

DROP: Molecular voucher database for identification of Drosophila parasitoids

Chia-Hua Lue, Matthew L
 Buffington, Sonja Scheffer, Matthew Lewis, Tyler A Elliott, Amelia R I Lindsey, Amy Driskell, Anna Jandova, Masahito T
Kimura, Yves Carton, et al.

▶ To cite this version:

Chia-Hua Lue, Matthew L
 Buffington, Sonja Scheffer, Matthew Lewis, Tyler A Elliott, et al.
. DROP: Molecular voucher database for identification of Drosophila parasitoids. Molecular Ecology Resources, 2021, 10.1111/1755-0998.13435 . hal-03275697

HAL Id: hal-03275697 https://hal.science/hal-03275697v1

Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 DROP: Molecular voucher database for identification of *Drosophila* parasitoids

- 2 Resource article
- 3 Word count: 7850 excluding references
- 4
- 5 Authors
- 6 Chia-Hua Lue (C-HL), (0000-0002-5245-603X), chiachia926@gmail.com, corresponding
- 7 author
- 8 Matthew L. Buffington (MLB)
- 9 Sonja Scheffer (SS)
- 10 Matthew Lewis (ML)
- 11 Tyler A. Elliott (TAE)
- 12 Amelia R. I. Lindsey (AL)
- 13 Amy Driskell (AD), (0000-0001-8401-7923)
- 14 Anna Jandova (AJ)
- 15 Masahito T. Kimura (MTK)
- 16 Yves Carton (YC)
- 17 Robert R. Kula (RRK)
- 18 Todd A. Schlenke (TAS)
- 19 Mariana Mateos (MM), (0000-0001-5738-0145)
- 20 Shubha Govind (SG), (0000-0002-6436-639X)
- 21 Julien Varaldi (JV)
- 22 Emilio Guerrieri (EG), (0000-0002-0583-4667)

- 23 Massimo Giorgini (MG), (0000-0001-8670-0945)
- 24 Xingeng Wang (XW)
- 25 Kim Hoelmer (KH)
- 26 Kent M. Daane (KMD)
- 27 Paul K. Abram (PKA)
- 28 Nicholas A. Pardikes (NAP), (0000-0002-9175-4494)
- 29 Joel J. Brown (JJB), (0000-0002-3608-6745)
- 30 Melanie Thierry (MT)
- 31 Marylène Poirié (MP)
- 32 Paul Goldstein (PG), (0000-0002-1443-7030)
- 33 Scott E. Miller (SEM), (0000-0002-4138-1378)
- 34 W. Daniel Tracey (WDT)
- 35 Jeremy S. Davis (JSD), (0000-0002-5214-161X)
- 36 Francis M. Jiggins (FMJ)
- 37 Bregje Wertheim (BW)
- 38 Owen T. Lewis (OTL)
- 39 Jeff Leips (JL)
- 40 Phillip P. A. Staniczenko (PPAS)
- 41 Jan Hrcek (JH), (0000-0003-0711-6447), janhrcek@gmail.com
- 42
- 43
- 44

45 Affiliations

- 46 (C-HL, AJ, NAP, JJB, MT, JH) Biology Centre of the Czech Academy of Sciences, Institute
- 47 of Entomology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- 48 (C-HL, PPAS) Department of Biology, Brooklyn College, City University of New York
- 49 (CUNY), 2900 Bedford Ave, Brooklyn, NY11210, USA
- 50 (MLB, SS, ML, RRK, PG) Systematic Entomology Laboratory, ARS/USDA c/o Smithsonian
- 51 Institution, National Museum of Natural History, 10th& Constitution Ave, NW,
- 52 Washington DC 20560, USA
- 53 (TAE) Centre for Biodiversity Genomics, 50 Stone Road East, University of Guelph,
- 54 Guelph, Ontario, N1G2W1, Canada
- 55 (AL) Department of Entomology, University of Minnesota, Saint Paul MN 55108.
- 56 (AD) Laboratories of Analytical Biology, Smithsonian Institution, National Museum of
- 57 Natural History, 10th & Constitution Ave, NW, Washington DC 20560, USA
- 58 (MTK) Hokkaido University Museum, Sapporo, Hokkaido 060-0810, Japan
- 59 (YC) "Évolution, Génomes, Comportement, Écologie", CNRS et Université Paris-Saclay
- 60 (TAS) Department of Entomology at the University of Arizona, Forbes 410, PO BOX
- 61 210036, Tucson, AZ 85721-0036.
- 62 (MM) Wildlife and Fisheries Sciences Department, Texas A&M University
- 63 (SG) The Graduate Center of the City University of New York, 365 Fifth Avenue, New
- 64 York, NY10016, USA
- 65 (JV) Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie
- 66 Evolutive UMR 5558, F-69622 Villeurbanne, France

