compared with the El Capitan reference section of W Texas (Flügel in [START_REF] Blendinger | Permian to Jurassic deep water sediments of the Eastern Oman Mountains: Their significance for the evolution of the Arabia margin of south Tethys: Facies[END_REF]Flügel, 1990, Senowbari et al., 1992;Weidlich, 1996a;Weidlich, 1996b;[START_REF] Weidlich | Combined quantitative analysis and microfacies studies of ancient reefs: an integrated approach to Upper Permian and Upper Triassic reef carbonates (Sultanate of Oman)[END_REF]Weidlich and Flügel, 1995;[START_REF] Weidlich | Late Permian "sphinctozoans" from reefal blocks of the Ba'id area, Oman Mountains[END_REF]. The age of this unit, Middle-upper Dienerian, is bracketed between the youngest age of the youngest boulder (=Wasit block, stop 2) that is Early Dienerian and the age of the basal transgressive unit over the breccia (unit 5) that is Late Dienerian-Early Smithian.

-Unit 6 starts with grey platy limestones and thin shales or marlstones interbeds, over a 6 m thickness. The underlying contact with the massive dolomitized breccia is irregular and marked in some depressions by a thin layer of marly shales. Elsewhere the platy limestone unit has more than 100m in thickness, with a Late-Dienerian-Middle Smithian age [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]). This unit is in some places overlain by a green shale/fine-grained quartz-sandstone sequence, 12 m thick, and then by a green/red radiolarian chert series (Ladinian) which is the base of the overlying Matbat Fm. From the parking place on the right side of Wadi Wasit, we will move up the hill, crossing the Al Jil units we have seen at stop 1 and find below the top of the hill the so-called Wadi Wasit block with a size of about 150 m 3 within the calcareous breccia (Figs. 38 and41). In terms of biofacies the Coquina Limestone is thus called the Promyalina beds. Other fossil groups are rare; small ammonoids occur in filled cavities. Towards the top part shell accumulations become less dense and Eumorphotis more frequent. With a further decrease in bivalve shells, the lithofacies is changed to the Bioclastic Limestone unit. Shell concentrations are now restricted to thin layers in irregularly stratified beds within the lower metre of the unit. The bivalve composition changes remarkably owing to the disappearance of Promyalina and its replacement by Eumorphotis and Claraia.

The upper part of the Bioclastic Limestone consists of a single 1 m thick bed with a rich and, for the respective time interval, astonishingly diverse invertebrate fauna. It consists predominantly of grain-and packstone with microgastropods, echinoderms (crinoid ossicles, "Cidaris" spines), bivalve debris, ostracods and less common juvenile ammonoids, and rather rare bioclastic wackestone. Figure 45: The ammonoid fauna of the Wadi Wasit block (after [START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF].

Microfacies (after Krystyn et al., 2003, Fig. 46). Conodonts (after Krystyn et al., 2003, Fig. 47).

The microfacies of the

A diverse conodont association (Fig. 47) constitutes an important part of the microfauna with several hundred specimens per kilogram. This gondolellid dominated fauna with extremely rare Hindeodus in the upper Bioclastic Limestone. contrasts well with the pure Hindeodus assemblage below.

The Bioclastic Limestone, is disconformably overlain by an only locally preserved 1 cm thin layer of megafossil free, grey, marly fine-grained limestone, dated by conodonts as Dienerian (e.g.

Sweetospathodus kummeli

). Both the mud-supported fabric and the high terrigeneous insoluble residue of this peculiar bed indicate a pronounced change of the sedimentary environment from relatively shallow carbonate-rich to deeper and siliciclastic-influenced depositional regime at the final stage of the block's history. Biochronology (after Krystyn et al., 2003, Figs 47, 48).

The Reefal Limestone unit is dated as Middle Permian (Guadalupian) by the presence of the conodont Mesogondolella sp. (Fig. 47/1).

The overlying Coquina Limestone and Bioclastic Limestone units are Griesbachian in age, and three conodont zones (Figure 31) are recognized:

(1) a basal Parvus Zone, 2.5 m thick;

(2) the Staeschei (or Isarcica) Zone, < 1 m thick;

(3) the Sosioensis Zone, <1 m thick. The latter zone is herein defined from the first appearance datum (FAD) of H. sosioensis until the FAD of Sweetospathodus kummeli (Fig. 47/8), and corresponds to the Neoclarkina discreta Zone of Spiti [START_REF] Orchard | Conodonts of the lowermost Triassic of Spiti, and new zonation based on Neogondolella successions[END_REF]. Comparison with other Tethyan Griesbachian age sections (Meishan, Spiti, Abadeh) suggests that Isarcicella staeschei (Fig. 47/5) appears rather later in this section than elsewhere, and may not indicate the full range of the zone. The Marly Limestone unit contains Sweetospathodus kummeli (Fig. 47/8), indicative of a basal Dienerian age.

Ammonoids are fairly common in the upper part of the block and allow the identification of two zones (Figure 46). Firstly, the Ophiceras tibeticum Zone, here represented by a single and very evolute Ophiceras species similar to the holotype of O. connectens Schindewolf and by Ophiceras cf. sakuntula Diener (Fig. 46). Secondly, a zone that corresponds to the so-called "unnamed interval" first described by [START_REF] Orchard | Conodonts of the lowermost Triassic of Spiti, and new zonation based on Neogondolella successions[END_REF] from the Himalayas. This interval is characterized by a rich and hitherto undescribed fauna composed of many genera with an intermediate ophiceratid-gyronitid morphology, together with the last true ophiceratid (Discophiceras, Fig. 46). [START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF] with ranges of the main fossils and biota.

Figure 48: Stratigraphy and biochronology of the Wadi Wasit block (after

Chemostratigraphy (after [START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF][START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF].

In this study, δ13Ccarb isotopic analyses of the Wasit block were performed on selected micrite samples, wherever possible, which were drilled with a dental burr. Five samples (99/65-OMO64) from the Coquina Limestone unit have no micrite thus the analyses have been performed both on the early diagenetic sparry-cement and on bulk rock, which gave similar results; however the results of these analyses must be taken with caution.

The Reefal Limestone unit yields typical marine Permian values of around 4 ‰ (e.g. [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF][START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. The more unstable values in the last metre can be attributed to dissolution effects during an interval of non-deposition or subaerial exposure at the boundary. Such a gap is supported by rare karstic cavity fills and the biostratigraphic data, above.

The base of the Coquina Limestone unit (lowest 10 cm) gives low values (0.4‰), typical of the very base of the Griesbachian (e.g. [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. A shift to more positive values happens very quickly above the boundary and the remainder of the Coquina Limestone shows stable isotopic values around 2‰, with a very slight negative shift in the middle part of the Coquina Limestone. A positive shift occurs at the base of the Bioclastic Limestone unit between 98/52 and 98/52B where values increase from 2‰ to 3‰. It corresponds to the change in conodont biofacies, suggesting that there is an environmental change undetected in the sedimentary record at this level. The few isotopic values obtain on organic matter confirm the same trend.

Isotopic results confirm the biostratigraphic data, which suggest that there is no significant gap in the basal Triassic record, at least between the Coquina and Bioclastic Limestones and between the Bioclastic and Marly Limestone units. The isotopic curve (Fig. 49) follows the typical values for this time interval (e.g. Baud et al., 1989;[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. There is a rapid recovery after the boundary, relative stability during the interval dominated by Promyalina, and a rise of δ13Ccarb and δ13Corg in the Eumorphotis beds. Thus, the changes in isotopic values closely parallel the changes in faunal diversity and suggest that the δ13C curves reflects primary productivity. Discussion (after Krystyn et al., 2003).

Basal Triassic depositional environment

The overall sequence is characterized by storm-influenced bivalve shell concentrations with increasing matrix support section upward. The latter could have resulted from decreasing storm influence due to a continuous deepening of the sea floor. The sharp base of the coquina layers supports an hydraulic concentration origin. Well preserved, mostly unbroken and not abraded or bioeroded shells exclude a wide lateral transport and are interpreted as evidence for rapid deposition. The nearly complete matrix loss in the Promyalina beds gives grounds to interpret them as proximal, very shallow neritic, local storm concentration layers. A slightly deeper palaeoenvironmentmay be inferred for the lower Eumorphotis beds due to the interfingering of the coquinas with bivalve-poor skeletal biogenic sediment containing a diverse and in part deeper marine fauna. This explains the incompletely removed micritic matrix of the bivalve shell concentrations, which are interpreted as proximal tempestites.

Storm-induced event beds are missing in the upper Eumorphotis beds and are conclusive of a more offshore position of the facies in increased water depth well in agreement with their pelagic influenced fauna (ammonoids, platform conodonts).

The significance of the Griesbachian bivalve beds.

Bivalve beds of Griesbachian age occur in a variety of environmental settings. In the basal Werfen Formation of the Dolostone, northern Italy, two main types of bivalve beds are encountered. Firstly, thick (0.5 to 1 m), matrix-supported, sharp-based slump units occur in the basal Mazzin Member during the early stages of transgression [START_REF] Wignall | Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction[END_REF]. Secondly, much thinner (15 cm to <1 cm) bioclastic tempestites, which characterize the later stages of transgression and contain a fauna of bivalves (dominated by Claraia), microgastropods, conodonts and ophiuroid ossicles.

The background sediment is a thinly bedded to laminated grey lime mudstone that was deposited under low-oxygen conditions in a distal ramp setting (e.g. [START_REF] Wignall | Oceanic anoxia and the end-Permian mass extinction[END_REF][START_REF] Twitchett | Paleoenvironments and faunal recovery after the end-Permian mass extinction[END_REF].

