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Education of our intestinal immune system early in life strongly influences

adult health. This education strongly relies on series of events that must

occur in well-defined time windows. From initial colonization by maternal-

derived microbiota during delivery to dietary changes from mother’s milk

to solid foods at weaning, these early-life events have indeed long-standing

consequences on our immunity, facilitating tolerance to environmental

exposures or, on the contrary, increasing the risk of developing noncom-

municable diseases such as allergies, asthma, obesity, and inflammatory

bowel diseases. In this review, we provide an outline of the recent advances

in our understanding of these events and how they are mechanistically

related to intestinal immunity development and education. First, we review

the susceptibility of neonates to infections and inflammatory diseases,

related to their immune system and microbiota changes. Then, we highlight

the maternal factors involved in protection and education of the mucosal

immune system of the offspring, the role of the microbiota, and the nature

of neonatal immune system until weaning. We also present how the devel-

opment of some immune responses is intertwined in temporal and spatial

windows of opportunity. Finally, we discuss pending questions regarding

the neonate particular immune status and the activation of the intestinal

immune system at weaning.

Introduction

The adult gut mucosa is well equipped to tolerate the

enteric microbiota while protecting against entero-

pathogenic infections or food-born toxins. Barrier-

strengthening defense mechanisms promote homeosta-

sis by keeping microorganisms at bay. In the small

and large intestine, the secretion of antimicrobial pep-

tides (AMPs) by Paneth cells and enterocytes creates a

chemical barrier [1–3]. In addition, goblet cells

generate a mucus layer that forms a physical barrier to

withhold luminal bacteria, especially in the colon,

where commensal bacteria exhibit the highest density

[4,5]. Below this mucus layer, a thick glycocalyx

enables access of soluble molecules but not virus or

bacterium-sized microparticles to the intestinal epithe-

lial cells (IECs) [6,7]. Moreover, tight junctions seal

the epithelial cell–cell contacts and regulate the
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paracellular passage of solutes [8]. Finally, the intesti-

nal immune system comprises many mechanisms of

surveillance, defense, and tolerance, which provide a

tailored response to encountered antigens [9,10]. In the

small intestine, the immune system is compartmental-

ized between organized inductive sites, that is, the iso-

lated lymphoid follicles (ILFs) and Peyer’s patches

(PPs), and diffuse effector sites, that is, the lamina

propria (LP) and the epithelium. In absence of infec-

tion, the intestinal immune system promotes tolerance

to soluble antigens transported by LP migratory con-

ventional dendritic cells (cDCs) through afferent lym-

phatics to the draining mesenteric lymph nodes

(MLNs) [11–13]. By contrast, PPs do not have afferent

lymphatics but are in direct contact with luminal anti-

gens [14]. PPs consist of clustered B-cell follicles form-

ing domes covered by the follicle-associated epithelium

(FAE) containing M cells that are specialized in the

transcytosis of luminal particulate antigens [15–17].
These antigens are then taken up by subepithelial

macrophages and specialized monocyte-derived DCs

termed LysoDCs [18]. Upon stimulation, subepithelial

LysoDCs migrate to the T-cell zones of PPs to induce

an immune response [19]. In addition, subepithelial

phagocytes interact with and activate na€ıve B cells

[20]. Due to continuous access to luminal antigens,

PPs serve as the main inductive sites for B-cell priming

and maturation, leading to their homing to the LP

where they differentiate into immunoglobulin A (IgA)-

secreting plasma cells [21,22]. Secreted IgA, trans-

ported by villus epithelial cells into the lumen via the

polymeric Ig receptor (pIgR), plays a pivotal role in

homeostasis and during infection, notably by excluding

pathogens and neutralizing toxins, but also by regulat-

ing the microbiota composition [23–26].
In neonates, the situation largely differs. At birth,

the neonatal gastrointestinal tract is rapidly colonized

by trillions of bacteria, which initiate the development

of the mucosal immune system [27], while breastfeed-

ing provides neonates with factors regulating the

microbiota composition and the immune response but

also protecting against infections [28]. At weaning, ces-

sation of breastfeeding and the resulting change in diet

now containing nutrients with a complex composition

induce a diversification of the microbiota and trigger

the maturation of the mucosal immune system, nota-

bly leading to the production of endogenous IgA. Dur-

ing the last decade, several early-life key age-related

events that are essential for the development of opti-

mal intestinal immunity in adults have been described,

introducing and supporting the concept of time win-

dows of opportunity [27,29,30]. These events are not

only dependent on time but also on the sites where

they occur. Thus, sampling of luminal antigens is

tightly regulated both temporally and spatially in early

life as is the proximity between the microbiota and the

mucosa and the type of luminal antigen encountered,

with a clear distinction between the small intestine and

the colon [31]. In this review, we first discuss the sus-

ceptibility of neonates to infections and inflammatory

diseases as an initial evidence that intestinal immunity

in neonates is not absent or immature but actually

strongly different from that of adults. Then, we briefly

summarize the multistep process of microbiota assem-

bly as a key element of intestinal immune education,

before focusing on maternal factors that are the pri-

mary actors to be involved in neonatal protection and

mucosal immune system education. We also describe

neonatal defense mechanisms and immune responses

of neonates. Finally, we discuss how microbiota is

involved in several spatial and temporal key steps of

immune education and imprinting. Altogether, this

review highlights the microbiota, breast milk factors,

and the host’s response to environmental changes as

three major factors supporting the multistep evolution

of early-life homeostasis.

Susceptibility of the neonatal host to
inflammation and infection

Clinical studies describe the neonatal immune status as

hyperinflammatory, that is, prone to an inappropriate

inflammatory reaction. At the same time, the neonatal

host is generally more susceptible to infection although

exceptions have been described. The molecular mecha-

nisms that determine these age-dependent differences

are only beginning to be unraveled but they likely

include differences in the organization and gene

expression of stromal cells, particularities in the differ-

entiation and adaptation of innate and adaptive

immune cells as well as the reduced diversity and den-

sity of the neonatal microbiota.

One example for the hyperinflammatory status of

the neonatal immune system is necrotizing enterocolitis

(NEC), a severe inflammation of the colonic tissue

affecting mainly preterm infants [32]. The inflamma-

tory response is thought to be driven by the early bac-

terial colonization of the intestinal tract and caused by

the immature mucosal tissue in preterm infants, unable

to cope with postnatal bacterial colonization. Certain

pathobionts have been associated with NEC. Their

expansion in the neonatal intestine is facilitated by the

lack of a dense and diverse microbiota that limits

pathobiont growth by competition. Consistently,

antibiotic treatment that reduces microbiota diversity

is associated with an enhanced risk of developing NEC

2 The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

Intestinal immune system development C. Wagner et al.



(Fig. 1) [33,34]. Indeed, studies comparing the fecal

microbiota between preterm infants indicate a lower

bacterial diversity and certain alterations of the micro-

biota composition in infants developing NEC [32,35].

Hence, the use of probiotics (single or combination of

beneficial live bacteria), especially the administration

of strains of Lactobacillus spp. and Bifidobacterium

spp., has been linked to the prevention of NEC in pre-

term neonates [36–38]. Probiotics enhance the abun-

dance of beneficial bacteria, reduce pathobiont

numbers, and lower the compositional variation. In

addition, they exert an anti-inflammatory effect,

decreasing the expression of innate immune receptors

and increasing expression of the anti-inflammatory

cytokine IL-10 in the small intestine [39].

Another example is neonatal sepsis. In the first days

after birth, neonatal sepsis, either as early-onset sepsis

developing within 72 h after delivery or as late-onset

sepsis (LOS) developing between 72 h and 28 days

after delivery, is associated with a severe systemic

inflammation and represents a leading cause of neona-

tal death [40]. The commensal bacterium of the mater-

nal vaginal tract Streptococcus agalactiae (also called

group B streptococci, GBS) and Escherichia coli K1

represent typical pathogens linked to neonatal sepsis.

In developing countries, systemic neonatal infections

with enteric Salmonella are also increasingly recog-

nized [41]. Similar to NEC, a low bacterial diversity of

the early postnatal microbiota has been associated

with a higher risk of developing neonatal sepsis

(Fig. 1) [42]. A low microbiota complexity facilitates

the persistence and expansion of sepsis-causing patho-

bionts in the gut. In a mouse model of LOS driven by

systemic dissemination of the opportunistic pathogen

Klebsiella pneumoniae, Singer et al. [43] demonstrated

that neonatal microbiota composition influences sepsis

outcome. Oral vancomycin treatment promoted high

abundance of naturally vancomycin-resistant members

of the Lactobacillus genus and protected against LOS,

whereas gentamicin treatment decreased the relative

abundance of Lactobacillus and aggravated disease

severity.