- 67 (EG, MG) CNR- Institute for Sustainable Plant Protection (CNR-IPSP), National Research
- 68 Council of Italy, Piazzale E. Fermi 1, 80055 Portici, Italy.
- 69 (XW, KH) United States Department of Agriculture, Agricultural Research Services,
- 70 Beneficial Insects Introduction Research Unit. 501 S. Chapel St., Newark, DE 19713, USA
- 71 (KMD) Department of Environmental Science, Policy and Management. University of
- 72 California, Berkeley. Mulford Hall, 130 Hilgard Way, Berkeley, CA 94720.
- 73 (PKA) Agriculture and Agri-Food Canada, Agassiz Research and Development Centre,
- 74 6947 Hwy #7, Agassiz, VOM 1A0, British Columbia, Canada
- 75 (JJB, MT, JH) University of South Bohemia, Faculty of Science, Branisovska 31, 37005,
- 76 Czech Republic
- 77 (MP) Université "Côte d'Azur", INRAE, CNRS. and Evolution and Specificity of
- 78 Multitrophic Interactions (ESIM) Sophia Agrobiotech Institute, 400 Route des Chappes,
- 79 BP 167, 06903 Sophia Antipolis, France
- 80 (SEM) Smithsonian Institution, National Museum of Natural History, 10th & Constitution
- 81 Ave, NW, Washington DC 20560, USA
- 82 (WDT, JSD) Department of Biology, Indiana University Bloomington. 702 N. Walnut
- 83 Grove, Bloomington, IN47405
- 84 (WDT) Gill Center for Biomolecular Science, Indiana University Bloomington. 702 N.
- 85 Walnut Grove, Bloomington, IN47405
- 86 (JSD) Biology Department, University of Kentucky, 101 T. H. Morgan Building, Lexington,
- 87 KY, 40506

- 88 (FMJ) Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2
- 89 3EH UK
- 90 (BW) Groningen Institute for Evolutionary Life Sciences, University of Groningen,
- 91 Nijenborgh 9, 9747 AG Groningen, the Netherlands
- 92 (OTL) Department of Zoology, University of Oxford. 11a Mansfield Road, Oxford OX1
- 93 3SZ, UK.
- 94 (JL) Department of Biological Sciences, University of Maryland Baltimore County. 1000
- 95 Hilltop circle, Baltimore, MD, 21250
- 96
- 97
- 98 Abstract

99 Molecular identification is increasingly used to speed up biodiversity surveys and 100 laboratory experiments. However, many groups of organisms cannot be reliably 101 identified using standard databases such as GenBank or BOLD due to lack of sequenced 102 voucher specimens identified by experts. Sometimes a large number of sequences are 103 available, but with too many errors to allow identification. Here we address this 104 problem for parasitoids of Drosophila by introducing a curated open-access molecular 105 reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is 106 challenging and poses a major impediment to realize the full potential of this model 107 system in studies ranging from molecular mechanisms to food webs, and in biological 108 control of Drosophila suzukii. In DROP (http://doi.org/10.5281/zenodo.4519656), 109 genetic data are linked to voucher specimens and, where possible, the voucher

110	specimens are identified by taxonomists and vetted through direct comparison with
111	primary type material. To initiate DROP, we curated 154 laboratory strains, 853
112	vouchers, 545 DNA sequences, 16 genomes, 11 transcriptomes, and 6 proteomes drawn
113	from a total of 183 operational taxonomic units (OTUs): 113 described Drosophila
114	parasitoid species and 70 provisional species. We found species richness of Drosophila
115	parasitoids to be acutely underestimated and provide an updated taxonomic catalogue
116	for the community. DROP offers accurate molecular identification and improves cross-
117	referencing between individual studies that we hope will catalyze research on this
118	diverse and fascinating model system. Our effort should also serve as an example for
119	researchers facing similar molecular identification problems in other groups of
120	organisms.
121	
122	Key Words
123	Biodiversity, DNA sequences, Genomes, Integrative taxonomy, Molecular diagnostics,
124	Biological control
125	
126	
127	
120	
128	
128 129	

132 Introduction

133	Building a knowledge base that encompasses ecology, evolution, genetics, and
134	biological control is contingent on reliable taxonomic identifications. Molecular
135	identification is commonly used in groups of organisms with cryptic species that are
136	difficult to identify morphologically (Fagan-Jeffries et al., 2018; Miller et al., 2016;
137	Novotny & Miller, 2014), for the molecular detection of species interactions (Baker et
138	al., 2016; Condon et al., 2014; Gariepy et al., 2019; Hrček & Godfray, 2015; Hrcek et al.,
139	2011), and for identification of species from environmental DNA samples (Shokralla et
140	al., 2012). The accuracy of molecular identification, however, depends on the accuracy
141	of identifications associated with sequences databased in existing online depositories.
142	The foundations of that accuracy are the voucher specimens which were sequenced and
143	the collaboration of a taxonomic authority in the deposition of the sequence data.
144	GenBank serves as the most widely used sequence depository; however,
145	deposition of sequences in GenBank, which is required by most peer-reviewed journals,
146	does not require deposition of associated vouchers. The Barcode of Life Data System
147	database (BOLD) (Ratnasingham & Hebert, 2007) explicitly aims to provide a framework
148	for identifying specimens using single-locus DNA sequences (Hebert et al., 2003; Smith
149	et al., 2005), and while these are associated with vouchers and metadata, the curation
150	of these data is not consistently maintained by those submitting material. A recent
151	study by Pentinsaari et al. (2020) showed misidentification in both databases caused by
152	missteps in the protocols from query sequences to final determination.

