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Abstract

This paper deals with three related problems in a geostatistical context. First, some data are
available for given areas of the space, rather than for some speci�c locations, which creates speci�c
problems of multiscale areal data. Second, some uncertainties rely both on the input locations and
on measured quantities at these locations, which creates speci�c uncertainty propagation problems.
Third, multidimensional outputs can be observed, with sometimes missing data. These three problems
are addressed simultaneously here by considering mixtures of multivariate random �elds, and by
adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we
show that conditional mean, variance and covariances can be derived from this speci�c setting. A
numerical illustration on simulated data is given.

Keywords�Mixture Kriging, granular data, multiscale processes, regional Kriging, area-to-point, areal data,
block Kriging, change of support, ecological inference, disaggregation.

1 Introduction

Spatial interpolation In the geostatistical �eld, spatial interpolation aims at predicting the value of an
output y(x) ∈ R that depends on an input x ∈ χ. The input x can be a geographical location (with, say, χ = R2),
or for instance an industrial design summarized by some parameters (with χ = Rd, d ∈ N∗). The output y(x) can
be any quantity of interest (pollution level, performance of a design, etc.), a real value in the simplest case.

The output y(x) is not necessarily observed for all possible values of x in χ, because of lack of measurement
devices, of the �nancial cost of a physical experiment, or because of the time required to run a computer experiment
when y(.) is issued from computer simulation, as is the case for meteorological general circulation models (GCM,
see Lima et al. [2021]). The purpose is thus to infer the value of y(x) for some value of x, given some observations
{(xi, y(xi))}i=1,...,n. Many spatial interpolation techniques are available (splines, inverse distance weighting,
nearest neighbours, regression models, etc.). Among these popular techniques, the Gaussian Process Regression
is very well known; it is also known as Kriging, with a possible release of the underlying Gaussian assumption.
It models the di�erent possible values of y(x) by a conditional Gaussian process Y (x) given Y (xi) = y(xi),
i = 1, . . . , n. In the simplest case where the unconditional (prior) process Y (.) is Gaussian with mean zero, the
simple Kriging predictor ends up in a (posterior) conditional Gaussian process having conditional Kriging mean
and covariance, for any x, x′ ∈ χ:{

E [Y (x)|Y (xi) = y(xi), i = 1, . . . , n] = h(x)>K−1y

Cov [Y (x), Y (x′)|Y (xi) = y(xi), i = 1, . . . , n] = k(x, x′)− h(x)>K−1h(x′)
(1)

where y = (Y (xi))i=1,...,n ∈ Rn×1 is an observed column vector, and where all prior covariances at point level are
assumed to be known: 

k(x, x′) = Cov [Y (x), Y (x′)] ∈ R
h(x) = (Cov [Y (xi), Y (x)])i=1,...,n ∈ Rn×1

K = (Cov [Y (xi), Y (xj)])i,j∈{1,...,n} ∈ Rn×n

and where K is assumed to be invertible.

We aim here at proposing a spatial prediction technique when some data are available for given areas of the
space, rather than for some speci�c locations. We also aim at handling uncertainties or noises relying on both
input locations x and outputs Y (x). At last we aim at considering multiple outputs, where some components of
the outputs can be missing. To achieve this goal, we extend classical Kriging techniques to our new settings.
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Granular data In this paper, we consider an input space over which is de�ned a �eld of multidimensional
random output variables. The speci�city we introduce is that outputs may be de�ned and observed not only
for points of the input space but also for some regions of this same input space: for instance, imagine that
some sociological variables (salaries, expenses, etc.) are available for di�erent geographical areas: cities, regions,
countries, etc. Later on, these areas will be called grains, and we will develop a speci�c Kriging technique to
handle this data. In this context, we refer to granular data and grains for these areas of the input space. For
such data, one is interested in de�ning a suitable data model that is able to predict output variables for new
inputs, be it points or grains. The underlying assumption in this work is that there is some form of dependence
between outputs based on the relative positions of the associated inputs.

A possible application of this model is in the �eld of geographic information, for instance to handle data
that is released in open format by public or private institutions. Say for instance that a government releases the
distribution of inhabitants salaries at municipality level. A private company may try to use this data to estimate
the distribution of salaries at a smaller scale, say for a district in a city. And more than that, this company
may include in its model both this institutional data and some known salaries at speci�c locations of the target
territory.

To handle this problem, we expose here a general Kriging approach that generalizes the usual Simple or
Ordinary (Co)Kriging techniques.

This kind of data is usual for satellite images for instance, in which case data is very regular. But data is
often available at levels of details that are very irregular. For instance, in geographical �eld, suppose that one has
data for each municipality/county. It is a granularity with grains of very di�erent shapes and sizes. They might
even not be connected sets.

In the rest of the paper, we develop a model for the outputs that are available for di�erent regions of the
input space. These di�erent regions consists in what we call here a granularity.

Speci�c problems This situation of data being partially available at di�erent granularities is related to the
following mathematical problems.

(P1) First, this is a multiscale change of support problem. Some outputs are not available for points in the input
space but only for some sets of input points (grains of inputs) of varying shapes and sizes. One thus needs
to create a model to describe the link between the output associated with a single input (as usual random
�eld model), and the output associated with a set of inputs. E.g. if a salary is given for a given country,
does this quantity represent an average or something else? How is it connected with a salary at a speci�c
site of the country?

(P2) Second, there is an uncertainty propagation problem. The speci�city of this kind of data creates an under-
lying uncertainty on the output variables at a given point location, because the knowledge at a larger scale
derives from an aggregation of multiple locations: uncertainties depend both on the input locations and
on measured quantities at these locations, which creates uncertainty propagation problems. Furthermore,
modeling the uncertainty is also required to avoid some speci�c convexity bias: a function evaluated at a
random location has di�erent mean and variance than a function evaluated at an averaged location. E.g.
if a salary is given for a given country, surely this salary must be considered random at a speci�c site, and
resulting studies over a region should handle carefully this randomness: applying a highly convex function
on an average salary will not only result in a loss of randomness, but also in a convexity bias as discussed
and illustrated below in Figure 2.

(P3) Third, there may be missing data. Multidimensional outputs can be incompletely observed: not all the
components of the outputs are observed. Hence a model able to handle multidimensional outputs with
missing components is needed. E.g. one can imagine having salary, life expectancy, average taxes by cities,
with life expectancy and/or salaries missing for some cities. We are most interested in predicting these
missing values. And in general, we are interested in predicting any value of the output on any grain of
our territory, even if this grain is restricted to a singleton. In this matter, we want to avoid the trap of
completing incomplete outputs with averaged values, thus ignoring the data dispersion and possibly causing
convexity bias as described in problem (P2).

