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Abstract4

Mass renovation goals aimed at energy savings on a national scale require
a significant level of public financial commitment. To identify target build-
ings, decision-makers need a thorough understanding of energy performance.
Energy Performance Certificates (EPC) provide information about areas of
space, such as land plots or a building’s footprint, without specifying exact
locations. They cover only a fraction of dwellings. This paper demonstrates
that learning from observed EPCs to predict missing ones at the building
level can be viewed as a spatial interpolation problem with uncertainty both
on input and output variables. The Kriging methodology is applied to ran-
dom fields observed at random locations to determine the Best Linear Un-
biased Predictor (BLUP). Although the Gaussian setting is lost, conditional
moments can still be derived. Covariates are admissible, even with missing
observations. We present applications using both simulated and real data,
with a specific case study of a city in France serving as an example.
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1. Introduction7

1.1. Classifying the EPC prediction problem in research8

Energy Performance Certificates are delivered in many countries around9

the world to assess the energy efficiency of buildings. Various approaches can10

be found in the European Union, Turkey, the UK, the USA... An Energy11

Performance Certificate (EPC) is defined in France as an energy consumption12

associated with a qualitative labelling letter ranging from A to G as shown in13

Figure 1. Energy consumptions associated with dwellings, identified by their14

addresses, are inventoried in a database released in open access and mapped15

in Figure 2. A second database matches each address with a land plot.16

Finally, a third database gives the living area of every dwelling, be it house17

or apartment, together with the land plot where they are located, and a few18

other technical specifications. However, the exact location of these dwellings19

on each land plot is not certain. From these datasets, decision-makers such as20

municipalities, would like to infer the EPC (energy consumption and label) of21

buildings that have not been observed in order to identify targets for energy22

retrofit incentives. This problem is referred to as the EPC prediction problem23

in the present paper.24

In the literature, this problem can be approached from an engineering25

perspective, from a data management perspective or from a geostatistics26

point of view.27

From an engineering perspective, heat engineers have physical models28

that compute an energy balance in order to find a given building’s energy29

consumption. These models require a large number of technical features30

and may be used to design a refurbishment (improvement) strategy (Baker31

et al., 2021). To work at a larger scale, heat engineers define typologies of32

buildings, compute a distribution of these types on a given territory, and33

therefore infer a distribution of EPC labels. This approach has proven to34

be efficient (Ballarini et al., 2017). However, the lack of knowledge about35

the detailed technical features of each building is a strong limitation for a36

prediction at the building level. Some feature reduction efforts have been37

made (Ali et al., 2020), but the remaining features are still problematic to38

infer and require extra efforts (Schetelat et al., 2020). The present work39

considers an alternative approach wherein detailed technical knowledge of40

each building is relinquished, and instead leverages the geolocated nature of41

EPC information.42
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Figure 1: Prescribed vignette appearing on the French energy performance certificate up
to 2021. Label A refers to energy-efficient dwellings, and label G refers to energy-intensive
dwellings.

From a data management perspective, the EPC prediction problem re-43

quires a process to combine datasets from multiple sources available at mul-44

tiple scales, which is known as data fusion (Smith et al., 2008). These types45

of problems are becoming increasingly complex due to the growing amount46

of data available, whether it be ecological, social, or institutional. These47

datasets relate to space units of varying shapes, dimensions, and cardinal-48

ity. And in some cases, it may be difficult to determine the exact position49

of an observed object. This is the case with buildings, since many govern-50

ments lack a detailed map of the building stock in their country. Property51

tax is typically based on intrinsic factors such as surface area and number52

of bedrooms, but not extrinsic factors such as the floor number or window53

orientation (see Table 1). As a result of this uncertainty, large-scale studies54

on housing stock have to rely on an abstract concept of dwelling. This idea of55

dwelling can refer to a house or an apartment; it is not clearly delimited but56

it is described by a set of features such as an area or a number of bedrooms.57

These features are gathered in a table with one dwelling per row, meaning58

that the dwelling is the smallest unit of information.59

dwelling ID address area (m2) bedrooms ... land plot ID
024830065432 161 rue du Chateau 83 3 ... 024830000C0057

02089 BILLY

Table 1: Structure of the dwellings table from the French Ministry of Finance. The actual
table comprises 118 features. Geographic position is identified by a land plot ID.

Similarly, the smallest unit of information for a table with one EPC per60

row is a part of a building. It is not clearly defined as an object in a 3-61
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Figure 2: Map of French inventoried EPCs over a neighborhood of Lyon city. This image
is a screen capture of the French National Observatory of Buildings (Observatoire National
des Bâtiments - ONB), released with the consent of the rights holders U.R.B.S. SAS.

address area (m2) walls ... energy consumption EPC
161 rue du Chateau 83 bricks ... 210 D

02089 BILLY

Table 2: Structure of the observed EPCs table. Geographic positions are indicated by
addresses.

dimensional space, but it has features that describe it (see Table 2). And62

to predict the EPC of buildings, one also has to define buildings. In the63

same way, data fusion requires defining the smallest units of information,64

also known as granules for each dataset: “Informally, a granule of a variable65

X is a clump of values of X that are drawn together by indistinguishability,66

equivalence, similarity, proximity, or functionality. For example, an interval67

is a granule.” Zadeh (2005). The field of study that focuses on representing,68

constructing, and processing these information granules is called Granular69

Computing (Pedrycz, 2013). Assuming that an appropriate data fusion pro-70

cess is implemented, dwellings, EPC observations, and complete buildings71

are represented in the same data model. It remains to define a relevant72

predictive model. Granular computing is multidisciplinary, but since we are73

dealing with geo-localized information, the natural field of research is geo-74

statistics, which has been defined as “dealing with spatial processes indexed75
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over continuous space” (Cressie, 1993, p7).76

From a geostatistics perspective, the irreducible uncertainty about gran-77

ules’ positions (dwellings, buildings, etc.) in their underlying space restricts78

the use of traditional spatial interpolation models such as Kriging as well as79

more recent models such as those proposed by Roksvåg et al. (2021), although80

the latter efficiently combines point and areal observations. This work aims81

to overcome the latter limitation and develop a comprehensive framework82

capable of handling data with uncertainty about the position of observed83

objects while still allowing for the definition of an optimal linear predictor84

for spatial interpolation of EPC values. As is first presented below, the liter-85

ature shows that the problems to solve have already been identified and that86

several solutions have been proposed with their benefits and shortcomings.87

1.2. The limits of systematic averaging for spatial interpolation88

Gaussian Process Regression (Williams and Rasmussen, 1996), also known89

as Kriging, is one of the major spatial interpolation approaches (Comber and90

Zeng, 2019). Kriging theory relies on the assumption that points close to each91

other are more likely to have similar features. It achieves the Best Linear92

Unbiased Predictor (BLUP) in the least squares sense for point spatial inter-93

polation. However, the EPC prediction problem deals with observations that94

are not point observations but areal observations. Areal interpolation, as de-95

fined by Lam (1983), involves “the transformation of data from one set of96

boundaries to another”. Lam also used the terms source zone and target zone.97

For the EPC prediction problem, source zones are dwellings and buildings’98

parts that are observed, while target zones are whole buildings, including99

those for which no part has been observed. Spatial or areal interpolation re-100

search is based on the assumption that granules close to each other are more101

likely to have similar features. This is reasonably understandable for temper-102

atures that are continuously defined over space, but it may be more challeng-103

ing to observe and model when dealing with areal data where granules can104

be of various sizes and shapes, sometimes uncertainly defined. Gotway and105

Young (2002) highlighted the terms used to describe areal interpolation and106

its challenges; this terminology includes block Kriging, multi-scale and multi-107

resolution modelling, the ecological inference problem, the modifiable areal108

unit problem (MAUP), the scaling problem, the change of support problem,109

and the reduction of variance problem. Below are the aspects of this work110

that are more relevant for solving the EPC prediction problem.111
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Block Kriging is a derivative of Kriging designed for handling areal data.112

It distinguishes point-to-area, area-to-point, and area-to-area predictions. It113

assumes that a feature at block (granule) level is the average of the block’s114

point features. Point-to-area prediction produces an estimate “identical to115

that obtained by averaging the point estimates produced by [Kriging]” (Isaaks116

and Srivastava, 1989; Cressie, 1993). Kyriakidis (2004) described a complete117

Kriging model for area-to-point prediction, proved that it is an optimal pre-118

dictor, and sketched area-to-area prediction. Goovaerts (2008) studied in119

depth the problem of estimating the variogram, that is to say, measuring120

the similarity between 2 points at different distances, for block Kriging. He121

showed that averaging reduces the sill of the variogram and tried to tackle122

this bias. Moreover, while point estimates obtained by Kriging are optimal,123

area-to-area Kriging may not be the optimal predictor for the average value124

over the block.125

A known issue resulting from systematic averaging in areal Kriging models126

arises in scenarios such as analysing crop yields, where the set of agricultural127

fields to aggregate for a certain type of crop varies from year to year. It states128

that correlations between features at areal level are heavily dependent on the129

aggregation process, making it difficult to compare correlations between dif-130

ferent years. This is the Modifiable Areal Unit Problem (MAUP) for which a131

measuring approach has been recently proposed (Briz-Redon, 2022). While132

the MAUP refers to the correlation between aggregated features, the ecolog-133

ical inference problem is a result of the correlations at the individual level134

being different from the correlations of the averaged features at the ecological135

