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Marc Grossouvre* Didier Rullière�

Wednesday 24th August, 2022�

Abstract

This paper deals with three related problems in a geostatistical context. First, some data
are available for given areas of the space rather than for some point locations which creates
problems of multiscale areal data. Second, some uncertainties rely both on the input locations
and on measured quantities at these locations, involving uncertainty propagation problems.
Third, multidimensional outputs can be observed, with sometimes missing data. These
three problems are addressed simultaneously here by considering mixtures of multivariate
random �elds and by adapting standard Kriging methodology to this context. While the
usual Gaussian setting is lost, we show that conditional mean, variance and covariance can
be derived from this speci�c setting. Case studies are presented both with simulated data
and real data. In particular, we discuss the question of information loss in learning buildings
energy e�ciency.

Keywords� Mixture Kriging, granular data, multiscale processes, regional Kriging, area-to-point,
areal data, block Kriging, change of support, ecological inference, disaggregation.

1 Introduction

Spatial interpolation In the geostatistical �eld, spatial interpolation aims at predicting the value
of an output y(x) ∈ R that depends on an input x ∈ χ. The input x can be a geographical location
(χ = R2), or for instance an industrial design summarized by some parameters χ = Rd, d ∈ N∗). The
output y(x) can be any quantity of interest (pollution level, performance of a design, etc.), a real value
in the simplest case.

The output y(x) is not necessarily observed for all possible values of x in χ, because of lack of
measurement devices, of the �nancial cost of a physical experiment, or because of the time required to
run a computer experiment when y(.) is issued from computer simulation, as is the case for meteorological
general circulation models (GCM, see Lima et al. [2021]). The purpose is thus to infer the value of y(x)
for some value of x, given some observations {(xi, y(xi))}i=1,...,n. Many spatial interpolation techniques
are available (splines, inverse distance weighting, nearest neighbours, regression models, etc.). Among
these popular techniques, the Gaussian Process Regression is very well known; it is also known as Kriging,
with an optional release of the underlying Gaussian assumption. It models the di�erent possible values
of y(x) by a conditional Gaussian process Y (x) given Y (xi) = y(xi), i = 1, . . . , n. In the simplest case
where the unconditional (prior) process Y (.) is a Gaussian process with mean zero, the simple Kriging
predictor ends up in a (posterior) conditional Gaussian process having conditional Kriging mean and
covariance, for any x, x′ ∈ χ:{

E [Y (x)|Y (xi) = y(xi), i = 1, . . . , n] = h(x)
⊤
K−1y

Cov [Y (x), Y (x′)|Y (xi) = y(xi), i = 1, . . . , n] = k(x, x′)− h(x)
⊤
K−1h(x′)

(1)
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where y = (Y (xi))i=1,...,n ∈ Rn×1 is an observed column vector, and where all prior covariances at point
level are assumed to be known:

k(x, x′) := Cov [Y (x), Y (x′)] ∈ R
h(x) := (Cov [Y (xi), Y (x)])i=1,...,n ∈ Rn×1

K := (Cov [Y (xi), Y (xj)])i,j∈{1,...,n} ∈ Rn×n

and where K is assumed to be invertible.

We aim here at proposing a spatial prediction technique when some data are available for given areas
of the space, rather than for some speci�c locations. We also aim at handling uncertainties or noises
relying on both input locations x and outputs Y (x). At last we aim at considering multiple outputs,
where some components of the observed outputs can be missing. To achieve this goal, we extend classical
Kriging techniques to our new settings.

Literature There exists a vast literature dealing with predictions using areal data. Gotway and Young
[2002] have published a review of methods under the clever and paradoxical title �Combining Incompatible
Data�. The purpose of this review is to study an information that comes from a random �eld (either
continuous or discrete) but that is available at a block (i.e. regional) level only. Computing a block value
from the point �eld values is named aggregating data at block level. In general, additive variables such
as population are excluded, and the focus is put on variables such as densities (e.g. concentration in
mining context) for continuous �elds or individual measurements (e.g. the height of a tree). Behind the
seemingly diversity of methods, there is a constant approach: the observed output over an areal unit is
an average of random variables, so that it is assumed that aggregation means averaging values. Average
has a reduced dispersion as compared to point values. This is seen as positive but authors also note that
it induces some problems (see details in Subsection 2.2 ).

A major �eld of development for addressing change of support problem with Kriging, beside mining,
has been meteorological studies. Gelfand et al. [2001] have proposed a fully Bayesian approach to study
ozone (measured at point level) and its e�ects (measured at ZIP level). Although this model is quite
heavy to implement, we shall notice that the author rules out the mainstream approach that was to
study the variogram �approximating� a block by its centroid. Moreover, in their model, the considered
multivariate output is a time series.

Mathematically, a milestone has been set by in Kyriakidis [2004] with a complete Kriging model
including area-to-point and sketching area-to-area prediction. This work has been cited a large number
of times. Following that work, Goovaerts [2008] studies in depth the problem of estimating a variogram.
He shows that averaging reduces the sill of the variogram and tries to tackle this bias. Those results have
been successfully used by Poggio and Gimona [2015] for downscaling climate models and predicting soil
wetness. In the latter work, Kriging is applied on residuals of a generalized additive model (see Wood
[2017]) with a signi�cant added value. Many other papers deal with using area-to-point Kriging or disag-
gregation (see Kerry et al. [2013], Truong and Heuvelink [2013], Yoo and Kyriakidis [2006]), area-to-area
Kriging or block Kriging (see Zhang et al. [2018]), downscaling (see Jin et al. [2018], Pereira et al. [2018]).

Let us now detail identi�ed problems in the literature, regarding the averaging approach. As stated
before, a major impact of averaging random variables is the variance shrinkage of the average compared to
the initial random variables that are averaged. An abundant research literature is available that tries to
tackle the di�erent problems generated by the systematic averaging in areal Kriging models. Let us quote
�rst the Modi�able areal unit problem (MAUP, see the latest �ndings on this topic in Briz-Redón [2022]).
It appears in situations such as studying crop yields: from one year to the other, the set of agricultural
�elds to aggregate for a certain type of crop varies. However, the correlations between output variables is
strongly dependent on the aggregation process, making it impossible to compare correlations between two
di�erent years. We can also mention the ecological bias inference problem: correlations at individual level
are di�erent from correlations of averaged outputs at ecological (group level), lack of relevant information
about individuals position leads to bias when studying averaged information about individuals distributed
into areal units cross-classi�ed by other individual (point level) variables (sex, race). And according to
Gotway and Young: �The smoothing e�ect that results from averaging is the underlying cause of both
the scale problem in the MAUP and aggregation bias in ecological studies.� [Gotway and Young, 2002].
The speci�c issue of variance reduction at block level has been compensated to some extent in Li et al.
[2009] where a new method for covariance estimation is also proposed without integrating over a surface.
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Despite those limitations, it is important to recall that averaging has turned out to be quite powerful
for data suited to this kind of approach. In particular, satellite imaging has notably bene�ted from it. An
illustrative example of this is the pan-sharpening process that is �a technique to combine the �ne spatial
resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same
satellite to create a �ne spatial resolution multispectral image� Wang et al. [2016]. In this particular case,
averaging is weighted over the satellite pixel: weighting for the average computation is made according
to the distance with the centroid of the pixel. As in most articles we have consulted, aggregation is seen
as a weighted integral but these weights are not regarded as a law of probability on the block, therefore
ignoring some possible related statistics, and ignoring another potential source of stochastic dependence
between blocks.

