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Abstract. In [1] most of the results for a general 3-RPR planar robot with linear platforms
are proven, i.e. there is a singularity-free path between two symmetrical direct kinematics
solutions and there are no singularity-free paths between non-symmetrical direct kinematics
solutions. We provide alternative and easy theoretical proofs of these results. We describe
the topology of the kinematic singularities of these robots. We prove that the singularity-
free set of the domain of the kinematic map for such robots consists of three components.
One of our main results is the detailed analysis of the special case, i.e. when the anchor
points of the moving platform and the fixed platform have the same cross-ratios. For this
case we show that, the singularity-free set consists of four connected components, no direct
kinematics solutions can be connected without crossing the singularity and that the absolute
value of the determinant of the Jacobian evaluates to the same number for any of the direct
kinematics solutions. We provide some nice geometric properties of the direct kinematics
solutions for this special case.

Keywords: direct kinematics, parallel planar robots, singularities

1 Introduction

There are surprisingly very little literatures on 3-RPR parallel planar robots with linear platforms.
This is the mechanism we will deal with throughout this paper and for simplicity we will occa-
sionally just call them 3-RPR robots. We could only guess that this structure is rather easy to
study and the general 3-RPR parallel planar robots (with anchor points that are not necessarily
collinear) has been widely studied. However, there is still little new knowledge to be extracted
from this “simpler” planar robots. For instance, because of the simple structure, one is able to
fully analyse the topology of the singularities, in SE(2), of these mechanisms. Some results known
for these robots are significantly simpler and perhaps somewhat surprisingly different at the same
time. For instance, the number of real direct kinematics solutions for the linear platforms can be
proven to be at most 4 while this is 6 for the triangular platforms (see Remark 2 or [4] or [7]
Exercise 4.1). But more can be said about this simpler structure and in this paper we will give an
analysis of the topology of the singularity surface of this mechanism, which to our knowledge has
not been completely investigated.

We provide a proof of a known fact that for a sufficiently general 3-RPR robot there are
two distinct direct kinematics solutions that can be connected via a path that does not cross
singularity. Such questions were asked for other planar manipulators (e.g. [2]) and is of interest to
experts in robotics and kinematics. In fact, more is known about our robot. It is known that there
is a singularity-free path between two symmetrical solutions to the direct kinematics (i.e. pair of
solutions for which the angles and heights of the moving platform have opposite signs). This was
shown in [4]. We provide a topological proof of this as well.

The advantage of our proof is its simplicity, however there is also an advantage in the proof
provided in [1], namely it is a constructive proof which can lead to an easy algorithm providing
the path between symmetrical solutions. However, there is a subtle point in our proof, it provides
geometric and topological insights to the kinematic singularity surface in SE(2). We will indeed
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show later a new result, namely that the singularity-free space of a sufficiently general 3-RPR
robot consists of three connected components and then provide an alternative proof that non-
symmetrical solutions cannot be connected without crossing singularity. We not only study these
components but also show how the determinant of the Jacobian of the kinematic map evaluates at
a point in any of these components. In fact, there is no explicit proof stating (which we prove) that
the determinant of the Jacobian at non-symmetrical solutions evaluates to numbers with different
signs (this is clear if the number of connected components of the singularity-free space is two, but
we have three such components).

We study special 3-RPR robots as well, namely those for which the linear platforms have anchor
points with the same cross-ratios. These robots differ from the general ones because no direct
kinematics solutions can be connected without crossing singularity. These robots have easy but
interesting topological structures. For instance, we show that the absolute value of the determinant
of the Jacobian evaluates to the same number for any direct kinematics solution. Also we show
that the singularity-free space of these robots, in SE(2), consists of four connected components.

2 3-RPR Linear Planar Platforms

Consider a (non-trivial) 3-RPR planar parallel robot with linear platforms for which the anchor
points are distinct. We can without loss of generality, (via scaling and change of zero-position)
assume the following:

— The fixed platform lies on the z-axis

— The moving platform at zero-position, i.e. when the transformation of the moving platform
with respect to the fixed platform is identity, lies along the z-axis.

