

KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

Hadi Ghauch, Qiyou Duan, Taejoon Kim

► To cite this version:

Hadi Ghauch, Qiyou Duan, Taejoon Kim. KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability. IEEE Access, inPress. hal-03276035

HAL Id: hal-03276035 https://hal.science/hal-03276035

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

Journal:	IEEE Access			
Manuscript ID	Access-2021-23362			
Manuscript Type:	Regular Manuscript			
Date Submitted by the Author:	30-Jun-2021			
Complete List of Authors:	Duan, Qiyou; City University of Hong Kong, Electrical Engineering Kim, Taejoon; University of Kansas, Department of Electrical Engineering and Computer Science Ghauch, Hadi; Telecom Paris, COMELEC			
Keywords: Please choose keywords carefully as they help us find the most suitable Editor to review :	Millimeter wave communication, Machine learning, Optimization methods			
Subject Category Please select at least two subject categories that best reflect the scope of your manuscript:	Communications technology, Signal processing, Computational and artificial intelligence			
Additional Manuscript Keywords:	Beam tracking, Predictability and interpretability, Computationally efficient algorithms			

Digital Object Identifier

KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

QIYOU DUAN¹, TAEJOON KIM², (Senior Member, IEEE) and HADI GHAUCH³, (Member, IEEE)

¹Department of Electrical Engineering, City University of Hong Kong, Hong Kong

²Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045 USA ³Department of COMELEC, Telecom-ParisTech, Paris, France

Corresponding author: Qiyou Duan (e-mail: qyduan.ee@my.cityu.edu.hk)

The work of Taejoon Kim was supported by the National Science Foundation (NSF) under Grants CNS1955561 and AST2037864.

ABSTRACT A data representation technique dubbed Kolmogorov model (KM), has been applied to the beam alignment problem in large-dimensional antenna systems. The previous learning-based beam alignment focused on utilizing the predictive power of KM to reduce the beam training overhead. However, a distinctive feature of KM, namely, the interpretability, has not yet been exploited. Moreover, the prohibitively high computational complexity of the existing KM learning algorithm offsets the benefits brought by KM and hampers its application to large-scale problems. In this paper, we propose a beam alignment/tracking framework by incorporating the predictability and interpretability of KM. Especially, our proposed scheme enables a novel interpretable beam tracking that reveals insights on relations among the sounded observations to alleviate the beam sounding overhead after the initial beam alignment. To reduce the computational cost of KM learning, two enhancement approaches, based on discrete monotonic optimization (DMO) and dual optimization, respectively, are proffered. Numerical results demonstrate that the proposed methods can achieve comparable beam alignment performance with significantly reduced computational complexity; up to three orders of magnitude improvement in terms of time overhead, compared to the existing KM learning algorithm. Furthermore, it reveals that the proposed methods show superior performance in the low signal-to-noise ratio (SNR) regime over other state-of-the-art beam alignment techniques.

INDEX TERMS Beam tracking, Kolmogorov model (KM), discrete monotonic optimization (DMO), dual optimization, predictability, interpretability, low latency.

I. INTRODUCTION

At the millimeter-wave (mmWave) spectrum, radio propagation suffers from severe path loss and atmospheric impairments that are compensated for by using large antenna arrays to produce directional narrow beams [1], [2]. The so called "beam alignment" procedure, which finds the best transmit-and-receive beam pair without estimating the channel state information (CSI), is required to establish an available communication link. A straightforward approach to the beam alignment problem is exhaustive beam search, also known as beam sweeping, which sequentially scans the entire beam space. However, the overall training overhead is indeed prohibitive due to the large size of beam codebooks in mmWave massive multiple-input multiple-output (MIMO) communication systems, offsetting the benefits of the abundant bandwidth of mmWave that promises a higher channel capacity [3], [4].

To reduce the overhead of exhaustive beam search, various approaches have been proposed in the past decade. The hierarchical codebooks, which typically consist of a small number of low-resolution wide beams at the upper layer of the codebook and a large number of high-resolution narrow beams at the lower layer of the codebook, were proposed [1], [5], [6]. Other methods fallen into the same "structured beam alignment" paradigm include beam coding [7], [8], overlapped beam patterns [9], [10], and compressed sensing-based algorithms [11]–[16]. Despite a battery of such beam alignment techniques, there still remains a challenge of further reducing the beam training overhead especially when the mobility and link blockage are considered.

58 59

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

While the reliability of initial beam alignment in mmWave is well-understood, directional narrow beams for data transmission, especially in mobile urban networks, can put beamforming gain in peril [17], [18]. Due to mobility, frequent misalignment and blockages require repeated beam alignment, which further lead to enormous overhead and performance degradation. To be specific, the higher the mobility of users, the more frequent the misalignment and blockage events occur [19]. To remedy, the more resources are needed to be allocated to maintain beam alignment. Additionally, reliable operation at low signal-to-noise ratio (SNR) is critical for mmWave communication systems that are limited by heavy mixed signal processing with an excessive power consumption. Thus, it is of great importance to explore efficient methods capable of mitigating the beam sounding overhead under mobility while exhibiting reliable performance in the low SNR regime.

19 With the rapid development of cutting-edge hardware de-20 vices and signal processing units, the capability of high per-21 formance computing makes the appealing machine learning-22 based techniques possible to be applied to practical wire-23 less communication systems. Recently, a Kolmogorov model 24 (KM) learning-based beam alignment technique, motivated 25 by a data representation of binary random variables, was 26 introduced [20], [21]. In particular, the quality of beam 27 pairs was modeled by a double-index set of binary random 28 variables based on the received signal power. The learning of 29 KM parameters was formulated as a coupled combinatorial 30 optimization problem, which can then be decomposed into 31 two subproblems including the linearly-constrained quadrat-32 ic program (LCQP) and binary quadratic program (BQP). A 33 block coordinate descent (BCD) method was adopted to iter-34 ate between the two subproblems in an alternative manner. 35 An elegant, low-complexity Frank-Wolfe (FW) algorithm 36 [22] was used to optimally solve the LCQP by exploiting 37 structure of the unit probability simplex. Meanwhile, the 38 BQP problem was handled by employing a semi-definite 39 relaxation with randomization (SDRwR) method [23]. How-40 ever, the high computational complexity of the latter prevents 41 it from being applied to the system equipped with large-42 dimensional array antennas. It is thus critical to find more 43 efficient and fast KM learning algorithms that are readily 44 applicable to large-scale problems. Moreover, the previous 45 work only focused on the predictability (the capability of 46 predicting the outcome of random variables that are outside 47 the training set) in terms of reducing the beam alignment 48 overhead. Unfortunately, a distinctive advantage of KM, i.e., 49 the interpretability (the capability of extracting additional 50 information or insights that are hidden inside the data) has 51 not yet been exploited.

52 In this work, we leverage both the predictability and inter-53 pretability of KM to enable low-latency beam alignment and 54 tracking for mmWave communication systems. The proposed 55 predictive beam alignment combined with interpretable beam 56 tracking can achieve a significantly reduced beam training 57 overhead. To be specific, the predictive power of the KM

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

FIGURE 1. Diagram of the mmWave MIMO system.

plays an essential role in improving link connectivity by only utilizing a subsampled beam set whose cardinality is smaller than that of the entire beam codebook. After the initial beam alignment, we predict future beam switching directions and further narrow down the beam search procedure to few likely beams by exploiting the interpretability of KM, thus avoiding the enormous cost for beam tracking.

Moreover, in order to address the impractically high computational complexity issue of the existing KM learning algorithm relying on SDRwR [20], [24], we propose two enhanced solvers in resolving the BQP subproblem of the KM learning in a more efficient way. In particular, discrete monotonic optimization (DMO) and dual optimization are leveraged. We demonstrate numerically that the proposed KM learning methods can achieve comparable beam alignment performance with a significantly reduced computational cost, compared to the existing KM learning algorithm [24]. It is also shown that the proposed methods by incorporating the predictability and interpretability of KM outperform the benchmarks in terms of both the beam tracking overhead and achievable throughput. Finally, the robustness of the proposed methods in the low-SNR regime is validated by simulation results.

II. PRELIMINARIES AND SYSTEM MODEL

The concept of KM and some preliminaries are first introduced. The beam alignment and tracking system model of mmWave MIMO communications is then presented.

A. KOLMOGOROV MODEL

Prior to introducing the KM of a binary random variable, we review the fundamentals of Kolmogorov probability theory by defining a measurable probability space.

Definition 1: A probability space (Ω, \mathcal{E}, P) is a triple formed by the sample space Ω , the event space \mathcal{E} consisting of the subsets of Ω , and a probability measure P defined on (Ω, \mathcal{E}) . P(E) assigns a probability to the event $E \in \mathcal{E}$ such that the following conditions hold: i) $P(E) \geq 0$, $\forall E \in \mathcal{E}$ (nonnegativity), ii) $P(\Omega) = 1$ (normalization), and iii) $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ for the disjoint events $E_i \in \mathcal{E}, \forall i$ (countable additivity).

A double-index set of binary random variables $X_{t,r} \in \mathcal{X} \triangleq \{0,1\}, \forall (t,r) \in \mathcal{S}$, is considered, where \mathcal{X} is the binary alphabet of $X_{t,r}$ and \mathcal{S} denotes the set of all index pairs.

2

5

6

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42 43 44

45

46

47

48

49

50

51

58

59

60

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

FIGURE 2. Illustration of the beam alignment/tracking during multiple channel blocks.