It is interesting to note that in the vast literature discussing change of support problems, blocks (also
called areas) and points are considered as intrinsically di�erent objects. The classi�cation of problems
such as �area-to-point� or �area-to-area� expresses well this categorization. The typology of problems that
have been studied whether political Gotway and Young [2002] or medical Goovaerts [2006] for instance
seems to assume that data is available either at point level or at aggregated level, not both. However, in
most cases, there is no major di�culty in considering blocks made of a single point. Even if the distinction
is necessary at some point such as inferring a point support covariance, we propose in this paper a model
where learning and predicting can be from both aggregated and point support data. The notion of grain
is introduced to express this new approach. This is consistent with research realities where one would
like to be able to complement large aggregated open datasets with local observations. Similarly, blocks
are usually viewed as connected surface areas in R2 that need to be �discretized� ( Goovaerts [2008])
in order to make computations. But in many cases, actually in many problems, this strongly distorts
reality where population for instance is clearly a set of discrete points heterogeneously located on a block
(county, census tract...). The following concept of granular data makes no di�erence in nature between
a grain containing a continuous set of points or a discrete one.

Granular data Let us consider an input space over which is de�ned a �eld of multidimensional
random output variables. The speci�city we introduce is that outputs may be de�ned and observed both
for points of the input space and for some regions of this same input space. For instance, imagine that
some sociological variables (salaries, expenses, etc.) are available for di�erent geographical areas: cities,
regions, countries, etc. Later on, these areas will be called grains, and we will develop a speci�c Kriging
technique to handle this data. In this context, we refer to granular data and grains for these areas
of the input space. For such data, one is interested in de�ning a suitable data model that is able to
predict output variables for new inputs, be it points or grains. The underlying assumption in this work is
that there is some dependence between outputs based on the relative positions of the associated inputs.
Contrary to previous works presented in the litterature, we do not make any di�erence between observing
a grain or a point (no averaging), nor do we approximate a grain with its centroid. We do not make any
asumption on the grains shapes so much so that they can even be overlapping, partially or totally. And
we do not make any di�erence between making predictions on grains or points.

A possible application of this model is in the �eld of geographic information, for instance to handle
data that is released in open format by public or private institutions. Say for instance that a government
releases the distribution of inhabitants salaries at municipality level. A private company may try to use
this data to estimate the distribution of salaries at a smaller scale, say for a district in a city. And more
than that, this company may include in its model both this institutional data and some known salaries
at speci�c locations of the target territory. To handle this problem, we expose here a general Kriging
approach that generalizes the usual Simple or Ordinary (Co)Kriging techniques. This kind of granular
data is usual for satellite images for instance, in which case considered areas (grains) are very regular.
But data is often available at levels of details that are very irregular. For instance, in geographical �eld,
suppose that one has data for each municipality/county. It is a granularity with grains of very di�erent
shapes and sizes. They might even not be connected sets.

In the rest of the paper, we develop a model for the outputs that are available for di�erent regions of
the input space. These di�erent regions form what we call here a granularity.

Speci�c problems This situation of data being partially available at di�erent granularities is related
to the following mathematical problems.

(P1) First, this is a multiscale change of support problem. Some outputs are not available for points
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in the input space but only for some sets of input points (grains of inputs) of varying shapes and
sizes. One thus needs to create a model to describe the link between the output associated with
a single input (as usual random �eld model), and the output associated with a set of inputs. E.g.
if a salary is given for a given country, does this quantity represent an average or something else?
How is it connected with a salary at a speci�c site of the country?

(P2) Second, there is an uncertainty propagation problem. The speci�city of this kind of data creates an
underlying uncertainty on the output variables at a given point location, because the knowledge at
a larger scale derives from an aggregation of multiple locations: uncertainties depend both on the
input locations and on measured quantities at these locations, which propagates into prediction
uncertainty. Furthermore, modeling the uncertainty is also required to avoid some speci�c convexity
bias: a function evaluated at a random location has di�erent mean and variance than a function
evaluated at an averaged location. E.g. if a salary is given for a given country, surely this salary
must be considered random at a speci�c site, and resulting studies over a region should handle
carefully this randomness: applying a convex function on an average salary will not only result in
a loss of randomness, but also in a convexity bias as discussed further.

(P3) Third, there may be missing data. Multidimensional outputs can be incompletely observed: not
all the components of the outputs are observed. Hence a model able to handle multidimensional
outputs with missing components is needed. E.g. one can imagine having salary, life expectancy,
average taxes by cities, with life expectancy and/or salaries missing for some cities. We are most
interested in predicting these missing values. And in general, we are interested in predicting any
value of the output on any grain of our territory, even if this grain is restricted to a singleton. In
this matter, we want to avoid the trap of completing incomplete outputs with averaged values, thus
ignoring the data dispersion and possibly causing convexity bias as described in problem (P2).

What is done The originality of this paper is that it considers mixture random variables rather
than averaged random variables over areas. One can note that Kriging has been used successfully with
variables that are mixtures at point level (see for instance Lin et al. [2010]), but in our case, we make no
speci�c assumption on the distribution at point level. We build the aggregated information over areas
as mixtures. Averaging a large number of random variables lead to a reduction of the resulting variance,
whereas mixing a large number of random variable does not tend to reduce the variance. As a conse-
quence, the larger the considered area in our approach, the higher the uncertainty. We will show that this
approach is well suited to uncertainty propagation. One drawback is that mixtures of Gaussian random
variables are generally not Gaussian, so that the usual interpretations and conditioning on Gaussian
processes will not hold any more. The so-called Gaussian Process Regression (Williams and Rasmussen
[1996], Rasmussen and Williams [2006]) will have to be adapted to this new setting.

The paper structure is as follows: in Section 2, we present the formalization of the considered model
and how we can model data given on areas, uncertainty on this data, multidimensional outputs, and
missing outputs. In Section 3, we detail some prediction results to predict several outputs on speci�c areas.
At last, in Section 4 we give some numerical illustrations to show the usefulness and the performance of
the method.

2 Spatial model

2.1 Inputs

We model �rst the input locations in dimension d, in order to de�ne the studied territory and some of
its subsets.

De�nition 1 (Territory). Let d be a positive integer corresponding to a dimension. A territory and
grains inside this territory are de�ned as follows:

� A territory is a subset χ of Rd .

� A grain is any nonempty subset g ⊆ χ .

� A point is any element x ∈ χ .
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As an example, if points are modelled by a couple (latitude, longitude), then χ can be the set of all
(latitude, longitude) corresponding to a country, in that case d = 2 and χ ⊂ R2. A grain may correspond,
for example, to a speci�c city, to a speci�c land plot, or to a speci�c building. Previous Kriging models
refer to blocks or areas for sets of points that are disjoints and those authors are note interested in the
family itself (see for instance Kyriakidis [2004]). We develop in Appendix A some considerations about
those families that arise when relaxing the disjunction constraint.

In order to deal with several sets of grains, we also de�ne a granularity. This is not compulsory to
understand the model, but it may ease further applications. For instance, in geographic information,
granularities may be the set of land plots, the set of cities, the set of buildings, etc.

In many practical situations, considered grains may have non empty intersections. They may also
come from di�erent datasets, at di�erent scales. We have chosen below some de�nitions that help the
manipulation of these sets of grains, especially in problematic cases with non-empty intersections and
multiscale data. The construction of set of grains with empty intersections will follow in a natural way.

De�nition 2 (Granularities). In a given territory χ, a granularity G = {g1, g2, ...} is a �nite set of
grains, not necessarily pairwise distinct.

In Appendix A, we de�ne several tools useful to work with granularities: non-overlapping granularity,
granularity order, insertion operator, maximal non-overlapping granularity.

2.2 Outputs

We now aim at de�ning variables that can be observed at a speci�c point x ∈ χ as well as at the scale of
a grain.

At each input location x ∈ χ, the outputs Y(x) may represent, say, the insulation level of a building,
the households income, the square meter price, the building'energy e�ciency... We consider here p ∈ N∗

output variables. At a larger scale, it is di�cult to specify what should represent the outputs over a
whole space, e.g. over a city. We will detail it in this section.