— The anchor points of the fixed platform are (0,0),(1,0),(f3,0) and at zero-position these
anchor points are connected respectively, by an RPR leg, to the anchor points

M; =(0,0), M= (m2,0), Mz=(ms3,0)

of the moving platform.
— We may assume 1 < f3 and 0 < mg < ms.

The figure below illustrates such a robot.

M

(030) (170) (f&vo)

We will now describe the kinematic map of this robot.

For simplicity, we write an element o € SE(2) as a triple (6,x,y) where 6 determines the
orientation and (x,y) the translation vector. We will also often, write ¢ instead of cosd and s
instead of sin 6.

Following the above notations, the kinematic map F : SE(2) — R3, of the robot is given by

F(0,2,y) == (2" + 3%, (cma — 1+ 2)* + (sma +y)*, (cms — f3 + )° + (sm3 +y)?)

This map takes the transformation of the moving platform (centred at M;) and maps it to the
square of the length of each of the legs.
It is easy to compute the set of singularities of this map, it is given by:

2= {(0,x,y) € SEQ2) : D(¢,s,x,y) = 0}
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where D is the determinant of the Jacobian of F' and it is a polynomial that is quadratic in y and
in s and linear in z and in c¢. Namely

—c(fsma — m3)y® + s(fsma — ma)zy + s*mams(fs — 1)x — s(cmams(fz — 1) + f3(ma — m3))y

Suppose now that the robot is sufficiently general (we will be more precise later) and that we are
given squared leg length values £ € R3. We investigate the direct kinematics, i.e. the fiber F~1(£).
For £ = (I1,12,13), we have the following system of equations:

Lh=a2>+y°
ly = (cmy — 14+ )% 4 (smag + y)?
I3 = (cms — f3+ ) + (sm3 + y)*

Remark 1. We note that if there is a solution for which the two platforms are parallel (8 = 0 or
0 = ), then £ must lie in the union of two hyperplanes in R3, say H; U Ho.

Suppose now that £ is not in the H; U Hy defined in Remark 1. We can get rid of the squares 2

and 32 by subsituting the first equation in the last two and obtain a linear system in x and y.
This linear system is independent if we assume

fama —mg #0and s #0

These inequalities are fulfilled because we assumed the robot is sufficiently general (to be precise,
we mean that the cross ratios of the anchor points are not the same) and that £ ¢ H; U Hs.

In the above case, we can express x and y in terms of ¢ and s and substitute this expression
in {1 = 2% + y? and, upon reduction modulo ¢ + s> — 1, obtain a univariate cubic polynomial
h(c) € R]e] (for detail description of h, please see [1,4]). The polynomial h(c) has the property
that h(1) and h(—1) have the same signs.

Remark 2. We conclude that if £ € R3\{H; U Hy} (where H; and Hs are defined in Remark 1), i.e.
when the direct kinematics solutions do not involve the case where the platforms are parallel, then
the solutions to the direct kinematics are obtained from finding the roots of the cubic univariate
polynomial h(c). However since h(c) has the property that h(1) and h(—1) have the same signs,
there are maximum 2 distinct roots in the interval (—1,1). Since ¢ = cos(#) = cos(—6), there are
at most 4 distinct real solutions to the direct kinematics problem. Thus, in terms of @, the direct
kinematics solutions can be interpreted geometrically, as the intersection points of maximum two
vertical lines and the unit circle in the cs-plane.

Definition 1. The pair of direct kinematics solutions, (0,z,y) and (—6,z,—y), will be called
symmetrical solutions (this term is also used in [/]).

We provide a short proof of a known result. (see [4])

Proposition 1. Suppose our robot is a suitably general 3-RPR platform, to be precise we mean
that the design parameters satisfy fsms —msg # 0. There are two distinct transformations that are
not singular, say o,7 € SE(2), with the following properties:

— F(o) = F()
— There is a path vy : [0,1] — SE(2) from o to 7 such that v([0,1)) N X =0

Proof. We note that (see also [1])
D(i17 Oaxa y) = :FyQ(f3m2 - mS)

So, for a general robot, (0,z,y) € X' implies y = 0.
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Let Ay(D) be the discriminant of D with respect to y. Then A, (D) factors as
Ay(D)(c,s,2) = s%g(x,c)

where g(z, c) is a quadratic polynomial in  and in ¢. For a general robot, the coefficient of 22 in
g(z,c) does not vanish and is the positive value (f3mg —m3)?.

