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ABSTRACT:

City modeling consists in building a semantic generalized model of the surface of urban objects. These could be seen as a special
case of Boundary representation surfaces. Most modeling methods focus on 3D buildings with Very High Resolution overhead data
(images and/or 3D point clouds). The literature abundantly addresses 3D mesh processing but frequently ignores the analysis of
such models. This requires an efficient representation of 3D buildings. In particular, for them to be used in supervised learning
tasks, such a representation should be scalable and transferable to various environments as only a few reference training instances
would be available. In this paper, we propose two solutions that take into account the specificity of 3D urban models. They are
based on graph kernels and Scattering Network. They are here evaluated in the challenging framework of quality evaluation of
building models. The latter is formulated as a supervised multilabel classification problem, where error labels are predicted at
building level. The experiments show for both feature extraction strategy strong and complementary results (F-score > 74 % for
most labels). Transferability of the classification is also examined in order to assess the scalability of the evaluation process yielding

very encouraging scores (F-score > 86 % for most labels).

1. INTRODUCTION

1.1 3D urban modeling

City modeling consists in building a geometric abstraction of
urban objects enriched with semantics. It is an approximation
of the real world. From an overhead remote sensing perspect-
ive (satellite/airborne images or point clouds), necessity mainly
lies in buildings (Musialski et al., 2013). The literature heav-
ily focuses on surface reconstruction. Three dimensional (3D)
meshes provide high geometric fidelity but often neglect se-
mantics (Blaha et al., 2016) and insufficiently describe urban
objects (Biljecki et al., 2016). Conversely, 3D modeling tar-
gets to represent the urban environment with a certain degree
of generalization and compactness (i.e., Level of Detail), which
depends on the spatial resolution of the remote sensing data
(Figure 1). 3D models, in fact, include geometry, semantics, and
potentially attributes, related to their shape, type, use, etc (Fig-
ure 1). The explicit knowledge of the semantics efficiently helps
to process the 3D geometry for simplification, spatial analysis,
rendering or visualization purposes.

1.2 Evaluating 3D building models

Automated 3D modeling of urban scenes has been widely studied
but no solution guarantees perfect models whatever the types of
buildings and urban environments (Musialski et al., 2013, Forst-
ner, 2016). This entails a need for quality evaluation, which
has been, so far, manually performed and highly time consum-
ing. Automating this evaluation step requires efficient building
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Figure 1. 3D modelling of a building from remote sensing data.
Left: raw data (a 3D point cloud), without topological
information. Middle: a mesh, many details but no semantics.
Right: a model, high compaction and explicit semantics for each
architectural feature (roof - ).

representations as a basis for comparison with reference data.
It has been barely investigated in the literature. Indeed, this
has usually been achieved by reporting some global geometric
metrics such as Root Mean Square Error (RMSE) which result
from comparing these models to their reference (Kaartinen et al.,
2005, Zebedin et al., 2008, Zeng et al., 2014, Rottensteiner et al.,
2014, Nguatem and Mayer, 2017,Zeng et al., 2018). The defects
are, in general, not localized and, more importantly, not very
informative for a later correction step (Michelin et al., 2013).

In contrast, there have been some recent works where the prob-
lem has been formulated as a supervised classification one (Boudet
et al., 2006, Michelin et al., 2013, Ennafii et al., 2019). In fact,
quality is evaluated by the detection (or lack of) of errors in
surface modeling. This is usually done, manually or semi-
automatically, by comparing the 3D model to reference data.
In order to scale this procedure, the problem is cast as a super-
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vised learning one: based on a predefined list of errors, learn to
detect defects using the statistical properties of a pre-annotated
dataset, as well as the comparison to external raw sensor data.
This hinges on two main ideas:

e Developping an adapted error categorization that can de-
scribe all possible errors.

e Proposing an efficient model representation that can de-
scribe the quality of models efficiently.

1.3 Contributions

In this paper, we adopt and improve on the framework proposed
in (Ennafii et al., 2019) to evaluate 3D models. For this purpose,
we present:

(1) A new feature extraction procedure that is adapted to
the building models and generic Boundary representation
(B-rep) surfaces in general. For that purpose, we look at
the 3D models as graphs of facets which are then classified
using graph kernels.