153	Although the BOLD database function "BOLD-IDS" allows considerable database
154	curation (e.g., sequences are used for identification and/or flagging of
155	misidentified/contaminated records), it also automatically includes sequences from
156	GenBank, and may perpetuate the shortcomings previously mentioned since these
157	cannot be curated from within BOLD. As such, the quality of sequences and the
158	reliability of identifications obtained from BOLD-IDS can vary, and depends on the
159	curation by systematists focusing on individual taxa (Meiklejohn et al., 2019). BOLD-IDS
160	works well for taxa where qualified taxonomists have been involved with assuring data
161	quality; some insect examples include beetles (Hendrich et al., 2015), butterflies
162	(Escalante et al., 2010), geometrid moths (Hausmann et al., 2011, 2016; Miller et al.,
163	2016), true bugs (Raupach et al., 2014), and microgastrine wasps (Smith et al., 2013).
164	Unfortunately, this is not the case of parasitoids (Insecta: Hymenoptera) of
165	Drosophila flies (Insecta: Drosophilidae). There are vast numbers of Drosophila
166	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and
167	their hosts are important model organisms in biology. As of this writing, there are
168	88,666 nucleotide sequences deposited in GenBank for Leptopilina heterotoma
169	(Thomson) and <i>L. boulardi</i> (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae)
170	alone. However, less than 1 % of the identifications associated with these sequences
171	have been confirmed by taxonomists or are associated with voucher specimens
172	deposited in museum collections. With sequencing shifting from individual genes to
173	genomes we risk that the identification problems will soon apply to whole genomes.

174	There are around 4000 described species of Drosophilidae, and Drosophila contains
175	more than a third of the family's described species (O'Grady & DeSalle, 2018). By
176	contrast, although parasitic wasps are generally a species-rich group (Dolphin & Quicke,
177	2001; Quicke, 2015), the most recent catalogue of parasitoid species that attack
178	Drosophila lists only 50 described species (Carton et al., 1986). This disparity suggests
179	that the diversity of parasitic wasps attacking Drosophila is severely underestimated, an
180	assertion supported by the results presented here. This is largely a consequence of the
181	challenging nature of parasitoid taxonomy, in which morphological identification is
182	intractable for many species, and the fact that taxonomic specialists are greatly
183	outnumbered by the species they study.
184	Currently, only a few biological study systems have been characterized in
185	sufficient breadth and depth to allow researchers to connect various levels of biological
186	organization, from molecular mechanisms to food webs of interacting species.
187	Parasitoids of Drosophila represent one such system (Prévost, 2009). Moreover, the
188	practical feasibility of rearing parasitoids of Drosophila parasitoids under laboratory
189	conditions has led to a number of fundamental discoveries in ecology (Carton et al.,
190	1991; Terry et al. 2020; Thierry et al.,2021), evolution (Kraaijeveld & Godfray, 1997),
191	immunology (Kim-Jo et al., 2019; Nappi & Carton, 2001; Schlenke et al., 2007),
192	physiology (Melk & Govind, 1999), symbiosis (Xie et al., 2011, 2015), behavioral science
193	(Lefèvre et al., 2012) and other fields. In contrast to this large body of laboratory
194	studies, basic natural history of Drosophila parasitoids, especially their species richness
195	(Kimura & Mitsui, 2020; Lue et al., 2018), is little known. Addressing this knowledge gap

196 is especially pressing given current efforts to use parasitoids in biological control efforts,

197 such as those of the invasive pest spotted wing *Drosophila*, *Drosophila suzukii* (Abram et

198 al., 2020; Daane et al., 2016; Giorgini et al., 2019; Wang et al., 2020 a&b).

199 Properly executed molecular identification has the potential to be much more

200 efficient for the majority of researchers, and many laboratory strains are commonly

201 identified using DNA sequences alone. While it is practical for researchers to assign

202 species names based on a match to sequence records in genetic databases, this practice

203 often causes a cascade of inaccuracies. To illustrate the extent of the problem, we note

204 the example of *Ganaspis*, a genus of parasitoids commonly used in laboratories that

205 includes both superficially indistinguishable species with highly divergent sequences

206 that are often treated as conspecific, as well as specimens with identical sequences

207 identified under different names (Figure 1).

