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ABSTRACT A data representation technique dubbed Kolmogorov model (KM), has been applied to
the beam alignment problem in large-dimensional antenna systems. The previous learning-based beam
alignment focused on utilizing the predictive power of KM to reduce the beam training overhead. However,
a distinctive feature of KM, namely, the interpretability, has not yet been exploited. Moreover, the
prohibitively high computational complexity of the existing KM learning algorithm offsets the benefits
brought by KM and hampers its application to large-scale problems. In this paper, we propose a beam
alignment/tracking framework by incorporating the predictability and interpretability of KM. Especially,
our proposed scheme enables a novel interpretable beam tracking that reveals insights on relations among
the sounded observations to alleviate the beam sounding overhead after the initial beam alignment. To
reduce the computational cost of KM learning, two enhancement approaches, based on discrete monotonic
optimization (DMO) and dual optimization, respectively, are proffered. Numerical results demonstrate that
the proposed methods can achieve comparable beam alignment performance with significantly reduced
computational complexity; up to three orders of magnitude improvement in terms of time overhead,
compared to the existing KM learning algorithm. Furthermore, it reveals that the proposed methods
show superior performance in the low signal-to-noise ratio (SNR) regime over other state-of-the-art beam
alignment techniques.

INDEX TERMS Beam tracking, Kolmogorov model (KM), discrete monotonic optimization (DMO), dual
optimization, predictability, interpretability, low latency.

I. INTRODUCTION

At the millimeter-wave (mmWave) spectrum, radio propa-
gation suffers from severe path loss and atmospheric im-
pairments that are compensated for by using large anten-
na arrays to produce directional narrow beams [1], [2].
The so called “beam alignment” procedure, which finds the
best transmit-and-receive beam pair without estimating the
channel state information (CSI), is required to establish an
available communication link. A straightforward approach
to the beam alignment problem is exhaustive beam search,
also known as beam sweeping, which sequentially scans the
entire beam space. However, the overall training overhead is
indeed prohibitive due to the large size of beam codebooks
in mmWave massive multiple-input multiple-output (MIMO)
communication systems, offsetting the benefits of the abun-

dant bandwidth of mmWave that promises a higher channel
capacity [3], [4].

To reduce the overhead of exhaustive beam search, various
approaches have been proposed in the past decade. The
hierarchical codebooks, which typically consist of a small
number of low-resolution wide beams at the upper layer of
the codebook and a large number of high-resolution narrow
beams at the lower layer of the codebook, were proposed
[1], [5], [6]. Other methods fallen into the same “structured
beam alignment” paradigm include beam coding [7], [8],
overlapped beam patterns [9], [10], and compressed sensing-
based algorithms [11]–[16]. Despite a battery of such beam
alignment techniques, there still remains a challenge of fur-
ther reducing the beam training overhead especially when the
mobility and link blockage are considered.
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While the reliability of initial beam alignment in mmWave
is well-understood, directional narrow beams for data trans-
mission, especially in mobile urban networks, can put beam-
forming gain in peril [17], [18]. Due to mobility, frequent
misalignment and blockages require repeated beam align-
ment, which further lead to enormous overhead and perfor-
mance degradation. To be specific, the higher the mobility
of users, the more frequent the misalignment and blockage
events occur [19]. To remedy, the more resources are needed
to be allocated to maintain beam alignment. Additionally,
reliable operation at low signal-to-noise ratio (SNR) is criti-
cal for mmWave communication systems that are limited by
heavy mixed signal processing with an excessive power con-
sumption. Thus, it is of great importance to explore efficient
methods capable of mitigating the beam sounding overhead
under mobility while exhibiting reliable performance in the
low SNR regime.

With the rapid development of cutting-edge hardware de-
vices and signal processing units, the capability of high per-
formance computing makes the appealing machine learning-
based techniques possible to be applied to practical wire-
less communication systems. Recently, a Kolmogorov model
(KM) learning-based beam alignment technique, motivated
by a data representation of binary random variables, was
introduced [20], [21]. In particular, the quality of beam
pairs was modeled by a double-index set of binary random
variables based on the received signal power. The learning of
KM parameters was formulated as a coupled combinatorial
optimization problem, which can then be decomposed into
two subproblems including the linearly-constrained quadrat-
ic program (LCQP) and binary quadratic program (BQP). A
block coordinate descent (BCD) method was adopted to iter-
ate between the two subproblems in an alternative manner.
An elegant, low-complexity Frank-Wolfe (FW) algorithm
[22] was used to optimally solve the LCQP by exploiting
structure of the unit probability simplex. Meanwhile, the
BQP problem was handled by employing a semi-definite
relaxation with randomization (SDRwR) method [23]. How-
ever, the high computational complexity of the latter prevents
it from being applied to the system equipped with large-
dimensional array antennas. It is thus critical to find more
efficient and fast KM learning algorithms that are readily
applicable to large-scale problems. Moreover, the previous
work only focused on the predictability (the capability of
predicting the outcome of random variables that are outside
the training set) in terms of reducing the beam alignment
overhead. Unfortunately, a distinctive advantage of KM, i.e.,
the interpretability (the capability of extracting additional
information or insights that are hidden inside the data) has
not yet been exploited.

In this work, we leverage both the predictability and inter-
pretability of KM to enable low-latency beam alignment and
tracking for mmWave communication systems. The proposed
predictive beam alignment combined with interpretable beam
tracking can achieve a significantly reduced beam training
overhead. To be specific, the predictive power of the KM

…
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RF chain

Channel

Phase 
Shifter

Power 
Amplifier

Low Noise 
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(Tx)
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FIGURE 1. Diagram of the mmWave MIMO system.

plays an essential role in improving link connectivity by only
utilizing a subsampled beam set whose cardinality is smaller
than that of the entire beam codebook. After the initial beam
alignment, we predict future beam switching directions and
further narrow down the beam search procedure to few likely
beams by exploiting the interpretability of KM, thus avoiding
the enormous cost for beam tracking.

Moreover, in order to address the impractically high com-
putational complexity issue of the existing KM learning
algorithm relying on SDRwR [20], [24], we propose two
enhanced solvers in resolving the BQP subproblem of the
KM learning in a more efficient way. In particular, discrete
monotonic optimization (DMO) and dual optimization are
leveraged. We demonstrate numerically that the proposed
KM learning methods can achieve comparable beam align-
ment performance with a significantly reduced computational
cost, compared to the existing KM learning algorithm [24].
It is also shown that the proposed methods by incorporating
the predictability and interpretability of KM outperform the
benchmarks in terms of both the beam tracking overhead
and achievable throughput. Finally, the robustness of the
proposed methods in the low-SNR regime is validated by
simulation results.

