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Introduction

Machine learning and artificial intelligence tools have permeated a large number of areas [START_REF] Marr | The top 10 AI and machine learning use cases everyone should know about[END_REF]. These tools are based on machine learning models, which consist of learning an input-output mapping for a given dataset. Despite the plethora of models (e.g., matrix factorization [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], SVD-based models [START_REF] Koren | Factorization meets the neighborhood: A multifaceted collaborative filtering model[END_REF], neural networks [START_REF] Lecun | Deep learning[END_REF], and models inspired from physics (Stark, 2016b)), they lack interpretability: not offering insight about the data, nor the underlying process.

The work follows recent attempts at interpretable machine learning [START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF], where the lack of interpretablity may have serious consequences in missioncritical systems, ethics, and validation of computer-aided diagnosis [START_REF] Doshi-Velez | Towards a rigorous science of interpretable machine learning[END_REF]. While there is no consensus around the definition of interpretability, causality [START_REF] Lipton | The mythos of model interpretability[END_REF]) is a vital component: it refers to associations within the data and information about the underlying data-generating process. We adopt the latter as our 'definition' of interpretable model, as one where data-to-data relations are accurately discovered.

We propose learning a so-called Kolmogorov Model (KM) associated with a set of binary Random Variables (RVs). In addition to prediction, the interpretability of the model (as defined above) enables learning causal relations [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF]: We derive a sufficient conditions under which the realization of one RV's outcome (deterministically) implies the outcome of the other. In the context of recommendation systems, causal relations identify groups of items, for which a user liking one item implies that he/she likes all other items in the group. In cancer detection, the same rules identify groups of samples, for which the presence of DNA methylation in the group, implies its presence in all other samples. Additionally, these rules may provide insight into the physical mechanisms underlying user preferences, and DNA methylation.

We formulate the resulting problem as a coupled combinatorial problem, decompose it into two subproblems using the Block-Coordinate Descent (BCD) method, and we obtain provably optimal solutions for both. For the first one, we exploit the structure of linear programs on the unit simplex, to propose a low-complexity (yet optimal) Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF]. To bypass the inherent complexity of the second subproblem (combinatorial and NP-hard), we propose a semidefinite relaxation, and show its quasi-optimality in recovering the optimal solution of the combinatorial subproblem. Finally, we show the convergence of our algorithm to a stationary point of the original problem. We refer the reader to [START_REF] Authors | Learning elementary representations of random variables[END_REF] for all the derivations/discussions.

System Model

Notation: We use bold upper-case letters to denote matrices, bold lower-case letters to denote vectors, and calligraphic letters to denote sets. For a given matrix A A A, [A] i,j denotes element (i, j), tr(A) denotes its trace, A A A F its Frobenius norm, and A T its transpose. For a vector a, [a] i denotes element i, [a] i:j elements i to j, and supp(a) its support. The inequality x ≤ y holds element-wise. I n denotes the n×n identity matrix, 1 1 1 and 0 0 0 the all-one and all-zero vectors (of appropriate dimension). e n is the nth elementary basis vector, P = {p ∈ R D + | 1 1 1 T p = 1} the unit probability simplex, and {n} = {1, • • • , n}.

Problem Formulation

Consider a double-indexed set of binary Random Variables (RVs), X u,i ∈ A = {1, 2}, with indexes from D = {(u, i) | u ∈ U, i ∈ I}. The RVs are defined on a sample space Ω, consisting of elementary events Ω = {ω d | 1 ≤ d ≤ D}. We denote by P[X u,i = z], z ∈ A, the probability that RV X u,i takes the value z ∈ A. Using that A = {1, 2}, we write

P[X u,i = 1] = θ T u ψ i,1 and P[X u,i = 2] = θ T u ψ i,2 , (1 
) where ψ i,1 + ψ i,2 = 1 1 1. θ u is a Probability Mass Function (PMF) vector on the unit simplex, P, and {ψ i,1 , ψ i,2 } ∈ B D are binary indicator vectors representing the support of its probability measure. The model follows from established results in classical probability [START_REF] Gray | Probability, Random Processes, and Ergodic Properties[END_REF].Since X u,i is binary, it is fully characterized by considering one outcome,

P[X u,i = 1] = θ T u ψ i , (2) 
(1) and ( 2) are equivalent, and will be used interchangeably (dropping the z subscript of ψ i without any loss in generality). Thus, each RV X u,i is associated with (determined by) a PMF vector θ u , u ∈ U, and an indicator vector ψ i , i ∈ I.