(group) level. A lack of information about the individuals’ positions leads136

to a bias when the averaged information about individuals distributed into137

areal units is cross-classified by other individual (point-level) variables (sex,138

race). According to Gotway and Young (2002), “The smoothing effect that139

results from averaging is the underlying cause of both the scale problem in the140

MAUP and aggregation bias in ecological studies.” Apart from correlations,141

the variance itself is affected by systematic averaging. Indeed, the average142

of identical random variables has a smaller variance than the variance of the143

individuals themselves. The specific issue of variance reduction at the block144

level was partially addressed in Li et al. (2009) using rectangular blocks at145

multiple scales.146

Despite its limitations, the averaging method has proven to be effective for147

interpolating areal data. For example, Poggio and Gimona (2015) downscaled148

climate models and predicted soil wetness using Kriging on the residuals149
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of a generalized additive model (Wood, 2017). Area-to-point Kriging, also150

called disaggregation, has also been implemented by Kerry et al. (2013);151

Truong and Heuvelink (2013); Yoo and Kyriakidis (2006). Additionally, area-152

to-area Kriging (block Kriging) has been used effectively by Zhang et al.153

(2018) and has been apply to downscaling by Jin et al. (2018) as well as154

Pereira et al. (2018). The satellite imaging field has also notably benefited155

from this framework, as in the pan-sharpening process, which is “a technique156

to combine the fine spatial resolution panchromatic (PAN) band with the157

coarse spatial resolution multispectral bands of the same satellite to create158

a fine spatial resolution multispectral image” Wang et al. (2016). In this159

process, points are weighted according to their distance from the centroid of160

the satellite pixel when computing the average value.161

Both the MAUP and the ecological inference problem belong to a fam-162

ily of problems related to the combination of different types of granules in163

the same model, e.g. observing dwellings and predicting buildings. These164

problems are gathered in the change of support problems family. Another165

particular change of support problem known as spatial misalignment arises166

when a given feature is observed at multiple scales, including point level.167

Systematic averaging makes points and areas different objects with differ-168

ent different correlation structures and therefore different predictors. The169

classification of problems such as “area-to-point” or “area-to-area” reflects170

this categorization. To address spatial misalignment, a Bayesian framework171

that can be iterated both with point observations and block observations has172

been proposed by Moraga et al. (2017). However, this model is still based173

on averaging at areal level for features that are continuously defined over the174

territory. Like other models derived from Kriging, it considers blocks to be175

connected surface areas in R2 that need to be discretized (Goovaerts, 2008),176

which can distort reality for features that are not continuously defined over177

the space. Such is the case of populations of individuals that are discrete178

points heterogeneously located within a block, such as a county or census179

tract.180

1.3. Beyond systematic averaging181

A way to try and overcome change of support problems is to define a new182

data model for which features at areal level do not require systematic aver-183

aging. In this regard, Godoy et al. (2022) defined a Gaussian random field184

on the class BD of closed subsets of a certain domain D ∈ Rn. Distances185
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between elements of BD are measured with the Hausdorff distance, and the186

correlation structure between features is based on this distance together with187

a Matérn kernel. Eventually, a Bayesian framework is used to fit the model188

with respiratory cancer data, yielding encouraging results. This model seems189

very general and will probably find other fields of application. However, it is190

not interpretable in the sense that there is no obvious link between the fea-191

ture at the areal level and the feature at the point level, therefore eluding the192

question of consistency. In other words, it is not known whether the aggrega-193

tion of cancer incidence predictions at a small scale would give the prediction194

of cancer incidence at a larger scale. Beside this limitation, the Hausdorff-195

Gaussian process does not solve the problem of position uncertainty that is196

found in the EPC prediction problem.197

In this paper, a new model is proposed where learning and prediction can198

be made from both aggregated and point support data. An object category199

called grain is introduced to express this new approach, consistent with re-200

search realities where it may be desirable to complete large aggregated open201

datasets with local observations and predict at various scales. Grains con-202

taining a continuous or discrete set of points are treated identically. As is203

detailed above, a weighted average is the standard aggregation approach.204

In this respect, the MAUP is related to determining a covariance model for205

points from which the covariance between blocks and the covariance between206

points and blocks are derived. Weights for averaging are assumed to be fully207

determined for a given block; they are not regarded as a probability distribu-208

tion for a block, thereby ignoring some related statistics and other potential209

sources of stochastic dependence between blocks. The present paper pro-210

poses a method of incorporating a mixture distribution to address this issue.211

Kriging has already been developed for features that are mixtures at the212

point level (Lin et al., 2010), but Lin et al. make no assumption about the213

distribution of features at the areal level. Instead, we assume the aggregation214

of information at the areal level to be a mixture. Averaging a large number215

of random variables results in a variance reduction, whereas mixing a large216

number of random variables does not tend to reduce the variance. We will217

show that this approach effectively manages position uncertainty. However,218

one drawback is that mixtures of Gaussian random variables are generally219

not Gaussian, which means that the usual Gaussian process interpretations220

and conditioning will no longer hold.221

The present study proposes a new model for processing granular data,222

8



as detailed in Section 2. In Subsection 2.1, a suitable data model is estab-223

lished, while in Subsection 2.2, we define the feature variables’ means and224

covariances. Moreover, a Best Linear Unbiased Predictor is derived in Sub-225

section 2.3. We illustrate the model with examples in Section 3, starting226

with simulated rounded positions in Subsection 3.1, followed by simulated227

areal data with varying area sizes in Subsection 3.2. Subsection 3.3 focuses228

on presenting the EPC prediction problem with real data. Finally, in Section229

4, we discuss the pros and cons of the new model.230

2. Prediction model231

This work is motivated by the will to handle data that is released in open232

format by public or private institutions. The goal is to use institutional data,233

such as the distribution of salaries at the municipality level, to estimate the234

distribution of salaries at a smaller scale, such as a district in a city, while235

also including known salaries at specific locations. To achieve this, we pro-236

pose here a general Kriging approach that extends the traditional Simple or237

Ordinary Kriging and coKriging techniques. The model will explain some238

variables (such as the energy consumption, the salary, etc.) using some ex-239

planatory variables (such as the location, the construction year, etc.). The240

former will be referred to as output variables and the latter as input vari-241

ables. Let us consider a space (input space, sometimes known as study space)242

over which is defined a field of multidimensional random variables (output243

variables, features of interest) such as sociological variables, assumed to be244

defined and potentially observed for both points in the input space and for245

geographic areas, such as cities, regions, or countries. These areas are re-246

ferred to as “grains”. The model predicts output variables at unobserved247

points or grains, based on the assumption that the dependence between out-248

puts depends on the relative positions of the inputs. No assumption is made249

regarding the shape of the grains, which can even overlap partially or com-250

pletely.251

2.1. Data model252

Let us define the structure of the input space.253

Definition 1 (Inputs). Let d be a positive integer. A territory and grains254

inside this territory are defined as follows:255

• A territory is a subset χ of Rd ;256
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• A point is any element x ∈ χ ;257

• A grain is any non-empty subset g ⊆ χ .258

It is common in some application fields to use a different terminology259

to talk about grains: blocks, pixels, or areas for instance. In the above260

definition, there is no constraint on grains, contrary to pixels that are usually261

forming a regular grid known as a raster. A set of grains does not have to262

cover the whole territory, and its elements might overlap. Moreover, a grain263

is not necessarily a connected set, contrary to blocks. And an area is usually264

seen as associated with a surface area (a set of strictly positive measure)265

whereas a grain may be a finite set of points.266

For instance, suppose that the points are represented as pairs of latitude267

and longitude coordinates in an appropriate coordinate reference system. In268

this case, χ could be defined as the set of all latitude-longitude pairs that269

fall within a specific country, yielding d = 2 and χ ⊂ R2. A grain may270

correspond, for example, to a specific city, to a specific land plot, or to a271

specific building’s footprint. Previous Kriging models refer to blocks or areas272

for sets of points that are disjoint (see, for instance, Kyriakidis, 2004).273

When dealing with geographic data, a set of grains is usually the minimum274

scale at which information is available; that is to say, the data granularity.275