208 To address these issues, we introduce a newly curated molecular reference database 209 for Drosophila parasitoids — DROP— in which sequences are either linked to voucher 210 specimens identified by taxonomists or have a traceable provenance (Figure 2). The first 211 aim of DROP is to provide a reliable DNA sequence library for molecular identification of 212 Drosophila parasitoids that enables cross-referencing of original taxonomic concepts 213 with those of subsequent studies. We pay special attention to live parasitoid strains 214 which are available for future experiments. The second aim is to standardize and 215 expedite the linkage between specimens and available sequence data; we place a 216 premium on museum vouchers as they allow for repeatable scientific research. In DROP, 217 this goal is facilitated through a consolidated digital infrastructure of data associated

218	with laboratory strains, offering the opportunity for researchers to re-examine past
219	experimental results in a permanent context. The third aim is to provide an up-to-date
220	catalogue of the diversity of <i>Drosophila</i> parasitoids as a foundation for advancing the
221	understanding of their taxonomy. Finally, the fourth aim of DROP is for our collaborative
222	effort to serve as an inspiration to communities of researchers studying other groups of
223	organisms who are experiencing difficulties with the reliability of molecular reference
224	databases.
225	

225

226 Materials and Methods

227 Drosophila species and their parasitoids

228 The phylogenetic and subgeneric structure within *Drosophila* and related genera is

not yet fully resolved (O'Grady & DeSalle, 2018). Various subgenera, including

230 Scaptomyza, Zaprionus, Lordiphosa and Samoaia, have been treated as both genera and

231 subgenera, and researchers have yet to achieve consensus on these various hypotheses

232 (O'Grady & DeSalle, 2018; Remsen & O'Grady, 2002; Yassin, 2013; Yassin & David,

233 2010). Species in Drosophila subgenera and genera closely related to Drosophila

234 commonly share niche space and natural histories and, as a result, are often attacked by

235 overlapping or identical groups of parasitoids. For instance, the invasive African fig fly,

- 236 Zaprionus indianus Gupta is attacked by Pachycrepoideus vindemiae (Rondani, 1875)
- and *Leptopilina boulardi* (Pfeiffer et al., 2019; Santos et al., 2016), all of which have been

238 recorded from *Drosophila*. Therefore, we also include these groups within the contents

of DROP.

240	Parasitoids of Drosophila belong to four superfamilies of Hymenoptera
241	(Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of
242	Drosophila flies independently (Carton et al., 1986; Prévost, 2009). All the parasitoids
243	known to attack Drosophila are solitary and attack either the larval or pupal stage; in
244	both cases, they emerge from the fly's puparium. The known Drosophila larval
245	parasitoids belong to two families, Braconidae (including the genera Asobara,
246	Aphaereta, Phaenocarpa, Tanycarpa, Aspilota, Opius) and Figitidae (Leptopilina,
247	Ganaspis, Leptolamina, Kleidotoma); all are koinobionts that allow the host to continue
248	development while the parasitoid grows within it. The known Drosophila pupal
249	parasitoids belong to three other families, Diapriidae (Trichopria, Spilomicrus),
250	Pteromalidae (Pachycrepoideus, Spalangia, Trichomalopsis, Toxomorpha) and Encytidae
251	(Tachinaephagus); they are all idiobionts that terminate host development immediately.
252	Host-specificity across the Drosophila parasitoids is poorly characterized—while some
253	can parasitize other families of Diptera (e.g., Aphaereta aotea) (Hughes & Woolcock,
254	1976), most are thought to be limited to Drosophila hosts.
255	

256 Data sources

To assemble the DROP database, we targeted 20 genera that potentially parasitize frugivorous *Drosophila* species. We compiled DNA sequence and voucher data from four sources: 1) museum collections, 2) publications, 3) molecular biodiversity inventories publicly available in BOLD and GenBank, for which we managed to secure inspection of

the vouchers by taxonomists, and 4) conducted a sequencing and taxonomic inventoryof laboratory strains.

263	We first gathered species information into a catalogue of Drosophila parasitoid
264	species (Table 1) from 212 references (see DROP database reference table) and 36
265	institutes (Table S2). To ensure reliable names for nominal species (sequences identified
266	by a species name) in our database, we confirmed their taxonomic validity using the
267	Ichneumonoidea 2015 digital catalogue (Yu et al., 2016;
268	https://web.archive.org/web/20161022093945/http:/ichneumonoidea.name/global.ph
269	p) and Hymenoptera Online (HOL; <u>http://hol.osu.edu/</u>), both of which are curated by
270	taxonomic experts. To obtain reliable molecular identification data, we harvested 8,298
271	DNA sequences from GenBank and BOLD (all compiled into BOLD system: DS-DROPAR
272	dataset). These sequences represent 443 Barcode Index Numbers (BINs – a form of
273	provisionary taxa in BOLD) and 520 taxa, for a total of 963 operational taxonomic units
274	(OTUs). We use the term "OTU" as a general and neutral designation encompassing
275	described species, provisional species, undescribed species, cryptic species, and mis-
276	identified species.
277	The majority of the harvested sequences were Braconidae (6690), Diapriidae

277 The majority of the harvested sequences were Braconidae (6690), Diapriidae
278 (967), Figitidae (622), and Pteromalidae (19). Because of the concerns with generic
279 databases (noted above and in Figure 1 and Table S1), we assembled a list of sequences
280 with valid species names that could either be traceably linked to vouchers examined by
281 taxonomists or referred to directly in publications authored by a recognized expert in
282 the relevant taxon group. We then cross-checked species names with their

corresponding BINs in BOLD and flagged potential conflicts between species names andBINs (Table S1).