On the other hand, neonates exhibit an enhanced

susceptibility to infections, in particular caused by

pathogens that target the mucosae of the respiratory

and gastrointestinal tract (Fig. 1) [44]. Infections of

the respiratory tract, for example by respiratory syncy-

tial virus, or of the gastrointestinal tract by rotavirus,

cryptosporidium, enteropathogenic E. coli (EPEC), or

Shigella spp., represent the most prominent causes of

infant morbidity and mortality worldwide [44].

The intestinal parasite Cryptosporidium parvum per-

sistently infects young mammals, leading to watery

diarrhea [45]. In mice, symptomatic infection is limited

to the neonatal period. It increases intestinal perme-

ability, due on one hand to C. parvum disrupting ente-

rocyte tight junctions, and on the other hand to the

recruitment of monocytes that secrete the pro-

inflammatory cytokines IL-1b and TNF-a. Cryp-

tosporidium parvum also reprograms LP CX3CR1high

macrophages from expressing high levels of the anti-

inflammatory cytokine IL-10 to the pro-inflammatory

TNF-a. Infected enterocytes upregulate several

chemokines, especially CXCL9 and CXCL10, attract-

ing LP CD103+ cDCs, which control parasitic infec-

tion through secretion of IL-12 p40 and IFN-c [46].

Viral infection with rotavirus still represents one of

the leading causes of diarrhea-associated mortality in

children under five [47]. In the mouse model of rota-

virus infection, neonates exhibit a high viral load and

diarrhea, whereas adult mice remain asymptomatic

[48]. This age-dependent infection susceptibility is

related to the limited expression of Toll-like receptor

(TLR) 3 by IECs between birth and postnatal day 10

(P10). TLR3 recognizes double-stranded RNA mole-

cules and its increased expression after P10 dampens

the susceptibility to rotavirus infection through induc-

tion of a protective type III interferon-mediated antivi-

ral host response [49]. Of note, endoscopic biopsies

from healthy human infants below the age of 6 years

also revealed lower TLR3 expression levels.

Oral exposure of adult mice to EPEC is not associ-

ated with signs of infection. However, neonates

infected with EPEC before P10 exhibit the typical

attachment and effacement (A/E) lesions with EPEC

tightly attached to the apical plasma membrane of

IECs [50]. The close adherence to IECs stimulates

immunoregulatory protein serum amyloid A3 expres-

sion and enhances Reg3c secretion by goblet cells.

Neonatal infection resolves spontaneously during the

weaning period when the microbiota composition

changes. This phenomenon, known as colonization

resistance, is conferred by the highly competitive dense

and diverse microbiota of the adult host. Also, some

individual species such as bacteria belonging to the

Clostridium clusters IV and XIVa may play a particu-

larly strong protective role against enteropathogens

[51]. Although germ-free or antibiotic-treated adult

mice are readily colonized by EPEC, they fail to

develop A/E lesions, whereas EPEC microcolonies are

present in infected germ-free neonates, indicating that

the microbiota is not involved in lesion formation at

that age. Thus, lack of colonization resistance facili-

tates neonatal infection but age-dependent host factors

independent of the microbiota play a critical role in

EPEC pathogenesis [50]. In the adult murine small
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Fig. 1. Multistep assembly of the postnatal enteric microbiota and influencing factors. Maternal fecal bacteria represent the primary source

of the neonate’s early bacterial colonization. The composition of the initial microbiota depends on the mode of delivery, diet (breast milk vs.

formula), and environmental exposure (upper left green box). Aerobic conditions initially favor facultative anaerobic species, such as

Escherichia coli, that subsequently lower oxygen levels and facilitate colonization by microaerophilic and anaerobic bacteria (middle panel).

Breast milk constituents such as lactose, sIgA, and HMOs direct the composition of the early human microbiota characterized by

Lactobacilli and Bifidobacteria (upper left green box). Mucosal host factors influence the postnatal microbiota in an age-dependent manner

(Blue boxes). Although the murine neonatal epithelium is characterized by the expression of the cathelicidin CRAMP, TLR5-mediated Reg3c

expression, TLR4 tolerance, and low mucin production, the adult intestine secretes defensins and TLR5 expression is restricted to Paneth

cells. Oral acquisition of pathogens such as GBS at birth can lead to systemic infection (sepsis), whereas an inappropriate mucosal

inflammation to dysbiotic colonization in the preterm host can cause NEC. At weaning, the uptake of solid food with complex carbohydrates

and fibers and the reduction of breast milk-derived factors induce a major change in the composition of the microbiota, favoring the

expansion of fermenting bacteria such as members of the Clostridiales phylum (upper right green box). Endogenously generated sIgA,

Paneth cell-derived defensins, and the mucus layer stabilize the microbiota composition in the adult host (upper right blue box).
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intestine, Salmonella targets M cells of terminal ileum

PPs to facilitate infection and systemic dissemination

[52]. In contrast, they readily invade IECs in neonatal

mice, proliferate intracellularly, and disseminate to

liver and spleen [53]. Salmonella translocates a number

of virulence factors via its pathogenicity island (SPI)

1-encoded type 3 secretion system to modulate its

intraepithelial compartment and form so-called

Salmonella-containing vacuoles. Interestingly, entero-

cyte invasion and intraepithelial proliferation resemble

Salmonella infection as it occurs in humans. It there-

fore provides a relevant in vivo model to study bacte-

rial effector molecules involved in the Salmonella-IEC

interaction [54].

Although neonates are highly susceptible to many

infectious diseases, there are notable exceptions to the

rule. Oral infection with the Gram-negative bacterium

Yersinia enterocolitica triggers a strong immune

response that increases the survival rates in 1-week-old

mice as compared to adults [55]. Indeed, neonates exhi-

bit an early recruitment of macrophages and neutrophils

as well as an enhanced expression of pro-inflammatory

genes in the MLNs upon Yersinia infection [56,57].

Besides the strong activation of innate immunity,

infected neonates efficiently develop Yersinia-specific

memory B cells along with IgG1 and IgG2a antibodies

[56]. This enhanced protection requires IFN-c secretion

in two sequential waves: The early protection depends

on its secretion by CD8+ T cells [58], whereas the late

protection is ensured by CD4+ T cells [56]. Another

example where children seem to respond to a pathogen

in a more appropriate manner and are able to balance

pathogen clearance vs. immune-mediated pathology in a

more beneficial way than adults is the infection with the

severe acute respiratory syndrome coronavirus type 2

(SARS-CoV2). Children are susceptible to the infection

[59] and contain comparable amounts of the virus in the

nasopharynx [60]. However, the morbidity and mortal-

ity are strongly reduced in the pediatric population even

though the development of the multisystem inflamma-

tory syndrome has been documented as a rare complica-

tion in children previously infected with SARS-CoV2

[59,61]. Interestingly, children display lower levels and a

narrower repertoire of neutralizing antibodies after

infection suggesting a more efficient pathogen control at

the innate level [62]. Natural cross-reactive antibodies

have been suggested to contribute to the successful dis-

ease control in children [63]. Further studies need to elu-

cidate the age-dependent differences in the immune

response over the course of a SARS-CoV2 infection.

In conclusion, neonates generally present an

increased susceptibility to infectious diseases relying on

an easier access to the subepithelial tissue and a

reduced or altered antimicrobial host defense. How-

ever, they are not devoid of defense mechanisms and

can mount specific immune responses following infec-

tion with bacterial, viral, or parasitic pathogens. In

fact, their ability to mount a strong inflammatory

response makes them, under certain conditions, sus-

ceptible to inappropriate inflammation and functional

organ impairment, as exemplified by NEC and neona-

tal sepsis. The need to maintain immune homeostasis

particularly at mucosal surfaces draws attention to the

process of postnatal colonization and establishment of

the enteric microbiota.

Multistep assembly of the microbiota

Although experimental evidence strongly supports the

sterile womb hypothesis, the presence of a placental

microbiome is still debated [64–66]. During delivery,

bacteria are transferred from the mother to the child.

Vaginally delivered neonates receive a microbiota clo-

sely related to the maternal fecal microbiota [67]. In

contrast, the primary microbiota of newborns deliv-

ered by caesarian section is closer to skin microbiota

(e.g., Staphylococcus, Corynebacterium) [68]. The initial

microbiota exhibits a low bacterial diversity, little dif-

ference between the different parts of the gastrointesti-

nal tract and its composition is influenced by

environmental and geographical cues [68,69].