Bivalve beds from the Takashiho seamount, which represents a very different, ocean island type setting, were described by [START_REF] Kanmera | Permian-Triassic relationships and faunal changes in the eastern Tethys[END_REF] and more recently by [START_REF] Sano | Lowermost Triassic (Griesbachian) Microbial Bindstonecementstone Facies[END_REF] with new biochronological data. Regarding the basal Triassic as in the Wasit block, the lithofacies comprise massive, up to 4m thick, gastropod and bivalve accumulations, of Griesbachian to Dienerian age, containing Eumorphotis and pteriid species. The great thickness also suggests a multi-event composite origin, similar to the Wasit shell beds. One slight difference is that a gastropod biofacies appears near the base (parvus Zone) of the Takashiho succession, while a bivalve biofacies occurs higher up.

One of the most interesting aspects of the Wasit shell beds is the very high diversity of benthic taxa (at least, in the Eumorphotis beds). The Wasit bivalve beds were clearly deposited under normally oxygenated conditions, unlike the vast majority of other Griesbachian assemblages. [START_REF] Wignall | Extent, duration and nature of the Permian-Triassic superanoxic event[END_REF] concluded in their review that the shelf settings of the southern (Peri-Gondwanan) margin of Tethys (which includes present-day Oman) were the only parts of the ocean free of benthic oxygen restriction in the Early-mid Griesbachian. In this region, the deepest slope and basinal settings became oxygen restricted by the Early Griesbachian, whereas the shallower shelf settings were oxygenated until Late Griesbachian or Early Dienerian times [START_REF] Wignall | Extent, duration and nature of the Permian-Triassic superanoxic event[END_REF]. The reason for this is unclear, although it was presumably controlled by regional ocean circulation patterns.

The Wasit bivalve beds show us that when oceanic conditions (e.g. oxygenation, productivity) are favourable, a much greater diversity of taxa will be present than would otherwise be the case, as it is in Griesbachian Tethyan carbonate platforms (c.f. [START_REF] Baud | Late Permian and Early Triassic evolution of the Northern Indian margin: carbon isotope and sequence stratigraphy[END_REF]. [START_REF] Beatty | Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: A case for a shallow-marine habitable zone[END_REF] also showed an oxygenated "habitable zone" in shoreface siliciclastic succession on the northwestern margin of Pangea. This supports the hypothesis that the apparently slow faunal recovery after the P-Tr event was due to the long-lived and widespread unfavourable environmental conditions at least in Griesbachian (c.f. Erwin, 1993, p. 263;[START_REF] Twitchett | Paleoenvironments and faunal recovery after the end-Permian mass extinction[END_REF]. Moreover, despite the lack of evidence of anoxia, there is no Permian fauna in the basal Griesbachian (Parvus Zone), but opportunistic postextinction fauna. This challenges the hypothesis of anoxia on-set as the kill mechanism (Twichtett et al. 2003).

In Summary.

The Wasit block is a unique geological archive that contains evidence of an extraordinarily rapid faunal recovery after the P-Tr crisis with, at the same time, an increase of δ 13 C carb isotope values from +1.2‰ in the basal Triassic transgression to 3.1‰ at the end of the Griesbachian (signifying probably an increase in productivity?).

It contains also the most diverse Griesbachian assemblage known to date, which has a community structure not normally recorded in pre-Spathian (Early Triassic) rocks and which was living under well oxygenated conditions. This shows us that where conditions of oxygenation and productivity are favourable, a diverse fauna will be recorded. The impoverished faunas and the apparently slow recovery of the Early Triassic marine ecosystem are therefore the result of widespread unfavourable environmental conditions.

Introduction

The Oman Mountains expose the Middle Permian to Lower Triassic Buday'ah section of oceanic sediments belonging to the south margin of the Tethys. Located in the northeast part of the Hawasina Window (fig. 52, Ibri map, Béchennec et al., 1992c), this locality is among the very few places of real Tethyan Permian radiolarites. With previous data, this locality has been described in previous field guide-books (Baud et al., 2001b, Richoz et al, 2005) and by S. [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF] Compared with other Hamrat Duru successions (Wadi Wasit, Nakhl, Rustaq) the Buday'ah locality (Fig. 53) is the most distal and probably deepest Permian depositional sequence of the basin as it has, above the basal red limestones only minor carbonatic influx and misses any shallow water debris input (reefal slump blocks, calciturbites) known from the other sections. In this sense this lithological unit differs considerably from the Al Jil Formation as defined by Béchennec, 1987, Figure 52: Geological map of the area (from Ibri map, Béchennec et al., 1992c). at the foot of Djebel Misht and around Taw in the central west Oman Mountains (Seeb map area) and partly redefined in the same area during 1:250,000-scale mapping (Béchennec et al., 1992a). It is why we are proposing here the name of Buday'ah Formation that is informally subdivided in 8 minor litho-units numbered from 1 to 8 (Fig. 54).

The truncated substratum of the sedimentary succession consists of pillow basalts. These basaltic pillow lavas forms two hills, one roughly 1 km across and the other several kilometres across. The basal volcanic sequence is composed of dark-green to brown, slightly amygdaloidal, pillow basalt in which the pillows range in diametre from 20 cm to 1 m and have aphyric cores and rims which locally contain plagioclase phenocrysts.

According to Maury in Baud et al. (2001b) and Maury et al. (2003), the basalt has microlitic texture, is generally spherulitic and locally porphyritic; it is composed of plagioclase mainly as sheafs of skeletal microlites but also in spherulites and in places as phenocrysts, rare clinopyroxene as fine prisms and phenocrysts replaced by carbonate and oxides, Fe-Ti oxides occurring interstitially and as elongate skeletal crystals, and carbonate in small amygdales. Data on rare earth elements (REE), Th and high field strength elements on two basalt samples at Buday'ah show transitional and enriched MORB signatures (Maury et al., 2003, Lapierre et al. 2004); such association erupted in the Hawasina basin far away from the continent, from truly oceanic settings, but located near hot spots (Lapierre et al. 2004).

In different parts of the pillow lava succession, inter-pillow cavities are filled up with red limemudstone yielding conodonts, particularly near the top. Figure 54: Stratigraphy of the Buday'ah composite section with the new conodont finding by Alda Nicora and Charles Henderson (except of H. parvus and N. dieneri reported in Richoz, 2006).

Stop 1: stratigraphy of the lower Buday'ah Formation

Details of the outcropping area are shown in the Google Earth oblique view with the situation of the three stops of the day (Fig. 55).

From the parking place we will move to stop 1 (Fig. 55) that is situated just on the other side of the hill shown on photo Fig. 53. We will look first at the spectacular pillow lava of the Unit 1 and at the red nodular cephalopod limestones that filled the irregular upper surface of the pillows (Fig. 56). The following Unit 2, dm thick red ammonoid-limestones (with lateral variation of thickness 0.2m-1.2m), are typical condensed cephalopod pelagic limestones known in the Triassic of Eastern Alps as the Hallstatt limestone.

Figure 56: Overturned section of the basal part of the Buday'ah Formation with the contact between units 1, 2 and 3. Arrow: lenses of limestone between pillows

Thin coatings of black manganese oxide minerals are lining the shells (Fig. 57a). When outcropping there is a 0.5 to 2m thick interval of siliceous shale and mm bedded radiolarites between the red limestones and the dm thick bedded red radiolarites (Fig. 57b)

The red radiolarian cherts (F. Cordey,Figs. 59,60).

The next unit 3 of the Buday'ah Formation consists of a succession of thin nodular brownish mudstone, siliceous shale and red radiolarian cherts (Fig. 61) resting conformably on the red limestone and laterally directly on the basalt and was dated as Wordian on the basis of radiolarians (Béchennec, 1987;[START_REF] De Wever | Découverte de radiolaires permiennes au bord Sud de la Tethys (nappes d'Hawasina[END_REF]. A separate overturned section B directly in contact with the pillow lava without limestones is illustrated in Fig. 59 (Cordey's section). Cordey (fig. 17 in Baud et al., 2001b). This section was sampled earlier by F. [START_REF] Cordey | Permian-Triassic deep water sediments of the Wadi Wasit revisited[END_REF] and consists of the following lithologies (Fig. 59): red shales and red chert beds (2 m), yellow shales and black siliceous mudstone (2 m), yellow radiolarites (0.5 m), red radiolarites (2 m), yellowish shales and chert beds (2 m). In previous publications, the radiolarians were assigned an age range from Wordian to Capitanian on the basis of 9 associations correlated with Parafollicucullus fusiformis -Parafollicucullus globosus and Follicucullus ventricosus -Ishigaconus scholasticus assemblage zones (Fig. 59). However, according to the fact that the radiolarites (Unit 3) overlie the level with C. postbitteri hongshuiensis of latest Capitanian, the radiolarian assemblage zones must be latest Capitanian to Wuchiapingian in age. The extinction event is recorded at the top of the radiolarites. Some key radiolarians are illustrated below (Fig. 60, F. Cordey) According to the δ 13 C org curve (Fig. 63), we consider that the first shift at 6.1m can be correlated with the shift found at the Permian-Triassic Boundary as it immediately overlies the single occurrence of the conodont C. zhejiangensis(?).The second shift at 9.5m is just above the finding of H. parvus reported by S. [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. Geochemical data across the Buday'ah section are shown in Fig. 64 (Units 1 through 5) are relatively consistent with no significant variation in geochemical parametres. The contact between units 5 and 6 shows slight enriched redox sensitive trace elements, increases total organic carbon content (TOC) and the highest d13C organic values in the section. The δ 13 C org values drop at the extinction boundary (base of the first carbonate), associated with a second spike in redox sensitive elements. The next Unit 6, about 11m thick (Fig. 65), start with a micritic grey limestone bed, 20cm thick (microfacies -a bioturbated and laminated lime mudstone, Fig. 65 B) followed by 80cm of light calcareous shales. The following platy limestones with calcispheres contain a badly preserved conodont Hindeodus cf. parvus and 3m higher N. dieneri [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]. The main part of this unit consists of alternating yellow marly shales, cm thick platy limestones and thicker (dm) marly limestones (Fig. 65A). Bedding and turbidite facies are shown in Fig. 65B and65C.