Notice that the model in (2) can approximate with arbitrarily small accuracy the measure corresponding to P[], given a large enough D.

Problem 1 (Problem Statement) Let p u,i denote the empirical values of P[X u,i = 1]. We assume that {p u,i } are known for elements of a training set K ⊆ D, where

K = {(u, i) | (u, i) ∈ U × I}.
1 Given samples coming from the model in (2), we wish to deduce the parameters of underlying probability distribution: find parameters of the KM, i.e., {ψ i , θ u } that best describe {p u,i | (u, i) ∈ K}.

The resulting problem is a fully parametric statistical inference task. For tractability, we address it using the minimum mean-squared error as a point estimator, which in turn results in minimizing

(u,i)∈K (P[X u,i = 1] -p u,i ) 2 = (u,i)∈K (θ T u ψ i -p u,i ) 2 .
Once computed, the optimal KM parameters can be used for prediction on a different set, and extracting statistical relations (among the RVs in K). The resulting optimization problem is

(Q)      min {ψ i },{θu} (u,i)∈K θ T u ψ i -p u,i 2 E s.t. θ u ∈ P , ψ i ∈ B D , ∀(u, i) ∈ K . (3) 
Our solution to this non-convex combinatorial problem is detailed in Section 3.

Toy Example: Recommendation Systems

In this context, X u,i models the preference of user u for item i, (u, i) ∈ K. Thus, P[X u,i = 1] (resp. P[X u,i = 2]) models the probability that user u likes (resp. dislikes) item i. Moreover, θ u determines the profile/taste of user u, ψ i is related to item i (depending on genre, price, etc.), and the elementary events denote movie genres (e.g., ω 1 = "Action", ω 2 = "SciFi", etc.).2 Then, the corresponding empirical probability (i.e., training set) is obtained as p u,i [R] u,i /R max where [R] u,i ∈ N denotes the rating that user u has provided for item i, and R max the maximum rating [START_REF] Stark | Expressive recommender systems through normalized nonnegative models[END_REF]. Consider a 10-star "recommendation system", having 2 users and 2 items. We then find the D-dimensional (D = 3) KM factorization to obtain , {ψ i } 2 i=1 and {θ u } 2 u=1 . 3 To showcase the model's intuition, note that p 1,1 , the probability that user 1 likes movie 1, is represented as ψ T 1 θ 1 . It is thus expressed as convex/stochastic mixture of movie genres, since elementary events are movie genres in this scenario. More generally, a KM represents a set of observed outcomes for RVs, as mixtures of elementary events. After finding the empirical probabilities from the rated entries (as above), (Q) is solved to learn {ψ i } 2 i=1 and {θ u } 2 u=1 , and an example result is shown below:

0.3 0.5 0.1 0.2 {pu,i} = θ T 1 0.2 0.3 0.5 θ T 2 0.1 0.1 0.8     0 1 }Action 1 1 }SciFi 0 ψ 1 0 ψ 2 }Drama    

Related Work

Our proposal to model binary RVs as elementary events on a Kolmogorov space (Section 2.1) is based on established results from classical probability theory. To our best knowledge, this specific formulation is novel. Because this model is rooted in probability theory, (2) defines the outcome of a RV in the strict Kolmogorov sense (see definition in Section 2.1), and the resulting causal relations (Section 4) also hold analytically. This is the reason behind the versatility of the approach. We will also show that the combinatorial aspects of (Q) are not a limitation.

The inner product in ( 2) is reminiscent of factorization methods such as, Matrix Factorization (MF) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Algorithms for nonnegative matrix factorization[END_REF], SVD [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF], and physics-inspired techniques (e.g., Nonnegative Models (NNMs) (Stark, 2016a)).

However, the inner product in these methods do not model RVs, in an analytical sense (Section 2.1). Our method also generalizes K-means and some of its variants. Detailed discussions of the relation between our proposed method and these prior works is in Appendix A.1.