The empty niche of the neonatal gut favors colo-

nization by fast-growing, aerotolerant bacteria such as

members of the Enterobacteriaceae family that

includes E. coli or the Enterococcus genus (Fig. 1) [69–
72]. This initial colonization decreases oxygen avail-

ability within the gut lumen and makes it suitable for

anaerobic genera, for instance Clostridium and Bifi-

dobacterium. Thus, initially dominated by members of

the phyla Proteobacteria and Actinobacteria, the

healthy microbiota diversifies as bacterial species from

the Firmicutes and Bacteroidetes phyla expand, turn-

ing the tide in dominant phyla. Besides the mode of

delivery and its circumstances, the neonatal diet (i.e.,

breast milk vs. formula) shapes the microbiota compo-

sition [73]. Breast milk carries microorganisms from

the mother, thus directly transferring bacteria to new-

borns [74]. In addition, breast milk in humans is highly

enriched in human milk oligosaccharides (HMO) that

put a selection pressure favoring bacterial species able

to catabolize these complex sugars, especially Bifi-

dobacteria (Fig. 1) [75]. Moreover, immunoglobulins

present in breast milk shape the neonatal gut micro-

biota and influence intestinal homeostasis until adult-

hood [76]. Breastfeeding also has an influence on the

virome that is established in two sequential steps [77].
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First, in parallel with bacterial colonization, viral

sequences are detected in newborn stool and their

abundance further increases with age. These viruses

are mainly prophages that integrate in bacterial gen-

omes, for instance, belonging to Bifidobacterium and

Lactobacillus genera. Secondly, at 4 months of age

viruses that infect human cells are increasingly found

in fecal samples. However, their abundance is lower in

breastfed as compared to formula-fed children.

Weaning represents an important step into micro-

biota diversification and selection. Weaning is charac-

terized by a change in diet, from breast milk to solid

food, restricting breast milk-derived immunomodula-

tory factors and changing nutrient availability ulti-

mately reshaping microbial communities (Fig. 1)

[31,78]. The solid diet favors bacterial species able to

metabolize nondigestible fibers and produce short-

chain fatty acids (SCFAs), whereas the ‘milk-oriented

microbiota’ decreases [72]. In humans, from weaning

(at approximately 6 months) until 2–3 years of age,

the bacterial diversity increases, and the temporal vari-

ability of the microbiota composition gradually

decreases until resembling the bacterial composition

and richness of adults. In mice, cessation of breast-

feeding and weaning occurs at 21 days. This time

point marks a major shift in the microbiota composi-

tion and initiates the formation of an organ-specific

microbiota in small and large intestine. Bacterial rich-

ness continues to rise thereafter until approximately

6 weeks of age [69,79–82].
Prolonged maintenance of an enteric microbiota

with low microbial diversity may have long-term con-

sequences. The western lifestyle, characterized by high

fat low-fiber diet, antibiotic use, few contacts with ani-

mals, fewer infections, and birth by caesarian section,

has been associated with changes in the enteric micro-

biota composition leading to a lower bacterial diver-

sity as compared to the one found in inhabitants of

rural areas or indigenous tribes [83–86]. The ‘hygiene

hypothesis’ suggests a link between western lifestyle

factors and an impaired education of the tolerance-

inducing arm of the immune system, leading to an

increased prevalence of allergies as well as inflamma-

tory and auto-immune diseases [87,88]. The ‘disap-

pearing microbiota’ hypothesis further adds insights

on the consequences of the loss of bacterial species

[89]. For instance, the prevalence of Helicobacter py-

lori, the main bacterial species found in the stomach,

has been greatly declining over the last century. Heli-

cobacter pylori has both detrimental and beneficial

effects. On the one hand, it can cause gastritis and

duodenal ulcers and represents a contributing factor

to stomach cancer. Notably, the age of the host at the

time of initial infection may account for the suscepti-

bility to H. pylori-associated disease manifestations

[90]. On the other hand, H. pylori is linked to

increased levels of regulatory T cells (Tregs) promot-

ing immune tolerance [91,92]. Thus, the disappearance

of H. pylori may affect the host’s health both in a

positive and negative way. In addition, individual bac-

terial species also affect each other by competing for

ecological niches. Thus, the disappearance of a com-

mensal bacterium may provide a niche for an enteric

pathogen.

With a little help from your mother:
maternal factors involved in neonatal
protection and mucosal immune
system education

The maternal microbiota

In addition to providing the newborn with beneficial

commensal bacteria upon delivery, the influence of the

maternal microbiota on the fetus significantly impacts

both intestinal innate immunity and energy metabo-

lism in the offspring [93,94]. Using a model of tran-

sient colonization of germ-free dams with an

auxotroph E. coli strain, Gomez de Ag€uero et al. [93]

showed that transient bacterial colonization of the

dam increases intestinal type 3 innate lymphoid cells

(ILC3) and macrophages in the gut of the offspring. It

also stimulates expression of genes related to mucosal

immunity, such as members of the antibacterial Reg3

protein family, lysozyme, pIgR, and mucus secretion-

inducing genes. Altogether, these factors reinforce

mucosal integrity and reduce translocation of bacteria

to the neonatal MLNs. Mechanisms of protection by

the maternal microbiota rely on the transfer of

microbial-derived metabolites, such as aryl hydrocar-

bon receptor ligands, from the mother to the offspring

(Fig. 2). This transfer seems partly dependent on

maternal antibody-mediated retention and transmis-

sion of microbial-derived products during pregnancy

but also lactation [93]. Among these metabolites,

SCFAs stimulate the free fatty acid G protein-coupled

receptors 41 and 43 in the embryo and neonate, pro-

moting the development of thymic and peripheral

Tregs [95] and conferring protection against metabolic

disorder, obesity, and asthma in the adult offspring

[94,96].

Hence, the maternal microbiota during pregnancy

and lactation produces factors that reach the offspring

and shape intestinal homeostasis by promoting entero-

cyte maturation, epithelial barrier formation, intestinal

innate immunity, and metabolism (Fig. 2).
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Maternal secreted immunoglobulins

The passive immunity, transmitted from the mother to

the newborn through breastfeeding, greatly influences

neonatal health. In the lactating mother, intestinal

plasma cells migrate in a CCR10/CCL28-dependent

manner to the mammary glands where they secrete

immunoglobulins into breast milk [97]. Those maternal

antibodies include mostly secretory IgA (sIgA) fol-

lowed by IgM and IgG, and reflect specificity to the

maternal microbiota. As vaginally delivered newborns

have a primary microbiota similar to the maternal

fecal microbiota [67], transfer of these specific antibod-

ies gives a clear advantage to control bacteria in the

Steroid hormones
Maternal Ig/HMO

EGF

Solid food
Postnatal PostweaningWeaning

Maternal factors

HMO

Microbiota
composi�on

Pathogen and toxin
neutraliza�on

Bifidogenic
Pathogen inhibi�on

An�gen uptake
Tolerance

ILC3
MFs
Tregs

Barrier func�on
AMP produc�on 
Mucus secre�on

Expression of pIgR

Neonatal microbiota

Neonatal immune system development

Steroid
hormones

Bacterial metabolites
(AhR ligands, SCFAs)

GAP inhibi�on
TLR4 signaling

inhibi�on

EGF

Maternal
factors

M cell matura�on

IgG

ROR�t+

Tregs

IgGFecal bacteria
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Fig. 2. Maternal factors influencing neonatal microbiota composition and immune maturation. Even prior to birth, bacterial metabolites from

the maternal intestine reach the fetus and influence the maturation of ILC3 and macrophages (MFs). Maternal factors such as steroid

hormones, breast milk-derived immunoglobulins (Ig), HMO, and EGF are provided during breastfeeding (upper panel) and influence the

neonatal microbiota composition (orange box) and mucosal immune maturation (blue box) after birth. Breast milk secretory IgA (sIgA)

protects neonates via immune exclusion and toxin neutralization and influences the development of RORct+ Tregs. IgG promotes epithelial

FcRn-mediated antigen uptake and immune tolerance. Breast milk HMO are bifidogenic promoting a healthy ‘milk-oriented microbiota’. High

EGF concentrations in breast milk inhibit acetylcholine-mediated activation of the GAPs in the small intestine and colon. Decrease of EGF

allows temporal GAP-mediated antigen sampling in the colon between postnatal day 10 and 21, which facilitates tolerance induction.

Decreasing concentrations of the maternal steroid hormones estradiol and progesterone in the neonates over time may favor PP M cell

maturation after 1 week of life.
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neonatal gut [28]. Thus, passive immunity provides

protection to neonates by shaping the microbiota and

keeping it at bay from the sterile tissue, thus prevent-

ing invasion of pathobionts and inflammation (Fig. 2).