(i) We also make use of external modalities (height maps or
satellite/aerial images) with the help of Scattering Networks
(ScatNets) (Sifre and Mallat, 2013, Oyallon and Mallat,
2015) in order to better represent the similarity of the 3D
model in question to the sensor acquired data.

(iii) We achieve a scalable quality evaluation workflow that
does not depend on the origin of the model, in contrast with
the work in (Ennafii et al., 2019). This is achieved thanks
to this new 3D model representation.

2. RELATED WORK

In this section, we present the state-of-the-art in terms of evalu-
ation of 3D building models. It will also be the opportunity to
summarize the evaluation framework that will be used in the rest
of the paper. We will have also the opportunity to describe the
related works on graph kernels and ScatNet which will be used
for the feaure extraction.

2.1 3D city model evaluation

2.1.1 General overview The state-of-the-art methods can
be sorted according to the input data and desired outputs. A
comprehensive analysis is available in (Ennafii et al., 2019).

Input Two kinds of complementary inputs exist. First, ac-
curate reference building models may be available. The task
then consists in defining suitable metrics for efficient compar-
ison. These ground truth models are manually derived either
from field measurements (Vogtle and Steinle, 2003, Dick et al.,
2004) or multi-view image interpretation (Zebedin et al., 2008).
Few models are available and such costly and time-consuming
strategy does not scale well. Secondly, Very High Resolution
(VHR) remote sensing data provide a better solution and are
more readily available. Both multi-view aerial images (Boudet
et al., 2006,Michelin et al., 2013,Zeng et al., 2018) and 3D Light
Detection And Rangings (LiDARSs) point clouds (Kaartinen et
al., 2005, Akca et al., 2010, Zhu et al., 2018) have shown their
relevance when the spatial resolution fits with the required eval-
uation accuracy. The main task then lies in defining suitable
features (e.g., color, geometry consistency).

Dim. Issue Level Atomic error
o Building Under
Under Building Segmentation (BUS)
Seg. Facet Facet Under
Segmentation (FUS)
2D s Building Over
Over Buidling Segmentation (BOS)
Facet Facet Over
Segmentation (FOS)
S Building Imprecise
Imp. Building Borders (BIB)
Border Facet Facet Imprecise
Borders (FIB)
g Building Inaccurate
Inc. Buidling Topology (BIT)
Facet Facet Inaccurate
Topology (FIT)
o Building Imprecise
3D Imp. Building Geometry (BIG)
Facet Imprecise
Facet

Geometry (FIG)

Table 1. Table summarizing all atomic errors. Dim. (resp. Seg.,
Imp. and Inc.) stands for dimensionality (resp. segmentation,
imprecision and inaccuracy).

Output Most approaches compute fidelity metrics i.e., eval-
uate the local geometric precision of the model. The object
of interest can be either 3D points (Kaartinen et al., 2005, El-
berink and Vosselman, 2011, Landes et al., 2012, Zeng et al.,
2014), lines (Kaartinen et al., 2005, Elberink and Vosselman,
2011, Michelin et al., 2013), surfaces (Zebedin et al., 2008,
Landes et al., 2012, Rottensteiner et al., 2014, Zeng et al., 2014)
or volumes (Zeng et al., 2014, Nguatem and Mayer, 2017). A
score can be extracted per building or building facet, which is
sufficient for local quantitative assessment. However, it does
not result in a binary (correct/erroneous) answer. Alternat-
ively, casting 3D model evaluation as a supervised classific-
ation task is more adapted. Labels can be either the degree of
acceptability (user-specific e.g., “generalized” (Boudet et al.,
2006)) or an exhaustive set of potential errors (e.g., “under/over-
segmentation” (Michelin et al., 2013, Ennafii et al., 2019). Such
solution targets to be independent to the urban scene and mod-
eling approach. Training data is required, time-consuming, and
can only be obtained in limited size (Ennafii et al., 2019).

2.1.2 Learning based quality evaluation Herein, we de-
scribe in more details the learning based quality evaluation of
3D building models presented in (Ennafii et al., 2019). This eval-
uation framework is adopted later on with the proposed feature
representations that are discussed further in Section 3.