Literature There exists a vast literature dealing with the prediction using areal data. Gotway and Young [2002]
have published a review of methods under the clever and paradoxical title "Combining Incompatible Data". The
purpose of this review is to study an information that comes from a random �eld (either continuous or discrete)
but that is available at a block (i.e. regional) level only. Computing a block value from the point �eld values
is named aggregating data at block level. In general, additive variables such as population are excluded, and
the focus is put on variables such as densities (e.g. concentration in mining context) for continuous �elds or
individual measurements (such as the height of a tree). Behind the seemingly diversity of methods, there is a
constant approach: the observed output over an areal unit is an average of random variables, so that it is assumed
that aggregation means averaging values. On the one hand, average is seen as positive as its dispersion is reduced
as compared to point values; but on the other hand, it is clearly noted that averaging induces some problems, as
we detail later on.
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A major �eld of development for addressing change of support problem with Kriging, beside mining, has been
meteorological studies. Gelfand et al. [2001] have proposed a fully Bayesian approach to study ozone (measured
at point level) and its e�ects (measured at ZIP level). Although this model is quite heavy to implement, we shall
notice that the author rules out the mainstream approach that was to study the variogram "approximating" a
block by its centroid. Moreover, in their model, the considered multivariate output is a time series.

Mathematically, a milestone has been set by in Kyriakidis [2004] with a complete Kriging model including
area-to-point and sketching area-to-area prediction. This work has been cited a large number of times. Following
that work, Goovaerts [2008] studies in depth the problem of estimating a variogram. He shows that averaging
reduces the sill of the variogram and tries to tackle this bias. Those results have been successfully used by Poggio
and Gimona [2015] for downscaling climate models and predicting soil wetness. In the latter work, Kriging is
applied on residuals of a generalized additive model (see Wood [2017]) with a signi�cant added value. Many other
papers deal with usage of area-to-point Kriging or disaggregation (see Kerry et al. [2013], Truong and Heuvelink
[2013], Yoo and Kyriakidis [2006]), area-to-area Kriging or block Kriging (see Zhang et al. [2018]), downscaling
(see Jin et al. [2018], Pereira et al. [2018]).

Let us now detail identi�ed problems in the literature, regarding the averaging approach. As stated before,
a major impact of averaging random variables is the variance shrinkage of the average compared to the initial
random variables that are averaged. An abundant research literature is available that tries to tackle the di�erent
problems generated by the systematic averaging in areal Kriging models. Let us quote �rst the Modi�able areal
unit problem (MAUP). It appears in situations such as studying crop yields: from one year to the other, the
set of agricultural �elds to aggregate for a certain type of crop varies. However, the correlations between output
variables is strongly dependent on the aggregation process, making it impossible to compare correlations between
two di�erent years. We can also mention the ecological bias inference problem: correlations at individual level
are di�erent from correlations of averaged outputs at ecological (group level), lack of relevant information about
individuals position leads to bias when studying averaged information about individuals distributed into areal
units cross-classi�ed by other individual (point level) variables (sex, race). And according to Gotway and Young:
"The smoothing e�ect that results from averaging is the underlying cause of both the scale problem in the MAUP
and aggregation bias in ecological studies." [Gotway and Young, 2002]. The speci�c issue of variance reduction at
block level has been compensated to some extent in Li et al. [2009] where a new method for covariance estimation
is also proposed without integrating over a surface.

But it is also important to recall that averaging has turned out to be quite powerful for data suited to this
kind of approach. In particular, satellite imaging has notably bene�ted from it. An illustrative example of this
is the pan-sharpening process that is "a technique to combine the �ne spatial resolution panchromatic (PAN)
band with the coarse spatial resolution multispectral bands of the same satellite to create a �ne spatial resolution
multispectral image" Wang et al. [2016]. In this particular case, averaging is weighted over the satellite pixel:
weighting for the average computation is made according to the distance with the centroid of the pixel. As in
most articles we have consulted, aggregation is seen as a weighted integral but these weights are not regarded as a
law of probability on the block, therefore ignoring some possible related statistics, and ignoring another potential
source of stochastic dependence between blocks.

It is interesting to note that in the vast literature discussing change of support problems, blocks (also called
areas) and points are considered as intrinsically di�erent objects. The classi�cation of problems such as "area-
to-point" or "area-to-area" expresses well this categorization. The typology of problems that have been studied
whether political Gotway and Young [2002] or medical Goovaerts [2006] for instance seems to assume that data is
available either at point level or at aggregated level, not both. However, in most cases, there is no major di�culty
in considering blocks made of a single point. Even if the distinction is necessary at some point such as inferring
a point support covariance, we propose in this paper a model where learning and predicting can be from both
aggregated and point support data. The notion of grain is introduced to express this new approach. This is
consistent with research realities where one would like to be able to complete large aggregated open datasets with
local observations.

Similarly, blocks are usually viewed as connected surface areas in R2 that need to be "discretized" ( Goovaerts
[2008]) in order to make computations. But in many cases, actually in many problems, this strongly distorts
reality where population for instance is clearly a set of discrete points heterogeneously located on a block (county,
census tract...). In this paper, we make no di�erence in nature between a grain containing a continuous set of
points or a discrete one.

What is done The originality of this paper is that it considers mixture random variables rather than aver-
aged random variables over areas. One can note that Kriging has been used successfully with variables that are
mixtures at point level (see for instance Lin et al. [2010]), but in our case, we make no speci�c asumption on the
distribution at point level. We build the aggregated information over areas as mixtures. Averaging a large num-
ber of random variables lead to a reduction of the resulting variance, whereas mixing a large number of random
variable does not tend to reduce the variance. As a consequence, as we detail later on, the larger the considered
area in our approach, the higher the uncertainty. We will show that this approach is well suited to uncertainty
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propagation. One drawback is that mixtures of Gaussian random variables are generally not Gaussian, so that
the usual interpretations and conditioning on Gaussian processes will not hold any more. The so-called Gaussian
Process Regression (Williams and Rasmussen [1996], Rasmussen and Williams [2006]) will have to be adapted to
this new setting.

The paper structure is as follows: in Section 2, we present the formalization of the considered model and how
we can model data given on areas, uncertainty on this data, multidimensional outputs, and missing outputs. In
Section 3, we detail some prediction results to predict several outputs on speci�c area. At last, in Section 4 we
give some numerical illustrations to show the usefulness and the performance of the method.

2 Spatial model

2.1 Inputs

We model �rst the input locations in dimension d, in order to de�ne the studied territory and some of its subsets.

De�nition 1 (Territory). Let d be a positive integer corresponding to a dimension. A territory and grains inside
this territory are de�ned as follows:

� The initial territory is a subset χ of Rd .

� A grain is any nonempty subset g ⊆ χ .

� A point is any element x ∈ χ .