II. PRELIMINARIES AND SYSTEM MODEL
The concept of KM and some preliminaries are first intro-
duced. The beam alignment and tracking system model of
mmWave MIMO communications is then presented.

A. KOLMOGOROV MODEL
Prior to introducing the KM of a binary random variable, we
review the fundamentals of Kolmogorov probability theory
by defining a measurable probability space.
Definition 1: A probability space (Ω, E , P ) is a triple formed
by the sample space Ω, the event space E consisting of
the subsets of Ω, and a probability measure P defined on
(Ω, E). P (E) assigns a probability to the event E ∈ E
such that the following conditions hold: i) P (E) ≥ 0,
∀E ∈ E (nonnegativity), ii) P (Ω) = 1 (normalization),
and iii) P (∪∞i=1Ei) =

∑∞
i=1 P (Ei) for the disjoint events

Ei ∈ E , ∀i (countable additivity).
A double-index set of binary random variables Xt,r ∈
X , {0, 1}, ∀(t, r) ∈ S, is considered, whereX is the binary
alphabet of Xt,r and S denotes the set of all index pairs.
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FIGURE 2. Illustration of the beam alignment/tracking during multiple channel blocks.

The set Ω, also known as the space of elementary events,
is defined as Ω , {ωd|d = 1, . . . , D}, where ωd denotes
an individual elementary event and D is the dimension of
Kolmogorov space. Let Pr(Xt,r = X (x)) ∈ [0, 1] be the
probability that the event Xt,r = X (x) occurs, where x
denotes the index of X , i.e., X (1) = 0 and X (2) = 1.
By Definition 1, the probability of two realizations of Xt,r

(Xt,r = 0 or Xt,r = 1) can be expressed as

Pr
(
Xt,r = X (x)

)
= P

(
X−1t,r ({X (x)})

)
=

∑
ωd∈X−1

t,r ({X (x)})

P (ωd), x∈{1, 2}, (1)

where X−1t,r ({X (x)}) , {ωd ∈ Ω|Xt,r = X (x)} is the
inverse image of the eventXt,r = X (x). SinceXt,r is binary,
the following holds Pr(Xt,r = 0)+Pr(Xt,r = 1) = 1. With-
out loss of generality, it suffices to focus on one outcome, for
instance, Xt,r = 1. By (1), the KM of Xt,r is given by

Pr(Xt,r = 1) = θTt ψr, ∀(t, r) ∈ S, (2)

where θt , [P (ω1), · · · , P (ωD)]T ∈ RD+ is the probability
mass function vector and ψr , [ψr,1, · · · , ψr,D]T ∈ BD is
the binary indicator vector with each entry being

ψr,d =

{
1, if ωd ∈ X−1t,r ({X (2)})
0, otherwise

, d = 1, . . . , D.

In particular, θt is in the unit probability simplex P , {p ∈
RD+ |1Tp = 1}, i.e., θt ∈ P , and ψr denotes the support
set of Xt,r (associated with the case when Xt,r = 1). In
addition, note that Pr(Xt,r = 0) = θTt (1−ψr).

B. MILLIMETER WAVE MIMO SYSTEM MODEL
We consider a mmWave MIMO communication system, as
depicted in Fig. 1, where the transmitter and receiver are
equipped with Nt and Nr antennas, respectively. A single
radio-frequency (RF) chain is employed at both the transmit-
ter and receiver, and thus the analog beamforming/combining
is adopted. A narrow-band block fading channel is assumed

with a coherence interval being T channel uses. During a
coherence block, as shown in Fig. 2, the initial Kτ channel
uses are utilized to find the best beamformer-combiner pair
(i.e., the beam alignment/tracking phase) and the remaining
T−Kτ channel uses are set aside for data communication via
the well-aligned beam pair (i.e., the data transmission phase),
where τ denotes the channel block index. In particular, after
the initial beam alignment, a beam tracking procedure is
necessary to maintain or adjust the well-aligned beam pair
by considering the beam switching and channel evolution.

In the beam alignment phase, the transmitter chooses an
analog beamformer ft ∈ CNt×1 from the transmit beam
sounding codebook F (ft ∈ F), while the receiver selects
an analog combiner wr ∈ CNr×1 from the receive beam
sounding book W (wr ∈ W). Let IF and IW denote the
index sets of the predefined codebooks F andW , respective-
ly, with cardinalities |IF | and |IW |. ft and wr satisfy the
constant modulus constraint, i.e., ‖ft‖2 = ‖wr‖2 = 1.

Let s ∈ C be the transmitted training symbol with unit
power. The received signal at channel block τ , yτt,r ∈ C,
can be expressed as (the channel block index τ is omitted
for conciseness)

yt,r = w∗rHfts+ w∗rn, (3)

where H ∈ CNr×Nt is the channel matrix and n ∈ CNr×1
is the additive complex white Gaussian noise vector with
each entry independently and identically distributed (i.i.d.)
as zero mean and σ2

n variance according to CN (0, σ2
n). It is

noted that the signal-to-noise ratio (SNR) is 1/σ2
n, and we

can further define the received SNR as η , |w∗rHft|2/σ2
n,

where |w∗rHft|2 denotes the beamforming gain. The beam
alignment problem, which is to find the optimal beam pair by
maximizing the beamforming gain, can be formulated as

max
ft,wr

|w∗rHft|2 (4)

s.t. ft ∈ F ,wr ∈ W.

However, it is not practical for the receiver to calculate the
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Algorithm 1 Overall KM Learning-based Beam Alignment
Input: F ,W , K, I train

F , I train
W , D, δ, TFE, and IBCD. Initialize

{ψ(1)
r ∈ BD}r∈I train

W
.

Output: (t?, r?).
1: Estimate the empirical probabilities for K via FE:
2: for each tFE = 1, . . . , TFE do
3: for each beam pair index (t, r) ∈ K do
4: Train the beam pair (ft,wr) and obtain γ(tFE)

t,r .
5: end for
6: end for
7: Compute {pt,r} according to (7).
8: Learn the KM parameters:
9: for υ = 1, . . . , IBCD do

10: i) Update θ(υ)t for t ∈ I train
F ;

11: ii) Update ψ(υ)
r for r ∈ I train

W .
12: end for
13: Obtain the final estimate {θ?t = θ

(IBCD)
t ,ψ?r = ψ(IBCD)

r }.
14: Calculate the predicted probability for the beam pairs

which are not trained yet based on (11).
15: Determine the optimal beam pair according to (12).
16: return (t?, r?).

beamforming gain in (4) directly due to the lack of CSI.
Instead, the problem in (4) can be approximated by using the
received signal power as

max
ft,wr

{γt,r , |yt,r|2} (5)

s.t. ft ∈ F ,wr ∈ W.