285	A core goal of DROP besides that of a tool for biodiversity research is to function as a
286	platform that accommodates Drosophila parasitoids kept in culture (for experimental
287	work) or in quarantine (for biological control applications). So far, there has been a lack
288	of a coherent and reliable means of verifying species kept in laboratory settings, which
289	can be a serious problem. Since lab cultures are routinely contaminated by neighboring
290	cultures (e.g., through escapees), one species may be displaced by another even under a
291	vigilant eye.
292	For lab and quarantine lines in DROP, we deposited DNA extractions and vouchers in
293	the National Insect Collection, National Museum of Natural History, Smithsonian
294	Institution (USNM; Washington, DC, USA). During their initial assembly for DROP,
295	laboratory OTUs were designated by their strain name; most laboratory strains can be
296	associated with provisional species but some cannot yet be assigned. Three females and
297	three males of each strain were dry-mounted and individually assigned a USNMENT 'QR
298	code' specimen label as representative vouchers. For each molecular voucher, three legs
299	from a female wasp were removed for DNA extraction and sequencing (Supplementary
300	Methods for details), and the rest of the body was assigned a USNMENT specimen label
301	and preserved for morphological identification. Both DNA extraction and vouchers were
302	entered into the database and uploaded to BOLD (DROP project: DS-LABS) with an
303	associated GenBank ID [NOTE: the BOLD records will be pushed to GenBank at revision
304	stage; these data are not embargoed].

305	Where possible, we identified OTU strains using a combination of morphological and
306	sequence data, and characterized provisional species or species clusters using neighbor-
307	joining trees (Figure S1) based on the COI gene sequences (Supplemental material). For
308	establishing BIN limits in the context of DROP, we have adopted an initial percent cutoff
309	at 2%. As Ratnasingham & Hebert (2013) pointed out, this is a good starting point for
310	many taxa, but it also may be adjusted as more samples are acquired and compared.

311

312 Drosophila parasitoid database—DROP

313 To compile the above information, we built a simple Structured Query Language 314 (SQL) database in sqlite3 format using SQLiteStudio. There are eight linked tables in the 315 database—species, strain, voucher, sequence, genome, transcriptome, proteome and 316 reference—along with additional tables for linking these to reference table (Figure S2). 317 The database incorporates all sample fields used by BOLD for compatibility and includes 318 a number of new fields to accommodate a catalogue of Drosophila parasitoid species, 319 laboratory strain information, and links from the DROP database to BOLD and GenBank 320 records.

321 DROP is available on Zenodo (http://doi.org/10.5281/zenodo.4519656) for

322 permanent deposition and version control. In addition to the main database, the

323 Zenodo repository includes additional files to facilitate easy use of the database. These

- 324 files include: 1) the reference database in comma-separated text (.csv) and FASTA
- 325 format ready to be used for molecular identification; 2) a species catalogue with
- 326 taxonomic information; and 3) a list of laboratory strains with confirmed molecular

vouchers. DROP will be continued to be maintained by C-HL until further notice at the
 Zenodo repository and sequences generated in the future will also be deposited in BOLD

- 329 (DROP project).
- 330
- 331

31 Species, provisional species, and OTU designations

332 In addition to the inherent value of a formal taxonomic name, a reliable provisional 333 taxon label can also be used for exchanging scientific information and conveying 334 experimental results among researchers (Schindel & Miller, 2010). Based on the amount 335 of sequence divergence between described species, we observed what appears to be a 336 significant number of provisional OTUs in the initial dataset we compiled. Furthermore, 337 among the data linked to a valid species name, some of these provisional OTUs are 338 actively being used in research and have sequences available to the public. We 339 therefore provide a list of potential new species with their molecular vouchers. 340 We use the following designation format for OTUs that refer to a provisional species: 341 "Drop strainX sp.1" or, when no other information is known, "DROP sp.1". Where 342 possible, these OTUs are linked to BINs within BOLD and to a voucher USNM specimen 343 label number. If the genus of the OTU is known, the "Drop Leptopilina sp.1" format is 344 followed. These designations can facilitate species identification as well as discovery and 345 description of new species without compromising the existing taxonomy of the 346 described OTUs in question. As more complete species descriptions become available, 347 this provisional species framework can be updated while keeping the link to previous 348 provisional species name.

349 Results

350 Overview of DROP

351	We catalogued 182 OTUs in the DROP database with 113 described species of
352	Drosophila parasitoids and 69 provisional species (Table 1). In total, we documented 154
353	laboratory strains (Table S3), 853 vouchers from 36 institutions (Table S2). Among the
354	described species, 98 have voucher information, of which 61 are traceable to type
355	specimens, including 45 to holotypes (i.e., specimen used to root a name to the
356	taxonomic author's concept of the species). Leptopilina is represented by the highest
357	number of species with 45 OTUs, followed by Asobara with 26 OTUs. Within the 154
358	catalogued lab strains, 86 were actively being used in ongoing research (i.e., a live strain
359	being cultivated). These strains represent 39 OTUs: 11 described species and 28
360	provisional species (Table S3, Figure S1).
361	