This method relies on two ideas. First is the fact that error cat-
egorization is adaptable as it does not depend on the origin of the
model (the modeling method and the urban scene). Secondly, the
model feature representation does not only rely on the existance
of external remote sensing data that are compared against. It can
also make use of the characteristics of the model shape which
can be used as intrinsic features.

Error taxonomy Errors have been categorized in a hierarch-
ical and modular taxonomy. All defects could be described
up to a certain specificity (called finesse) and Level of De-
tail (LoD). At the highest finesse level, atomic errors are the
most informative. Reporting defects in modeling could neces-
sitate more than one atomic error simultaneously. These are
summarized in Table 1.

Feature extraction for quality evaluation Atomic errors are
learned and predicted independently from each other. The

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B2-2021-329-2021 | © Author(s) 2021. CC BY 4.0 License. 330



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021
XXIV ISPRS Congress (2021 edition)

Features

—

/’—7\ B FIB

Supervised ;

Y

classifier

(a) Input model (b) Geometric

(c) Height based

(d) Image based (e) Error detection

Remote sens-
ing data

Figure 2. Quality evaluation workflow presented in (Ennafii et al., 2019) for 3D building models. Both intrinsic attributes (Figure 2b)
and external modalities (Figures 2c and 2d) are used to describe the input model (Figure 2a). Based on these features, a trained classifier
predicts the presence of each error label (Figure 2e).

exception being BIG which is redundant with facet level er-
rors. As a result, the problem is actually cast as a multilabel

( 4 + 5 labels) classification. Errors are identi-
—~ ~~

Building errors
fied only at building level even if the label is a facet error.

Facet errors

As illustrated in Figure 2, the input model can be described using
only intrinsic geometric features, but also, comparing it to sensor
acquired data. Intrinsic features are computed by considering its
dual graph where nodes represent facets and edges encode their
adjacency. Extrinsic features, on the other hand, rely on some
readily available remote sensing data: a two dimensional (2D)
height grid called Digital Surface Model (DSM) and VHR RGB
optical images which are corrected from the relief and geometric
distortions and called orthoimages.

The baseline approach yielded good enough prediction scores
for models that share the same urban scene as the ones used for
training. However, the scalability of the process proved hard to
attain. In fact, the Transferability experiments in (Ennafii et
al., 2019) showed how the prediction of some error labels was
highly dependent on the urban scene of origin. In this paper, we
present a new intrinsic and extrinsic representation which aims
at alleviating this issue. This is addressed by taking into account
the inherent structure of the data. Geometric features make use
of graph kernels (cf. Section 2.2) for geometric features and
ScatNets (cf. Section 2.3) for grid structures based ones.

2.2 Graph kernels

A valid representation for graphs should address three issues: (i)
incorporate all possible graph sizes, (ii) notably small graphs
(since building models contain few facets), and (iii) be invariant
to graph isomorphisms. This would involve computing explicit
feature maps to possibly infinite dimensional Hilbert spaces. For-
tunately, kernels offer a more efficient approach by comparing
pairs of observations. This is particularly true for graphs (Ghosh
et al., 2018, Kriege et al., 2020). Five variants are tested, for
their availability and numerical stability.

2.2.1 Random Walk Kernel (RWK) One way to compare
two graphs is to perform a simultaneous random walk on both
graphs. This is equivalent to a random walk on the Cartesian
product of both graphs (Vishwanathan et al., 2010). Such a
kernel (RWK) has two special cases: the exponential and geo-
metric RWKSs (Gdértner et al., 2003, Vishwanathan et al., 2010).
They involve heavy computations and are numerically unstable.
They also ignore node and edge attributes. More importantly, for
tottering reasons, they exhibit the major drawback of focusing
greatly on central nodes and ignoring isolated ones.

2.2.2 SVM ¢ Kernel (STK) This kernel takes only the graph
structure into account and is agnostic to attributes. It is a tract-
able version of the Lovasz ¢ kernel (Johansson et al., 2014).
The graph comparison strategy consists in evaluating the differ-
ence between the Lovasz number of their subgraphs. A direct
solution is often intractable but can be approximated (Jethava
et al., 2013). Such a difference is also computed for a subset of
subgraphs for both graphs.