De�nition 3 (Outputs). Let G be a granularity. The outputs are de�ned over points and grains of G as
follows:

� Y is a p-dimensional multivariate random �eld over χ denoted:

∀x ∈ χ, Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈ Rp

� For each g ∈ G, a p-dimensional real random vector Y(g) is de�ned to be the value of Y at a
random location Xg ∈ g:

∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

For a given granularity G, we assume that the set of random variables {Xg : g ∈ G}, is de�ned
and known, and that the dependence structure between those random variables is also known. We
assume furthermore that these random variables are independent from the random �eld Y.

The above de�nition gives a speci�c answer to the problem (P1) in the introduction. Other models
can be found in the literature. It is common to use averaged variables to describe outputs over a larger
scale, e.g. the average household income over a city Ȳ(g) :=

∫
g
Y(x)dFg(x) with a suitable cumulative

distribution function Fg, possibly discrete (see for instance Equation (1) in Gotway and Young [2002]
or in Kyriakidis [2004] for equally weighted linear combination, i.e. uniformly distributed Fg). How-
ever, such an approach has some drawbacks. Firstly, it reduces the dispersion of the variable as the
scale grows. Secondly, the application of any highly convex function h would induce a large bias, as
E [h(Y(g))] ̸= h (E [Y(g)]). The average value is mostly interesting as an unbiased estimator of the ex-
pectation, precisely because its dispersion is small but it strongly shrinks the dispersion which has some
adverse e�ects. Indeed, underestimating the dispersion of an output random variable is an adverse e�ect
when we plan to feed a machine learning algorithm with this data. Such an algorithm would be jeopar-
dized by an averaged variable resulting in predicting a unique value instead of explaining the variance
of the dataset. Let us take life-expectancy for instance, the averaged value might be very similar from
one city to another but with very di�erent dispersions, hiding social inequalities. In addition, convexity
bias is a problem when we transform variables or build composite indicators. We can illustrate those
problems as follows:

5



 Mixture and average exp(mixture) and exp(average)

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

de
ns

ity
Variable

 Average

 Mixture

Figure 1: Comparison of mixture and average. Left: Density of a mixture Ymixture picking Ya with probability 1
3

and picking Yb with probability 2
3
(blue plain line), and density of the average Yaverage = 1

3
Ya + 2

3
Yb (red dashed

line), where Ya ∼ N(−1, 0.8) and Yb ∼ N(1, 0.5). The common mean of both distributions appears as a vertical
line. The mixture is no longer Gaussian and exhibits a higher dispersion. Right: Density of exp(Ymixture) (blue
plain line), and density of exp(Yaverage) (red dashed line). The two di�erent means appear as vertical lines. The
dispersion of the exponential of the mixture is higher than the one of the average, and the di�erence between
both means illustrates the convexity bias

� E�ects on dispersion Let us assume that we have a grain g = {xi : i ∈ J1, nK}, p = 1 and
consider mutually independent r.v. ∀i, Y(xi) ∼ N (µ, σ2) for given µ and σ. The average of
those variables (usually called sample mean) is Ȳ(g) := 1

n

∑n
i=1 Y(xi) ∼ N (µ, σ2

n ). Considering a
discrete uniform distribution for Xg, the mixture variable is following the same law as any point of
the grain: Y(Xg) ∼ N (µ, σ2). This is precisely what one would expect when assessing for instance
the salaries distribution over a territory knowing the distribution at a smaller scale.

� Convexity bias Consider now i.i.d. random variables ∀i ∈ J1, nK, Y(xi) ∼ U(a, b) (uniform
distribution on [a, b]) for given a, b ⩾ 0. We de�ne h(x) := x2 and Ȳ(g) := 1

n

∑n
i=1 Y(xi) When

n grows, h
(
Ȳ(g)

)
depends upon n and quickly converges towards h

(
a+b
2

)
= a2+2ab+b2

4 . However,

Y(Xg) ∼ U(a, b) does not depend on n and E [h(Y(Xg))] =
a2+ab+b2

3 , resulting in a bias:

E [h(Y(Xg))]− E
[
h
(
Ȳ(g)

)]
−→

n→+∞

(b− a)2

12
= E [h(Y(x1))]− h (E [Y(x1)])

In this case, taking the averaged variable Ȳ(g) instead of Y(Xg) would result not only in loosing
most of the dispersion of h(Y(Xg)) but also in underestimating its mean, as E [h(Y(Xg))] >
h
(
E
[
Ȳ(g)

])
.

We compare mean and mixture distributions of two Gaussian random variables in Figure 1. Mean
and mixture have same expectation 1/3 but their dispersion is di�erent (Figure 1, left). The application
of a convex function accentuates this dispersion di�erence, but also creates a di�erences between the
expectations, which is called here the convexity bias (Figure 1, right).

The originality of the present work is to use mixtures to de�ne {Y(g) : g ∈ G}. At the scale of a
grain g, Y(g) is de�ned to be equal to Y(Xg) the value of Y at a random location Xg ∈ g. If the joint
distribution of {Xg ∈ χ : g ∈ G} is known, then the joint distribution of Y(g) will be deduced. Or at
least, if the moments of order one and cross moments of order two of {Xg ∈ χ : g ∈ G} exist and are
known, then one would be able to determine expectation and cross covariances of {Y(g) : g ∈ G}. In
the rest of the paper, we assume that �rst two moments of {Xg ∈ χ : g ∈ G} and {Y(g) : g ∈ G} exist.

In the following proposition, we show that if means and covariances ofY(x) are known, then mean and
covariances of Y(g) can be computed. This will help in particular addressing the uncertainty propagation
problem (P2) in the introduction.
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Proposition 1 (Mean and covariances of Y(g)). From De�nition 3, we derive the following results:

(i) For any grain g ∈ G and any index i ∈ J1, pK , assuming that for all x ∈ g we know µi(x) := E [Yi(x)],
we have:

µi(g) := E [Yi(g)] = E [µi(Xg)] (2)

(ii) For any two grains g, g′ in G and any two indices i, j ∈ J1, pK, assuming that for all x ∈ g, x′ ∈ g′

we know ki,j(x, x
′) := Cov [Yi(x), Yj(x

′)], we have:

ki,j(g, g
′) := Cov [Yi(g), Yj(g

′)] = E [ki,j(Xg, Xg′)] + Cov [µi(Xg), µj(Xg′)] (3)

In particular, ki,i(g, g) = Cov [Yi(g), Yi(g)] = V [Yi(g)] = E [ki,i(Xg, Xg)] + V [µi(Xg)].

Proof. (i) is a direct application of the conditional expectation formula where Yi(g) is the result of
conditioning Yi(x) with Xg. (ii) derives from the conditional covariance (variance) formula, after
conditioning by the joint random vector (Xg, Xg′) (random variable Xg).

For example, {Xg ∈ χ : g ∈ G} can be mutually independent random variables. The distribution
of each Xg can be assumed to be uniform over a subset of g, whether it is a continuous or discrete
distribution, so that all quantities in Equations (2) and (3) can be computed easily, for all g, g′ ⊂ G.

Note that Cov [µi(Xg), µj(Xg′)] = 0 in the case where µi(x) is constant over any one of the grains g
or g′ or in the case where Xg and Xg′ are independent. Also note that this framework yields the expected
result that if a grain is restricted to a point, then the output of this grain is the same as the output of
the underlying point.

Remark 1 (Comparison with average � block-to-block covariances). De�ne Ȳi(g) = E [Yi(Xg)|{Yi(x), x ∈ g}] =∫
g
Yi(x)dFg(x), with Fg the cdf of the (possibly discrete) random variable Xg, i ∈ J1, pK. One can check

that with this setting the mean of the mixture Yi(g) and the average Ȳi(g) are identical:

E [Yi(g)] = Ȳi(g) .