Let A.(g) be the discriminant of g with respect to . Then A, (g) factors as

Aw(g)(c) = cp(m27 ms, f3)
where p(ma, ms, f3) = 16 fsmams(ms — m2)(f3 — 1)(fama — m3)? > 0, for a general robot.

Hence, for any 6 € (—m/2,7/2) we get Ay(g) > 0, i.e. g(z,cosf) has two distinct roots in z
for any 0 € (—7/2,7/2) and since the coefficient of 2 is positive it attains negative values for
any x between these two roots. Thus, we can find x = « such that g(a,1) < 0 and because g is
continuous, there is a § € (0,7/2) such that g(a,cosf) < 0, for all 6§ € (-4, ).

Define
X :=(-4,6) x {a} x R\{(0,«,0)}.

Note that by the above analysis, any (0, x,y) € X is a regular point of the kinematic map. But
since F(0,x,y) = F(—0,x,—y), F restricted to X is not injective, i.e. there is a singularity-free
path between two symmetrical direct kinematics solutions.

If we investigate the above proof we see that at the point (6,z,y) = (0,,0), where o # 0,
the set of real singularities is locally a line. This property of F' was not directly revealed in [4],
however [1] has shown a stronger result that implies our Proposition 1 (which would require a
longer proof).

Theorem 1. For a suitably general 3-RPR robot there are only three components of SE(2)\X.

Proof. We will abuse our notations and write D evaluated at 6 to mean D(cos6,sin6, z,y). First
we note that for a fixed 6 € [0,27), a section of X' at this 0 is a hyperbola (possibly degenerate).
This is because the determinant of the Hessian of D at any 6 is (a non-negative value)

(fgmg — m3)2 SiH2 0

and this is the discriminant of the conic section described by D at 6. Moreover, the determinant
of the Hessian of the quadratic form defining this conic equation is

f3m2m3(m3 — mg)(fg — 1)(f3m2 — m3) sin4 0

This implies that the hyperbola at a 6-section degenerates < 6 = 0 or § = 7. In fact, as our
previous analysis shows, it degenerates into the double lines y2 = 0, because we can check that

D(+£1,0,2,y) = Fy*(f3ma — m3)

For a fixed 0, we will call the #-section of X' the hyperbola at 6, as illustrated in Fig.1.

The slope of the principal axes of the hyperbola at 6 is also determined by the entries of the
Hessian of D. One easily checks that the angle between the transverse axis of the hyperbola at 6
and the z-axis is 6 as well. So the hyperbola rotates counter-clockwise as we change 6 from 0 to 2.
We may, without loss of generality, assume that at the # = 0 section D evaluates to non-positive
values while at the § = 7 section D evaluates to non-negative values. So as 6 continuously changes
from 0 to 7 the following things happen:

1. The double line opens into two branches of a hyperbola.
2. The branches enclose connected components in the singularity free 6 € (0, 7) section, for which
D evaluates to positive values.
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Fig. 1: An artistic illustration of the #-sections of Y. At # = 0 or § = 7 the hyperbola degenerates
into double lines.

3. The connected component in the singularity free 6 € (0, ) section between the two branches
of the hyperbola at 6 has elements for which D evaluates to negative values.

4. When 6 is near 7 the branches begin to collapse so that at 8 = m we get a double line and at
this section D evaluates any element outside this double line to positive values.

We can make similar observations when 6 changes from 7 to 27, where the hyperbola continues to
rotate counter-clockwise but where the region for which D evaluates to positive values vanishes at
0 = 27 (which we identify with § = 0 in S'). This behavior of the hyperbola is illustrated below.

