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Abstract

Given a general 3-RPR parallel planar robot with linear platforms, [7] proves that there are
no singularity-free paths between non-symmetrical direct kinematics solutions. We provide
an alternative proof of this. We also provide a proof that shows that there is a singularity-
free path between two symmetrical solutions if an appropriate condition is satisfied. This
condition will be automatically satisfied for exactly one symmetrical pair if there are four
real solution to the direct kinematics. The topology of the kinematic singularities of these
robots is described. We prove that the singularity-free set of the domain of the kinematic
map for such robots consists of three connected components. An analysis of special robots
is also provided, i.e. when the anchor points of the moving platform and the fixed platform
have the same cross-ratios. For this case we show that, the singularity-free space consists of
four connected components, no direct kinematics solutions can be connected without crossing
the singularity surface and that the absolute value of the determinant of the Jacobian of the
kinematic map evaluates to the same number for any of the direct kinematics solutions.

The topological analysis of the singularities of 3-RPR parallel planar robots with linear
platforms is based on the fibers of the natural map SE(2) → S1 restricted to the singularity
surface of the kinematic map, and this is a conic fibration. In fact this is also the case when
one or both platforms are triangular. We use similar methodology as in the linear case and
show that in the case that one or both platforms are triangles the singularity-free space has
two connected components. This result was already proven when both platforms are triangles
in [9], but here a different approach is used.

Keywords: 3-RPR parallel robots, singularities, inverse kinematics, conic fibrations

1 Introduction
In Section 2, we will deal with 3-RPR parallel planar robots with linear platforms and for simplicity
we will often just call them linear robots. Section 3 deals with robots with triangle-line platforms,
in short hybrid robots, and Section 4 deals with the most general case, i.e. robots for which both
platforms are triangles, which will be called triangular robots. Because of the simple structure
of linear robots, one is able to fully analyse the topology of the singularities, in SE(2), of these
mechanisms. We will therefore be very detailed in our analysis of the topology of the singularities
in Section 2 in order to motivate a similar analysis (but with less detail) for the other sections.
Despite the fact that the singularities of the three types of robots we deal have different topologies,
the main idea to analyse their topology remains the same (this is inspired by [7]): The natural
projection to the orientation SE(2) → S1 restricted to the kinematic singularity space Σ, is a
map between quasi-projective varieties that is also a conic fibration over S1 [3, 5] and it suffices
to understand the fibers of this map to understand the topology of Σ. There are good sources
of literature for conic fibrations, however we cannot take full advantage of them as they mostly
deal with complex projective varieties while we deal with real affine varieties. So in a sense, this
work also provides an initial understanding of conic fibrations in real algebraic geometry and their
application in robotics.
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Some results known for linear robots are significantly simpler and perhaps somewhat surpris-
ingly different from those of triangular robots. For instance, the number of real direct kinematics
solutions for the robots with linear platforms can be proven to be at most 4 while this is 6 for
the robots with triangular platforms (see Remark 2.2 or [7] or [8] Exercise 4.1). But more can be
said about this simpler structure and in this paper we will give an analysis of the topology of the
singularity surface of this mechanism.

We provide a proof of a known fact that for a sufficiently general 3-RPR linear robot there
are two distinct direct kinematics solutions that can be connected via a path that does not cross
singularity. Such questions were asked for other planar manipulators (e.g. [2]) and is of interest to
experts in robotics and kinematics. In fact, more is known about these robots. It is known that
there is a singularity-free path between two symmetrical solutions to the direct kinematics (i.e.
pair of solutions for which the angles and heights of the moving platform have opposite signs) if
these solutions lie in the exterior of their associated hyperbola. This was shown in [7]. However
because of a flaw of an argument in [7], it was wrongly believed that all symmetrical solutions can
be connected. We provide a topological argument that shows that if the symmetrical solutions
lie in the interior of their associated hyperbola then they cannot be connected via singularity-free
path (see Remark 2.6).

There is a subtle point in our proof, it provides geometric and topological insights to the
kinematic singularity surface in SE(2). We also show a new result for linear robots, namely that the
singularity-free space of a sufficiently general 3-RPR robot consists of three connected components
and then provide an alternative proof that non-symmetrical solutions cannot be connected without
crossing singularities. We also study how the determinant of the Jacobian of the kinematic map
evaluates at a point in any of these components. We provide explicit proof stating that the
determinant of the Jacobian at non-symmetrical solutions evaluates to numbers with different
signs (this is clear if the number of connected components of the singularity-free space is two, but
we have three such components).

