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Abstract—Neural belief propagation decoders were recently
introduced by Nachmani et al. as a way to improve the decoding
performance of belief propagation iterative algorithm for short
to medium length linear block codes. The main idea behind
these decoders is to represent belief propagation as a neural
network, enabling adaptive weighting of the decoding process.
In the present paper an efficient recurrent neural network
architecture, based on gating and weights sharing mechanisms,
is proposed to perform blind neural belief propagation decoding
without prior knowledge of the coding scheme used by the
encoder. The proposed architecture is able to learn to decode
BCH (15,11) and BCH (15,7) codes and significantly improves
the decoding performance over a standard belief propagation
algorithm. A particular emphasis is given to the interpretability
and complexity of the proposed model to ensure scalability to
larger codes.

I. INTRODUCTION

Low-Density Parity Check (LDPC) codes were chosen

in 5G-NR standard along with polar codes. For high code

length, LDPC are a class of linear block codes associated

with efficient and performing iterative decoding algorithms.

Nonetheless, several use-cases, such as low power IoT, cannot

use large codes because of the complexity of their decod-

ing and their inadequacy with the relatively small payloads

encountered. For shorter code length, the parity check (PC)

matrix of LDPC codes is, unfortunately, no more sparse; ”Low

Density” property is lost and it becomes unavoidable to have

short cycles in the PC matrix. As a consequence, performance

of decoding algorithm based on Belief Propagation (BP),

also known as Sum-Product (SP), becomes degraded. In such

context, Nachmani et al. proposed to represent the BP algo-

rithm as a Neural Network (NN), therefore enabling adaptative

weighting of the messages exchanged during the decoding

process [1]. The authors showed in simulations that this so

called Neural Belief Propagation (NBP) approach improves

the decoding performance for short to medium block-length

codes. Yet, NBP algorithm assume a perfect knowledge of

the code by the receiver to define the NN architecture. In

the present paper, a novel NN architecture is proposed to

perform blind NBP decoding of linear block codes without

prior knowledge of the coding scheme used. Several publica-

tions discussed improvements of NBP using pruning [2], [3],

weights sharing [4] or active sampling [5] but, to the best of

our knowledge, this paper is the first to propose learning of

NBP for linear block codes without knowledge of the code.

Proposed structured architecture relies on gating and weights

sharing mechanisms, ensuring reduced complexity, improved

explainability, scalability and possibly better generalization

capabilities for larger codes [6], [7].

The paper is structured as follows: Section II provides

the theoretical background that will be used throughout the

rest of the paper. Section III thoroughly describes the main

contribution of this paper: an efficient gated Recurrent Neural

Network (RNN) architecture for blind NBP decoding. Sec-

tion IV describes an implementation example of the proposed

architecture for BCH (15,7) and BCH (15,11) codes as well as

simulated Frame Error Rate (FER) performances demonstrat-

ing that the NN model outperforms standard BP decoders.

Finally, Section V gives the conclusions of the study and

perspectives for future works.

Notations: Matrix are denoted as M, vector as v and scalar

as s. Hadamard product is denoted as ⊙. diag(v) denotes a

diagonal matrix with vector v as main diagonal.

II. THEORETICAL BACKGROUND

A linear block code C of length n and rank k is considered.

The associated generator matrix of size k×n and correspond-

ing PC matrix of size (n − k) × n are denoted as G and H

respectively. The PC matrix can be represented as a bipartite

graph model called a Tanner Graph [8], a certain type of Factor

Graph (FG). Such representation enables efficient iterative

decoding based on classic message passing algorithms such

as the BP. This algorithm aims to converge to the transmitted

code-word by iteratively exchanging ”beliefs” between the

nodes of the graph on the probable values of received code-

word bits. Usually, exchanged messages are related to the Log-

Likelihood Ratios (LLR) of the received bits and the sum-

product update rule can be applied to the different nodes using

the following equations (see [9] for more details):

• SP update rule applied at variable node i to compute

message toward the check node j:

µvicj = λi +
∑

k 6=j

µckvi
(1)



Where λi is the a priori LLR received by variable node

i and µckvi
are the messages received by variable node i

from neighboring check nodes k.