As an example, if points are modelled by a couple (latitude, longitude), then χ can be the set of all (latitude, longitude)
corresponding to a country, in that case d = 2 and χ ⊂ R2. An grain may correspond, for example, to a speci�c
city, to a speci�c land register portion, or to a speci�c building. Previous Kriging models refer to blocks or areas
for sets of points that are disjoints and those authors are note interested in the family itself (see for instance
Kyriakidis [2004]). We develop hereafter some considerations about those families that arise when relaxing the
disjunction constraint.

In order to deal with several sets of grains, we also de�ne a granularity. This is not compulsory to understand
the model, but it may ease further applications. For instance, in geographic information, granularities may be
the set of registered lands, the set of cities, the set of buildings, etc.

In many practical situations, considered grains may have non empty intersections. They may also come from
di�erent datasets, at di�erent scales. We have chosen below some de�nitions that help the manipulation of these
sets of grains, especially in problematic cases with non-empty intersections and multiscale data. The construction
of set of grains with empty intersections will follow in a natural way.

De�nition 2 (Granularities and their ordering). In a given territory χ, granularities are de�ned and ordered as
follows:

� A granularity G = {g1, g2, ...} is a �nite set of grains, not necessarily pairwise distinct. The granularity
is said to be non-overlapping when all intersections of grains are empty: ∀g, g′ ∈ G, g ∩ g′ = ∅.

� The granularity order G ≤ H, or equivalently H ≥ G, holds for two granularities G and H under the
following condition:

G ≤ H ⇔ ∀g ∈ G,

{
g ∈ ∪

h∈H
h

and ∀h ∈ H, g ∩ h ∈ {∅, g}

G is said to be thinner than H, or equivalently H coarser than G. In particular, G ≤ H implies that any
grain of G is a subset of at least one grain in H, but it also implies that a grain of G does not partly overlap
a grain of H. One can check that G ≤ H implies furthermore G ≤ H ∪H′ for any granularity H′.
Relation ≤ is transitive on the set of all granularities de�ned on χ.

Proposition 1 (Non-overlapping granularities). De�ne an insertion operator ⊕, for any non-overlapping
granularity G and any grain h by:

G ⊕ {h} :=

{
g0 : g0 6= ∅ and g0 ∈ {g ∩ h : g ∈ G} ∪ {g \ h : g ∈ G} ∪

{
h \ ∪

g∈G
g

}}
.

This operator ⊕ adds a partition of the grain h to the non-overlapping granularity G, while ensuring that G ⊕ {h}
is non-overlapping and has the same union of grains as h ∪

⋃
g∈G

g.

Then we have:

(i) For any non-overlapping granularity G and grain h, the resulting granularity is thinner than G ∪ {h}:

G ⊕ {h} ≤ G ∪ {h} .
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Figure 1: Thinner granularity and maximal thinner non-overlapping granularity. Left: The granularity
comprising the 5 green grains (solid lines) is thinner than the granularity comprising the 3 red grains
(dashed lines). Right: The granularity comprising 7 non overlapping green grains is the maximal non-
overlapping granularity that is thinner than the red granularity on the left.

(ii) For any non-overlapping granularity G and grains h, h′, the insertion order does not matter:

(G ⊕ {h})⊕
{
h′
}

= (G ⊕
{
h′
}

)⊕ {h} .

(iii) Among the granularities that are thinner than a �nite granularity G = {g1, . . . , gn}, there is a unique
maximal non-overlapping granularity G⊕ and we can construct it iteratively with the insertion operator.

G⊕ := {g1} ⊕ . . .⊕ {gn} . (2)

This granularity is a non-overlapping granularity such that G⊕ ≤ G, and it is maximal, in the sense that
any other non-overlapping G′ that is thinner than G is also thinner than G⊕: G′ ≤ G ⇒ G′ ≤ G⊕.

Proof. The proof is given in Appendix

When a non-overlapping granularity is needed, one can thus use Proposition 1 and build G⊕ directly from any
�nite granularity G, possibly overlapping. However, we will see in the rest of the paper that the proposed model
is also suited for overlapping granularities.

When two data sources are available, relying on two granularities G and H it can also be convenient to de�ne
G ⊕ H := (G ∪ H)⊕ to get a non-overlapping resulting granularity allowing to work with both data sources. As
an example, if an information is given at the level of a grid reference system G, and also at a level of urban areas
H, it may be convenient to build all intersection areas by this way. The Proposition 1 gives a simple way to do
so, even in more complicated situations where both G and H are overlapping granularities.

2.2 Outputs

We now aim at de�ning variables that can be observed at a speci�c point x ∈ χ, as well as variables that will be
observed at the scale of a grain.

At each input location x ∈ χ, the outputs may represent, say, the insulation level of a building, the households
income, the square meter price, the building construction date... We consider here p ∈ N∗ output variables. At a
larger scale, it is di�cult to specify what should represent the outputs over a whole space, e.g. over a city. We
will detail it in this section.

De�nition 3 (Outputs). Let G be a granularity. The outputs are de�ned over points and grains of G as follows:

� Y is a p-dimensional multivariate random �eld over χ denoted:

∀x ∈ χ, Y(x) := (Y1(x), . . . , Yp(x))> ∈ Rp

� For each g ∈ G, a p-dimensional real random vector Y(g) is de�ned to be the value of Y at a random
location Xg ∈ g:

∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

For a given granularity G, we assume that the set of random variables {Xg : g ∈ G}, is de�ned and known,
and that the dependence structure between those random variables is also known. We assume furthermore
that these random variables are independent from the random �eld Y.

The above de�nition gives a speci�c answer to the problem (P1) in the introduction. Other models can be
found in the literature. It is common to use averaged variables to describe outputs over a larger scale, e.g. the
average household income over a city Ȳ(g) :=

∫
g
Y(x)dFg(x) with a suitable cumulative distribution function Fg,

possibly discrete (see for instance Equation (1) in Gotway and Young [2002] or in Kyriakidis [2004] for equally
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Figure 2: Comparison of mixture and average. Left: Density of a mixture Ymixture picking Ya with
probability 1

3 and picking Yb with probability 2
3 (blue plain line), and density of the average Yaverage =

1
3Ya + 2

3Yb (red dashed line), where Ya ∼ N(−1, 0.8) and Yb ∼ N(1, 0.5). The common mean of both
distributions appears as a vertical line. The mixture is no longer Gaussian and exhibits a higher dispersion.
Right: Density of exp(Ymixture) (blue plain line), and density of exp(Yaverage) (red dashed line). The two
di�erent means appear as vertical lines. The dispersion of the exponential of the mixture is higher than
the one of the average, and the di�erence between both means illustrates the convexity bias

weighted linear combination, i.e. uniformly distributed Fg). However, such an approach has some drawbacks.
Firstly, it reduces the dispersion of the variable as the scale grows. Secondly, the application of any highly convex
function h would induce a large bias, as E [h(Y(g))] 6= h (E [Y(g)]). The average value is mostly interesting as
an unbiased estimator of the expectation, precisely because its dispersion is small but it strongly shrinks the
dispersion which has some adverse e�ects.