Only laterally we can observe the contact with the next unit This facies has some similarities with the basal Triassic limestones of Wadi Maqam (we will look at and compare next February 26 stop 2).

Plate 2: 1, 2, Novispathodus waageni waageni (waageni sensu lato) from base of unit 7. No 3, 4, N. spitiensis from middle of unit 7.

Introduction

The Oman Mountains expose the Middle Permian to Cretaceous Sumeini group belonging to the south margin of the Tethys. The Sumeini Group, as defined by Glennie et al. (1974) is represented by a thick sequence (about 2500 m) of slope carbonate deposits and crops out (Searle et al., 1990;[START_REF] Le Métour | Explanatory notes to the Geological map of Burayimi[END_REF] near the border between Oman and the United Arab Emirates (geol. map, Fig. 71). A comprehensive sedimentologic study of the Sumeini Group has been carried out by [START_REF] Watts | Triassic carbonate submarine fans bounding the Arabian carbonate margin[END_REF]Watts ( , 1990) ) and by [START_REF] Watts | Sumeini group, Oman. Evolution of a Mesozoic carbonate slope on a south Tethyan continental margin[END_REF]. Detailed mapping and stratigraphical studies were done by Le Métour et al, (1991), Béchennec et al., (1993), [START_REF] Pillevuit | Les Blocs Exotiques du Sultanat d'Oman: Evolution paléogéographique d'une marge passive flexurale[END_REF], Baud et al., (2001), [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF] and Richoz et al, (2005).

Figure 71: Geological map of the Sumeini area (Map Buraymi, Le Metour et al., 1992).

The Sumeini Group tectonically overlies autochthonous Eocene limestones and is overlain by sediments from the Hawasina nappes. This group is also described as para-autochthonous with a 5 to 30 km displacement in regards of the "autochthonous". The Sumeini Group includes 4 formations: Maqam Richoz et al., 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]).

The base consists of thin-bedded platy dolostone, corresponding to thin-bedded lime mudstone, NW of the dolomitization front. These platy dolostone display numerous large-sized slumps. The thin Lower Smithian (7m) is characterized by vermicular limestones. The incredibly thick Middle and Upper Smithian sediments mark the onset on the base of slope of a basin in which the carbonate submarine fan deposits developed This very thick unit consists essentially of platy limestones, calcarenites and calcirudites. It comprises mainly grey-beige calcilutite, laminated and flaggy, interbedded with sparse beds of fine-grained calcarenite in cm beds. Channelizing beds of intraformational calcirudite are also part in this succession, which constitutes the great part of the outcrops of the Sumeini Group. A detailed sedimentologic survey and depositional model of carbonate submarine fans have been presented and discussed by [START_REF] Watts | Triassic carbonate submarine fans bounding the Arabian carbonate margin[END_REF]. Carbonate sedimentation of the C Member ended abruptly in the Early Spathian.

The overlying Member D is characterized by deposition of 10m brown shale with rare mm-thick sandstone and marls beds, follow by a 75m thick sequence of green terrigenous siltstone. There are no age diagnostic fossils (Spathian-Anisian?).

The Member E, around 90m thick, comprises mainly radiolarian chert, calcarenite and calcirudite. This succession is Ladinian to Carnian in age dated by radiolarians, bivalves, and foraminifers.

A metric channel bed of calcirudite with a calcarenitic matrix crops out at the base, containing elongated clasts 5-30cm in diametre of grey micritic limestone. Above, a 20 m thick succession consists essentially of grey-brown radiolarian chert in regular cm beds with interbeds of clayey shale and in places, fine-grained calcarenite with horizons of accumulations of pelagic bivalve shells of the genus Daonella sp. The top 2 m of this siliceous succession are made up of red radiolarian chert, which is overlain by a carbonate succession approximately 35 m thick with abundant brown patina cherts. Above, an irregular interval, 3-6 m thick, is made up of poorly defined metre-thick beds of matrix-supported calcirudite and coarse-grained calcarenite with subangular and tabular clasts of grey micritic limestone ranging from 5 to 40 cm in diametre. This interval is overlain by a 20 m-thick succession made up of light grey micritic limestone with horizons of accumulations of pelagic bivalve shells, and of fine-grained, dark grey calcarenite in beds 20-60 cm thick at the base and 1-15 cm thick elsewhere. In places, the intraformational calcirudite contains slump-structures. At the top of the member E is a channeling interval 1-8 m thick of calcirudite with a reduced or absent matrix, containing reworked sub-angular clasts of micritic limestone, calcarenite, and reef limestone

The Member F (Carnian-Norian) is made of calcirudites and calcarenites with, in addition to the reworked lithoclasts of limestone, in places chert and of brownish shales. It also contains a biota of Late Triassic age including debris of algae, crinoids, pelagic bivalve shells and benthic foraminifera: Trochammina sp., Endothyra sp. or Endothyranella sp., duostominids, lituolids (Béchennec et al., 1993b). The discovery in this upper carbonate succession of an Aulacoceras sp. and Heterastidium sp. allowed correlations with the Early and Late Norian (Baud et al., 2001).

General overview of the carbon isotope stratigraphy in Wadi Maqam (by S. Richoz). The present δ 13 C carb isotopic curve (Fig. 75) is a compilation of data from Richoz et al. (2005) for top Member B and Member C and from [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF] for values on Member A and B. No covariance in the δ 18 O-δ 13 C carb plot and good correlation with time equivalent sections allow us to consider this isotopic curve as primary. Isotopic values were measured in some beds from Member A, both side of the dolomitization front. δ13Ccarb values show identical values, whereas the δ18Ocarb values are strongly affected (Richoz unpublished data).

The highest δ 13 C carb values (+5.5‰) are recorded in members A and B and correspond to the high Middle -Late Permian values recorded in the Tethys (Baud et al., 1989[START_REF] Twitchett | Rapid marine recovery after the end -Permian mass -extinction event in the absence of marine anoxia[END_REF]). ). This short peak is believed to be equivalent to the one at the Smithian-Spathian boundary in some other sections [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF][START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], Horacek et al 2007[START_REF] Isozaki | Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction[END_REF]. δ 18 O curves have values from -3.2‰ to -4.0‰ for Member A and B, shifting at the beginning of Member C down to -5.2‰ and then staying stable between -5.4‰ and -6.9‰. If this shift corresponds to the Permian-Triassic boundary, it corresponds also to the dolomitization front and is certainly affected. Climbing the gully, we will see the onset of the cherty dolostone and its development of dm-sized bed of cherty dolostone and cherts rich in sponge spicules (Fig. 77). Due to the instability of the slope deposits at the end of the Permian, the Permian-Triassic transition record is very variable from one outcrop to the others. In this guidebook we will illustrate three types of Permian-Triassic transition outcrops and two different types will be shown during the excursion (stops 1 and 2). The model of deposition is that of a scalloped margin. A good record is given on the right slope of the gully (Fig. 78) with a large channel in the cherty dolostone and the onlap of the uppermost Permian and basal Triassic units The upper part of the Unit B4 is mainly constituted of cherty dolomudstone rich in sponge spicules and with increasing yellow to violet shale intercalations section upwards. Some beds show concentrations of bryozoans or crinoids, slumping and intraformational breccias are also frequently observed.

The cherty dolostone B4 is topped by a silicified hard ground indicating a submarine break of unknown duration (section and view, Fig. 79). An outcrop view of a lateral Permian Triassic transition section (Benoit' section) is given in Fig. 80a. Richoz et al., 2005, modified).

The upper part of Member B (Fig. 82), above the thick hard ground at the top of the cherty dolostone (B 4), has two units B5 and B6. The Unit B5, between 1 and 3m thick consits of brown weathered dolomitic limestones with rare rounded cherts.

The Unit B6, 6-7m thick is made of 5-15cm thick grey limestone beds having some red shaly intercalation. Conodonts H. typicalis, Gondolellids and Clarkina cf. zhangi (det. L. Krystyn and C. Henderson, Plate 3/1-2, p. 83) at the base gave an Upper Changhsingian age to this Unit (Fig. 82). The Member C starts with 3m of red shales and siltites, one 10cm-thick calcarenite bed and 20cm of yellow shale (Fig. 84). This succession is overlain by platy lime and then dolo-mudstone more or less marly comprising several slump levels. The first lime mudstone bed gave the conodont H. parvus, H. postparvus is present in stromatolites levels, 9m above the red shales is I. isarcica, index of the second Griesbachian conodont zone and 16m above the Griesbachian conodont H. parvus (Fig. 84).

