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COHERENT PRESENTATIONS OF MONOIDS WITH A RIGHT-NOETHERIAN GARSIDE FAMILY

This paper shows how to construct coherent presentations (presentations by generators, relations and relations among relations) of monoids admitting a right-noetherian Garside family. Thereby, it resolves the question of nding a unifying generalisation of the following two distinct extensions of construction of coherent presentations for Artin-Tits monoids of spherical type: to general Artin-Tits monoids, and to Garside monoids. The result is applied to some monoids which are neither Artin-Tits nor Garside.

a set of relations between words over the generating set. A coherent presentation of a monoid consists of a set of generators, a set of generating relations, and a set of generating relations among relations, having the property that, for every pair of parallel sequences of relations, there is a relation among relations between those two sequences.

Coherent presentations generalise 2-syzygies for presentations of groups. They form the rst dimensions of polygraphic resolutions of monoids, from which abelian resolutions can be deduced.

For motivation and context of the notion of coherent presentations, we refer the reader to [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF].

In particular, it has been proved in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] that Deligne's characterisation [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF] of the weak actions of an Artin-Tits monoid B + (W ) of spherical type on categories is equivalent to constructing a certain coherent presentation, denoted Gar 3 (W ) in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], of B + (W ). This construction has been extended in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], using methods from rewriting theory, in two disjoint directions: to general Artin Tits monoids, and to Garside monoids. Coherent presentations are also studied in [START_REF] Elias | Diagrammatics for Coxeter groups and their braid groups[END_REF],

under the name 3-presentations.

1.2. Rewriting methods. Generating relations, when considered directed from left to right (i.e. as ordered pairs), provide rewriting rules. A presentation is called terminating if there is no innite rewriting sequence; it is called conuent if any two distinct rewriting sequences starting from the same word can be completed in such a way that they eventually lead to a common result;

it is convergent if it is both terminating and conuent. A homotopical completion-reduction procedure, developed in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], enriches a terminating presentation to a coherent one. The main element is Squier's theorem, which allows one to simply compute generators of the relations among relations for a convergent presentation. This procedure has three stages. Firstly, a Knuth-Bendix completion procedure enriches a terminating presentation to a convergent one by adding a (not necessarily nite) number of relations. Secondly, a Squier completion procedure adjoins relations among relations, thus providing a coherent presentation of the monoid admitting the starting presentation. Thirdly, a homotopical reduction procedure removes redundant relations.

These homotopical transformations of presentations having certain properties are illustrated by the following diagram and recollected in Section 3. In [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], Gaussent, the third author and Malbos have performed a homotopical completionreduction procedure to compute coherent presentations of two disjoint generalisations of Artin-Tits monoids of spherical type: general Artin-Tits monoids, and Garside monoids. We recall those two generalisations in Subsection 3.5 as Examples 3.5.1 and 3.5.2, respectively. In [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF], the third author, Malbos and Mimram have computed coherent presentations of plactic and Chinese monoids by applying a homotopical completion-reduction procedure.

1.3. Garside families. A Garside family in a monoid is a generating family, not minimal in general, but ensuring some desirable properties. Namely, the notion of a Garside family [START_REF] Dehornoy | Garside families[END_REF] is a result of successive generalisations to wider classes of monoids of a particular type of normal form, rst implicitly hinted in braid monoids by Garside [START_REF] Garside | The braid group and other groups[END_REF] in 1969, known as the greedy normal form. In particular, it generalises Artin-Tits monoids and Garside monoids. The greedy normal form is easily computed as it has very nice locality properties. These notions are recalled in Section 4.

Garside [START_REF] Garside | The braid group and other groups[END_REF] investigated arithmetic properties of braid groups. He solved the word problem and the conjugacy problem in braid groups by introducing braid monoids. Among other things, he proved that the braid monoid B + n is left-cancellative, and that any two elements of B + n admit a least common multiple. He also introduced the Garside element (he called it the fundamental word) of a braid monoid.

Garside's observations for braid monoids were generalised to Artin-Tits monoids of spherical type by Brieskorn and Saito [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF], and by Deligne who later explicitly gave Garside's presentation for Artin-Tits monoids of spherical type in [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]. Michel [START_REF] Michel | A note on words in braid monoids[END_REF] extended this presentation to all Artin-Tits monoids.

The greedy normal form was later generalised to Artin-Tits monoids, based on Garside's observations (see [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Introduction] for references). Dehornoy and Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF] introduced Garside monoids in order to abstract properties which establish the existence of the greedy normal form.

Dehornoy, Digne and Michel [START_REF] Dehornoy | Garside families[END_REF] further generalised Garside monoids to categories admitting Garside families (as recalled for monoids in Subsection 4.2 here). A thorough development of the notion of a Garside family can be found in the book [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. Dehornoy and the third author [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] introduced monoids admitting quadratic normalisations, thereby generalising monoids admitting Garside families. We refer the reader to the survey [START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] for an overview of the successive extensions of the greedy normal form from braid monoids to monoids admitting left-weighted quadratic normalisations.

1.4. Contributions. The objective of the present paper is to unify the two above-mentioned results of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] in the same generalisation. Namely, we apply a homotopical completion-reduction procedure to compute coherent presentations of a certain class of monoids admitting a Garside family. Our present contribution has the following two main steps.

(1) First, we use the fact that every left-cancellative monoid M containing no nontrivial invertible element and for every Garside family S in M , there is a presentation, here denoted Gar 2 (S), having S\{1} as generating set, with generating relations α of the form s|t = st, for s, t ∈ S \ {1} with st ∈ S (Proposition 4.2.7, adapted from [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]). We observe Theorem. Assume that M is a left-cancellative noetherian monoid containing no nontrivial invertible element, and S ⊆ M is a Garside family containing 1. Then M admits the coherent presentation Gar 3 (S) which extends Gar 2 (S) with the following set of generating relations among relations:

(
uv|w u|v|w uvw u|vw α uv,w A u,v,w α u,v |w u|α v,w α u,vw
, for all u, v, w ∈ S \ {1} such that uv, vw, uvw ∈ S.

Note that A u,v,w can be read as a relation ensuring associativity. We shall reach Gar 3 (S) by applying a homotopical completion-reduction procedure to the presentation Gar 2 (S).

In Section 6, the result is used to compute coherent presentations of some monoids which are neither Artin-Tits nor Garside, and to construct a nite coherent presentation of the Artin-Tits monoid of type A 2 , taking a nite generating set. In some cases, homotopical reduction can be carried further: as a matter of fact, in Subsection 6.3, we prove that Artin's presentation of the Artin-Tits monoid of type A 2 is coherent (with the empty set of generating relations among relations).

We mainly consider monoids because that is where our applications lie, but the approach presented here can be extended to categories. 1.5. Acknowledgements. The authors would like to thank the anonymous reviewer(s) for his/her/their helpful comments; they greatly helped us to improve the quality of this article.

Presentations of monoids by polygraphs

In this section, we briey recall the notions concerning polygraphic presentations of monoids (technical elaboration whereof can be found in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]). Basic terminology is given in Subsection 2.1. Some basic notions of polygraphic rewriting theory are recollected in Subsection 2.2. Subsection 2.3 recalls the notion of coherent presentation.

Throughout the present article, 2-categories and 3-categories are always assumed to be strict (see e.g. [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF]Section 2]). In diagrams, distinct arrows are used to denote k-cells for low k: →, ⇒, ⇛ for k equal to 1, 2 and 3, respectively.

2.1. Presentations by 2-polygraphs. Polygraphs encompass words, rewriting rules, and homotopical properties of the rewriting systems in the same globular object. They provide a generalisation of a presentation of a monoid by generators and relations to the higher categories which are free up to codimension 1.

A polygraph is a higher-dimensional generalisation of a graph. Recall that a (directed) graph is a pair (X 0 , X 1 ) of sets, together with two maps, called source and target, from

X 1 to X 0 . A 0-polygraph (X 0 ) is a set, a 1-polygraph (X 0 , X 1 ) is a graph. The free category generated by a 1-polygraph (X 0 , X 1 ) is denoted by X * 1 . A 2-polygraph is a triple X = (X 0 , X 1 , X 2 )
, where (X 0 , X 1 ) is a 1-polygraph and X 2 is a set of 1-spheres, i.e. pairs of parallel paths, in X * 1 .

For a 2-polygraph X, the category presented by X, denoted X = X * 1 /X 2 , is obtained by factoring out generating 2-cells, regarded as relations among 1-cells of X * 1 . For a monoid M , a presentation of M is a 2-polygraph X such that M is isomorphic to X. In this case, which we are mainly interested in, X 0 is a singleton so any pair of paths in X * 1 forms a 1-sphere, and X * 1 is the free monoid generated by the set X • one generating 0-cell x;

• a generating 1-cell u for every element u of M ;

• a generating 2-cell γ u,v : u v ⇒ uv for every pair of elements u and v of M ;

• one generating 2-cell ι x : 1 x ⇒ 1 x . 

Rewriting properties of

= X * 1 [X 2 ]
, is obtained by adjoining to X * 1 all the formal compositions of elements of X 2 , treated as formal 2-cells.