Indeed, underestimating the dispersion of an output random variable is an adverse e�ect when we plan to
feed a machine learning algorithm with this data. Such an algorithm would be jeopardized by an averaged
variable resulting in predicting a unique value instead of explaining the variance of the dataset. Think about life-
expectancy, the averaged value might be very similar from one city to another but with very di�erent dispersions,
hiding social inequalities. In addition, convexity bias is a problem when we transform variables or build compos-
ite indicators. We would expect a certain stability of our process even if we apply some functions on the indicators.

� E�ects on dispersion Let us assume that we have a grain g = {xi : i ∈ J1, nK}, p = 1 and consider
mutually independent r.v. ∀i, Y(xi) ∼ N (µ, σ2) for given µ and σ. The average of those variables (usually

called sample mean) is Ȳ(g) := 1
n

∑n
i=1 Y(xi) ∼ N (µ, σ

2

n
). Considering a discrete uniform distribution for

Xg, the mixture variable is following the same law as any point of the grain : Y(Xg) ∼ N (µ, σ2). This
is precisely what one would expect when assessing for instance the salaries distribution over a territory
knowing the distribution at a smaller scale.

� Convexity bias Consider now i.i.d. random variables ∀i ∈ J1, nK, Y(xi) ∼ U(a, b) (uniform distribution
on [a, b]) for given a, b > 0. We de�ne h(x) := x2 and Ȳ(g) := 1

n

∑n
i=1 Y(xi) When n grows, h

(
Ȳ(g)

)
depends upon n and quickly converges towards h

(
a+b
2

)
= a2+2ab+b2

4
. However, Y(Xg) ∼ U(a, b) does not

depend on n and E [h(Y(Xg))] = a2+ab+b2

3
, resulting in a bias:

E [h(Y(Xg))]− E
[
h
(
Ȳ(g)

)]
−→

n→+∞

(b− a)2

12
= E [h(Y(x1))]− h (E [Y(x1)])

In this case, taking the averaged variable Ȳ(g) instead of Y(Xg) would result not only in loosing most of
the dispersion of h(Y(Xg)) but also in underestimating its mean, as E [h(Y(Xg))] > h

(
E
[
Ȳ(g)

])
.

The Figure 2 illustrates the di�erence between a mixture and an average of Gaussian random variables: even
when both have identical means (Figure 2, left), the mixture is no longer Gaussian and exhibits a higher variance.
The application of a convex function accentuates this dispersion di�erence, but also creates a di�erences between
the expectations, which is called here the convexity bias (Figure 2, right).

The originality of the present work is to use mixtures to de�ne {Y(g) : g ∈ G}. At the scale of a grain g,
Y(g) is assumed to be equal to Y(Xg) the value of Y at a random location Xg ∈ g. If the joint distribution of
{Xg ∈ χ : g ∈ G} is known, then the joint distribution of Y(g) will be deduced. Or at least, if the moments of
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order one and cross moments of order two of {Xg ∈ χ : g ∈ G} exist and are known, then one would be able to
determine expectation and cross covariances of {Y(g) : g ∈ G}. In the rest of the paper, we assume that �rst
two moments of {Xg ∈ χ : g ∈ G} and {Y(g) : g ∈ G} exist.

In the following proposition, we show that if means and covariances of Y(x) are known, then mean and covari-
ances of Y(g) can be computed. This will help in particular addressing the uncertainty propagation problem (P2)
in the introduction.

Proposition 2 (Mean and covariances of Y(g)). From De�nition 3, we derive the following results :

(i) For any grain g ∈ G and any index i ∈ J1, pK , assuming that for all x ∈ g we know µi(x) := E [Yi(x)], we
have :

µi(g) := E [Yi(g)] = E [µi(Xg)] (3)

(ii) For any two grains g, g′ in G and any two indices i, j ∈ J1, pK, assuming that for all x ∈ g, x′ ∈ g′ we know
ki,j(x, x

′) := Cov [Yi(x), Yj(x
′)], we have :

ki,j(g, g
′) := Cov

[
Yi(g), Yj(g

′)
]

= E [ki,j(Xg, Xg′)] + Cov [µi(Xg), µj(Xg′)] (4)

In particular, ki,i(g, g) = Cov [Yi(g), Yi(g)] = V [Yi(g)] = E [ki,i(Xg, Xg)] + V [µi(Xg)].

Proof. (i) is a direct application of the conditional expectation formula where Yi(g) is the result of conditioning
Yi(x) with Xg.
(ii) derives from the conditional covariance (variance) formula, after conditioning by the joint random vector
(Xg, Xg′) (random variable Xg).

For example, {Xg ∈ χ : g ∈ G} can be mutually independent random variables. The distribution of each Xg
can be assumed to be uniform over a subset of g, whether it is a continuous or discrete distribution, so that all
quantities in Equations (3) and (4) can be computed easily, for all g, g′ ⊂ G.

Note that Cov [µi(Xg), µj(Xg′)] = 0 in the case where µi(x) is constant over any one of the grains g or g′ or
in the case where Xg and Xg′ are independent. Also note that this framework yields the expected result that if
a grain is restricted to a point, then the output of this grain is the same as the output of the underlying point.

Remark 1 (Comparison with average � block-to-block covariances). De�ne Ȳi(g) = E [Yi(Xg)|{Yi(x), x ∈ g}] =∫
g
Yi(x)dFg(x), with Fg the cdf of the (possibly discrete) random variable Xg, i ∈ J1, pK. One can check that with

this setting the mean of the mixture Yi(g) and the average Ȳi(g) are identical:

E [Yi(g)] = Ȳi(g) .

For the covariances, when Xg and Xg′ are two independent random variables, one can check that

E [ki,j(Xg, Xg′)] = Cov
[
Ȳi(g), Ȳj(g

′)
]

However
E [ki,j(Xg, Xg)] 6= Cov

[
Ȳi(g), Ȳj(g)

]
because the independence assumption does not hold any more. Finally, V [Yi(g)] 6= V

[
Ȳi(g)

]
, even in the speci�c

case where ∀i, j, g, g′, Cov [µi(Xg), µj(Xg′)] = 0. One retrieves here the di�erence between a mixture and an
average, where the mixture can exhibit a higher dispersion.

Note that it has been proved that reducing a grain to its centroid is distorting the covariances as compared to
taking into account its shape and size, even if grains are of same shape and size. See for instance Goovaerts [2008]
for a discussion on this issue through distances between grains. Distortion is increased for short distances which
are precisely the interesting ones for covariances. Using centroids can also become a non-sense since centroids
may very well lie outside the grain itself for non-convex grains. The cost of ruling out such an approximation is
that in certain cases, we will have to estimate the point-support covariance from only aggregated observations.