• SP update rule applied at check node j to compute

message toward the variable node i:

µcjvi
= 2× arctanh



∏

k 6=i

tanh
(µvkcj

2

)

 (2)

Where µvkcj are the messages received by check node j

from neighboring variable nodes k.

• SP update rule applied at variable node i to compute the

bit i a posteriori LLR:

λ̃i = λi +
∑

k

µckvi
(3)

The FG not being cycle-free, it is necessary to apply

iterative decoding by passing messages back and forth between

variable and check nodes, using equations (1) and (2), before

hopefully converging to a satisfying solution. NBP algorithm

[1] proposes to learn how to weight messages and input LLR

of equations (1), (2) and (3), to reduce the negative influence

of the short cycles on the final decoding performance.

III. BLIND NBP AS AN EFFICIENT GATED RNN

In this paper, a NN architecture is proposed to perform

blind NBP algorithm applied to the decoding of linear block

codes. In the proposed method, receiver no longer requires

prior knowledge of the used coding scheme. As a consequence,

it needs to learn both the factor graph topology and the

weights of the NBP. The proposed decoder is based on a

custom Recurrent Neural Network (RNN) cell architecture

that leverages weight sharing and gating mechanisms. At first,

SP rules will be described as efficient matrix operations for

generic linear block codes. Then the proposed operations will

be embedded in a RNN cell architecture. Mechanisms enabling

an efficient decoding scheme to be learned will be described.

A generic factor graph associated with an hypothetical 3 × 3
PC matrix as described in Fig. 1 will be used throughout this

paper to illustrate the proposed architecture.

Fig. 1. Generic 3×3 PC matrix H (left) and associated factor graph (right). λi

are the received LLR, vi variable nodes and cj check nodes. The parameters
αi,j denote the weights associated with messages exchanged between variable
node i and check node j. Contrarily to a classic BP decoder where the
parameters should be binary and the connections either present or not, here
the parameters can be real-valued. The inputs of the factor graph can also be
weighted by parameters βi.

A. Variable to check nodes

At each NBP iteration the decoder starts by updating

messages from variable to check nodes µvicj following a

weighted version of Eq. (1) (The input messages received from

check nodes µcjvi
are initialized to 0 at the first iteration). This

computation can be implemented using a dense NN layer as

shown in Fig. 2. ω(αi,j) is a non-linear function applied to

the parameters of the FG to represent both gating (i.e. binary

selection) and weighting mechanisms. For example, if ω(αi,j)
is defined as a step function, then the computational graph will

reproduce a standard BP algorithm, with binary weights. The

βi coefficients, do not need to go through ω function because

there is no interest in pruning any of the inputs.

Fig. 2. Implementation of a weighted version of Eq. (1) using a dense layer.
Nvariable and Ncheck denote the number of variable and check nodes in the
FG.

With a good initialization of the parameters, this layer can

rigorously perform the update rule for messages from variable

to check nodes, but it has several drawbacks:

• High complexity in terms of number of parameters and

computations.

• Need of a sparse weights matrix to actually perform BP

algorithm.

• Loss of explanability after a training. There are no

guarantees that the performed algorithm is still a BP or

NBP (without further refinements, all parameters, even

zeros, being trainable).

• Low generalization capabilities due to loosely structured

architecture [6], [7] leading to probable unscalability to

bigger codes.

An efficient, scalable and fully differentiable computational

graph for the variable to check nodes update rule is proposed

in this work as shown in Fig. 3. This graph drastically reduces

the number of parameters and operations as shown in Table I

and ensures that a NBP is executed1.

1Function ω is not included in the complexity table as it can be performed
once for all the batch. If the reduction is performed in a continuous Mul-
tiply/Accumulate approach, the biggest tensor allocation can be reduced to
O(Nvar ×Ncheck) for the dense architecture



Fig. 3. Efficient computational graph for weighted Eq. (1).