Standard notions from rewriting theory naturally translate into the framework of polygraphs. A rewriting step of a 2-polygraph X is a 2-cell of the free category X * 2 which contains a single generating 2-cell of X, here considered as a transformation of its source into its target. So, a rewriting step has a shape

• • • • w u v α w ′ ,
where α : u ⇒ v is a generating 2-cell of X, and w and w ′ are 1-cells of X * 2 , and the 0-cell is denoted by •.

Let u and v be 1-cells of X * 2 . It is said that u rewrites to v if there is a nite composable sequence of rewriting steps with source u and target v. A 1-cell u is reduced if there is no rewriting step whose source is u.

Let X be a 2-polygraph. A termination order on X is a well-founded order relation ≤ on parallel 1-cells of X * 2 enjoying the following properties:

• the compositions by 1-cells of X * 2 are strictly monotone in both arguments, i.e. ≤ is compatible with the composition of 1-cells;

• for every generating 2-cell α of X, the strict inequality s (α) > t (α) holds.

A 2-polygraph X is terminating if it has no innite sequence of rewriting steps. Admitting a termination order is equivalent to being terminating (in a terminating polygraph, a termination order is obtained by putting u > v for 1-cells u and v if u rewrites to v).

A branching of a and conuent, it is called convergent. A convergent 2-polygraph X is called a convergent presentation of any category isomorphic to X. In that case, for every 1-cell u of X * , there is a unique reduced word, denoted by u, to which u rewrites.

Two basic results of rewriting theory concerning conuence, called Newman's lemma [20, Theorem 3] and the critical branchings theorem respectively, are also valid for polygraphs. 

= X * 1 (X 2 )
, is constructed by adjoining to X * 1 all the formal compositions of elements of X 2 and formal inverses of elements of X 2 , and then factoring out the compositions of elements with their corresponding inverses. A (3, 1)-polygraph is a quadruple X = (X 0 , X 1 , X 2 , X 3 ), where (X 0 , X 1 , X 2 ) is a 2-polygraph and X 3 is a set of 2-spheres, i.e. pairs of parallel paths of 2-cells, in X ⊤ 2 . For a (3, 1)-polygraph X, the free (3, 1)-category over X, denoted X ⊤ 3 = X ⊤ 2 (X 3 ), is constructed by adjoining to X ⊤ 2 all the formal compositions of elements of X 3 and formal inverses of elements of X 3 , and then factoring out the compositions of elements with their corresponding inverses. A (3, 1)-polygraph is called convergent if its underlying 2-polygraph is. The category presented by a (3, 1)-polygraph X is again X, the category presented by its underlying 2-polygraph. An extended presentation of a monoid M is a (3, 1)-polygraph X such that M is isomorphic to X.

Denition 2.3.1. A coherent presentation of a monoid M is an extended presentation (X 0 , X 1 , X 2 , X 3 ) of M such that factoring out elements of X 

A u,v,w A u,v,w γ u,v w uγ v,w γ u,vw 1 x u u u γ 1x,u ι x u L u L u u 1 y u u γ u,1y uι y R u R u
for every triple u, v, w of elements of M . The resulting (3, 1)-polygraph, denoted by Std 3 (M ), is called the standard coherent presentation of M (see [START_REF] Guiraud | Rewriting methods in higher algebra[END_REF]Subsection 3.3.3] for the explanation why Std 3 (M ) is, indeed, a coherent presentation).

Homotopical transformations of polygraphs

This section elaborates the diagram (1.1), by recalling the notion of homotopical completionreduction, introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. Subsection 3.1 recollects the Knuth-Bendix completion procedure which transforms a terminating 2-polygraph into a convergent one. Subsection 3.2 recalls the Squier completion procedure which upgrades a convergent 2-polygraph to a convergent coherent (3, 1)-polygraph. In Subsection 3.3, we report on the homotopical reduction procedure which turns a coherent (3, 1)-polygraph into a coherent one having fewer generating cells. Finally, Subsection 3.4 describes a particular method for obtaining a homotopical reduction in case when the starting coherent (3, 1)-polygraph is also convergent.

3.1. Knuth-Bendix completion. Starting with a terminating 2-polygraph X, equipped with a total termination order ≤, the Knuth-Bendix completion procedure adjoins generating 2-cells aiming to produce a convergent 2-polygraph, which presents a category presented by X. It works by iteratively examining all the critical branchings and adjoining a new generating 2-cell whenever the branching is not already conuent. Namely, for a critical branching {α, β}

, if t (α) > t (β) (resp. t (β) > t (α)), a generating 2-cell γ : t (α) ⇒ t (β) (resp. γ : t (β) ⇒ t (α)) is
adjoined, thus forcing the conuence of the branching:

t (α) t (α) * t (β) t (β) γ α β .
If new critical branchings are created by adjoining additional generating 2-cells, conuence of such critical branchings is examined. For details, see [16, p. 3.2.1]. This procedure is not guaranteed to terminate. In fact, its termination depends on the chosen termination order (see [START_REF] David | Word processing in groups[END_REF]Example 6.3.1]). If it does terminate, the result is a convergent 2-polygraph. Otherwise, it produces an increasing sequence of 2-polygraphs, and the result is the union of this sequence.

Either way, the result is called a Knuth-Bendix completion of X. Note that dierent orders of examining critical branchings may result in dierent 2-polygraphs.

Theorem 3.1.1 ([16, Theorem 3.2.2]). Assume that X is a 2-polygraph, equipped with a total termination order, presenting a monoid M . Then every Knuth-Bendix completion of X is a convergent presentation of M .

Remark 3.1.2. The Knuth-Bendix completion procedure, as described above, requires not only termination, but also the presence of a total termination order, to be able to orient the generating 2-cells which are added, and to be able to maintain the termination during the completion. There is an alternative approach. Namely, we can orient the newly added generating 2-cells "by hand", according to our inspiration, and verify after each addition in an ad hoc manner whether we maintain a terminating presentation, without having dened a total order at the beginning (we shall do this in the proof of Proposition 5.3.1). Therefore, we can invoke Theorem 3.1.1 even if we do not provide a total order, as long as we are able to ensure termination after each addition of a generating 2-cell (we shall do this in the proof of Corollary 5.3.3).

Squier completion.

A family of generating conuences of a convergent 2-polygraph X is a set of 2-spheres, treated as formal 3-cells, in X ⊤ 2 containing, for every critical branching {α, β} of X, exactly one 3-cell A:

* * * * α ′ A A α β β ′
, where α ′ and β ′ are completing α and β, respectively, into sequences having the same target (such α ′ and β ′ exist by the assumption of conuence).

A Squier completion of a convergent 2-polygraph X is a (3, 1)-polygraph with X as underlying 2-polygraph, whose generating 3-cells form a family of generating conuences of X. The following result is due to Squier; we state a version in terms of polygraphs and higher-dimensional categories proved in [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF].

Theorem 3.2.1 [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF]Theorem 4.3.2]). If X is a convergent presentation of a monoid M , then every Squier completion of X is a convergent coherent presentation of M .

Theorem 3.2.1 is extended to higher-dimensional polygraphs in [START_REF] Guiraud | Higher-dimensional categories with nite derivation type[END_REF]Proposition 4.3.4].

Let X be a terminating 2-polygraph equipped with a total termination order ≤. A homotopical completion of X is a Squier completion of a Knuth-Bendix completion of X. We have seen that a Knuth-Bendix completion procedure enriches a terminating 2-polygraph to a convergent one, and that the Squier completion of a convergent 2-polygraph X is a coherent presentation of X. Those two transformations can be performed consecutively. They can also be performed simultaneously (see [13, p. 2.2.4]). The result is called a homotopical completion of X. Theorem 3.2.1 has the following consequence. Theorem 3.2.2. Assume that a 2-polygraph X is a terminating presentation of a monoid M .

Then, every homotopical completion of X is a coherent convergent presentation of M . The name comes from the fact that K + is the submonoid generated by a and b of the fundamental group of the Klein bottle generated by a and b subject to relation bab = a. Every element of K + admits a unique expression of the form a p b q for p, q ≥ 0 or a p b q a for p ≥ 0 and q ≥ 1. That form is called canonical.

Let us apply a homotopical completion procedure to the presentation (3.1). We have the generating 1-cells a and b, and a single generating 2-cell α : bab ⇒ a. Let us adopt the following termination order: comparing the lengths of words, then applying lexicographic order, induced by a < b, if words have the same length. For instance, b < aa < ab. The only critical branching is {αab, baα}, with source babab. The homotopical completion procedure adjoins the generating 2-cell β : baa ⇒ aab, and the generating 3-cell A for coherence. The generating 2-cell β causes only one new critical branching, namely {αaa, baβ} with source babaa, which is conuent, hence only the generating 3-cell B is adjoined. Diagrammatically, the generating 3-cells have the shapes Remark 3.2.4. For convenience, we mostly leave implicit the orientation of the 3-cells in the diagrams. We only label the corresponding area with the name of a 3-cell. The convention is that the source and the target of a 3-cell are always the upper and the lower paths, respectively, of the sphere bounding the area.

Homotopical reduction.

A coherent presentation obtained by the homotopical completion procedure is not necessarily minimal, in the sense that it may contain superuous cells. The homotopical reduction procedure aims to remove such superuous cells by performing a series of elementary collapses, analogous to that used by Brown in [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF]. We refer the reader to [13, Subsection 2.3] for a technical elaboration.