For instance, it may be the set of land plots, the set of cities, the set of276

buildings’ footprints, etc. However, considered grains may have non-empty277

intersections and may come from different datasets, at different scales, such278

as land plots and census tracts. Definition 1 is general enough to include279

such sets of grains. Data that describe population or buildings are not con-280

tinuously defined over a territory, as opposed to temperature or pollutant281

concentration. Census data are anonymized at the census tract level before282

being released. For instance, in a census table describing dwellings, a row283

describes a dwelling that exists on a certain census tract, but we don’t know284

exactly where it is on this tract. Then dwellings’ surface area is neither con-285

tinuous nor clearly geo-localized. Definition 2 below unifies output features286

that are continuously defined over a territory and output features that are287

not.288

An originality of this work is to consider a set of random locations that289

model the uncertainty of explanatory variables over each considered grain.290

Let {Xg, g ∈ G} be a given sequence of random variables that are random291

locations, or more generally, random explanatory variables. Their joint distri-292
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bution is assumed to be known. As an example, for non-overlapping grains,293

one can choose a sequence of independent uniform random variables over294

each grain, but any other joint distribution, possibly dependent, can be cho-295

sen. Definition 2 associates output variables with these random explanatory296

variables.297

Definition 2 (Outputs). Let G be a set of grains. We assume that for each298

grain g ∈ G, there is a random variable Xg with values the points of g. Output299

variables are defined over points and grains of G as follows:300

• Y is a p-dimensional multivariate random field over χ such that:

∀x ∈ χ, Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈ Rp

• For each g ∈ G, a p-dimensional real random vector Y(g) is defined to
be the value of Y at a random location Xg ∈ g:

∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

Defined accordingly, Y(g) is a mixture distribution.301

For a given set of grains G, the set of random variables {Xg : g ∈ G}, is302

assumed to be defined and known, and the dependence structure between303

those random variables is supposed to be known. Furthermore, these304

random variables are assumed to be independent from the random field305

Y.306

Example 1. The importance of Xg should be stressed here. For instance,307

if one studies the distribution of capital owned by citizens of a given mu-308

nicipality, P (Xg = x) gives the probability of a citizen x to be observed.309

P (Y (Xg) = y) is the probability to observe y when a citizen picked randomly310

according to Xg unveils his capital:311

P (Y (g) = A) = P (Y (Xg) = A) =
∑
x∈g

P (Xg = x)P (Y (x) = A) .

It is clear that individuals are not distributed regularly (along a grid for in-312

stance) in the grain. However, in this example, it makes sense to consider313

that ∀x ∈ g, P (Xg = x) = 1/ [g] where [g] is the cardinality of g. This means314

that the contribution of all citizens are equally valued in Y (g).315
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Let us now suppose that the outputs are partially known on a set of
grains. For (i1, . . . , in) ∈ {1, . . . , p}n and g1, . . . , gn ∈ G the following n
random variables are known:

Y = (Y 1, . . . , Y n)
⊤ with Y j = Yij(gj) for j ∈ {1, . . . , n}

As an example, if ℓ observations of the whole random vector Y(gh) are316

conducted for h ∈ {1, . . . , ℓ}, then n = ℓ · p and the vector of observations is:317

Y = (Y1(Xg1), . . . , Yp(Xg1), . . . , Y1(Xgℓ), . . . , Yp(Xgℓ))
⊤ . (1)

If some observations are incomplete, that is to say some components of318

Ygj are missing for some j, then Y will be a subvector of Y given in Equation319

(1). It means that there may be missing data in the outputs’ observations.320

2.2. Mean and covariances of output variables321

The originality of the present work is that for a grain g, Y(g) is defined to322

be Y(Xg), the value of Y at a random location Xg ∈ g. If the random field323

{Y(x) : x ∈ χ} and the joint distribution of {Xg ∈ χ : g ∈ G} are known,324

then the joint distribution of {Y(g) : g ∈ G} can be deduced. And, if one325

only knows the moments of order one and cross moments of order two of326

{Y (x) : x ∈ χ} together with the joint distribution of {Xg ∈ χ : g ∈ G},327

then one can expect to be able to deduce expectation and cross covariances328

of {Y(g) : g ∈ G}.329

In the rest of the paper, we assume that the first two moments of330

{Y(x) : x ∈ χ}, {Xg ∈ χ : g ∈ G} and {Y(g) : g ∈ G} exist. In the follow-331

ing proposition, we show that we can indeed deduce the moments of grains’332

outputs.333
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Proposition 1 (Mean and covariance of Y(g)). From Definition 2, we derive
the following results:

(i) For any grain g ∈ G and any index i ∈ {1, . . . , p}, assuming that for
all x ∈ g we know µi(x) := E [Yi(x)] = E [Yi(g)|Xg = x], we have:

µi(g) := E [Yi(g)] = E [µi(Xg)]

(ii) For any two grains g, g′ in G and any two indices
i, j ∈ {1, . . . , p}, assuming that for all x ∈ g, x′ ∈ g′ we know
ki,j(x, x

′) := Cov [Yi(x), Yj(x
′)], we have:

ki,j(g, g
′) := Cov [Yi(g), Yj(g

′)] = E [ki,j(Xg, Xg′)]+Cov [µi(Xg), µj(Xg′)]

In particular,

ki,i(g, g) = Cov [Yi(g), Yi(g)] = V [Yi(g)] = E [ki,i(Xg, Xg)]+V [µi(Xg)] .

Proof. (i) is a direct application of the conditional expectation formula334

E [V ] = E [E [V |U ]] where Yi(x) is the result of conditioning Yi(g) with Xg.335

(ii) is derived from the conditional covariance formula:336

Cov [U, V ] = E [Cov [U, V |W ]] + Cov [E [U |W ], E [V |W ]]

after conditioning by the joint random vector (Xg, Xg′) (random variable337

Xg).338

Note that Cov [µi(Xg), µj(Xg′)] = 0 when µi(x) is constant over g or g′339

or when Xg and Xg′ are independent. Also note that this framework yields340

the expected result that if a grain is restricted to a point, then the output341

variables associated with this grain are the same as those associated with the342

underlying point.343

Example 2. For two distinct and finite grains g and g′ of cardinalities344

[g] , [g′], assuming in this example that Xg and Xg′ are independent uniform345
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random variables, we get:346

µi(g) =
1

[g]

∑
x∈g

µi(x)

ki,j(g, g
′) =

1

[g] [g′]

∑
(x,x′)∈g×g′

Cov [Yi(x), Yj(x
′)]

ki,j(g, g) =
1

[g]

∑
x∈g

Cov [Yi(x), Yj(x)]

Remark 1 (Comparison with average – block-to-block covari-
ances). Previous models using the concept of blocks define Ȳi(g) :=
E [Yi(Xg)|{Yi(x), x ∈ g}] =

∫
g
Yi(x)dFg(x), with Fg the cumulative dis-

tribution function (cdf) of the, possibly discrete, random variable Xg,
i ∈ {1, . . . , p}. One can check that with this setting, the mean of the mixture
Yi(g) and the average Ȳi(g) are identical:

E [Yi(g)] = Ȳi(g) .

Regarding the covariances, when Xg and Xg′ are two independent random
variables, one can check that

E [ki,j(Xg, Xg′)] = Cov
[
Ȳi(g), Ȳj(g

′)
]

However,
E [ki,j(Xg, Xg)] ̸= Cov

[
Ȳi(g), Ȳj(g)

]
because the independence assumption does not hold any more. As a347

consequence, V [Yi(g)] ̸= V
[
Ȳi(g)

]
, even in the specific case where348

∀i, j, g, g′, Cov [µi(Xg), µj(Xg′)] = 0. The difference between a mixture and349

an average is retrieved here: V [Yi(g)] ≥ V
[
Ȳi(g)

]
.350

2.3. Best unbiased linear predictor351

A Gaussian Process is a collection of random output variables indexed352

over points in the input space of explanatory variables, typically denoted353

as Y (.). An observation is therefore a random variable Y (x) evaluated at354

a given point x, and the covariance between Y (x) and Y (x′) is a function355

of (x, x′). But we rather consider here an uncertainty on the explanatory356

variable, meaning that an observation is modelled as a random field Y (.)357
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evaluated at a random location Xg over a given gain g. Thus, one observes358

a mixture of Gaussian random variables that are not Gaussian any more.359

Moreover the covariance between Y (Xg) and Y (Xg′) depends on the joint360

random variables (Xg, Xg′). In the previous subsection, some assumptions361

have been made that are sufficient to be able to compute the covariance be-362

tween two observations. In the present subsection, it is proved that, given363

the above defined framework and a learning set of observations, a best linear364

predictor can be inferred to predict the output features associated with a365

grain g ⊂ χ that has not been observed, given a learning set of observa-366

tions. Note that the problem amounts to predicting any component of the367

output variable and that the specific covariance structure resulting from the368

uncertainty on the explanatory variable requires the development of a new369

software package, as usual packages such as DiceKriging can not fit such a370

model.371

Let Y be the vector of observations forming the learning set, and let372

g ⊂ χ be a grain such that for some i ∈ {1, . . . , p}, Yi(g) is to be predicted.373

Denote:374

µ := E [Y] ∈ Rn

K :=
(
Cov

[
Y j, Y j′

])
j,j′∈{1,...,n}

∈ S+
n (R)

hi(g) :=
(
Cov

[
Y j, Yi(g)

])
j∈{1,...,n} ∈ Rn

where S+
n (R) is the set of semi-definite positive, n× n, real matrices.375

In the following, K is assumed to be invertible.376

With a given set of weights α(g) = (α1(g), . . . , αn(g)) ∈ Rn, is associated377

a linear predictor Mα(g):378

Mα(g) =
n∑

j=1

αj(g)Y j = α(g)⊤Y .