The set Ω , also known as the space of elementary events, is defined as $\Omega \triangleq \{\omega_d | d = 1, \ldots, D\}$, where ω_d denotes an individual elementary event and D is the dimension of Kolmogorov space. Let $\Pr(X_{t,r} = \mathcal{X}(x)) \in [0, 1]$ be the probability that the event $X_{t,r} = \mathcal{X}(x)$ occurs, where xdenotes the index of \mathcal{X} , i.e., $\mathcal{X}(1) = 0$ and $\mathcal{X}(2) = 1$. By Definition 1, the probability of two realizations of $X_{t,r}$ $(X_{t,r} = 0 \text{ or } X_{t,r} = 1)$ can be expressed as

$$\Pr\left(X_{t,r} = \mathcal{X}(x)\right) = P\left(X_{t,r}^{-1}\left(\{\mathcal{X}(x)\}\right)\right)$$
$$= \sum_{\omega_d \in X_{t,r}^{-1}\left(\{\mathcal{X}(x)\}\right)} P(\omega_d), \ x \in \{1,2\}, \quad (1)$$

where $X_{t,r}^{-1}({\mathcal{X}(x)}) \triangleq {\omega_d \in \Omega | X_{t,r} = \mathcal{X}(x)}$ is the inverse image of the event $X_{t,r} = \mathcal{X}(x)$. Since $X_{t,r}$ is binary, the following holds $\Pr(X_{t,r} = 0) + \Pr(X_{t,r} = 1) = 1$. Without loss of generality, it suffices to focus on one outcome, for instance, $X_{t,r} = 1$. By (1), the KM of $X_{t,r}$ is given by

$$\Pr(X_{t,r}=1) = \boldsymbol{\theta}_t^T \boldsymbol{\psi}_r, \ \forall (t,r) \in \mathcal{S},$$
(2)

where $\boldsymbol{\theta}_t \triangleq [P(\omega_1), \cdots, P(\omega_D)]^T \in \mathbb{R}^D_+$ is the probability mass function vector and $\boldsymbol{\psi}_r \triangleq [\psi_{r,1}, \cdots, \psi_{r,D}]^T \in \mathbb{B}^D$ is the binary indicator vector with each entry being

$$\psi_{r,d} = \begin{cases} 1, & \text{if } \omega_d \in X_{t,r}^{-1}(\{\mathcal{X}(2)\}) \\ 0, & \text{otherwise} \end{cases}, \ d = 1, \dots, D.$$

In particular, $\boldsymbol{\theta}_t$ is in the unit probability simplex $\mathcal{P} \triangleq \{\mathbf{p} \in \mathbb{R}^D_+ | \mathbf{1}^T \mathbf{p} = 1\}$, i.e., $\boldsymbol{\theta}_t \in \mathcal{P}$, and $\boldsymbol{\psi}_r$ denotes the support set of $X_{t,r}$ (associated with the case when $X_{t,r} = 1$). In addition, note that $\Pr(X_{t,r} = 0) = \boldsymbol{\theta}_t^T (\mathbf{1} - \boldsymbol{\psi}_r)$.

B. MILLIMETER WAVE MIMO SYSTEM MODEL

52 We consider a mmWave MIMO communication system, as 53 depicted in Fig. 1, where the transmitter and receiver are 54 equipped with N_t and N_r antennas, respectively. A single 55 radio-frequency (RF) chain is employed at both the transmit-56 ter and receiver, and thus the analog beamforming/combining 57 is adopted. A narrow-band block fading channel is assumed with a coherence interval being T channel uses. During a coherence block, as shown in Fig. 2, the initial K^{τ} channel uses are utilized to find the best beamformer-combiner pair (i.e., the beam alignment/tracking phase) and the remaining $T-K^{\tau}$ channel uses are set aside for data communication via the well-aligned beam pair (i.e., the data transmission phase), where τ denotes the channel block index. In particular, after the initial beam alignment, a beam tracking procedure is necessary to maintain or adjust the well-aligned beam pair by considering the beam switching and channel evolution.

IEEE Access

In the beam alignment phase, the transmitter chooses an analog beamformer $\mathbf{f}_t \in \mathbb{C}^{N_t \times 1}$ from the transmit beam sounding codebook \mathcal{F} ($\mathbf{f}_t \in \mathcal{F}$), while the receiver selects an analog combiner $\mathbf{w}_r \in \mathbb{C}^{N_r \times 1}$ from the receive beam sounding book \mathcal{W} ($\mathbf{w}_r \in \mathcal{W}$). Let $\mathcal{I}_{\mathcal{F}}$ and $\mathcal{I}_{\mathcal{W}}$ denote the index sets of the predefined codebooks \mathcal{F} and \mathcal{W} , respectively, with cardinalities $|\mathcal{I}_{\mathcal{F}}|$ and $|\mathcal{I}_{\mathcal{W}}|$. \mathbf{f}_t and \mathbf{w}_r satisfy the constant modulus constraint, i.e., $\|\mathbf{f}_t\|_2 = \|\mathbf{w}_r\|_2 = 1$.

Let $s \in \mathbb{C}$ be the transmitted training symbol with unit power. The received signal at channel block τ , $y_{t,r}^{\tau} \in \mathbb{C}$, can be expressed as (the channel block index τ is omitted for conciseness)

$$y_{t,r} = \mathbf{w}_r^* \mathbf{H} \mathbf{f}_t s + \mathbf{w}_r^* \mathbf{n}, \tag{3}$$

where $\mathbf{H} \in \mathbb{C}^{N_r \times N_t}$ is the channel matrix and $\mathbf{n} \in \mathbb{C}^{N_r \times 1}$ is the additive complex white Gaussian noise vector with each entry independently and identically distributed (i.i.d.) as zero mean and σ_n^2 variance according to $\mathcal{CN}(0, \sigma_n^2)$. It is noted that the signal-to-noise ratio (SNR) is $1/\sigma_n^2$, and we can further define the received SNR as $\eta \triangleq |\mathbf{w}_r^* \mathbf{H} \mathbf{f}_t|^2 / \sigma_n^2$, where $|\mathbf{w}_r^* \mathbf{H} \mathbf{f}_t|^2$ denotes the beamforming gain. The beam alignment problem, which is to find the optimal beam pair by maximizing the beamforming gain, can be formulated as

$$\max_{\mathbf{f}_{t},\mathbf{w}_{r}} |\mathbf{w}_{r}^{*}\mathbf{H}\mathbf{f}_{t}|^{2}$$
(4)
s.t. $\mathbf{f}_{t} \in \mathcal{F}, \mathbf{w}_{r} \in \mathcal{W}.$

However, it is not practical for the receiver to calculate the

Algorithm 1 Overall KM Learning-based Beam Alignment **Input:** $\mathcal{F}, \mathcal{W}, \mathcal{K}, \mathcal{I}_{\mathcal{F}}^{\text{train}}, \mathcal{I}_{\mathcal{W}}^{\text{train}}, D, \delta, T_{\text{FE}}, \text{and } I_{\text{BCD}}$. Initialize $\{\boldsymbol{\psi}_r^{(1)} \in \mathbb{B}^D\}_{r \in \mathcal{I}_{\text{MAD}}^{\text{train}}}.$ Output: (t^{\star}, r^{\star}) . 1: Estimate the empirical probabilities for \mathcal{K} via FE: 2: for each $t_{\text{FE}} = 1, \ldots, T_{\text{FE}}$ do for each beam pair index $(t, r) \in \mathcal{K}$ do Train the beam pair $(\mathbf{f}_t, \mathbf{w}_r)$ and obtain $\gamma_{t,r}^{(t_{\text{FE}})}$. end for 6: end for 7: Compute $\{p_{t,r}\}$ according to (7). 8: Learn the KM parameters: 9: for $v = 1, ..., I_{BCD}$ do i) Update $\boldsymbol{\theta}_{t}^{(v)}$ for $t \in \mathcal{I}_{\mathcal{F}}^{\text{train}}$; ii) Update $\boldsymbol{\psi}_{r}^{(v)}$ for $r \in \mathcal{I}_{\mathcal{W}}^{\text{train}}$. 12: end for 13: Obtain the final estimate $\{\boldsymbol{\theta}_t^{\star} = \boldsymbol{\theta}_t^{(I_{\text{BCD}})}, \boldsymbol{\psi}_r^{\star} = \boldsymbol{\psi}_r^{(I_{\text{BCD}})}\}$.

- 14: Calculate the predicted probability for the beam pairs which are not trained yet based on (11).
- 15: Determine the optimal beam pair according to (12).
- 16: **return** (t^{\star}, r^{\star}) .

beamforming gain in (4) directly due to the lack of CSI. Instead, the problem in (4) can be approximated by using the received signal power as

$$\max_{\mathbf{f}_{t},\mathbf{w}_{r}} \{\gamma_{t,r} \triangleq |y_{t,r}|^{2}\}$$
(5)
s.t. $\mathbf{f}_{t} \in \mathcal{F}, \mathbf{w}_{r} \in \mathcal{W}.$

A straightforward approach to solving (5) is the exhaustive beam search, which requires both the transmitter and receiver to scan the entire beam space (\mathcal{F} and \mathcal{W}). Unfortunately, this exhaustive search method incurs a training overhead of $|\mathcal{S}| =$ $|\mathcal{I}_{\mathcal{F}} \times \mathcal{I}_{\mathcal{W}}|$ (whose sampling rate is 100%), which indeed overwhelms the available channel coherence resources due to the large size of codebooks ($|\mathcal{I}_{\mathcal{F}}|$ and $|\mathcal{I}_{\mathcal{W}}|$) in mmWave massive MIMO systems.

To address this issue, a KM learning-based beam alignment, motivated by the fact that the double-index random variable $X_{t,r}$ in (2) can represent any two-dimensional learning applications (involving matrices) including the beam alignment in multiple-antenna systems, was proposed to reduce the training overhead while maintaining appreciable beam alignment performance.

III. KM LEARNING-BASED FRAMEWORK

The KM learning-based framework by incorporating the predictive beam alignment and interpretable beam tracking is elaborated in this section.

A. PREDICTIVE BEAM ALIGNMENT

The "good" or "poor" condition of the beam pair $(\mathbf{f}_t, \mathbf{w}_r)$ for $(t, r) \in S \triangleq \{(t, r) | (t, r) \in \mathcal{I}_F \times \mathcal{I}_W\}$, where S contains all beam pair indices of the transmit-and-receive joint codebook,

can be modeled by using the binary random variable $X_{t,r}$ of KM in (2) as

$$\begin{cases} \Pr(\gamma_{t,r} \ge \delta) = \Pr(X_{t,r} = 1) = \boldsymbol{\theta}_t^T \boldsymbol{\psi}_r, \quad \text{``good''} \\ \Pr(\gamma_{t,r} < \delta) = \Pr(X_{t,r} = 0) = \boldsymbol{\theta}_t^T (\mathbf{1} - \boldsymbol{\psi}_r), \quad \text{``poor''} \end{cases}, \quad (6)$$

where $\delta > 0$ is a predesigned threshold value for the received signal power $\gamma_{t,r}$. To be specific, the beam pair $(\mathbf{f}_t, \mathbf{w}_r)$ is regarded as being well-aligned if $\gamma_{t,r} \ge \delta$.