In subsection 2.2, we deal with special linear robots, namely those for which the linear platforms
have anchor points with the same cross-ratios. These robots differ from the general ones because no
direct kinematics solutions can be connected without crossing singularity. These robots have easy
but interesting topological structures. For instance, the absolute value of the determinant of the
Jacobian evaluates to the same number for any direct kinematics solution. Also the singularity-free
space of these robots, in SE(2), consists of four connected components and all 4 direct kinematics
solutions belong to distinct connected components.

In Section 3 the previous techniques on investigating the singularity surface of hybrid robots
are extended, to prove that the singularity-free space of these robots consists of only two connected
components.

We investigate general 3-RPR robots (triangle-triangle) in Section 4. This mechanism has
been studied in the past, e.g. [4, 12] investigate the direct kinematics problem and [10, 11] made
analysis of the singularities. Our analysis led to a very simple proof of the fact that the number
of connected components of the singularity-free space of this robot is two. This has been proven
in [9,10], however their method is different and requires more mathematical tools. The advantage
of our method is its simplicity and it gives a complete description of the topology of the singularity
surface (and not only the number of connected components of its complement). We give a brief
overview of how [10] and [9] prove their results before finally proving it using our analysis of the
θ-sections (i.e. the fibers of the conic fibration). We did not need to look at a modified workspace
to prove this result and in our proof we can identify the singular points of the singularity surface
of such mechanisms (these are pinch-points and have to do with θ-sections for which we have two
intersecting lines rather than a smooth conic).

To complete, a brief analysis of the singularities of 3-RPR robots with similar (not reflected)
triangular platforms is presented in subsection 4.2. In this special case the number of connected
components of the singularity-free space is four instead of two. This number remains the same
even if we require that the triangles are congruent.
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2 3-RPR Linear Planar Platforms
Consider a 3-RPR planar parallel robot with linear platforms for which the anchor points are
distinct. We will refer to it as linear robot for brevity throughout this section. We can without
loss of generality, via scaling and change of zero-position, assume the following:

• The fixed platform lies on the x-axis.

• The moving platform at zero-position, i.e. when the transformation of the moving platform
with respect to the fixed platform is identity, lies along the x-axis.

• The anchor points of the fixed platform are (0, 0), (1, 0), (f3, 0) and at zero-position these
anchor points are connected respectively, by an RPR leg, to the anchor points

M1 = (0, 0), M2 = (m2, 0), M3 = (m3, 0)

of the moving platform.

The figure below illustrates such a robot.

(0, 0) (1, 0) (f3, 0)

M1

M2

M3

We will now describe the kinematic map of this robot.
For simplicity, we write an element σ ∈ SE(2) as a triple (θ, x, y) where θ determines the

orientation and (x, y) the translation vector. We will also often, write c instead of cos θ and s
instead of sin θ.

Following the notations above, the kinematic map F : SE(2) → R3, of the robot is given by

F (θ, x, y) := (x2 + y2, (m2c− 1 + x)2 + (m2s+ y)2, (m3c− f3 + x)2 + (m3s+ y)2)

This map takes the transformation of the moving platform (centred at M1) and maps it to the
square of the length of each of the legs.

It is easy to compute the set of singularities of this map, it is given by:

Σ := {(θ, x, y) ∈ SE(2) : D(c, s, x, y) = 0}

where D is the determinant of the Jacobian of F and it is specifically the polynomial

−c(f3m2 −m3)y
2 + s(f3m2 −m3)xy + s2m2m3(f3 − 1)x− s(cm2m3(f3 − 1) + f3(m2 −m3))y

Suppose now that the robot is sufficiently general, i.e. f3m2 ̸= m3 and that we are given squared leg
length values ℓ ∈ R3. We investigate the direct kinematics, i.e. the fiber F−1(ℓ). For ℓ = (l1, l2, l3),
we have the following system of equations:

l1 = x2 + y2

l2 = (m2c− 1 + x)2 + (m2s+ y)2

l3 = (m3c− f3 + x)2 + (m3s+ y)2
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Remark 2.1. We note that if there is a solution for which the two platforms are parallel (θ = 0
or θ = π), then ℓ must lie in the union of two hyperplanes in R3, say H1 ∪H2.

Suppose now that ℓ is not in the H1∪H2 defined in Remark 2.1. We can get rid of the squares
x2 and y2 by subsituting the first equation in the last two and obtain a linear system in x and y.
This linear system is independent when f3m2 −m3 ̸= 0 and s ̸= 0. These conditions are already
met by the assumptions made. Thus, we can express x and y in terms of c and s and substitute
this expression in l1 = x2 + y2 and, upon reduction modulo c2 + s2 − 1, obtain a univariate
cubic polynomial h(c) ∈ R[c] (for detail description of h, please see [1, 7]), where c = cos θ. The
polynomial h(c) has the property that h(1) and h(−1) have the same signs.