= . =

0=—m/12 0=0 0=m/12

x

+ +

—_ %

+

0 =117/12 0= 0 =137/12

Fig.2: How D evaluates for different #-sections

Consider now o, 7 € SE(2) such that F(o) = F(7) and sgn(D(0)) = sgn(D(7)) is non-zero.
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If D(o) < 0 then the orientations of o and 7 are associated to a region between the two
hyperbola branches in their respective #-sections, i.e. as we continuously follow the #-sections we
can produce a singularity-free path from o to 7.

If D(o) > 0 then o and 7 are located in the region enclosed by a branch of the hyperbola in
their respective #-sections. Set 6, and 6. be the angles associated to the orientations of ¢ and 7
respectively. Then there is a path from o to 7 iff the branch of the hyperbola at 8 = 6,,, enclosing
the region where o lies, continuously moves to the branch of the hyperbola at # = ., that encloses
the region where 7 lies as we follow this path. In short, the two branches of the hyperbola at a
6 € (0,2m) section correspond to two distinct connected components of SE(2)\ X.

Thus, we conclude that there are three connected components of SE(2)\X.

In the proof of the above Theorem more was shown. Starting from a 6-section where one of the
symmetrical solutions lies, and by continuously following the hyperbola branch, from the 6 to
the —6-section, we see we end up in the hyperbola branch where the other symmetrical solution
lies. So the symmetrical solutions belong to the same connected component of the singularity-free
space. In fact, this was also proved in [4]. Thus, we can state the following:

Corollary 1. For a suitably general 3-RPR platform, there is a singularity-free path between
symmetrical direct kinematics solutions.

Additionally, we are able to prove two more results, which are stated in the following Propositions.

Proposition 2. For a suitably general 3-RPR platform, two non-symmetrical direct kinematics
solutions evaluate to opposite signs in the determinant of the Jacobian.

Proof. Tt is easy to check that symmetrical solutions evaluate to the same sign, since for any
(0,x,y) € SE(2), D(¢, s,x,y) = D(c, —s,x, —y). Let us assume that there are two non-symmetrical
solutions that evaluate to the same sign. The all of the solutions would evaluate to the same sign
and let it be 4, without loss of generality. We know from Corollary 1 that symmetrical solutions
can be connected by passing through 6 = 0 or 7. By assuming, without loss of generality, that
fama —mg > 0 we get D(1,0,2,y) < 0 and D(—1,0,z,y) > 0. So, since we assumed them to be
positive they should pass through 6 = 7. Since symmetrical solutions can be connected singularity-
free the line that is located furthest from ¢ = —1 would cross the other line while it connects the
two solutions of that symmetrical pair, hence a singularity would occur, which is a contradiction.

Proposition 3. For a suitably general 3-RPR platform, two non-symmetrical direct kinematics
solutions cannot be connected without crossing singularities.

Proof. Suppose we have two distinct non-symmetrical and non-singular solutions. Consider the
vertical lines in Remark 2. Let us examine how these lines move while we are travelling in SE(2).
Switching between one solution of the direct kinematics to another would sparkle a parallel motion
of the two lines along the circle which would end when the lines intersect the circle exactly at the
same points as they initially did. Let us now distinguish between the following cases.

Firstly, consider the two lines moving towards opposite directions. Then, either they both move
towards the boundary of the circle, or towards each other. If they move towards the boundary, they
will bounce back when they reach ¢ = 1 and ¢ = —1 respectively and they will continue moving
towards each other. If ¢ = 41 results in a singular position then we are done. Otherwise, under
this motion, at least one of them will return to its original position. But, we are not interested
in that case because this would result in a change between symmetrical solutions. So, for a path
between two non-symmetrical solutions to exist, the lines should maintain the trajectory of moving
towards each other. Hence along this trajectory there should be a moment where the two lines
merge because the lines in the end of the motion should intersect the circle precisely at the 4 initial
points. Thus, the instance of the two lines merging, will result in a singular position.