Proposed Algorithm

We use the well-known Block-Coordinate Descent (BCD) framework to handle coupling in the cost function of (Q) in (3). The method essentially splits (Q) into two subproblems. We derive different methods for each subproblem, with provable accuracy, and show convergence of the algorithm. Given {ψ

(n) i } at iteration n, we first refine the current PMF estimate θ u , as (Q 1 ) : θ (n+1) u ∈ argmin θu∈P f (θ u ) θ T u Q (n) u θ u -2θ T u r (n) u ,
where

Q (n) u i∈IK ψ (n) i ψ (n) T i , r (n) u i∈IK ψ (n) i p u,i . (e.1)
We then refine the current indicator vector estimate, ψ i as

(Q 2 ) : {ψ (n+1) i } ∈ argmin ψ i ∈B D g(ψ i ) ψ T i S (n+1) i ψ i -2ψ T i v (n+1) i where S (n+1) i u∈UK θ (n+1) u θ (n+1) T u , v (n+1) i u∈UK θ (n+1) u p u,i (e.2)
Moreover, U K and I K are defined as

K = {(u, i) | u ∈ U K ⊂ U , i ∈ I K ⊂ I}.
Next we describe the solution approach to each problem.

Refine PMF Estimate

(Q 1 ) is a convex quadratic problem that can be solved by a variety of tools. However, we exploit its structure to greatly reduce the computational complexity: The Frank-Wolfe (FW) algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF] solves (Q 1 ) as a succession of Linear Programs (LPs) over the unit simplex. While LP solvers generally have similar complexity as quadratic program solvers, solving an LP reduces to searching for the minimum index, when the LP is over the unit simplex. We formalize the algorithm, focusing on the original FW (detailed in [START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF][Algorithm 1]).

While θ u should have two superscripts, n for the BCD iteration and k for the FW iteration, we only use θ (k) u . We first determine the descent direction:

d (k) u ∈ argmin s ∇f (θ (k) u ) T s s.t. s ∈ P . (4)
The constraint s ∈ P greatly simplifies the above LP, i.e.,

d (k) u = e j , j ∈ argmin 1≤j≤D [∇f (θ (k) u )] j .
(5) The solution follows from LPs over the unit probability simplex (Proposition 2). Thus, finding the descent direction reduces to searching over the D-dimensional vector ∇f (θ (k) u ) (done in O(D)). Then, θ (k) u is updated using a procedure [START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF]. Table 1 summarizes the FW procedure, and Proposition 3 shows its convergence,

[θ u ] = FWA ( Q u , r u , ) for k = 1, 2, ..., I F W do d (k) u = e j , where j = argmin 1≤j≤D [∇f (θ (k) u )] j θ (k+1) u = (1 -α (k) u )θ (k) u + α (k) u d (k) u Stop if θ (k+1) u -θ (k) u ≤ end for end procedure simple step size, α (k) u = k/(k + 1)

Refine Indicator Estimate

The NP-hard nature of (Q 2 ) implies that relaxations are the only choice for a scalable solution. We thus propose a solution based on Semi-Definite Relaxation (SDR) and randomization, and establish its quasi-optimality for (Q 2 ). We use the results of [START_REF] Ma | Quasi-maximumlikelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA[END_REF][Sec IV-C]) and a series of reformulations to rewrite (Q 2 ) in its equivalent form [START_REF] Authors | Learning elementary representations of random variables[END_REF]:

X i ∈    argmin Xi tr( Si X i ) s.t. X i 0 0 0, [X i ] k,k = 1, ∀k , rank(X i ) = 1
where

X i = x i x T i , Si = (1/4)S i -ti /2 - tT i /2 0 , x i = z i w i , z i = 2ψ i -1 1 1, w i ∈ {-1, +1} is an auxiliary variable, and ti (v i -(1/2)S i 1 1 1).
The above problem is then relaxed into a convex SDP,