For the covariances, when Xg and Xg′ are two independent random variables, one can check that

E [ki,j(Xg, Xg′)] = Cov
[
Ȳi(g), Ȳj(g

′)
]

However
E [ki,j(Xg, Xg)] ̸= Cov

[
Ȳi(g), Ȳj(g)

]
because the independence assumption does not hold any more. Finally, V [Yi(g)] ̸= V

[
Ȳi(g)

]
, even in

the speci�c case where ∀i, j, g, g′, Cov [µi(Xg), µj(Xg′)] = 0. One retrieves here the di�erence between a
mixture and an average, where the mixture can exhibit a higher dispersion.

Note that it has been proved that reducing a grain to its centroid is distorting the covariances as
compared to taking into account its shape and size, even if grains are of same shape and size. See for
instance Goovaerts [2008] for a discussion on this issue through distances between grains. Distortion is
increased for short distances which are precisely the interesting ones for covariances. Using centroids
can also become a non-sense since centroids may very well lie outside the grain itself for non-convex
grains. The cost of ruling out such an approximation is that in certain cases, we will have to estimate
the point-support covariance from only aggregated observations.

Remark 2 (Comparison with average � aggregation e�ect). Let g and g′ be two non-overlapping grains
(i.e. g ∩ g′ = ∅). From the two distributions of Xg and Xg′ , one can de�ne a mixture r.v. Xg∪g′ .
From Xg∪g′ , one can thus build Y(Xg∪g′) as a mixture of Y(Xg) and Y(Xg′). From Ȳ(g) and Ȳ(g′),
one can also build Ȳ(g ∪ g′), but the latter aggregation, which uses average, creates many problems. As
presented in the introduction, this has been discussed in Gotway and Young [2002]. The modi�able areal
unit problem (MAUP) is focused on the aggregation e�ect and it turns out that correlation between output
variables at grain level is modi�ed in a controllable way when aggregating grains (aggregation e�ect) due
to �the smoothing e�ect that results from averaging� Gotway and Young [2002]. A quanti�cation method
for the MAUP has been recently proposed by Briz-Redón [2022] .

In the Example 1 below, one investigates the impact of overlapping granularities. In many cases, the
overlaps impact is limited. In situations where this impact can be important, one can use the construction
of non-overlapping granularity presented in Proposition 5 (see Appendix A).

7



Example 1 (Overlapping granularity). Consider two overlapping grains g and g′, with nonempty inter-
section g0 = g ∩ g′. We want to compare the situation where Xg is dependent on Xg′ with a situation of
independence.

� Case of dependence. We de�ne random locations Xg0 , Xg\g0 , Xg′\g0 and two Bernoulli random
variables B and B′. We assume that those �ve random variables are mutually independent. Let:{

Xg = BXg0 + (1−B)Xg\g0
Xg′ = B′Xg0 + (1−B′)Xg′\g0

(4)

� Case of independence. We introduce here X⊥
g0 an independent copy of Xg0 , independent from Xg0 ,

Xg\g0 , Xg′\g0 , B and B′. Let:{
Xg = BXg0 + (1−B)Xg\g0
X⊥

g′ = B′X⊥
g0 + (1−B′)Xg′\g0

(5)

Let ∆ be the covariance di�erence due to the dependence structure of Xg and Xg′ ,

∆ := Cov
[
Yi(Xg), Yj(X

⊥
g′ )

]
− Cov [Yi(Xg), Yj(Xg′)] . (6)

Then setting ρmax = sup {|ki,j(x, x)− ki,j(x, x
′)| : x ∈ g0, x

′ ∈ g0}, assuming that

∀x ∈ g ∪ g′,

{
µi(x) = µi(g) = µi(g

′)

µj(x) = µj(g) = µj(g
′)

one can show that:
|∆| ≤ P [B = B′ = 1]P

[
Xg0 ̸= X⊥

g0

]
ρmax . (7)

The variation due to the common dependence structure on the overlap can be signi�cant if all of the
three factors are not negligible. This shows in particular that overlapping grains are not too problematic,
when means are identical, if the probability of selecting the intersection g0 for both grain is small, or if
the probability of selecting di�erent points in the intersection is small.

Proof of the results in Example 1. Under given assumptions on the means µi and µj , Applying the total
covariance formula on Cov

[
Yi(Xg), Yj(X

⊥
g′ )

]
and Cov [Yi(Xg), Yj(Xg′)], we get

∆ = E
[
Cov

[
Yi(Xg), Yj(X

⊥
g′ )|(B,B′)

]]
− E [Cov [Yi(Xg), Yj(Xg′)|(B,B′)]] ,

and the di�erence is non zero in the only case where B = B′ = 1, so that using independence,

∆ = P [B = B′ = 1]
(
E [Cov [Yi(Xg0), Yj(Xg0)]]− E

[
Cov

[
Yi(Xg0), Yj(X

⊥
g0)

]])
The parenthesis vanishes in any conditional cases where X⊥

g0 = Xg0 , and in other cases, the conditional
di�erence is bounded by ρmax , hence the result.

3 Prediction

To de�ne our learning data we now assume that the output is partially known on a set of grains:
For (i1, . . . , in) ∈ J1, pKn and g1, . . . , gn ∈ G we know n random variables:

Y = (Y 1, . . . , Y n)
⊤

with Y j = Yij (gj) for j ∈ J1, nK

As an example, if k observations of the whole random vector Y(gj) are conducted for j ∈ J1, kK, then
setting n = k · p allows storing the whole available information:

Y = (Y1(Xg1), . . . , Yp(Xg1), . . . , Y1(Xgj ), . . . , Yp(Xgj ), . . . , Y1(Xgk), . . . , Yp(Xgk))
⊤
. (8)

If some observations are incomplete, that is to say some components of Ygj are missing for some j,
then Y will be a subvector of Y as given in Equation (8). The problem (P3) in the introduction can thus
be treated easily with this formalism.
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We want to predict the output Y(g) for a new grain g ⊂ χ. Note that in the speci�c case where this
new grain is reduced to a single location g = {x}, this prediction corresponds to the one of Y(x). As
Y(g) = (Y1(g), . . . , Yp(g))

⊤, the problem amounts to predicting Yi(g) for all i ∈ J1, pK.
For some g ⊂ χ and some i ∈ J1, pK, we want to predict Yi(g) from a learning set of observations

Y.
We denote:

µ := E [Y] ∈ Rn

K :=
(
Cov

[
Y j , Y j′

])
j,j′∈J1,nK

∈ S+
n (R) semi-de�nite positiven× nmatrix

hi(g) :=
(
Cov

[
Y j , Yi(g)

])
j∈J1,nK ∈ Rn

In the following, we assume that K is invertible. Note that if the expectations of Yi(x) and covari-
ances between Yi(x) and Yj(x

′) are known for all i, j ∈ J1, pK, x, x′ ∈ χ, as is the cas in usual Kriging
assumptions, µ, K and hi(g) can be computed using Proposition 1 .