A straightforward approach to solving (5) is the exhaustive
beam search, which requires both the transmitter and receiver
to scan the entire beam space (F andW). Unfortunately, this
exhaustive search method incurs a training overhead of |S| =
|IF × IW | (whose sampling rate is 100%), which indeed
overwhelms the available channel coherence resources due
to the large size of codebooks (|IF | and |IW |) in mmWave
massive MIMO systems.

To address this issue, a KM learning-based beam align-
ment, motivated by the fact that the double-index random
variableXt,r in (2) can represent any two-dimensional learn-
ing applications (involving matrices) including the beam
alignment in multiple-antenna systems, was proposed to
reduce the training overhead while maintaining appreciable
beam alignment performance.

III. KM LEARNING-BASED FRAMEWORK
The KM learning-based framework by incorporating the
predictive beam alignment and interpretable beam tracking
is elaborated in this section.

A. PREDICTIVE BEAM ALIGNMENT
The “good" or “poor" condition of the beam pair (ft,wr) for
(t, r) ∈ S , {(t, r)|(t, r) ∈ IF ×IW}, where S contains all
beam pair indices of the transmit-and-receive joint codebook,

can be modeled by using the binary random variable Xt,r of
KM in (2) as{

Pr(γt,r≥δ)=Pr(Xt,r=1)=θTt ψr, “good”
Pr(γt,r<δ)=Pr(Xt,r=0)=θTt (1−ψr), “poor”

, (6)

where δ > 0 is a predesigned threshold value for the received
signal power γt,r. To be specific, the beam pair (ft,wr) is
regarded as being well-aligned if γt,r ≥ δ.

In contrast to the exhaustive beam search, the KM
learning-based beam alignment only uses a subset of code-
book K , {(t, r)|t ∈ I train

F ⊆ IF , r ∈ I train
W ⊆ IW} ⊂ S

(also known as the training set). Let pt,r be the empirical
probability of the beam pair (ft,wr) being well-aligned.
Obtaining {pt,r} for the training setK is a prerequisite for the
KM learning-based beam alignment. Frequency estimation
(FE) was proposed by estimating {pt,r}, ∀(t, r) ∈ K, over a
time-slot interval TFE [20]. Let y(tFE)

t,r = w∗rHfts+ w∗rn
(tFE)

be the received signal by sounding the beam pair (ft,wr) at
time slot tFE during a coherent channel block, the received
signal power is then provided as

γ
(tFE)
t,r =

∣∣y(tFE)
t,r

∣∣2, tFE ∈ {1, . . . , TFE}, ∀(t, r) ∈ K.

The final estimate of pt,r, attained by counting the number of
events in which the condition γ(tFE)

t,r ≥ δ holds, is given by

pt,r ≈ p(TFE)
t,r ,

1

TFE

TFE∑
tFE=1

I(γ(tFE)
t,r ≥ δ), ∀(t, r) ∈ K, (7)

where I(·) is the indicator function. It is worth noting that the
approximation in (7) becomes tight as TFE increases.

Given the constructed training set (of empirical probabil-
ities), the KM learning-based beam alignment, composed of
training, prediction, and selection, is presented as follows.

1) Training
The KM-based beam training proceeds to optimize {θt} and
{ψr} by solving the `2-norm minimization problem:

{θ?t }, {ψ
?
r} = argmin

{θt},{ψr}

∑
(t,r)∈K

(θTt ψr − pt,r)2

s.t. θt ∈ P, ψr ∈ BD,∀(t, r) ∈ K
. (8)

To deal with the coupled combinatorial nature of (8), a BCD
method was proposed by dividing the problem in (8) into two
subproblems: i) LCQP for ∀t ∈ I train

F :

θ
(υ+1)
t = argmin

θt∈P
θTt Q

(υ)
t θt − 2θTt w

(υ)
t + %t, (9)

where Q
(υ)
t ,

∑
r∈It ψ

(υ)
r ψ(υ)

r

T
, w

(υ)
t ,

∑
r∈It ψ

(υ)
r pt,r,

%t ,
∑
r∈It p

2
t,r, It , {r|(t, r) ∈ K}, and υ is the index of

BCD iterations, and ii) BQP for ∀r ∈ I train
W :

ψ(υ+1)
r = argmin

ψr∈BD
ψTr S(υ+1)

r ψr − 2ψTr v(υ+1)
r + ρr, (10)

where S
(υ+1)
r ,

∑
t∈Ir θ

(υ+1)
t θ

(υ+1)
t

T
, v

(υ+1)
r ,

∑
t∈Ir

θ
(υ+1)
t pt,r, ρr ,

∑
t∈Ir p

2
t,r, and Ir , {t|(t, r) ∈ K}. By
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FIGURE 3. Diagram of the KM learning-based beam alignment framework: a toy example (Nt = Nr = |IF | = |IW | = 4, D = 4).

exploiting the fact that the optimization in (9) was carried out
over the unit probability simplex P , a simple iterative FW
algorithm was used to optimally solve (9), while the SDRwR
was employed to asymptotically solve the BQP in (10) [24].

2) Prediction

The trained KM parameters {θ?t }, {ψ
?
r} are utilized to pre-

dict probabilities over a test set T (a set of beam pairs that
are not sounded) as

p̂t,r , θ
?
t
T
ψ?r , ∀(t, r) ∈ T , (11)

where T ∩ K = φ and T ∪ K = S.

3) Selection

The optimal beam pair with the highest probability of being
well-aligned is selected by evaluating both the training and
test sets (K ∪ T ) as

(t?, r?) = argmax
(t,r)∈S

{p̂t,r = θ?t
T
ψ?r}. (12)

Based on the above three key steps, an overall KM learning-
based beam alignment procedure is provided in Algorithm 1.

Note that, the predictability of KM was exploited to re-
duce the beam training overhead by using a subsampled
codebook. However, this benefit cannot cover up the fact
that the existing KM learning method relying on SDRwR
[20], [24] suffers from a high computational complexity and
a limitation of being applied to large-scale antenna array
systems. In particular, the LCQP subproblem in (9), which
can be efficiently solved by the FW algorithm, has been well-
studied, while resolving the BQP subproblem in (10) intro-
duces a major computational bottleneck. This calls for more
efficient KM learning algorithms, which we will present in
Section IV.