Weanling mice nursed by dams deficient for Ig secre-

tion (pIgR�/�), compared to those nursed by wild-type

dams, have a different microbiota composition and

deregulated colonic epithelial cell gene expression lead-

ing to an impaired barrier function, with increased

translocation of enteric bacteria, such as Ochrobac-

trum anthropi, but also worsened inflammation in dex-

tran sodium sulfate-induced colitis [76]. However, it is

not clear whether IgA has a direct effect on colonic

epithelial cells or an indirect effect through alteration

of the microbiota. Passive immunity also prevents

early activation of the adaptive immune system. An

early germinal center (GC) activation and IgA produc-

tion in PPs at P13 was observed in pups nursed by

females deficient in adaptive immunity [98]. Moreover,

pups nursed by dams deficient in antibody production

have increased levels of activated T cells and IgA+

plasma cells [99]. This premature development is likely

induced by an increased bacterial translocation across

the neonatal intestinal epithelium due to a deficit in

bacterial coating by maternal antibodies, leading to an

early activation of the mucosal immune system. Upon

challenge with Enterobacter cloacae, a fast-growing

facultative anaerobe of the adult microbiota, these pre-

maturely produced neonatal IgA appear as effective as

maternal antibodies in preventing bacterial transloca-

tion to the MLNs [99]. The induction of endogenous

IgA in neonates in the absence of breast milk Ig is

likely a downstream effect of a premature activation

of follicular helper T cell (Tfh). Indeed, Koch et al.

[100] demonstrated that transferred maternal IgG2b

and IgG3 limit activation of Tfh cells as well as GC

expansion in pup PPs and MLNs. Early activation of

the adaptive immune system also occurs during infec-

tious challenge. Thus, neonates develop reovirus-

specific antibody-secreting cells in PPs and MLNs

upon challenge at P10 [101]. However, this early virus-

specific IgA response is abrogated when pups receive

passive immunity from an immunized foster dam,

probably due to an efficient neutralization of the virus

by maternal antibodies. Passive transfer of maternal

pathogen-specific antibodies does indeed provide pro-

tection in neonates against rotavirus [102], poliovirus

[103], or HIV [104] through their neutralizing activity.

In humans, high titers of maternal-specific IgA also

correlate with a better protection of neonates against

diarrheagenic enteropathogens such as E. coli, Vib-

rio cholerae, Shigella, and Campylobacter [105]. How-

ever, immunoglobulins from unimmunized mothers

can also protect against enterotoxigenic E. coli infec-

tion through IgG coating, suggesting a contribution of

polyreactive and nonspecific immunoglobulins [106].

Overall, these studies show that the transfer of mater-

nal secreted immunoglobulins, either polyreactive

(IgG) or antigen-specific (IgG and IgA), plays an

important role in neonatal protection by exerting their

immune exclusion activity, allowing symbiosis with the

microbiota, and preventing infection (Fig. 2). Never-

theless, it is important to keep in mind that immunized

mothers confer a transient immunity to neonates that

vanishes after the breastfeeding period, thus support-

ing the need for the establishment of endogenous

active immunity by the young host (e.g., vaccination)

[107].

Lastly, passive immunity is also involved in shaping

the neonatal adaptive immunity and thus might aid to

set a trajectory for health and disease in later life. This

is facilitated through the bidirectional transport of

maternal IgG between intestinal lumen and the muco-

sal tissue via epithelial expression of the neonatal Fc

receptor (FcRn) [108]. In humans, IgG transfer from

mother to offspring is largely limited to the fetal per-

iod via placental transfer. In rodents, however, this

transfer continues during the neonatal period in which

IEC expresses extremely high levels of FcRn, enabling

the translocation of milk IgG from the gut lumen to

the mucosal tissue [108]. Yoshida et al. [109] showed

that weanling mice are less susceptible to Citrobac-

ter rodentium infection when FcRn is expressed in

IEC. FcRn allows the delivery of IgG-bound bacterial

antigen to LP CD11c+ cells, leading to specific T-cell

activation in the MLNs. Thus, IgG transport from the

intestinal lumen to the mucosal tissue supports the

transfer of antigens and their presentation, leading to

an appropriate immune response (Fig. 2). In addition

to initiating adaptive immune responses against patho-

gens, transfer of breast milk IgG immune complexes

can induce tolerance to food allergens in the offspring.

A thorough study by Ohsaki et al. demonstrated that

breast milk ovalbumin immune complexes are deliv-

ered to LP CD11c+ cells through the transport of IgG

by FcRn [110]. These phagocytes then present the anti-

gen and activate specific Tregs protecting the offspring

from allergy-mediated immunopathology. Interestingly,

this also involves expression of FcRn in CD11c+ cells.

Passive immunity can also shape the B-cell receptor

repertoire, likely by interfering with presented epitopes

and limiting long Tfh-GC B-cell interactions, thus

reducing plasma cell generation [111]. Recently, Rama-

nan et al. [112] demonstrated an unprecedented mecha-

nism of immune profile transmission across multiple

generations regulated by levels of breast milk IgA
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rather than through genetic background or microbiota

composition. Taking advantage of immune phenotypic

traits specific to C57BL/6 or BALB/c mouse strains,

that is, high levels of colonic RORct+ Tregs and high

levels of IgA, respectively, they studied the transmis-

sion of these traits across generations by cross-

fostering pups with dams of the opposite genetic back-

ground. They showed that variations in breast milk

IgA production condition colonic RORct+ Treg pro-

portions later in life. High levels of IgA-coated bacte-

ria affect antigen detection and limit expansion of

RORct+ Tregs. On the contrary, low levels of IgA lead

to higher frequencies of RORct+ Tregs, which in turn

suppress B-cell activation and IgA induction. It is

noteworthy that this mechanism is active during the

first week of life, long before endogenous plasma cells

and RORct+ Tregs appear in the offspring. This time-

frame suggests that maternal IgA influences the intesti-

nal microenvironment, either by acting on the

microbiota, the nonhematopoietic, or hematopoietic

compartment, leading to an early immune imprinting.

In summary, in addition to protection against

pathogens, passive immunity impacts neonatal immune

cell development and the establishment of immune

homeostasis with consequences far beyond the postna-

tal phase (Fig. 2).

Maternal leukocytes

Besides immunoglobulins, murine and human breast

milk contains immune cells, of which approximatively

80% are myeloid cells and 20% are lymphocytes,

mainly T cells [113]. The findings on the fate and func-

tion of these cells are controversial. Maternally derived

lymphocytes have been reported in mouse offspring

tissue although other studies were unable to confirm

this finding [113,114]. Nevertheless, the possibility

exists that maternal immune cells are able to survive

the adverse environment of the upper gastrointestinal

tract and penetrate the epithelium. This would lead to

microchimerism and provide neonatal tissues with

mature and active leukocytes [113,115]. For instance,

using GFP expressing dams nursing WT neonates, it

was shown that from P6, milk CD8+ cytotoxic T cells

(CTL) expressing the gut homing proteins a4b7 and

CCR9 engraft in neonatal PPs, and to a lesser extent

in the MLNs and the villus LP [116]. Their number

was reported to decline after weaning. These maternal

CTL may be active and functional, as they express

granzyme B, TNF-a, IFN-c, and IL-18.

Although it is not possible to track maternal cell

transfer in the tissues of human neonates, immune cells

have been characterized in human breast milk. For

instance, a recent study identified MAIT cells, cd T

cells, ILC1, and ILC3 in breast milk [117]. Interest-

ingly, breast milk also contains pathogen-specific lym-

phocytes. Thus, breast milk of HIV-infected mothers

can contain HIV-specific CD8+ T cells, which exhibit a

memory T-cell phenotype and express the gut homing

receptor CCR9 [118]. One could hypothesize that these

activated CTL take part in preventing HIV transmis-

sion in newborns and that other types of pathogen-

specific lymphocytes could be transmitted from

infected mothers. As described above, plasma cells

migrate during lactation to the mammary glands where

they mainly secrete IgA. Human breast milk also con-

tains a4b7+ plasma cells and plasmablasts [119]. How-

ever, only one study performed in mice reported

maternal IgG-secreting plasma cells in the spleen and

bone marrow of B-cell-deficient (l�/�) pups [120].
In summary, the breast milk-mediated transfer of

intact maternal immune cells may help to maintain gut

barrier function, promote the establishment of symbio-

sis, and protect against pathogens. The exact contribu-

tion of maternal cells, however, remains to be

established.

Maternal soluble factors

Highly abundant in human breast milk, HMOs influ-

ence the neonatal host-microbial interaction in several

ways [121,122]. Indigestible for the infant host, they

serve as substrate for bacteria such as Bifidobacterium

and Bacteroides [123]. HMOs prevent bacterial adhe-

sion and act as a nonimmune exclusion factor (Fig. 2).

HMOs can also be recognized by different families of

immune cell receptors, such as C-type lectins and

sialic-acid-binding immunoglobulin-like lectins

(Siglecs). Thus, HMOs can bind the C-type lectin

receptor DC-SIGN on human monocyte-derived den-

dritic cells [124,125]. It has been proposed that such

binding could promote tolerogenic properties and/or

block pathogen interactions with these dendritic cells

[124,126]. However, the exact role of these interactions

is still unclear.