We look for the optimal weights αi(g) =
(
α1
i (g), . . . , α

n
i (g)

)
∈ Rn associated with the best linear

unbiased predictor Mi(g) of Yi(g) such that:

Mi(g) =

n∑
j=1

αj
i (g)Y

j = αi(g)
⊤
Y . (9)

where the model is optimized by minimizing a quadratic error over all unbiased linear predictors:

αi(g) ∈ arg min
α∈Rn

E
[(
Yi(g)−α⊤Y

)2]
(10)

Given the optimal predictor Mi(g), the resulting errors are denoted:
ϵi(g) := Yi(g)−Mi(g)

ci,j(g, g
′) := E [ϵi(g) ϵj(g

′)]

vi(g) := ci,i(g, g)

(11)

Remark 3 (Spaces of linear unbiased predictors). It is interesting for the understanding of the problem
to give it a geometrical approach. Let us denote Fi(g) the set of linear unbiased predictors of Yi(g) given
an observation vector Y. With previous notations, it means that:

Fi(g) =
{
α⊤Y : µi(g) = α⊤µ

}
And similarly, we denote:

F :=
{
α⊤Y : α ∈ Rn

}
F0 :=

{
α⊤Y : α⊤µ = 0

}
One can note that F0 is a subspace of F of dimension dim(F ) − 1. Moreover F0 + Fi(g) = Fi(g),

meaning that Fi(g) is an a�ne subspace of F having F0 for underlying vector space. But it also means
that some spaces are parallel:

∀i, j ∈ J1, pK, ∀g, g′ ∈ χ, Fi(g) ∥ Fj(g
′)

Now, given that we are minimizing the quadratic error between Yi(g) and Mi(g) which can be seen
as a distance, the optimization process is geometrically a projection of Yi(g) on Fi(g). This approach is
illustrated in Figure 2.
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Figure 2: Geometrical interpretation of the prediction process.

The following proposition gives an optimal predictor that can be computed under the minimal assump-
tions of Proposition 1: given the �rst two moments of random variables {Xg : g ∈ G}, all components
of µ, K and hi(x) can be computed.

Proposition 2 (Mixture Kriging prediction). Given a set of observations Y, for any g ⊂ χ, and in
particular for a single point g = {x}, for any i ∈ J1, pK, the weights αi(g) yielding the best linear unbiased
predictor (BLUP) of Yi(g) and the associated cross errors are as follows:

(i) Simple Mixture Kriging. If µ = (0, . . . , 0)
⊤
and µi(g) = 0 then{

αi(g) = K−1hi(g)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′)

(ii) Ordinary mixture Kriging. If µ ̸= (0, . . . , 0)
⊤

then the condition for unbiasedness writes

µi(g) = αi(g)
⊤
µ and αi(g) = K−1

(
hi(g) + λi(g)µ

)
where λi(g) =

µi(g)−µ⊤K−1hi(g)

µ⊤K−1µ

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ

Proof. For given i ∈ J1, pK and g ⊆ χ, let Mα = α⊤Y be a linear predictor of Yi(g), where α =
(α1, . . . , αn) is a vector of weights, and denote the associated error vi(g,α) := E

[
(Yi(g)−Mα)

2
]
, then:

vi(g,α) = E
[(
α⊤Y − Yi(g)

)2]
= E

[
α⊤YY⊤α− 2Yi(g)α

⊤Y + Yi(g)
2
]

= α⊤Kα+α⊤µµ⊤α− 2α⊤ (
hi(g) + µµi(g)

)
+ V [Yi(g)] + µi(g)

2 .

(i) If µ = (0, . . . , 0)
⊤ and µi(g) = 0 then

vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .

By di�erentiation over each component of α,

∂vi(g,α)

∂α
:=

(
∂vi(g,α)

∂αj

)
j∈J1,pK

= 2Kα− 2hi(g) .

Without constraints, this value should be null at any extremum, and thus the optimal vector of
weights is

αi(g) = K−1hi(g) .

Since K is symmetric positive, this only extremum is a minimum.
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(ii) If µ ̸= (0, . . . , 0)
⊤ then the condition for unbiasedness writes µi(g) = α⊤µ by linearity of expecta-

tion.

vi(g,α) rewrites again:
vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .

We introduce the Lagrangian operator:

L(α, λ) = vi(g,α)− 2λ(α⊤µ− µi(g)) .

We are minimizing a quadratic function over a single a�ne equality constraint. A necessary opti-
mality condition is:

∂L
∂α

(α, λ) = 0 ,

that is to say:
2Kα− 2hi(g)− 2λµ = 0 ,

and therefore the optimal weights are

αi(g) = K−1(hi(g) + λµ) .

The unbiasedness condition is:

µ⊤(K−1(hi(g) + λµ)) = µi(g) ,

so that

λi(g) =
µi(g)− µ⊤K−1hi(g)

µ⊤K−1µ
.

Therefore this only solution is a minimum of vi(g,α).

Let us consider now the cross-errors:

ci,j(g, g
′) = E [(Yi(g)−Mi(g)) (Yj(g

′)−Mj(g
′))] .

Due to unbiasedness condition, it means that:

ci,j(g, g
′) = Cov [Yi(g)−Mi(g), Yj(g

′)−Mj(g
′)]

= Cov [Yi(g), Yj(g
′)]− Cov [Yi(g),Mj(g

′)]− Cov [Mi(g), Yj(g
′)] + Cov [Mi(g),Mj(g

′)]

= Cov [Yi(g), Yj(g
′)]− Cov

[
Yi(g),αj(g

′)
⊤
Y
]
− Cov

[
αi(g)

⊤
Y, Yj(g

′)
]
+Cov

[
αi(g)

⊤
Y,αj(g

′)
⊤
Y
]
.

Which rewrites:

ci,j(g, g
′) = ki,j(g, g

′)−αj(g
′)
⊤
hi(g)−αi(g)

⊤
hj(g

′) +αi(g)
⊤
Kαj(g

′) . (12)

Note that equation (12) is true for any linear unbiased predictor.
Which, in the case of simple mixture Kriging, simpli�es into:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) .

And in the case of ordinary mixture Kriging:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ .

The expressions of vi(g) = ci,i(g, g) in both cases follow immediately.

Remark 4 (Ordinary Mixture Kriging and mean estimation). Regarding ordinary mixture Kriging,

assuming that all random variables Yi(g) have the same unknown expectation, setting 1n = (1, . . . , 1)
⊤
,

we have:

αi(g) = K−1

(
hi(g) +

1− 1n
⊤K−1hi(g)

1n
⊤K−11n

1n

)
,
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and setting

m̂(g) :=
1n

⊤K−1Y

1n
⊤K−11n

,

we can write:

Mi(g) = m̂(g) + hi(g)
⊤
K−1(Y − 1nm̂(g)) ,

therefore m̂(g) is an unbiased estimator of the unknown common expectation. m̂ can be compared with

usual sample mean for independent observations Y = 1n
⊤Y

1n
⊤1n

.

Proposition 3 (Noisy observations). Let us consider the case where for a given x ∈ χ we can only
observe Ỹi(x) = Yi(x) + ϵi(x) where ϵi(x) is independent from any Yj(x

′). We denote the resulting noisy
outputs, observations and covariances:

Ỹi(g) := Ỹi(Xg) = Yi(g) + ϵi(g)

Ỹ j := Ỹij (Xgj ) = Y j + ϵj

ηi,j(x, x
′) := Cov [ϵi(x), ϵj(x

′)]

Then covariance between 2 grains outputs is:

k̃i,j(g, g
′) := Cov

[
Ỹi(g), Ỹj(g

′)
]
= ki,j(g, g

′) + E [ηi,j(Xg, Xg′)]

Therefore observations covariance matrix writes:

K̃ :=
(
Cov

[
Ỹ j , Ỹ j′

])
j,j′∈J1,nK

K̃ = K+
(
Cov

[
ϵj , ϵj

′
])

j,j′∈J1,nK

K̃ = K+Kϵ

And covariance vector between observations and a new grain writes:

h̃i(g) :=
(
Cov

[
Y j + ϵj , Yi(g) + ϵi(g)

])
j∈J1,nK

h̃i(g) = hi(g) +
(
E
[
ηij ,i(Xgj , Xg)

])
j∈J1,nK

h̃i(g) = hi(g) + hϵ,i(g)

Typically, we can assume that E [ηi,j(Xg, Xg′)] = 1{i=j}1{g=g′}ηi,i(g, g). In which case Kϵ is a
diagonal matrix and hϵ,i(g) is null as long as g is not among the observed grains.