B. INTERPRETABLE BEAM TRACKING

The next challenge after the initial beam alignment is to
update/adjust the aligned beams to maintain the availability
of the link, i.e., the beam tracking phase (τ > 1) as illustrated
in Fig. 2. However, the enormous overhead induced by fre-
quent beam realignment often makes the system unbearable.
Thus, the design of schemes that alleviate the beam tracking
overhead is of great importance.

To this end, a distinctive feature of the KM, namely,
the interpretability, extracting insights that hidden inside the
data based on sounded observations, can be exploited. The
following theorem provides a basis for the interpretable beam
tracking.
Theorem 1 (Logical Relation Mining): Suppose two random
events ‘γt,r1 ≥ δ’ and ‘γt,r2 ≥ δ’, whose KMs are given by
Pr(γt,r1 ≥ δ) = Pr(Xt,r1 = 1) = θTt ψr1 and Pr(γt,r2 ≥ δ)
= Pr(Xt,r2 = 1) = θTt ψr2 , respectively. If the support sets
of ψr1 and ψr2 satisfy the inclusion relation supp(ψr2) ⊆
supp(ψr1), then the following two logical relations hold:

γt,r1 ≥ δ ⇒ γt,r2 ≥ δ (Xt,r1 = 1⇒ Xt,r2 = 1), (13)
γt,r2 < δ ⇒ γt,r1 < δ (Xt,r2 = 0⇒ Xt,r1 = 0). (14)

Proof: See Appendix A.
Theorem 1 can be translated as: Given that the support set

of ψr1 includes that of ψr2 , if the beam pair index (t, r1) is
good, then it logically implies that the beam pair index (t, r2)
is also good. Conversely, if the beam pair index (t, r2) is bad,
then it logically implies that the beam pair index (t, r1) is bad
either. The above information can be leveraged to reduce the
beam tracking overhead.

Suppose the beam training set (subsampled codebook)
for beam alignment/tracking at τ th channel block is Kτ
with Kτ = |Kτ |. Let {ψ?,τr } denote the set of learned
binary indicator vectors of KM at τ th channel block. We
first identify a set of critical beam pair indices based on the
empirical probabilities at current channel block, associated
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with a transmit beam index t, as

Cτt = {(t, ri)|pτt,ri ≥ α}, (15)

where pτt,ri denotes the empirical probability of the beam pair
index (t, ri) and α ∈ [0, 1] is a threshold. By exploiting the
interpretability of KM, especially via logical relation mining
in Theorem 1, we obtain an expanded set of critical beam pair
indices as

Ĉτt =
|Cτt |⋃
i=1

{(t, rj)|supp(ψ?,τrj ) ⊆ supp(ψ?,τri ), (t, ri) ∈ Cτt }, (16)

which encapsulates all potential good beam pair indices
for a fixed t. Moreover, by considering the possible beam
variations that the aligned beam pair (t?,τ , r?,τ ) may transit
to its neighbors at next channel block (as depicted in Fig.
2), a complementary set of beam pair indices is defined by
C̃τ+1 = {(t?,τ−1, r?,τ−1), (t?,τ−1, r?,τ ), (t?,τ−1, r?,τ +
1), (t?,τ , r?,τ−1), (t?,τ , r?,τ +1), (t?,τ +1, r?,τ−1), (t?,τ +
1, r?,τ ), (t?,τ + 1, r?,τ + 1)}. Then, the beam training set at
next channel block, i.e., Kτ+1, is given by

Kτ+1 = {∪tĈτt } ∪ C̃τ+1, (17)

with Kτ+1 � K1 (τ ≥ 1) where K1 = |K1| represent the
training overhead of the initial beam alignment.

Notice that the choice of α in (15) has an effect on the
interpretable beam tracking performance. On the one hand, a
large α is able to shrink the size of Cτt and Ĉτt , thus reducing
the beam sounding overhead at next channel block. On the
other hand, a shrunken Cτt may exclude any good beam pair
and cause performance deterioration. This tradeoff will be
further investigated in Section V-D.

The KM learning-based framework including training,
prediction, and interpretation, is illustrated by using a toy
example in Fig. 3.

IV. OPTIMIZATION-BASED KM LEARNING
In this section, two KM learning methods based on DMO
and dual optimization, respectively, are proposed to solve
the BQP subproblem in (10), reducing the exorbitantly high
computational cost of the existing SDRwR [24].

A. DISCRETE MONOTONIC OPTIMIZATION
We first present a lemma delivering an equivalent reformula-
tion of the BQP subproblem in (10).
Lemma 1: The BQP problem in (10) is equivalent to the max-
imization of a difference of two monotonically increasing
functions and its binary constraints ψr ∈ BD can be equiva-
lently transformed to continuous monotonic constraints as

max
ψr

{
f(ψr) = f+(ψr)− f−(ψr)

}
s.t. g(ψr)− h(ψr) ≤ 0,ψr ∈ [0,1]

, (18)

where f+(ψr) , 2vTr ψr, f
−(ψr) , ψTr Srψr, g(ψr) ,∑D

d=1 ψr,d, h(ψr) ,
∑D
d=1 ψ

2
r,d, ψr ∈ [0,1] indicates that

Algorithm 2 DMO-based Algorithm
Input: Sr, vr, and D.
Output: ψ?r .

1: Initialization: Set iteration number i = 1. Let Pi =
{M}, M = [0,1],Ri = φ, and ν = f(0) = 0.

2: Reduction: Reduce each box in Pi according to (19) and
(20) to obtain P ′i = {[a′,b′]|[a,b] ∈ Pi}.

3: Bounding: Calculate µ(M ′) in (21) for each M ′ ∈
Mi , P ′i ∪Ri.

4: Find the feasible solution: ψ(i)
r = argmaxψr{f(ψr) >

ν|ψr = d(a′ + b′)/2e,M ′ = [a′,b′] ∈Mi}.
5: Update current best value: Ifψ(i)

r in Step 4 exists, update
ν as ν = f(ψ(i)

r ); otherwise, ψ(i)
r = ψ(i−1)

r and ν
doesn’t change.

6: Discarding: Delete every M ′ ∈ Mi such that µ(M ′) <
ν and letRi+1 be the collection of remaining boxes.

7: ifRi+1 = φ then terminate and return ψ?r = ψ(i)
r .

8: else
9: Let M (i) = argmaxM ′{µ(M ′)|M ′ ∈ Ri+1}.