362 Molecular Vouchers

363	So far, DROP includes 545 DNA sequences and links to 16 genomes (Table 2.1), 11
364	transcriptomes (Table 2.2), and 6 proteomes (Table 2.3). From the total of 8298 DNA
365	sequences (dataset: DS-DROPAR) collected from public databases, only 322 sequences
366	(less than 4% of available sequences) satisfied the criteria for validity we imposed for
367	molecular vouchers (see material and methods) included in DROP. The DS-DROPAR
368	dataset initially referred to 520 taxa names, but only 52 names were valid, linked to
369	vouchers, or linked to a publication with evidence that the specimens had been
370	identified by taxonomists. The remaining 223 of 545 DROP DNA sequences were

371 generated by this project (dataset: DS-LABS, DS-AUSPTOID) and came from 121 OTUs

- 372 (12 provisional species and 101 lab strains).
- 373 The DROP database is largely made up of standard barcode COI sequences (340
- 374 sequences), which includes 77 OTUs: 43 described species and 33 provisional species.
- 375 We aimed to supplement COI with secondary markers (28SD2, 18S, ITS2) when possible,
- 376 resulting in an additional 120 sequences from 26 OTUs: 15 described species and 11
- 377 provisional species. There are currently 19 OTUs that have sequences from more than
- 378 one genetic marker.
- 379

380 Species Delimitation in Laboratory Strains

381 We used 298 COI sequences to resolve the identification of each laboratory

382 strain, and where possible, indicated potential species clusters for Drosophila

383 parasitoids (Fig. S1 and Table S3). Using a fixed 2% divergence cutoff, a total of 31 lab

384 strain OTUs were assignable to a valid species name, and the remaining 70 strain OTUs

385 were assigned to a provisional species. The taxonomic status of several of these

- 386 provisional species is also being investigated using an integrative taxonomic approach
- 387 involving morphological identification, genomic data, or other genetic data.
- 388

389 Discussion

In this paper, we introduce and describe a free and open-access database for the
 reliable molecular identification of *Drosophila* parasitoids. The guiding principle of DROP

392	is data credibility, based on the prerequisite that genetic data be associated with explicit
393	criteria linking voucher specimens with taxonomic concepts of the original authors
394	(Troudet et al., 2018). When incorporating information from public genetic databases,
395	we include only sequences that have passed our filtering protocol. This protocol ensures
396	each entry is associated with a valid scientific name, provisional name, or consistently
397	applied OTU designation that can be used to integrate genetic and organismal data from
398	independent studies.
399	The following discussion expands on the utility of DROP and how we hope it will
400	benefit molecular species identification, connect research from various disciplines,
401	support biological control applications, and serve as a long-term molecular voucher
402	repository and clearinghouse for vetted data.
402 403	repository and clearinghouse for vetted data.
	repository and clearinghouse for vetted data. Molecular (mis-)identification
403	
403 404	Molecular (mis-)identification
403 404 405	<i>Molecular (mis-)identification</i> We observe that 17% of the described <i>Drosophila</i> parasitoid OTUs in BOLD and
403 404 405 406	<i>Molecular (mis-)identification</i> We observe that 17% of the described <i>Drosophila</i> parasitoid OTUs in BOLD and GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are
403 404 405 406 407	<i>Molecular (mis-)identification</i> We observe that 17% of the described <i>Drosophila</i> parasitoid OTUs in BOLD and GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are examples of BIN-ID conflict. Roughly half of these OTUs are used as lab strains. This
403 404 405 406 407 408	<i>Molecular (mis-)identification</i> We observe that 17% of the described <i>Drosophila</i> parasitoid OTUs in BOLD and GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are examples of BIN-ID conflict. Roughly half of these OTUs are used as lab strains. This latter observation is disturbing, because it demonstrates that the criteria used to
 403 404 405 406 407 408 409 	Molecular (mis-)identification We observe that 17% of the described <i>Drosophila</i> parasitoid OTUs in BOLD and GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are examples of BIN-ID conflict. Roughly half of these OTUs are used as lab strains. This latter observation is disturbing, because it demonstrates that the criteria used to differentiate and reference species in active research programs are clouded. For

- 412 active use in numerous research programs (e.g. Moreau et al., 2009; Nomano et al.,
- 413 2017; Reumer et al., 2012; Wang et al., 2020a & 2021) as well as in biological control

414	efforts against the invasive <i>D. suzukii</i> (e.g. Abram et al., 2020; Daane et al., 2016;
415	Giorgini et al., 2019). All the BINs from <i>G. brasiliensis</i> carry the name <i>G. xanthopoda</i>
416	(Figure 1). In such instances, assigning an identification by matching specimens to
417	barcode records in the genetic database is problematic, as two names are applied to the
418	same BIN. If sequences comprising the BIN are not linked to a voucher that can be
419	examined, teasing apart the two names and how they are applied is impossible.
420	Applying explicit, consistent criteria for species determination ensures that
421	experimental results can be reliably repeated, and that any potentially novel
422	observations will not be explained away as artifacts of identification. DROP addresses
423	these concerns by linking reliable reference sequences and vouchers for G. brasiliensis
424	(Figure 1) and from different studies: one with reference to the morphological
425	description (Buffington & Forshage, 2016) and the other with reference to the genome
426	(using voucher specimens from the morphological study; Blaimer et al., 2020).
427	We were not able to resolve all conflicts between BIN and species identity, for one
428	or more of the following three reasons: First, many records lack reliably identified
429	vouchers and have often been themselves used for molecular identification,
430	proliferating errors. Second, in some cases, it is not possible to verify whether the
431	genetic differences among BINs represent different species or simply intraspecific
432	genetic variation (Bergsten et al., 2012), because BINs themselves are not a species
433	concept. The only solution to this problem is to derive original sequence data from type
434	specimens (which is often either impractical or impossible for a number of technical
435	reasons), or from specimens whose conspecificity with the types has been corroborated.