In contrast to the exhaustive beam search, the KM learning-based beam alignment only uses a subset of codebook $\mathcal{K} \triangleq \{(t,r) | t \in \mathcal{I}_{\mathcal{F}}^{\text{train}} \subseteq \mathcal{I}_{\mathcal{F}}, r \in \mathcal{I}_{\mathcal{W}}^{\text{train}} \subseteq \mathcal{I}_{\mathcal{W}}\} \subset \mathcal{S}$ (also known as the training set). Let $p_{t,r}$ be the empirical probability of the beam pair $(\mathbf{f}_t, \mathbf{w}_r)$ being well-aligned. Obtaining $\{p_{t,r}\}$ for the training set \mathcal{K} is a prerequisite for the KM learning-based beam alignment. Frequency estimation (FE) was proposed by estimating $\{p_{t,r}\}, \forall (t,r) \in \mathcal{K}, \text{ over a time-slot interval } T_{\text{FE}}$ [20]. Let $y_{t,r}^{(t_{\text{FE}})} = \mathbf{w}_r^* \mathbf{H} \mathbf{f}_t s + \mathbf{w}_r^* \mathbf{n}^{(t_{\text{FE}})}$ be the received signal by sounding the beam pair $(\mathbf{f}_t, \mathbf{w}_r)$ at time slot t_{FE} during a coherent channel block, the received signal power is then provided as

$$\gamma_{t,r}^{(t_{\text{FE}})} = |y_{t,r}^{(t_{\text{FE}})}|^2, t_{\text{FE}} \in \{1, \dots, T_{\text{FE}}\}, \forall (t,r) \in \mathcal{K}.$$

The final estimate of $p_{t,r}$, attained by counting the number of events in which the condition $\gamma_{t,r}^{(t_{\text{FE}})} \geq \delta$ holds, is given by

$$p_{t,r} \approx p_{t,r}^{(T_{\text{FE}})} \triangleq \frac{1}{T_{\text{FE}}} \sum_{t_{\text{FE}}=1}^{T_{\text{FE}}} \mathbb{I}(\gamma_{t,r}^{(t_{\text{FE}})} \ge \delta), \ \forall (t,r) \in \mathcal{K}, \quad (7)$$

where $\mathbb{I}(\cdot)$ is the indicator function. It is worth noting that the approximation in (7) becomes tight as T_{FE} increases.

Given the constructed training set (of empirical probabilities), the KM learning-based beam alignment, composed of training, prediction, and selection, is presented as follows.

1) Training

The KM-based beam training proceeds to optimize $\{\theta_t\}$ and $\{\psi_r\}$ by solving the ℓ_2 -norm minimization problem:

$$\{\boldsymbol{\theta}_{t}^{\star}\}, \{\boldsymbol{\psi}_{r}^{\star}\} = \operatorname*{argmin}_{\{\boldsymbol{\theta}_{t}\}, \{\boldsymbol{\psi}_{r}\}} \sum_{(t,r) \in \mathcal{K}} (\boldsymbol{\theta}_{t}^{T} \boldsymbol{\psi}_{r} - p_{t,r})^{2} \\ \text{s.t. } \boldsymbol{\theta}_{t} \in \mathcal{P}, \ \boldsymbol{\psi}_{r} \in \mathbb{B}^{D}, \forall (t,r) \in \mathcal{K} \end{cases}$$
(8)

To deal with the coupled combinatorial nature of (8), a BCD method was proposed by dividing the problem in (8) into two subproblems: i) LCQP for $\forall t \in \mathcal{I}_{\mathcal{F}}^{\text{train}}$:

$$\boldsymbol{\theta}_{t}^{(v+1)} = \operatorname*{argmin}_{\boldsymbol{\theta}_{t} \in \mathcal{P}} \boldsymbol{\theta}_{t}^{T} \mathbf{Q}_{t}^{(v)} \boldsymbol{\theta}_{t} - 2\boldsymbol{\theta}_{t}^{T} \mathbf{w}_{t}^{(v)} + \varrho_{t}, \qquad (9)$$

where $\mathbf{Q}_{t}^{(v)} \triangleq \sum_{r \in \mathcal{I}_{t}} \boldsymbol{\psi}_{r}^{(v)} \boldsymbol{\psi}_{r}^{(v)T}, \mathbf{w}_{t}^{(v)} \triangleq \sum_{r \in \mathcal{I}_{t}} \boldsymbol{\psi}_{r}^{(v)} p_{t,r},$ $\varrho_{t} \triangleq \sum_{r \in \mathcal{I}_{t}} p_{t,r}^{2}, \mathcal{I}_{t} \triangleq \{r | (t,r) \in \mathcal{K}\}, \text{ and } v \text{ is the index of BCD iterations, and ii) BQP for } \forall r \in \mathcal{I}_{\mathcal{W}}^{\text{train}}$:

$$\boldsymbol{\psi}_{r}^{(\nu+1)} = \operatorname*{argmin}_{\boldsymbol{\psi}_{r} \in \mathbb{B}^{D}} \boldsymbol{\psi}_{r}^{T} \mathbf{S}_{r}^{(\nu+1)} \boldsymbol{\psi}_{r} - 2 \boldsymbol{\psi}_{r}^{T} \mathbf{v}_{r}^{(\nu+1)} + \rho_{r}, \quad (10)$$

where $\mathbf{S}_{r}^{(v+1)} \triangleq \sum_{t \in \mathcal{I}_{r}} \boldsymbol{\theta}_{t}^{(v+1)} \boldsymbol{\theta}_{t}^{(v+1)^{T}}, \mathbf{v}_{r}^{(v+1)} \triangleq \sum_{t \in \mathcal{I}_{r}} \boldsymbol{\theta}_{t}^{(v+1)} p_{t,r}, \rho_{r} \triangleq \sum_{t \in \mathcal{I}_{r}} p_{t,r}^{2}, \text{ and } \mathcal{I}_{r} \triangleq \{t | (t,r) \in \mathcal{K}\}.$ By

59 60 4

40

41

42

43

44

45

46

47 48

49

50

51

52 53

54 55

56

57 58

VOLUME 6, 2021

18 19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

57

58

59

60

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

FIGURE 3. Diagram of the KM learning-based beam alignment framework: a toy example $(N_t = N_r = |\mathcal{I}_{\mathcal{F}}| = |\mathcal{I}_{\mathcal{W}}| = 4, D = 4)$.

exploiting the fact that the optimization in (9) was carried out over the unit probability simplex \mathcal{P} , a simple iterative FW algorithm was used to optimally solve (9), while the SDRwR was employed to asymptotically solve the BQP in (10) [24].

2) Prediction

The trained KM parameters $\{\theta_t^{\star}\}, \{\psi_r^{\star}\}$ are utilized to predict probabilities over a test set \mathcal{T} (a set of beam pairs that are not sounded) as

$$\hat{p}_{t,r} \triangleq \boldsymbol{\theta}_t^{\star T} \boldsymbol{\psi}_r^{\star}, \, \forall (t,r) \in \mathcal{T}, \tag{11}$$

where $\mathcal{T} \cap \mathcal{K} = \phi$ and $\mathcal{T} \cup \mathcal{K} = \mathcal{S}$.

Selection

The optimal beam pair with the highest probability of being well-aligned is selected by evaluating both the training and test sets $(\mathcal{K} \cup \mathcal{T})$ as

$$(t^{\star}, r^{\star}) = \operatorname*{argmax}_{(t,r)\in\mathcal{S}} \{\hat{p}_{t,r} = \boldsymbol{\theta}_t^{\star T} \boldsymbol{\psi}_r^{\star}\}.$$
 (12)

Based on the above three key steps, an overall KM learningbased beam alignment procedure is provided in Algorithm 1.

Note that, the predictability of KM was exploited to re-45 duce the beam training overhead by using a subsampled 46 codebook. However, this benefit cannot cover up the fact 47 that the existing KM learning method relying on SDRwR 48 [20], [24] suffers from a high computational complexity and 49 a limitation of being applied to large-scale antenna array 50 systems. In particular, the LCQP subproblem in (9), which 51 can be efficiently solved by the FW algorithm, has been well-52 studied, while resolving the BQP subproblem in (10) intro-53 duces a major computational bottleneck. This calls for more 54 efficient KM learning algorithms, which we will present in 55 Section IV. 56

B. INTERPRETABLE BEAM TRACKING

The next challenge after the initial beam alignment is to update/adjust the aligned beams to maintain the availability of the link, i.e., the beam tracking phase ($\tau > 1$) as illustrated in Fig. 2. However, the enormous overhead induced by frequent beam realignment often makes the system unbearable. Thus, the design of schemes that alleviate the beam tracking overhead is of great importance.

IEEE Access

To this end, a distinctive feature of the KM, namely, the interpretability, extracting insights that hidden inside the data based on sounded observations, can be exploited. The following theorem provides a basis for the interpretable beam tracking.

Theorem 1 (Logical Relation Mining): Suppose two random events $\gamma_{t,r_1} \ge \delta$ and $\gamma_{t,r_2} \ge \delta$, whose KMs are given by $\Pr(\gamma_{t,r_1} \ge \delta) = \Pr(X_{t,r_1} = 1) = \boldsymbol{\theta}_t^T \boldsymbol{\psi}_{r_1}$ and $\Pr(\gamma_{t,r_2} \ge \delta)$ $= \Pr(X_{t,r_2} = 1) = \boldsymbol{\theta}_t^T \boldsymbol{\psi}_{r_2}$, respectively. If the support sets of $\boldsymbol{\psi}_{r_1}$ and $\boldsymbol{\psi}_{r_2}$ satisfy the inclusion relation $\operatorname{supp}(\boldsymbol{\psi}_{r_2}) \subseteq$ $\operatorname{supp}(\boldsymbol{\psi}_{r_1})$, then the following two logical relations hold:

$$\gamma_{t,r_1} \ge \delta \Rightarrow \gamma_{t,r_2} \ge \delta \ (X_{t,r_1} = 1 \Rightarrow X_{t,r_2} = 1), \quad (13)$$

$$\gamma_{t,r_2} < \delta \Rightarrow \gamma_{t,r_1} < \delta \ (X_{t,r_2} = 0 \Rightarrow X_{t,r_1} = 0).$$
(14)

Proof: See Appendix A.

Theorem 1 can be translated as: Given that the support set of ψ_{r_1} includes that of ψ_{r_2} , if the beam pair index (t, r_1) is good, then it logically implies that the beam pair index (t, r_2) is also good. Conversely, if the beam pair index (t, r_2) is bad, then it logically implies that the beam pair index (t, r_1) is bad either. The above information can be leveraged to reduce the beam tracking overhead.