Remark 2.2. For a general linear robot, we conclude that if ℓ ∈ R3\{H1 ∪H2} (where H1 and
H2 are defined in Remark 2.1), i.e. when the direct kinematics solutions do not involve the case
where the platforms are parallel, then the solutions to the direct kinematics are obtained from
finding the roots of the cubic univariate polynomial h(c). However since h(c) has the property that
h(1) and h(−1) have the same signs, there are maximum 2 distinct roots in the interval (−1, 1).
Hence, there are at most 4 distinct real solutions to the direct kinematics problem. Thus, in terms
of θ, the direct kinematics solutions can be interpreted geometrically, as the intersection points of
maximum two vertical lines and the unit circle in the cs-plane.

If the two lines coincide then this would imply that there exists a double real root of h(c) in
(−1, 1). Thus by back substitution in the linear system for the direct kinematics two solutions
with multiplicity two will arise, which is a singularity.

Definition. The pair of direct kinematics solutions, (θ, x, y) and (−θ, x,−y), will be called sym-
metrical solutions (this term is also used in [7]).

2.1 General Case
For the rest of this section we assume a general linear robot to be one for which the condition
f3m2 ̸= m3 is satisfied. Firstly, we provide an alternative proof of a known result. (see [7])

Proposition 2.3. For a general linear robot, there exist two distinct non-singular elements σ, τ ∈
SE(2), with the following properties:

• F (σ) = F (τ)

• There is a path γ : [0, 1] → SE(2) from σ to τ such that γ([0, 1]) ∩ Σ = ∅

Proof. We note that (see also [1])

D(±1, 0, x, y) = ∓y2(f3m2 −m3)

So, for a general robot, (0, x, y) ∈ Σ implies y = 0.
Let ∆y(D) be the discriminant of D with respect to y. Then ∆y(D) factors as

∆y(D)(c, s, x) = s2g(x, c)

where g(x, c) is a quadratic polynomial in x and in c. For a general robot, the coefficient of x2 in
g(x, c) does not vanish and is the positive value (f3m2 −m3)

2.
Let ∆x(g) be the discriminant of g with respect to x. Then ∆x(g) factors as

∆x(g)(c) = p(m2,m3, f3)c

where p(m2,m3, f3) = 16f3m2m3(m3 −m2)(f3 − 1)(f3m2 −m3)
2 ̸= 0, for a general robot.

Without loss of generality, assume that p > 0. Hence, for any θ ∈ (−π/2, π/2), g(x, cos θ) will
have two distinct roots in x and since the coefficient of x2 is positive it attains negative values for
any x between these two roots. Thus, we can find x = α such that g(α, 1) < 0 and because g is
continuous, there is a sufficiently small δ > 0 such that g(α, cos θ) < 0, for all θ ∈ (−δ, δ).
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Define the following path-connected set

X := (−δ, δ)× {α} × R\{(0, α, 0)}.

Note that by the previous analysis, any (θ, x, y) ∈ X is a regular point of the kinematic map. But
since F (θ, x, y) = F (−θ, x,−y), F restricted to X is not injective, i.e. there is a singularity-free
path between two symmetrical direct kinematics solutions.

Henceforth, without loss of generality assume that p(m2,m3, f3) > 0. If we investigate the
proof above we see that at the point (θ, x, y) = (0, α, 0), where α ̸= 0, the set of real singularities
is locally a line. This property of F was not directly revealed in [7].

Theorem 2.4. For a general linear robot, the singularity-free space consists of three connected
components.

Proof. We will abuse our notations and write D evaluated at θ to mean D(cos θ, sin θ, x, y). First
we note that for a fixed θ ∈ [0, 2π), a section of Σ at this θ is a hyperbola (possibly degenerate).
This is because the discriminant of the conic is

−(f3m2 −m3)
2s2

Moreover, the determinant of the Hessian of the quadratic form defining this conic equation is

f3m2m3(m3 −m2)(f3 − 1)(f3m2 −m3)s
4

This implies that the hyperbola at a θ-section degenerates iff θ = 0 or θ = π. In fact, as our
previous analysis shows, it degenerates into the double lines y2 = 0. For a fixed θ, we will call the
θ-section of Σ the hyperbola at θ, as illustrated in Figures 1 and 2.

θ near when
hyperbola ‘closes’

Σ in θ-section
is double line

Σ locally a line here

typical θ-sectionθ near when
hyperbola ‘opens’

Σ in θ-section
is double line θ

x

Figure 1: An artistic illustration of the θ-sections of Σ. At θ = 0 and θ = π the hyperbola
degenerates into double lines.