Ichnotaxa

In sharp contrast to the well-bioturbated Member B, the overlying basal metres of Member C (C1b in Fig. 84) are well laminated (A, fig. 85) with no evidence of bioturbation. This dramatic loss of the burrowing infauna indicates the appearance of oxygen-poor waters. A similar loss of bioturbation is recorded in many sections worldwide [START_REF] Wignall | Oceanic anoxia and the end-Permian mass extinction[END_REF][START_REF] Twitchett | Incompleteness of the Permian-Triassic fossil record: A consequence of productivity decline?[END_REF][START_REF] Wignall | Extent, duration and nature of the Permian-Triassic superanoxic event[END_REF]. There is a dramatic decrease in the size of marine animals, and their associated trace fossils, through the Permian-Triassic extinction interval (e.g. [START_REF] Twitchett | Paleoenvironments and faunal recovery after the end-Permian mass extinction[END_REF][START_REF] Twitchett | Trace fossils in the aftermath of mass extinction events[END_REF]. This "Lilliput effect" (Twitchett, 2005) is observed at many, if not all, extinction crises and is probably caused by environmental stress such as the loss of primary productivity and decreased oxygenation. Globally, Rhizocorallium and Thalassinoides do not return to its pre-extinction sizes (diametres in excess of 20mm) in any depositional setting until the Anisian (RJT, unpublished data). Similar size changes in these ichnotaxa are also recorded through the Triassic-Jurassic extinction-recovery interval [START_REF] Twitchett | Trace fossils in the aftermath of mass extinction events[END_REF]. It is interesting to note that laterally stromatolite levels are recognizable as shown by the Fig. 86. The last one (2,1‰ in amplitude) occurs between the last limestone bed of Member B and the first platy limestone of Member C above the shale interval. Its sharp design could represent a gap, difficult to estimate whithout isotopic data from the first shale interval. A small peak of 1‰ amplitude occurs just below the FAD of H. parvus. The increase of the isotopic values starts in the O. tibeticum ammonoid zone and I. isarcica zone as in other well dated sections in Oman (Wasit block, [START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF][START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], Iran and Turkey [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF][START_REF] Richoz | Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution[END_REF], Salt Range in Pakistan [START_REF] Baud | Late Permian and Early Triassic evolution of the Northern Indian margin: carbon isotope and sequence stratigraphy[END_REF][START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF] and south China [START_REF] Tong | Lower Triassic inorganic Carbon isotope excursion in Chaohu, Anhui Province, China[END_REF][START_REF] Krull | Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF]. A double peak around the Induan Olenekian Boundary is also known in other Oman section [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], in Iran (Horacek et al., 2007a), Northern Italy (Horacek et al., 2007b), Spiti [START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], Richoz et al., 2007), south China [START_REF] Tong | Lower Triassic inorganic Carbon isotope excursion in Chaohu, Anhui Province, China[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF], Galfetti et al., 2007[START_REF] Zuo | Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China[END_REF] and Japan (Horacek et al., (2008). δ13Ccarb values decrease rapidly, still in the N. waageni zone, to around 0‰ and then progressively to-2‰. Most of the Member C, until the last 20m, has negative values between -0.5‰ and -2.5‰. This shape with homogenous very negative values is also known in Turkey [START_REF] Twitchett | Rapid marine recovery after the end -Permian mass -extinction event in the absence of marine anoxia[END_REF]), Salt Range and Spiti [START_REF] Baud | Late Permian and Early Triassic evolution of the Northern Indian margin: carbon isotope and sequence stratigraphy[END_REF][START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], Northern Italy (Horacek et al., 2007b), south China [START_REF] Tong | Lower Triassic inorganic Carbon isotope excursion in Chaohu, Anhui Province, China[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF] and Japan (Horacek et al. 2008).

Ichnotaxa at stop 3 (R. Twitchett in Richoz et al., 2005).

Although the lower part of Member C is almost entirely laminated, occasional horizons of bioturbation are present. The bioturbation is only weakly developed, and primary lamination may be only slightly disturbed (ii2) or more disturbed, resulting in slightly wavy bedding (ii3).

Ichnodiversity is low and burrow diametres are much reduced compared to the underlying Member B. Common burrows are subhorizontal and unbranched Planolites and Palaeophycus, with burrow diametres typically between 2 and 6 mm (mean = 4.3). Rarer mm-sized Arenicolites and ?Megagrapton are also present (Fig. 90). These bioturbated intervals presumably indicate that, occasionally, oxygen levels increased sufficiently to allow a limited benthos to colonize the substrate. Similar ichnofacies are recorded in the Induan worldwide [START_REF] Wignall | Oceanic anoxia and the end-Permian mass extinction[END_REF][START_REF] Twitchett | Trace fossils in the aftermath of mass extinction events[END_REF]. It is interesting to note that Chondrites, thought by many to indicate dysaerobic environments in the Mesozoic (e.g. [START_REF] Bromley | Chondrites: a trace fossil indicator of anoxia in sediments[END_REF], is not recorded here, nor at any other Induan section Higher up in Member C, the calcirudites, commonly clast-supported (edge-wise conglomerates), are characterized by tabular clasts representing the sub-in situ reworking of the laminated, platy calcilutite. In places, the calcarenite becomes predominant and interbedded with calcirudite in metric beds. Some levels of the calcarenite contains reworked tangential oolitic limestone clasts and a sparse biota of silicisponge spicules, mollusk debris and benthic foraminifera Trochammina sp. We note also the presence of typical Lower Triassic Cyclogyra and Earlandia type foraminifera found about 160m above the base (unit C4) Above the last platy calcilutite, there are 10m of olive shale and with minor tectonic discordance 5m of yellow-orange marly limestone, well visible in the landscape ( above C17 in Fig. 92). This orange sequence, that can be laterally tectonically truncated, is made of 2m of platy laminated marly limestone, a 1m thick channelized turbiditic breccia with numerous crinoids and conodonts Icriospathodus collinsoni, Neogondollela elongata, Neospathodus n.sp. (det. L. Krystyn), index of the second zone of the Spathian. This turbdite is overlain by 50cm of marly orange limestone and 1.5m of grey-orange limestone.

The upper (Olenekian) part of Member C (Fig. 92) records a gradual change in palaeo-oxygen levels as the "Superanoxic Event" begins to wane and the substrate becomes oxygenated for longer periods than it was during the Induan. However, the levels of bioturbation recorded in Upper Permian Member B (i.e. ii4) are never recorded in Member C, indicating suboptimal environments for at least the duration of the Early Triassic. Alternating packages of unbioturbated (ii1) and bioturbated (ii2-3) strata are typically 5-20m thick. Thus, at times the substrate was anoxic, whereas at other times it was dysoxic with slightly elevated, fluctuating, oxygen levels. Details of the Carbon isotope stratigraphy at stop 4 (by S. Richoz, Fig. 95). Around 20m below the top of Member C, carbon isotope values are around -1.6‰ and decrease to -2.5‰ in the last metres of platy limestones. Values shift rapidly to less negative values values (-0,1‰) in the base of the marly orange limestone interval ending Member C, before decreasing again at -1,5‰ just below the breccias niveau and to reach a short lived strongly positive peak (2,1‰) just above it. At the top of this orange interval and in the some marly beds at the base of Member D, values are again quite negative (around -2.0‰ and -2.5‰). This positive peak occurs some centimetres below the conodont I. collinsoni, index of the second zone of the Spathian (Fig. 95). This short strong peak is believed to be equivalent to the one around the Smithian-Spathian boundary in some other sections in Oman and Turkey [START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF], Salt Range and Spiti (Baud et 

  He passed away on 17 June 2008 after a threemonth battle against cancer in Orsay, France. His death interrupted a Professor's lifetime of passionate geological researches and fieldwork. Born on 8 October 1940 in Marseille, France, he started Geology at Paris VI University in 1966, got an assistant position in 1969 at Paris XI University (Orsay) and started in Brunn's laboratory a PhD thesis (French "Thèse d'Etat") on "The anatomy of the Antalya nappes in SW Turkey". Very early in the 1970s Jean worked on the Permian and Triassic stratigraphy and took part in the IGCP project No 4 "Triassic of the Tethys realm" leaded by Prof. Zapfe from Vienna. In 1980 he became full Member of the Subcommission on Triassic Stratigraphy (STS) and in 1982 a Member of the Working Group on the Permian-Triassic Boundary.
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 1 Fig. 1: Geological sketch of the Oman Mountains.

Figure 3 :

 3 Figure 3: Geological sketch 3D of the Neotethys break-up and the onset of the Arabian passive margin in Middle Guadalupian time (modified from Pillevuit 1993).

1

 1 From the Permian-Triassic transition to the basal Triassic (Fig.4). At the end of the Permian, regressive conditions up locally to emersion (?) are recorded as well on the Arabian carbonate platform (Djebel Akhdar, Saih Hatat, Musandam). On the slope of the continental margin, we observe a shallowing in the Sumeini unit deposits. Shallow tidal influenced carbonate platform are the main component of the Induan dolomitized deposit in the Djebel Akhdar (Unit C1-C4 of the Saiq Formation) that is now dated by conodonts (description this vol.). During the Dienerian, part of the margin is affected by renewed extensional regime, tilting and drowning resulting in erosive deposition and accumulation of carbonate breccia (Unit C2 of the Saiq Formation) followed in the Djebel Akhdar by high energy, partly oolitic dolomitized shallow water deposits, Smithian in age (Unit C3) and renewed breccias (Unit C4). The Saiq-Mahil transition is probably still in Dienerian (Chemiostratigraphical correlations,[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]).

Figure 4 :

 4 Figure 4: Recorded sedimentation and gaps of the visited localities (+Baid tilted block). Shallow water deposits in black and open to deep marine deposits in red.
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Figure 7 :

 7 Figure 7: Google Map showing starting point of excursion at GUtech (red dot) and study area at Wadi Aday (red rectangle).

Figure 8 :

 8 Figure 8: Google satellite map of the study area at Wadi Aday, Saih Hatat.

Figure 10 :

 10 Figure 10: Composite section of the study area (from Weidlich & Bernecker submitted).

Figure 11 :

 11 Figure 11: Outcrop appearance of Permian-Triassic sections near Wadi Aday. (1) Photomosaic covering sections 3 and 4. Dip of bedding planes of Lopingian carbonates varies from block to block; red line highlights the PTB. (2) Early Triassic sequence exposed at section 3 above the (3) Field photograph of section 1.