Remark 2 (Comparison with average � aggregation e�ect). Let g and g′ be two non-overlapping grains (i.e.
g ∩ g′ = ∅). From the two distributions of Xg and Xg′ , it is easy to de�ne a mixture r.v. Xg∪g′ . From Y(Xg)
and Y(Xg′), one can thus build Y(Xg∪g′). From Ȳ(g) and Ȳ(g′), one can also build Ȳ(g ∪ g′), but the latter
aggregation, which uses average, creates many problems. As presented in the introduction, this has been discussed
in Gotway and Young [2002]. The modi�able areal unit problem (MAUP) is focused on the aggregation e�ect
and it turns out that correlation between output variables at grain level is modi�ed in a controllable way when
aggregating grains (aggregation e�ect) due to "the smoothing e�ect that results from averaging" Gotway and Young
[2002].

Mixture approach has no smoothing e�ect since it includes by construction the population diversity, resulting
in stabilized correlations between output variables. In other words, there is no di�erence between output variables
for a grain seen as an aggregation of 2 grains and the same set of points seen as a single grain.

In the Example 1 below, one investigates the impact of overlapping granularities. In many cases, the overlaps
impact is limited. In situations where this impact can be important, one can use the construction of non-
overlapping granularity presented in Proposition 1.
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Example 1 (Overlapping granularity). Consider two overlapping grains g and g′, with nonempty intersection
g0 = g ∩ g′. We want to compare the situation where Xg is dependent on Xg′ with a situation of independence.

� Case of dependence. We de�ne random locations Xg0 , Xg\g0 , Xg′\g0 and two Bernoulli random variables
B and B′. We assume that those �ve random variables are mutually independent. Let :{

Xg = BXg0 + (1−B)Xg\g0
Xg′ = B′Xg0 + (1−B′)Xg′\g0

(5)

� Case of independence. We introduce here X⊥g0 an independent copy of Xg0 , independent from Xg0 , Xg\g0
, Xg′\g0 , B and B′. Let : {

Xg = BXg0 + (1−B)Xg\g0
X⊥g′ = B′X⊥g0 + (1−B′)Xg′\g0

(6)

Let ∆ be the covariance di�erence due to the dependence structure of Xg and Xg′ ,

∆ := Cov
[
Yi(Xg), Yj(X

⊥
g′)
]
− Cov [Yi(Xg), Yj(Xg′)] . (7)

Then setting ρmax = sup {|ki,j(x, x)− ki,j(x, x′)| : x ∈ g0, x′ ∈ g0}, assuming that

∀x ∈ g ∪ g′
{
µi(x) = µi(g) = µi(g

′)

µj(x) = µj(g) = µj(g
′)

one can show that:
|∆| ≤ P

[
B = B′ = 1

]
P
[
Xg0 6= X⊥g0

]
ρmax . (8)

The variation due to the common dependence structure on the overlap can be signi�cant if all of the three
factors are not negligible. This shows in particular that overlapping grains are not too problematic, when means
are identical, if the probability of selecting the intersection g0 for both grain is small, or if the probability of
selecting di�erent points in the intersection is small. In other cases, one may use results in Proposition 1.

Proof of the results in Example 1. Under given assumptions on the means µi and µj , Applying the total covari-
ance formula on Cov

[
Yi(Xg), Yj(X

⊥
g′)
]
and Cov [Yi(Xg), Yj(Xg′)], we get

∆ = E
[
Cov

[
Yi(Xg), Yj(X

⊥
g′)|(B,B′)

]]
− E

[
Cov

[
Yi(Xg), Yj(Xg′)|(B,B′)

]]
,

and the di�erence is non zero in the only case where B = B′ = 1, so that using independence,

∆ = P
[
B = B′ = 1

] (
E [Cov [Yi(Xg0), Yj(Xg0)]]− E

[
Cov

[
Yi(Xg0), Yj(X

⊥
g0)
]])

The parenthesis vanishes in any conditional cases where X⊥g0 = Xg0 , and in other cases, the conditional di�erence
is bounded by ρmax , hence the result.

3 Prediction

To de�ne our learning data we now assume that the output is partially known on a set of grains:
For (i1, . . . , in) ∈ J1, pKn and g1, . . . , gn ∈ G we know n random variables :

Y = (Y 1, . . . , Y n)
>

with Y j = Yij (gj) for j ∈ J1, nK

As an example, if k observations of the whole random vector Y(gj) are conducted for j ∈ J1, kK, then setting
n = k · p allows storing the whole available information:

Y = (Y1(Xg1), . . . , Yp(Xg1), . . . , Y1(Xgj ), . . . , Yp(Xgj ), . . . , Y1(Xgk ), . . . , Yp(Xgk ))> . (9)

If some observations are incomplete, that is to say some components of Ygj are missing for some j, then Y
will be a subvector of Y as given in Equation (9). The problem (P3) in the introduction can thus be treated
easily with this formalism.

We want to predict the output Y(g) for a new grain g ⊂ χ. Note that in the speci�c case where this new
grain is reduced to a single location g = {x}, this prediction corresponds to the one of Y(x). As Y(g) =
(Y1(g), . . . , Yp(g))>, the problem amounts to predict Yi(g) for all i ∈ J1, pK.

For some g ⊂ χ and some i ∈ J1, pK, we want to predict Yi(g) from a learning set of observations Y.
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We denote :

µ := E [Y] ∈ Rn

K :=
(

Cov
[
Y j , Y j

′])
j,j′∈J1,nK

∈ S+
n (R) semi-de�nite positive matrix

hi(g) :=
(

Cov
[
Y j , Yi(g)

])
j∈J1,nK

∈ Rn

In the following, we assume that K is invertible. In particular, the problem of repeated observations is
not treated here. Note that if the expectations of Yi(x) and covariances between Yi(x) and Yj(x

′) are known for
all i, j ∈ J1, pK, x, x′ ∈ χ, as in usual Kriging assumptions, then by Proposition 2, µ, K and hi(g) can be computed.