The slope of the principal axes of the hyperbola at θ is also determined by the entries of the
Hessian of D. One easily checks that the angle between the transverse axis of the hyperbola at θ
and the x-axis is the half of θ. So the hyperbola rotates counter-clockwise as we change θ from
0 to 2π. Since we assumed p(m2,m3, f3) > 0, D evaluates any element in the θ = 0 section to
non-positive values while D evaluates any element in the θ = π section to non-negative values. So
as θ continuously changes from 0 to π the following things happen:

1. The double line opens into two branches of a hyperbola.

2. D evaluates to positive values in the interior1 of the hyperbola ∀θ ∈ (0, π).
1The interior of a conic consists of all the points of the plane that don’t belong to any tangent of the conic.
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3. D evaluates to negative values in the exterior of the hyperbola ∀θ ∈ (0, π).

4. When θ is near π the branches begin to ‘open’ and degenerate so that at θ = π we get a
double line (the non-transverse axis identifies with the θ-section of Σ) and at this section D
evaluates any element outside this double line to positive values.

We can make similar observations when θ changes from π to 2π, where the hyperbola continues
to rotate counter-clockwise but where the region for which D evaluates to positive values vanishes
at θ = 2π (which we identify with θ = 0 in S1). This behavior of the hyperbola is illustrated in
Figure 2.

θ = −π/12 θ = 0 θ = π/12

θ = 11π/12 θ = π θ = 13π/12

Figure 2: How D evaluates for different θ-sections

Consider now a symmetrical pair σ, τ ∈ SE(2) of regular points such that D(σ) = D(τ) < 0.
Then σ and τ are in the exterior of their associated hyperbolas. Without loss of generality
assume that the orientation of σ is θ0 ∈ (0, π). We can move from within the θ = θ0 section
to the opposite side of the transverse axis of the associated hyperbola without crossing Σ. We
can then continuously follow the θ-sections with θ ∈ [−θ0, θ0] remaining on this ‘opposite’ side
without crossing singularity (the hyperbola degenerates into double line at θ = 0, but our path
remains in the exterior of the associated hyperbolas without crossing singularity). This procedure
is also described in [7] and takes the advantage of the fact that the exterior of a hyperbola is
one connected component in the affine plane. With this we conclude that the ‘exterior’ of Σ is
one connected components (i.e. points that lie in the exterior of the hyperbola associated to the
θ-section corresponding to their orientation).

Now take any θ ∈ (0, π)∪(π, 2π), then the associated hyperbola has two connected components
corresponding to the interior of the branches. We will show that these two ‘interiors’ cannot be
connected. Continuously following the θ-section will lead us to conclude that possible connection
only occurs when θ = π (at θ = 0 the interior collapses and so we cannot traverse a path that
meets θ = 0). But, even at θ = π one cannot pass between the two interiors (at this point Σ
looks locally like the intersection of two planes). In short, the two branches of the hyperbola at a
θ ∈ (0, π) ∪ (π, 2π) section correspond to two distinct connected components of SE(2)\Σ.

Thus, we conclude that there are three connected components of SE(2)\Σ.
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In the proof of the last Theorem more was shown. Starting from a θ-section where one of
the symmetrical solutions lies, if these symmetrical solutions lie in the exterior of their respective
hyperbolas then they can be connected via a singularity-free path. If however, the symmetrical pair
lie in the interior of their respective hyperbolas, then they cannot be connected via a singularity-
free path. Furthermore, F restricted to one of the connected components is two-to-one while F
restricted to any of the other two components is injective. Thus, we can state the following:
Corollary 2.5. For a general linear robot, there is a singularity-free path between symmetrical
direct kinematics solutions iff these solutions lie in the exterior of their associated hyperbolas.

The results above are regardless of the sign of p. For our assumption p > 0, the Corollary is
equivalent to the fact that D evaluates each element of the symmetrical pair to a negative number.
Remark 2.6. We discovered a flaw to an argument in [7] where Merlet claimed that there is
a singularity-free path between any symmetrical direct kinematics solutions. In his argument,
Merlet does not consider the fact that the hyperbola degenerates at θ = 0 and θ = π and suggests
a path between a symmetrical pair of solutions in the interiors of Σ. The path that is suggested
follows the θ-section continuously while remaining on the transverse axis and in the interior of the
associated hyperbola. However, at θ = 0 (if p < 0, θ = π), the interior vanishes and so the only
possible path is when traversing θ = π. It is still not possible to pass to the other branch even
if the hyperbola branches completely ‘open’ (i.e. θ = π) as seen in the proof of Theorem 2.4. So
in [7], Merlet did not really accounted for the degeneration of the θ-sections of Σ.
Remark 2.7. At the end of Remark 2.2 we mentioned that symmetrical pairs of direct kinematics
solutions can be geometrically represented as maximum two vertical lines intersecting the unit
circle in the cs-plane. Switching between two solutions would mean that the lines move horizontally
along the circle until they intersect the circle in the original points. But now a reference point
that we follow has switched places with the another intersection point (see also Figure 3 for an
illustration of this motion). This geometric interpretation of a switch between solutions only in
terms of θ provides arguments that prove the following results.