10: if ν ≥ εµ(M (i)) then ε-accuracy is reached and
return ψ?r = ψ(i)

r .
11: else
12: Branching: Divide M (i) into M (i)

1 and M (i)
2 ac-

cording to (22) and (23).
13: UpdateRi+1 andPi+1:Ri+1 = Ri+1\M (i) and
Pi+1 = {M (i)

1 ,M
(i)
2 }.

14: end if
15: end if
16: i = i+ 1 and return to Step 2.

0 ≤ ψr,d ≤ 1 for every d = 1, . . . , D, and the index of BCD
iterations (υ in (10)) is omitted hereinafter for simplicity.

Proof: See Appendix B.

The combinatorial nature of the BQP problem in (10) is
attributed to the discrete constraints ψr ∈ BD. In [20],
[24], this nuisance has been tackled by using SDRwR,
which incurs impractical computational complexity. Unlike
SDRwR, the equivalent problem formulation leveraging the
difference of monotonic functions (DMF) in (18) dissolves
the intractable discrete constraints without any relaxation.
Motivated by Lemma 1, we propose to use a branch-reduce-
and-bound (BRB) algorithm [25] to directly solve (18) with-
out any relaxation and/or randomization, which consists of
three main steps provided below.

1) Reduction

We let M = [a,b] be one of the boxes that contain
feasible solutions to (18) and ν be the current maximum
value of the objective function f in (18). The reduced box
M ′ = [a′,b′] ⊂ [a,b] can be defined by new lower and
upper vertices a′ and b′, respectively, without excluding any
feasible solution ψr ∈ [a,b], while maintaining f(ψr) ≥ ν
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[25] as

a′ = b−
D∑
d=1

αd(bd − ad)ed, (19)

b′ = a′ +
D∑
d=1

βd(bd − a′d)ed, (20)

where αd = sup{α|α ∈ [0, 1], g(a) − h(b − α(bd −
ad)ed) ≤ 0, f+(b − α(bd − ad)ed) − f−(a) ≥ ν} and
βd = sup{β|β ∈ [0, 1], g(a′ + β(bd − a′d)ed) − h(b) ≤
0, f+(b)− f−(a′ + β(bd − a′d)ed) ≥ ν} for d = 1, . . . , D,
where ed is the dth column of the D-dimensional identity
matrix ID. Note that the optimal values of αd and βd can be
found by referring to the compactness of α, β ∈ [0, 1] and
utilizing the monotonicity of f+, f−, g, and h (for instance,
by using a bisection method [26]).

2) Bounding
For every reduced box M ′, an upper bound of ν(M ′) ,
max{f(ψr)| g(ψr) − h(ψr) ≤ 0,ψr ∈ M ′ ∩ [0,1]} is
calculated such that

ν(M ′) ≤ µ(M ′) = f+(b′)− f−(a′). (21)

The upper bound µ(M ′) in (21) holds because f+ and f−

are monotonically increasing functions. Furthermore, µ(M ′)
ensures limk→∞ µ(M ′k) = f(ψ?r), where {M ′k} stands
for any infinite nested sequence of boxes and ψ?r is the
optimal solution to (18). At each iteration, any box M ′ with
µ(M ′) < ν is discarded because such a box does not contain
ψ?r anymore.

3) Branching
At the end of each iteration, the box with the maximum upper
bound, denoted by M? = [a?,b?], is selected and branched
to accelerate the convergence of the algorithm. The box M?

is divided into two boxes

M?
1 = {ψr ∈M?|ψr,j ≤ bc?jc}, (22)

M?
2 = {ψr ∈M?|ψr,j ≥ dc?je}, (23)

where j = argmaxd=1,...,D(b?d − a?d), c∗j = (a?j + b?j )/2,
b·c and d·e represent the element-wise floor and ceiling
operations, respectively.

The DMF optimization problem in (18) is solved by itera-
tively executing the above three procedures until it converges
within ε-accuracy as shown in Algorithm 2.

B. DUAL OPTIMIZATION
An alternative approach to solving the BQP subproblem in
(10) is to transform it to a dual problem. To this end, we
formulate an equivalent form to the BQP in (10) as

min
x∈{+1,−1}D

xTA0x + aTx, (24)

where ρr in (10) is ignored, x = 2ψr − 1 ∈ {+1,−1}D,
A0 = 1

4Sr, and a = 1
2STr 1−vr. By introducing X0 = xxT

and X =
[

1 xT

x X0

]
∈ R(D+1)×(D+1), the problem in (24)

can be rewritten as

min
x,X0

〈X0,A0〉+ aTx, (25a)

s.t. diag(X0) = 1, (25b)
X � 0, (25c)
rank(X) = 1, (25d)

where 〈X0,A0〉 = trace(XT
0 A0) denotes the Frobenius

inner product of matrices X0 and A0, and X � 0 indicates
that the matrix X is positive semi-definite. Solving (25)
directly is NP-hard due to the rank constraint in (25d), thus
we turn to convex relaxation methods. The SDR to (25) can
be expressed in a homogenized form with respect to X as

min
X

f(X) , 〈X,A〉, (26a)

s.t. 〈Bi,X〉 = 1, i = 1, . . . , D + 1, (26b)
X � 0, (26c)

where A =
[

0 (1/2)aT

(1/2)a A0

]
∈ S(D+1)×(D+1) and

Bi = [01 · · · 0i−1 ei 0i+1 · · · 0D+1] ∈ R(D+1)×(D+1).
Note that the diagonal constraint in (25b) has been equiv-
alently transformed to D + 1 equality constraints in (26b).
While the problem in (25) is combinatorial due to the rank
constraint, the relaxed problem in (26) is a convex semi-
definite programming (SDP). In particular, the relaxation is
done by dropping the rank constraint.

We further formulate a regularized SDP formulation of
(26) as

min
X

fγ(X) , 〈X,A〉+
1

2γ
‖X‖2F , (27)

s.t. 〈Bi,X〉 = 1, i = 1, . . . , D + 1,

X � 0,

where γ > 0 is a regularization parameter. With a Frobenius-
norm term regularized, the strict convexity of (27) is ensured,
which in turn makes strong duality hold for the feasible dual
problem of (27). In this work, we leverage this fact that the
duality gap is zero for (27) (a consequence of strong duality)
to solve the dual problem. In addition, the two problems in
(26) and (27) are equivalent as γ →∞.