The optimal weights αi(g), provided that they exist and are unique, are379

defined to be those minimizing a quadratic error over all unbiased linear380

predictors:381

αi(g) ∈ arg min
α∈Rn

E
[(
Yi(g)−α⊤Y

)2]
Given the optimal predictor Mi(g), the prediction error and the Kriging382

15



(co)variance are denoted as:383

ϵi(g) := Yi(g)−Mi(g)

ci,j(g, g
′) := E [ϵi(g) ϵj(g

′)] (2)
vi(g) := ci,i(g, g) (3)

The following proposition gives an optimal predictor that can be com-384

puted under the minimal assumptions of Proposition 1. Given the first two385

moments of random variables {Xg : g ∈ G}, all components of µ, K, and386

hi(x) can be computed.387

Proposition 2 (Mixture Kriging prediction). Given a set of observations
Y, for any g, g′ ⊂ χ, and in particular for a single point g = {x}, for any
i ∈ {1, . . . , p}, the weights αi(g) yielding the best linear unbiased predictor
(BLUP) of Yi(g) and the associated cross errors are as follows:

(i) Simple Mixture Kriging. If µ = (0, . . . , 0)⊤ and µi(g) = 0 then

αi(g) = K−1hi(g) (4)
ci,j(g, g

′) = ki,j(g, g
′)− hi(g)

⊤K−1hj(g
′)

(ii) Ordinary Mixture Kriging. If µ ̸= (0, . . . , 0)⊤ then the condition
for unbiasedness writes µi(g) = αi(g)

⊤µ and

αi(g) = K−1
(
hi(g) + λi(g)µ

)
(5)

where λi(g) =
µi(g)− µ⊤K−1hi(g)

µ⊤K−1µ

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤ K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ

Proof of Proposition 2 is given in Supplementary material Appendix A.388

Proposition 2 is presented as an algorithm in pseudo-language for Simple389

Mixture Kriging in Algorithm 1.390

Assume that {Y(x) : x ∈ χ} is a vector-valued Gaussian random field391

and that each Xg is Dirac distributed for all grains. This last condition holds392

in particular when each grain is restricted to one singleton point. In this393

Gaussian case, one retrieves Simple Kriging and Ordinary Kriging predictors,394

as defined, for example, in Rasmussen and Williams (2006). In this sense,395
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the Mixture Kriging results presented here can be seen as a generalization of396

the Kriging interpolation.397

The above Proposition 2 is valid to predict a single component Yi(g) of the398

output variable Y(g), but it can be extended to the prediction of Y(g): the399

best linear unbiased predictor of Y(g) = (Y1(g) . . . Yp(g))
⊤ for the quadratic400

error E [||Y(g)−AY||22] is MA(g) = A(g)Y where A(g) is the matrix of401

which the i-th row is equal to αi(g)
⊤ given by Proposition 2.402

2.4. Particular cases403

In this subsection, two important particular cases are explored. The404

first one considers the Ordinary Mixture Kriging situation, where the output405

variable’s expectation is the same everywhere. An estimator of this constant406

expectation is derived. The second particular case considers Mixture Kriging407

with noisy observations and shows that a nugget effect can be introduced the408

same way as for Kriging.409

Particular case 1 (Constant mean µ = µ0(1, . . . , 1)
⊤). Regarding Ordinary410

Mixture Kriging, assuming that all random variables Yi(g) have the same411

unknown expectation µ0, and setting 1n = (1, . . . , 1)⊤, Equation (5) simplifies412

into:413

αi(g) = K−1

(
hi(g) +

1− 1n
⊤K−1hi(g)

1n
⊤K−11n

1n

)
,

and setting m̂(g) :=
1n

⊤K−1Y

1n
⊤K−11n

,

Mi(g) becomes: Mi(g) = m̂(g) + hi(g)
⊤K−1(Y − 1nm̂(g)) ,

therefore m̂(g) is an unbiased estimator of µ0. m̂ can be compared with usual414

sample mean for independent observations Y = 1n
⊤ Y

1n
⊤ 1n

.415

Particular case 2 (Noisy observations). Let us consider the case where, for416

a given x ∈ χ, we can only observe Ỹi(x) = Yi(x) + ei(x) where ei(x) is417

independent from any Yj(x
′). We denote the resulting noisy output variables,418

observations and covariances as follows:419

Ỹi(g) := Ỹi(Xg) = Yi(g) + ei(g)

Ỹ j := Ỹij(Xgj) = Y j + ej

ηi,j(x, x
′) := Cov [ei(x), ej(x

′)]
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Algorithm 1: Simple Mixture Kriging predictor presented as an
algorithm in pseudo-language.
Data:
It is assumed that all grains are discretized and that for any grain g,
Xg is uniform. A single output random field Y (.) is observed.
G: A list of n observed grains Gi, i ∈ {1, . . . , n}, each grain being a
table with its points coordinates.
Y: Observed values Y i, i ∈ {1, . . . , n}, a numeric vector of same
length as G.
k(., .) : Covariance kernel, a function that takes 2 points and returns
a positive real number.
g0 : An unobserved grain to be predicted i.e. a table with its points
coordinates.
ϵ : A positive real number giving the nugget effect.
Result:
Optimal weights α for g0.
Conditional expectation M of Y (g0).
Kriging variance v = V [Y (g0)−M ] (variance of the prediction
error).
begin

Fill K:
for (i, j) ∈ {1, . . . , n} × {1, . . . , n}, i ≥ j do

if i = j then
Ki,i =

1
[Gi]

∑
x∈Gi

k(x, x) + ϵ

else Ki,j = Kj,i =
1

[Gi]×[Gj ]

∑
x∈Gi,x′∈Gj

k(x, x′)

Fill h:
for i ∈ {1, . . . , n} do

hi =
1

[Gi]

∑
x∈Gi,x′∈g0 k(x, x

′)

Get results:
α = K−1h
M = α⊤Y
v =

∑
x∈g0 k(x, x)− h⊤K−1h
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Then the covariance between 2 grains’ outputs is:420

k̃i,j(g, g
′) := Cov

[
Ỹi(g), Ỹj(g

′)
]
= ki,j(g, g

′) + E [ηi,j(Xg, Xg′)]

Therefore the observations covariance matrix writes:421

K̃ :=
(
Cov

[
Ỹ j, Ỹ j′

])
j,j′∈{1,...,n}

K̃ = K+
(
Cov

[
ej, ej′

])
j,j′∈{1,...,n}

K̃ = K+Ke

And the covariance vector between the observations and a new grain writes:422

h̃i(g) :=
(
Cov

[
Y j + ej, Yi(g) + ei(g)

])
j∈{1,...,n}

h̃i(g) = hi(g) +
(
E
[
ηij ,i(Xgj , Xg)

])
j∈{1,...,n}

h̃i(g) = hi(g) + he,i(g)

Typically, we can assume that E [ηi,j(Xg, Xg′)] = 1{i=j}1{g=g′}ηi,i(g, g). In423

which case Ke is a diagonal matrix and he,i(g) is null as long as g is not424

among the observed grains.425

Contrary to Gaussian Process Regression, the prediction cross error426

ci,j(g, g
′) defined in Equation (2) is usually not equal to the conditional co-427

variance E [Cov [Yi(g), Yj(g
′)|Y]]. However, under certain assumptions, one428

can prove that if Mi(g) = E [Yi(g)|Y], then the cross error can also be viewed429

as a conditional expectation: ci,j(g, g′) = E [Cov [Yi(g), Yj(g
′)|Y]]. Details are430

given in Supplementary material Appendix B.431

3. Illustration432

3.1. Unidimensional case: rounded inputs433

A common issue when feeding geo-statistical models with real data is the434

precision of the input data and its impact on a model’s performance. Usual435

applications of Kriging take this uncertainty into account when increasing436

output variables’ variances by a value that is known as the nugget effect (e.g.437

Rocas et al., 2021). Precision being a typical case of input data uncertainty,438

the example below simulates the effect of rounding input values (coordinates439
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in the study space) to the nearest units. Let us consider a one-dimensional,440

centred Gaussian random field Y (x), x ∈ [1, 10] of constant variance. Let441

us assume that this field is observed at some points for which coordinates442

are rounded to the nearest unit, i.e., for 2 input values x1, x2 ∈ ]0.5, 1.5],443

the observer sees the same value x̃1 = x̃2 = 1. For a Kriging model, these444

are multiple observations of the same point, and it is necessary to introduce445

a nugget effect in the model for the observations’ covariance matrix to be446

invertible. This nugget effect simulates an uncertainty on the output values,447

while the uncertainty is really on the input values. It rather makes sense to448

describe those input values as random positions x̃1,g and x̃2,g in g = ]0.5, 1.5]449

instead of deterministic x̃1 = x̃2 = 1. Then, we can model the observed450

objects as mixture distributions and fit a Mixture Kriging model. Let us451

compare both approaches.452

Using the geoR package in the R language, we simulate a 1-dimensional453

random field realization with a Gaussian covariance kernel. The specific pa-454

rameters are detailed in Table 3. x is discretized between 0 and 10 with step455

0.05. We pick 8 points for observations as listed in Table 4. These observa-456

tions are plotted on Figure 3. Observations {o1, o2, o6} form the learning set,457

observations {o4, o5, o7} form the validation set, and observations {o3, o8}458

form the test set. These sets of observations are deliberately very small so459

as to represent the Mixture Kriging’s behavior in a readable graphic.460

Underlying field Model properties Validation Total

Variance Range Model Variance Nugget Range MSE MSE

1 4 Kriging 1 10−9 4 0.037 1.14
1 4 Mixture Kriging 1 0 4 0.027 1.18

Table 3: Parameters and performances of fitted models in the case of observations with
rounded inputs. Note that the nugget effect for Kriging is the result of an optimization
process. For Mixture Kriging, nugget is null by design. Validation MSE: Mean Squared
Error on validation set. Total MSE: Mean Squared Error on the complete interval [0, 10].