t = 0 t ∈ (0, 1) t = 1

Figure 3: An illustration of the two lines representing the symmetrical pairs of solutions and the
switching between two solutions of a symmetrical pair.

Proposition 2.8. For a general linear robot, two non-symmetrical direct kinematics solutions
cannot be connected without crossing singularities.
Proof. Suppose we have two distinct non-symmetrical and non-singular solutions. Consider the
vertical lines and unit circle in the cs-plane as in Remark 2.7. Pick one of the intersections as a
reference point. Assume that there is a path from a solution that corresponds to this reference
point to a non-symmetrical solution. Switching between one solution of the direct kinematics to
another means a horizontal motion of the two lines along the circle which would end when the
lines intersect the circle exactly at the same points as they initially did. But now the reference
point has moved to one of the other points (not the symmetrical one). The only way for this to
happen is if the lines have eventually switched places and this happens only if they merge, which
is a singularity, by Remark 2.2.

7



Proposition 2.9. For a general linear robot, the determinant of the Jacobian evaluates two
regular non-symmetrical direct kinematics solutions to opposite signs.

Proof. It is easy to check that symmetrical solutions evaluate to the same sign, since for any
(θ, x, y) ∈ SE(2), D(c, s, x, y) = D(c,−s, x,−y). Assume that there exist two non-symmetrical
solutions that evaluate to the same sign. Then all of the solutions would evaluate to the same
sign, which would imply that all solutions lie either on the interior or the exterior of their associated
hyperbolas. Then two non-symmetrical solutions could be connected without crossing singularities,
for example the ones with positive θ, since the hyperbola rotates for θ ∈ (0, π) and continuously
preserves the interior/exterior parts. But this contradicts Proposition 2.8.

2.2 Special Case : Similar Platforms
As discussed in [7], solving the direct kinematics when f3m2 = m3, amounts to solving a second
degree polynomial equation in x for a specific c and y(x, c, s). Hence the solutions will be of the
form σ1 = (θ, x1, y1), σ2 = (θ, x2, y2) and τ1 = (−θ, x1,−y1), τ2 = (−θ, x2,−y2), when θ ̸= 0 or π.

Remark 2.10. By substituting m3 = f3m2 in D, we get

D(c, s, x, y) = f3m2(f3 − 1)((1− cm2)y + sm2x)s

Thus we observe that, for s = 0, we get D(±1, 0, x, y) = 0,∀x, y ∈ R. Hence, for any x, y ∈ R,
(0, x, y) ∈ Σ and (π, x, y) ∈ Σ. Also, it should be noted that, when θ ̸= 0 and θ ̸= π there will
always be 4 distinct direct kinematics solutions for a non-singular position.

Proposition 2.11. If σ1 = (θ, x1, y1) and σ2 = (θ, x2, y2) are two solutions of the direct kinematics
in the same θ-section, then D(σ1) = −D(σ2).

Proof. By subtracting the first from the second equation of the direct kinematics we get,

2(cm2 − 1)x+ 2sm2y − 2cm2 +m2
2 + 1 + l1 − l2 = 0 (1)

Since θ is the same in σ1 and σ2, they will belong in the same θ-section of SE(2), thus they will
both satisfy equation (1), which can be rewritten, for some κ ∈ R, as

(cm2 − 1)x+ sm2y + κ = 0 (2)

Hence, (x1, y1) and (x2, y2) lie on a line in xy−plane with slope 1−cm2

sm2
. Additionally, they will be

points on a circle with origin (0, 0) and radius
√
l1, since they both satisfy x2 + y2 = l1.

On the other hand, the singularity set on this θ-section becomes the line

sm2x+ (1− cm2)y = 0 (3)

which passes through the origin of the xy-plane with slope sm2

cm2−1 , hence it is a line perpendicular
to the line defined by equation (2).