A large number of milk-derived peptides and pro-

teins harbor antimicrobial and immunomodulatory

activity. For instance, the iron-binding glycoprotein

lactoferrin efficiently decreases the growth of bacteria

associated with LOS [127]. The murine cathelicidin-

related antimicrobial peptide (CRAMP) or the human

homologue LL-37 inhibits growth of Staphylococ-

cus aureus, E. coli, and Streptococcus pyogenes (group

A streptococci) [128]. Similar to a-defensins, b-
defensins, b-casein, and lysozyme, these antimicrobial

molecules have therapeutic potential to prevent
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neonatal infection [129,130]. In addition, human breast

milk contains soluble CD14 (sCD14) that binds

lipopolysaccharide (LPS) from Gram-negative bacteria

[131]. Milk-derived sCD14 promotes LPS recognition

by TLR4 leading to the secretion of pro-inflammatory

cytokines [132]. Finally, human breast milk (especially

the breast milk produced during early lactation called

colostrum) contains additional unidentified proteins

that enhance innate immune recognition by neonatal

cells [133].

Along with antimicrobial molecules and sCD14,

many cytokines, such as IL-10, TGF- b1, TGF-b2, IL-
6, TNF, and IFN- c, are transferred through breast-

feeding. They promote oral tolerance as well as IEC

proliferation and survival, thus supporting mucosal

barrier function [134].

Finally, breast milk-derived epidermal growth factor

(EGF) plays a critical role in maintaining epithelial

barrier integrity and orchestrating the establishment of

neonatal mucosal immunity (Figs 2 and 3) [135]. Inter-

estingly, milk-borne EGF is at its highest concentra-

tion during early lactation and decreases over the

lactation period (Fig. 2). During the early postnatal

phase, EGF inhibits goblet cell-associated antigen pas-

sage (GAP) formation, prevents bacterial transloca-

tion, inhibits TLR4 signaling, and is protective in

experimental models of NEC and LOS [31,136,137].

The decline of EGF facilitates GAP-mediated translo-

cation of antigens and immunostimulatory molecules

prior to weaning, which is critical for the initiation of

intestinal immune system maturation [31,78,135,138].

In summary, many milk-derived compounds pro-

mote pathogen detection and killing, intestinal immune

system maturation and oral tolerance development,

maintenance of gut barrier function, and modulation

of the microbiota composition in neonates (Fig. 2).

Early-life defense mechanisms and
immune responses

Postnatal intestinal tissue development

Mice have a short gestation period of only 21 days

and exhibit substantial postnatal tissue maturation.

Although small intestinal villi develop prenatally at

E15 [139], intestinal crypts develop only from P12 to

P15 [140]. Neonatal IECs exhibit a low proliferation

rate, and the continuous renewal of the epithelium is

not initiated until 10–12 days after birth. Crypt-villus

structures elongate from birth in the duodenum and

from P4 in the ileum until P16 [141]. Mature Paneth

cells appear upon crypt formation around 2 weeks

after birth [142]. Colonization by the microbiota

significantly influences IEC maturation as illustrated in

germ-free mice; within 2 days of conventionalization,

colonic enterocyte proliferation intensifies and crypts

elongate [143]. During the suckling period, enterocytes

are equipped to metabolize milk nutrients [144]. Their

neonatal phenotype is mainly regulated by expression

of Blimp-1, a transcriptional repressor that prevents

adult-like enterocyte differentiation until weaning.

Consistently, transgenic mice with epithelial cell dele-

tion of Blimp-1 (Blimp-DIEC) are born with continuous

epithelial cell turnover, the presence of small intestinal

crypts and increased numbers of Paneth cells. IECs

from Blimp-1DIEC neonates also exhibit a transcrip-

tional profile similar to the adult epithelium, that is,

low expression of enzymes involved in milk constituent

degradation and elevated expression of enzymes that

allow degradation of complex carbohydrates such as

starch [144,145]. This adult-like epithelium makes the

neonate ill-adapted to neonatal life and results in

reduced weight gain and increased mortality [144]. The

secretion of mucins by goblet cells is also markedly

reduced in neonates, leading to a less prominent mucus

layer. Consequently, colonizing bacteria get in closer

contact with the mucosal tissue surface. This spatial

proximity may contribute to the enhanced susceptibil-

ity of neonate mice to E. coli K1 infection [146].

Zhang et al. [53] showed that mucin gene expression

and mucus layer thickness in mice increase at P15.

Similarly, the small intestinal mucus layer of neonate

rats increases until it covers the villi during the first

10 days postpartum. Thus, age-dependent differences

between the adult and neonatal epithelium such as

reduced IEC proliferation and exfoliation, lack of

mature Paneth cells and Paneth cell-derived AMPs

and a reduced mucus layer may contribute to the

enhanced susceptibility of the neonate host to infec-

tion.

Mouse PPs and ILFs, which are gut immune induc-

tive sites containing B-cell follicle(s), develop at differ-

ent time points pre- and postnatally, respectively.

Prenatal formation of PP anlagen is initiated at embry-

onic day 12.5 (E12.5) as VCAM-1+ stromal cells begin

to recruit cKit+LTb+CD11c+ cells to the intestinal tis-

sue via the receptor tyrosine (RET) kinase -RET

ligand axis [147]. Next, recruitment of lymphoid tissue

inducer (LTi) cells that are essential for the formation

of secondary lymphoid organs occurs through several

signals. In fetal gut tissue, neuronal stimulation trig-

gers expression of retinoic acid, which induces the

expression of the chemokine ligand CXCL13 on stro-

mal cells, attracting RORct+ LTi cells forming clusters

at E15.5 [148,149]. Additionally, IL-7 expression in the

tissue leads to the upregulation of lymphotoxin (LT)
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a1b2 in RORct+ LTi cells, necessary for PP formation

[150,151]. At E17.5, the interaction between LTa1b2+

LTi cells and LTbR+ mesenchymal cells leads to the

development of a microenvironment enriched in

VCAM-1+ICAM-1+ mesenchymal cells expressing the

chemokines CXCL13, CCL19, and CCL21, which pro-

mote the recruitment of lymphocytes to the PP anla-

gen [152–155]. Four days after birth, lymphocytes seed

the anlagen and a mature adult-like lymphoid struc-

ture of the PPs is detected at P7, with a compartmen-

talized distribution of T cells in the interfollicular

region (IFR), B cells and follicular dendritic cells in

follicles, and high endothelial venules in the parafollic-

ular areas [156]. In contrast to lymph nodes, the main

route of antigen transport to PPs is carried out by M

cells. At birth, the FAE typically lacks mature M cell
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Fig. 3. Innate immune recognition and antigen sampling in neonates. Pathogen-associated molecular pattern (PAMP) detection and antigen

uptake are under strict temporal regulation (upper panels). Epithelial TLR3 expression is increased at weaning, likely through downregulation

of the transcriptional regulator Blimp-1, and contributes to the antiviral host response (lower left blue box). Microbiota-derived endotoxin

induces epithelial expression of the microRNA miR-146a that reprograms TLR4 signaling and promotes LPS tolerance (lower left blue box).

TLR4 signaling is also regulated by maternal EGF. TLR5 is expressed by the postnatal intestinal epithelium and via Reg3c influences the

colonization efficacy of flagellated bacteria (lower left blue box). After weaning, TLR5 expression is restricted to crypt Paneth cells.

Concentrations of maternal steroid hormones in neonates after 1 week of life may favor Spi-B expression and the postnatal maturation of M

cells, responsible for luminal sampling of particulate antigen in PPs (lower right blue box). Antigen uptake and tolerance induction by GAP

are inhibited by high concentrations of EGF during early lactation. The decline of breast milk EGF transiently activates GAP in the colon

before it is inhibited again at weaning by the increasing bacterial load (lower right blue box). In contrast, GAP and antigen sampling in the

small intestine (SI) is only facilitated at weaning and remains functional thereafter.
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markers that gradually appear during postnatal devel-

opment (Fig. 3) [53]. Recently, Hays et al. [157]

showed that maternal steroid hormones that reach the

newborn could be involved in the regulation of neona-

tal M cell maturation. Indeed, maternal estradiol and

progesterone concentrations decrease after birth to

reach levels at P7 that favor M cell maturation (Figs 2

and 3). Spi-B represents the master regulator of M cell

maturation [158]. Spib-deficient mice lack expression

of typical mature M cell markers, such as GP2, a sur-

face receptor for type-I-piliated bacteria, and CCL9, a

chemokine involved in the recruitment of CCR1-

expressing immune cells, whereas early markers, such

as Marksl1 and Anxa5, are still expressed. In neonates,

expression of Spib is only detected from P8, followed

by GP2 and CCL9 expression at P15 [53]. Finally, gly-

coconjugates with a-linked fucose residues recognized

by the lectin UEA1 start to be expressed at P21 [53].