2.2.3 Multiscale Laplacian Kernel (MLK) Graphs are char-
acterized by their Laplacian matrix. When both graphs have the
same number of vertices, the Bhattacharyya kernel can be ad-
opted to compute the similarity between the Laplacian of both
graphs (Kondor and Pan, 2016). It is based on the probability
distributions associated to the Gaussian graphical model on each
graph. For the general case, a linear transform permits to be
invariant to permutations. Such features are able to represent
graphs with different sizes in the same feature space, therefore
comparing any pairs of graphs (Kondor and Pan, 2016). To
take node attributes (i.e., vectors associated to each graph node)
into account, another linear map is applied, resulting in a Lapla-
cian kernel. Then, scale information is incorporated: vertices
from both graphs are recursively compared at increasing size
neighborhoods using this Laplacian kernel. This results in a
multiscale aware base kernel that is used, in a final iteration,
with the Laplacian kernel to compare both graphs.

2.2.4 Propagation Kernel (PK) Similar to RWK, the concept
lies in propagating information through the graph. At each itera-
tion, the pairwise comparison of graph nodes is aggregated using
the Naive kernel (Neumann et al., 2016). A propagation scheme
allows to recover the graph structural information lost with the
kernel. For numerical efficiency, the vertex base kernel is chosen:
feature vectors are computed, avoiding pairwise comparisons.
These features rely on representing each vertex using a hashing
function and binning the resulting values (Shervashidze et al.,
2011,Neumann et al., 2016). For node attributes, a probability
distribution is assigned at each vertex (a mixture of Gaussian
distributions centered on node attributes). The coefficients are
propagated at each iteration, after which the vertex probability
distribution is hashed. The propagation transition matrix can be
user defined or, by default, the normalized adjacency matrix of
the graph.

2.2.5 Graph Hopper Kernel (GHK) In order to avoid the
tottering issue, path comparison between two graphs is used
to computed their similarity, as adopted for the shortest path
kernel (Borgwardt and Kriegel, 2005). Being intractable in
practice, paths are rather compared by simultaneously “hopping”
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along there vertices and comparing them. This is called the
GHK (Feragen et al., 2013): the scalable version of the shortest
path kernel.

2.3 Scattering Networks (ScatNets)

Convolutional Neural Networks (ConvNets) are state-of-the-art
feature extractors in image classification. However, they require
a great load of training images in order to learn good representa-
tions. For our challenging task, ScatNets were chosen instead.
They can be seen as a reverse engineered ConvNet. They are
built mainly by wavelet filters, mimicking filters from ConvNets.
The latter learn, end-to-end, an image representation by minim-
ize a certain loss function. Conversely, ScatNets make use of
mathematical properties of the image signal to guarantee some
properties that were observed for ConvNets: translation invari-
ance (or covariance), stability towards local small deformations,
etc. Like ConvNets, ScatNets consist in applying linear convolu-
tional operators followed by a non-linearity and some pooling
operators. The learned filters are replaced by a specific wavelet
decomposition. Non-linearity is retrieved using the modulus
operator, and pooling through a low pass filter. This step is crit-
ical for invariance purposes. Lost high frequencies are retrieved
using the wavelet convolutions.

Formally, the linear mapping followed by the pointwise modulus
operator is denoted by:

UN : x|z ®c ¥a|, 1)

where 1) denotes a wavelet with parameters A\ and x the input
image. The scattering output of such a mapping is also refered
to as coefficients. The convolution ®¢ depends on the targeted
invariance group. A simple translation invariance involves the
usual convolution ®g3z = *. Morlet wavelets are chosen with
specific parameters to guarantee the required properties (Sifre
and Mallat, 2013, Oyallon and Mallat, 2015). The U operator
(Equation (1)) is covariant to the corresponding group (transla-
tion or rigid transformation). The subsequent low pass filtering
amounts to a weighted averaging operator that enforces the in-
variance property up to the scale I of the filter ¢ ;. This defines
the first layer coefficients:

Si(z, A1) 2 U] (z) ®c o1 )

In the next layer, the same operator U with a different parameter
A2 is applied to each image U[A1](z) from layer 1. Then, the
average pooling is applied once again to result in:

Sa(z, A1, A2) £ U] (UM](2)) ®c b1 3)

This process can be infinitely applied. The scattering coefficient
at layer 0 is simply defined as So(z) £ z % ¢;.