Suppose the beam training set (subsampled codebook) for beam alignment/tracking at τ th channel block is \mathcal{K}^{τ} with $K^{\tau} = |\mathcal{K}^{\tau}|$. Let $\{\psi_r^{\star,\tau}\}$ denote the set of learned binary indicator vectors of KM at τ th channel block. We first identify a set of critical beam pair indices based on the empirical probabilities at current channel block, associated

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

with a transmit beam index t, as

$$\mathcal{C}_t^{\tau} = \{(t, r_i) | p_{t, r_i}^{\tau} \ge \alpha\},\tag{15}$$

where p_{t,r_i}^{τ} denotes the empirical probability of the beam pair index (t, r_i) and $\alpha \in [0, 1]$ is a threshold. By exploiting the interpretability of KM, especially via logical relation mining in Theorem 1, we obtain an expanded set of critical beam pair indices as

$$\hat{\mathcal{C}}_t^{\tau} = \bigcup_{i=1}^{|\mathcal{C}_t^{\tau}|} \{(t, r_j) | \operatorname{supp}(\boldsymbol{\psi}_{r_j}^{\star, \tau}) \subseteq \operatorname{supp}(\boldsymbol{\psi}_{r_i}^{\star, \tau}), (t, r_i) \in \mathcal{C}_t^{\tau} \}, (16)$$

which encapsulates all potential good beam pair indices for a fixed t. Moreover, by considering the possible beam variations that the aligned beam pair $(t^{\star,\tau}, r^{\star,\tau})$ may transit to its neighbors at next channel block (as depicted in Fig. 2), a complementary set of beam pair indices is defined by $\tilde{C}^{\tau+1} = \{(t^{\star,\tau}-1, r^{\star,\tau}-1), (t^{\star,\tau}-1, r^{\star,\tau}), (t^{\star,\tau}-1, r^{\star,\tau}+1), (t^{\star,\tau}, r^{\star,\tau}-1), (t^{\star,\tau}, r^{\star,\tau}+1), (t^{\star,\tau}+1, r^{\star,\tau}-1), (t^{\star,\tau}+1, r^{\star,\tau}), (t^{\star,\tau}+1, r^{\star,\tau}+1)\}$. Then, the beam training set at next channel block, i.e., $\mathcal{K}^{\tau+1}$, is given by

$$\mathcal{K}^{\tau+1} = \{ \cup_t \hat{\mathcal{C}}_t^\tau \} \cup \tilde{\mathcal{C}}^{\tau+1}, \tag{17}$$

with $K^{\tau+1} \ll K^1$ $(\tau \ge 1)$ where $K^1 = |\mathcal{K}^1|$ represent the training overhead of the initial beam alignment.

Notice that the choice of α in (15) has an effect on the interpretable beam tracking performance. On the one hand, a large α is able to shrink the size of C_t^{τ} and \hat{C}_t^{τ} , thus reducing the beam sounding overhead at next channel block. On the other hand, a shrunken C_t^{τ} may exclude any good beam pair and cause performance deterioration. This tradeoff will be further investigated in Section V-D.

The KM learning-based framework including training, prediction, and interpretation, is illustrated by using a toy example in Fig. 3.

IV. OPTIMIZATION-BASED KM LEARNING

In this section, two KM learning methods based on DMO and dual optimization, respectively, are proposed to solve the BQP subproblem in (10), reducing the exorbitantly high computational cost of the existing SDRwR [24].

A. DISCRETE MONOTONIC OPTIMIZATION

We first present a lemma delivering an equivalent reformulation of the BQP subproblem in (10).

48 *Lemma 1:* The BQP problem in (10) is equivalent to the max-49 imization of a difference of two monotonically increasing 50 functions and its binary constraints $\psi_r \in \mathbb{B}^D$ can be equiva-51 lently transformed to continuous monotonic constraints as 52

$$\max_{\boldsymbol{\psi}_r} \left\{ f(\boldsymbol{\psi}_r) = f^+(\boldsymbol{\psi}_r) - f^-(\boldsymbol{\psi}_r) \right\} \\ \text{s.t. } g(\boldsymbol{\psi}_r) - h(\boldsymbol{\psi}_r) \le 0, \boldsymbol{\psi}_r \in [\mathbf{0}, \mathbf{1}] \ ,$$
 (18)

where $f^+(\boldsymbol{\psi}_r) \triangleq 2\mathbf{v}_r^T \boldsymbol{\psi}_r, f^-(\boldsymbol{\psi}_r) \triangleq \boldsymbol{\psi}_r^T \mathbf{S}_r \boldsymbol{\psi}_r, g(\boldsymbol{\psi}_r) \triangleq \sum_{d=1}^D \psi_{r,d}, h(\boldsymbol{\psi}_r) \triangleq \sum_{d=1}^D \psi_{r,d}^2, \boldsymbol{\psi}_r \in [\mathbf{0}, \mathbf{1}]$ indicates that

Algorithm 2 DMO-based Algorithm

Input: \mathbf{S}_r , \mathbf{v}_r , and D. **Output:** $\boldsymbol{\psi}_r^{\star}$.

- 1: Initialization: Set iteration number i = 1. Let $\mathcal{P}_i = \{M\}, M = [0, 1], \mathcal{R}_i = \phi$, and $\nu = f(0) = 0$.
- 2: *Reduction*: Reduce each box in \mathcal{P}_i according to (19) and (20) to obtain $\mathcal{P}'_i = \{[\mathbf{a}', \mathbf{b}'] | [\mathbf{a}, \mathbf{b}] \in \mathcal{P}_i\}.$
- 3: Bounding: Calculate $\mu(M')$ in (21) for each $M' \in \mathcal{M}_i \triangleq \mathcal{P}'_i \cup \mathcal{R}_i$.
- 4: Find the feasible solution: $\psi_r^{(i)} = \operatorname{argmax}_{\psi_r} \{ f(\psi_r) > \nu | \psi_r = \lceil (\mathbf{a}' + \mathbf{b}')/2 \rceil, M' = \llbracket \mathbf{a}', \mathbf{b}'
 brace \in \mathcal{M}_i \}.$
- 5: Update current best value: If $\psi_r^{(i)}$ in Step 4 exists, update ν as $\nu = f(\psi_r^{(i)})$; otherwise, $\psi_r^{(i)} = \psi_r^{(i-1)}$ and ν doesn't change.
- 6: Discarding: Delete every M' ∈ M_i such that μ(M') < ν and let R_{i+1} be the collection of remaining boxes.
- 7: if $\mathcal{R}_{i+1} = \phi$ then terminate and return $\psi_r^{\star} = \psi_r^{(i)}$.
- 8: **else**
- 9: Let $M^{(i)} = \operatorname{argmax}_{M'} \{ \mu(M') | M' \in \mathcal{R}_{i+1} \}.$
- 10: if $\nu \geq \varepsilon \mu(M^{(i)})$ then ε -accuracy is reached and return $\psi_r^* = \psi_r^{(i)}$.
- 11: **else**
- 12: Branching: Divide $M^{(i)}$ into $M_1^{(i)}$ and $M_2^{(i)}$ according to (22) and (23).

13: Update \mathcal{R}_{i+1} and \mathcal{P}_{i+1} : $\mathcal{R}_{i+1} = \mathcal{R}_{i+1} \setminus M^{(i)}$ and $\mathcal{P}_{i+1} = \{M_1^{(i)}, M_2^{(i)}\}.$

- 14: **end if**
- 15: end if
- 16: i = i + 1 and **return** to Step 2.

 $0 \le \psi_{r,d} \le 1$ for every d = 1, ..., D, and the index of BCD iterations (v in (10)) is omitted hereinafter for simplicity.

Proof: See Appendix B.

The combinatorial nature of the BQP problem in (10) is attributed to the discrete constraints $\psi_r \in \mathbb{B}^D$. In [20], [24], this nuisance has been tackled by using SDRwR, which incurs impractical computational complexity. Unlike SDRwR, the equivalent problem formulation leveraging the difference of monotonic functions (DMF) in (18) dissolves the intractable discrete constraints without any relaxation. Motivated by Lemma 1, we propose to use a branch-reduceand-bound (BRB) algorithm [25] to directly solve (18) without any relaxation and/or randomization, which consists of three main steps provided below.

1) Reduction

We let $M = [\mathbf{a}, \mathbf{b}]$ be one of the boxes that contain feasible solutions to (18) and ν be the current maximum value of the objective function f in (18). The reduced box $M' = [\mathbf{a}', \mathbf{b}'] \subset [\mathbf{a}, \mathbf{b}]$ can be defined by new lower and upper vertices \mathbf{a}' and \mathbf{b}' , respectively, without excluding any feasible solution $\psi_r \in [\mathbf{a}, \mathbf{b}]$, while maintaining $f(\psi_r) \geq \nu$

53

54

55

56

57

58

59

[25] as

1

2

8 9

10

11 12

13

14

15

16

17

18 19

20

21

22

23

24

25

31

33

34

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

56 57

58

59

60

$$\mathbf{a}' = \mathbf{b} - \sum_{d=1}^{D} \alpha_d (b_d - a_d) \mathbf{e}_d, \tag{19}$$

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

$$\mathbf{b}' = \mathbf{a}' + \sum_{d=1}^{D} \beta_d (b_d - a'_d) \mathbf{e}_d, \tag{20}$$

where $\alpha_d = \sup \{ \alpha | \alpha \in [0,1], g(\mathbf{a}) - h(\mathbf{b} - \alpha(b_d - \alpha)) \}$ $a_d)\mathbf{e}_d) \leq 0, f^+(\mathbf{b} - \alpha(b_d - a_d)\mathbf{e}_d) - f^-(\mathbf{a}) \geq \nu\} \text{ and } \\ \beta_d = \sup\{\beta | \beta \in [0,1], g(\mathbf{a}' + \beta(b_d - a'_d)\mathbf{e}_d) - h(\mathbf{b}) \leq 0\}$ $0, f^{+}(\mathbf{b}) - f^{-}(\mathbf{a}' + \beta(b_d - a'_d)\mathbf{e}_d) \ge \nu$ for $d = 1, \dots, D$, where \mathbf{e}_d is the *d*th column of the *D*-dimensional identity matrix \mathbf{I}_D . Note that the optimal values of α_d and β_d can be found by referring to the compactness of $\alpha, \beta \in [0, 1]$ and utilizing the monotonicity of f^+ , f^- , g, and h (for instance, by using a bisection method [26]).

2) Bounding

For every reduced box M', an upper bound of $\nu(M') \triangleq$ $\max\{f(\psi_r) | g(\psi_r) - h(\psi_r) \le 0, \psi_r \in M' \cap [0, 1]\}$ is calculated such that

$$\nu(M') \le \mu(M') = f^+(\mathbf{b}') - f^-(\mathbf{a}').$$
 (21)

The upper bound $\mu(M')$ in (21) holds because f^+ and f^- 26 are monotonically increasing functions. Furthermore, $\mu(M')$ 27 ensures $\lim_{k\to\infty} \mu(M'_k) = f(\psi_r^*)$, where $\{M'_k\}$ stands 28 for any infinite nested sequence of boxes and ψ_r^{\star} is the 29 optimal solution to (18). At each iteration, any box M' with 30 $\mu(M') < \nu$ is discarded because such a box does not contain ψ_r^{\star} anymore. 32

3) Branching

At the end of each iteration, the box with the maximum upper 35 bound, denoted by $M^{\star} = [\mathbf{a}^{\star}, \mathbf{b}^{\star}]$, is selected and branched 36 to accelerate the convergence of the algorithm. The box M^{\star} 37 is divided into two boxes 38

$$M_1^{\star} = \{ \boldsymbol{\psi}_r \in M^{\star} | \boldsymbol{\psi}_{r,j} \le \lfloor c_j^{\star} \rfloor \}, \tag{22}$$

$$M_2^{\star} = \{ \boldsymbol{\psi}_r \in M^{\star} | \psi_{r,j} \ge \lceil c_j^{\star} \rceil \}, \tag{23}$$

where $j = \operatorname{argmax}_{d=1,...,D}(b_d^{\star} - a_d^{\star}), c_j^{\star} = (a_j^{\star} + b_j^{\star})/2,$ $|\cdot|$ and $[\cdot]$ represent the element-wise floor and ceiling operations, respectively.