Figure 12 :

 12 Figure 12: Changhsingian heterozoan facies below the Permian-Triassic boundary. (1) Polished slab of bryozoan-crinoid floatstone. Note Fe-oxid stain. (2) -(3) Photomicrograph of packstone matrix of bryozoan-crinoid floatstone with framboidal pyrite. (4) Sagital axial section of smaller foraminifera Colaniella nana, indicative of a Changhsingian age.

Figure 13 :

 13 Figure 13: Changhsingian heterozoan facies, PTB and basal Early Triassic clastic facies association, section 1. (1) Permian-Triassic discontinuity surface and unfossiliferous siliciclastic mudstone with nodules of Fe and Mn oxids (stippled white line) overlain by fine-grained red siliciclastics. (2) Unfossiliferous siliciclastic mudstone with nodules of Fe and Mn oxids fills the depressions and fissures of the unconformity. Arrows highlight sediment-filled fractures. (3) The Lopingian dolomitized carbonate below PTB contains bryozoans (centre of photograph).

Figure 14 :

 14 Figure 14: Close-up field photographs illustrating from base to top the reestablishment of Early Triassic carbonate platform facies, section 3. (1) Field photograph of mixed carbonate-silicilastic facies association with upward increasing carbonate content. Slumped package of sediments indicates synsedimentary tectonic activity. This unit contains thin stromatolites. Size of hammer is 32 cm. (2) Field impression of the bioclastic carbonate facies association with grain-and mudsupport fabrics. Note light grey discontinuity surfaces (black arrows) separating amalgamated bioclastic pack-and grainstones. Inserted close-up illustrates a discontinuity. Diametre of coin is 2.5 cm. (3) Field photograph of bedded dolomitized muddy facies association with microbialite. (4) Upper part of the bedded dolomitized muddy facies association with microbialite. Note slumping structure. Coin is 2.5 cm in diametre.

Figure 15 :

 15 Figure 15: Representative thin sections of Early Triassic bioturbated bioclastic carbonate platform facies. (1) Overview of thin section illustrating the bioturbation of mircogastropod wackestone and bioclastic pack-/grainstone with Fe-stained crinoid ossicles of grainstone. The two sediment types represent different hydrodynamic regimes and depositional environments. (2) Close-up view of bioturbated sediment. Bioclastic pack-to grainstone contains dasycladacean algae, shell debris and cortoids (recrystallized bioclasts with thin micrite envelope). Boundary between the two types of sediments is sharp but not erosive. (3) Close-up view of internally structureless fecal pellets. (4) Photomicrograph of wackestone with microgastropods. (5) Photomicrograph view of microboring affecting the lithified biogenic sediment. (6) Close-up view of corrosive discontinuity surface. See text for details.

Figure 16 :

 16 Figure 16: Representative thin section of Early Triassic microbialite, sample 292x. See Fig. 14 for field impression. (1) -(2) Overview of thin section under PPL and XPL. See text for details. 3 Close-up-view of Stromatactis cavity. Note sediment infill of cavity and pendant zoned planar-e dolostone rhombohedra.

Figure 17 :

 17 Figure 17: Close-up field photographs of Early Triassic transect. (1) Top of bedded dolomitized muddy facies association. (2) Yellowish dolomitized mudstone. (3) View on bedding plane with Thalassinoides and Planolites-like trace fossils, top of bedded dolomitized mudstone. (4) Slumping structure of black calcite, thinly bedded facies association with yellowish silty dolostone and black calcite. (5) Conglomerate, thinly bedded facies association with yellowish silty dolostone and black calcite.

Figure 18 :

 18 Figure 18: Close-up views of bedded dolomitized mudstone with trace fossils and microbialites (facies association C) and thinly bedded yellowish silty dolostone and black calcite (facies association D). (1) Photomicrograph (plane-polarized light) of intercalations of dolostone with silty dolostone, facies association C. Abundant micro-faults of dolomitized mudstone indicate rapid synsedimentary lithification of mudstone prior to tectonic brecciation. (2) Polished slab of spreitenbau (trace fossil). (3) -(4) Paired photomicrographs (plane-polarized and cross-polarized light) synsedimentary seafloor cement. (5) -(6) Paired photomicrographs (plane-polarized and cross-polarized light) synsedimentary seafloor cement.

February 23 ,

 23 2010 -The Permian-Triassic transition on the Saiq Plateau(A.Baud, B. Beauchamp, C. Henderson, S. Richoz).Routing (Fig.19): Starting at 8 p.m., February 23, from Hotel Ibis (Muscat) we will move to Birkat al Mawz following the Muscat-Nizwa highway. From Birkat we will take the scenic road climbing to the village of Saiq on the Saiq plateau at about 2000m in elevation. North of the village we will take a side road in direction of the village of Hajirate and stop in a quarry on the left (Fig.6left).

Figure 19 :

 19 Figure 19: right, Google Map with road itinerary in red; left, Google Earth picture of the outcrops area, with in red, the road itinerary; -red bar, place of the 3 visited sections, below the abandoned quarry (Quarry coordinates: N23°10' 00'' E 57° 39' 50'').

Figure 20 :

 20 Figure 20: Panorama of the Saiq plateau, corresponding to the map (Fig. 6 left) with age of the Permian-Triassic units. Vertical bar near the Quarry =PTB examined section with the 3 stops of the day (car parking in the basal Mahil Formation, coordinates: N23°10' 00'' E 57° 39' 50'').

  described the Saiq and Mahil Formations in the metamorphic Saih Hatat and subdivided the Saiq in 4 Supersequences P1 to P4 and the Mahil in 3 Supersequences Tr1 to Tr 3. The P2 to P4 Supersequences are more or less corresponding our transgressive -regressive cycles A to C. According to Al-Husseini (2006), the lower Member of the subsurface Khuff Formation in Oman (P 17 to P 19 of Osterloff et al., 2004) is correlated with our Unit A2 and A3. The middle Khuff Member (P 20 to P 40 of Osterloff et al., 2004) corresponds to our A4 and B1-4 Units. The upper Khuff Member (Tr 10 to Tr 20 of Osterloff et al., 2004) correlates with our cycle C (upper Saiq), and must be basal Triassic in age. The base of the Sudair Formation is correlated with the base of the Mahil Formation (Fig. 23).Taking into consideration the data of[START_REF] Insalaco | Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore fars, Iran: depositional system, biostratigraphy and stratigraphic architecture[END_REF] in the Zagros,[START_REF] Al-Husseini | [END_REF] suggested the following correlations: the Lower Dalan Member corresponds to our Unit A2 and A3, the Nar Member to Saiq A4, the upper Dalan Member to Saiq B and the Kagan Formation to SaiqC (see Fig.23).

Figure 23 :

 23 Figure 23: Correlation chart modified and completed from Al Husseini 2006. Data from: 1-[START_REF] Insalaco | Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore fars, Iran: depositional system, biostratigraphy and stratigraphic architecture[END_REF], 2-4 Al Husseini 2006, 5-Kohrer et al., 2009, 6-our data, 7-Le Metour, 1988, 8-Weidlich & Bernecker, 2003 and this vol. 

Figure 24 :

 24 Figure 24: bed surface with shells of Alatoconchida sp.

Figure 25 :

 25 Figure 25: Close up view of the unit B4b with the Permian-Triassic Transition (coordinates: N 23°06' 00'' E 57° 39' 57'').

Figure 26b :

 26b Figure 26b: The Carbon isotope profile of the upper Saiq Formation on the Saiq Plateau section (S. Richoz).

Figure 27 :

 27 Figure 27: Close view of the erosional surface E2 with (right up) the composite, heteromorph breccia of the base of the C2 unit

Figure 29 :

 29 Figure 29: Microfacies at the Permian-Triassic transition. White bar scale is 0.5mm. 1-dolo-bioclastic packstone with bryozoan (in the middle); 2-Dolo-packstone with Rugosa corals of Wentzelella-type, top of correlative unit B4a of Wadi Sathan; 3-dolo-peloid wackestonepackstone; 4-dolo-intraclastic packstone; 5-heteromorph dolo-intraclastic packstone. E1= Extinction Event, E2= Erosional surface

Figure 30 :

 30 Figure 30: Facies of Unit C3; a-bioclastic dolopackstone with micro-bivalves (arrows) and intraclasts, b-Dolomitized oolitic grainstone with intraclasts. Scale in mm on the left. The top of C3b Unit is marked by an irregular, early-lithified surface of hardground type (E3, Figs 28 and 32) with pockets filled by clasts from the overlying dolobreccia, indicating an interruption in sedimentation, possibly with subaerial exposure. The unit C4 is only 7 m thick and consists of angular lithoclasts dolorudstone overlain by 50cm of thin bedded black dolomudstone. Large mud cracks characterize the upper surface (E4 in Figs. 28 and 32).It is interesting to note that rapid early-marine cementation appears widespread in the unit C1, C2 and C4 of the Saiq Formation (unit C, Lower Triassic). It is partly responsible for the abundance of lithoclasts breccia and flat pebbles in this stratigraphic interval and also in the lower part of the Mahil Formation[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF] and the record of hard grounds or cemented exposure surfaces as shown on the Figs.31, right and 32 (E4).

Figure 31

 31 Figure 31 left: The multicoloured clay mudstones in the basal Mahil Formation. Right: Hardground surface

Figure 33 :

 33 Figure 33:The basal Mahil Formation outcrops well in an abandoned quarry above the Saiq village (situation in Figs. 19, 20 and 21).

Figure 36 :

 36 Figure 36: Geological map of the Wadi Wasit area (from Béchenec et al., 1992b). 1-Wadi Wasit section (stop1); 2-Wasit block (stop 2).

Figure 38 :Stop 1 :

 381 Figure 38: Stratigraphic sketch of the upper Al Jil Formation in the Wadi Wasit area (modified from[START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF] with stratigraphic view of the Wadi Wasit block.