The Kriging model (Figure 3 left) has repeated observations for x = 1461

and x = 3. The learning set is used to fit a family of models with the same462

kernel parameters as those used for simulation plus a nugget effect among463

(10−i)i∈{1,...,10}. The nugget effect yielding the smallest mean squared error464

(MSE) on the test set is selected. A new model is fitted with both learning465

and test sets using the same kernel and the previously selected nugget ef-466

fect. This model is applied to compute a validation MSE and a total MSE467
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Input Output

Set Label Underlying x Rounded x Grain y
(true value) (for Kriging) (for Mixture Kriging)

Learning o1 0.55 1 g1 = ]0.5, 1.5] 0.923
Learning o2 0.85 1 g2 = ]0.5, 1.5] 1.005
Validation o3 1.65 2 g3 = ]1.5, 2.5] 1.127

Test o4 3.00 3 g4 = ]2.5, 3.5] 0.946
Test o5 3.45 3 g5 = ]2.5, 3.5] 0.801

Learning o6 7.20 7 g6 = ]6.5, 7.5] 0.337
Test o7 9.40 9 g7 = ]8.5, 9.5] 0.884

Validation o8 9.70 10 g8 = ]9.5, 10] 0.908

Table 4: Observations of the simulated Gaussian random field.

computed on all points in [0, 10]. The variance of the prediction error is also468

predicted using the formula given in Proposition 2.469

Regarding Mixture Kriging (Figure 3 right), grains g1 = [0.5, 1.5[ and470

g3 = [2.5, 3.5[ are observed twice each while the other grains are observed471

once each. The Mixture Kriging model can handle repeated observations472

by design. Uncertainty on the input is resulting from the random position473

that generates the observation. The grain covariances are computed from474

the point covariances as detailed in Proposition 1. The random positions475

(Xgi)i∈{1,...,8} are assumed to be uniform on the points of the associated grains.476

Both the learning set and the test set are used to fit a model with the same477

kernel parameters as for simulation and with no nugget effect. Validation478

MSE and total MSE are computed for comparison with Kriging.479

In this case, the mean prediction is almost the same for both models. But480

Kriging variance (visible on the ribbons in Figure 3) differs. By construction,481

Simple Kriging is supposed to interpolate observations exactly, resulting in a482

very small Kriging variance near observations. Too many observations may483

be outside the confidence band. If one increases the nugget effect on the484

Simple Kriging model, mean predictions move towards 0 and their range is485

reduced. Therefore, with a large nugget effect, one ends up with a nearly486

constant mean prediction and a large Kriging variance. Mixture Kriging487

takes into account the input uncertainty and predicts a significant Kriging488

variance even near observations improving the coverage without any nugget489

effect.490

In this very simple example, the reader may be surprised that both491

Kriging and Mixture Kriging yield remarkably good predictions. However,492
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Kriging without grains definition Mixture Kriging with grains definition

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0
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Kriging without grains definition

Mixture Kriging with grains definition

Type of y

prediction +− 2 sd(error)

Figure 3: Rounded inputs. Left and right: The dashed line shows the underlying sim-
ulated random field. The solid line labelled “predictions” shows the fitted model mean
prediction (see Table 3). The ribbon shows an interval of radius twice the root square
of the estimated prediction error variance. Left: Kriging model. Triangular points show
observations. Right: Mixture Kriging. Horizontal line segments show observations. See
Table 4 for more details about observations.

the prediction error value represented by the ribbon’s height is important493

as compared with the predicted values. This means that if the underlying494

output is also noisy, error can quickly increase. This is the reason why, in495

real life, one needs much more observations to learn from, see Subsection 3.3.496

3.2. Unidimensional case: grains of varying size497

Imagine a company that wants to measure some performance indicator498

for manufactured objects that are produced according to certain design spec-499

ifications. The design is denoted as x; it belongs to a set χ of permissible500

values, and Y(x) is the performance indicator. For instance, Y can measure501

the lift of an aircraft wing depending on some shape parameter x. Because of502

some unavoidable manufacturing precision issues, the manufactured object’s503

characteristics do not match the design’s specifications exactly. This uncer-504

tainty about the manufactured object induces some uncertainty about the505

performance indicator. Thus, the constructed design can be viewed as a ran-506

dom vector Xgx , taking values in some tolerance set gx ⊂ χ around the design507

x ∈ χ. When testing some designs x1, . . . , xn, the industry observes perfor-508

mances Y(g1), . . . ,Y(gn). Measuring both the expectation and the variance509

of Y(x) for each permissible design x ∈ χ is one method to find the best de-510

sign, but this can be costly, so fitting an interpolation model with the set of k511

observations is preferable. In this setting, for the sake of simplicity, we assume512

that Y(x) is conditioned by observations {y(xi) = sin(x2
i ) : i ∈ {1, . . . , n}}.513
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In this case, we assume that the precision associated with a design xi is an514

interval centred on x. The real characteristic of the object having perfor-515

mance y(xi) is a random value in this grain, which is assumed to be uniform516

on all points of the grain.517

We compare 3 models:518

• P1: The manufactured object is produced exactly according to the519

design, the precision interval is restricted to a point.520

• P2: The precision is the same for all designs, the associated interval is521

of fixed measure.522

• P3: The larger is x, the larger is the uncertainty about the manufac-523

tured object, which means that intervals’ measures are growing with524

the design x.525

All three models have a null nugget effect and a Gaussian kernel having526

for variance parameter the overall variance of y on χ = [0, 4]. The range527

parameter is optimized by minimizing the mean squared error between y528

and point predictions on χ (see Table 4). When grains are restricted to529

points (Figure 5 top), we get the usual results on Simple Kriging, in partic-530

ular, predicted values are exactly interpolating observations. When grains531

are intervals of the same size (Figure 5 middle), predicted values are not532

interpolating any more; predicted error is not null on the grains but far from533

the grains, it is smaller than in the previous case. In the bottom figure, the534

greater is x, the greater the uncertainty about the manufactured object as535

compared to design. The predicted error (ribbon) is increasing with the grain536

diameter. Overall, it is important to note that the Mixture Kriging model537

accounts for the randomness of input values without any nugget effect. This538

eliminates the adverse consequences of a nugget effect that could otherwise539

shrink mean predictions towards zero.540

In the previous example, a very small set of observations was enough to541

make very good predictions. In the present one, the situation is different542

because observations are not drawn from a Gaussian random field but from543

a deterministic function. This underlying function is modelled as a noisy544

random field. Therefore, the Kriging error is greater than in the previous545

case. A potential extension of this illustration would be to optimize both the546

range and the nugget effect, but the purpose here is to visualize the effect of547

the uncertainty on the input and not the output.548
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Model properties

Set of grains Variance Nugget Range Exact interpolation

P1: Grains are singletons 0.36 0 0.3 Yes
P2: Grains are of equal measure 0.36 0 0.4 No
P3: Grains are of increasing measure 0.36 0 0.3 No

Figure 4: Properties of models P1, P2, P3. Range is an optimal value so as to minimize
mean squared error.

Grains are of growing size

Grains are of fixed measure

Grains are singletons
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Figure 5: Mixture Kriging and grain sizes. The dashed line represents y(x). The solid line
is the mean prediction. The ribbon shows an interval centred on the mean prediction, of
radius twice the square root of the predicted error variance. Grey vertical columns show
the grains as x intervals. Black triangles show the underlying observed point (observed
Xg and associated output value).
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3.3. Energy Performance Certificate (EPC) prediction549
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Figure 6: Bar plot of EPC labels frequencies among all EPCs collected in France between
2014 and 2021. Classes A, B, F, G are rare while classes C, D and E are frequent.