Given the regularized SDP formulation in (27), its dual
problem and the gradient of the objective function are of
interest, which can be found in the following lemma.
Lemma 2: Suppose the problem in (27) is feasible. Then, the
dual problem of (27) is given by

max
u∈RD+1

dγ(u) , −uT1− γ

2
‖Π+(C(u))‖2F , (28)

where u ∈ RD+1 is the vector of Lagrange multipliers
associated with each of the D + 1 equality constraints of
(27), C(u) , −A −

∑D+1
i=1 uiBi, and Π+(C(u)) ,∑D+1

i=1 max(0, λi(C(u)))pip
T
i , in which λi(C(u)) and pi,

i = 1, . . . , D + 1, respectively, are the eigenvalues and
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Algorithm 3 GD for Solving the Dual Problem in (30)

Input: A, {Bi}D+1
i=1 ,D, u0, γ, ε (tolerance threshold value),

and Imax (maximum number of iterations).
Output: u?.

1: for i = 0, 1, 2, . . . , Imax do
2: Calculate the gradient:∇uihγ(ui).
3: Compute the descent direction:∆ui=−∇uihγ(ui).
4: Find a step size ti (via backtracking line search), and

ui+1 = ui + ti∆ui.
5: if ‖ti∆ui‖2 ≤ ε then terminate and return u? =

ui+1.
6: end if
7: end for

corresponding eigenvectors of C(u). The gradient of dγ(u)
with respect to u is

∇udγ(u) = −1 + γΦ[Π+(C(u))], (29)

where Φ[Π+(C(u))] , [〈B1,Π+(C(u))〉, · · · , 〈BD+1,Π+(
C(u))〉]T ∈ RD+1.

Proof: See Appendix C.
It is worth noting that dγ(u) in (28) is a strongly concave

function, thereby making the Lagrange dual problem (28) a
strongly convex problem having a unique global optimal so-
lution [27]. Moreover, the dual problem in (28) is equivalent
to the following unconstrained convex minimization problem

min
u∈RD+1

hγ(u) , uT1 +
γ

2
‖Π+(C(u))‖2F , (30)

with the gradient being∇uhγ(u) = 1− γΦ[Π+(C(u))].
An efficient, first-order method, i.e, gradient descent (GD),

which is detailed in Algorithm 3, can be applied to directly
solve (30). Notice that, a simple GD is proposed here due
to the fact that the dual problem in (30) is unconstrained.
Indeed, we would need a projected GD method if there is
constraint included, for which the computational complexity
would be much larger (because of the projection at each
iteration). In Algorithm 3, only the gradient of hγ(ui), i.e.,
∇uihγ(ui), is required to determine the descent direction.
It is therefore a more practical and cost-saving method
compared to standard Newton methods which demand the
calculation of second-order derivatives and the inverse of the
Hessian matrix. Moreover, Algorithm 3 does not rely on any
approximation of the inverse of the Hessian matrix such as
the quasi-Newton methods [28]. To find a step size in Step 4,
we apply the backtracking line search method [29], which
is based on the Armijo-Goldstein condition [30]. Finally,
the algorithm is terminated when the pre-designed stopping
criterion (for instance, ‖ti∆ui‖2 ≤ ε in Step 5, where ε > 0
is a predefined tolerance) is satisfied.

The solution to the dual problem in (30) (or equivalently
(28)) produced by Algorithm 3, is not yet a feasible solution
to the BQP in (10). A randomization procedure [31] can be
employed to extract a feasible binary solution to (10) from
the SDP solution X? of (27). One typical design of the ran-

Algorithm 4 Randomization
Input: A, Π+(C(u?)) = V+Λ+VT

+, D, γ, and Irand (the
number of randomizations).

Output: ψ̂ (an approximate solution to the BQP in (10)).
1: Obtain L = V+

√
γΛ+ and LLT = X?.

2: for ` = 1, 2, . . . , Irand do
3: Generation of an i.i.d. Gaussian random vector: ξ` ∼
N (0, ID+1).

4: Random sampling: ξ̃` = Lξ`.
5: Discretization: x̃` = sign(ξ̃`).
6: end for
7: Determine `? = argmin`=1,...,Irand

x̃T` Ax̃`.
8: Approximation: x̂ = x̃`?,1 · x̃`?,2:D+1 and ψ̂ = x̂+1

2 .

domization procedure for BQP is to generate feasible points
from the Gaussian random samples via rounding [32]. The
Gaussian randomization procedure provides a tight approx-
imation with probability 1 − exp(−O(D)), asymptotically
in D [33]. By leveraging the fact that the eigenvalues and
corresponding eigenvectors of Π+(C(u)) can be found by
Steps 2 of Algorithm 3, we have

X? = γΠ+(C(u?)) = γV+Λ+VT
+ = LLT ,

where Π+(C(u)),V+Λ+VT
+ and L=V+

√
γΛ+. A detailed

randomization procedure is provided in Algorithm 4.
In Step 8 of Algorithm 4, the D-dimensional vector x̂

is first recovered from a (D + 1)-dimensional vector x̃`?
by considering the structure of X in (25), and then used
to approximate the BQP solution based on (24). Also note
that the randomization performance improves with Irand. In
practice, we only need to choose a sufficient but not excessive
Irand (for instance, 50 ≤ Irand ≤ 100) achieving a good
approximation for the BQP solution. Moreover, its overall
computational complexity is much smaller than the conven-
tional randomization algorithms [24], [31], [32] because our
proposed Algorithm 4 does not require the computation of
the Cholesky factorization.

V. NUMERICAL RESULTS
In this section, we perform numerical evaluations of the
proposed KM learning methods for beam alignment/tracking
by incorporating the predictability and interpretability. In the
experiments, a beam space MIMO channel representation of
sparse mmWave channels is adopted [12], [13], [34] and the
rank of channel matrix is assumed to be 1. In particular, the
channel H in (3) is represented by

H = DrHvD
∗
t ,

where Dr ∈ CNr×Nr and Dt ∈ CNt×Nt are unitary
discrete Fourier transform matrices, while Hv ∈ CNr×Nt
denotes the virtual channel matrix of H. Let Hτ

v ∈ C be the
nonzero entry of Hτ

v and L(Hτ
v ) be the associated support

location (extracting the row-column information of Hτ
v ) at

τ th channel block. The temporal correlation between channel
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TABLE 1. Time Consumption (in Seconds) Comparison of the KM Learning-based Methods