Figure 39 ,

 39 Figure39, stop 1: View of middle part of the Wadi Wasit section. Lithological section modified from[START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF]. Unit 1 to 4, conodonts recovered and determined by C.Henderson and A. Nicora. Unit 6, conodonts recovered and determined by L. Krystyn. 

Figure 40 :

 40 Figure 40: Depositional model for the Middle Permian of the Wadi Wasit basin margin (modified after[START_REF] Blendinger | Permian to Jurassic deep water sediments of the Eastern Oman Mountains: Their significance for the evolution of the Arabia margin of south Tethys: Facies[END_REF].

Stop 2 :

 2 Stratigraphy of Wasit block above the right side of the middle part of the Wadi WasitValley (see position on map, Fig.35).

Figure 41 ,

 41 Figure 41, stop 2: Left, view of the hill slope with the position of the Wasit block. Right, close view of the block.

Figure 43 :

 43 Figure 43: Close view of the block with at right the microfacies with the contact between the Permian reefoidal limestone and the basal Triassic bivalve floatstone.

Figure 44 :

 44 Figure 44: Stratigraphy and biofacies of the Wadi Wasit block (after[START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF]. A= rhynchonellids, B =spiriferid brachiopod, B=Eumorphotis, C=Claraia, E=Promyalina.

  Promyalina5 m; Figs. 44, 46) consists of sediment-free sparcemented densely packed, well-sorted bivalve shells with predominantly oblique orientation dominate the lower half of the interval. Above are beds with poor shell sorting and more parallel shell orientation in both convex-up anddown positions(fig. 32, 98/50). Geopetal fills of fine-grained mud-and ostracod-bearing wackestone in convex-down orientated shells become frequent in this part and are interpreted as relictic primary matrix.The interval of the Lower Eumorphotis Beds (2,5-3,2 m; Fig.46) consists of beds with two contrasting microfacies: 1) a lower coquina layer similar to those in the top-Promyalina beds but with increasing geopetal fills of fine-grained sediment (fig.46, 98/51) overlain with gradational contact by 2) bioclastic pack-and wackestone rich in microgatropods, ostracods, broken bivalve shell debris, echinoderms (slender echinid spines); complete single shells, crinoid ossicles and often fragmented cephalopods are comparably rare (fig.4698/52b).The microfacies of the Upper Eumorphotis Beds (3,2-4,2 m; Fig.46, 98/53) consists of grain-and packstone with often geopetally filled microgastropods (=A), echinoderms (disarticulated crinoid ossicles =B, slender "Cidaris" spines), subangular fragmented bivalve shells (=C), ostracods and, less common complete bivalve (=D) and juvenile ammonoid shells. Local wackestone concentrations may result from burrowing.

Figure 46 :

 46 Figure46: Stratigraphic sketch and microfacies of the Wadi Wasit block (after[START_REF] Krystyn | A unique Permian-Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains[END_REF]; 98/53: bioclastic grain-and packstone with often geopetally filled microgastropods (= A), echinoderms (disarticulated crinoid ossicles= B), subangular, fragmented bivalve shells (=C), ostracods and less common unbroken bivalve shells (=D); upper Eumorphotis beds. 98/52B: bioclastic pack-to wackestone, rich in skeletal debris(bivalves, echinoderms, ostracods, rare 

Figure 47 :

 47 Figure 47: Stratigraphy with conodont ranges and conodonts of the Wadi Wasit block (after Krystyn et al., 2003); 1: Mesogondolella sp., 98/45. 2-3: Hindeodus parvus (KOZUR and PIATAKOVA), 2=98/46, 3=98/52A. 4: Hindeodus postparvus KOZUR, 98/53. 5: Isarcicella staeschei (DAI and ZHANG), 98/52A. 6: Neoclarkina discreta ORCHARD and KRYSTYN, 98/53. 7: Neospathodus dieneri SWEET, 92/17. 8: Sweetospathodus kummeli SWEET, 98/54. 9: Neospathodus cristagalli (HUCKRIEDE), 92/17.

Fig. 49 :

 49 Fig.49: Chemostratigraph in Wadi Wasit block (Richoz 2006): M.L: Marly limestone, D. Dienerian. For δ 13 C carb and δ 18 O carb analyses have been made on selected micrite (filled circle), selected spar-cement (open circle) and bulk rock (open square). % in CaCO 3 and Corg have been obtained by coulometry.

Figure 51 :

 51 Figure 51: Google Earth oblique view of the Buday'ah area road itinerary from Al Ghiayin in red.

Figure 53 :

 53 Figure 53: View of Buday'ah locality from the parking place, looking N. Overturned succession of MORB-type lavas (Buday'ah unit 1, top of the front hill) and Upper Permian radiolarian chert and shales below (Buday'ah units 3-4). Stops 1 and 2 right behind the hill (photo J. Marcoux).

Figure 55 :

 55 Figure 55: Google Earth oblique view of the Buday'ah area with place of the 3 stops of the day.

Figure 57

 57 Figure 57: a-surface of red limestone containing large ammonoids with thin coatings of black manganese oxide minerals lining the original shells. b-hammer on the upper limestone bed overlain by red and brownish siliceous shale and mm bedded radiolarites with left up well-bedded red radiolarites.

Figure 58 :

 58 Figure 58:Ammonoids from Unit 2 of the Buday'ah Formation. Photo and det. L. Krystyn. a-Timorites sp.; b-Waagenoceras cf. mojsisovicsi GEMM.

Figure 59 :

 59 Figure 59: Stratigraphy of the Lower Buday'ah Formation (Unit 1 to 4) with the correlation between sections A and B. Section B has been presented by F.Cordey (fig. 17 in Baud et al., 2001b). This section was sampled earlier by F.[START_REF] Cordey | Permian-Triassic deep water sediments of the Wadi Wasit revisited[END_REF] and consists of the following lithologies (Fig.59): red shales and red chert beds (2 m), yellow shales and black siliceous mudstone (2 m), yellow radiolarites (0.5 m), red radiolarites (2 m), yellowish shales and chert beds (2 m). In previous publications, the radiolarians were assigned an age range from Wordian to

Figure 60 :

 60 Figure 60: Radiolarian from the Unit 3 of the Buday'ah Formation, section B, photos and det. F. Cordey. 1-3. Pseudoalbaillella fusiformis HOLDSWORTH & JONES, 1 : OM98-40, 370 µm ; 2-3 : OM98-41, 400 µm. 4. Follicucullus ventricosus ORMISTON & BABCOCK, OM98-44, 350 µm. 5. ?Cauletella sp. cf. manica (De WEVER & CARIDROIT), OM98-40, 350 µm. 6. Follicucullus sp. aff. ventricosus ORMISTON & BABCOCK, OM98-40, 340 µm. 7. Follicucullus scholasticus ORMISTON & BABCOCK, 320 µm. 8. Follicucullus porrectus RUDENKO, 400 µm. 

Figure 61 :

 61 Figure 61: Photo of the red radiolarites (part of Unit 3); scale=hammer.

Figure 62 :

 62 Figure 62: Stop 2, view of the studied profile. 1-Overturned succession of MORB-type lavas (Unit 1); 3-Middle to Late Permian radiolarian chert; 3=siliceous shales (part of the Unit 3); 4-siliceous shales (Unit 4); 5-carbonaceous shales (Unit 5); 6 brown weathered platy limestones and shales (Unit 6). The Permian-Triassic boundary interval (PTBI) is within Unit 5.

Figure 63 :

 63 Figure 63: The lower Buday'ah Formation with δ 13 C org curve of S. Grasby and B. Beauchamp. Arrows for the 2 main negative shifts.

Figure 64 :

 64 Figure 64: Chemostratigraphy of the lower part of the Buday'ah section (S. Grasby and B.Beauchamp) 

Figure 65 :

 65 Figure 65: Microfacies of the lower and middle Buday'ah Formation (Unit 1 to 6). A: laminated lime siltstone with radiolarian (Wuchiapingian); B: lime mudstone with trace fossils (Griesbachian); C: lime packstone-siltstone with calcispheres (Griesbachian). Scale bar 5mm.

Figure 66 :

 66 Figure 66: Platy limestone and shales of Unit 6. A-general outcrop picture; B-close view on the limestone bedding (vertical scale 60cm); C-detailed view on thinning upward bedding (distal lime mud silty turbidite (vertical scale 20cm).

Figure 67 :

 67 Figure 67: Stop 3 with overview of the upper part of the Buday'ah Formation and relationships between the top part of unit 6, Unit 7 and a truncated lower part of Unit 8.

Figure 68 :

 68 Figure 68: left, the typical papery limestone facies: right, detailed view of finely laminated lime mudstone. White scale bar =10cm.

  Formation (Middle Permian to Lower Jurassic), Mayhah Formation (Middle and Upper Jurassic), Huwar Formation (Uppermost Jurassic to Cretaceous) and Qumayrah Formation (Upper Cretaceous). The lower part of the Sumeini Group (about 1700 m thick) is included in the Maqam Formation (Middle Permian to Lower Jurassic), further subdivided into 6 members, A, B, C, D, E and F (Fig. 72 left), according to Watts and Garrison, 1986. an unknown thickness of multicoloured shales with accessory tectonized thin-bedded limestone or dolostones and the upper part consists of outer shelf fossiliferous limestones. A Wordian age was proposed by Pillevuit (1993) for the lower part (A1-A2) on the basis of the ammonoids Stacheoceras sp., Adrianites?, A. isoniorphus, Aghathiceras sp. (Det. from W.W. Nassichuck), of the trilobites Néoproetus indicus, Tesch, n. subsp. Ditomopyginae (Becq-Giraudon and Pillevuit, 1995) and of the ostracods Bairdia sp., Aurigerites sp., Healdianella sp., Acratia sp. (Det. S. Crasquin Soleau).