TABLE I
COMPLEXITY - VARIABLE NODES TO CHECK NODES

DENSE (Fig 2) IMPROVED (Fig 3)

# multiplications O(N2
var ×N2

check
) O(Nvar ×Ncheck)

# additions O(N2
var ×N2

check
) O(Nvar ×N2

check
)

Biggest tensor allocation O(N2
var ×N2

check
) O(Nvar ×N2

check
)

B. Check to variable nodes

The second step of the NBP decoding process consists in

updating messages from check to variable nodes µcjvi
using a

weighted version of Eq. (2). It can be implemented by using a

naive architecture based on a few differentiable operations as

described in Fig. 4. The multiplicative step selects and weights

the inputs. The additive step ensures the neutral element of the

product is added to non-selected inputs, before the upcoming

product reduction. The following arctanh activation function

having exploding gradient when approaching -1 or +1 makes

gradient based training difficult. To overcome this issue one

can use a Taylor expansion of the function as proposed in

[10]. θ(αi,j) and γ(αi,j) are non-linear functions applied to

the parameters of the FG. For example, to apply a standard

BP algorithm, one can choose:

θ(αi,j) = step(αi,j) and γ(αi,j) = 1− step(αi,j)

A judicious parameterization of this architecture implements

the update rule for messages from check to variable nodes.

But, once again, it is inefficient and can loose explainability

after a training phase. An efficient computational graph for this

update rule is proposed in Fig. 5. Based on standard matrix

operations, it reduces the complexity as shown in Table II2.

2The algorithmic complexity of tanh and arctanh is not included in the
table because of the presence of these operations in both architectures.

Fig. 4. Naive implementation of weighted Eq. (2).

Fig. 5. Efficient computational graph for weighted Eq. (2). It is important to
note that given the order of the input messages provided by previous operation
(see Section III-A), it is necessary to re-arrange the parameters vectors too.

TABLE II
COMPLEXITY - CHECK NODES TO VARIABLE NODES

DENSE (Fig 4) IMPROVED (Fig 5)

# multiplications O(N2
var ×N2

check
) O(N2

var ×Ncheck)

# additions O(N2
var ×N2

check
) O(Nvar ×Ncheck)

Biggest tensor allocation O(N2
var ×N2

check
) O(N2

var ×Ncheck)



C. Output

The final step of the NBP decoding consists in computing

the a posteriori LLR λ̃i using a weighted version of Eq. (3).

Similarly to Section III-A, one can express this computation

as a simple dense layer as shown in Fig. 6. A more efficient

computational graph is proposed on Fig. 7. The complexity

of the proposed model is reduced compared to the dense

architecture as described in Table III.

Fig. 6. Implementation of weighted Eq. (3) using a dense layer.

Fig. 7. Efficient computational graph for weighted Eq. (3).

TABLE III
COMPLEXITY - OUTPUT OPERATION

DENSE (Fig 6) IMPROVED (Fig 7)

# multiplications O(N2
var ×Ncheck) O(Nvar ×Ncheck)

# additions O(N2
var ×Ncheck) O(Nvar ×Ncheck)

Biggest tensor allocation O(N2
var ×Ncheck) O(Nvar ×Ncheck)

D. RNN cell

BP decoding being an iterative algorithm, the aforemen-

tioned operations must be repeated several times to reach good

performance. RNN can be used to execute such iterative de-

coding in a NN framework [1]. Using the previously described

operations, a structured RNN cell tailored to perform blind

NBP decoding of linear block codes is proposed in Fig. 8.

The RNN cell, inspired by gated cells such as LSTM [11] or

GRU [12], is built around two types of trainable weights:

• Gating weights: wG represent the topology of the FG

and are used to select messages accordingly during the

different steps of the decoding process. To represent such

binary selection behavior a sigmoidal activation function

σ is applied to these weights.