X (SDR) i ∈    argmin Xi tr( Si X i ) . s.t. X i 0 0 0, [X i ] k,k = 1, ∀k (6) 
X (SDR) i may be solved using generic SDP solvers. Then, a randomization procedure [START_REF] Ma | Quasi-maximumlikelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA[END_REF] extracts an approximate (binary) solution ψi of (Q 2 ); see Table 2. This evidently raises the issue of the suboptimality gap for SDR. We show in Proposition 4 that SDR is optimal (asymptotically in D) in recovering the binary solution of (Q 2 ). Note that the performance bound in Proposition 4 compares the quality of the approximate binary solution offered by SDR, against the optimal solution of (Q 2 ) (rather than just comparing the resulting cost functions). procedure 

[ ψi ] = SDR-WR ( S i , t i , M rnd ) // Repeat to approximate each ψ i , ∀i ∈ I K Solve (6) to find X (SDR) i Factorize as X (SDR) i = L T i L i for m = 1, 2, ..., M rnd do Generate zero-mean i.i.d Gaussian vector u (m) i Compute û(m) i = sign[ L T i u (m) i ] end for Find m = argmin 1≤m≤D+1 û(m) T i Si û(m) i Compute ẑi = [u (m ) i ] 1:D [u (m ) i ] D+1 Approximate ψ i , as ψi = (ẑ i + 1 1 1)/2 end procedure

Algorithm Description

The BCD-based algorithm alternates between refining the indicator and PMF vectors (using the methods of Sec. 3.2 and Sec. 3.1; see Algorithm 1. Its convergence to a stationary point of (Q) is shown Lemma 1. Figure 1 shows the convergence behavior of Algorithm 1 for the ML100K dataset. The numerical setup and further results are provided in Appendix A.7 (due to the lack of space).

Interpretability via Causal Relations

Once a KM is found, we derive causal relations that emerge from (1) and (2).

Causal Relations

Proposition 1 (Inclusion of Support Set) Consider two random variables X u,i and X u,j (belonging to the training set), whose KM are given by (1). If supp(ψ j ) ⊆ supp(ψ i ),

Algorithm 1 Iterative computation of KMs (IKM)

// Randomly Initialize {θ (1) u ∈ P} for n = 1, 2, ... do Compute S (n) i and t (n) i from (e.2) Update ψ(n) i = SDR-wR(S (n) i , t (n) i , M rnd ), ∀i ∈ I K Compute Q (n)
u and r

(n) u from (e.1) // Initialize FWA with {θ (n-1) u }, from prev iter Update θ (n) u = FWA(Q (n) u , r (n) 
u , ), for all u ∈ U K end for then the following causal relations hold:

X u,i = 1 implies X u,j = 1 (7) X u,j = 2 implies X u,i = 2 . ( 8 
)
For the toy example of Section 2.2, note that supp(ψ 1 ) ⊆ supp(ψ 2 ). Then, Proposition 1 yields: if user 1 (or user 2) likes movie 2 implies he/she also likes movie 1.

Proposition 1 motivates us to look for cases where the support set condition trivially holds: when ψ i = 1 1 1, then supp(ψ i ) = {D}, and supp(ψ j ) ⊆ supp(ψ i ) holds, for any choice of ψ j ∀ j ∈ I K , where I K defined in Section 3.

Corollary 1 (Maximally Influential RVs) Let {ψ i , θ u } (u,i)∈K denote the KM associated with the outcome 1 for X u,i , i.e., {X u,i = 1} (u,i)∈K . We define M = {i | ψ i = 1 1 1} as the set of RV outcomes with maximum support. Then, the condition supp(ψ j ) ⊆ supp(ψ i ) (Proposition 1) holds trivially ∀ j ∈ I K . It follows that the causal relations in (7) hold, for each i ∈ M.

For maximally influential RVs, the realization of one outcome, X u,i = 1, determines that of all RVs of the set

{X u,j = 1 | ∀j ∈ I K }. It is illustrated in Figure A.
1. For a recommendation system, maximally influential RVs are items for which a user liking an item implies that he/she like all other items, in the training set. We underline that, unlike other probabilistic causal relations, our approach provides deterministic rules. In Appendix A.3, we have provided efficient algorithmic approach to automatically mine these rules based on the adjacency matrix and influence score. Simulation results confirm the usefulness of our causal relations ; see Appendix A.7.