Another regulator of M cell differentiation, Sox8,

could also play a role in the delayed maturation of M

cells in neonates [159]. Transcytosis of luminal particu-

late material is ineffective in immature M cells, which

limits antigen transport to the subepithelial dome until

the PP immune system is ready to handle pathogens.

Consistently, invasiveness of S. agalactiae (GBS),

responsible of many LOS cases, increases in adults

after treatment with estradiol and progesterone con-

centrations that mimic neonate hormonal levels

reached at P7 [157]. Such hormonal concentrations

were shown to promote M cell maturation and tran-

scytosis of the bacteria.

Cryptopatches, the small clusters of lymphoid cells

giving rise to ILFs, are detected at the base of intesti-

nal villi between crypts 2 weeks after birth [160]. Their

postnatal development requires RORct+IL-7Ra+ LTi

cells and IL-7 signaling. Diet-derived aryl hydrocarbon

receptor ligands are needed for their maintenance, and

diet-derived vitamin A and its metabolite, retinoic

acid, have also been shown to influence RORct+ ILC3

cell numbers and the further development of cryp-

topatches [161,162]. Thus, murine gut-inductive sites

undergo important structural changes postnatally and

their architecture is completed only within 2 weeks

postpartum.

Unlike rodents, the long gestational period of

humans allows the gut mucosa to develop during fetal

life. The human gut mucosal tissue development is

completed by 19 weeks of gestation with its final archi-

tecture already in place at birth [140]. Thus, the

human newborn intestine contains PPs [163], but their

size and number gradually increase until puberty [164].

ILFs, with similar structure and immune cell composi-

tion as in mice, are present in human small intestine

and colon [165]. However, whether human ILF devel-

opment is similar to mice remains to be determined.

Human cryptopatches have been reported in only one

study using CCR6 to identify putative clusters of LTi

cells [166]. Nevertheless, humanized mice reconstituted

with human hematopoietic stem cells that express IL-

2Rc are able to develop cryptopatches, whereas the

same mice deficient for IL-2Rc are not, suggesting that

cryptopatches can also develop in humans [167].

Antimicrobial peptide production and innate

immune stimulation in neonates

While still developing, the neonatal mucosal immune

system faces two challenges: firstly, to avoid any inap-

propriate inflammatory response that could compro-

mise the gut barrier integrity and, secondly, to protect

the organism from infection by enteropathogens. The

lack of mature Paneth cells and AMP secretion (e.g.,

a-defensins and lysozyme) in the small intestine before

P14 makes murine neonates more vulnerable to infec-

tion [168]. Instead, neonatal IECs express the CRAMP

during the first 2 weeks of life. CRAMP expression

does not depend on the presence of the microbiota,

which suggests a strictly developmental regulation.

CRAMP exhibits antimicrobial activity against patho-

genic bacteria (e.g., Salmonella Typhimurium, E. coli

K1) but also against some commensal bacteria (e.g.,

Lactobacillus reuteri or Lactobacillus murinus).

Cramp�/� neonates are more susceptible to Liste-

ria monocytogenes infection, thus illustrating the role

of CRAMP to prevent infection in vivo [168].

Two weeks after birth, RORct+ ILCs populate the

small intestinal tissue in higher numbers and with a

higher expression of IL-22 than in adults [169].

RORct+ ILC3-derived IL-22 promotes Reg3c expres-

sion and epithelial barrier function. Although the func-

tion of ILC3s in neonates remains to be established,

they most likely contribute to the mucosal host defense

during the late neonatal period.

Microbial detection through epithelial pattern recog-

nition receptors must be tightly regulated to avoid

inappropriate innate immune stimulation and

inflammation-driven disruption of mucosal barrier

integrity (Fig. 3). This particularly accounts for the

neonate intestine characterized by reduced mucus pro-

duction, AMP secretion, and epithelial cell regenera-

tion. During the first 3 weeks of murine life, epithelial

TLR4 signaling is reprogrammed by enhanced produc-

tion of the small hairpin mRNA miR-146a, which

inhibits transcription of the TLR signaling molecule

interleukin 1 receptor-associated kinase 1 (IRAK1)

[170]. This mechanism facilitates LPS tolerance by
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preventing the secretion of pro-inflammatory media-

tors and mucosal damage until weaning [171]. Interest-

ingly, miR-146a induction and neonatal epithelial

TLR4 tolerization depend on microbial signals

(Fig. 3), since TLR4 deficient mice fail to develop

epithelial innate immune tolerance [170]. This may

explain why milk proteins have been shown to enhance

TLR4 recognition ensuring miR-146a upregulation

and TLR4 tolerization [133]. On the other hand, cae-

sarian section-born mice maintain epithelial IRAK1

protein expression promoting epithelial stimulation

and cell death [170]. Interestingly, NEC in human pre-

term infants has been linked to an inappropriate

TLR4 stimulation [37,39,172].

TLR5, the receptor for bacterial flagellin, is highly

expressed by neonatal IECs prior to weaning (Fig. 3)

[173]. TLR5 expression during the neonatal period lim-

its colonization by flagellated bacteria and has a long-

term impact on the microbiota composition [173].

After weaning, its expression is restricted to Paneth

cells [174]. Conversely, intestinal epithelial TLR3

expression is found only after weaning and confers

protection against viral infection (Fig. 3) [48]. This

age-dependent expression does not depend on micro-

bial signals but may be linked to IEC maturation

through downregulation of the transcriptional regula-

tor Blimp-1 [144].

In summary, the intestinal epithelium gets in close

contact with microorganisms during the neonatal per-

iod. A shift in the AMP spectrum and changes in the

expression and function of innate immune receptors

may help to establish postnatal host-microbial home-

ostasis.

Neonatal immune responses

At steady state, the adult small intestinal tissue is pop-

ulated with numerous conventional and nonconven-

tional lymphocytes and most lymphocyte populations

reflect a continuous cross talk with the microbiota as

germ-free mice have greatly reduced numbers of these

cell populations. The murine gut is devoid of adaptive

immune cells at birth and is seeded during the first

week of life. Interestingly, although the neonate is

rapidly colonized after birth by commensal bacteria, T

and B cells during the postnatal period display a na€ıve

phenotype and are only found in the gut-associated

lymphoid tissues but not the LP (Fig. 4) [114]. Acti-

vated lymphocytes are only detected after weaning,

both in gut-associated lymphoid tissues and at effector

sites but they reach adult levels long after [114,175].

Thus, there is a relatively long period, during which

the adaptive immune system of the gut under

homeostatic conditions remains oblivious to microbial,

food, and environmental stimulation (Fig. 4).

Induction of tolerance to orally ingested molecules

requires antigen delivery to cDCs, which is tightly reg-

ulated during the neonatal period. GAP-mediated

transport of luminal antigens represents a substantial

sampling mechanism taking place at the small intesti-

nal and colonic epithelium [176,177]. In early life,

GAPs are inhibited by breast milk-derived EGF, limit-

ing antigen exposure and preventing bacterial translo-

cation in colon and small intestine (Fig. 3) [31,137]. In

the preweaning period, the decline of EGF in breast

milk limits EGFR activation and allows acetylcholine

signaling that leads to GAP formation in the colon,

thereby promoting transport of luminal antigens exclu-

sively to the colonic LP. Antigens delivered by GAPs

are preferentially taken up by CX3CR1-CD103+ cDCs

[177], which are known to promote Treg expansion

and tolerance [178,179]. As such, preweaning induction

of colonic GAP triggers the activation of T cells and

preferential development of Tregs specific for bacterial

antigens in the colon-draining MLNs followed by their

migration in the colon LP where they establish toler-

ance to the microbiota [31]. Around weaning, the

detection of the increased bacterial load by colonic

goblet cells via a Myd88-dependant pathway inhibits

colonic GAPs whereas small intestinal GAPs start to

form, are maintained throughout life, and by contrast

play a key role in the tolerance to food antigens

[180,181] (Fig. 3). Therefore, GAP formation is tightly

regulated both temporally and spatially in early life to

support induction and maintenance of tolerance in

adults and to avoid immune responses to gut micro-

biota in the colon and to food antigens in the small

intestine. In adult mice, the induction of Tregs and tol-

erance rely on the ability of CD103+ cDCs to metabo-

lize vitamin A into retinoic acid through their

RALDH activity [178,179]. In contrast, in 1-week-old

mice, MLN CD103+ cDCs exhibit weak RALDH

activity as compared to 3-week-old mice and are con-

sequently less efficient in activating antigen-specific T

cells, rendering neonates more prone to developing

allergy [182]. Nevertheless, upon diet supplementation

with vitamin A, neonatal MLN CD103+ cDCs mature

and secrete retinoic acid. In this model, neonatal toler-

ance is induced through expansion of IFN-c producing

T helper cells in contrast to the induction of FoxP3+

Tregs in the adult [182]. Recently, it was demonstrated

that during the first 2 weeks of life, neonates have

myeloid-derived suppressor cells that are induced by

breast milk-derived lactoferrin [183]. These cells can

inhibit T-cell expansion in co-culture via secretion of

prostaglandin PGE2, nitric oxide, S100A8, and
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S100A9. In vivo, myeloid-derived suppressor cells

improve the outcome of NEC in preterm neonates by

promoting Tregs over Th17 cells, leading to decreased

intestinal permeability and inflammation, and

increased survival.