The convolution at pooling step (Equations (2) and (3)) is not
always the same as the convolution by wavelets (Equation (1)).
This depends greatly on the required set of invariances and
covariances: (Sifre and Mallat, 2013) target a roto-translation
invariance, while (Oyallon and Mallat, 2015) favor translation
invariance along with rotation covariance. This leads the first
to average through rotations as well as translation vectors, and
the second to average only on translation. In both cases, the
first layer always involves a regular convolution @gs, and the
subsequent ones rely on convolutions defined on the special
Euclidean group ®sp(2). In practice, not all coefficients are
computed as most information (>98 %) is concentrated in layers

0, 1 and 2, and is carried along increasing scale paths (Sifre and
Mallat, 2013, Oyallon and Mallat, 2015). As a consequence, we
compute the coefficients along these paths only up to the second
layer resulting in a number ns of scattering outputs.

3. EFFICIENT FEATURE EXTRACTION

In this section, we explain how these previously described fea-
ture extractors fit in the quality evaluation framework presented
in Section 2.1.

3.1 Geometric features

The attributes calculated for each graph node have distinct be-
haviours and cannot be handled with a single graph. Instead of
normalizing, concatenating and associating the resulting node
attribute vectors into one graph, we preferred instead to isolate
each geometric feature in a specific duplicated graph (3 in total).
These graphs share the same structure. The first takes the face
normals as node attributes, the second face centroids, and the
last one a composite vector grouping the face degree, area and
circumference. In fact, separately taken, the last ones had a
limited relevance in error prediction, according to the feature im-
portance measures provided by training Random Forests (RFs)
in earlier experiments.

Each graph can take multiple types of kernels at once. Since
all graphs share the same structure, kernels such as the RWK
and the STK, that ignore node attributes, would yield the same
results. We also experiment with three other types of kernels:
the MLK, the PK and the GHK. The latter depends on the choice
of the base kernel which compares node attributes. The Radial
Basis Function (RBF) was discarded as it did not yield desirable
results when experimented with. There are two alternatives: the
linear kernel and Brownian bridge one (Borgwardt and Kriegel,
2005). This results in total in 14 graph kernels.

2+ 3 x( 2 + 1 x_2)=14
~— ~— ~— ~—
STK & RWK  attributed MLK & PK  GHK base
graphs kernels

These are aggregated into one kernel using a linear combination.
This is possible thanks to Multiple Kernel Learning (MKL)
which consists in finding the convex linear combinations of
kernels which optimizes the Support Vector Machine (SVM)
function (Rakotomamonjy et al., 2008, Aiolli and Donini, 2015).
Other kernel types were briefly experimented, namely the Lovasz
¥, Graphlet Sampling, Subgraph Matching and Shortest Path
kernels. However, they did not yield any valuable results, mostly
failing numerically.

3.2 Height based features

A significant discrepancy between the model and measured depth
exhibits specific textures (Ennafii et al., 2019), suited for Scat-
Nets (Bruna and Mallat, 2013, Sifre and Mallat, 2013). The
height data can be fed directly to a ScatNet without requiring
any normalization or preprocessing. In fact, by construction,
these extractors can admit any type of 2D signal.

In practice, the residual maps have different sizes hAm X wm
depending on the input model. Consequently, concatenating
ScatNet coefficients into a single vector results in variable feature
vector dimensions. One solution is to resize all images at a
certain fixed size beforehand. However, this solution negatively
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(a) 3D model

(b) Border mask.

(c) Orthoimage. (d) RGB channels (3). (e) Early fusion:

deletion.

Figure 3. Early fusion scheme (deletion). Pixels that coincide
with the 3D model border mask are assigned the zero value.

impacted our preliminary results: this either looses valuable
structural information or adds undesired blur and it completely
deforms the input signal. The ’:T"/’I' ratio is not guaranteed to be

constant for all inputs resulting in squashed or elongated image.