We look for the optimal weights αi(g) =
(
α1
i (g), . . . , αni (g)

)
∈ Rn associated with the best linear unbiased

predictor Mi(g) of Yi(g) such that :

Mi(g) =

n∑
j=1

αji (g)Y j = αi(g)>Y . (10)

where the model is optimized by minimizing a quadratic error over all unbiased linear predictors:

αi(g) ∈ arg min
α∈Rn

E
[(
Yi(g)−α>Y

)2]
(11)

Given the optimal predictor Mi(g), the resulting errors are denoted:
εi(g) := Yi(g)−Mi(g)

ci,j(g, g
′) := E [εi(g) εj(g

′)]

vi(g) := ci,i(g, g)

(12)

Remark 3 (Spaces of linear unbiased predictors). It is interesting for the understanding of the problem to give
it a geometrical approach. Let us denote Fi(g) the set of linear unbiased predictors of Yi(g) given an observation
vector Y. With previous notations, it means that:

Fi(g) =
{
α>Y : µi(g) = α>µ

}
And similarly, we denote:

F :=
{
α>Y : α ∈ Rn

}
F0 :=

{
α>Y : α>µ = 0

}
One can note that F0 is a subspace of F of dimension dim(F ) − 1. Moreover F0 + Fi(g) = Fi(g), meaning

that Fi(g) is an a�ne subspace of F having F0 for underlying vector space. But it also means that some spaces
are parallel:

∀i, j ∈ J1, pK, ∀g, g′ ∈ χ, Fi(g) ‖ Fj(g′)
Now, given that we are minimizing the quadratic error between Yi(g) andMi(g) which can be seen as a distance,

the optimization process is geometrically a projection of Yi(g) on Fi(g). This approach is illustrated in Figure 3.

The following proposition gives an optimal predictor that can be computed under the minimal assumptions
of Proposition 2 : given the �rst two moments of random variables {Xg : g ∈ G}, all components of µ, K and
hi(x) can be computed.

Proposition 3 (Mixture Kriging prediction). Given a set of observations Y, for any g ⊂ χ, and in particular
for a single point g = {x}, for any i ∈ J1, pK, the weights αi(g) yielding the best linear unbiased predictor (BLUP)
of Yi(g) and the associated cross errors are as follows:

(i) Simple Mixture Kriging. If µ = (0, . . . , 0)> and µi(g) = 0 then{
αi(g) = K−1hi(g)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)>K−1hj(g
′)

(ii) Ordinary mixture Kriging. If µ 6= (0, . . . , 0)> then the condition for unbiasedness writes µi(g) =

αi(g)>µ and αi(g) = K−1
(
hi(g) + λi(g)µ

)
where λi(g) =

µi(g)−µ>K−1hi(g)

µ>K−1µ

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)>K−1hj(g
′) + λi(g)λj(g)µ>K−1µ

9



Figure 3: Geometrical interpretation of the prediction process.

Proof. For given i ∈ J1, pK and g ⊆ χ, let Mα = α>Y be a linear predictor of Yi(g), where α = (α1, . . . , αn) is a
vector of weights, and denote the associated error vi(g,α) := E

[
(Yi(g)−Mα)2

]
, then:

vi(g,α) = E
[(

α>Y − Yi(g)
)2]

= E
[
α>YY>α− 2Yi(g)α>Y + Yi(g)2

]
= α>Kα + α>µµ>α− 2α>

(
hi(g) + µµi(g)

)
+ V [Yi(g)] + µi(g)2 .

(i) If µ = (0, . . . , 0)> and µi(g) = 0 then

vi(g,α) = α>Kα− 2α>hi(g) + V [Yi(g)] .

By di�erentiation over each component of α,

∂vi(g,α)

∂α
:=

(
∂vi(g,α)

∂αj

)
j∈J1,pK

= 2Kα− 2hi(g) .

Without constraints, this value should be null at any extremum, and thus the optimal vector of weights is

αi(g) = K−1hi(g) .

Since K is symmetric positive, this only extremum is a minimum.

(ii) If µ 6= (0, . . . , 0)> then the condition for unbiasedness writes µi(g) = α>µ by linearity of expectation.

vi(g,α) rewrites again :
vi(g,α) = α>Kα− 2α>hi(g) + V [Yi(g)], .

We introduce the Lagrangian operator :

L(α, λ) = vi(g,α)− 2λ(α>µ− µi(g)) .

We are minimizing a quadratic function over a single a�ne equality constraint. A necessary optimality
condition is :

∂L
∂α

(α, λ) = 0 ,

that is to say :
2Kα− 2hi(g)− 2λµ = 0 ,

and therefore the optimal weights are

αi(g) = K−1(hi(g) + λµ) .

The unbiasedness condition is :
µ>(K−1(hi(g) + λµ)) = µi(g) ,

so that

λi(g) =
µi(g)− µ>K−1hi(g)

µ>K−1µ
.

Therefore this only solution is a minimum of vi(g,α).
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Let us consider now the cross-errors:

ci,j(g, g
′) = E

[
(Yi(g)−Mi(g))

(
Yj(g

′)−Mj(g
′)
)]
.

Due to unbiasedness condition, it means that:

ci,j(g, g
′) = Cov

[
Yi(g)−Mi(g), Yj(g

′)−Mj(g
′)
]

= Cov
[
Yi(g), Yj(g

′)
]
− Cov

[
Yi(g),Mj(g

′)
]
− Cov

[
Mi(g), Yj(g

′)
]

+ Cov
[
Mi(g),Mj(g

′)
]

= Cov
[
Yi(g), Yj(g

′)
]
− Cov

[
Yi(g),αj(g

′)
>
Y
]
− Cov

[
αi(g)>Y, Yj(g

′)
]

+ Cov
[
αi(g)>Y,αj(g

′)
>
Y
]
.

Which rewrites:

ci,j(g, g
′) = ki,j(g, g

′)−αj(g
′)
>
hi(g)−αi(g)>hj(g

′) + αi(g)>Kαj(g
′) . (13)

Note that equation (13) is true for any linear unbiased predictor.
Which, in the case of simple mixture Kriging, simpli�es into :

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)>K−1hj(g
′) .

And in the case of ordinary mixture Kriging :

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)>K−1hj(g
′) + λi(g)λj(g)µ>K−1µ .

The expressions of vi(g) = ci,i(g, g) in both cases follow immediately.

Remark 4 (Ordinary Mixture Kriging and mean estimation). Regarding ordinary mixture Kriging, assuming
that all random variables Yi(g) have the same unknown expectation, setting 1n = (1, . . . , 1)>, we have:

αi(g) = K−1

(
hi(g) +

1− 1n
>K−1hi(g)

1n>K−11n
1n

)
,

and setting

m̂(g) :=
1n
>K−1Y

1n>K−11n
,

we can write :

Mi(g) = m̂(g) + hi(g)>K−1(Y − 1nm̂(g)) ,

therefore yielding an unbiased estimator of the unknown common expectation.
To be compared with usual sample mean for independent observations:

Y =
1n
>Y

1n>1n
.