436	Since species boundaries are always subject to testing, additional specimens from
437	multiple collecting events (e.g., representing different seasons and geographic regions)
438	may help provide the additional data to circumscribe a given species' limits. The third
439	difficulty in resolving BIN-ID conflict derives from the data themselves: Although the
440	mitochondrial COI gene is the locus most frequently chosen for identification of insects
441	and other animals, its effectiveness varies among insect groups (Brower & DeSalle,
442	2002; Gompert et al., 2008; Lin & Danforth, 2004). In part, this derives from gene-
443	tree/species-tree conflict as a function of mitochondrial DNA introgression (Gompert et
444	al., 2008; Klopfstein et al., 2016), parthenogenesis (Reumer et al., 2012), and/or
445	Wolbachia infection (Wachi et al., 2015; Xiao et al., 2012), any of which may lead to
446	complications in species delimitation using mitochondrial loci. Ideally, studies should
447	apply multiple loci, genomes, and comparative taxonomic data to clarify species
448	boundaries. As Drosophila parasitoids are often maintained in laboratory cultures, it is
449	also possible to use mating experiments to explore species boundaries under the
450	paradigm of the biological species concept (Seehausen et al., 2020).
451	
452	DROP as a taxonomic tool

DROP offers an empirical platform for species discovery and a useful tool for taxonomic research. The fact that the number of BINs reported here exceeds the number of described species (Table S1, Figure S3) highlights the need for taxonomic work. But such work cannot proceed on the basis of BINs or barcodes, but requires integrative taxonomic approach employing a combination of molecular and

458	morphological data. Describing new species on the sole basis of a barcode or BIN,
459	without the benefit of independent character data, should, in general, be avoided. It
460	risks creating nomenclatural synonymy if it is later determined that a sequence can be
461	attributed to a specimen that bears a valid, available name. Moreover, BINs are based
462	on distance analyses which, by definition, are incompatible with diagnoses per se
463	(Ferguson, 2002; Prendini et al., 2002; Goldstein & DeSalle, 2011). Therefore, in
464	taxonomic treatments, it is critical to clarify the range of applicability of a given BIN and
465	it overlap with a taxonomic name (see example in Figure 1).
466	Public genetic databases have adopted a longstanding convention in treating
467	undetermined OTUs and sequences, referring to provisional species with numbers, as
468	for example "sp. 1", and these are rarely linked to vouchers. For OTUs designated as
469	provisional species, DROP enables cross-indexing of specimens, sequences and
470	references with studies and provides researchers with valuable tools for taxonomic
471	revisions, including the means of discovery, corroboration, and description of new
472	species. For example, "drop_Gan1_sp.1" refers to voucher USNMENT01557320
473	deposited in the USNM, Washington DC, COI sequence (DROP sequence_id 2), BOLD
474	process ID: DROP143-21, BIN number: XXXXXX (will update in the revision), 28D1
475	sequences (DROP sequence_id 289), and 28D2 sequences (DROP sequence_id 303). In
476	the future, when "drop_Gan1_sp.1" is described as a new species with a formal specific
477	epithet, DROP will update the species status and holotype information while keeping
478	this provisional species name as an informal "synonym." We recognize tracking these

- 479 informal 'tags' through time can be problematic; however, linking these tags in DROP to
- 480 a vouchered specimen and unique identifier will minimize confusion.
- 481

482 From molecular mechanisms to ecosystem structure

483 The use of molecular tools in insect biodiversity studies has gradually expanded from

- 484 barcoding single individuals to metabarcoding large environmental samples
- 485 representing entire food webs (Jeffs et al., 2020; Littlefair et al., 2016). Drosophila and
- 486 their parasitoids are among the few systems that currently allow us to explore
- 487 thoroughly the mechanisms of species interactions at scales ranging from the molecular
- 488 to the ecological. Here, we highlight two examples where information compiled in DROP
- 489 enables the study of the *Drosophila*-parasitoid system across multiple levels of biological
- 490 organization:

491 DROP includes a DNA reference library of Australian *Drosophila* parasitoids (DS-

492 AUSPTOID in BOLD) that connects laboratory experiments and field research. Molecular

493 vouchers of both hosts and parasitoids were collected along altitudinal gradients in the

494 rainforest of northern Queensland, Australia (Jeffs et al., 2020). With this DNA reference

495 library, researchers can detect interactions between *Drosophila* and their parasitoids

496 using PCR-based approaches and parasitized pupae (Hrcek & Godfray, 2015; Jeffs et al.,

497 2020). Surveying host-parasitoid interactions in this way will improve our understanding