Moreover, ScatNets yield a great deal of coefficients that can
easily surpass the number of training instances which hinders the
learning ability of any classifier. As a consequence, we propose
to add a function to help extract meaningful feature vectors with
the same length. To that end, for each scattering output, some
statistics are computed by applying the function:

X : I~ (max (1), min (1) ,mean (1) , median (1) , stdev (1)) .
“)

Stacking the results of these operations on all scattering outputs

guarantee a fixed size (5 x ns ) feature vector:

Total number of
scattering outputs

(vheignt (M)T = (x (So (Bm))) & (x (S1 (Rm, A1)y,
@ (X (S2 (Rm, A1, A2)))y, s -

1

&)

3.3 Image based features

ScatNets are well suited for edge detection as they use Morlet
wavelets for convolution operations (Zhang et al., 2007). As a
result, they are used to compare real images to edge masks.

Two options for image and mask fusion are possible: an early
and a late scheme. Both settings are later experimented and
compared (Section 4.2). The resulting images are then fed to
a ScatNet. Equation (4) is then applied so as to yield feature
vectors with the same dimensions per channel (5 X ng).

Deletion (early fusion) Pixels that coincide with the 3D
model border mask are assigned the zero value in the three

channels (Figure 3e). This results in an image I} € R"m*wm>*3,

Channel (late fusion) The 3D model border mask is simply
added to the orthoimage as a fourth channel (Figure 4e). This
results in an image I} € Rimxwmx4,

We end up with the following feature vector (5 X ng per channel):

(Uimage,o (M))T £ (X (SO (I’(\)/l))) @ (X (Sl (Ifﬂ’)‘l)))xl

(6)
g? X (S2 (IK’A,Al,)\z))MM )

where o = del/ch is the fusion option scheme.

(a) 3D model. (b) Border mask.

() Orthoimage (d) RGB channels (3) () Late fusion:

channel.

Figure 4. Late fusion scheme (channel). The mask indicating
the pixels that intersect the edges of the nadir projection of the
model is added as a fourth channel.

4. EVALUATION OF 3D CITY MODELS
4.1 Setup

4.1.1 Dataset Three urban areas are studied (Ennafii et al.,
2019): Elancourt, Nantes, and the XIII™ district of Paris (Paris-
13). The first scene is rich in terms of building diversity con-
taining residential areas with gable and hip roof buildings as
well as districs with large industrial flat roof buildings. Nantes
and Paris-13 reprensent a much denser urban setting where flat
roof high towers coexist with Haussmann style buildings that
typically exhibit highly fragmented roofs. Both these scenes
were merged into a single dataset Na-P13.

Building models were automatically obtained (Durupt and Tail-
landier, 2006). Thanks to a homegrown tool (proj.city), we
can project building models in the nadir direction and produce
the corresponding height maps. 3,235 building models were
manually annotated (2,007 and 1,226 for Elancourt and Na-
P13, resp.). Classes are highly imbalanced, resulting in poor
discrimination performances for rare labels with the baseline
presented in (Ennafii et al., 2019).

4.1.2 Implementation details The used DSMs and orthorec-
tified optical image have the same spatial resolution as the 3D
models (0.06 m and 0.1 m for Elancourt and Na-P13, resp.).
Two classifiers are used in these experiments: (1) RF with the
same parameters as in (Ennafii et al., 2019) and (2) a SVM clas-
sifier with a standard RBF kernel for ScatNet derived features.
Its parameters are set to C' = 0.1 and v = 0.001 following a grid
search. Regarding Multiple Kernel Learning (MKL), the already
implemented EasyMKL (Aiolli and Donini, 2015) approach is
adopted. Graph kernel attributes are implemented with the help
of a Python module called GraKel (Siglidis et al., 2018).

4.1.3 Feature configurations The representations showed
in Section 3 are compared to the baseline proposed in (Ennafii
et al., 2019). The added value of each proposed modality is
evaluated both individually and jointly, resulting in three feature
combinations.

(a) Intrinsic features only: graph kernels (KG) applied to build-
ing models are fed alone to the classifier.