On the other hand, let us consider them moving towards the same direction. Then, depending
on the direction of the trajectory, the line fastest towards the boundary of the circle will bounce
back first, resulting in a motion where they are both moving towards each other. Hence, it falls
to the previous case and there will be an instance of them merging, before the lines intersect the
circle at the initial points.
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t=0 te(0,1) t=1

Fig.3: An illustration of the two lines moving towards different directions. As t varies in [0, 1],
there is no way of eventually intersecting the circle in the same initial points, while we connect
non-symmetrical solutions, without the two lines merging. Any of the 4 intersection points can be
used as a reference point for this purpose. The target point could be any of the remaining points,
but not the symmetric one.

3 Special Case fz3ms = mg

As discussed in [1], solving the direct kinematics in this case, amounts to solving a second degree
polynomial equation in z for a specific ¢ and y(z, ¢, s). Hence the solutions will be of the form
o1 = (valayl)a 02 = (07x27y2) and T = (_eaxlv _yl)v T2 = (—G,CUQ, _y2)7 when 0 7& Oor .

Remark 3. By substituting ms = fyms in D, we get
D(e,s,x,y) = fama(fs — 1)((1 — ema)y + smax)s.

Thus we observe that, for s = 0, we get D(£1,0,z,y) = 0,Vx,y € R. Hence, for any z,y € R,
(0,z,y) € X and (m,x,y) € X. Also, it should be noted that, when 6 # 0 and 0 # 7 there will
always be 4 distinct direct kinematics solutions for a non-singular position.

Proposition 4. If 01 = (0, 21,y1) and o3 = (0, z2,y2) are two solutions of the direct kinematics
in the same 0-section, then D(c1) = —D(03).

Proof. By subtracting the first from the second equation of the direct kinematics we get,
2(emy — 1)z + 28may — 2cma +ma + 141 —1lo =0 (1)

Since 6 is the same in o and o9, they will belong in the same 6-section of SE(2), thus they will
both satisfy equation (1), which can be rewritten, for some « € R, as

(emg — D)z + smay + k=0 (2)

Hence, (x1,y1) and (22, ys2) lie on a line in zy—plane with slope chmQ"’ Additionally, they will be
points on a circle with origin (0,0) and radius v/I1, since they both satisfy z2 + y2 = [;.
On the other hand, the singularity surface on this #-section becomes the line

smox + (1 —ema)y =0 (3)

which passes through the origin of the zy-plane with slope c,;’:il,
to the line defined by equation (2).

As a result, (B2, 7“—42'3’2) will satisfy equation (3), which yields

hence it is a line perpendicular

(1 —ema)(y1 + y2) + sma(z1 + 22) = 0 < y1(1 — ema) + z15ma = —(y2(1 — ema) + z25m2)

and thus D(c,s,21,y1) = —D(c, 8, x2,Y2).
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Fig.4: An example of the singularity line crossing the middle point of the chord between the two
direct kinematics solutions (x1,y1) and (z2,y2) on the same #-section.

Corollary 2. If o1 = (0,21,y1) and 09 = (0, x2,y2) are two solutions of the direct kinematics in
the same 0-section, then (0, A\(x1 + x2), A(y1 + y2)) € X for any X € R.

Corollary 3. All paths between direct kinematics solutions must cross singularities.

Proof. If 01,09, 71,72 are as defined in the beginning of this section, then since ¢ = cos§ = cos(—0)
and s = sin @ = — sin(—0) we observe that, for i = 1,2,

D(Ti) = D(Ca —S, Ty, _yl) = D(C7 S, Ti, yl) = D(Ul)

But since o; and 7, for i = 1,2, belong in opposite signed -sections a path between them should
involve crossing § = 0 or m which is a singular position. By Proposition 4, solutions in the same
f-section evaluate to different signs in the determinant of the Jacobian, hence they cannot be
connected without crossing singularities.

Fig. 5: An artistic illustration of the #-sections of the special case. At § = 0 or # = 7 the singularities
at these f-sections are the whole zy-plane. At other #-sections the singularity set is a (blue) line
on the “twisted strip”. The singularity-free region can be thought of as the complement of the
twisted strip and the two planes in the torus (there are 4 connected components!)

Corollary 4. The absolute value of the determinant of the Jacobian evaluates to the same number
for all direct kinematics solutions.

Proof. From the previous results, it follows directly that

D(m1) = —=D(m2) = —D(02) = D(01)
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