SR Algorithms Nt = Nr = 16 Nt = Nr = 64
D = 4 D = 8 D = 16 D = 4 D = 8 D = 16

50%
KM with SDRwR 2.23× 103 2.37× 103 2.52× 103 8.57× 103 9.02× 103 9.79× 103

KM with DMO 1.36 1.92 4.02× 102 1.05× 101 1.17× 101 6.10× 102

KM with Dual+GD 1.08× 101 1.96× 101 3.15× 101 5.03× 101 1.34× 102 2.85× 102

25%
KM with SDRwR 2.04× 103 2.15× 103 2.31× 103 8.01× 103 8.49× 103 9.10× 103

KM with DMO 1.17 1.38 9.56× 101 6.53 8.22 3.75× 102

KM with Dual+GD 7.99 1.33× 101 2.96× 101 4.10× 101 8.78× 101 1.16× 102

realizations (from channel block τ to τ + 1) is modeled by
considering the following two parts: i) Channel coefficient
evolution. The evolution of the propagation path gain can be
modeled via the first-order Gauss-Markov process as

Hτ+1
v = ρHτ

v +
√

1− ρ2vτ+1, (31)

where ρ ∈ [0, 1] is the temporal correlation coefficient and
vτ+1 ∼ CN (0, 1) denotes the innovation process indepen-
dent ofHτ

v . ii) Support/beam variation. The slow variation of
the support in Hτ

v is modeled by assuming that the support
can only switch to its neighbors and introducing a support
transition probability defined as

p , Pr(L(Hτ+1
v ) ∈ Lτ+1|L(Hτ

v ) ∈ Lτ ) ∈ [0, 1], (32)

where Lτ = {(i, j)} returns the original location (ith row
and jth column of Hτ

v) of the support at τ th channel block
and Lτ+1 = {(i− 1, j − 1), (i− 1, j), (i− 1, j + 1), (i, j −
1), (i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)} is the
set composed of all possible support transition locations at
(τ + 1)th channel block.

Moreover, we set Nt = Nr = |IF | = |IW |, IBCD = 10,
Irand = 100, and TFE = 8 throughout the simulations. We
evaluate the performance from the following four different
perspectives. In particular, we focus on the initial beam
alignment (τ = 1) from Section V-A to Section V-C, while
the beam tracking (τ > 1) is considered in Section V-D.

A. COMPUTATIONAL COST
We first compare the computational cost of the two proposed
KM learning methods (including the KM with DMO in
Algorithm 2 and Dual+GD in Algorithm 3) with the existing
KM learning with SDRwR in [20, Algorithm 1]. The compu-
tational cost is evaluated by averaging the total running time
in seconds (measured by “cputime” in MATLAB running on
a PC with an Intel Xeon E5-1650 v3 3.50 GHz CPU and 32
GB RAM) over 100 Monte Carlo simulations. Note that the
sampling rate for the initial beam alignment, defined as the
ratio of the number of beam pairs in the subsampled training
set at τ = 1 to the total number of the beam pairs in the
original codebook, is given by SR = |K|/|S| (the superscript
‘τ = 1’ of K is omitted for brevity).

Table 1 lists the time consumption (in seconds) of the over-
all KM learning with three different algorithms for varying

-15 -10 -5 0 5 10 15
SNR (dB)

10-2

10-1

100

N
R

M
S

E

KM-SDRwR [train]
KM-SDRwR [test]
KM-DMO [train]
KM-DMO [test]
KM-Dual+GD [train]
KM-Dual+GD [test]

FIGURE 4. The training and prediction performance comparison when
Nt = Nr = 16, D = 8, δ = 12 dB, and SR = 25%.

D, Nt, Nr, and SR. It can be seen that the proposed methods
can achieve a reduced computational cost up to three orders
of magnitude, compared with the existing KM learning with
SDRwR. Especially, the KM with DMO shows benefits when
D is small, but its computational complexity blows up as D
increases since the DMO is based on the branch-and-bound,
which is very close to the exhaustive search in the worse
case. Meanwhile, the KM with Dual+GD exhibits better
performance when D is large.

B. TRAINING AND PREDICTION PERFORMANCE
The training and prediction performance of the proposed
methods is assessed by adopting the normalized root-mean-
square-error (NRMSE) as a metric. The NRMSEs for the
training and prediction phases, respectively, are given by

NRMSEtrain ,
( 1

|K|
∑

(t,r)∈K

|pt,r − θ?u
T
ψ?r |2

) 1
2

,

NRMSEtest ,
( 1

|T |
∑

(t,r)∈T

|pt,r − θ?u
T
ψ?r |2

) 1
2

.

Fig. 4 displays the train and test NRMSEs of the proposed
KM learning methods and the existing KM learning with
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FIGURE 5. The effective spectral efficiency comparison for the initial beam
alignment (τ = 1) when Nt = Nr = 16, D = 8, and δ = 12 dB.

SDRwR, as a function of SNR, for Nt = Nr = 16,
D = 8, δ = 16 dB, and SR = 25%. It can be observed
that the proposed methods can achieve similar good training
and prediction performance as the existing KM learning with
SNRwR by using only a quarter of samples, while reducing
the computational cost substantially as shown in Table 1.

C. SPECTRAL EFFICIENCY
Next, we evaluate the performance of the proposed approach-
es regarding the predictive beam alignment for the initial
channel block (τ = 1). Several conventional beam alignment
techniques including the exhaustive beam search, randomly
selected beams, and hierarchical codebook, are considered as
the baselines. For a fair comparison, we adopt the effective
spectral efficiency as a metric, which is defined as

R =
T −K
T

log2(1 + η),

where the pre-log factor (T − K)/T represents the portion
of channel coherent resources contributed to data commu-
nication. In particular, the sampling rate for the exhaustive
search and randomly selected beams is 100% and 25%,
respectively. By taking account of both the training overhead
(2 log2Nt+2 log2Nr) and feedback overhead (log2Nt), the
sampling rate for the hierarchical codebook is 8% [6]. We set
the sampling rate for the KM learning-based methods to be
SR= 25%.

In Fig. 5, we plot the effective spectral efficiency versus
SNR by considering the initial beam alignment for Nt =
Nr = 16, D = 8, δ = 12 dB, and assuming that the channel
block length is T = 512 channel uses. It can be found that
our proposed methods outperform the exhaustive search and
randomly selected beams throughout the entire SNR region.
In addition, despite a slightly better performance shown by
the hierarchical codebook when the SNR is high, a superior
performance in the low SNR regime of the proposed methods
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FIGURE 6. The interpretable beam tracking performance comparison when
Nt = Nr = 16, D = 8, δ = 12 dB, p = 0.05, ρ = 0.95, and α = 0.75.

can be observed, which is more appreciated in mmWave
communication systems.