An elementary Nielsen transformation on a (3, 1)-polygraph X is any of the following operations:

• replacement of a 2-cell or a 3-cell with its formal inverse;

• replacement of a 3-cell A : α ⇛ β with * * * * * * α χ ′ χ χ β χ ′ A A ,
where χ and χ ′ are 2-cells of X ⊤ 3 .

Elementary Nielsen transformations preserve presented 1-categories, equivalence of presented (2, 1)-categories and homotopy type of (3, 1)-polygraphs (see [13, p. 2.1.4]). In particular, they transform a coherent presentation of a monoid M into another coherent presentation of M . A

Nielsen transformation is a composition of elementary ones. In a homotopical completionreduction procedure, Nielsen transformations are performed implicitly for convenience.

Let X be a (3, 1)-polygraph. A generating 2-cell (resp. 3-cell, resp. 3-sphere) α of X is called collapsible if it meets the following two requirements:

• the target of α is a generating 1-cell (resp. 2-cell, resp. 3-cell) of X, • the source of α is a 1-cell (resp. 2-cell, resp. 3-cell) of the free (3, 1)-category over X \ {t (α)}. For a (3, 1)-polygraph X = (X 0 , X 1 , X 2 , X 3 ), a collapsible part of X is a triple Γ = (Γ 2 , Γ 3 , Γ 4 ), wherein Γ 2 , Γ 3 , Γ 4 respectively denote families of generating 2-cells of X, generating 3-cells of X, 3-spheres of X ⊤
3 , such that the following requirements are met:

• every γ of every Γ k is collapsible (possibly up to a Nielsen transformation);

• no γ of Γ k is the target of an element of Γ k+1 ;

• there exist well-founded order relations on X 1 , X 2 and X 3 such that, for every γ in every Γ k , the target of γ is strictly greater than every generating (k -1)-cell that occurs in the source of γ.

The result of the homotopical reduction of X with respect to Γ is the (3, 1)-polygraph which we denote X/Γ, whose generating cells are

X/Γ = (X 0 , X 1 \ t (Γ 2 ) , X 2 \ t (Γ 3 ) , X 3 \ t (Γ 4 
)) .

Sources and targets are given by π Γ • s and π Γ • t, where π Γ is the 3-functor from X ⊤ to (X/Γ) ⊤ given by the recursive formula

π Γ (x) =      π Γ (s (γ)) if x = t (γ) for γ in Γ 1 πΓ(s(x)) if x in Γ x otherwise.
Such a transformation is called the homotopical reduction procedure.

Let X be a terminating 2-polygraph, with a termination order ≤. A homotopical completion-reduction of X is a (3, 1)-polygraph, obtained as a homotopical reduction, with respect to a collapsible part, of a homotopical completion of X. Theorem 3.2.1 implies the following result. Theorem 3.3.1. Assume that X is a terminating 2-polygraph presenting a monoid M . Then, every homotopical completion-reduction of X is a coherent presentation of M .

3.4. Special case of reduction. We have just recalled the denition of a generic collapsible part of a (3, 1)-polygraph X. For the applications considered here, however, it is practical to also recall a particular technique, described in [13, p. 3.2], to construct a collapsible part in the case when X is convergent and coherent. A local triple branching is an unordered triple {α, β, γ} of rewriting steps having a common source. A local triple branching is trivial if two of its components are equal or if one of its components forms branchings of the type {αv, uβ}, for u = s (α) and v = s (β), with the other two. In a manner analogous to the case of local branchings, local triple branchings can be ordered by inclusion, and a minimal nontrivial local triple branching is called critical. A generating triple conuence of X is a particular kind of 3-sphere Φ constructed using a critical triple branching. Referring the reader to [ Hence the component Γ 4 of the collapsible part contains the 3-sphere Φ which has the 3-cell B as target (recall that we implicitly perform a higher Nielsen transformation when needed). Hence the component Γ 4 of the collapsible part contains the 3-sphere Φ which has the 3-cell B as target. By the denition of a collapsible part, we also need to provide a well-founded order relation on the set of generating 3-cells, such that, for every 3-sphere (X, Y ) in Γ 4 , the target Y is strictly greater than every generating 3-cell that occurs in the source X. So, we put B > A. First, let us adopt a terminology concerning divisibility in monoids. A monoid M is leftcancellative (resp. right-cancellative) if for all f , g and g ′ of M , the equality f g = f g ′ (resp. gf = g ′ f ) implies the equality g = g ′ . A monoid is cancellative if it is both left-cancellative and right-cancellative.

An element f of a monoid M is said to be a left divisor of g ∈ M , and g is said to be a right multiple of f , denoted by f ⪯ g, if there is an element f ′ ∈ M such that f f ′ = g. If, additionally, f ′ is not invertible, then divisibility is called proper. We say that f is a proper left divisor of g, written as f ≺ g, if f ⪯ g and g ⪯̸ f . If M is left-cancellative, then the element f ′ is uniquely dened and called the right complement of f in g.

For an element h of a left-cancellative monoid M and a subfamily S of M , we say that h is a left-gcd (resp. right-lcm) of S if h ⪯ s (resp. s ⪯ h) holds for all s ∈ S and if every element of M which is a left divisor (resp. right multiple) of all s ∈ S is also a left divisor (resp. right multiple) of h. (1) M is a cancellative monoid;

(2) there is a map λ : M → N such that λ (f g) ≥ λ (f ) + λ (g) and λ (f ) = 0 =⇒ f = 1;

(3) every two elements have a left-gcd and a right-gcd and a left-lcm and a right-lcm;

(4) there is element ∆, called the Garside element, such that the left and the right divisors of ∆ coincide, and they generate M ; (5) the family of all divisors of ∆ is nite. We write f ∧ g for the left-gcd of f and g. For a (left) divisor f of ∆, we write ∂ (f ) for the right complement of f in ∆.

Garside's presentation of a Garside monoid M is the 2-polygraph Gar 2 (M ), having divisors of ∆, other than 1, as generating 1-cells and a generating 2-cell α u,v : u|v ⇒ uv whenever the condition ∂ (u) ∧ v = v is satised. To be able to dene generating 3-cells, we need to generalise this condition, in a suitable way, to three elements. Let us rst observe that the condition

∂ (u) ∧ v = v is equivalent to saying that v is a left divisor of ∂ (u).
In other words, there is w in M such that vw = ∂ (u). By denition of ∂ (u), this means that uvw = ∆, so uv is a divisor of ∆. This reformulation allows an extension of the given condition to a greater number of elements. Let Gar 3 (M ) denote the extended presentation of M obtained by adjoining to Gar 2 (M ) a generating [START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] 

. Proper division, left or right, strictly reduces the length of an element of an

Artin-Tits monoid. Therefore, no element admits an innite number of divisors, so Artin-Tits monoids are noetherian.

Garside monoids are noetherian by denition (thanks to the map λ : M → N).

4.2. Notion of a Garside family. In this subsection, we recollect the denition and some basic properties of the all-important notion of a Garside family which provides a way of extending the notion of a greedy decomposition beyond Garside monoids.

Given a subfamily S of a left-cancellative monoid M , an M -word g 1 | • • • |g q is said to be S-greedy if for all i < q,

∀h ∈ S, ∀f ∈ M, (h ⪯ f g i g i+1 =⇒ h ⪯ f g i ) .
In other words, if the diagram

• • • • • h f g i g i+1
commutes without the dashed arrow, then there exists a dashed arrow making the square on the left commute. The arc joining g i and g i+1 denotes greediness. By denition, a word of length zero or one is S-greedy for any subfamily S.

Given a subfamily S of M , an M -word g 1 | • • • |g q is said to be S-normal if it is S-greedy and if, moreover, g 1 , . . . , g q all lie in S. An S-normal word g

1 | • • • |g q is strict if g q ̸ = 1.
Observe that the existence of an S-normal form implies the existence of a strict one.

Note that, by the very denition of being greedy, a word is normal if, and only if, its length-two factors are. More is true: the procedure of transforming a word into its normal form consists of transforming its length-two factors (we refer the reader to [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] for elaboration).

In general, an S-normal decomposition of an element g of M is not unique. Nevertheless, the number of non-invertible letters in all S-normal decompositions of g is the same (see [START_REF] Dehornoy | Garside families[END_REF]Proposition 2.11] or [4, Proposition III.1.25] for exposition). If M has no nontrivial invertible element, then every g in M admits at most one strict S-normal decomposition. Given a subfamily S of a left-cancellative monoid M , and an element g of M admitting at least one S-normal decomposition, one denes the S-length of an element g ∈ M to be the common number of non-invertible letters in all S-normal decompositions of g.

A subfamily S of a left-cancellative monoid M is called a Garside family in M if every element of M admits an S-normal decomposition. Since every left-cancellative monoid M is a Garside family in itself (for every g in M , simply take a length-one word g as a M -normal decomposition of g), we are interested only in proper (meaning other than M itself ) Garside families. Observe that, if M has no nontrivial invertible element and S is a Garside family in M , then every element of M admits a unique strict S-normal decomposition.

Example 4.2.1. Every Artin-Tits monoid admits a nite Garside family. In the case of an Artin-Tits monoid of spherical type, a nite Garside family is given by the corresponding Coxeter group.

In the particular case of a braid monoid, the family of all simple braids is a Garside family.

The Coxeter group W which corresponds to a general Artin-Tits monoid B + (W ) is a possibly innite Garside family, but B + (W ) admits a nite Garside family in any case (see [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF]).