Let us now address the EPC prediction problem, keeping in mind that550

an Energy Performance Certificate (EPC) is given as an energy consumption551

in kWh/m2/year. The observed distribution of this energy consumption is552

provided in Figure 6. One considers a model for which χ is a city viewed as a553

2-dimensional space with latitude and longitude as coordinates after proper554

projection, G is the set of plots, and a point in χ is associated with a given555

floor square meter of a building on the plot. A floor square meter is regarded556

here as a granule and not as a set of points in χ. This would not make sense557

since, for a multi-storey building, there are more floor square meters than558

the building’s footprint area. x ∈ χ is therefore a reference point for this559

floor square meter the same way a point would be used to locate a citizen in560

a city (see Example 1). Y (x) is the areal energy consumption in x, typically561

the EPC of the dwelling to which belongs the floor square meter represented562

by x. Then an EPC in the database is the observed energy efficiency rating563

associated with one unknown point among those located on the plot indicated564

by the address. Therefore, for a certain plot g, this EPC is an observation565

of Y (Xg).566

EPC is given as a numeric energy consumption per square meter and567

per year. This energy consumption is associated with a letter ranging568

from A to G. A and B label the most energy-saving dwellings (less than569

90kWh/m2/year). F and G label the most consuming dwellings (more than570
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330kWh/m2/year). We want to model a situation where we observe EPC571

with uncertainty on the location of the observed dwelling on the land plot,572

where it lies, and where the observed dwelling can not be distinguished among573

all the dwellings of this land plot. We also want to predict an EPC numeric574

value at the whole land plot level, that is, for the set of dwellings it contains.575

As can be seen in Figure 6, observations are strongly unbalanced, mean-576

ing that labels A, B, F, and G are rarely observed while labels C, D, and E577

are very common. As a result, labels A, B, F, and G are difficult to predict,578

although they are more interesting for decision-makers. Therefore, we intro-579

duce the Balanced Accuracy (BA) criterion. It is an asymmetric performance580

measure that focuses on good results (Gösgens et al., 2021) and it gives the581

same weight to each class. Denoting nℓ the number of observations with label582

ℓ and nℓ̂,ℓ the number of predictions ℓ̂ with true label ℓ (true predictions of583

label ℓ), the balanced accuracy is given by the formula:584

BA =
1

7

∑
ℓ∈{A,...,G}

nℓ̂,ℓ

nℓ

Given a real random variable X and FX its cdf, supposed to be invertible.585

Let H(X) := F−1
N ◦ FX(X) where FN is the standard Gaussian distribution586

cdf. H is invertible, and H(X) follows a standard Gaussian distribution by587

the probability integral transform theorem. Using H we normalize input and588

output variables.589

Let us consider the model M1 such that:590

• χ is the territory of an urban area in the French city of Angers in a591

3-dimensional space where coordinates represent the image through H592

of the construction year, the latitude, and the longitude.593

• A random field Y (x) is defined on χ. It represents the image through594

H of the energy consumption per square meter and per year at x.595

• A grain g is defined as a set of points in a 3-dimensional space χ. A596

grain represents a land plot. Each point represents a square meter of597

living area. It has 3 coordinates. G denotes the set of all grains.598

• For any grain g ∈ G, the random variable Xg is the uniform law on599

the points of g. It represents the uncertainty on the observations’ lo-600

cation. On g, the output variable is defined as: Y (g) = Y (Xg). By601

construction, Y is centred.602
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• A vector of observations of n distinct grains is given and denoted as Y.603

Construction	year	(percentiles)
	0%	–	10%
	10%	–	20%
	20%	–	30%
	30%	–	40%
	40%	–	50%
	50%	–	60%
	60%	–	70%
	70%	–	80%
	80%	–	90%
	90%	–	100%

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 7: An urban area in Angers: latitude is the vertical dimension, longitude is the
horizontal dimension, and construction year is given by the colour. The side of the square
is 1km. Construction years range from 1340 (first percentile) to 2019 (last percentile).

G is mapped in Figure 7. Note that the grains seem to be disjoint, but604

they are not due to overlaps in the construction year dimension. The set of605

observations is represented in Figure 8.606

607

For this model, the following assumptions are made:608

• For any two distinct grains g, g′, random variable Xg is independent609

from Xg′ .610

• For any two points x, x′, the covariance between Y (x) and Y (x′) is611

following a Matérn 3/2 model:612

Cov [Y (x), Y (x′)] = σ2

(
1 +

3∑
i=1

|xi − x′
i|

θi

)
exp

(
−

3∑
i=1

|xi − x′
i|

θi

)
where U = (σ2, θ1, θ2, θ3) ∈]0, 1]×]0,+∞[3
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Observed	EPC	labels
	A
	B
	C
	D
	E
	F
	G

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Predicted	EPC	labels
	A
	B
	C
	D
	E
	F
	G

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 8: Left: Map of the 365 observations. Right: Map of all predicted values (labels
derived from Mixture Kriging means). Each colour represents a label associated with a
numeric value. See also Figure 1.

σ2 is called the variance coefficient, and Θ = (θ1, θ2, θ3) are the613

length scale coefficients. Note that no nugget effect is required because the614

model takes into account the spatial uncertainty of the input by construction.615

616

The Mixture Kriging predictor described in subsection 2.3 is used to617

predict energy consumption at the plot level. It can be proved that, without618

the nugget effect, the mean prediction, in the case of a 1-dimensional output,619

does not depend on σ2 (the proof is simply deduced from the fact that for620

an invertible matrix A, we have (λA)−1 = λ−1A−1). σ2 is therefore set to621

1. Θ is chosen so as to maximize the BA criterion of the predicted labels622

derived from the predicted energy consumptions. BA is computed using623

leave-one-out cross-validation. Note that the leave-one-out cross-validation624

predictor that is derived from Proposition 2 is also linear and optimal for625

quadratic error. A code has been developed in the R language to implement626

Mixture Kriging.627

628

So as to assess the effect of balanced accuracy on the optimum,629

we also consider a model M1′, which is the same as M1 except that630

parameters are assessed optimizing the accuracy. The accuracy is the to-631

tal number of labels correctly predicted divided by the number of predictions.632
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633

Let us now consider the Kriging model M2 to compare performances634

with the Mixture Kriging model M1. M2 has the same properties as M1635

presented above, except that:636

• Grains are singletons. A grain g = {x1, ..., xq} is replaced by a point x of637

coordinates the minimum construction year and the mean latitude and638

longitude values. Note that it is assumed that the year of construction639

of the eldest building portion is the most meaningful information for640

prediction. This makes sense, especially because the oldest part of a641

building is usually also the largest one.642

• A nugget effect σ2
e has to be introduced so as to have a smooth predic-643

tor:644

V [Y (x)] = σ2 + σ2
e .

For M2, the Kriging predictor is used. V = (σ2, θ1, θ2, θ3, σ
2
e) is chosen645

so as to maximize BA, the same way as for M1. The standard R package646

DiceKriging is used for prediction.647

648

There are 365 observations on the given territory. The best parameters649

are estimated by optimizing the performance indicator, Balanced Accuracy or650

Accuracy, computed by leave-one-out cross validation. All models M1,M1′651

and M2 are optimized with the genetic algorithm provided by R package652

ga parametrized with population size 50, elitism 5, maximum number of653

iterations 100, maximum number of iterations without improvement 100.654

Other parameters are left as default.655

With regards to the optimal parameters in Table 5, length scale parame-656

ters are smaller in M1 than in M2, meaning that M1 prediction is influenced657

by fewer neighbours than M2. The nugget effect found for M2 is small. As658

for the optimal performances in Table 6, M1 reaches a larger BA than M2659

by 37%. However, M1 has lower performances on other indicators with a660

difference of approximately 10%. The range of all 365 mean predictions with661

M1 is 150% larger than with M2. These figures are better understood by662

examining the confusion matrices in Tables 7 and 8. Indeed, the percentage663

of large errors (represented by the red area) is 3% with model M1 and 0.5%664

with model M2. We know that large errors have an important impact on665
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Model ϵ2 σ2 θ1 θ2 θ3

Mixture Kriging (M1) 0.00* 1.00* 0.28 0.44 1.22
Mixture Kriging (M1′) 0.00* 1.00* 0.93 0.78 0.91
Kriging (M2) 0.02 0.53 0.98 0.82 1.49
*: These parameters are treated as constant parameters.

Table 5: Optimal parameters for M1 and M2.

EPC int. EPC num.

Model BA Acc. MAE RMSE MAE RMSE Range

Mixture Kriging M1 0.26 0.40 0.93 1.37 78.93 106.16 6.66
Mixture Kriging M1′ 0.21 0.42 0.93 1.38 79.46 108.55 6.54
Kriging M2 0.19 0.38 0.85 1.22 72.22 92.98 2.59
EPC int.: Energy Performance Certificate treated as an integer: 1 for A, ..., 7 for G.
EPC num.: Energy consumption expressed in kWh/m2/year.
BA: Balanced Accuracy. Acc.: Accuracy.
MAE: Mean Absolute Error. Range: Variance of the predicted values (×103)
RMSE: Root Mean Squared Error. viewed as a measure of the predictions’ range.

Table 6: Optimal performances achieved by M1, M ′
1 and M2. For each indicator, best

value is indicated in bold font.