The DMF optimization problem in (18) is solved by iteratively executing the above three procedures until it converges within ε -accuracy as shown in Algorithm 2.

B. DUAL OPTIMIZATION

An alternative approach to solving the BQP subproblem in (10) is to transform it to a dual problem. To this end, we formulate an equivalent form to the BQP in (10) as

$$\min_{\mathbf{x}\in\{+1,-1\}^D} \mathbf{x}^T \mathbf{A}_0 \mathbf{x} + \mathbf{a}^T \mathbf{x},$$
(24)

where ρ_r in (10) is ignored, $\mathbf{x} = 2\boldsymbol{\psi}_r - \mathbf{1} \in \{+1, -1\}^D$, $\mathbf{A}_0 = \frac{1}{4}\mathbf{S}_r$, and $\mathbf{a} = \frac{1}{2}\mathbf{S}_r^T\mathbf{1} - \mathbf{v}_r$. By introducing $\mathbf{X}_0 = \mathbf{x}\mathbf{x}^T$

and $\mathbf{X} = \begin{bmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{X}_0 \end{bmatrix} \in \mathbb{R}^{(D+1) \times (D+1)}$, the problem in (24) can be rewritten as

$$\min_{\mathbf{x},\mathbf{X}_0} \quad \langle \mathbf{X}_0, \mathbf{A}_0 \rangle + \mathbf{a}^T \mathbf{x}, \tag{25a}$$

s.t. diag
$$(\mathbf{X}_0) = \mathbf{1}$$
, (25b)

$$\mathbf{X} \succeq \mathbf{0},$$
 (25c)

$$\operatorname{rank}(\mathbf{X}) = 1, \tag{25d}$$

where $\langle \mathbf{X}_0, \mathbf{A}_0 \rangle = \operatorname{trace}(\mathbf{X}_0^T \mathbf{A}_0)$ denotes the Frobenius inner product of matrices X_0 and A_0 , and $X \succeq 0$ indicates that the matrix \mathbf{X} is positive semi-definite. Solving (25) directly is NP-hard due to the rank constraint in (25d), thus we turn to convex relaxation methods. The SDR to (25) can be expressed in a homogenized form with respect to X as

$$\min_{\mathbf{X}} \quad f(\mathbf{X}) \triangleq \langle \mathbf{X}, \mathbf{A} \rangle, \tag{26a}$$

s.t.
$$\langle \mathbf{B}_i, \mathbf{X} \rangle = 1, \ i = 1, \dots, D+1,$$
 (26b)

$$\mathbf{K} \succeq \mathbf{0},$$
 (26c)

where $\mathbf{A} = \begin{bmatrix} 0 & (1/2)\mathbf{a}^T \\ (1/2)\mathbf{a} & \mathbf{A}_0 \end{bmatrix} \in \mathbb{S}^{(D+1)\times(D+1)}$ and $\mathbf{B}_i = [\mathbf{0}_1 \cdots \mathbf{0}_{i-1} \mathbf{e}_i \mathbf{0}_{i+1} \cdots \mathbf{0}_{D+1}] \in \mathbb{R}^{(D+1) \times (D+1)}.$ Note that the diagonal constraint in (25b) has been equivalently transformed to D + 1 equality constraints in (26b). While the problem in (25) is combinatorial due to the rank constraint, the relaxed problem in (26) is a convex semidefinite programming (SDP). In particular, the relaxation is done by dropping the rank constraint.

We further formulate a regularized SDP formulation of (26) as

$$\min_{\mathbf{X}} \quad f_{\gamma}(\mathbf{X}) \triangleq \langle \mathbf{X}, \mathbf{A} \rangle + \frac{1}{2\gamma} \|\mathbf{X}\|_{F}^{2}, \quad (27)$$
s.t. $\langle \mathbf{B}_{i}, \mathbf{X} \rangle = 1, \ i = 1, \dots, D+1,$
 $\mathbf{X} \succeq \mathbf{0},$

where $\gamma > 0$ is a regularization parameter. With a Frobeniusnorm term regularized, the strict convexity of (27) is ensured, which in turn makes strong duality hold for the feasible dual problem of (27). In this work, we leverage this fact that the duality gap is zero for (27) (a consequence of strong duality) to solve the dual problem. In addition, the two problems in (26) and (27) are equivalent as $\gamma \to \infty$.

Given the regularized SDP formulation in (27), its dual problem and the gradient of the objective function are of interest, which can be found in the following lemma.

Lemma 2: Suppose the problem in (27) is feasible. Then, the dual problem of (27) is given by

$$\max_{\mathbf{u}\in\mathbb{R}^{D+1}} \quad d_{\gamma}(\mathbf{u}) \triangleq -\mathbf{u}^{T}\mathbf{1} - \frac{\gamma}{2} \|\Pi_{+}(\mathbf{C}(\mathbf{u}))\|_{F}^{2}, \quad (28)$$

where $\mathbf{u} \in \mathbb{R}^{D+1}$ is the vector of Lagrange multipliers associated with each of the D + 1 equality constraints of (27), $\mathbf{C}(\mathbf{u}) \triangleq -\mathbf{A} - \sum_{i=1}^{D+1} u_i \mathbf{B}_i$, and $\Pi_+(\mathbf{C}(\mathbf{u})) \triangleq \sum_{i=1}^{D+1} \max(0, \lambda_i(\mathbf{C}(\mathbf{u}))) \mathbf{p}_i \mathbf{p}_i^T$, in which $\lambda_i(\mathbf{C}(\mathbf{u}))$ and \mathbf{p}_i , $i = 1, \ldots, D + 1$, respectively, are the eigenvalues and

3 4

5

6

7

8

9

10

11

12

13

14

15 16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

Algo	rithm 3 GD for Solving the Dual Problem in (30)
Inpu	t: $\mathbf{A}, \{\mathbf{B}_i\}_{i=1}^{D+1}, D, \mathbf{u}_0, \gamma, \epsilon \text{ (tolerance threshold value),}$
a	nd I_{max} (maximum number of iterations).
Outp	ut: u*.
1: f	or $i = 0, 1, 2, \dots, I_{\max}$ do
2:	Calculate the gradient: $\nabla_{\mathbf{u}_i} h_{\gamma}(\mathbf{u}_i)$.
3:	Compute the descent direction: $\Delta \mathbf{u}_i = -\nabla_{\mathbf{u}_i} h_{\gamma}(\mathbf{u}_i)$.
4:	Find a step size t_i (via <i>backtracking line search</i>), and
u	$\mathbf{u}_{i+1} = \mathbf{u}_i + t_i \Delta \mathbf{u}_i.$
5:	if $ t_i \Delta \mathbf{u}_i _2 \leq \epsilon$ then terminate and return $\mathbf{u}^{\star} =$
u	i_{i+1} .
6:	end if
7: e	nd for

corresponding eigenvectors of $C(\mathbf{u})$. The gradient of $d_{\gamma}(\mathbf{u})$ with respect to \mathbf{u} is

$$\nabla_{\mathbf{u}} d_{\gamma}(\mathbf{u}) = -\mathbf{1} + \gamma \Phi[\Pi_{+}(\mathbf{C}(\mathbf{u}))], \qquad (29)$$

where $\Phi[\Pi_+(\mathbf{C}(\mathbf{u}))] \triangleq [\langle \mathbf{B}_1, \Pi_+(\mathbf{C}(\mathbf{u})) \rangle, \cdots, \langle \mathbf{B}_{D+1}, \Pi_+(\mathbf{C}(\mathbf{u})) \rangle]^T \in \mathbb{R}^{D+1}.$

Proof: See Appendix C.

It is worth noting that $d_{\gamma}(\mathbf{u})$ in (28) is a strongly concave function, thereby making the Lagrange dual problem (28) a strongly convex problem having a unique global optimal solution [27]. Moreover, the dual problem in (28) is equivalent to the following unconstrained convex minimization problem

$$\min_{\mathbf{u}\in\mathbb{R}^{D+1}}\quad h_{\gamma}(\mathbf{u})\triangleq\mathbf{u}^{T}\mathbf{1}+\frac{\gamma}{2}\|\Pi_{+}(\mathbf{C}(\mathbf{u}))\|_{F}^{2},\qquad(30)$$

with the gradient being $\nabla_{\mathbf{u}} h_{\gamma}(\mathbf{u}) = \mathbf{1} - \gamma \Phi[\Pi_{+}(\mathbf{C}(\mathbf{u}))].$

33 An efficient, first-order method, i.e, gradient descent (GD), 34 which is detailed in Algorithm 3, can be applied to directly 35 solve (30). Notice that, a simple GD is proposed here due 36 to the fact that the dual problem in (30) is unconstrained. 37 Indeed, we would need a projected GD method if there is 38 constraint included, for which the computational complexity 39 would be much larger (because of the projection at each 40 iteration). In Algorithm 3, only the gradient of $h_{\gamma}(\mathbf{u}_i)$, i.e., 41 $\nabla_{\mathbf{u}_i} h_{\gamma}(\mathbf{u}_i)$, is required to determine the descent direction. 42 It is therefore a more practical and cost-saving method 43 compared to standard Newton methods which demand the 44 calculation of second-order derivatives and the inverse of the 45 Hessian matrix. Moreover, Algorithm 3 does not rely on any 46 approximation of the inverse of the Hessian matrix such as 47 the quasi-Newton methods [28]. To find a step size in Step 4, we apply the backtracking line search method [29], which 48 49 is based on the Armijo-Goldstein condition [30]. Finally, 50 the algorithm is terminated when the pre-designed stopping 51 criterion (for instance, $||t_i \Delta \mathbf{u}_i||_2 \le \epsilon$ in Step 5, where $\epsilon > 0$ 52 is a predefined tolerance) is satisfied.

The solution to the dual problem in (30) (or equivalently (28)) produced by Algorithm 3, is not yet a feasible solution to the BQP in (10). A randomization procedure [31] can be employed to extract a feasible binary solution to (10) from the SDP solution \mathbf{X}^* of (27). One typical design of the ran-58

Algorithm 4 Randomization

Input: A, $\Pi_+(\mathbf{C}(\mathbf{u}^*)) = \mathbf{V}_+ \mathbf{\Lambda}_+ \mathbf{V}_+^T$, *D*, γ , and I_{rand} (*the* number of randomizations).

Output: $\hat{\psi}$ (an approximate solution to the BQP in (10)).