As a result, (x1+x2

2 , y1+y2

2 ) will satisfy equation (3), which yields

(1− cm2)(y1 + y2) + sm2(x1 + x2) = 0 ⇔ y1(1− cm2) + x1sm2 = −(y2(1− cm2) + x2sm2)

and thus D(c, s, x1, y1) = −D(c, s, x2, y2).

Corollary 2.12. If σ1 = (θ, x1, y1) and σ2 = (θ, x2, y2) are two solutions of the direct kinematics
in the same θ-section, then (θ, λ(x1 + x2), λ(y1 + y2)) ∈ Σ for any λ ∈ R.

Corollary 2.13. All paths between direct kinematics solutions must cross singularities.
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(x1, y1)

(x2, y2)

(0, 0)√
l1

Figure 4: An example of the singularity line crossing the middle point of the chord between the
two direct kinematics solutions (x1, y1) and (x2, y2) on the same θ-section.

Proof. If σ1, σ2, τ1, τ2 are as defined in the beginning of this section, then for i = 1, 2,

D(τi) = D(c,−s, xi,−yi) = D(c, s, xi, yi) = D(σi)

But since σi and τi, for i = 1, 2, belong in opposite signed θ-sections a path between them should
involve crossing θ = 0 or π which is a singular position. By Proposition 2.11, the determinant
of the Jacobian evaluates solutions in the same θ-section to opposite signed values, hence they
cannot be connected without crossing singularities.

Corollary 2.14. The absolute value of the determinant of the Jacobian evaluates to the same
number for all direct kinematics solutions.

Proof. From the previous results, it follows directly that

D(τ1) = −D(τ2) = −D(σ2) = D(σ1)

By combining the arguments in this section it follows that

Corollary 2.15. For a special linear robot, the singularity-free space consists of four connected
components.

θ = 0

θ = π

θ

Figure 5: An artistic illustration of the θ-sections of the special case. At θ = 0 or θ = π the
singularities at these θ-sections are the whole xy-plane. At other θ-sections the singularity set is a
(blue) line on the “twisted strip”. The singularity-free region can be thought of as the complement
of the twisted strip and the two planes in the torus.

9



3 3-RPR Triangle-Line Planar Platforms
Consider now a 3-RPR planar parallel robot with one (fixed) linear platform and a (moving)
triangular platform for which the anchor points are distinct. In this section we will refer to it
shortly as hybrid robot. We can make analogous assumptions as in the linear robots but now
M3 = (m3, n3). The figure below illustrates such a robot.

(0, 0) (f3, 0) (1, 0)

M1

M3

M2

Using similar notations as in Section 2, the kinematic map F : SE(2) → R3, of the robot is

F (θ, x, y) := (x2 + y2, (m2c− 1 + x)2 + (m2s+ y)2, (m3c− n3s− f3 + x)2 + (m3s+ n3c+ y)2)

The singularity surface Σ is defined by the zero set of the determinant of the Jacobian of the
kinematic map D(c, s, x, y) in SE(2), where c = cos θ and s = sin θ for θ ∈ (−π, π].

For all but finitely many θ-sections, D defines a hyperbola in the xy-plane. In this case one
can continuously displace the singularity sets in every θ-section and express the equation of the
hyperbolas in normal form, given by

A(θ)x2 −B(θ)y2 = 2f3m2(f3 − 1)C(θ)s (4)

where

A(θ) := (f3m2 −m3)c+ n3s−
√
(f3m2 −m3)2 + n2

3

B(θ) := (f3m2 −m3)c+ n3s+
√
(f3m2 −m3)2 + n2

3

and where C(θ) := d1d2d3

d2
0

with

d0(θ) := n3c− (f3m2 −m3)s

d1(θ) := n3c+m3s

d2(θ) := n3c+ (m3 −m2)s

d3(θ) := n3c− (f3m2 −m3)s−m2n3

Now the same methods as in the previous section (i.e. we argue by continuously tracking θ-
sections) can be applied to prove the following (the figures below describes the idea of the proof).

Theorem 3.1. For a general hybrid robot, the singularity-free space consists of two connected
components.

Proof. At those finitely many θ for which D does not define a hyperbola, we have either two
intersecting lines or a parabola. The intersecting lines intersect at a point that is a pinch point

10



small θ < 0, red line is
transverse

θ = 0 small θ > 0, red line is non-
transverse

Figure 6: The red dashed line is one of the principal axes we continuously follow. Filled regions
are the interiors of each hyperbola.

of the surface Σ, while the transition to a parabola section can be regarded as the shrinking away
of a branch of the hyperbola. Therefore it suffices to prove that there is a path from inside of a
branch of a hyperbola at any θ-section to the inside of the opposing branch of the same θ-section.
In fact, we will prove that as we continuously follow the θ-sections within a small interval of θ, the
branches of the associated hyperbola degenerate and regenerate while the principal axes switch
roles i.e. a principal axis transforms from transverse axis to a non-transverse axis (and vice versa).
This implies that the two branches open up and this allows a passage between them.