MAE and RMSE. However, the percentage of true labels A and B that are666

predicted as A or B is 25% with M1 and 10% with M2. For labels F and G,667

these figures are 16% and 0% respectively. This information is valuable for668

decision-makers seeking to identify energy-efficient and/or energy-intensive669

dwellings.670

These results suggest that Mixture Kriging (M1, M1′) predictions have671

an improved range as compared to Kriging (M2): the range of mean pre-672

dictions by Mixture Kriging is greater than by Kriging. This allows better673

predictions for extreme labels A, B, F, and G. Despite having fewer param-674

eters (ϵ2 and σ2 are regarded as constants), Mixture Kriging improves the675

BA, although it also leads to more frequent large errors. Mixture Kriging ac-676

counts for uncertainty in the input data, eliminating the need to add a nugget677

effect. In this example, it avoids grouping predictions near the mean value678

(shrinkage) and yields a better BA as compared to Kriging that requires the679

introduction of a nugget effect.680

Among Mixture Kriging models, as expected, M1 has a better Balanced681

Accuracy than M1′, and M1′ has a better Accuracy than M1. Other indi-682
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True
values Predicted values

A B C D E F G
A 2 1 3 2 2 0 0
B 1 3 1 9 2 2 0
C 1 3 25 26 15 4 0
D 3 5 21 80 33 5 1
E 4 2 12 36 36 5 1
F 0 3 2 4 5 3 0
G 0 0 0 1 1 0 0

Table 7: Confusion matrix of M1 predic-
tions.

True
values Predicted values

A B C D E F G
A 1 0 3 5 1 0 0
B 0 2 1 11 4 0 0
C 0 1 13 48 12 0 0
D 2 1 19 94 32 0 0
E 0 1 9 56 30 0 0
F 1 0 2 11 3 0 0
G 0 0 1 1 0 0 0

Table 8: Confusion matrix of M2 predic-
tions.

True
values Predicted values

A B C D E F G
A 0 2 2 5 1 0 0
B 1 0 3 9 3 2 0
C 2 2 23 29 14 4 0
D 1 6 17 91 28 2 3
E 1 6 14 31 36 6 2
F 1 0 3 8 2 3 0
G 0 0 1 0 1 0 0

Table 9: Confusion matrix of M1′ pre-
dictions

True Predicted
A 10 11
B 18 17
C 74 64
D 148 158
E 96 94
F 17 19
G 2 2

Table 10: Distribution of labels
in M1

cators are very similar, let alone the smaller variance of M1′’s predictions.683

Optimizing parameters based on Balanced Accuracy forces the model to pre-684

dict more often labels A, B, F, and G so that the distribution of predicted685

labels is very close to the distribution of observed labels as can be seen in686

Table 10. In our case, the confusion matrices show that this effect is positive687

for labels A and B, as more true A or B are predicted as A or B. But the688

effect of balanced accuracy does not bring benefits for labels F and G, on the689

contrary, it has a tendency to predict more F and G where the true label is690

D or E. A possible explanation for this moderate benefit of introducing the691

balanced accuracy is that we are missing some information. The moderate692

size of observations (365 individuals) makes it difficult for a model to discrim-693

inate between rare labels and frequent labels. For instance, there are only 2694

observed G labels. One can expect a model learning from a larger number695

of observations to perform better. Moreover, in an area where buildings are696
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old for instance, our model cannot distinguish a building that has never been697

renovated from the others. It may be useful in further studies to introduce698

more variables, such as a comfort level. However, as discussed below, the699

proposed model is quite heavy in terms of computation resources; therefore,700

scaling up or adding variable has an important computational cost.701

4. Discussion and conclusion702

Since the discovery of Kriging, the issue of learning from and predict-703

ing areal data has been a concern. Proposed models have mainly assumed704

that the output variable at the areal level is the mean of the point outputs,705

which has proven helpful in various fields such as mining, climatology, or706

satellite imaging, where averaging makes sense for interpretation and where707

blocks tend to have similar shapes and sizes. However, in other fields such708

as agriculture or social studies, blocks can have varying shapes or sizes, and709

averaging is not always the most meaningful interpretation. In these cases,710

problems like the Modifiable Areal Unit Problem (MAUP), the ecological711

inference problem, and the variance reduction due to averaging can become712

challenging to solve. Over the past few decades, researchers have been de-713

veloping methods to assess and/or correct the MAUP effect (Briz-Redon,714

2022). Modifying territory partitioning (Li et al., 2009) is also an effective715

solution for addressing variance reduction problems, but it is not always pos-716

sible. Both Kriging and block-Kriging incorporate uncertainties on input717

and/or output values through the addition of a nugget effect to variances,718

thereby simulating the addition of a white noise to the output variables. This719

transformation smooths predicted values but also shrinks them; the range be-720

tween minimal and maximal predicted values is reduced, thus degrading the721

prediction quality of values that are particularly large or particularly small.722

The availability of new datasets with uncertainty on the inputs (uncertain723

positions) and where averaging is not a meaningful interpretation has driven724

us to seek a novel method of spatial interpolation. We have introduced a725

new element in the model that is a random input value. It has been found726

that resulting mixture distributions can be interpolated optimally, and the727

resulting Best Linear Unbiased Predictor (BLUP) requires only the first 2728

moments of the prior random field and a spatial covariance function. This729

model can learn from and predict outputs associated with grains of any shape,730

size, or cardinality. Even single points are acceptable. The term “grain” has731

been introduced to describe these objects.732
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The new model called Mixture Kriging is still consistent with Kriging in733

the sense that Kriging is a special case of Mixture Kriging where grains are734

restricted to singletons. However, Mixture Kriging generates a mean pre-735

diction range that is not impacted by the grain’s shape or size under usual736

conditions. As a consequence, there is no reduction in the mean prediction’s737

range due to this factor. If the output variable’s variance is the same every-738

where at point level, then it is also the same as the output variable’s variance739

at grain level, meaning that there is no variance reduction either. Similarly,740

if the covariance between the output variable of interest and another output741

variable is the same everywhere at the point level, then it will also be the742

same as the covariance at the grain level, regardless of the grain’s shape.743

This implies that this model has no measurable MAUP effect in the sense of744

Briz-Redon (2022).745

Without any MAUP effect, the Mixture Kriging approach is able to han-746

dle multi-scale data. We hope that this can help handling datasets coming747

from multiple sources in the same model. This model can potentially be748

used to fit ecological data or social data. For instance, on a global scale,749

the Intergovernmental Panel on Climate Change (IPCC) studies planetary750

boundaries on water based on gridded data, but for the study of specific751

territories, studies are commonly done on watersheds. The Mixture Kriging752

model has the ability to combine these two scales of study in the same model753

to benefit from both global and local studies.754

The main computational distinction between block-to-block Kriging and755

Mixture Kriging lies in the method of computing the observations variance756

and the covariance between covariates associated with the same grain. This757

results mainly in the diagonal of the observations covariance matrix being758

greater than what is found with Kriging. This is precisely the sought ef-759

fect when introducing supplementary noise on the outputs (nugget effect) in760

Kriging for smoothing predictions. This explains why Mixture Kriging has761

smooth predictions but with limited shrinkage, hence a good performance762

with Balanced Accuracy. In practical applications, Mixture Kriging is there-763

fore designed to handle data with uncertainty on the input values without764

introducing the nugget effect.765

Regarding computational differences, it should also be noted that Mixture766

Kriging (like block-to-block Kriging) has a higher computational cost than767

Kriging, this cost is growing like the squared value of the density of points768

in the grains. This is an important limitation of the model. For instance,769

in the models M1, M1′ and M2 presented in Subsection 3.3, there are 395770
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observations. The Kriging model M2 requires 365× 366/2 = 66, 795 covari-771

ances to be computed. But the Mixture Kriging models M1 and M1′ require772

to compute 3, 770, 500, 618 point-to-point covariance in order to compute the773

66, 795 covariances between grains. Scaling up the model may, therefore, be774

difficult. This computational complexity is highly dependent on the defini-775

tion of the random position Xg for each grain and on its discretization. For776

the above models, Xg is supposed to be uniform for all grains, and the num-777

ber of discretized points is the number of square meters of living space on778

the grain. But any new model based on Mixture Kriging requires an appro-779

priate definition of these random variables, depending both on the grains’780

geometries and on the studied output variable(s). Another limitation of the781

model is the difficulty of assessing its parameters, especially the range. It is782

difficult to compute a variogram because there is no natural definition of a783

distance between grains. Estimating the range is also possible by minimizing784

an error measure, but this process requires computing numerous different785

models, which is costly, as mentioned above.786

Keeping in mind its limitations, this new approach opens the way for787

implementing Mixture Kriging models with new datasets that have been im-788

possible to fit in the usual Kriging framework or with usual Kriging software789

packages. In particular, datasets that inform about granules that are un-790

certainly defined, such as dwellings, buildings, streets, human persons, and791

households. It can also be used for datasets informing about granules, which792

should have deterministic shapes or positions in the input space, but come793

with numerical uncertainty such as measure precision, rounding effect, obser-794

vations’ aggregations, or observations’ anonymization. Moreover, the model795

can handle multivariate outputs, even if some output components are miss-796

ing in the observations. Encouraging results have been found when studying797

the prediction of Energy Performance Certificates (EPC). Results show that798

Mixture Kriging can be useful to improve the prediction of values far from the799

average and, in our case, to improve the detection of energy-saving homes.800

Future studies should test the upscaling feasibility of the already developed801

model and the benefits of using covariates. We also study the possibility of802

developing a similar model with Universal Kriging.803
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Appendix A. Proof of Proposition 2 (supplementary material)913