Conclusion

We have proposed a framework for learning a Kolmogorov model, associated with a collection of binary RVs. Interpretability of the model (as defined by causality) was harnessed by deriving causal relations, i.e., by finding sufficient conditions that bind outcomes of certain random variables. We also proposed an algorithm for computing a Kolmogorov model, a combinatorial non-convex problem, and showed its convergence to a stationary point of the problem, using block-coordinate descent. The combinatorial nature of the problem was addressed using a semi-definite relaxation, where we showed that it yields asymptomatically optimal solutions. Our results suggest that increased interpretability and improved prediction, do not cause a significant increase in complexity. We position our work against other approaches (focusing on recommendation systems).

Factorization Methods: Note that, (Q) can be re-written as a low-rank matrix factorization problem, over the set of binary and stochastic matrices [START_REF] Authors | Learning elementary representations of random variables[END_REF][Sec. 9.2]. Thus, the proposed approach is connected to factorization methods: Matrix Factorization (MF) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Algorithms for nonnegative matrix factorization[END_REF], SVD [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF] (and their many variants/extensions) have gained widespread applicability, covering areas in sound processing, (medical) image reconstruction, recommendation systems and prediction problems [START_REF] Davenport | An overview of low-rank matrix recovery from incomplete observations[END_REF]. These techniques assume that each element in K is the inner product of two arbitrary vectors. Thus, the model in ( 2) does not represent a RV (in a mathematical sense), when viewed in the context of the proposed model (Section 2.1). Consequently, the analytical guarantees of Section 4, that yield the causal relations, do not hold for general factorization methods: Though causal relations may still be extracted, they are not as rooted in Kolmogorov probability theory, and lead to different statistical relations. Naturally, we wish the explore the causal relations that arise from the proposed model.

Exact Factorization: Ideally, it is desirable to solve (Q) exactly, i.e., find θ u , ψ i satisfying p u,i = θ T u ψ i , ∀(u, i) ∈ K, over the training set K. While we are unaware of such results, we highlight a related variant where the factorization is solved exactly over the entire dataset D, i.e, p u,i = θ T u ψ i , ∀(u, i) ∈ D, using binary MF [START_REF] Slawski | Matrix factorization with binary components[END_REF]: It is not applicable when factorizing a subset of D, e.g., the training set K. Consequently, binary MF is unfit for prediction tasks.

KMs as a generalization of K-Means: Consider a special case of (Q), where ψ i is constrained to have one non-zero element. The resulting problem becomes the well-known Kmeans clustering [START_REF] Lloyd | Least squares quantization in PCM[END_REF]. The K-means algorithms (and its variants K-medoids, fuzzy K-means and K-SVD), have become pervasive in an abundance of applications such as clustering, classification, image segmentation, DNA analysis, online dictionary learning, source coding, etc. Our approach generalizes K-means, by allowing for overlapping clusters. While a similar generalization of the classical Kmeans algorithm was considered in (Whang et al., 2015), the number of points per cluster is determined explicitly. In our approach however, the number of points per cluster is optimized within the algorithm.

Nonnegative

Models: Non-Negative Models (NNMs) (Stark, 2016a) are recent attempts at interpretable models. For reasons of computational tractability (Stark, 2016a), NNMs are defined by relaxing ψ i in (2), to the unit hypercube. However, this relaxation impairs the highly interpretable nature of the original model in (2), making causal relations less accurate. Moreover, the relaxation implies that (2) no longer models the outcome of a random variable, thus limiting its applicability to (many) problems where KMs are applicable.

A.2. Applications

We briefly mention other applications.

Outage Prediction in Wireless Communication: Consider a network with several transmitters and receivers. In this setting, X u,i represents the state of the communication link, between transmitter u and receiver i (link (u, i)), and P[X u,i = 1] (resp. P[X u,i = 2]) denotes the probability that it is "good" (resp. in outage). Then the corresponding KM, computed from K, can be used to predict the state of other links, in a different set. Moreover, the causal relations in Section 4 identify links in the network, where link (u, i) good (resp. in outage) implies that link (u, j) good (resp. in outage). Thus the interpretability of KM provides valuable information on the network.