(b) Baseline geometric features (G) coupled with ScatNet de-
rived ones. Starting with three possible configurations
in (Ennafii et al., 2019), added to the two options for Scat-
Net features, we end up with five extrinsic feature config-
urations: (i) intrinsic and height-based features (G ® SH);
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(ii) intrinsic and image-based features with deletion (G @
SdlI); (iii) intrinsic and image-based features with channel
(G @ Scl); (iv) all features with deletion (SdA), and (v) all
features with channel (ScA).

(c) All proposed features aggregated with EasyMKL, leading to
five additional extrinsic feature configurations: (i) intrinsic
and height-based features (KG @ SH); (ii) intrinsic and
image-based features with deletion (KG @ SdI); (iii) in-
trinsic and image-based features with channel (KG @ Scl);
(iv) all features with deletion (KSdA), and (v) all features
with channel (KScA).

4.2 Experimental results

We focus in this paper on the prediction power of these new
features and more importantly on the scalability of the quality
evaluation. Some labels being rare, we choose to report, for each
error label, the F-score as a prediction metric.

4.2.1 Prediction power In order to assess the prediction
power of this new representation, we conducted the so called
Vanilla experiments. It involves learning and testing on the
same urban zone with a 10-fold cross validation. As seen in
the previous section, there is a great number of possible com-
binations. To simplify the reasoning, we only focus on two
comparisons. In the first, only intrinsic features are used for
learning. In the second, we add the external modalities and
compare the best combination with this new representation to
the best one using the baseline of (Ennafii et al., 2019).

Intrinsic attributes Here, we compare graph kernels to the
baseline for intrinsic attributes (Figure 5). For context, we add
the F-scores obtained using the RMSE, as used in the state-of-
the-art, as a feature to predict errors on Elancourt (Ennafii et
al., 2019).
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Figure 5. Vanilla F-scores obtained with a SVM using graph
kernel features (colors). Hash bars: north east lines for SVM
baseline and north west lines for the RMSE.

Regarding Na-P13, all labels either record comparable F-scores
or better benefit from using graph kernels. On Elancourt, how-
ever, the BIT, FUS and FIG labels show poorer results. This is
due to the baseline intrinsic features overfitting to the learned
set as will be explained later in the discussion. The F-scores
obtained with RMSE are very weak with the exception of BOS,
FOS and FIG. This is simply due to the fact that these labels
are very frequent that the classifier predicts all instances to be
erroneous.

All attributes We add the extrinsic feature configurations ((b)
and (c) in Section 4.1) to the comparison. In order to compare
different configurations, only the best combinations, for each
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Figure 6. Best Vanilla F-scores out of all possible combinations
with our proposed feature extractors (colors). Hash bars: north
east lines for SVM and RF baseline and north west lines for the

RMSE.

label, are reported here for both feature extraction approaches
(Figure 6).

On Na-P13, there is no particular gain in using ScatNet with
extrinsic features. On Elancourt, it is almost the same case
except for BUS, FUS and FIB which benefits greatly from the
image modality (S*I). Moreover, especially for the last zone,
ScatNet based extrinsic attributes are more critical for error
detection compared to baseline ones. Additionally, Image based
features proved to be the most helpful overall. No clear pattern
could be detected trying to distinguish between both fusion
schemes.

Discussion Quality evaluation based solely on intrinsic fea-
tures hinges on finding significant statistical patterns in the train-
ing dataset. For instance, if one of two building models with
close feature representations is known to have certain errors then
the other will be predicted as having the same errors. This may
be true in the same urban scene but would not hold for larger
scales. Consequently, two situations are expected to occur. First
is that, no matter the used feature extractor being used, intrinsic
attributes would not help scale the quality evaluation. This is
studied later on in the next set of experiments. The second con-
sists in the fact that intrinsic features could easily overfit to some
false patterns. This could explain the mixed results of using
graph kernels compared to the baseline. In fact, one can suspect
that the baseline has overfitted on Elancourt as shown in Fig-
ure 5. This is further confirmed by the poor transferability of the
baseline intrinsic features as shown in (Ennafii et al., 2019).