Any Garside monoid (M, ∆) has a nite Garside family given by the family of all divisors o ∆ (see [START_REF] Dehornoy | Garside families[END_REF]Proposition 2.18] or [4, Proposition III.1.43]).

The following proposition gives a simple characterisation of a Garside family.

The notation extends to a greater number of elements. For three elements u, v, w ∈ S, we write u v w if both conditions uv ∈ S and vw ∈ S hold. The condition u v w splits into two mutually exclusive subcases: Proof. If we restrict the conditions u v and u v w to the case of a Garside monoid (M, ∆), with divisors of ∆ as Garside family S, then we get precisely our equivalent reformulation, given in Example 3.5.2, of the conditions stated in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Subsection 3.3]. Literally, the condition u v w then says that uv is an element of the set of divisors of ∆. Garside monoids are cancellative by denition. Note that the property (2) of a Garside monoid implies noetherianity as well as the fact that there are no nontrivial invertible elements.

u v w ⇐⇒ u v

□

The following diagram summarises key steps of the proof and 3.5.2 and thus motivates the next three subsections (which together contain the proof ). In Subsection 5.2, starting with the Garside's presentation Gar 2 (S) of M , we add the generating 2-cells β which results in a terminating presentation Gar 2 (S). This is, in fact, a convergent presentation, namely a Knuth-Bendix completion of Gar 2 (S), but we do not prove it until Subsection 5.3. Nevertheless, this hindsight prompts us to begin Subsection 5.2 with a formal denition of the 2-polygraph Gar 2 (S).

In Subsection 5.3, rst we formally compute a Squier completion of the polygraph Gar 2 (S), under certain assumptions on the monoid. We denote the resulting (3, 1)-polygraph by Gar 3 (S). Then we show that this construction applies to a terminating presentation Gar 2 (S) of M and produces a coherent convergent presentation Gar 3 (S).

Finally, in Subsection 5.4, we compute a homotopical reduction of Gar 3 (S) to obtain the (3, 1)-polygraph Gar 3 (S) as a coherent presentation of M . 5.2. Attaining termination. In this subsection, we ensure that a certain presentation, denoted Gar 2 (S), is terminating. This presentation arises naturally as a result of applying the Knuth-Bendix completion to the Garside's presentation Gar 2 (S). Hence the motivation for the formal denition of the 2-polygraph Gar 2 (S).

Let M be a monoid generated by a set S containing 1. Observe that the 2-polygraph Gar 2 (S) has exactly one critical branching for all u, v and w of S \ {1} such that u v w holds:

uv|w u|v|w u|vw. α u,v |w u|α v,w
If the subcase u v w holds, then the branching is already conuent. Otherwise u v w × holds, and the branching requires a new generating 2-cell to reach conuence, so the generating 2-cell β u,v,w : u|vw ⇒ uv|w is adjoined. We write Gar 2 (S) for the 2-polygraph which contains a single generating 0-cell, one generating 1-cell for every element of S \ {1}, the generating 2-cells

α u,v : u|v ⇒ uv, u, v ∈ S \ {1} , u v, β u,v,w : u|vw ⇒ uv|w, u, v, w ∈ S \ {1} , u v w × .
To show that the 2-polygraph Gar 2 (S), under certain conditions, is a Knuth-Bendix completion of the 2-polygraph Gar 2 (S), we need to ensure two things: a way to maintain a terminating presentation in the sense of Remark 3.1.2, and a demonstration that all new critical branchings caused by the generating 2-cells β are conuent. These are respectively given by Proposition 5.2.1, and the proof of Proposition 5.3.1.

For an element u of S * , where S is a set, we use the following notations: ℓ (u) is the S-length of u, h (u) is the leftmost letter of u, and t (u) is the word obtained by removing the letter h (u) from u.

Proposition 5.2.1. Assume that M is a left-cancellative monoid containing no nontrivial invertible element, admitting a right-noetherian Garside family S containing 1. Then the 2-polygraph Gar 2 (S) is terminating. Proof. Let us rst adopt some notation. For a generating 2-cell χ, a χ-step is a rewriting step in which the generating 2-cell involved is χ, and χ i is a χ-step

• • • • w u v χ w ′ ,
where w has length i -1.

If i 1 |i 2 | • • • is an innite sequence of positive integers, we denote the path • • • • χ i2 • χ i1 by χ i1|i2|••• .
Suppose that there is an innite rewriting path. Note that an α-step strictly reduces the (S \ {1})-length of a word, so there can be only nitely many of the generating 2-cells α in any rewriting path. Hence, there is no loss in generality if we consider only β-steps. Namely, we can simply consider an innite path after the last α-step is applied and we are left with an innite path containing only β-steps. So assume that there is an innite rewriting path of β-steps. Let β i1|i2|••• be such a path having source u of minimal (S \ {1})-length. Note that ℓ (u) is at least two.

Note that the minimality assumption about ℓ (u) implies that the position 1 occurs innitely many times in i

1 |i 2 | • • • . Namely, if the position 1 occurred only nitely many times in i 1 |i 2 | • • • , then β i k+1 -1|i k+2 -1|••• would be an innite path starting from t β i1|i2|•••|i k (u) of (S \ {1})-length ℓ (u)-1, where i k = 1 is the last occurrence of 1 in the sequence i 1 |i 2 | • • • . That would contradict
the minimality assumption about ℓ (u). We write i c1 |i c2 | • • • for the constant subsequence of the sequence i 1 |i 2 | • • • taking all the members whose value is 1. In other words, c 1 is the least j such that i j = 1; and for all n, we have that c n+1 is the least j such that conditions j > c n and i j = 1 hold.

Let u (n) denote the nth word in the path β i1|i2|••• , that is the source of the step β in . Note that the leftmost letter of the word is modied by a step β in if, and only if, i n equals 1. In this case, the modication is such that the current leftmost letter h u (n) is a proper left divisor of the next leftmost letter h u (n+1) , and the corresponding complement lies in S by the denition of the generating 2-cells β. In formal terms, (5.1)

h u (n+1) = h u (n) if i n+1 ̸ = 1, h u (n) f n for some f n ∈ S if i n+1 = 1.
Let s denote the leftmost letter of the S-normal form of u. Observe that all the words in the path β i1|i2|••• have the same evaluation in M and that, consequently, the equality N S (u) = N S u (n) holds for all n by the denition of N S . By Lemma 4.2.5, we have that h u (n) left-divides s for all n.

Consider the sequence

(5.2) h u (cn) ∞ n=1
of elements of S that divide g. Observe that, by (5.1), we have h u (cn+1) = h u (cn) f cn . The existence of the sequence (5.2) contradicts the fact that S is right-noetherian. We conclude that the 2-polygraph Gar 2 (S) is terminating. 

A u,v,w α u,v |w u|α v,w α u,vw u|v|w uv|w u|vw α u,v |w u|α v,w B u,v,w βu, v, w uv|wx u|v|wx uvw|x u|vw|x β uv,w,x C u,v,w,x α u,v |wx u|β v,w,x α u,vw |x u|v|wx uv|wx u|vw|x uv|w|x α u,v |wx u|β v,w,x β u,v,w |x D u,v,w,x uv|α w,x uv|w|x u|vw|x uv|wx u|vwx uv|α w,x E u,v,w,x β u,v,w |x u|α vw,x β u,v,wx uv|w|x uv|wx u|vw|x uvwx u|vwx uv|α w,x α uv,wx β u,v,w |x u|α vw,x E ′ u,v,w,x α u,vwx
β uv,x,y β u,v,xy β u,vx,y uv 1 |w 1 = uv 1 |x 1 y u|v 1 w 1 = u|v 2 w 2 uv 1 x 1 |y = uv 2 x 2 |y uv 2 |w 2 = uv 2 |x 2 y β uv1,x1,y I u,v1,w1,v2,w2 β u,v1,w1 β u,v2,w2 β uv2,x2,y
The meanings of the 1-cells (i.e. words) x 1 , x 2 , y and x, y which appear respectively in the denitions of the generating 3-cells I and H, are as follows. Since v 1 and v 2 have the common right multiple v 1 w 1 = v 2 w 2 , they also have a right-mcm. The words x 1 and x 2 are the right complements of v 1 and v 2 , respectively, in their right-mcm. The word y is the right complement

of v 1 x 1 = v 2 x 2 in v 1 w 1 = v 2 w 2 . If either x 1 or x 2 is equal to 1,
then the other one is simply denoted by x (in the generating 3-cell H).

The structure of the following proof closely resembles that of the proof of [13, Proposition 3.2.1], but we need to devise more general arguments to assure favourable properties in a more general context.

Proof. Termination of the 2-polygraph Gar 2 (S) is assumed, so we can perform a relaxed version of the Knuth-Bendix completion procedure, as described in Remark 3.1.2, simultaneously with the Squier completion procedure. It will turn out that all critical branchings are conuent, and hence that only a Squier completion will be actually computed, i.e. no further 2-generating cells will be added.

Let us rst consider critical branchings consisting only of the generating 2-cells α. There is only one such critical branching for all u, v and w of S \ {1} such that u v w holds:

uv|w u|v|w u|vw. α u,v |w u|α v,w
If the subcase u v w holds, the branching is already conuent, so the homotopical completion procedure adjoins only the generating 3-cell A u,v,w . If u v w × holds, the branching is again conuent, so the generating 3-cell B u,v,w is adjoined.