DNA methylation for Cancer Detection: Recent investigations have suggested that DNA methylation, chemical changes in the DNA structure, may act as a cancer detection mechanism [START_REF] Houseman | DNA methylation arrays as surrogate measures of cell mixture distribution[END_REF]. In this context, p u,i denotes the measured methylation level for location i on the DNA, and sample u. DNA methylation expresses p u,i = ψ T i θ u , where ψ i is a binary vector indicating the presence or absence of DNA methylation at location i, and θ u is a PMF vector modeling the weight assigned to each location [START_REF] Slawski | Matrix factorization with binary components[END_REF]. From the perspective of KMs, ψ T i θ u is the probability that location i and sample u is methylated. Moreover, the causal relations can identify groups of DNA locations for which the presence (resp. absence) of methylation in one location, implies its presence (or absence) for all other locations in the group. Note that, the above insights are not possible using conventional methylation analysis.

A.3. Interpretable Aspects

Here we detail additional aspects of KMs, related to interpretability (via causal relations).

Adjacency Matrix and Influence Score: The causal relations of Proposition 1 can be modeled using the so-called 

adjacency matrix A ∈ B |I K |×|I K | , define as [A] i,j = a i,j = 1, if supp(ψ j ) ⊆ supp(ψ i ) 0, otherwise . (A.1)
[A] i,j = 1 denotes the inclusion of X u,j in X u,i . In this case, the first outcome of X u,i implies the same outcome for X u,j , and the second outcome for X u,j implies the second one for X u,i (as stated in Proposition 1), thereby implying coupling and mutual influence among them (since X u,i influences X u,j and vice-versa). This raises the natural question of quantifying this coupling. We define an influence score essentially counting (and normalizing) the number of pairs X u,i and X u,j , satisfying the support set condition,

β i = 1 |I K | j∈I K j =i a i,j . (A.2)
Thus, we provide the following method for automatically mining these rules (presented in the context of recommendation systems).

• Check the support set condition, via a pairwise search to check for pairs ψ i and ψ j satisfying supp(ψ j ) ⊆ supp(ψ i ), ∀(i, j) ∈ I K × I K , i = j. • Build adjacency matrix A, in (A.1) , and compute the influence score β i • Find all pairs (i, j) such that a i,j = 1: for each of these pairs the following holds (from Proposition 1),

[u likes i] implies [u likes j] [u dislikes j] implies [u dislikes i] (A.3)
• Identify, if possible, maximally influential RVs (Corollary 1), having the all-one indicator vector, i.e., M = {i | ψ i = 1 1 1}. For each of them, the relations in (A.3) hold for all other items in the collection Practical Issues Regarding Interpretability We recall that the proposed SDR method was shown to be quasioptimal in providing approximate binary solutions to (Q 2 ). Thus, the relaxation does not affect the interpretability, in the sense that Proposition 1 and Corollary 1 still hold. However, another remark is in order. While the derivations pertaining to causal relations (Section 4) assume globally optimal solutions to (Q) -an NP-hard problem, Algorithm 1 guarantees locally optimal ones. Thus, a bound on the gap between these solutions is needed. We highlight this issue as an interesting topic for further investigation.

A.4. Variations and Special Cases

Learning RVs with Common Support: We underline some interesting special case of the proposed approach, namely, when all the RVs have the same support, i.e.,

ψ 1 = • • • = ψ D ψ.
This reduces to learning KMs, for RVs having common support.

Learning a sequence of RVs: Consider a special case of Sec. 2.1, where we learn a KM for a sequence of binary RVs, {X u | u ∈ U}, from observing samples from the training set, {p u | u ∈ U K }. The KM in (2) reduces to P[X u = 1] = θ T u ψ, and resulting optimization becomes:

   min {θu},ψ u∈U K (θ T u ψ -p u ) 2 s.t. θ u ∈ P , ∀u ∈ U K , ψ ∈ B D (A.4)
The BCD-based solution approach is still applicable in this case, though many simplifications are possible.