Regarding extrisinc features, they usually yield: (i) the same
results as the baseline when these were good (>60 %); (ii) better
results otherwise. From a general perspective, using a ScatNet
did not improve largely the prediction power of the extrinsic
features on the same scene used for training.

4.2.2 Scalability of the evaluation process For the qual-
ity evaluation to be scalable, learned classifiers should have
sensibly the same prediction power on instances from different
urban scenes as on the ones from the same urban scene used
for learning. To that end, we conduct the Transferability
experiments, we train on one zone Z; and test on another one
Z;. The test results on Z; are then compared to the test results
of Vanilla experiments on the same zone. If transferable, the
Transferability test results on Z; should be at least as good
as the Vanilla test results. Ideally, these test results should de-
pend only on the number of instances in the training set and not
its origin. In fact, this would mean that annotating massively on
one well studied zone should suffice to predict on other unseen
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zones. In contrast, the baseline in (Ennafii et al., 2019) produced
mixed Transferability results and necessitates an annotation
step to adapt to new areas. As with the previous comparisons,
we report detailed comparisons using intrinsic attributes alone
as well as the best combinations using external modalities.

Intrinsic attributes Only graph kernel based representation
of models is compared here to the baseline (Figure 7).
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For Elancourt, a decrease in F-score is noted for BOS alone,
while BIT and FIB benefit from training on Na-P13. Training
on Elancourt proves to be beneficial for all Building errors
on Na-P13 but detrimental for Facet errors. This is due to
the fact that dense urban scenes are more suited for training Fa—
cet errors (but not Building errors), as already illustrated
in (Ennafii et al., 2019) with baseline features. Otherwise, in
general, F-scores prove to be more stable compared to the Trans-
ferability experiments conducted in (Ennafii et al., 2019).

Best combinations The combinations with the best Trans-
ferability results are reported here (Figure 8).
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In general, a better transferability is observed. In fact, regarding
Elancourt, except for FIB, training on Na-P13 yields the same
and even slightly better F-scores compared to training on the
same zone. For Na-P13, results are even more satisfactory: bet-
ter F-scores are obtained on Building errors, as previously,
albeit with a larger margin. On the other hand, we record either
a gain or stability in F-scores when training on Elancourt for
Facet errors. In addition, Not only are the Transferabil-
ity results good with the use of the proposed representation
(with the exception of FIB on Elancourt), but better F-scores
are achieved by training on different scenes than the baseline

Vanilla results. This is especially helpful with Na-P13, where
Building errors were difficult to detect.

Discussion As discussed earlier, the evaluation based on in-
trinsic features depend highly on the training scene. In fact, if
it were not the case, then test F-scores, when training on Elan-
court and testing on Na-P13 (which contains fewer samples
than the other scene), should be consistently higher than the
Vanilla test results on that same zone. This was obviously not
the case as Facet errors recorded lower test ratios while it
was the inverse situation for Building errors.

Extrinsic features on the other hand rely on comparing the 3D
model to real patterns measured from remote sensing data. As
a result, they are expected to transfer well from one scene to
the other. In fact, great improvements are observed for Na-P13
for almost all errors while test results are mostly stable when
transfering to the larger Elancourt set.

5. CONCLUSION

3D building models are pivotal in many applications, in which
they are transformed into 3D meshes. This leads to a lack of ef-
ficient representations of semantized models. As such, we have
proposed specific representations for such models that proved to
be efficient and, more importantly, transferable from one urban
environment to another. For that purpose, this representation
relied on applying graph kernels to intrinsic geometric attributes
of these models. In addition, ScatNets were also used to extract
extrinsic features by comparing the actual model to Very High
Resolution aerial images or height maps. We applied the quality
evaluation framework of 3D city models developed in (Ennafii et
al., 2019). Not only the proposed feature extractors yield better
results than the baseline on different scene types (especially for
rare classes), but also proves to be almost perfectly transferable
from one scene to another. The last point is an important issue
since error annotation is very resource intensive. Our solution
would help keeping this manual task to a minimum. This evalu-
ation framework along with the proposed representation could
be generalized to B-rep surfaces other than 3D building mod-
els. It could also be used for a automatic or interactive model
correction workflow in industrial applications.
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