For a θ, the hyperbola has principal axes whose angle ϕ with the x-axis is given by

tan 2ϕ =
(f3m2 −m3)s− n3c

(f3m2 −m3)c+ n3s
(5)

We follow one solution branch ϕ1(θ) of (5) and displace the associated hyperbola by moving the
center to the origin and rotating by ϕ1 such that the new hyperbola is in normal form, as in (4).

For a general hybrid robot, we can then obtain a small interval centred at 0 such that for any
θ in the interval, A(θ), B(θ) and C(θ) do not change signs, whilst within the same interval, sin(θ)
takes negative and positive values. This implies that the principal axis that we track with ϕ1

jumps from being a transverse axis to a non-transverse axis (or vice-versa) and this is illustrated
in Figure 6.

Thereby, we can move from the inside of one branch of a hyperbola in a θ-section to the inside
of the other branch of that θ-section by crossing θ = 0.

4 3-RPR Triangular Planar Platforms
In this last section, we consider the most general and well-studied 3-RPR planar parallel robot, the
one with two triangular platforms. We make similar assumptions as in the other two platforms.
Specifically note that the anchor points of the fixed platform are (0, 0), (1, 0), (f3, g3) and at zero-
position these anchor points are connected respectively, by an RPR leg to the anchor points
M1 = (0, 0),M2 = (m2, 0),M3 = (m3, n3) of the moving platform. The following figure illustrates
such a robot.
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(0, 0) (1, 0)
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M2

(f3, g3)

4.1 General Case
Throughout this section, when we write general robot we mean the one just described when the
two triangles are not similar, i.e. when f3m2 ̸= m3 or g3m2 ̸= n3. Before we prove that the
singularity-free space of this robot is composed of two connected components, we will comment
on how this was proven in the past.

Remark 4.1. It was first mentioned in [10] that the singularity-free space of a general robot is
two. Husty shows that the number of connected components of the complement of the singularity
surface Σ is equal to the number of connected components of the complement of another surface
Σ′ in P3(R) (the image of Σ under a map defined by Blaschke and Grünwald) that is birational
to Σ. The advantage of using Σ′, is that Σ′ is a smooth and compact real surface in P3(R) (a
sketch of the proof of this fact is given in [10]) and the number of connected components of the
complement of Σ′ is a result of the Jordan-Brouwer separation theorem [6].

In [9], Coste provides an alternative proof and similarly suggests at investigating a modified
kinematic surface Σ′′ instead of Σ. Coste calls the product of the Möbius strip (without boundaries)
and the real line, the modified workspace and argues that there is a natural map from the modified
workspace to SE(2). The modified kinematic surface Σ′′ is the preimage of Σ by this natural map.
There is also a natural projection from the modified workspace to a torus and this is a line bundle.
Coste then investigates the fibers of this line bundle with Σ′′ to show that the complement of Σ′′

is composed of two connected components.

In our proof, we will not need to modify the workspace or the singularity surface Σ. This gives
us the advantage to fully understand the topology of Σ and its singularities. In fact, it is evident
from the proof of Theorem 4.2 that the singularities of Σ are only finite number of pinch points.

The kinematic map F : SE(2) → R3, of the robot is (with the same notations as in Section 2)

F (θ, x, y) := (x2 + y2, (m2c− 1+ x)2 + (m2s+ y)2, (m3c−n3s− f3 + x)2 + (m3s+n3c− g3 + y)2)

The singularity surface Σ is defined by zero set of the determinant of the Jacobian of the kinematic
map D(c, s, x, y) in SE(2), where c = cos θ and s = sin θ for θ ∈ (−π, π].

For a fixed θ, D defines a conic in the xy-plane. This conic is a hyperbola or an ellipse, for all
but finitely many θ-sections. The conics can degenerate at maximum eight θ-sections and there
are four or no θ-sections for which they are parabolas. This will be illustrated in the proof of 4.2.