D. LOW-LATENCY BEAM TRACKING VIA
INTERPRETABILITY
Finally, the interpretable beam tracking performance is eval-
uated by considering multiple channel blocks (τ = 1, . . . , 5).
The temporal correlation coefficient parameter ρ in (31) and
the support transition probability p in (32) are set to 0.95 and
0.05, respectively. In Fig. 6, we depict the effective spectral
efficiency with a variation of the channel block index for
Nt = Nr = 16, D = 8, δ = 12 dB, and α = 0.75.
For the initial beam alignment when τ = 1, we assume
SR= 50% for the proposed KM learning-based methods. It
can be seen that, by exploiting the interpretability of KM,
the proposed methods can be well adapted to the channel
temporal correlation and beam variation, and subsequently
exhibit significantly better performance than the baseline
schemes in term of beam tracking. Moreover, the KM with
Dual+GD shows a slightly better performance than the KM
with DMO when the SNR is high, while the two proposed
KM learning methods perform indistinguishably in the low
SNR regime.

We further investigate the impact of different parameter
settings on the beam tracking performance of the proposed
KM learning with Dual+GD whenNt = Nr = 16, p = 0.05,
ρ = 0.95, and SNR= 10 dB. It is observed, from Fig. 7, that
the effective spectral efficiency improves with the increase
of SR. This is attributed to the fact that the accuracy of the
initial beam alignment plays an essential role in succeeding
beam tracking. Besides, a performance improvement can be
attained asD and δ grow. By increasing α in (15), the spectral
efficiency increases a lot at the beginning, but degrades as
the channel block index grows. This phenomenon can be
interpreted as: the performance improvement is due to the
significantly reduced beam tracking overhead as α increases,
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FIGURE 7. The effect of parameter settings on beam tracking performance of
KM learning with Dual+GD when Nt = Nr = 16, p = 0.05, ρ = 0.95, and
SNR= 10 dB.

while a high α excludes potential beam pairs which further
leads to the performance degradation in subsequent channel
blocks.

VI. CONCLUSION
In this paper, we investigated a joint scheme of predic-
tive beam alignment and interpretable beam tracking for
mmWave communication systems. The distinctive and pow-
erful interpretability of KM has been exploited to achieve
an agile beam tracking with low latency. Moreover, two en-
hanced KM learning algorithms were proposed, by leverag-
ing DMO and dual optimization, to reduce the computational
cost of the previous KM learning with SDRwR by up to three
orders of magnitude. Numerical results demonstrated the
superiority of the proposed KM learning methods compared
to other benchmarks in terms of computational complexity,
training/prediction performance, and spectral efficiency for
beam alignment/tracking.

.

APPENDIX A PROOF OF THEOREM 1
The two random variables Xt,r1 and Xt,r2 share the
same alphabet X = {0, 1}. By (1), X−1t,r1({X (x)}) and
X−1t,r2({X (x)}) represent the inverse images of the events
Xt,r1 = X (x) and Xt,r2 = X (x), x ∈ {1, 2}, respec-
tively. According to (2), we have ψr,d = 1 only if ωd ∈
X−1t,r ({X (2)}), r ∈ {r1, r2}, d ∈ {1, . . . , D}. Therefore, we
obtain that supp(ψr2) ⊆ supp(ψr1) ⇒ X−1t,r2({X (2)}) ⊆
X−1t,r1({X (2)}), and consequently Xt,r1 = 1 ⇒ Xt,r2 = 1
(γt,r1 ≥ δ ⇒ γt,r2 ≥ δ).

Moreover, the fact that Ω=X−1t,r ({X (1)})∪X−1t,r ({X (2)})
and X−1t,r ({X (1)}) ∩ X−1t,r ({X (2)}) = φ, r ∈ {r1, r2},
results in supp(ψr2) ⊆ supp(ψr1) ⇒ X−1t,r1({X (1)}) ⊆
X−1t,r2({X (1)}), which further leads toXt,r2 = 0⇒ Xt,r1 =
0 (γt,r2 < δ ⇒ γt,r1 < δ).

APPENDIX B PROOF OF LEMMA 1
Given the definition of f+ and f− in (18), the objective func-
tion f in (18) is attained by transforming the minimization
to the maximization and discarding the constant ρr in (10).
Also, f+ and f− are both increasing functions with respect
to ψr ∈ [0,1] because vr > 0 and Sr is a positive semi-
definite matrix.

The binary constraints ψr,d ∈ {0, 1}, d = 1, . . . , D, can
be equivalently rewritten as
D∑
d=1

ψr,d(1− ψr,d) ≤ 0, ψr,d ∈ [0, 1], ∀d ∈ {1, . . . , D},

which is exactly g(ψr) − h(ψr) ≤ 0, ψr ∈ [0,1] in (18),
where g and h are increasing on RD+ .

APPENDIX C PROOF OF LEMMA 2
The Lagrangian of the primal problem in (27) is given by

L(X,u,D) =

〈X,A〉+ 1

2γ
‖X‖2F−〈X,D〉+

D+1∑
i=1

ui(〈X,Bi〉−1), (33)

where u ∈ RD+1 and D � 0 are Lagrangian multipliers.
Since the problems in (27) and (33) are feasible, strong
duality holds and ∇XL(X?,u?,D?) = 0, where X?, u?,
and D? are optimal solutions to (33). Then we have

X? = γ
(
D? −A−

D+1∑
i=1

u?iBi

)
= γ(D? + C(u?)), (34)

where C(u?) = −A−
∑D+1
i=1 u?iBi. Substituting X? in (33),

we obtain the dual formulation

max
u∈RD+1,D�0

−uT1− γ

2
‖D + C(u)‖2F . (35)

For a given u, the dual problem in (35) is equivalent to

min
D�0

γ

2
‖D + C(u)‖2F . (36)

The solution to (36) is D? = Π+(−C(u)). Due to the fact
that C(u) = Π+(C(u)) − Π+(−C(u)), it follows D? +
C(u) = Π+(C(u)). Thus the dual formulation in (35) can
be simplified to (28).

We take the first-order derivative of dγ(u) in (28) with
respect to u and obtain

∇udγ(u) = −1− γ∇u

(1

2
‖Π+(C(u))‖2F

)
= −1 + γΦ[Π+(C(u))],

where the last equality is due to ∇U( 1
2‖Π+(U)‖2F ) =

∇U( 1
2

∑N
i=1(max(0, λU,i))

2) = Π+(U), where λU,i is the
ith eigenvalue of U ∈ RN×N .
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