Figure 73 :

 73 Figure 73: Stratigraphic section with the new conodont finding of C. Henderson and A. Nicora with, right, view on Member A of the Maqam Formation. A1 -shale and limestones unit; A2mainly hidden shale unit: A3 -upper limestone unit separated from A4 by an irregular front of dolomitization. B -base of the dolomitized B unit with a thick dolorudite, clast supported bed.

Figure 74 :

 74 Figure74: Lithology and stratigraphy of the lower 700 metres of Member C in Wadi Maqam (afterRichoz et al., 2005[START_REF] Richoz | Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran)[END_REF]).

  Values are around +4.9‰ in Member B4, around +3,5‰ 10m below the top of the Member B and drop to around +2,5‰ in the last grey limestone beds of Members B (fig. M4, M8). The shaly interval record a drop of 3.3‰ followed by a positive shift of 1.0‰ in the first platy limestones beds of Members C. The minimum (-1.2‰) is reached here at the level of the first appearance of H. parvus (Fig.). The overall drop of around 6‰ in the δ 13 C carb values is one of the largest known within the PTBI in the Tethys. The isotopic values increase to +2,8‰ then in the first 20m of platy dolostone and fall to +1‰ after the first breccia to shift again in the vermicular limstones to reach a peak at 1.7‰ at the level of the Smithian N. waageni conodont zone. Values decrease to stay globally negative (between -0.9‰ and -2.5‰) during most of the Member C in Wadi Maqam and Wadi Shu'yab. 20m below the top of Member C, values are around -1.6‰ and shift down to -2.5‰ in the last metres of platy limestones. Values shift rapidly to positive values (2,1‰) in the base of the marly orange limestone interval ending Member C. At the top of this orange interval and in the more calcareous beds at the base of Member D, values are again very negative (around -2.5‰

Figure 75 :

 75 Figure 75: Carbon isotope profile of the Maqam Formation, member A, B, C. (Data fromAtudorei, 1999, for the Members A and B and from Richoz, 2004, for the Member C).

Figure 76 :

 76 Figure 76: Google Earth oblique view of the Sumeini area with place of the 4 stops of the day. The red line is the itinerary with cars and the yellow line is the walk up to the stops.

Figure 77 :

 77 Figure 77: stop 1 area with good exposure of the Wuchiapingian cherty dolostone (Upper Member B of the Maqam Formation) and the basal Triassic platy dolostone.

Figure 78 :

 78 Figure 78: Scalloped margin with strong erosion of cherty dolostone (B4) and progressive onlap filling by transgressive latest Permian-earliest Triassic carbonates and shales (Unit B6 and C1a).

Figure 79 :

 79 Figure 79: The Permian Triassic transition section about 500m SE of stop 1, with a dolomitic overprint and a similar lithology as seen at stop 1.

Figure 80a :

 80a Figure 80a: Close view to the Permian Triassic transition in a new locality found by Benoit Beauchamp (scale). Coord: N 24°46'09'' E 55°52'14''

Figure 81 :

 81 Figure 81: the most complete uppermost Permian succession at stop 2. The Unit B6 with grey limestones escaped to late diagenetic dolomitization. On the right, we can see the hardground at the top of B4 unit. A. Baud for scale!

  at stop 2 (R.Twitchett in Richoz et al., 2005). The topmost part of Member B (B6a and b in Figs.81 and 82) with well bioturbated beds is indicating a well-oxygenated palaeowater column and a diverse infauna (Fig.83/1 to 4)). The ichnotaxa include Chondrites, Palaeophycus, Thalassinoides, Rhizocorallium and possibly Zoophycos. The Thalassinoides burrows (Fig.83/2) are often cast by the diagenetic chert, in a similar fashion to that which occurs in the Cretaceous chalks of Western Europe.Crosscutting relationships may be observed in places, indicating that Thalassinoides burrows were emplaced at a shallow depth within the sediment, with Chondrites and ?Zoophycos occupying deeper tiers. This tiering relationship is also reminiscent of the Upper Cretaceous chalks of western Europe (e.g.Bromley and Ekdale, 1986). Thalassinoides burrows are typically 10-16 mm in diametre (mean = 14.3). The bedding planes of the well-bioturbated, uppermost beds of Member B (B6b in Figs.81 and 82), contain a diverse and large-sized ichnofauna. Prominent are the dramatic and beautiful Rhizocorallium burrows (Fig.83/4), which range from 11 to 28 mm in diametre (mean = 20.0 mm). Rarer, large, Thalassinoides (Fig.83/2) are also present (mean diametre = 17.2 mm; range = 12-21 mm).

Figure 83 :

 83 Figure 83: Selected trace fossils and ichnofabrics of the Unit B6b, Maqam Formation from R. Twitchett (in Richoz et al., 2005). 1-Well bioturbated (ii5) ichnofabric, less than 1 m below P/Tr boundary. Coin =20mm diametre; 2-Thalassinoides; 3-Rhizocorallium; F: large Rhizocorallium.

Figure 84 :

 84 Figure 84: Close view to the boundary clay at stop 2. At the top are the platy to papery limestones (Unit C1b).

Figure 85 :

 85 Figure 85: The overlying basal metres of Member C (C1b) showing a typical papery to platy lime mudstones devoid of bioturbation (right, closer view).

Figure 86 :

 86 Figure 86: Microbial laminations and plastic deformations from the basal part of Member C (C1b) in Wadi Maqam.

Figure 87 :

 87 Figure 87: statigraphic sketch of the Permian-Triassic transition with Carbon isotope profile (S. Richoz) at stop 1. Microfacies -1: laminated calcisiltite of the basal Triassic C1b unit. 2: bioturbated lime mudstone with calcitized radiolarian, Changhsingian B6a unit. Scale bar A and B: 5mm.

Figure 88

 88 Figure 88: 1-slump beds in unit C1 (Griesbachian); 2-monogenic flat pebble conglomerate bed in platy limestones (unit C3, Lower Smithian)

Figure 89 ,

 89 Figure 89, left: stratigraphy of the lower part of Member C, (conodonts, L. Krystyn); right, Carbon and Oxygen isotope curves with corrected lithological column (additional slump, S. Richoz).

Figure 90 :

 90 Figure 90: Selected trace fossils of the lower part of Member C (R. Twitchett in Richoz et al., 2005); 1-cf. Protopaleodictyon, 2-Rare bioturbated interval (ii3), below the vermicular limestones.

Figure 91

 91 Figure 91 left: platy limestone with megabreccia (calcirudite bed) at the top (unit C5, Middle Smithian); right: monogenic flat pebble conglomerate bed (unit C5, Middle Smithian).

Figure 92 :

 92 Figure 92: View of the upper part of Member C in Wadi Shu'yab, area of stop 4; Members D, E and F (Middle-upper Triassic) are in the ground.

Figure 93

 93 Figure 93 left: Ripples and traces cf. Paleodictyon at the top of a calciturbidite megabreccia (upper part of Member C in Wadi Shu'yab); right: Cross-ripples from the same outcrop.

Ichnotaxa at stop 4 ,

 4 Fig. 94 (R. Twitchett in Richoz et al., 2005). Ichnodiversity is low. Typically, only one or two ichnotaxa (predominantly subhorizontal burrows produced by a depauperate community of deposit feeders) are present in any given bed. Occasionally, vertical Arenicolites are observed, indicating the presence of suspension feeders. From ca. 140m (Figurex), the bioturbated intervals begin to show an increase in ichnodiversity. Arenicolites and Chondrites are recorded at this level. However, the straight-branched form of Chondrites present in the upper Member C is clearly showing an unusual habit, compared to more 'typical' forms that branch downwards through the sediment. Here, Chondrites is largely subhorizontal (Fig.94/2) in habit, possibly because the deeper levels of the substrate were completely anoxic or lacked sufficient food resources. From ca. 155 to 180m, the platy limestones are reasonably well bioturbated (ii3) and contain an ichnofauna comprising Chondrites, Palaeophycus and Phycodes. The Phycodes burrows are particularly well preserved (Fig.94/3) and locally common and characterise the remaining metres of Member C. The relative abundance of these ichnotaxa is variable. Rare crosscutting relationships indicate that the tracemakers all occupied the same, shallow, tier within the sediment. From ca. 190 to 215 m the platy limestones are less well bioturbated (ii1-2), but where the bioturbation does occur, Chondrites and Phycodes typically dominate, with occasional Planolites (Fig.94/1).

Figure 94 :

 94 Figure 94: Selected trace fossils of the upper part of Member C (R. Twitchett in Richoz et al., 2005); 1-?Planolites with annular backfill; 2-subhorizontal Chondrites; 3-Phycodes; 4-cf. "Scolicia". Scale coin 0 20mm diametre.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  The Permian-Triassic boundary is present only in autochtonous (Wadi Sahtan, Saiq Plateau, Wadi Aday), in slope deposits(Wadi Maqam) and in basinal distal position (Buday'ah). Wadi Sahtan and Saiq Plateau gave very similar results. Buday'ah reveals a strong alteration of the δ 13 C carb signal but the δ 13 C org presents still reliable curve(Grasby and Beauchamp, this volume). In autochtonous sections and Wadi Maqam, the decrease of the isotopic curve shows different steps, beginning in the upper Changhsingian and finishing above the first appearance of H. parvus.The negative excursion is of 1.6‰ in Wadi Sahtan and 1.1‰ in Wadi Maqam before the event boundary and 1.1‰ respectively 3.7‰ after the event. Values increase in the second Griesbachian conodont zone (I. isarcica) from 1.5‰ in Wadi Maqam and Sahtan. The Upper Griesbachian decrease and homogenous values around +2‰ in the Dienerian are poorly constrained in Oman. The main reason is that the Dienerian sediments are condensed. The Wadi Sahtan section records a rapid negative shift in the uppermost Dienerian. This shift is well biostratigraphically well constrained in another Oman section (Wadi Wasit south,[START_REF] Twitchett | Rapid marine recovery after the end -Permian mass -extinction event in the absence of marine anoxia[END_REF].A double peak is then characteristic and occurs around the Dienerian/Smithian Boundary. The amplitude of the two peaks is from 1.1‰ to 5.5‰. They are among the more important positive excursion in all the Phanerozoic. The Middle and Late Smithian is the longest period of isotopic stability in the Early Triassic. Values are between +0.5‰ in Wadi Sahtan -1.4‰ in Wadi Maqam.