Neonatal T cells have long been considered imma-

ture but this concept is an oversimplification and

poorly reflects the plethora of data on neonatal T-cell

responses collected to this point (thoroughly reviewed

by [184]). Regarding their phenotype and location,

murine T cells found in the neonatal intestine are more

similar to those found in sterile secondary lymphoid

organs than in their adult intestinal counterparts. In

contrast to the situation in mice, activated T cells have

been found in human fetal intestine devoid of living

microorganisms, but their origin and function require

further investigations [185,186]. Neonatal T cells are

able to respond to stimulation, but they do so in a dif-

ferent fashion as compared to adult T cells. This

reflects their adaptation to the neonatal environment

and their origin, since neonatal T cells by definition

represent recent thymic emigrants [187]. Historically,

one of the neonatal features that has been first

described is their Th2 bias during secondary responses

and thus a limited Th1 response in the first week of

life [188]. This bias is mediated by neonatal type 1

cDCs (cDC1) that are phenotypically and functionally

distinct from their adult counterparts [189]. Neonatal

cDC1 produce IL-10 to limit cytotoxic T-cell activa-

tion but can prime bona fide protective Th1 responses

after stimulation via TLR3 [190]. Despite their Th2

bias, a type 1 response can still be elicited in newborns

under specific settings. For example, DNA vaccines

promote Th1 cell expansion in neonatal mice, whereas

Postnatal tludAgninaeW

Fig. 4. Age-dependent immune maturation of the PPs and villus LP. During postnatal development (left panel), commensal bacteria and

bacterial antigen as well as breast milk IgA are found in the intestinal lumen. GAPs and M cells that allow antigen uptake in the adult have

not developed/matured, yet. The mononuclear phagocyte (MNP) compartment is ill-defined. The follicle (F) and IFR are present in PPs but B

and T lymphocytes within are not primed and do not migrate to the LP under homeostatic conditions. At weaning (mid-panel), solid food

and food antigens are found in the luminal content whereas maternal IgA disappears and is not yet replaced by self-production. Microbiota

displays significant dynamics and undergoes diversification due to the complex and diverse nutrients of the solid food. The status of the

MNP compartment is still ill-defined. GAPs and M cells are present and allow for the uptake of luminal antigens that are then presented to

T cells and a homeostatic/tolerogenic bias is imprinted. The pro-inflammatory cytokines of the weaning reaction IFNc and TNFa are

transiently present and shape the immune responses, ultimately leading to the adult-state homeostasis. T follicular helper cells primed at

weaning aid the activation of B cells that recognize luminal antigen. In the adult (right panel), the organization of the MNP compartment is

well characterized with regional specificities in PP. Thus, cDCs are enriched in the IFR where na€ıve T cells reside, whereas LysoDC and

macrophages are enriched in the subepithelial dome (SED) where constant uptake of luminal antigen occurs. Presentation of these antigens

leads to the presence of antigen-experienced T cells in the LP and PPs. In GC, B cells undergo homeostatic activation and differentiate into

IgA-producing plasma cells that migrate through the MLNs to the LP where they secrete IgA into the intestinal lumen and control microbial

composition, localization, and density. Created with BioRender.com.
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vaccination with a live virus leads to Th2 responses

[191].

Microbiota imprinting: the neonatal
windows of opportunity

In recent years, several studies have highlighted that

the long-term development of a mature and homeo-

static intestinal immune system entails a crosstalk with

the microbiota in specific time windows of opportunity

starting even prior to birth [27,29,30].

During pregnancy, maternal microbiota-derived

metabolites shape the neonate’s innate immune system

and this influence extends to the time of breastfeeding

[93]. Dietary fibers strongly influence the nature of

these maternal microbiota-derived metabolites, notably

SCFAs. Maternal SCFAs promote the development of

Tregs [95] and confer protection against metabolic dys-

regulation and obesity in the adult offspring [94]. They

also protect the offspring against house dust mite-

induced asthma, regardless of the age at the time of

sensitization [96].

At birth, the exposure to the microbiota is crucial to

induce the secretion of TNF-a by spleen myeloid cells

that in turn is necessary to induce the differentiation

of neonatal IL-10-producing pre-cDC1 into IL-12-p40-

producing cDC1 [192]. Importantly, this maturation of

pre-cDC1 allows neonates to generate a protective

cytotoxic T-cell response against L. monocytogenes.

The crucial role of host-microbiota interactions dur-

ing early life was demonstrated by colonization of

germ-free mice at different time points after birth.

Although many phenotypical traits were reversed by

conventionalization of adult germ-free animals [193],

other immune parameters were found to require the

presence of the microbiota during a postnatal time

window. For example, only microbial exposure during

early life but not in adults is able to inhibit the expres-

sion of CXCL16 in lung and colonic mucosa, allowing

the subsequent control of invariant natural killer T

(iNKT) cell numbers, which is protective against

immune-mediated diseases (e.g., colitis) in later life

[194]. The intestinal expansion of iNKT cells during

the neonatal period is controlled by sphingolipids

derived from Bacteroides fragilis, a member of the

commensal microbial community [195]. Similarly, early

microbial exposure is required to control the levels if

IgE [196] and the influx of Tregs to the neonate’s skin

[197]. Another study showed that exposure to bacterial

species able to synthesize riboflavin, such as the patho-

biont Prevotella mirabilis, during the second week of

life promotes the expansion of MAIT cells, especially

in the skin where they favor tissue repair [198].

Finally, GAP-mediated antigen sampling in the colon

must happen during the second week of life to ensure

appropriate immune responses in adulthood [31]. Inhi-

bition of colonic GAP formation in the preweaning

phase or their maintenance after weaning lead to

impaired Treg development and worsen inflammation

in the DSS-induced colitis model.

Weaning-induced immunity

The weaning reaction, the last window of

opportunity

At weaning, the passive protection provided by breast

milk-derived proteins is replaced by a stepwise matura-

tion and establishment of the endogenous adaptive

immune system. At the same time, the introduction of

solid food in the diet reshapes the microbiota composi-

tion and promotes its diversification, reprogramming

bacterial metabolic pathways [145]. Thus, major

changes occur in the gut at weaning leading to the

final education of the intestinal immune system during

what has been called a weaning reaction [78]. The

opening of this last window of opportunity at 3 weeks

of age in mice is regulated by the decreasing concen-

tration of breast milk EGF and is characterized by a

strong and transient upregulation of IFN-c and TNF-

a expression [78]. Similarly, during the first week after

weaning, piglet intestinal tissues undergo an inflamma-

tory response, notably with the upregulation of IL-6,

IL-1b, and TNF-a [199]. Although TNF-a expression

induced by microbial colonization at birth is restricted

to the spleen and promotes pre-cDC1 maturation

[192], TNF-a expression induced by the weaning reac-

tion occurs in the gut [78,199]. In adult mice, the gut

TNF-a expression that follows TLR7 stimulation is

known to induce a massive and rapid migration of

cDCs from the villus LP to the MLN and from the PP

dome-associated villus LP to the IFRs enriched in

na€ıve T cells [200,201]. Whether such migration occurs

during the weaning reaction-induced TNF-a expression

in infant animals remains to be established. Anyhow,

in weanling mice microbial antigens, along with

SCFAs and retinoic acid promote the expansion of

colonic RORct+ Tregs that enhance protection against

DSS-induced colitis in adults [78]. Mice that missed

the weaning reaction are ill-equipped to adequately

respond to pathological inflammations such as colitis,

allergy, or cancer in adulthood. The critical role of

innate immune signals during this transition has been

highlighted in humans by the work of Vatanen et al.

[202]. They showed that the production of highly stim-

ulatory hexa-acylated LPS by members of the infant
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microbiota was associated with protection from aller-

gic disease.

Mucosal immune cell changes induced during

weaning

A major change driven by weaning is the expansion

and activation of mucosal B cells, inducing the matu-

ration of PPs, ILFs, and cryptopatches and marking

the start of endogenous IgA production, crucial for

maintaining intestinal barrier, controlling the micro-

biota, and fighting against pathogens. In the small

intestine, peptidoglycan from Gram-negative bacteria

is recognized by epithelial nucleotide-binding oligomer-

ization domain-containing protein 1 (NOD1) [203],

which leads to the expression of b-defensin 3 and

CCL20. In turn, CCL20 recruits CCR6-expressing B

cells into cryptopatches. B-cell expansion induces the

maturation of cryptopatches into ILF through TLR2-

and TLR4-mediated microbial recognition. Consecu-

tively, ILF B cells modulate the commensal microbial

community through IgA induction.