• NBP weights: The wΣ and wOUT weights are used

to improve the performance of the decoding scheme

similarly to the NBP mechanism described in [1]. They

should be real valued and centered around 1 to ensure

weighting of the messages and not selection.

All the weights are shared between different RNN iterations

(following known properties of RNN). Gating weights are also

distributed inside any given iteration between the different

operations of the BP algorithm; see Fig. 8. The structured NN

architecture ensures the learned decoding algorithm is similar

to a NBP but allows the learning of the code’s factor graph’s

topology. In the proposed architecture, the aforementioned

functions ω, θ, γ and ψ can be defined as follow:

ω(α) = wΣ ⊙ σ (wG) ψ(α) = wOUT ⊙ σ (wG)

θ(α) = σ (wG) γ(α) = 1− σ (wG)

The gate mechanism selects messages using a ”refined gate

function” σ (wG) [13]. This function closely acts as a sigmoid

function but allows better gradient back-propagation in the

saturation regime of the sigmoid thus improving the learn-

ability of the gates (at the cost of additional trainable parame-

ters). It can be noted that the chosen architecture only weights

the messages at certain steps. From conducted experiments,

using different weights before Σ and OUT operations seems

performing. In most of the trials, using weights before the Π

operation was detrimental to the performance of the model.

This might partially be explained by the numerical sensitivity

of the product reduction and arctanh function used in Π

block. The weighting of the input LLR (using β weights) did

not prove efficient either.

Fig. 8. Proposed gated RNN cell to perform blind NBP decoding of linear
block codes. The Σ, Π and OUT blocs represent the efficient computational
graphs described in sections III-A, III-B and III-C respectively. ”Arrange”
block is used to re-arrange the gate vector to match the order of the message
vector received from Σ operation as stated in Fig. 5.



IV. EXPERIMENTAL SETUP AND RESULTS

A. System model

To evaluate the performance of the proposed RNN cell,

an end-to-end NN model is defined in TensorFlow with the

following custom layers (see Fig. 9):

• Code: Information words x are encoded using systematic

versions of either BCH (15,11) or BCH (15,7) codes

described in [14].

• Modulation: A BPSK modulation is applied.

• Channel: Symbols go through an AWGN channel.

• Soft demodulation: Given the modulation and channel

used, LLR of the received samples are computed.

• LLR pre-processing: To facilitate the training of the

RNN, the LLR are normalized to [−1,+1] range ac-

cording to the maximum absolute LLR in each code-

word. The LLR are then broadcasted as many times as

BP iterations needed (in this study, this number is fixed

to 5). An iteration-wise weighting mechanism is applied

to the normalized code-words. This might allow the NN

to compensate for inadequate normalization range of the

code-words on one hand, and also introduce variability

in the RNN iterations by changing the balance between

inputs LLR and messages from previous iteration, on the

other hand.

• Decoding: The proposed Gated NBP RNN Cell is used

to decode the received code-words. As emphasized pre-

viously, the blind NBP has to learn the coding scheme

used at the emitter.

• Outputs processing: Instead of extracting only the result

of the last BP iteration, the outputs of all iterations are re-

combined using a weighted sum. Thus, the RNN layer is

used in a ”many-to-many” configuration. This approach

is inspired by [4], [15] and might allow an easier back-

propagation of the gradient by injecting it back at each

BP iterations. This also allows the system to give more

importance to the iteration outputs that are most reliable

from training experience. Knowing the position of the

systematic bits of the code, a deterministic selection layer

is then applied to select these bits and a sigmoid function

is applied to squeeze decoded LLR to either 0 or 1.

For both codes, the overall complexity of the model is

described in Table IV.