	Around the Smithian/Spathian boundary, these values have a short-term positive excursion of 2‰
	in Wadi Sahtan, 3‰ in Wadi Maqam and up to 10‰! in the basinal sediments of the Batain plain,
	north-east Oman
	Figure 5b: Tethyan synthetic carbon isotopic curve for Upper Permian to Lower Triassic. Gray
	band is the observed variations in between sections (Modified after Richoz 2006)

Saih Hatat: The

  

	During Middle Permian -Early Triassic times a long-lived epeiric carbonate platform developed in
	the vicinity of the Arabian Plate. These carbonate-dominated deposits, which are commonly called
	Khuff formation in most regions of the Middle East, contain the most prolific gas reservoir in the
	Middle East and are therefore of extraordinary importance. In the central and eastern Oman
	Mountains time-equivalent platform carbonates of the Khuff formation have been traditionally
	described as Saiq Formation (Glennie et al. 1974). The currently favoured facies model for the
	Middle Permian -Early Triassic carbonates of the Khuff and Saiq formations is a homoclinal ramp
	system with gentle facies transitions towards east. In an ideal transect from west (land) to east
	(Tethys), facies associations pass from marginal marine siliciclastics into inner platform lagoonal
	carbonate-anhydrite cycles and finally into open marine platform carbonates and slope deposits of
	the rim of the Arabian plate. According to Le Metour et al. (1986) the Saiq Formation covers the
	following members at Wadi Aday (Fig. 9):
	Top	
	Ma	Bedded dolostone, grey or pink
	SQ3 Black sparitic limestone and yellow shale
		Dolomitic limestone,stromatolitic
		Clayey dolostone and siltstone, quartz sandstone
	SQ2b Silicified limestone and dolomitic limestone, yellow patina
		Sandstone and platy, yellow-weathering dolomitic limestone, silicified black limestone
	SQ2a Massive dolostone, yellow patina
		Grey and white banded dolostone
		Grey-black dolomitic limestone
		Beige micriyic limestone
	Sq2v Mafic to intermediate volcanic rocks
	Sq1l Limestone and dolostone
		Massive dolostone
	Sqv1 tuffite, white tuff, schist and conglomerate
	Base	
		tectonic window in the vicinity of the Saih Hatat provides
	excellent exposures of the
	. • Sedimentary Basement of latest Proterozoic to Ordovician age.
	. • Middle Permian-Late Cretaceous carbonate Arabian Platform (Hajar Unit).

  Henderson and A. Nicora recovered Mesogondolella idahoensis lamberti near base of section (Fig. 37) giving a latest Kungurian-earliest Roadian age. At 45m is Mesogondolella pingxiangensis (Roadian), at 80m Jinogondolella cf. nankingensis and Jinogondolella aserrata (latest Overlying are nodular, cherty and turbiditic (allodapic) limestones. After a stratigraphic gap of nearly 10 My, the Lower Triassic record begins with breccias of Dienerian age. These are followed by platy limestones of Late Dienerian to Smithian age, dated at different places by conodonts such as N. waageni, Platyvillosus costatus, Neospathodus cristagalli (det. L. Krystyn in

Roadian -Early Wordian). Higher up, at 230m (Fig.

37

enlargment) are Mesogondolella n. sp. A. and Jinogondolella cf. shannoni (Capitanian), at 235.5m Mesogondolella n. sp. A. and at 237.5m Jinogondolella altudaensis of Late Capitanian age (conodonts illustration in Plate 1, below).

  Eumorphotis beds. 98/50: Densely packed, spar-cemented bivalve shells with rare geopetal infill of ostracods-bearing mud; Promyalina beds. 98/51 Bivalve coquina with increased geopetal infill overlain by bioclastic wackestone (upper left); lower Eumorphotis beds. Scale bar is 1 mm.

(=D)

; upper Eumorphotis beds. 98/52B: bioclastic pack-to wackestone, rich in skeletal debris (bivalves, echinoderms, ostracods, rare ammonoids); lower

  The section can be divided into a lower Hindeodus (samples 98/46 -98/52) and an upper gondolellid biofacies (98/52B -98/54). The separation is very distinct and could indicate a pronounced environmental change otherwise undocumented in the sedimentary record.The rather monotonous Hindeodus biofacies of samples 98/46 -98/50A is formed by 100% Hindeodus. Rare specimens of Isarcicella and Clarkina reduce the Hindeodus abundance to 99% (98/51) and 97% (98/52) up-section.At the base of the gondolellid biofacies (sample 98/52B), 80% of the p-elements are assigned to Clarkina. The relative abundance of Clarkina and Neoclarkina rapidly increases to 90% (92/16) and finally to 100% (0/11). Hindeodus elements make up 20% of the fauna in sample 98/52B, 10% in 92/16 and finally just 1% in 98/53. A conodont study of Chinese P-T boundary sections has ledLai et al. (2001) to the conclusion that Clarkina and Hindeodus occupied different life habitats. They interpret Clarkina as a nektobenthic genus living in oxygenated deeper water, whereas Hindeodus is considered as a nektic taxon inhabiting the uppermost (shallowest) parts of the water column from near shore to pelagic environments.This model explains the absence of Clarkina in the storm-generated shallow-water layers of the Hindeodus biofacies (see below). It does not, however, explain the decline and disappearance of Hindeodus in the upper part of the block.
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February 24, 2010 -The Permian-Triassic transition in the Wadi Wasit area.

(Stop 1: A. Baud,C. Henderson,L. Krystyn,S. Richoz and B. Beauchamp . Stop 2: L. Krystyn,S. Richoz,R. Twitchett and A. Baud).

Routing (Fig. 34): Starting at 8 a.m., February 24, from Hotel Ibis (Muscat) we will move to Ba'id village following first the Muscat-Nizwa highway up to Bidbid and then the road in direction of Sur to Wadi Tayn -Wadi Adam crossing and follow the Wadi Tayn road to Ba'id and turn at the Wadi Wasit entrance to Naqsi village for stop 1 (Fig. 35). Coord.: N 23°06'49'' E 58°20'55''. (A. Baud, S. Richoz, B. Beauchamp, F. Cordey, S. Grasby, C. Henderson, L. Krystyn).

Routing (Fig. 50): Starting at 8 a.m., February 25, from Hotel Ibis (Muscat), we will move to Buday'ah following first the Muscat-Sohar highway up to Al Khabura roundabout and then take left the paved road in direction of Wadi Hawasina -Ibri up to Buday'ah (Figs. 50 and51) Figure 50: Google Map with detailed road itinerary from Al Khabura roundabout in red and left up a complete itinerary from Muscat to Buday'ah (coord.: N 23° 44' 43'' E 56° 54' 21'').

Until now, there are no detailed investigations on the overlying olive shales of Unit 8.

Discussion

A significant decrease of siliceous bioproductivity is recorded in the Late Permian but more researches is needed to evaluate the exact duration of this decrease. Actually we place the extinction event at the top of the bedded radiolarites. Casts of radiolarian and sponge spicules are present in the overlying platy limestones.

Comparing our Tethyan oceanic section with published Panthalassa sections shows that all localities display radiolarian cherts as the dominant type strata in the lower Late Permian. Up section, successions grade into "boundary shales" and/or black shales of various thicknesses. Did this change occur earlier in the Tethys (Early Changhsingian?) than in Panthalassa oceanic sections? We have not yet an answer. But it is only in southern Panthalassa that the chert deposition is continuous. The chert gap is of longer duration in the Tethys (15 My?) than in Panthalassa Mino-Tamba terrane (8 My) or Cache Creek terrane (12My). There is no chert gap in the Southern Panthalassa.

What is unique is that during the Early Triassic, the Tethyan margin included microbial carbonate close to the oceanic realm (platy to papery limestones) during Induan and at least part of the Olenekian. The Panthalassa oceanic sections are devoid of carbonate and biogenic siliceous sedimentation reappears progressively up section.

February 26, 2010 -The Permian-Triassic transition in the Sumeini area.

(S. Richoz, A. Baud, B. Beauchamp, S. Grasby, C. Henderson, L. Krystyn, R. Twitchett).

Routing (Fig. 69, 70):

Starting at 8 a.m, from Holiday Arabian Resort Hotel (about 10km west from Hatta, UAE, 1, Fig. 69) we will follow the Dubai Highway for about 5km and then turn left on a side truck road. We will follow this road and then a side road according to the Google map (Fig. 70) up to the entrance of Wadi Maqam and parking place. al., 1996;[START_REF] Atudorei | Constraints on the upper Permian to upper Triassic marine carbon isotope curve[END_REF], Southern Alps (Italy), Iran (Horacek et al., 2007a,b) and south China [START_REF] Tong | Lower Triassic inorganic Carbon isotope excursion in Chaohu, Anhui Province, China[END_REF][START_REF] Payne | Large perturbations of the carbon cycle during recovery from the end-Permian extinction[END_REF]. If we have time, we will have a look up to the Ladinian radiolarites and then go back to the cars and drive back to the Holiday Arabian Resort Hotel. Some participants will go directly to Muscat and other participants will stay there.