Remark 5 (Uncertainty on outputs). In practice, each observation of Yg = Y (Xg) may consist in a mean and
a variance, e.g. the mean salary over a state, the variance of this salary over the state. The latter variance may
come:

1. from the variation of Xg over the considered area g, propagated to ki,i(g, g) via Proposition 2,

2. or from a nugget e�ect εx added on pointwise locations ki,i(x, x)+ εx, x ∈ g and thus propagated to ki,i(g, g)
via Proposition 2,

3. or even from a nugget e�ect εg directly added to ki,i(g, g) + εg.

The modelling of this variation source depends on the application, but in all cases the results presented in Propo-
sition 3 are directly applicable to the modelled covariances, as long as the resulting covariance matrix K is de�nite
positive (and it must be, as it models a covariance between properly de�ned random variables). One just has to
check that all combined sources of variations generate the desired variance over the grain.

Remark 6 (Gaussian Singleton case). Assume that {Y(x) : x ∈ χ} is a vector-valued Gaussian random �eld
and that each Xg is Dirac distributed. This last condition holds in particular when each grain is restricted to one
singleton point. In this Gaussian case, one retrieves the usual Simple Kriging and Ordinary Kriging predictors, as
de�ned for example in Rasmussen and Williams [2006]. This remark also holds for the next Proposition 4. In this
sense, the Mixture Kriging results presented here can be seen as a generalization of the usual Kriging interpolation.
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Proposition 4 (Cross-errors and conditional covariances). Consider the assumption

(A) : ∀i ∈ J1, pK, ∀g ∈ G, Mi(g) = E [Yi(g)|Y] .

This is for example the case when {Y(x) : x ∈ χ} is a vector-valued Gaussian random �eld and when each Xg
is Dirac distributed. This last condition holds in particular when each grain g is reduced to one point. In this
setting, under assumption (A), one can show that cross errors for both Simple Mixture Kriging and Ordinary
Mixture Kriging are

ci,j(g, g
′) = E

[
Cov

[
Yi(g), Yj(g

′)|Y
]]
. (14)

If Cov [Yi(g), Yj(g
′)|Y] does not depend on Y, as it is the case for conditional Gaussian vectors, Equation (14)

simpli�es: E [Cov [Yi(g), Yj(g
′)|Y]] = Cov [Yi(g), Yj(g

′)|Y].

Proof. The proof uses a classical approach on orthogonality of Best Linear Unbiased Predictors. It is presented
here in three steps. The proof can be simpli�ed in the Simple Mixture Kriging setting.

� First, given the notations introduced in Remark 3, let δ ∈ F0 be a non-zero vector and β a real number.

Let Mβ
i (g) := Mi(g) + β δ ∈ Fi(g). Recall that εi(g) := Yi(g)−Mi(g) and vi(g) := E

[
(εi(g))2

]
.

We have:

E
[
(Yi(g)−Mβ

i (g))2
]

= vi(g)− 2βE [εi(g) δ] + β2E
[
δ2
]
.

The minimum value of this polynomial expression is reached for:

β0 =
E [εi(g) δ]

E [δ2]
.

Since the only optimal point is Mi(g), Mβ0
i (g) = Mi(g) and therefore β0 = 0. As a consequence, as both

E [εi(g)] = 0 and E [δ] = 0:

∀δ ∈ F0, ∀i ∈ J1, pK, ∀g ∈ χ, E [εi(g) δ] = Cov [εi(g), δ] = 0 . (15)

From a geometrical point of view it is equivalent to say that the inner product of the error and any vector
of F0, such as the di�erence of any linear unbiased predictors of Yj(g

′), is null. This approach can be found
for example in Aldworth [1998], section 4.5.1. page 122, in the case of ordinary Kriging on a stationary
process.

� Now, let δ and δ′ be any two vectors of F0. As a consequence of the previous result in Equation (15), we
have:

Cov
[
εi(g) + δ, εj(g

′) + δ′
]

=ci,j(g, g
′) + 0 + 0 + Cov

[
δ, δ′

]
(16)

� On the other hand, using the conditional covariance formula, we have:

Cov
[
εi(g) + δ, εj(g

′) + δ′
]

= E
[
Cov

[
εi(g) + δ, εj(g

′) + δ′ | Y
]]

+ Cov
[
E [εi(g) + δ |Y],E

[
εj(g

′) + δ′ |Y
]]

Given a Y, the random variables δ, δ′, Mi(g) and Mj(g
′) are constant, so that the �rst term is

E
[
Cov

[
εi(g) + δ, εj(g

′) + δ′ | Y
]]

= E
[
Cov

[
Yi(g), Yj(g

′) | Y
]]
.

Furthermore, we have assumed in Assumption (A) that Mi(g) = E [Yi(g)|Y] and Mj(g
′) = E [Yj(g

′)|Y],
therefore E [εi(g)|Y] = E [εj(g

′)|Y] = 0 and:

Cov
[
εi(g) + δ, εj(g

′) + δ′
]

= E
[
Cov

[
Yi(g), Yj(g

′) | Y
]]

+ Cov
[
δ, δ′

]
(17)

Identifying the equations (16) and (17), we get the expected result.

Remark that the uncertainty relying on each Xg can be propagated to Y through Proposition 2, and then to
the prediction of Yg over each grain g ∈ G through Propositions 3 and 4, using vi(g) = ci,i(g, g). This answers
the problem(P2) presented in the introduction.
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4 Numerical illustrations

The numerical application provided here shows that the results presented in this paper can be applied to solve
some uncertainty propagation problems. We use here of some test functions rather on a real dataset, in order to
make the application easier to understand. The illustration is presented here in an industrial context, but can be
easily adapted to other contexts: geographical, ecological, etc.

Imagine an industry, providing some manufactured objects. The company aims at measuring some perfor-
mance indicators Y(x) of a manufactured object, depending on a design x ∈ χ : e.g. it can measure the lift of
an aircraft wing, depending on a speci�c design (described by some shape parameters). But some uncertainties
may rely on the design, as a constructed object has slightly di�erent characteristics from the theoretical design.
Thus, the constructed design can be considered as a random vector Xgx , taking values in some tolerance region
gx ⊂ χ around the design x ∈ χ.

As a consequence, when testing di�erent possible designs x1, . . . , xk, the industry observes Y(g1), Y(gk).
Testing a new possible design can be costly, so that �nding the best design requires to get a prediction of both
the expectation and the variance of Y(x), for each considered new possible design x ∈ χ.

In this setting, for the sake of simplicity, we assume that Y(x) is conditioned by Y(x) = yreference(x) at
observation points x1, . . . , xk. Starting from given covariances between points, we have built the grain covariances
of Proposition 2. In a second step, we have built the predictor presented in this paper in Proposition 3. The
results appear in Figures 4, 5 and 6.The setting details are given in �gures captions.

In Figure 4, one sees that when grains are singletons, classical Kriging results are retrieved. When grains are
not restricted to singletons, the uncertainty on the input is propagated to the output, so that both Kriging mean
and con�dence intervals are a�ected. In particular, the Kriging mean is no more interpolating.