Let us now consider critical branchings containing the generating 2-cell β. The sources of 2-cells forming such a branching can either overlap on one element of S \ {1} or be equal, as the lengths in (S \ {1}) * of the sources of the generating 2-cells α and β equal two. We consider the two cases accordingly.

For the rst case, the proof of [13, Proposition 3. We have thus considered the rst case. The second case is going to be considered in greater detail because this is where new justications are needed. Assume that the two 2-cells which generate a critical branching, have the same source. One of those two 2-cells has to be a β (otherwise, the branching is trivial). Therefore, the source has to have a form u|v 1 w 1 satisfying the condition u v 1 w 1 × . Since 2-cells α are not dened under this condition, the other 2-cell also has to be a β. The only way for the generating 2-cells β with the same source u|v 1 w 1 to form a critical branching is for v 1 w 1 to have another decomposition

v 1 w 1 = v 2 w 2 such that u v 2 w 2 × .
Then the branching is as follows:

uv 1 |w 1 u|v 1 w 1 = u|v 2 w 2 uv 2 |w 2 . β u,v1,w1 β u,v2,w2
Let us invoke the assumed property of M admitting right-mcms. Since v 1 and v 2 have a common right multiple, namely v 1 w 1 = v 2 w 2 , they also have a right-mcm, say v ′ . Since S is closed under right-mcm by assumption, v ′ lies in S. By the left cancellation property which grants the uniqueness of right complements, we dene x 1 and x 2 as the right complements in v ′ of v 1 and v 2 , respectively. Since S is closed under right divisor, x 1 and x 2 are elements of S. We also dene y as the right complement of v ′ in v 1 w 1 = v 2 w 2 . Note that y is in S as a right divisor of v 1 w 1 which is in S. Uniqueness of the right complements of v 1 and v 2 in v 1 w 1 and v 2 w 2 , respectively, yields w 1 = x 1 y and w 2 = x 2 y. To sum up, the diagram

• • • • • w 1 x 1 v 1 v ′ v 2 y x 2 w 2
commutes, where • denotes the unique 0-cell. Furthermore, the equality w k = x k y, the fact that v ′ lies in S, and the condition v k w k together imply v k x k y for k ∈ {1, 2}.

We have only showed that x 1 , x 2 and y are elements of S. Let us verify that all the generating 1-cells involved are, indeed, elements of S \ {1}. First we demonstrate that y cannot be equal . Thus, we deduce that y is not equal to 1. Note that if x 1 and x 2 were both equal to 1, the branching {β u,v1,w1 , β u,v2,w2 } would be trivial. So, at most one of the 1-cells x 1 and x 2 can be equal to 1. If x 2 = 1, the generating 3-cell H u,v,x,y is constructed with v := v 1 and x := x 1 . Similarly, for x 1 = 1, the generating 3-cell H u,v,x,y is constructed with v := v 2 and x := x 2 . Finally, if neither x 1 nor x 2 is equal to 1, the generating 3-cell I u,v1,w1,v2,w2 is adjoined.

By Theorem 3.2. We can now deduce that the 2-polygraph Gar 2 (S) is a Knuth-Bendix completion of the Garside's presentation Gar 2 (S), as hinted in Subsection 5.2. 

□

Observe that Proposition 5.2.1, together with Proposition 4.2.7, immediately implies that the 2-polygraph Gar 2 (S) is a terminating presentation of M . On the other hand, the fact that Gar 2 (S) is also a convergent presentation of M was reachable only after Proposition 5.3.1 when we made sure that no additional generating 2-cells were required to obtain conuence. The target of this particular generating triple conuence is the generating 3-cell H u,v,w,x . Note, however, that does not suce to eliminate any of the generating 3-cells E ′ u,v,w,x , F ′ u,v,w,x,y and G ′ u,v,w,x,y since these particular families of generating 3-cells do not even occur in [13, Section 3] (recall Remark 5.3.2). So, we have yet to eliminate these cells here. To this end, we consider the following generating triple conuences in the (3, 1)-polygraph Gar 3 (S). 

uv|α w,x α u,v |w|x = u|v|α w,x β uv,w,x H u,v,w,x β u,v,wx α u,v |wx u|α v,wx β u,vw,x B uv,w,x B u,v,wx

□

The next section demonstrates advantages of using our results in applications. The following example, however, shows that taking a Garside family as a generating set is not always the most practical way to get a coherent presentation. In this section, we consider applications of Theorem 5.1.4 to certain monoids. In Subsections 6.1 and 6.2, we apply it to monoids which are neither Artin-Tits nor Garside. In Subsection 6.3, we compute a nite coherent presentation of an Artin-Tits monoid B + (W ) that is not of spherical type, with a nite Garside family F (hence, F ̸ = W ).

6.1. The free abelian monoid over an innite basis. Consider the free abelian monoid N (I) of all I-indexed sequences of nonnegative integers with nite support. Note that N (I) is not necessarily of nite type, hence it is neither Artin-Tits nor Garside. Dene S I = g ∈ N (I) ∀k ∈ I, g (k) ∈ {0, 1} .

Observe that S I is a Garside family in N (I) (say, by applying Proposition 4.2.2). The following properties follow from the fact that the denition of the product on N (I) is based on the pointwise addition of nonnegative integers: N (I) is a cancellative monoid, it has no nontrivial invertible elements, and it admits conditional right-lcms. Since every element of N (I) has only nitely many divisors, N (I) is noetherian. So, all the conditions of Theorem 5.1.4 are satised.

Let us describe the cells of the coherent presentation of N (I) granted by Theorem 5.1.4. The generating 2-cells are relations α u,v : u|v ⇒ uv for u, v ∈ S I \ {1} with uv ∈ S I , which in this particular context means that u and v have disjoint supports. A generating 3-cell A u,v,w is adjoined for any u, v, w ∈ S I \ {1} which have pairwise disjoint supports.

As expected, for I = {1, 2, . . . , n}, we recover Garside's presentation of the Artin-Tits monoid N n recalled in Example 3.5.1, as well as Garside's presentation of the Garside monoid N n recalled in Example 3.5.2. We proceed to construct the generating 3-cells A u,v,w for u, v, w ∈ F \ {1} with uv ∈ F , vw ∈ F, and uvw ∈ F . We obtain pairs of generating We have thus computed the nite coherent presentation of the Artin-Tits monoid of type A 2 , which consists of fteen generating 1-cells, twenty-seven generating 2-cells, and twelve generating 3-cells.

Like in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], one can further perform a homotopical reduction procedure. Here, the resulting (3, 1)-polygraph contains: a single generating 0-cell; the generating 1-cells σ 1 , σ 2 , σ 3 ; the generating 2-cells α σ2,σ1σ2 , α σ3,σ2σ3 , α σ1,σ3σ1 ; and no generating 3-cells. As a side result, we have thus shown that Artin's presentation of the Artin-Tits monoid of type A 2 , with the empty set of generating 3-cells, is coherent.

  illustrate the second stage by giving a preview of Example 3.2.3. Consider the following convergent presentation of the Klein bottle monoid: There are exactly two critical branchings, i.e. minimal overlaps of the rewriting steps: {αab, baα} and {αaa, baβ}. Both branchings are conuent. A Squier completion procedure adds the generators A and B of the relations among relations. Here are the shapes of A and B:

( 2 )

 2 Then, starting from Gar 2 (S), we embark on extending[START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] Theorem 3.1.3] (which we recall in Example 3.5.1) to a wider class of monoids, including left-cancellative noetherian monoids containing no nontrivial invertible element, admitting a Garside family. Working in a more general setting, we encounter additional critical branchings which cannot occur in the case of Artin-Tits or Garside monoids due to specic properties not shared by Garside families in general. Therefore, we construct new generating relations among relations. Conveniently, we then remove all the additional relations using the homotopical reduction procedure. This results in Theorem 5.1.4, our main result, of which we give here a weaker, but simpler version (our Corollary 5.5.1).
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 323 Klein bottle monoid). We consider the Klein bottle monoid K + , as dened in [4, Subsection I.3.2]. It has the following presentation: (3.1) ⟨a, b | bab = a⟩ .

  By Theorem 3.2.2, we have thus obtained a convergent coherent presentation of the Klein bottle monoid, consisting of two generating 1-cells, two generating 2-cells, and two generating 3-cells: a, b bab α ⇒ a, baa β ⇒ aab A, B .

  13, Subsection 3.2] for elaboration of the technique, we illustrate it by means of an example. Example 3.4.1. Let us perform a homotopical reduction procedure on the homotopical completion of the Klein bottle monoid, computed in Example 3.2.3. We construct a collapsible part Γ = (Γ 2 , Γ 3 , Γ 4 ). There is only one critical triple branching, namely {αabab, baαab, babaα}. It yields a generating triple conuence, denoted Φ, whose boundary consists of the following two parts (we display the 3-cells A and B dierently now, to make the generating triple conuence more evident):

  Proceeding as described in[START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] Subsection 3.2], we examine the remaining 3-cells and construct the component Γ 3 out of those 3-cells whose boundary contains a generating 2-cell occurring only once in the boundary. There is only one 3-cell left, namely A, and the 2-cell β appears only once in the boundary of A. So, Γ 3 contains A, and we order the set of generating 2-cells by setting β > α. The component Γ 2 is empty because there is no 2-cell whose source or target consists of a single generating 1-cell appearing only once. Thus, after performing a homotopical reduction procedure with respect to the collapsible part (∅, Γ 3 , Γ 4 ), we are left with the presentation a, b bab α ⇒ a ∅ which is thus coherent by Theorem 3.3.1. Note that having a coherent presentation X with the empty set of generating 3-cells means that any two parallel rewriting paths represent the same 2-cell in X ⊤ 3 .