- 1: Obtain $\mathbf{L} = \mathbf{V}_+ \sqrt{\gamma \mathbf{\Lambda}_+}$ and $\mathbf{L} \mathbf{L}^T = \mathbf{X}^*$.
- 2: for $\ell = 1, 2, ..., I_{rand}$ do
- 3: Generation of an i.i.d. Gaussian random vector: $\boldsymbol{\xi}_{\ell} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{D+1})$.
- 4: Random sampling: $\boldsymbol{\xi}_{\ell} = \mathbf{L}\boldsymbol{\xi}_{\ell}$.
- 5: Discretization: $\tilde{\mathbf{x}}_{\ell} = \operatorname{sign}(\boldsymbol{\xi}_{\ell})$.
- 6: **end for**
- 7: Determine $\ell^* = \operatorname{argmin}_{\ell=1,\dots,I_{\text{rand}}} \tilde{\mathbf{x}}_{\ell}^T \mathbf{A} \tilde{\mathbf{x}}_{\ell}$.
- 8: Approximation: $\hat{\mathbf{x}} = \tilde{x}_{\ell^{\star},1} \cdot \tilde{\mathbf{x}}_{\ell^{\star},2:D+1}$ and $\hat{\psi} = \frac{\hat{\mathbf{x}}+1}{2}$.

domization procedure for BQP is to generate feasible points from the Gaussian random samples via rounding [32]. The Gaussian randomization procedure provides a tight approximation with probability $1 - \exp(-\mathcal{O}(D))$, asymptotically in *D* [33]. By leveraging the fact that the eigenvalues and corresponding eigenvectors of $\Pi_+(\mathbf{C}(\mathbf{u}))$ can be found by Steps 2 of Algorithm 3, we have

$$\mathbf{X}^{\star} = \gamma \Pi_{+}(\mathbf{C}(\mathbf{u}^{\star})) = \gamma \mathbf{V}_{+} \mathbf{\Lambda}_{+} \mathbf{V}_{+}^{T} = \mathbf{L} \mathbf{L}^{T},$$

where $\Pi_+(\mathbf{C}(\mathbf{u})) \triangleq \mathbf{V}_+ \mathbf{\Lambda}_+ \mathbf{V}_+^T$ and $\mathbf{L} = \mathbf{V}_+ \sqrt{\gamma \mathbf{\Lambda}_+}$. A detailed randomization procedure is provided in Algorithm 4.

In Step 8 of Algorithm 4, the *D*-dimensional vector $\hat{\mathbf{x}}$ is first recovered from a (D + 1)-dimensional vector $\tilde{\mathbf{x}}_{\ell^{\star}}$ by considering the structure of \mathbf{X} in (25), and then used to approximate the BQP solution based on (24). Also note that the randomization performance improves with I_{rand} . In practice, we only need to choose a sufficient but not excessive I_{rand} (for instance, $50 \leq I_{\text{rand}} \leq 100$) achieving a good approximation for the BQP solution. Moreover, its overall computational complexity is much smaller than the conventional randomization algorithms [24], [31], [32] because our proposed Algorithm 4 does not require the computation of the Cholesky factorization.

V. NUMERICAL RESULTS

In this section, we perform numerical evaluations of the proposed KM learning methods for beam alignment/tracking by incorporating the predictability and interpretability. In the experiments, a beam space MIMO channel representation of sparse mmWave channels is adopted [12], [13], [34] and the rank of channel matrix is assumed to be 1. In particular, the channel **H** in (3) is represented by

$\mathbf{H} = \mathbf{D}_r \mathbf{H}_v \mathbf{D}_t^*,$

where $\mathbf{D}_r \in \mathbb{C}^{N_r \times N_r}$ and $\mathbf{D}_t \in \mathbb{C}^{N_t \times N_t}$ are unitary discrete Fourier transform matrices, while $\mathbf{H}_v \in \mathbb{C}^{N_r \times N_t}$ denotes the virtual channel matrix of \mathbf{H} . Let $H_v^{\tau} \in \mathbb{C}$ be the nonzero entry of \mathbf{H}_v^{τ} and $L(H_v^{\tau})$ be the associated support location (extracting the row-column information of H_v^{τ}) at τ th channel block. The temporal correlation between channel

15

16

17

18

19

20

21

22

23

24

25

26 27 28

29

30

31

32

33

34

41

56

57

58

59

60

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

	SP	Algorithms	$N_t = N_r = 16$			$N_t = N_r = 64$		
			D=4	D = 8	D = 16	D=4	D=8	D = 16
-		KM with SDRwR	2.23×10^3	2.37×10^3	2.52×10^3	8.57×10^3	9.02×10^{3}	9.79×10^{3}
	50%	KM with DMO	1.36	1.92	4.02×10^2	1.05×10^1	1.17×10^1	6.10×10^{2}
		KM with Dual+GD	1.08×10^1	$1.96 imes 10^1$	3.15×10^1	5.03×10^1	1.34×10^2	2.85×10^2
	25%	KM with SDRwR	2.04×10^{3}	2.15×10^3	2.31×10^{3}	8.01×10^{3}	8.49×10^{3}	9.10×10^{3}
		KM with DMO	1.17	1.38	$9.56 imes10^1$	6.53	8.22	$3.75 imes 10^2$
		KM with Dual+GD	7.99	1.33×10^1	2.96×10^1	4.10×10^{1}	8.78×10^1	1.16×10^2

TABLE 1. Time Consumption (in Seconds) Comparison of the KM Learning-based Methods

realizations (from channel block τ to $\tau + 1$) is modeled by considering the following two parts: i) Channel coefficient evolution. The evolution of the propagation path gain can be modeled via the first-order Gauss-Markov process as

$$H_v^{\tau+1} = \rho H_v^{\tau} + \sqrt{1 - \rho^2} v^{\tau+1}, \tag{31}$$

where $\rho \in [0, 1]$ is the temporal correlation coefficient and $v^{\tau+1} \sim C\mathcal{N}(0, 1)$ denotes the innovation process independent of H_v^{τ} . ii) Support/beam variation. The slow variation of the support in \mathbf{H}_v^{τ} is modeled by assuming that the support can only switch to its neighbors and introducing a support transition probability defined as

$$p \triangleq \Pr(L(H_v^{\tau+1}) \in \mathcal{L}^{\tau+1} | L(H_v^{\tau}) \in \mathcal{L}^{\tau}) \in [0, 1], \quad (32)$$

where $\mathcal{L}^{\tau} = \{(i, j)\}$ returns the original location (*i*th row and *j*th column of \mathbf{H}_{v}^{τ}) of the support at τ th channel block and $\mathcal{L}^{\tau+1} = \{(i-1, j-1), (i-1, j), (i-1, j+1), (i, j-1), (i, j+1), (i+1, j-1), (i+1, j), (i+1, j+1)\}$ is the set composed of all possible support transition locations at $(\tau + 1)$ th channel block.

Moreover, we set $N_t = N_r = |\mathcal{I}_F| = |\mathcal{I}_W|$, $I_{BCD} = 10$, $I_{rand} = 100$, and $T_{FE} = 8$ throughout the simulations. We evaluate the performance from the following four different perspectives. In particular, we focus on the initial beam alignment ($\tau = 1$) from Section V-A to Section V-C, while the beam tracking ($\tau > 1$) is considered in Section V-D.

42 A. COMPUTATIONAL COST

43 We first compare the computational cost of the two proposed 44 KM learning methods (including the KM with DMO in 45 Algorithm 2 and Dual+GD in Algorithm 3) with the existing 46 KM learning with SDRwR in [20, Algorithm 1]. The compu-47 tational cost is evaluated by averaging the total running time in seconds (measured by "cputime" in MATLAB running on 48 49 a PC with an Intel Xeon E5-1650 v3 3.50 GHz CPU and 32 50 GB RAM) over 100 Monte Carlo simulations. Note that the 51 sampling rate for the initial beam alignment, defined as the 52 ratio of the number of beam pairs in the subsampled training 53 set at $\tau = 1$ to the total number of the beam pairs in the 54 original codebook, is given by $SR = |\mathcal{K}|/|\mathcal{S}|$ (the superscript 55 ' $\tau = 1$ ' of \mathcal{K} is omitted for brevity).

Table 1 lists the time consumption (in seconds) of the over-all KM learning with three different algorithms for varying

FIGURE 4. The training and prediction performance comparison when $N_t=N_r=16,\,D=8,\,\delta=12$ dB, and SR =25%.

D, N_t , N_r , and SR. It can be seen that the proposed methods can achieve a reduced computational cost up to three orders of magnitude, compared with the existing KM learning with SDRwR. Especially, the KM with DMO shows benefits when D is small, but its computational complexity blows up as Dincreases since the DMO is based on the branch-and-bound, which is very close to the exhaustive search in the worse case. Meanwhile, the KM with Dual+GD exhibits better performance when D is large.

B. TRAINING AND PREDICTION PERFORMANCE

The training and prediction performance of the proposed methods is assessed by adopting the normalized root-meansquare-error (NRMSE) as a metric. The NRMSEs for the training and prediction phases, respectively, are given by

$$\begin{split} \text{NRMSE}_{\text{train}} &\triangleq \Big(\frac{1}{|\mathcal{K}|} \sum_{(t,r) \in \mathcal{K}} |p_{t,r} - \boldsymbol{\theta}_u^{\star T} \boldsymbol{\psi}_r^{\star}|^2 \Big)^{\frac{1}{2}}, \\ \text{NRMSE}_{\text{test}} &\triangleq \Big(\frac{1}{|\mathcal{T}|} \sum_{(t,r) \in \mathcal{T}} |p_{t,r} - \boldsymbol{\theta}_u^{\star T} \boldsymbol{\psi}_r^{\star}|^2 \Big)^{\frac{1}{2}}. \end{split}$$

Fig. 4 displays the train and test NRMSEs of the proposed KM learning methods and the existing KM learning with

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

FIGURE 5. The effective spectral efficiency comparison for the initial beam alignment ($\tau = 1$) when $N_t = N_r = 16$, D = 8, and $\delta = 12$ dB.

SDRwR, as a function of SNR, for $N_t = N_r = 16$, D = 8, $\delta = 16$ dB, and SR = 25%. It can be observed that the proposed methods can achieve similar good training and prediction performance as the existing KM learning with SNRwR by using only a quarter of samples, while reducing the computational cost substantially as shown in Table 1.