Remark 5 (Gaussian Singleton case). Assume that {Y(x) : x ∈ χ} is a vector-valued Gaussian random
�eld and that each Xg is Dirac distributed. This last condition holds in particular when each grain is
restricted to one singleton point. In this Gaussian case, one retrieves the usual Simple Kriging and
Ordinary Kriging predictors, as de�ned for example in Rasmussen and Williams [2006]. This remark
also holds for the next Proposition 4. In this sense, the Mixture Kriging results presented here can be
seen as a generalization of the usual Kriging interpolation.

Proposition 4 (Cross-errors and conditional covariances). Consider the assumption

(A) : ∀i ∈ J1, pK, ∀g ∈ G, Mi(g) = E [Yi(g)|Y] .

This is for example the case when {Y(x) : x ∈ χ} is a vector-valued Gaussian random �eld and when
each Xg is Dirac distributed (see Remark 5). In this setting, under assumption (A), one can show that
cross errors for both Simple Mixture Kriging and Ordinary Mixture Kriging are

ci,j(g, g
′) = E [Cov [Yi(g), Yj(g

′)|Y]] . (13)

If Cov [Yi(g), Yj(g
′)|Y] does not depend on Y, as it is the case for conditional Gaussian vectors,

Equation (13) simpli�es: E [Cov [Yi(g), Yj(g
′)|Y]] = Cov [Yi(g), Yj(g

′)|Y].
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Proof. The proof uses a classical approach on orthogonality of Best Linear Unbiased Predictors. It is
presented here in three steps. The proof can be simpli�ed in the Simple Mixture Kriging setting.

� First, given the notations introduced in Remark 3, let δ ∈ F0 be a non-zero vector and β a real
number.

Let Mβ
i (g) := Mi(g) + β δ ∈ Fi(g). Recall that ϵi(g) := Yi(g)−Mi(g) and vi(g) := E

[
(ϵi(g))

2
]
.

We have:

E
[
(Yi(g)−Mβ

i (g))
2
]
= vi(g)− 2βE [ϵi(g) δ] + β2E

[
δ2
]
.

The minimum value of this polynomial expression is reached for:

β0 =
E [ϵi(g) δ]

E [δ2]
.

Since the only optimal point is Mi(g), M
β0

i (g) = Mi(g) and therefore β0 = 0. As a consequence,
as both E [ϵi(g)] = 0 and E [δ] = 0:

∀δ ∈ F0, ∀i ∈ J1, pK, ∀g ∈ χ, E [ϵi(g) δ] = Cov [ϵi(g), δ] = 0 . (14)

From a geometrical point of view it is equivalent to say that the inner product of the error and
any vector of F0, such as the di�erence of any linear unbiased predictors of Yj(g

′), is null. This
approach can be found for example in Aldworth [1998], section 4.5.1. page 122, in the case of
ordinary Kriging on a stationary process.

� Now, let δ and δ′ be any two vectors of F0. As a consequence of the previous result in Equation (14),
we have:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] =ci,j(g, g

′) + 0 + 0 + Cov [δ, δ′] (15)

� On the other hand, using the conditional covariance formula, we have:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = E [Cov [ϵi(g) + δ, ϵj(g

′) + δ′ | Y]] + Cov [E [ϵi(g) + δ |Y],E [ϵj(g
′) + δ′ |Y]]

Given a Y, the random variables δ, δ′, Mi(g) and Mj(g
′) are constant, so that the �rst term is

E [Cov [ϵi(g) + δ, ϵj(g
′) + δ′ | Y]] = E [Cov [Yi(g), Yj(g

′) | Y]].

Furthermore, we have assumed in Assumption (A) that Mi(g) = E [Yi(g)|Y] and Mj(g
′) =

E [Yj(g
′)|Y], therefore E [ϵi(g)|Y] = E [ϵj(g

′)|Y] = 0 and:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = E [Cov [Yi(g), Yj(g

′) | Y]] + Cov [δ, δ′] (16)

Identifying the equations (15) and (16), we get the expected result.

Note that the uncertainty relying on each Xg can be propagated to Y through Proposition 1, and
then to the prediction of Yg over each grain g ∈ G through Propositions 2 , 3 or 4, using vi(g) = ci,i(g, g).
This answers the problem(P2) presented in the introduction.

4 Numerical illustrations

The numerical use cases provided here show that mixture Kriging can be applied to solve some uncer-
tainty propagation problems. First, we use test functions. Then we use real data to show how mixture
Kriging can improve existing state of the art Kriging models. In this last example, we also present an
approach to optimize parameters. We have developped a mixture kriging package in R language. It also
allows �tting a classical Kriging model (case where grains are restricted to points).
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4.1 With simulated data: rounded inputs

A common issue for those who feed statistical models with real data is the question of data accuracy. In
this example we assume that input data is rounded to the nearest unit. We observe the consequences on a
classical Kriging model versus a mixture Kriging model. In the following example, visualized in Figure 3,
we draw 6 observations at 0.55, 0.85, 7.20, 3.00, 3.45, 9.40 from a simulated uniform centered gaussian
random �eld Y (x) de�ned for x ∈ [1, 10] (200 points). Observed x values are rounded to the nearest unit
1, 1, 7, 3, 3, 9 before feeding the models. The 3 �rst observations are picked to train a model which
is used to make predictions. In other words, we forget the underlying simulation and now assume that
Y (x) is conditioned by the observations number 1, 2, 5. A gaussian kernel is used. Nugget e�et and
lengthscale are optimized with a particle swarm optimization algorithm (R package hydroPSO) predicting
the output on the 3 other observed points/grains (3, 4, 6) and mean squared error is minimized.

Classical Kriging Point observations are possible, not grains. Therefore x = 1 and x = 3 are
observed twice each, while x = 7 and x = 9 are observed once each. Classical Kriging (Figure 3 right)
can not handle repeated observations if not adding a nugget e�ect for covariance matrix inversibility.
Meaning that uncertainty on the input value is seen by design as an uncertainty on the output value. As
a result, nugget e�ect is over-estimated and prediction (green line) is �attened along the random �eld
mean value and prediction uncertainty (con�dence band) is very large.

Mixture Kriging Grains [0.5, 1.5[ and [2.5, 3.5[ are observed twice each while grains [6.5, 7.5[ and
[8.5, 9.5[ are observed once each. Mixture Kriging model (Figure 3 left) can handle repeated observations
by design. Uncertainty on the input is a result of observing a grain on a random position. See the way
grain covariances are computed from point covariance in Proposition 1. In that case, nugget e�ect is not
overestimated, mean prediction variability is greater than in classical Kriging and prediction uncertainty
is smaller.

Classical Kriging, without grains definition Mixture Kriging, with grains definition

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

−5.0

−2.5

0.0

2.5

5.0

x

y

y_type

prediction +− 2 sd(error)

y_type

observations

predictions

true

Figure 3: E�ect of rounded inputs on Kriging. Left and right Blue line labelled �true� shows a simulated uniform
random �eld of variance 5 and lengthscale 3. Left: Red line segments show 6 grain observations. Grains are
intervals of length 1. Green line shows mixture Kriging model after optimizing mean squared error. Right Red
dots show 6 point observations of this �eld for 6 values of x that are rounded to the nearest unit. Green line
labelled �predictions� shows classical Kriging model after optimizing mean squared error. Left and right Pink
ribbon shows an interval of radius twice the estimated error standard deviation.