A.5. Practical Aspects

Including Regularization Parameters: Regularization parameters for θ u and ψ i , are needed for prediction to avoid over-fitting (Bishop, 2006)[Sec. 1.1]. They can be included without any changes to the solution method. An Computational Complexity: The computational complexity of Algorithm 1 is dominated by the SDP solution in (6), ≈ O(D 4.5 ) for medium accuracy solutions (keeping in mind the negligible cost of the FW method). Thus, the total cost (per iteration) of Algorithm 1 is C KM ≈ O(D 4.5 ).

The added complexity compared to MF, NMF, NNM and

SVD++ (≈ O(D 3 )) is not significant, keeping in mind that D min(|I K | , |U K |).
Moreover, complexity reduction techniques (for the SDP solution) can be investigated. Finally, proposed method yields problems that decouple , thereby significantly speeding up the computation due to parallelization.

Non-stationary distributions: The proposed method assumes that distributions of the RVs (in the training set) are stationary: Indeed, scenarios with time-varying distributions are a limitation (and interesting future directions). However, in learning it is quite common to assume that the data-generating distribution is stationary. {119, 814, 1188, 1190, 1290, 1393, 1462, 1486, 1494, 1530, 1590, 1638}. For each of these items, a user liking one given item, implies he/she likes all other items in the training set. Interestingly, these results remain the same when D = 24, thereby suggesting that procedure for mining causal relations is quite stable.

Prediction Performance: Since the range of the predicted variable is different for MF/NMF/SVD++, and KM/NNM, we use the normalized test RMSE, i.e., NRMSE = η( (u,i)∈ K |[R] (u,i) -Ru,i | 2 /| K|) 1/2 where K is the test set, and η = (R max -R min ) -1 = 1/4 is the normalization for MF/NMF/SVD++. For KMs/NNMs the same metric reduces to NRMSE =

(u,i)∈ K |[R] (u,i) /R max - θT u ψi | 2 /| K| 1/2
. The best values for λ u and µ i , were picked from a coarse twodimensional grid by cross-validation, using a held-out validation set. The Normalized RMSE results are shown in Table 4. We observe a significant gap between KMs, and well known collaborative filtering methods, especially as D increases. Moreover, the drop in performance for NNMs for increasing D may be due to over-fitting. 
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 1 Figure 1. Training error for IKM for different values of D (ML100K dataset)
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 2 Figure A.2. Training error vs number of iterations (U = 20, I = 40)
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 3 Figure A.3. Influence score for items having βi ≥ 0.5 (D = 8, ML100K dataset)
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 1 Frank-Wolfe Procedure. 
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 2 Semidefinite Relaxation + Randomization (SDR) Proc.

Table 4 .

 4 Normalized RMSE values for test set (ML100K). The dimension of factorization for MF/SVD++, k, is equal to D (unless stated in the corresponding entry).

		D = 4	D = 8	D = 16	D = 24
	KM	0.199	0.2013	0.1900	0.1861
	NNM	0.194	0.2255	0.2057	0.2118
	MF	0.229	0.228(k = 10)	-	0.226(k = 40)
	SVD++	0.228	0.227(k = 10)	0.227(k = 20)	0.226(k = 50)
	K-M	0.210	.2096	0.2105	0.2105
	NMF	-	-	-	0.192(k = 100)
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Note that acquiring (estimates of) the empirical probabilities can be done via training, and the specific method is applicationdependent (see Appendix A.2).

The model is generic since interpreting the elementary events in context-dependent. For a coin toss, Ω = {ω1, ω2}, the elementary events denote heads and tails, respectively.

3 D is the size of the Kolmogorov space Ω, the number of elementary events, and the dimension of the factorization (selected via cross-validation to minimize the test error).

-regularization can be included in (Q 1 ):f (θ u ) = θ T u (Q u + λ u I D )θ u -2θ T u r u + γ u , (A.5) where the regularizer λ u ≥ 0 is absorbed into a "new" matrix (Q u + λ u I D ). While desirable, an 1 -regularization for θ u would not work, since θ u ∈ P. Similarly, an 1regularization for(Q 2 ) is, g(ψ i ) = ψ T i S i ψ i -2(v i -(µ i /2)1 1 1) T ψ i + γ i , (A.6) where the regularizer µ i is absorbed into the linear term, since µ i ψ i 1 = µ i 1 1 1 T ψ i , for ψ i binary.