C. SPECTRAL EFFICIENCY

Next, we evaluate the performance of the proposed approaches regarding the predictive beam alignment for the initial channel block ($\tau = 1$). Several conventional beam alignment techniques including the exhaustive beam search, randomly selected beams, and hierarchical codebook, are considered as the baselines. For a fair comparison, we adopt the effective spectral efficiency as a metric, which is defined as

$$R = \frac{T - K}{T} \log_2(1 + \eta),$$

where the pre-log factor (T - K)/T represents the portion 40 of channel coherent resources contributed to data commu-41 42 nication. In particular, the sampling rate for the exhaustive search and randomly selected beams is 100% and 25%, 43 44 respectively. By taking account of both the training overhead 45 $(2\log_2 N_t + 2\log_2 N_r)$ and feedback overhead $(\log_2 N_t)$, the 46 sampling rate for the hierarchical codebook is 8% [6]. We set 47 the sampling rate for the KM learning-based methods to be SR = 25%. 48

49 In Fig. 5, we plot the effective spectral efficiency versus 50 SNR by considering the initial beam alignment for N_t = 51 $N_r = 16, D = 8, \delta = 12$ dB, and assuming that the channel 52 block length is T = 512 channel uses. It can be found that 53 our proposed methods outperform the exhaustive search and 54 randomly selected beams throughout the entire SNR region. 55 In addition, despite a slightly better performance shown by 56 the hierarchical codebook when the SNR is high, a superior 57 performance in the low SNR regime of the proposed methods

FIGURE 6. The interpretable beam tracking performance comparison when $N_t = N_r = 16$, D = 8, $\delta = 12$ dB, p = 0.05, $\rho = 0.95$, and $\alpha = 0.75$.

can be observed, which is more appreciated in mmWave communication systems.

D. LOW-LATENCY BEAM TRACKING VIA INTERPRETABILITY

Finally, the interpretable beam tracking performance is evaluated by considering multiple channel blocks ($\tau = 1, \ldots, 5$). The temporal correlation coefficient parameter ρ in (31) and the support transition probability p in (32) are set to 0.95 and 0.05, respectively. In Fig. 6, we depict the effective spectral efficiency with a variation of the channel block index for $N_t = N_r = 16, D = 8, \delta = 12$ dB, and $\alpha = 0.75$. For the initial beam alignment when $\tau = 1$, we assume SR = 50% for the proposed KM learning-based methods. It can be seen that, by exploiting the interpretability of KM, the proposed methods can be well adapted to the channel temporal correlation and beam variation, and subsequently exhibit significantly better performance than the baseline schemes in term of beam tracking. Moreover, the KM with Dual+GD shows a slightly better performance than the KM with DMO when the SNR is high, while the two proposed KM learning methods perform indistinguishably in the low SNR regime.

We further investigate the impact of different parameter settings on the beam tracking performance of the proposed KM learning with Dual+GD when $N_t = N_r = 16$, p = 0.05, $\rho = 0.95$, and SNR= 10 dB. It is observed, from Fig. 7, that the effective spectral efficiency improves with the increase of SR. This is attributed to the fact that the accuracy of the initial beam alignment plays an essential role in succeeding beam tracking. Besides, a performance improvement can be attained as D and δ grow. By increasing α in (15), the spectral efficiency increases a lot at the beginning, but degrades as the channel block index grows. This phenomenon can be interpreted as: the performance improvement is due to the significantly reduced beam tracking overhead as α increases,

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

41

42

43

59

60

Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking: Predictability and Interpretability

FIGURE 7. The effect of parameter settings on beam tracking performance of KM learning with Dual+GD when $N_t=N_r=16,\,p=0.05,\,\rho=0.95,$ and SNR= 10 dB.

while a high α excludes potential beam pairs which further leads to the performance degradation in subsequent channel blocks.

VI. CONCLUSION

In this paper, we investigated a joint scheme of predic-28 tive beam alignment and interpretable beam tracking for 29 mmWave communication systems. The distinctive and pow-30 erful interpretability of KM has been exploited to achieve 31 an agile beam tracking with low latency. Moreover, two en-32 hanced KM learning algorithms were proposed, by leverag-33 ing DMO and dual optimization, to reduce the computational 34 cost of the previous KM learning with SDRwR by up to three 35 orders of magnitude. Numerical results demonstrated the 36 superiority of the proposed KM learning methods compared 37 to other benchmarks in terms of computational complexity, 38 training/prediction performance, and spectral efficiency for 39 beam alignment/tracking. 40

APPENDIX A PROOF OF THEOREM 1

The two random variables X_{t,r_1} and X_{t,r_2} share the 44 same alphabet $\mathcal{X} = \{0,1\}$. By (1), $X_{t,r_1}^{-1}(\{\mathcal{X}(x)\})$ and 45 $X_{t,r_2}^{-1}({\mathcal{X}(x)})$ represent the inverse images of the events 46 $X_{t,r_1} = \mathcal{X}(x)$ and $X_{t,r_2} = \mathcal{X}(x), x \in \{1,2\}$, respec-47 tively. According to (2), we have $\psi_{r,d} = 1$ only if $\omega_d \in$ 48 $X_{t,r}^{-1}(\{\mathcal{X}(2)\}), r \in \{r_1, r_2\}, d \in \{1, \dots, D\}.$ Therefore, we 49 obtain that $\operatorname{supp}(\psi_{r_2}) \subseteq \operatorname{supp}(\psi_{r_1}) \Rightarrow X_{t,r_2}^{-1}(\{\mathcal{X}(2)\}) \subseteq X_{t,r_1}^{-1}(\{\mathcal{X}(2)\})$, and consequently $X_{t,r_1} = 1 \Rightarrow X_{t,r_2} = 1$ 50 51 $(\gamma_{t,r_1} \ge \delta \Rightarrow \gamma_{t,r_2} \ge \delta).$ 52

52 $(\gamma_{t,r_{1}} \subseteq \gamma_{t,r_{2}} \subseteq \gamma_{t})$ 53 Moreover, the fact that $\Omega = X_{t,r}^{-1}(\{\mathcal{X}(1)\}) \cup X_{t,r}^{-1}(\{\mathcal{X}(2)\})$ 54 and $X_{t,r}^{-1}(\{\mathcal{X}(1)\}) \cap X_{t,r}^{-1}(\{\mathcal{X}(2)\}) = \phi, r \in \{r_{1}, r_{2}\},$ 55 results in $\operatorname{supp}(\psi_{r_{2}}) \subseteq \operatorname{supp}(\psi_{r_{1}}) \Rightarrow X_{t,r_{1}}^{-1}(\{\mathcal{X}(1)\}) \subseteq$ 56 $X_{t,r_{2}}^{-1}(\{\mathcal{X}(1)\}),$ which further leads to $X_{t,r_{2}} = 0 \Rightarrow X_{t,r_{1}} =$ 57 $0 (\gamma_{t,r_{2}} < \delta \Rightarrow \gamma_{t,r_{1}} < \delta).$ 58

APPENDIX B PROOF OF LEMMA 1

Given the definition of f^+ and f^- in (18), the objective function f in (18) is attained by transforming the minimization to the maximization and discarding the constant ρ_r in (10). Also, f^+ and f^- are both increasing functions with respect to $\psi_r \in [0, 1]$ because $\mathbf{v}_r > \mathbf{0}$ and \mathbf{S}_r is a positive semidefinite matrix.

The binary constraints $\psi_{r,d} \in \{0,1\}, d = 1, ..., D$, can be equivalently rewritten as

$$\sum_{d=1}^{D} \psi_{r,d}(1-\psi_{r,d}) \le 0, \ \psi_{r,d} \in [0,1], \ \forall d \in \{1,\ldots,D\},$$

which is exactly $g(\psi_r) - h(\psi_r) \leq 0, \ \psi_r \in [0, 1]$ in (18), where g and h are increasing on \mathbb{R}^D_+ .

APPENDIX C PROOF OF LEMMA 2

The Lagrangian of the primal problem in (27) is given by

$$\mathcal{L}(\mathbf{X}, \mathbf{u}, \mathbf{D}) = \langle \mathbf{X}, \mathbf{A} \rangle + \frac{1}{2\gamma} \| \mathbf{X} \|_{F}^{2} - \langle \mathbf{X}, \mathbf{D} \rangle + \sum_{i=1}^{D+1} u_{i}(\langle \mathbf{X}, \mathbf{B}_{i} \rangle - 1), (33)$$

where $\mathbf{u} \in \mathbb{R}^{D+1}$ and $\mathbf{D} \succeq \mathbf{0}$ are Lagrangian multipliers. Since the problems in (27) and (33) are feasible, strong duality holds and $\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}^*, \mathbf{u}^*, \mathbf{D}^*) = 0$, where $\mathbf{X}^*, \mathbf{u}^*$, and \mathbf{D}^* are optimal solutions to (33). Then we have

$$\mathbf{X}^{\star} = \gamma \Big(\mathbf{D}^{\star} - \mathbf{A} - \sum_{i=1}^{D+1} u_i^{\star} \mathbf{B}_i \Big) = \gamma (\mathbf{D}^{\star} + \mathbf{C}(\mathbf{u}^{\star})), \quad (34)$$

where $\mathbf{C}(\mathbf{u}^{\star}) = -\mathbf{A} - \sum_{i=1}^{D+1} u_i^{\star} \mathbf{B}_i$. Substituting \mathbf{X}^{\star} in (33), we obtain the dual formulation

$$\max_{\mathbf{u}\in\mathbb{R}^{D+1},\mathbf{D\succeq0}} -\mathbf{u}^T\mathbf{1} - \frac{\gamma}{2}\|\mathbf{D} + \mathbf{C}(\mathbf{u})\|_F^2.$$
(35)

For a given u, the dual problem in (35) is equivalent to

$$\min_{\mathbf{D} \succeq \mathbf{0}} \quad \frac{\gamma}{2} \|\mathbf{D} + \mathbf{C}(\mathbf{u})\|_F^2.$$
(36)

The solution to (36) is $\mathbf{D}^* = \Pi_+(-\mathbf{C}(\mathbf{u}))$. Due to the fact that $\mathbf{C}(\mathbf{u}) = \Pi_+(\mathbf{C}(\mathbf{u})) - \Pi_+(-\mathbf{C}(\mathbf{u}))$, it follows $\mathbf{D}^* + \mathbf{C}(\mathbf{u}) = \Pi_+(\mathbf{C}(\mathbf{u}))$. Thus the dual formulation in (35) can be simplified to (28).

We take the first-order derivative of $d_{\gamma}(\mathbf{u})$ in (28) with respect to \mathbf{u} and obtain

$$\begin{aligned} \nabla_{\mathbf{u}} d_{\gamma}(\mathbf{u}) &= -\mathbf{1} - \gamma \nabla_{\mathbf{u}} \left(\frac{1}{2} \| \Pi_{+}(\mathbf{C}(\mathbf{u})) \|_{F}^{2} \right) \\ &= -\mathbf{1} + \gamma \Phi[\Pi_{+}(\mathbf{C}(\mathbf{u}))], \end{aligned}$$

where the last equality is due to $\nabla_{\mathbf{U}}(\frac{1}{2} \| \Pi_{+}(\mathbf{U}) \|_{F}^{2}) = \nabla_{\mathbf{U}}(\frac{1}{2} \sum_{i=1}^{N} (\max(0, \lambda_{\mathbf{U}, i}))^{2}) = \Pi_{+}(\mathbf{U})$, where $\lambda_{\mathbf{U}, i}$ is the *i*th eigenvalue of $\mathbf{U} \in \mathbb{R}^{N \times N}$.