In Figure 5, we illustrate the situation of varying grain sizes and resulting e�ect on uncertainty. It appears, as
one would expect, that the wider the grains, the higher the uncertainty. One can also check that the centroid of
the grain is not su�cient to model the behavior of the response: the latter clearly depends on the size of the grain.
Reducing a grain to its centroid ends up in a very di�erent model (see e.g. area-to-area Kriging in Goovaerts
[2006].

In Figure 6, we show the interest of being able to integrate aggregated data with pointwise observations.
We suppose that we know the expectation and variance of y on some given grains. We add observations to the
learning set on the grains with value the expectation of y. We add the variances to the diagonal terms of the
covariance matrix K associated with the grains. We observe a great reduction of uncertainty in the second case.
However we also observe an adverse edge e�ect of this approach as the prediction is changed on the left side of
the right graphic (see Remark 5).
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Figure 4: Comparison of classical simple Kriging and mixture simple Kriging. Left: Reference function
y (solid line) is observed at 5 points without uncertainty on the value of x. We �nd the usual results on
simple Kriging, in particular predictions (dashed line) are interpolating. Right: For each observation, x
is an unknown random value among 3 possible values xi, xi + r, xi − r. Predictions are not interpolating
any more. We also observe that the estimated standard deviation of the error on y is slightly increased
between the grains. Details: In this example, yreference(x) = sin(x2), covariance is Gaussian with σ = 0.5
and θ = 0.3, Xg is discrete uniform on each grain, r = 0.1.
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Figure 5: Varying grain sizes and e�ect on uncertainty. Reference function y (solid line) is observed
at 5 grains of di�erent sizes. We observe that predictions uncertainty is growing when the grain size
is growing. Details: In this example, yreference(x) = sin(x2), covariance is Gaussian with σ = 0.5 and
θ = 0.3, Xg is continuous uniform on each grain.

14



+

++ ++ +

++ ++

Grains restricted to points With summarized data on grains

0 1 2 3 4 5 0 1 2 3 4 5

−1

0

1

2

x

y

value

predictions

y_reference

1

2

3

4
grainID

Figure 6: E�ect of knowing aggregated information on a grain. Left: Ordinary Kriging in its classical
form, with grains restricted to points. Right: In addition to the observations on points, we assume that
we know expectation and variance of y over 4 grains. We integrate this data both as new observations
evaluated to expectation value on the grains but also with added variance on the diagonal of the covariance
matrix K. Details: Reference function is a simulation of a Gaussian process with Gaussian covariance
(σ = 0.4, θ = 0.6), expectation of y being 1− 0.2x, Xg is discrete uniform on the grains.
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A Appendix

Proof of Proposition 1.

� Let us prove the item (i)
Let us prove that G ⊕ {h} ≤ G ∪ {h}. Let g+ ∈ G ⊕ {h} and g′ ∈ G ∪ {h}. It is clear by construction that
g+ ∈ ∪

g∈G∪{h}
g. Moreover:

g+ = g ∩ h or g+ = g \ h or g+ = h \ ∪
g∈G

AND g′ ∈ G or g′ = h

One can prove that in all 6 di�erent combined cases, either g+ ∩ g′ = g+ or g+ ∩ g′ = ∅.
As a consequence, G ⊕ {h} ≤ G ∪ {h}.

� Let us prove the item (ii).
Let g2 ∈ (G ⊕ {h})⊕ {h′} then:

(A) ∃g1 ∈ G ⊕ {h}, g2 = g1 ∩ h′ or (B) ∃g1 ∈ G ⊕ {h}, g2 = g1 \ h′ or (C) g2 = h′ \ ∩
g∈G⊕{h}

g

Let g1 ∈ G ⊕ {h} then:

(a) ∃g0 ∈ G, g1 = g0 ∩ h or (b) ∃g0 ∈ G, g1 = g0 \ h or (c) g1 = h \ ∪
g∈G

g

(Aa) g2 = g0 ∩ h ∩ h′ =g0 ∩ h′ ∩ h ∈(G ⊕
{
h′
}

)⊕ {h}, see case (Aa)
(Ab) g2 = (g0 \ h) ∩ h′ =(g0 ∩ h′) \ h ∈(G ⊕

{
h′
}

)⊕ {h}, see case (Ba)
(Ac) g2 = (h \ ∪

g∈G
g) ∩ h′ =(h′ \ ∪

g∈G
g) ∩ h ∈(G ⊕

{
h′
}

)⊕ {h}, see case (Ac)

(Ba) g2 = (g0 ∩ h) \ h′ =(g0 \ h′) ∩ h ∈(G ⊕
{
h′
}

)⊕ {h}, see case (Ab)
(Bb) g2 = (g0 \ h) \ h′ =(g0 \ h′) \ h ∈(G ⊕

{
h′
}

)⊕ {h}, see case (Bb)
(Bc) g2 = (h \ ∪

g∈G
g) \ h′ =h \ ∪

g∈G⊕{h′}
g ∈(G ⊕

{
h′
}

)⊕ {h}, see case (C)

(C) g2 = h′ \ ∪
g∈G⊕{h}

g =(h′ \ ∪
g∈G

g) \ h ∈(G ⊕
{
h′
}

)⊕ {h}, see case (Bc)

For cases (Bc) and (C), we used the fact that ∪
g∈G⊕{h}

g = h ∪ ∪
g∈G

g.

� Let us prove the item (iii)
Note that due to item (ii), G⊕ does not depend on the indexing order of the grains composing G.
Moreover, due to item (i), {g1} ⊕ {g2} ≤ {g1, g2} and by recurrence, G⊕ ≤ G.
Now let us prove that for any non-overlapping granularity H, any granularity G, any grain g0:

G ≤ H ∪ {g0} ⇒ G ≤ H⊕ {g0}

Suppose G ≤ H ∪ {g0}. Let g ∈ G and g+ ∈ H⊕ {g0}, taking into account that H is non-overlapping:

(A) ∃h ∈ H : g ⊂ h ∩ g0 or (B) ∃h ∈ H : g ⊂ h \ g0 or (C) g ⊂ g0 \ ∪
h∈H

h

and (a) ∃h′ ∈ H : g+ = h′ ∩ g0 or (b) ∃h′ ∈ H : g+ = h′ \ g0 or (c) g+ = g0 \ ∪
h∈H

h

In cases Ab, Ac, Ba, Bc, Ca, Cb, we have g ∩ g+ = ∅. In cases Aa and Bb, if h = h′ then g ∩ g+ = g,
otherwise g ∩ g+ = ∅. In case Cc, g ∩ g+ = g. Therefore in either case, g ∩ g+ ∈ {g, ∅} and G ≤ H⊕ {g0}.
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