For hyperbolas and ellipses we can continuously displace the θ-sections and get conics given
by the following normal form

A(θ)x2 −B(θ)y2 = 2m2C(θ)s (6)
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-1 1

-1

1

Figure 7: At θ = 0 (the point (1, 0)) and θ = π (the point (−1, 0)), the θ-sections of Σ are two
intersecting lines instead of a regular conic (hyperbola).

where

A(θ) := (f3m2 −m3)c+ (g3m2 + n3)s−
√

(f3m2 −m3)2 + (g3m2 − n3)2

B(θ) := (f3m2 −m3)c+ (g3m2 + n3)s+
√

(f3m2 −m3)2 + (g3m2 − n3)2

and where C(θ) := d1d2d3

d0
with

d0(θ) := 4g3m2n3 − ((f3m2 −m3)s− (g3m2 + n3)c)
2

d1(θ) := (f3n3 − g3m3)c+ (f3m3 + g3n3)s

d2(θ) := (f3n3 − g3m3 + g3m2 − n3)c+ (f3m3 + g3n3 − f3m2 +m2 −m3)s

d3(θ) := (f3m2 −m3)s− (g3m2 + n3)c+ (m2n3 + g3)

where the discriminant is d0.

Theorem 4.2. For a general triangular robot, the singularity-free space consists of two connected
components.

Proof. Note that (as in Theorem 3.1) two of the θ-sections of Σ (i.e. θ = 0 and θ = π) are definitely
those for which we have degenerate conics.

The discriminant tells us that if g3m2n3 < 0, then all but finitely many θ-sections of Σ are
hyperbolas. So we can use exactly the same argument as in the proof of Theorem 3.1 to prove
that the complement of Σ consists of two connected components.

If g3m2n3 > 0, we may have θ-sections of Σ that are ellipses. For the general case, we cannot
just have ellipses (but even if we did, it is evident that we have only two connected components
in the complement of Σ). In fact, for the general case, the condition of having θ-sections that are
ellipses depends on whether the lines defined by

(f3m2 −m3)s− (g3m2 + n3)c±
√
4g3m2n3

intersect S1 in the cs-plane. Clearly, these two lines are parallel and equidistant to the origin
and the points were they intersect S1 determine when the θ-section is a parabola. So we can
have four or no θ-sections that are parabolas. If we only have hyperbola sections (i.e. the lines
do not intersect the unit circle) then we are done, as we can use the proof of Theorem 3.1. If we
have θ-sections of Σ that are ellipses then, for a general robot, we will have infinitely many such
θ-sections. In this case, the two lines cut S1 in four arcs (see Figure 7). Two of the arcs contain
(1, 0) and (−1, 0) and the θ-section of Σ associated to the points on these arcs are hyperbolas (up
to finitely many degenerations). The θ-sections of Σ associated to points on the other two arcs
are ellipses.
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As we continuously follow a θ-section that is an ellipse to a θ-section that is a hyperbola, we
can connect the interior of the ellipse with the interior of one of the branches of the hyperbola.
We can do the same for the exteriors. So we only need to prove that we can find a path from
the interior of one of the branches of the hyperbola to the interior of the other branch of a given
θ-section without crossing Σ. We can now use the arguments of the proof of Theorem 3.1 in the
neighborhoods of θ = 0 and θ = π to conclude that this is possible.

4.2 Special Case : Similar Triangles
Lastly we investigate the number of connected components of the singularity-free space of a robot
with similar triangular platforms, where one is not the reflection of the other. The similarity
condition translates in terms of design parameters to f3m2 = m3 and g3m2 = n3. One can easily
compute that the determinant of the Jacobian of the kinematic map in this case is D(c, s, x, y) =
sg(c, s, x, y) where g is a quadratic polynomial in x and y. Thus, for θ = 0 and θ = π, the
singularities are the whole xy-plane. Additionally the discriminant is 4n3

3s
2, and the singularities

is a circle in any θ-section when θ ̸= 0 and θ ̸= π. A degenerate θ-section occurs when ((c−m2)
2+

s2)s3 = 0, hence the only degenerate θ-sections would be when s = 0.

Proposition 4.3. For a special triangular robot, the singularity-free space consists of four con-
nected components.

Proof. Since every θ-section with θ ̸= 0 and θ ̸= π is non-degenerate, one can continuously follow
the θ-sections for θ ∈ (0, π) and conclude that the singularity-free space consists of two connected
components, one that is produced by the interiors of the circles and one by the exteriors. The same
argument holds for θ ∈ (π, 2π), where we identify 2π with 0 in S1. But the interior component for
all θ ∈ (0, π) cannot be connected to the one for all θ ∈ (π, 2π) without crossing singularities, since
for θ = 0 and θ = π they are the whole xy-plane. The same holds for the exterior component.
Thus the singularity-free space consists of exactly four connected components.

Remark 4.4. Even if the triangles are congruent, i.e. m2 = ±1, the only degenerate θ-sections
would be when s = 0. Hence the number of connected components of the singularity-free space
remains the same.
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