REFERENCES

 S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, "Millimeter wave beamforming for wireless backhaul and access in small cell networks," *IEEE Transactions on Communications*, vol. 61, no. 10, pp. 4391–4403, 2013.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

53

54

55

56

57

58

59

60

- [2] R. W. Heath, N. GonzÃalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems," *IEEE Journal of Selected Topics in Signal Processing*, vol. 10, no. 3, pp. 436–453, 2016.
- [3] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," *IEEE Communications Magazine*, vol. 52, no. 2, pp. 106–113, 2014.
- [4] J. Zhang, X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," *IEEE Wireless Communications*, vol. 24, no. 2, pp. 106–112, 2017.
- [5] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular systems," *IEEE Journal* of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014.
- [6] Z. Xiao, T. He, P. Xia, and X.-G. Xia, "Hierarchical codebook design for beamforming training in millimeter-wave communication," *IEEE Transactions on Wireless Communications*, vol. 15, no. 5, pp. 3380–3392, 2016.
- [7] Y. M. Tsang, A. S. Y. Poon, and S. Addepalli, "Coding the beams: Improving beamforming training in mmWave communication system," in 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 2011, pp. 1–6.
- [8] Y. Shabara, C. E. Koksal, and E. Ekici, "Beam discovery using linear block codes for millimeter wave communication networks," *IEEE/ACM Transactions on Networking*, vol. 27, no. 4, pp. 1446–1459, 2019.
- [9] M. Kokshoorn, H. Chen, P. Wang, Y. Li, and B. Vucetic, "Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation," *IEEE Transactions on Signal Processing*, vol. 65, no. 3, pp. 601–616, 2017.
- [10] H. Hassanieh, O. Abari, M. Rodreguez, M. Abdelghany, D. Katabi, and P. Indyk, "Agile millimeter wave networks with provable guarantees," 2017.
- [11] A. J. Duly, T. Kim, D. J. Love, and J. V. Krogmeier, "Closed-loop beam alignment for massive mimo channel estimation," *IEEE Communications Letters*, vol. 18, no. 8, pp. 1439–1442, 2014.
- [12] T. Kim and D. J. Love, "Virtual aoa and aod estimation for sparse millimeter wave MIMO channels," in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 146–150.
- [13] Q. Duan, T. Kim, H. Huang, K. Liu, and G. Wang, "AoD and AoA tracking with directional sounding beam design for millimeter wave MIMO systems," in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 2271– 2276.
- [14] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, "Subspace estimation and decomposition for large millimeter-wave mimo systems," *IEEE Journal of Selected Topics in Signal Processing*, vol. 10, no. 3, pp. 528– 542, 2016.
- [15] S. Sun and T. S. Rappaport, "Millimeter wave MIMO channel estimation based on adaptive compressed sensing," in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017, pp. 47– 53.
- [16] W. Zhang, T. Kim, D. J. Love, and E. Perrins, "Leveraging the restricted isometry property: Improved low-rank subspace decomposition for hybrid millimeter-wave systems," *IEEE Transactions on Communications*, vol. 66, no. 11, pp. 5814–5827, 2018.
- [17] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K. Karagiannidis, E. BjÄűrnson, K. Yang, C.-L. I, and A. Ghosh, "Millimeter wave communications for future mobile networks," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 9, pp. 1909–1935, 2017.
- [18] L. You, X. Chen, X. Song, F. Jiang, W. Wang, X. Gao, and G. Fettweis, "Network massive mimo transmission over millimeter-wave and terahertz bands: Mobility enhancement and blockage mitigation," *IEEE Journal on Selected Areas in Communications*, vol. 38, no. 12, pp. 2946–2960, 2020.
- 49 Selected Areas in Communications, vol. 38, no. 12, pp. 2946–2960, 2020.
 50 [19] M. Hussain, M. Scalabrin, M. Rossi, and N. Michelusi, "Mobility and blockage-aware communications in millimeter-wave vehicular networks," *IEEE Transactions on Vehicular Technology*, vol. 69, no. 11, pp. 13 072–13 086, 2020.

 - [21] Q. Duan, T. Kim, H. Ghauch, and E. W. M. Wong, "Enhanced beam alignment for millimeter wave MIMO systems: A Kolmogorov model," in 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

- [22] M. Jaggi, "Revisiting Frank-Wolfe: Projection-free sparse convex optimization," in *Proceedings of the 30th International Conference on Machine Learning*, vol. 28, no. 1, 2013, pp. 427–435.
- [23] M. Kisialiou and Z. Luo, "Probabilistic analysis of semidefinite relaxation for binary quadratic minimization," *SIAM Journal on Optimization*, vol. 20, no. 4, pp. 1906–1922, 2010.
- [24] H. Ghauch, M. Skoglund, H. Shokri-Ghadikolaei, C. Fischione, and A. H. Sayed, "Learning Kolmogorov models for binary random variables," in *ICML Workshop on Non-convex Optimization*, 2018.
- [25] H. Tuy, M. Minoux, and N. T. Hoai-Phuong, "Discrete monotonic optimization with application to a discrete location problem," *SIAM Journal* on *Optimization*, vol. 17, no. 1, pp. 78–97, 2006.
- [26] T. Kim, D. J. Love, M. Skoglund, and Z. Jin, "An approach to sensor network throughput enhancement by PHY-aided MAC," *IEEE Transactions* on Wireless Communications, vol. 14, no. 2, pp. 670–684, 2015.
- [27] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.
- [28] P. Wang, C. Shen, A. v. d. Hengel, and P. H. S. Torr, "Large-scale binary quadratic optimization using semidefinite relaxation and applications," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 39, no. 3, pp. 470–485, 2017.
- [29] D. P. Bertsekas, *Nonlinear Programming*, 3rd ed. Athena Scientific, 2016.
- [30] L. Armijo, "Minimization of functions having lipschitz continuous first partial derivatives." *Pacific J. Math.*, vol. 16, no. 1, pp. 1–3, 1966.
 [31] M. Y. G. Armijo, "Antipartial derivatives." *Pacific J. Math.*, vol. 16, no. 1, pp. 1–3, 1966.
- [31] M. X. Goemans and D. P. Williamson, "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming," J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov 1995.
- [32] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, "Semidefinite relaxation of quadratic optimization problems," *IEEE Signal Processing Magazine*, vol. 27, no. 3, pp. 20–34, 2010.
- [33] M. Kisialiou and Zhi-Quan Luo, "Performance analysis of quasimaximum-likelihood detector based on semi-definite programming," in 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), vol. 3, 2005, pp. 433–436.
- [34] A. Sayeed, "Deconstructing multiantenna fading channels," *IEEE Trans*actions on Signal Processing, vol. 50, no. 10, pp. 2563–2579, 2002.

3

4

5

6

7

8

9

10

11

21

22

23

24

25

26

27

28

29

30

QIYOU DUAN received the B.Eng. (Hons.) degree in electrical engineering and the B.Sc. degree in finance from Wuhan University, Wuhan, P.R.C., in 2014. He is currently working towards the Ph.D. degree with the Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong. From January to July 2018, he was a Visiting Scholar with the Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, USA. His research

interests include signal processing, optimization in wireless communications, channel estimation and tracking in millimeter-wave MIMO systems, and machine learning-based methods.

TAEJOON KIM (Senior Member, IEEE) received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, IN, in 2011. From 2011 to 2012, he was with the Nokia Research Center, Berkeley, CA as a Senior Researcher. Before joining the University of Kansas as an Assistant Professor, he was a Postdoctoral Researcher with KTH, Stockholm, Sweden, and an Assistant Professor with the City University of Hong Kong from 2013 to 2017. His

research interests include the design and analysis of communication systems and statistical signal processing. He was the recipient of The President's Award of City University of Hong Kong in 2017, the IEEE Communications Society Stephen O. Rice Prize in 2016, IEEE PIMRC Best Paper Award in 2012, and Nokia Research Center Kudos Award in 2012. Since 2016, he has been an Associate Editor for the IEEE Transactions on Communications and previously, as a Guest Editor of IEEE Transactions on Industrial Informatics.

HADI GHAUCH (Member, IEEE) received the M.Sc. degree from Carnegie Mellon University, Pittsburgh, PA, USA, in 2011, and the Ph.D. degree in electrical engineering from the KTH Royal Institute of Technology, Stockholm, Sweden, in 2017. Since 2018, he has been an Assistant Professor with the Department of Digital Communications, Telecom-Paris Tech, and with the Institut Polytechnique de Paris. His research interests include optimization for large-scale learning,

optimization for millimeter-wave communication, and the distributed optimization of wireless networks.

...

Author Biographies

Qiyou Duan received the B.Eng. (Hons.) degree in electrical engineering and the B.Sc. degree in finance from Wuhan University, Wuhan, P.R.C., in 2014. He is currently working towards the Ph.D. degree with the Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong. From January to July 2018, he was a Visiting Scholar with the Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, USA. His research interests include signal processing, optimization in wireless communications, channel estimation and tracking in millimeter-wave MIMO systems, and machine learning-based methods.

Taejoon Kim (Senior Member, IEEE) received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, IN, in 2011. From 2011 to 2012, he was with the Nokia Research Center, Berkeley, CA as a Senior Researcher. Before joining the University of Kansas as an Assistant Professor, he was a Postdoctoral Researcher with KTH, Stockholm, Sweden, and an Assistant Professor with the City University of Hong Kong from 2013 to 2017. His research interests include the design and analysis of communication systems and statistical signal processing. He was the recipient of The President's Award of City University of Hong Kong in 2017, the IEEE

Communications Society Stephen O. Rice Prize in 2016, IEEE PIMRC Best Paper Award in 2012, and Nokia Research Center Kudos Award in 2012. Since 2016, he has been an Associate Editor for the IEEE Transactions on Communications and previously, as a Guest Editor of IEEE Transactions on Industrial Informatics.

Hadi Ghauch (Member, IEEE) received the M.Sc. degree from Carnegie Mellon University, Pittsburgh, PA, USA, in 2011, and the Ph.D. degree in electrical engineering from the KTH Royal Institute of Technology, Stockholm, Sweden, in 2017. Since 2018, he has been an Assistant Professor with the Department of Digital Communications, Telecom-Paris Tech, and with the Institut Polytechnique de Paris. His research interests include optimization for large-scale learning, optimization for millimeter-wave communication, and the distributed optimization of wireless networks.