4.2 With simulated data: Uncertainty on input data

Imagine an industry, providing some manufactured objects. The company aims at measuring some per-
formance indicators Y(x) of a manufactured object, depending on a design x ∈ χ: e.g. it can measure
the lift of an aircraft wing, depending on a speci�c design (described by some shape parameters). But
some uncertainties may rely on the design, as a constructed object has slightly di�erent characteristics
from the theoretical design. Thus, the constructed design can be considered as a random vector Xgx ,
taking values in some tolerance set gx ⊂ χ around the design x ∈ χ (as such it is a generalization of
the previous example). As a consequence, when testing di�erent possible designs x1, . . . , xk, the industry
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observes Y(g1), . . . ,Y(gk). Testing a new possible design can be costly, so that �nding the best design
requires to get a prediction of both the expectation and the variance of Y(x), for each considered new
possible design x ∈ χ. In this setting, for the sake of simplicity, we assume that Y(x) is conditioned by
Y(x) = yreference(x) at observation points x1, . . . , xk. Starting from given covariances between points, we
have built the grain covariances of Proposition 1. In a second step, we have built the predictor presented in
Proposition 2 . The results appear in Figures 4 , 5 and 6 . The setting details are given in �gures captions.

In Figure 4 (left), grains are restricted to singletons therefore classical Kriging results are retrieved.
When grains are not restricted to singletons in Figure 4 (right), the uncertainty on the input is propa-
gated to the output, so that both Kriging mean and con�dence intervals are a�ected. In particular, the
Kriging mean is no more interpolating.

In Figure 5, we illustrate the situation of varying grain sizes and resulting e�ect on uncertainty. It
appears, as one would expect, that the wider the grains, the higher the uncertainty. One can also check
that the centroid of the grain is not su�cient to model the behavior of the response: the latter depends
on the size of the grain. Reducing a grain to its centroid would end up in a very di�erent model. The
reader may refer to Goovaerts [2006] to �nd a fully developped model where grains are restricted to their
centroid (area-to-area Kriging).

In Figure 6, we illustrate the possibility of integrating aggregated data with pointwise observations.
We suppose that we know the expectation and variance of y on some given grains. We feed the model
not only with point observations but also with grains observations which values are the means of yreference
on the grains. The points covariance matrix K is completed with a diagonal block containing grains
variances. We observe a great reduction of prediction uncertainty in the second case: the con�dence
band on the right plot is thinner than the left one. The Kriging mean is also modi�ed near x = 0.

+

+
+

+

+

+

+
+

+

+

1 point per grain 3 points per grain

0 1 2 3 4 0 1 2 3 4

−1

0

1

x

y

value

kriging mean

reference y

point

+ random point

interval

mean+−2*sd.err

Figure 4: Comparison of classical simple Kriging and mixture simple Kriging. Left: Reference function yreference
(dashed line) is observed at 5 points without uncertainty on the value of x. We �nd the usual results on simple
Kriging, in particular predictions (solid line) are interpolating. Right: For each observation, x is an unknown
random value among 3 possible values xi, xi + r, xi − r. Predictions are not interpolating any more. We also
observe that the estimated standard deviation of the error on y is slightly increased between the grains. Details:

In this example, yreference(x) = sin(x2), covariance is Gaussian with σ = 0.5 and θ = 0.3, Xg is discrete uniform
on each grain, r = 0.1.
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Figure 5: Varying grain sizes and e�ect on uncertainty. Reference function y (solid line) is observed at 5 grains
of di�erent sizes. We observe that predictions uncertainty is growing when the grain size is growing. Details: In
this example, yreference(x) = sin(x2), covariance is Gaussian with σ = 0.5 and θ = 0.3, Xg is continuous uniform
on each grain.
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Figure 6: E�ect of knowing aggregated information on a grain. Left: Ordinary Kriging in its classical form, with
grains restricted to points. Right: In addition to the observations on points, we assume that we know expectation
and variance of y over 4 grains. We integrate this data both as new observations evaluated to expectation value on
the grains but also with added variance on the diagonal of the covariance matrix K. Details: Reference function
is a simulation of a Gaussian process with Gaussian covariance (σ = 0.4, θ = 0.6), expectation of y being 1−0.2x,
Xg is discrete uniform on the grains.
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4.3 With real data: building energy e�ciency

Due to climate changes and energy crisis, it is a major concern for governements be it national or regional,
to assess the buildings energy e�ciency. In France, URBS enterprise has to address this issue for its
customers. Given the fact that only 15% to 20% of housing buildings have been diagnosed for energy
e�ciency in the last decade, it has to �nd new approaches to make large scale predictions of buildings
energy e�ciency. It is well known in litterature and by experts that buildings age is a major source of
information to assess energy e�ciency (see for instance Ballarini et al. [2017]). Among several important
variables identi�ed in the literature, we focus on the age for the sake of illustration and readability.
However we must keep in mind �rst that this variable �year of construction� de�nes an age rounded to
the nearest unit and second that a building may consist of dwellings that have been built at di�erent
times. The rounding e�ect is particularly important for very recent buildings, built in a period of constant
and fast legal changes. The second phenomonenon is more important for old buildings which may have
been extended at some point in their life. Even recent works (see for instance Schetelat et al. [2020])
ignore both facts resulting in information loss.

We try to improve the use of construction year to predict buildings energy e�ciency which is measured
as an energy consumption given in kWh/m2/year (kilowatt-hour per square meter and per year). In
a �rst model, say M1, we associate each building in Auvergne-Rhône-Alpes (AURA � one of France's
regions) with a single construction year. Common use is to pick the most recent one but it could be any
statistic. A construction year di�erence of 10 years in the 21st century may have a high impact on the
energy e�ciency while it has almost no impact in the 19th century. For this reason �year of construction�
values have been shrinked to [0, 1] using ranks, then normalized on R using standard normal quantiles.
Same transformation is made on energy e�ciency values for similar reasons. We model energy e�ciency
as a random �eld on R (normalized year of construction). This �eld is observed on a discrete set of values
(year of construction rounded to the nearest unit and normalized). We �t a classical simple Kriging
model that is optimized with R package DiceKriging which is a commonly used package for standard
Kriging. We assume that covariance kernel is Matérn 3/2 and estimate associated variance, lengthscale
and nugget e�ect.

In a second model, say M2, we associate each building with a set of intervals of length 1 hereby
de�ning a granularity. Each grain of this granularity consists of one or more intervals of length 1. If a
grain has 2 or more intervals, it is called a compound grain. A random position is de�ned on those grains
so that it is uniform on each interval and when a grain contains multiple intervals, the probability to be on
one interval or the other is proportional to the associated surface area of dwellings in the building. Energy
e�ciencies that have been measured by technicians are seen as observations of these grains. Construction
year and energy e�ciency are normalized as described above. We �t a mixture Kriging model that is
optimized on a grid of parameters values for variance, lengthscale and nugget e�ect. We assume that
covariance kernel is Matérn 3/2.

From the energy e�ciency, one can derive a label ranging from A to G. Our end goal is to improve the
balanced accuracy of those labels prediction. The balanced accuracy is the mean value of the percentage
of good predictions for each label.

Validation process We pick 500 grains randomly among the observed grains. We collect all 1570
observations on those grains. This is the training set for M1. The same observations are used for training
M0. Optimization is conducted with cross validation where split is de�ned grouping all observations of
a grain in a same subgroup. Once optimized, the resulting model is used to predict the output on a
validation set built similarly with 250 new grains (690 observations).

Characteristics of M0 and M1 are detailed in Table 1. Both models have a similar estimated value for
variance. As expected from simulations, the classical model M0 overestimates the nugget e�ect, resulting
in a large rmse as compared toM1. Validation balanced accuracy is slightly improve when using mixtures.
And most of the improvement is concentrated on compound grains. It appears that mixture Kriging is
able to value information given by compound grains when this same information is partially lost in M0.
Note that since we use only one input variable in this illustration, we can not expect a much greater
balanced accuracy. We are currently working on a detailed model with more variables and di�erent kind
of data such as anonymized census data.
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M1 M2

Optimized

parameters

variance 0.258 0.260

lengthscale 0.031 0.262

nugget e�ect 0.717 0.010

Validation

performances

energy e�ciency rmse ↓ 164 89

balanced accuracy ↑ 17.9% 19.3%

balanced accuracy restricted to

compound grains ↑ 17.5% 23.4%

Table 1: Classical simple Kriging versus mixture simple Kriging performances on real data. ↓: the lower the
better, ↑: the greater the better.