TABLE IV
NUMBER OF TRAINABLE PARAMETERS OF PROPOSED DECODERS

Weights # Trainable Parameters BCH(15,7) decoder BCH(15,11) decoder

PRE-PROCESSING STAGE

Iteration weights NIter 5 5

NBP RNN

wG NVar ×NCheck 120 60

Refine Gate σ 2×NVar ×NCheck 240 120

wΣ NVar ×NCheck 120 60

wOUT NVar ×NCheck 120 60

POST-PROCESSING STAGE

Iteration Out Weights NIter 5 5

TOTAL 2×NIter + 5×NVar ×NCheck 610 310

Fig. 9. System model - Note that all the blocks of the transmission chain are
defined as NN layers but no training of the encoder part is considered in this
study.

B. Training

The auto-encoder framework enables a simple training pro-

cess as the loss function can be computed as the binary cross-

entropy between initial information words x and decoded

words x̃. For both codes, training is performed using randomly

chosen information bits, divided in words of size k. The

number of words used for training corresponds to 10 times

the total number of possible words, 2k. The SNR used during

training phase is fixed at 4 dB. RMSProp optimizer is used

with a triangular cyclic learning rate scheduler [16] oscillating

between learning rates of 10−2 and 10−1. The model is trained

during 250 Epochs. Except wG weights that are initialized

using Glorot uniform initializer, all the other weights are

initialized to 1. A shifted ℓ2 regularization mechanism is

applied to penalize learned NBP weights that lie too far from

1. The main focus of the paper being to provide a working

architecture for blind NBP decoding, several improvements

could be brought to the training process and hyper-parameters

choices in future works.

C. Results

The model was evaluated on a dataset composed of ran-

domly chosen words. To obtain reliable results, instead of

fixing the number of testing words, the number of errors to

reach has been fixed. The performance of the best model



Fig. 10. Frame Error Rate of the proposed model (solid lines) compared with
standard BP (dotted lines) and Maximum Likelihood (dashed lines) decoders
for BCH (15,11) (red - square markers) and BCH (15,7) (blue - triangle
markers) codes.

among 50 trainings, denoted as ”Blind NBP RNN”, is com-

pared with Maximum Likelihood (ML) [14] and standard BP

decoding baselines for both codes as depicted in Fig. 10.

All the performance curves are displayed in frame error rate

(number of code-words erroneously decoded among all the

processed code-words). The proposed model is able to learn to

decode both codes and outperforms a standard BP algorithm,

notably for BCH (15,7) code, where a performance gain of up

to 1 dB significantly reduces the gap with ML decoding.

V. CONCLUSION AND PERSPECTIVES

In this paper an efficient gated RNN architecture has been

introduced for the decoding of linear block codes. This archi-

tecture improves the BP iterative decoding process using blind

NBP approach where no prior knowledge of the used coding

scheme is needed at the receiver side. The computational graph

has been designed to be low-complexity, generic and scalable

to bigger codes. The main advantages of the proposition are:

• Controlled number of trainable parameters and computa-

tions in the NN thanks to weights sharing and efficient

computational graph.

• Structured architecture ensuring the application of NBP

algorithm for the decoding of linear block codes as well

as improved explainability of the model.

• Improved performance compared to standard BP decoder

thanks to the application of a NBP like approach.

• Improved decoder flexibility thanks to it’s training capa-

bilities.

The proposed model was able to learn to decode BCH

(15,11) and BCH (15,7) codes and showed improved FER

compared to a standard BP. Interesting leads for further

works include the study of the generalization abilities of

such structured architecture. This property is crucial to learn

decoding scheme for bigger codes where it is not possible to

provide all the code-words in the training dataset. This was

in fact one of the insights behind the proposition of such

architecture and the use of linear block codes. For online

learning, the training repeatability of the model should also be

improved as it sometimes, although rarely, fails to discover an

improved decoding scheme compared to BP. Other initializers,

pruning techniques, and different hyper-parameters could be

envisioned to solve this problem. Finally, it would be of great

interest to include this decoder in a fully trainable end-to-

end architecture, to simultaneously discover efficient coding

and decoding scheme. This last perspective, enabled by the

proposed trainable blind NBP decoder, will be subject to

further studies.
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