This proof employs a classical statistical approach to compute a Best914

Linear Unbiased Predictor using a family of observed random variables that915

are not necessarily Gaussian but have known first and second moments.916

It is interesting for the understanding of the problem to give it a geomet-917

rical approach. Let us denote Fi(g) the set of linear unbiased predictors of918

Yi(g) given an observation vector Y. With previous notations, it means that:919

Fi(g) :=
{
α⊤Y : µi(g) = α⊤µ

}
And similarly, we denote:920

Gi(g) := {αYi(g) : α ∈ R}
F :=

{
α⊤Y : α ∈ Rn

}
(the feature space generated by observations)

F0 :=
{
α⊤Y : α⊤µ = 0

}
H := F ×Gi(g)

One can note that F0 is a subspace of F of dimension dim(F )− 1. More-
over F0+Fi(g) = Fi(g), meaning that Fi(g) is an affine subspace of F having
F0 for underlying vector space (see Figure A.9). But it also means that the
sets of unbiased linear predictors for each output variable are parallel:

∀i, j ∈ {1, . . . , p}, ∀g, g′ ∈ χ, Fi(g) ∥ Fj(g
′)

Now, given that we are minimizing the quadratic error between Yi(g) and921

Mi(g), which can be seen as the distance between Yi(g) and Mi(g) in H, the922

optimization process is geometrically a projection of Yi(g) on Fi(g). This923

approach is illustrated in Figure A.9.924
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Figure A.9: Geometrical interpretation of the prediction process.

Proof. For given i ∈ {1, . . . , p} and g ⊆ χ, let Mα = α⊤Y be a linear925

predictor of Yi(g), where α = (α1, . . . , αn) is a vector of weights, and denote926

the associated error vi(g,α) := E [(Yi(g)−Mα)
2], then:927

vi(g,α) = E
[(
α⊤Y − Yi(g)

)2]
= E

[
α⊤YY⊤α− 2Yi(g)α

⊤Y + Yi(g)
2
]

= α⊤Kα+α⊤µµ⊤α− 2α⊤ (hi(g) + µµi(g)
)
+ V [Yi(g)] + µi(g)

2 .

(i) If µ = (0, . . . , 0)⊤ and µi(g) = 0 then

vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .

By differentiation over each component of α,

∂vi(g,α)

∂α
:=

(
∂vi(g,α)

∂αj

)
j∈{1,...,p}

= 2Kα− 2hi(g) .

Without constraints, this value should be null at any extremum, and928

thus the optimal vector of weights is929

αi(g) = K−1hi(g) .

Since K is symmetric positive, this only extremum is a minimum.930

(ii) If µ ̸= (0, . . . , 0)⊤ then the condition for unbiasedness writes µi(g) =931

α⊤µ by linearity of expectation.932

vi(g,α) rewrites again:

vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .
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We introduce the Lagrangian operator:

L(α, λ) = vi(g,α)− 2λ(α⊤µ− µi(g)) .

We are minimizing a quadratic function over a single affine equality
constraint. A necessary optimality condition is:

∂L

∂α
(α, λ) = 0 ,

that is to say:
2Kα− 2hi(g)− 2λµ = 0 ,

and therefore the optimal weights are

αi(g) = K−1(hi(g) + λµ) .

The unbiasedness condition is:

µ⊤(K−1(hi(g) + λµ)) = µi(g) ,

so that

λi(g) =
µi(g)− µ⊤K−1hi(g)

µ⊤K−1µ
.

Therefore this only solution is a minimum of vi(g,α).933

Let us consider now the cross-errors:

ci,j(g, g
′) = E [(Yi(g)−Mi(g)) (Yj(g

′)−Mj(g
′))] .

Due to unbiasedness condition, it means that:934

ci,j(g, g
′) =Cov [Yi(g)−Mi(g), Yj(g

′)−Mj(g
′)]

=Cov [Yi(g), Yj(g
′)]− Cov [Yi(g),Mj(g

′)]

− Cov [Mi(g), Yj(g
′)] + Cov [Mi(g),Mj(g

′)]

=Cov [Yi(g), Yj(g
′)]− Cov

[
Yi(g),αj(g

′)
⊤
Y
]
− Cov

[
αi(g)

⊤Y, Yj(g
′)
]

+ Cov
[
αi(g)

⊤Y,αj(g
′)
⊤
Y
]
.

Which rewrites:935

ci,j(g, g
′) = ki,j(g, g

′)−αj(g
′)
⊤
hi(g)−αi(g)

⊤hj(g
′)+αi(g)

⊤Kαj(g
′) . (A.1)
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Note that equation (A.1) is true for any linear unbiased predictor.936

Which, in the case of simple Mixture Kriging, simplifies into:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤K−1hj(g

′) .

And in the case of ordinary Mixture Kriging:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ .

The expressions of vi(g) = ci,i(g, g) in both cases follow immediately.937

iv



Appendix B. Cross-errors and conditional covariances (supple-938

mentary material)939

It is well known that the best predictor of Yi(g) is also the conditional940

variable E [Yi(g)|Y]. However, this best predictor is not necessarily linear,941

especially in non Gaussian cases. The following proposition proves that if the942

Best Linear Unbiased Predictor is the best overall predictor then the error943

covariances can also be seen as conditional covariances.944

Proposition 3 (Cross-errors and conditional covariances). Consider the as-
sumption

(A) : ∀i ∈ {1, . . . , p}, ∀g ∈ G, Mi(g) = E [Yi(g)|Y] .

Under assumption (A), cross errors for both Simple Mixture Kriging and
Ordinary Mixture Kriging are:

ci,j(g, g
′) = E [Cov [Yi(g), Yj(g

′)|Y]] . (B.1)

Moreover, if Cov [Yi(g), Yj(g
′)|Y] does not depend on Y, as it is

the case for conditional Gaussian vectors, Equation (B.1) simplifies:
E [Cov [Yi(g), Yj(g

′)|Y]] = Cov [Yi(g), Yj(g
′)|Y].

Assumption (A) holds for example when {Y(x) : x ∈ χ} is a vector-945

valued Gaussian random field and when each Xg is Dirac distributed.946

Proof. The proof uses a classical approach on orthogonality of Best Linear947

Unbiased Predictors. It is presented here in three steps. The proof can be948

simplified in the Simple Mixture Kriging setting.949

• First, given the notations introduced in Appendix A, let δ ∈ F0 be a950

non-zero vector and β a real number.951

Let Mβ
i (g) := Mi(g) + β δ ∈ Fi(g). Recall that ϵi(g) := Yi(g) −Mi(g)952

and vi(g) := E [(ϵi(g))
2].953

We have:954

E
[
(Yi(g)−Mβ

i (g))
2
]
= vi(g)− 2βE [ϵi(g) δ] + β2E

[
δ2
]
.

The minimum value of this polynomial expression is reached for:955

β0 =
E [ϵi(g) δ]

E [δ2]
.

v



Since the only optimal point is Mi(g), Mβ0

i (g) = Mi(g) and therefore956

β0 = 0. As a consequence, as both E [ϵi(g)] = 0 and E [δ] = 0:957

∀δ ∈ F0, ∀i ∈ {1, . . . , p}, ∀g ∈ χ, E [ϵi(g) δ] = Cov [ϵi(g), δ] = 0 .
(B.2)

From a geometrical point of view it is equivalent to say that the inner958

product of the error and any vector of F0, such as the difference of any959

linear unbiased predictors of Yj(g
′), is null. This approach can be found960

for example in Aldworth (1998), section 4.5.1. page 122, in the case of961

ordinary Kriging on a stationary process.962

• Now, let δ and δ′ be any two vectors of F0. As a consequence of the963

previous result in Equation (B.2), we have:964

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = ci,j(g, g

′) + 0 + 0 + Cov [δ, δ′] (B.3)

• On the other hand, using the conditional covariance formula, we have:965

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] =E [Cov [ϵi(g) + δ, ϵj(g

′) + δ′ | Y]]

+ Cov [E [ϵi(g) + δ |Y],E [ϵj(g
′) + δ′ |Y]]

Given a Y, the random variables δ, δ′, Mi(g) and Mj(g
′) are constant,

so that the first term is

E [Cov [ϵi(g) + δ, ϵj(g
′) + δ′ | Y]] = E [Cov [Yi(g), Yj(g

′) | Y]].

Furthermore, we have assumed in Assumption (A) that

Mi(g) = E [Yi(g)|Y] and Mj(g
′) = E [Yj(g

′)|Y] ,

therefore966

E [ϵi(g)|Y] = E [ϵj(g
′)|Y] = 0

and Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = E [Cov [Yi(g), Yj(g

′) | Y]] + Cov [δ, δ′]
(B.4)

Identifying the equations (B.3) and (B.4), we get the expected result.967

968
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