Germinal center formation and the subsequent gen-

eration of antigen-specific IgA characterize PP matura-

tion (Fig. 4). Lack of receptor activator of nuclear

factor kappa-B ligand (RANKL) expression in IEC

blocks M cell differentiation at a very early stage

[204]. In the absence of M cells, the uptake of particu-

late antigens is strongly inhibited and a delay in GC

formation and plasma cell generation after weaning

leads to decreased levels of IgA in the intestinal lumen

and reduction of IgA-coated bacteria that persist in

adulthood. The transcription factor Sox8 is expressed

downstream of RANKL signaling and involved in the

late stage of M cell maturation (Fig. 3) [159]. Impaired

antigen uptake in Sox8-deficient mice leads to delayed

GC reaction and IgA induction at weaning that do

not persist into adulthood. Other mechanisms for sol-

uble and particulate antigen uptake that contribute to

the establishment of intestinal homeostasis in absence

of mature M cells remain to be identified and the stage

of the immune development during which those mech-

anisms are activated needs to be defined. Moreover,

the relative contribution of the different PP phagocyte

subsets to the weaning-induced immune reaction has

to be determined. In adults, subepithelial LysoDCs

and macrophages are the main phagocyte subsets

involved in particulate antigen uptake (Fig. 4)

[19,205,206]; whether it is also the case in neonates

and weanling mice and whether they can be activated

the same way than in adults is currently unknown.

In mice and humans, B-cell clones that are gener-

ated in early life persist into adulthood, even those

specific of bacterial species encountered at weaning but

lost afterward due to the diversification of the micro-

biota [207]. Activation of B cells in the PPs may be

influenced significantly by dietary antigens, as rats that

are colonized with a commensal microbiota but are

kept on a protein-depleted diet have smaller PPs

mainly containing immature B cells, a phenotype that

can be rescued when complementing the diet with

casein [208].

Many changes in the intestinal immune system occur

at weaning with the induction of microbially induced

RORct+ Tregs and IgA being the best-characterized

examples. CX3CR1+ macrophages make up a great

proportion of the gut immune cell compartment and

react very rapidly to changes in homeostasis. In the

adult, intestinal macrophages are renewed relatively

quickly and differentiate from incoming monocytes

that were generated in the bone marrow [209]. The

neonatal colonic tissue, however, contains macro-

phages that mainly stem from embryonic hematopoi-

esis [209]. From weaning onwards, there is an influx of

CCR2-dependent monocytes, which with time replace

embryonic-derived macrophages and constantly replen-

ish the intestinal macrophage pool. The seeding of the

colon with an adult macrophage compartment requires

microbial exposure as this process is significantly

dampened in germ-free mice. Interestingly, fetal-

derived macrophages residing far from the intestinal

lumen and its content do not completely disappear in

the adult tissue. A small subset of T-cell immunoglob-

ulin and mucin domain containing 4 (TIM-4)-

expressing macrophages are indeed long-lived and

derived from fetal hematopoiesis, whereas the TIM-4-

negative macrophages derived from CCR2-dependent

monocytes, quite rare at birth, increase in frequency at

4 weeks of age, and further expand in adults [210].

Another study showed that whereas macrophages close

to the gut lumen are rapidly renewed, a large part of

muscularis and submucosal macrophages, distant from

the lumen, are long-lived, self-maintaining cells barely

replaced by circulating monocytes [211]. These macro-

phages are associated with and support neurons and

gut vasculature and their loss typically results in vascu-

lar leakage and reduced transit.

Similar to their adult counterparts, neonatal colonic

macrophages display an anti-inflammatory profile that

is critical for gut homeostasis. IL-10 receptor signaling

is essential to induce these anti-inflammatory proper-

ties in macrophages and its loss in mouse and man

results in spontaneous colitis and severe early-onset

inflammatory bowel disease, respectively [212,213].

Loss of autocrine IL-10 signaling in intestinal macro-

phages actually reshapes them into IL-23-producing
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cells, which leads to IL-22-driven colitis [214]. Interest-

ingly, unlike the colon where IL-10 production by

macrophages as well as Treg expansion and mainte-

nance depend on microbial exposure, macrophage pro-

duction of IL-10 and the generation of Tregs in the

small intestine require dietary amino acids [215,216],

indicating a regionalized regulation of intestinal immu-

nity based on intestinal lumen content sampling, possi-

bly by GAPs [31,180].

Conclusions and perspectives

The results discussed in this review illustrate that the

neonatal mucosal tissue and immune system undergo

gradual maturation processes within defined time win-

dows and depend on developmental programs and/or

exogenous signals such as microbial exposure. This

assigns the neonatal period a critical and nonredun-

dant role in the individual’s life to set the stage for

future host-microbial interactions and to establish

immune homeostasis. This relates to cell homing and

early suppression of immune activation, the acquisition

of tolerance to innocuous antigens during a time-

window controlled sampling activity, and, finally, the

generation of large amounts of effector T lymphocytes

and plasma cells. The discovery of the succession of

necessary and nonredundant phases during ontogeny

has given rise to the concept of layered immunity

[217], which combined with the concept of windows of

opportunity, may help to identify important endoge-

nous and exogenous stimuli that act on the host dur-

ing the different phases and ultimately allow to better

understand the situation of the adult host [30]. It may

also help to define the cause of immune- and

inflammation-mediated diseases of the intestinal tract

and identify possible strategies to reinstall immune

homeostasis and preserve health.

However, important questions remain. For example,

what are the functional mechanisms that explain the

prolonged period of immune naivet�e of the healthy

murine neonate? The bacterial colonization of the

mucosal surfaces starts at birth and quickly reaches

high bacterial numbers. However, the adaptive

immune system in the small intestine is maintained in

a na€ıve, silent state until after weaning (Fig. 4). In

addition, what are the mechanisms that suppress early

immune priming? First, the microbial antigen diversity

and antigen concentration in the intestinal lumen of

neonates may—despite high bacterial density—be too

low and fail to reach the threshold required to allow

cognate antigen recognition to occur. A combined

approach using metagenomics, metaproteomics, and

antigen prediction might help to answer that question.

Second, the mechanisms that allow antigen uptake,

processing, and presentation may not be fully func-

tional at birth. The main routes of antigen sampling

may indeed be less functional since GAPs are inhibited

in neonates and mature M cells only appear in PPs

shortly before weaning [31,53]. Moreover, subepithelial

phagocytes may be unable or less efficient to prime B

and T cells before weaning. Third, breast milk factors

strongly involved in the regulation of the neonatal

intestinal immune response [31,78,137] may restrain PP

activation before weaning. Lastly, neonatal T-cell

intrinsic features may preclude effective activation

under homeostatic conditions. Consistently, neonatal

T lymphocytes by definition are recent thymic emi-

grants that have been shown to exhibit significant dif-

ferences after activation [187,218].

Other open questions relate to the emergence of

immune activation at weaning. In particular, the role

of specific commensal bacteria involved in this process

such as the so-called segmented filamentous bacteria

(SFB) that intimately interact with the apical plasma

membrane of the intestinal epithelium in the ileum and

the FAE overlaying the PPs (Fig. 4) [219,220]. Nota-

bly, SFBs show the highest abundance at 3 weeks after

birth [221,222] and exhibit strong immunomodulatory

properties characterized by a strong IgA and Th17

inducing activity in PPs or ILFs [223–225]. In PPs they

also stimulate the expression of IL-21, aiding the

induction of commensal-specific IgA and creating a

regulatory loop controlling SFB abundance [226].

Another candidate might be Alcaligenes spp. that

reside within subepithelial phagocytes in PPs and

induce IgA, Th17, and ILC3 responses [227,228].

Besides specific viable microorganisms, bacterial

metabolites have also been identified as potent induc-

ers of immune responses [229]. They are also involved

in PP activation and might initiate immune priming at

weaning. Finally, although the landscape of PP

mononuclear phagocytes has been well characterized

in the adult [18] their presence, location, and function

during the postnatal development and weaning

remains to be established (Fig. 4).

A better understanding of the neonatal and infant

mucosal immunity has important medical implications.

Children exhibit the highest risk of enteric infections,

and diarrheic diseases significantly contribute to child-

hood mortality worldwide. A mechanistic understand-

ing of the influence of maternal and dietary factors as

well as microbial metabolites and immunostimulatory

molecules is instrumental to improve oral vaccines and

develop therapeutic strategies to prevent early-life

infections. Given the life-long priming during the

neonatal window of opportunity, this time period
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might also represent the prime period for interventions

that aim to prevent inflammatory and immune-

mediated diseases in later life.
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