3. 5 .

 5 Application to Artin-Tits and Garside monoids. In this subsection, we recollect two instances of a homotopical completion-reduction procedure, illustrating the results of [13, Section 3]. We shall recall these examples in Subsection 5.1, as the theorems of [13, Section 3] are special cases of our main result.

A

  (proper) right divisor, a left multiple, a left complement, a left-lcm and a right-gcd are dened similarly. We say that a left-cancellative monoid M admits conditional right-lcms if any two elements having a common right multiple have a right-lcm. Example 3.5.1. Let W be a Coxeter group (see e.g. [13, Section 3]), and B + (W ) the corresponding Artin-Tits monoid. Garside's presentation of the B + (W ), seen as a 2-polygraph and denoted by Gar 2 (W ), has a single generating 0-cell, elements of W \ {1} as generating 1-cells, and a generating 2-cell α u,v : u|v ⇒ uv for all u, v ∈ W \ {1} such that ℓ (uv) = ℓ (u) + ℓ (v) holds, where ℓ(u) denotes the common length of all reduced expressions of u. Let Gar 3 (W ) denote the extended presentation of B + (W ) obtained by adjoining to Gar 2 (W ) a generating 3-cell uv|w u|v|w uvw u|vw α uv,w A u,v,w α u,v |w u|α v,w α u,vw for all u, v and w of W \ {1} such that ℓ (uv) = ℓ (u) + ℓ (v) and ℓ (vw) = ℓ (v) + ℓ (w) and ℓ (uvw) = ℓ (u)+ℓ (v)+ℓ (w) hold. By [13, Theorem 3.1.3], Gar 3 (W ) is a homotopical completionreduction of Gar 2 (W ) so, by Theorem 3.3.1, it is a coherent presentation of B + (W ).Example 3.5.2. Recall that a Garside monoid (see [4, Denition I.2.1]) is a pair (M, ∆) such that the following conditions hold:
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 514 Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and admitting a right-noetherian Garside family S containing 1. If M admits rightmcms, then M admits the (3, 1)-polygraph Gar 3 (S) as a coherent presentation.Before we proceed to prove the theorem, let us show that it gives a common generalisation of the two distinct directions of extension, given in[START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], of Deligne's result [9, Theorem 1.5]. Corollary 5.1.5 ([13, Theorem 3.1.3]). For every Coxeter group W , the Artin-Tits monoid B + (W ) admits Gar 3 (W ) as a coherent presentation. Proof. Let us restrict the conditions u v and u v w , dened in the beginning of the current subsection, to the case of the Artin-Tits monoid B + (W ), with the Coxeter group W as Garside family S. Observe that, for u, v ∈ W \ {1}, the condition u v , i.e. uv ∈ W , boils down to the condition ℓ (uv) = ℓ (u) + ℓ (v) given in Example 3.5.1 (see Matsumoto's lemma, e.g. [4, Corollary IX.1.11]). Accordingly, the condition u v w becomes the conjunction of u v and v w and ℓ (uvw) = ℓ (u) + ℓ (v) + ℓ (w). Recall that Artin-Tits monoids and Garside monoids are cancellative and noetherian (Example 4.1.2), and that they contain no nontrivial invertible element. Consequently, Theorem 5.1.4 specialises to [13, Theorem 3.1.3] when a monoid considered is Artin-Tits with Coxeter group as a Garside family. □ Similarly, one shows that Theorem 5.1.4 specialises to [13, Theorem 3.3.3] when a monoid considered is Garside with S being the set of divisors of the Garside element. Corollary 5.1.6 ([13, Theorem 3.3.3]). Every Garside monoid M admits Gar 3 (M ) as a coherent presentation.

Gar 3
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 53 Homotopical completion of Garside's presentation. In this subsection, we enrich Garside's presentation to reach a coherent convergent presentation. First (Proposition 5.3.1) we compute, purely formally, the homotopical completion of a terminating presentation of a monoid satisfying certain conditions, but not presumed to have a proper Garside family. Then we show, in Corollary 5.3.4, that this provides a coherent convergent presentation of a left-cancellative monoid containing no nontrivial invertible element, admitting right-mcms and a right-noetherian Garside family containing 1. Proposition 5.3.1. Assume that M is a left-cancellative monoid admitting right-mcms, and S is a subfamily of M closed under right-mcm and right divisor. Assume that the 2-polygraph Gar 2 (S) is a terminating presentation of M . Then M admits, as a coherent convergent presentation, the (3, 1)-polygraph Gar 3 (S) which extends Gar 2 (S) with the following twelve families of generating 3-cells, indexed by all the possible elements of S \ {1}:

F

  u,v,w,x,y uv|α w,xy β u,v,w |xy u|β vw,x,y β u,v,wx |y uv|α wx,y uv|w|xy uv|wxy u|vw|xy uvwx|y u|vwx|y uv|α w,xy β uv,wx,y β u,v,w |xy u|β vw,x,y F ′ u,v,w,x,y α u,vwx |y uv|w|xy u|vw|xy uv|wx|y u|vwx|y uv|β w,x,y G u,v,w,x,y β u,v,w |xy u|β vw,x,y β u,v,wx |y uv|w|xy uv|wx|y u|vw|xy uvwx|y u|vwx|y uv|β w,x,y α uv,wx |y β u,v,w |xy u|β vw,x,y G ′ u,v,w,x,y α u,vwx |y uv|xy u|vxy uvx|y H u,v,x,y

.

  2.1] applies here to a great extent. The source of a branching has length three, as a word in (W \ {1}) * . One of the 2-cells which form a branching, rewrites the leftmost two generating 1-cells of the source, and the other one rewrites the rightmost two. There are three distinct forms of such branchings: v,w |x u|α vw,x uv|w|xy u|vw|xy u|vwx|y. β u,v,w |xy u|β vw,x,y The rst form is dened under the condition u v w x × , which splits into two mutually exclusive possibilities u v w x × and u v w x × × , which respectively yield the generating 3-cells C u,v,w,x and D u,v,w,x by the homotopical completion procedure. The second form is dened under the condition u v w x × which splits into u v w x × × and u v w x × , which respectively produce the generating 3-cells E u,v,w,x and E ′ u,v,w,x . The third form is dened under the conditions u v w x y × ×. This situation splits into two mutually exclusive possibilities u v w x y The former possibility further splits into u v w x y the generating 3-cells F u,v,w,x,y and F ′ u,v,w,x,y ; the latter splits into 3-cells G u,v,w,x,y and G ′ u,v,w,x,y , respectively.

to 1 . 1 × 1 ×.

 111 Assume the opposite. Then the condition u v 1 w reduces to u v 1 x On the other hand, uv ′ is a right-mcm of uv 1 and uv 2 by Lemma 4.1.1. Since S is closed under right-mcm, uv ′ lies in S, which contradicts the condition u v 1 x 1 ×

2 ,

 2 the constructed (3, 1)-polygraph Gar 3 (S) is a coherent convergent presentation of M . □ Remark 5.3.2. Observe that Proposition 5.3.1 gives three new families of generating 3-cells (namely, E ′ , F ′ and G ′ ) that were not a part of the [13, Proposition 3.2.1], an analogous result for Artin-Tits monoids. The reason for this is that the Garside families considered in [13] for Artin-Tits monoids and Garside monoids are closed under left and right divisors, while a family S in Proposition 5.3.1 is only closed under right divisor (like a Garside family in general). Consequently, certain conjunctions of conditions, discussed in the proof of Proposition 5.3.1, could not be satised in the setting of Artin-Tits monoids. For instance, here we consider the possibility uvwx ∈ S under the condition uvw / ∈ S, among others, to construct the generating 3-cell E ′ . In an Artin-Tits monoid, on the other hand, uvwx ∈ σ (W ) would imply uvw ∈ σ (W ) due to closure under left divisor.

Corollary 5 . 3 . 3 .

 533 Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and admitting a right-noetherian Garside family S containing 1. Then the 2-polygraph Gar 2 (S) is a convergent presentation of M . Proof. Proposition 4.2.7 grants that the 2-polygraph Gar 2 (S) is a presentation of M . Since the generating 2-cells α strictly decrease the S-length, the 2-polygraph Gar 2 (S) is terminating. Thanks to Proposition 5.2.1, we can compute its Knuth-Bendix completion in a manner described in Remark 3.1.2. As shown in Subsection 5.2, the generating 2-cells β are added. Note that Proposition 4.2.3 and Lemma 4.2.4, together with the assumptions that S contains 1 and that M contains no nontrivial invertible element, yield the property of S being closed under right-mcm. By Proposition 4.2.3, S is closed under right divisor. With all these conditions satised, the proof of Proposition 5.3.1 applies in a straightforward fashion. In particular, it shows that all new critical branchings caused by the generating 2-cells β are conuent. Thus, the 2-polygraph Gar 2 (S) is a Knuth-Bendix completion of the Garside's presentation Gar 2 (S), which yields the desired conclusion by Theorem 3.1.1 and Remark 3.1.2.