5 Conclusion

In this work we have introduced a new setup based on granularities, able to model input data uncertainty
with mixture distributions. We have shown that it is possible to derive from this data model a best linear
unbiased predictor which is also able to assess the prediction error. The conditions to apply this mixture
Kriging model is to be able to compute the covariance between output variables at 2 di�erent points of
the territory. We have treated here the case where the output variable has constant expectation over the
territory. We have presented some potential use cases of this model. We have applied this model to real
data with success to catch extra information that is available in raw data but partially lost in state of
the art current models. We plan to apply it on larger datasets with multiple variables. We also study
the possibility to develop a similar model with Universal Kriging.
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A Appendix: Operations on granularities

In the course of our research, we started studying some granularities available in our databases and their
relations/classi�cations: e.g. what is the relation between the set of land plots and the set of census
tracts? We also thought about ways to build non-overlapping granularities from existing granularities.
This lead us to the de�nitions of the following concepts.

De�nition 4 (Non-overlapping granularity). A granularity G is said to be non-overlapping when all
intersections of grains are empty: ∀g, g′ ∈ G, g ∩ g′ = ∅.

De�nition 5 (Granularity order). The granularity order G ≤ H, or equivalently H ≥ G, holds for two
granularities G and H under the following condition:

G ≤ H ⇔ ∀g ∈ G,

{
g ∈ ∪

h∈H
h

and ∀h ∈ H, g ∩ h ∈ {∅, g}

G is said to be thinner than H, or equivalently H coarser than G. In particular, G ≤ H implies that
any grain of G is a subset of at least one grain in H, but it also implies that a grain of G does not partly
overlap a grain of H.

Relation ≤ is transitive on the set of granularities de�ned on χ. It de�nes of partial order on this
set.

Proposition 5 (Non-overlapping granularities). De�ne an insertion operator ⊕, for any non-overlapping
granularity G and any grain h by:

G ⊕ {h} :=

{
g0 : g0 ̸= ∅ and g0 ∈ {g ∩ h : g ∈ G} ∪ {g \ h : g ∈ G} ∪

{
h \ ∪

g∈G
g

}}
.

This operator ⊕ adds a partition of the grain h to the non-overlapping granularity G, while ensuring that
G ⊕ {h} is non-overlapping and has the same union of grains as h ∪

⋃
g∈G

g.

Then we have:

(i) For any non-overlapping granularity G and grain h, the resulting granularity is thinner than G∪{h}:

G ⊕ {h} ≤ G ∪ {h} .

(ii) For any non-overlapping granularity G and grains h, h′, the insertion order does not matter:

(G ⊕ {h})⊕ {h′} = (G ⊕ {h′})⊕ {h} .

(iii) Among the granularities that are thinner than a �nite granularity G = {g1, . . . , gn}, there is a
unique maximal non-overlapping granularity G⊕ and we can construct it iteratively with the
insertion operator.

G⊕ := {g1} ⊕ . . .⊕ {gn} . (17)

This granularity is a non-overlapping granularity such that G⊕ ≤ G, and it is maximal, in the
sense that any other non-overlapping G′ that is thinner than G is also thinner than G⊕: G′ ≤ G ⇒
G′ ≤ G⊕.

Proof. � Let us prove the item (i)
Let us prove that G⊕{h} ≤ G∪{h}. Let g+ ∈ G⊕{h} and g′ ∈ G∪{h}. It is clear by construction
that g+ ∈ ∪

g∈G∪{h}
g. Moreover:

g+ = g ∩ h or g+ = g \ h or g+ = h \ ∪
g∈G

AND g′ ∈ G or g′ = h

One can prove that in all 6 di�erent combined cases, either g+ ∩ g′ = g+ or g+ ∩ g′ = ∅.
As a consequence, G ⊕ {h} ≤ G ∪ {h}.
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� Let us prove the item (ii).
Let g2 ∈ (G ⊕ {h})⊕ {h′} then:

(A) ∃g1 ∈ G ⊕ {h}, g2 = g1 ∩ h′ or (B) ∃g1 ∈ G ⊕ {h}, g2 = g1 \ h′ or (C) g2 = h′ \ ∩
g∈G⊕{h}

g

Let g1 ∈ G ⊕ {h} then:

(a) ∃g0 ∈ G, g1 = g0 ∩ h or (b) ∃g0 ∈ G, g1 = g0 \ h or (c) g1 = h \ ∪
g∈G

g

(Aa) g2 = g0 ∩ h ∩ h′ =g0 ∩ h′ ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Aa)
(Ab) g2 = (g0 \ h) ∩ h′ =(g0 ∩ h′) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Ba)
(Ac) g2 = (h \ ∪

g∈G
g) ∩ h′ =(h′ \ ∪

g∈G
g) ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Ac)

(Ba) g2 = (g0 ∩ h) \ h′ =(g0 \ h′) ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Ab)
(Bb) g2 = (g0 \ h) \ h′ =(g0 \ h′) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Bb)
(Bc) g2 = (h \ ∪

g∈G
g) \ h′ =h \ ∪

g∈G⊕{h′}
g ∈(G ⊕ {h′})⊕ {h}, see case (C)

(C) g2 = h′ \ ∪
g∈G⊕{h}

g =(h′ \ ∪
g∈G

g) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Bc)

For cases (Bc) and (C), we used the fact that ∪
g∈G⊕{h}

g = h ∪ ∪
g∈G

g.

� Let us prove the item (iii)
Note that due to item (ii), G⊕ does not depend on the indexing order of the grains composing G.
Moreover, due to item (i), {g1} ⊕ {g2} ≤ {g1, g2} and by recurrence, G⊕ ≤ G.
Now let us prove that for any non-overlapping granularity H, any granularity G, any grain g0:

G ≤ H ∪ {g0} ⇒ G ≤ H⊕ {g0}

Suppose G ≤ H∪{g0}. Let g ∈ G and g+ ∈ H⊕{g0}, taking into account thatH is non-overlapping:

(A) ∃h ∈ H : g ⊂ h ∩ g0 or (B) ∃h ∈ H : g ⊂ h \ g0 or (C) g ⊂ g0 \ ∪
h∈H

h

and (a) ∃h′ ∈ H : g+ = h′ ∩ g0 or (b) ∃h′ ∈ H : g+ = h′ \ g0 or (c) g+ = g0 \ ∪
h∈H

h

In cases Ab, Ac, Ba, Bc, Ca, Cb, we have g ∩ g+ = ∅. In cases Aa and Bb, if h = h′ then
g ∩ g+ = g, otherwise g ∩ g+ = ∅. In case Cc, g ∩ g+ = g. Therefore in either case, g ∩ g+ ∈ {g, ∅}
and G ≤ H ⊕ {g0}.

When a non-overlapping granularity is needed, one can thus use Proposition 5 and build G⊕ directly
from any �nite granularity G, possibly overlapping. However, we will see in the rest of the paper that the
proposed model is also suited for overlapping granularities.

When two data sources are available, relying on two granularities G and H it can also be convenient
to de�ne G ⊕ H := (G ∪ H)⊕ to get a non-overlapping resulting granularity allowing to work with both
data sources. As an example, if an information is given at the level of a grid reference system G, and
also at a level of urban areas H, it may be convenient to build all intersection areas by this way. The
Proposition 5 gives a simple way to do so, even in more complicated situations where both G and H are
overlapping granularities.
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Figure 7: Thinner granularity and maximal thinner non-overlapping granularity. Left: The granularity compris-
ing the 5 green grains (solid lines) is thinner than the granularity comprising the 3 red grains (dashed lines).
Right: The granularity comprising 7 non overlapping green grains is the maximal non-overlapping granularity
that is thinner than the red granularity on the left.
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