A.6. Main Results

Below, we summarized the results used in the paper; see [START_REF] Authors | Learning elementary representations of random variables[END_REF] for the proofs.

LPs over the Unit Probability Simplex: We use following known result to find the descent direction for the FW method (the proof is known).

Proposition 2 Consider the following Linear Program (LP), (P P S ) x = argmin x∈R n c T x, s.t. 1 1 1 T x = 1, x ≥ 0 0 0 Its optimal solution is given by x = e j , where j = argmin 1≤j≤n c T e j Thus, the solution reduces to searching over the vector c.

Convergence of FW algorithm:

We show the convergence of the FW algorithm (Table 1).

Proposition 3 Let θ u be the optimal solution to (Q 1 ). Then the sequence of iterates {θ (k) u } satisfies [START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF]

The linear convergence rate for all FW variants, was proved in [START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF][Theorem 1].

Quasi-optimality of SDR: The question was studied extensively in the context of binary detection for multi-antenna communication (Tan & Rasmussen, 2001). Interestingly, (Q 2 ) can be recast as a noiseless binary detection problem, where SDR has been to be optimal. The results is formalized below.

Proposition 4 Let g(ψ i ) and g( ψi ) denote the optimal solutions to the binary QP in (Q 2 ), and its SDR after randomization (Table 2), respectively. The approximation quality is defined as [START_REF] Luo | Semidefinite relaxation of quadratic optimization problems[END_REF], D) , asymptotically in D. Thus, the relaxation is quasi-optimal.

Proof: See [START_REF] Authors | Learning elementary representations of random variables[END_REF].

Convergence of IKM:

Lemma 1 Let t n E({ψ

.. be the sequence of iterates, resulting from the updates in IKM. Then, {t n } is non-increasing in n, and converges to a stationary point of (Q) in (3), almost surely.

Proof: The convergence is shown in [START_REF] Authors | Learning elementary representations of random variables[END_REF].

A.7. Numerical Results

Experimental Setup: The training set K, is chosen as the MovieLens 100K (ML100K), with U = 943 users and I = 1682 items, split into 80% for training and 20% for testing. Let { ψi }, { θu } the output of Algorithm 1, after 5 iterations (used to predict p u,i over the test set). For benchmarking, we factorize the rating matrix using MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], NMF [START_REF] Lee | Algorithms for nonnegative matrix factorization[END_REF], SVD++ [START_REF] Koren | Factorization meets the neighborhood: A multifaceted collaborative filtering model[END_REF] (ensuring the dimension of the factorization, k, is close to D). The implementation and results use the MyMediaLite package [START_REF] Gantner | Mymedialite: A free recommender system library[END_REF], and the corresponding performance results are available http://www.mymedialite.net/examples/ datasets.html. We also benchmark against the NNM algorithm in [START_REF] Stark | Expressive recommender systems through normalized nonnegative models[END_REF], and the classical K-means (K-M) algorithm.

Training Performance: We first evaluate the performance of Algorithm 1 on artificial training data, i.e., p u,i ∈ K = {U = 20}×{I = 40} where {p u,i } are i.i.d. and uniformly chosen on the unit interval. We benchmark against a variant on Algorithm 1, where the SDR solution for Q 2 is replaced by an exhaustive search. As the data is artificial, the resulting matrix does not have any missing entries: we also include the binary matrix factorization (BMF) in [START_REF] Slawski | Matrix factorization with binary components[END_REF] 

, for several values of D. We observe that the monotone convergence in Lemma 1 is validated numerically, and that the training error decays with increasing model size, D. While the performance of IKM (first-order optimality guarantee) is indistinguishable from its exhaustive search variant, there is large gap compared to BMF (globally optimal). Unfortunately, BMF does not work with missing data, and is inapplicable to prediction [START_REF] Slawski | Matrix factorization with binary components[END_REF]. The same conclusions hold when testing Algorithm 1 on the ML100K (Fig. 1).

Interpretability of KMs:

We numerically evaluate the method for finding causal relations (Section A.3), on the ML100K dataset, with the resulting influence scores shown in Fig. A.3. We first iden-