Corollary 5 . 3 . 4 .

 534 Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and admitting a right-noetherian Garside family S containing 1. If M admits rightmcms, then M admits the (3, 1)-polygraph Gar 3 (S), dened in Proposition 5.3.1, as a coherent convergent presentation. Proof. Corollary 5.3.3 grants that Gar 2 (S) is a terminating presentation of M . As shown in the proof of Corollary 5.3.3, all the requirements are met for applying Proposition 5.3.1, which completes the proof.

□ 5 . 4 .

 54 Homotopical reduction of Garside's presentation. The homotopical reduction procedure from [13, p. 3.2.2] applies verbatim to the coherent convergent presentation provided by Proposition 5.3.1 (and echoed by Corollary 5.3.4), with respect to a collapsible part Γ obtained as follows. The component Γ 4 of Γ contains seven generating triple conuences whose targets are the families C, ..., I of generating 3-cells, with the order I > H > • • • > C. For the sake of illustration, we recall one such generating triple conuence in the case u v w x × (we refer the reader to [13, p. 3.2.2] for the other six generating triple conuences). Its boundary consists of the following two parts: w |x A u,v,w |x α u,v |w|x u|α v,w |x u|v|α w,x α u,vw |x u|α vw,x B u,vw,x u|A v,w,x u|α v,wx β u,vw,x

.

  

...

  The boundary of our rst 3-sphere of interest consists of The target is the generating 3-cell E ′ u,v,w,x .The second generating triple conuence which we are going to use has the boundary consisting of The target is the generating 3-cell F ′ u,v,w,x,y .Finally, we construct the 3-sphere whose boundary has the following parts:The target is the generating 3-cell G ′ u,v,w,x,y .So we extend the above mentioned component Γ 4 of the collapsible part (inherited from [13, p. 3.2.2]) with these three freshly constructed 3-spheres. We also extend the order relation on generating3-cells to G ′ > F ′ > E ′ > I > H > • • • > C.The component Γ 3 of the collapsible part contains the family B of generating 3-cells having the generating 2-cells β as targets, with the order β > α. The homotopical reduction of the resulting (3, 1)-polygraph of Proposition 5.3.1, with respect to the collapsible part Γ, is precisely Gar 3 (S). By Theorem 3.3.1, we conclude that Gar 3 (S) is a coherent presentation of M . Through Corollary 5.3.4, the proof of Theorem 5.1.4 is hereby completed. 5.5. Noetherianity. Let us state an immediate corollary of Theorem 5.1.4, having somewhat simpler (although more restrictive) requirements. Corollary 5.5.1. Assume that M is a left-cancellative noetherian monoid containing no nontrivial invertible element, and S ⊆ M is a Garside family containing 1. Then M admits the (3, 1)-polygraph Gar 3 (S) as a coherent presentation. Proof. Since M is right-noetherian, so is S. By [4, Proposition II.2.40], every left-cancellative left-noetherian monoid admits right-mcms, so M admits right-mcms. Hence, all the conditions of Theorem 5.1.4 are satised.

Example 5 . 5 . 2 .

 552 We revisit the Klein bottle monoid K + from (Examples 3.2.3 and 3.4.1). One of the innitely many Garside families in K + , none of which is nite (see[4, Example IV.2.35]), is the set of left divisors of a 2 , which we denote by S. Let us check if the conditions of Theorem 5.1.4 are satised. Note that K + is cancellative as it is embeddable in a group. The presentation (3.1) contains no relation of the form u = v with exactly one the words u and v being empty, hence K + has no nontrivial invertible element. Note that the left divisibility relation of K + is a linear order ([4, Figure I.6]), which is a lot more than necessary for admitting conditional right-lcms (consequently, right-mcms, too). However, the sequence (ab n ) ∞ n=1 shows that S is not rightnoetherian. Even worse, S contains an innite path of the generating 2-cells β, as dened in Proposition 5.2.1:b|a 2 → b 2 |aba → b 3 |ab 2 a → • • • → b q |ab q-1 a → • • •Even if we took another Garside family, we would not be successful, as witnessed by[START_REF] Dehornoy | Foundations of Garside theory[END_REF] ple IV.2.35]. Therefore, neither Theorem 5.1.4 nor its proof is applicable to K + .If one found a way to use a Garside family as a generating set, they would have an innite number of 1-cells. On the other hand, by directly performing the homotopical completion-reduction procedure in Examples 3.2.3 and 3.4.1, we have demonstrated that the presentation (3.1), which has two generating 1-cells and one generating 2-cell, is coherent. Therefore, for this particular example, the direct application of the homotopical completion-reduction procedure is a preferable way of reaching a coherent presentation. 6. Applications of Theorem 5.1.4

6. 2 .

 2 Innite braids. Denote by B + ∞ the monoid of all positive braids on innitely many strands indexed by positive integers, as dened in [4, Subsection I.3.1]. It is shown that B + ∞ is not of nite type, therefore it is neither Artin-Tits nor Garside. Put S ∞ = n≥1 {the family of all divisors of ∆ n } , where ∆ n denotes the half-turn braid on n strands. In other words, S ∞ consists of all simple braids for all n ≥ 1. This is made precise in [4, Subsection I.3.1]. Basically, B + n is identied

  Coherent presentations of monoids. A monoid can be presented by a generating set and
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  Example 4.2.8) that Garside's presentation Gar 2 (W ) of an Artin-Tits monoid B + (W ) is a special case, with S being the Coxeter group W . Similarly (Example 4.2.9), Garside's presentation Gar 2 (M ) of a Garside monoid M is another special case of Gar 2 (S).

  sometimes omitting the separation symbol when that does not cause ambiguity. Let M be a monoid generated by a set S. A normal form for M with respect to S is a set-theoretic section of the evaluation map (canonical projection) ev : S * → M . In other words, a normal form maps elements of M to distinguished representative words. A words 1 | • • • |s p is said to be a decomposition of an element f of M if the equality s 1 • • • s p = f holds in M .Assume that a 2-polygraph X is a presentation of a monoid M . Generating 2-cells of X are called rewriting rules. The free 2-category over X, denoted X *

	2

2-polygraphs. Let us adopt some basic terminology from string rewriting. If S is a set, S * denotes the free monoid over S. Elements of S and S * are respectively called letters and words. We write u|v for the concatenation of two words u and v,

  2-polygraph X is an unordered pair {α, β} of sequences of rewriting steps of X * 2 having the same source, called the source of branching. If α and β are rewriting steps, a branching {α, β} is called local. A local branching is trivial if it has one of the following two shapes: {α, α}, or {αv, uβ} for u = s (α) and v = s (β). Local branchings can be compared by the order ≼ generated by the relations {α, β} ≼ {uαv, uβv} given for every local branching {α, β} and all possible 1-cells u and v of X * 2 . A minimal nontrivial local branching is called critical. A branching {α, β} is conuent if α and β can be completed into sequences having the same target. A 2-polygraph X is conuent (resp. locally conuent, resp. critically conuent) if all its branchings (resp. local branchings, resp. critical branchings) are conuent. If X is terminating

  3 , leaves only trivial 2-spheres

	(where the parallel paths are equal).
	Example 2.3.2 (The standard coherent presentation). Let us extend Std 2 (M ) from Exam-
	ple 2.1.1 with the following 3-cells
	uv w	γ uv,w
	u v w	uvw
	u vw	

  A monoid M admits right-mcms if, for all f and g of M , every common right multiple of f and g is a right multiple of some right-mcm of f and g. Observe that in a monoid admitting conditional right-lcms, the notions of a right-mcm and right-lcm coincide. Let us state a rather basic observation about right-mcm in a left-cancellative monoid, which we use in one step of the main proof in Subsection 5.3. The following lemma is similar to[START_REF] Heÿ | Factorability, String Rewriting and Discrete Morse Theory[END_REF] Lemma 11.24], which deals with lcms whereas here it suces to consider mcms (under weaker assumptions). Lemma 4.1.1. Assume that M is a left-cancellative monoid. If v ′ is a right-mcm of v 1 and v 2 in M , then uv ′ is a right-mcm of uv 1 and uv 2 for every u in M .Following[4, Propositions II.2.28 and II.2.29], a left-cancellative monoid M is said to be leftnoetherian (resp. right-noetherian) if for every g in M , every increasing sequence of right (resp. left) divisors of g with respect to proper right divisibility (resp. left divisibility) is nite.A left-cancellative monoid M is noetherian if it is both left-noetherian and right-noetherian.

	-cell		
		uv|w	α uv,w
	u|v|w	A u,v,w	uvw
		u|vw	

α u,v |w u|α v,w α u,vw

for all u, v and w divisors of ∆, not equal to 1, such that uv, vw and uvw are divisors of ∆. By Theorem [13, Theorem 3.3.3], Gar 3 (M ) is a homotopical completion-reduction of Gar 2 (M ) so, by Theorem 3.3.1, it is a coherent presentation of M . 4. Garside families This section briey recollects the basic notions and results concerning Garside families (for technical elaboration, see the book [4]). 4.1. Right-mcms. Let M be a left-cancellative monoid, and S a subfamily of M . The left divisibility relation ⪯ is a preorder of elements; it is an order if, and only if, M has no nontrivial invertible element.

A subfamily S of a left-cancellative monoid M is closed under right comultiple if every common right multiple of two elements f and g of S (if there is any) is a right multiple of a common right multiple of f and g that lies in S.

For f and g in a monoid M , a minimal common right multiple, or right-mcm, of f and g if is a right multiple h of f and g, such that no proper left divisor of h is a common right multiple of f and g.

  w and uvw ∈ S ,We formally redene symbols Gar 2 and Gar 3 in our general context as follows. The 2polygraph Gar 2 (S) contains: a single generating 0-cell; one generating 1-cell for every element of S \ {1}; one generating 2-cell of the form α u,v : u|v ⇒ uv, for all u and v in S \ {1} such that u v holds. Here, u|v denotes product in S * , whereas uv denotes product in M . The (3, 1)-polygraph Gar 3 (S) is consisting of the 2-polygraph Gar 2 (S) and the generating 3-cells of the form

	u v w ×	⇐⇒	u v w and uvw / ∈ S .
			uv|w	α uv,w
		u|v|w	A u,v,w	uvw
			u|vw

α u,v |w u|α v,w α u,vw

for all u, v and w in S \ {1} such that u v w .

Remark 5.1.1. Note that the 2-polygraph Gar 2 (S) is not a presentation of M , in general. Consequently, since Gar 3 (S) is an extended presentation of a monoid presented by Gar 2 (S), it is not necessarily an extended presentation of M . Proposition 4.2.7 gives sucient conditions for Gar 2 (S) to be a presentation of M , thus making Gar 3 (S) an extended presentation of M .

To formulate our main result, we need a restriction of right noetherianity to a Garside family. Denition 5.1.2. Given a Garside family S in a left-cancellative monoid M , we say that S is right-noetherian if for every g in S, every increasing sequence of proper left divisors in S of g with respect to proper left divisibility is nite. Example 5.1.3. Every Garside family in a right-noetherian left-cancellative monoid M is rightnoetherian. Now, we state the main result.

  3-cells of the formσ i σ j |σ i σ i |σ j |σ i σ i σ j σ i σ i |σ j σ i α σiσj ,σi A σi,σj ,σi α σi,σj |σ i σ i |α σj ,σi α σi,σj σi σ j σ i |σ j σ j |σ i |σ j σ i σ j σ i σ j |σ i σ j α σj σi,σj A σj ,σi,σj α σj ,σi |σ j σ j |α σi,σj α σj ,σiσjor of the formσ k σ i |σ j σ i σ k |σ i |σ j σ i σ k σ i σ j σ i σ k |σ i σ j σ i α σkσi,σj σi A σk,σi,σj σi α σk,σi |σ j σ i σ k |α σi,σj σi α σk,σiσj σi σ k σ j |σ i σ j σ k |σ j |σ i σ j σ k σ i σ j σ i σ k |σ i σ j σ i α σkσj ,σiσjA σk,σj ,σiσj α σk,σj |σ i σ j σ k |α σj ,σiσj α σk,σiσj σi with i, j and k as above.
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Proposition 4.2.2 ([5, Proposition 3.1] or [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Proposition III.1.39]). A subfamily S of a monoid M containing no nontrivial invertible element is a Garside family if, and only if, the following conjunction holds: S generates M and every element of S 2 admits an S-normal decomposition.

Let us recall another characterisation of Garside family, one direction whereof we invoke in Subsection 5.3. More characterisations of Garside families can be found in [START_REF] Dehornoy | Garside families[END_REF]Subsection 3.2] or in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Subsection IV.1.2]. Proposition 4.2.3 ([5, Proposition 3.9]). A family S of a left-cancellative monoid M containing no nontrivial invertible element is a Garside family if, and only if, the following conditions are satised: S generates M , it is closed under right comultiple and right divisor, and every noninvertible element of S 2 admits a ≺-maximal left divisor in S.

We recall another result to be used in Subsection 5.3. Lemma 4.2.4 ([4, Lemma IV.2.24]). Assume that M is a left-cancellative monoid that contains no nontrivial invertible element and admits right-mcms. Then for every subfamily S of M , the following are equivalent.

• The family S is closed under right comultiple.

• The family S is closed under right-mcm, i.e. if f and g lie in S, then so does every right-mcm of f and g.

Given a Garside family S in a left-cancellative monoid M with no nontrivial invertible element, the normalisation map N S : S * → S * is the map which assigns to each w ∈ S * \ {1} the strict S-normal decomposition of the element of M represented by w; and N S (1) = 1. The following result provides an important property of S-normal decomposition.

Lemma 4.2.5 ([7, Lemma 6.9]). Assume that M is a left-cancellative monoid having no nontrivial invertible element, and S is a Garside family in M . For every word w ∈ S * , the leftmost letter of w left-divides the leftmost letter of N S (w).

Proof. Let N S (w) = s 1 | • • • |s q . Since w and s 1 |s 2 • • • s q evaluate to the same element of M , the leftmost letter of w left-divides s 1 (s 

for all s and t in S \ {1} such that s|t is not S-normal. In particular, every Artin-Tits monoid admits a nite convergent presentation.

A Garside family also induces a smaller presentation, beside the one provided by Proposition 4.2.6, which will be instrumental in deriving our main result in the next section. 

Coherent presentations from Garside families

Having recalled necessary notions and results in previous sections, in this section we aim to state and prove Theorem 5.1.4 which provides a unifying generalisation of theorems recalled in Examples 3.5.1 and 3.5.2.

5.1. Main statement and sketch of proof. In this subsection, we adapt some notation from [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and set a convenient noetherianity condition. Then we state our main result.

Let M be a monoid generated by a set S containing 1. We dene the notations u v and u v × , as follows. Given two elements u and v of S \ {1}, we write:

with its image in B + n+1 under the homomorphism induced by the identity map on {σ 1 , . . . , σ n }. In that sense, B + ∞ is seen as the union of all braid monoids B + n . By Proposition 4.2.2, S ∞ is a Garside family in B + ∞ . Cancellation properties, and having no nontrivial invertible elements are preserved from braid monoids because the respective denitions do not depend on n. The monoid is noetherian for the same reason as Artin-Tits monoids (Example 4.1.2). So, we can apply Theorem 5.1.4 to construct a coherent presentation.

The generating 2-cells are relations α u,v : u|v ⇒ uv for u, v ∈ S ∞ \ {1} whenever uv ∈ S ∞ , which in this example means that uv is a simple braid. A generating 3-cell A u,v,w is adjoined for any u, v, w ∈ S ∞ \ {1} with uv ∈ S ∞ , vw ∈ S ∞ , and uvw ∈ S ∞ , which here means that uv, vw and uvw are simple braids. So, formally, each cell is constructed exactly like in the coherent presentation provided by [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] for a (nite) braid monoid, regarded as an Artin-Tits monoid, which comes as no surprise because Theorem 5.1.4 is a formal generalisation of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3]. 6.3. Artin-Tits monoids that are not of spherical type. For an Artin-Tits monoid B + (W ) of spherical type, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] provides a nite coherent presentation having W \ {1} as a generating set. On the other hand, if a Coxeter group W is innite, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] still provides a coherent presentation but an innite one. Recall that every Artin-Tits monoid admits a nite Garside family (we refer the reader to [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF] for elaboration), regardless of whether the monoid is of spherical type or not. An advantage of having Theorem 5.1.4 at our disposal is that we can take a nite Garside family for a generating set in computing a coherent presentation (whereas with [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3], one has to take the corresponding Coxeter group).

Let us consider the Artin-Tits monoid of type A 2 , i.e. the monoid presented by (6.1)

By [6, Table 1 and Proposition 5.1], the smallest Garside family F in this monoid consists of the sixteen right divisors of the elements σ 3 σ 1 σ 2 σ 1 , σ 1 σ 2 σ 3 σ 2 , and σ 2 σ 3 σ 1 σ 3 . Namely,

The Cayley graph of F can be seen in [6, Figure 1].

As noted in Remark 5.1.5, all the conditions of Theorem 5.1.4 are satised. Following Theorem 5.1.4, we construct a generating 2-cell u|v ⇒ uv for u, v ∈ F \ {1} with uv ∈ F . Thus we obtain three pairs of generating 2-cells of the form α σi,σj : σ i |σ j ⇒ σ i σ j α σj ,σi : σ j |σ i ⇒ σ j σ i , three pairs of generating 2-cells of the form α σi,σj σi : σ i |σ j σ i ⇒ σ i σ j σ i α σj ,σiσj : σ j |σ i σ j ⇒ σ i σ j σ i , three pairs of generating 2-cells of the form α σiσj ,σi : σ i σ j |σ i ⇒ σ i σ j σ i α σj σi,σj : σ j σ i |σ j ⇒ σ i σ j σ i , three generating 2-cells of the form α σ k ,σiσj σi : σ k |σ i σ j σ i ⇒ σ k σ i σ j σ i , and three pairs of generating 2-cells of the form α σ k σi,σj σi : σ k σ i |σ j σ i ⇒ σ k σ i σ j σ i α σ k σj ,σiσj : σ k σ j |σ i σ j ⇒ σ k σ i σ j σ i , with i, j, k ∈ {1, 2, 3} and j = i + 1 and k = j + 1 modulo 3.