498 of how environmental change alters the structure of host-parasitoid networks (Morris et

499 al., 2014; Staniczenko et al., 2017; Tylianakis et al., 2007) by accelerating data collection

500 in the field. In addition, JH established lab cultures of both hosts and their parasitoids

501	from the same Australian sampling sites with the aim of conducting laboratory
502	experiments (e.g. Thierry et al., 2021). Molecular vouchers of the lab strains were then
503	submitted to DROP as a reference database (DS-LABS in BOLD) to ensure that criteria for
504	species determination were applied consistently—and will continue to be applied
505	consistently—between the natural community studies and the laboratory experiments.
506	The presence of a foundational DNA reference library and species catalogue in
507	DROP will enable the process of exploring parasitoid biodiversity to become more
508	efficient. For example, DROP includes molecular vouchers from Drosophila parasitoids
509	that were collected across seasons and along latitudinal gradients in the eastern Unites
510	States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying
511	species in a more recent exploration of native parasitoid biodiversity across North
512	America (e.g., Abram et al., 2020). There are additional uses for DROP: curated
513	specimen collections may be used to document species distributions, phenology,
514	understand micro-evolutionary patterns, observe the effects of climate change, and
515	detect and track biological invasions (Funk, 2018; Schilthuizen et al., 2015; Tarli et al.,
516	2018).
517	

518 Taxonomic accuracy for biocontrol studies

519 Unfortunately, the history of biological control includes many examples of 520 misidentifications that have resulted in failures to employ or establish the expected 521 control agent, thus hindering eventual success (Buffington et al., 2018; Rosen, 1986; 522 Huffaker et al. 1962). In the context of biological control research on *Drosophila* pest

523	species, a simple, reliable, and rapid identification tool for their natural enemies is
524	essential (Wang et al. 2020b). By anchoring the criteria for determining identities of
525	organisms being considered for biological control programs, DROP annotation enables
526	the direct examination of centers of origin for parasitoid species, their co-occurrence
527	with natural enemies, and the optimal timing for potential introductions of such
528	enemies (Abram et al., 2020; Daane et al., 2016; Girod et al., 2018a and b; Kimura, 2015;
529	Mitsui et al., 2007). Because most sequences from DROP are already vetted for
530	reliability, they can be used to identify biological control agents rapidly, before or after
531	being brought into quarantine facilities for safety and efficacy testing. This will decrease
532	the risk of non-target ecological impacts arising from misidentifications and facilitate
533	regulatory review for releases of effective and specific natural enemies.
534	In addition to species identification, reference sequences from DROP may be used to
535	create species-specific primers for the accurate identification of parasitoids, design
536	multiplex PCR assays that rapidly distinguish species in natural or agricultural
537	ecosystems (Ye et al., 2017), and apply high-throughput molecular identification
538	diagnostics (Fagan-Jeffries et al., 2018). Applications of such specific primers have been
539	used in bacteria, fungi, oomycetes and insect pests (Liu et al., 2017; Tedersoo et al.,
540	2019; Tsai et al., 2020).

541

542 Long-term molecular voucher preservation

543	During the curation of DROP, we found that holotype specimens were missing from
544	museums for several iconic Drosophila parasitoid species: Asobara tabida (Nees von
545	Esenbeck), Leptopilina clavipes (Hartig), and Leptopilina longipes (Hartig). This is not
546	uncommon and impedes future taxonomic revisions regardless of whether molecular
547	data are used. To avoid contributing to this problem, DROP uses museums as
548	depositories for ensuring that sequenced vouchers of both described species and
549	provisional species are permanently stored. In order to stabilize nomenclature, we
550	further advocate the designation of neotypes (a replacement specimen for a missing
551	holotype) that have museum-vouchered DNA barcodes and additional genomic
552	extractions in storage.
553	Natural history museums are designed to maintain vouchers (including types) for
554	long-term preservation, and increasingly they implement institutionalized workflows
555	that link DNA sequences to specimens and specimen metadata (Prendini et al., 2002).
556	We strongly encourage the deposition of voucher specimens from field surveys and
557	experimental studies in museum collections, as has been urged by the Entomology
558	Collections Network (ECN) and required in many PhD programs. No matter how quickly
559	new molecular techniques are developed or refined, there is no substitute for a reliable
560	database of voucher specimens when it comes to ensuring the repeatability of biological
561	research (Funk et al., 2005; Lendemer et al., 2020).
562	Our results show that species richness of the parasitic wasps that attack Drosophila
563	is severely underestimated, and only a fraction of them have been described. In DROP,

564 38% of the OTUs are provisional species, and more than 46% of the named OTUs have

565	synonyms. Remarkably, Leptopilina heterotoma, one of the world's most studied
566	parasitoids, has more than 20 synonyms! As is generally the case, the rate of species
567	description and revision of Drosophila parasitoids lags far behind that with which
568	molecular sequence data are generated. Ensuring a consistent application of OTU
569	recognition is therefore essential. With DROP, researchers may ensure consistency is
570	their application of scientific names, and that those names are valid, making the
571	daunting process of describing Drosophila parasitoids more accurate and efficient.
572	In addition to the collection of physical museum resources, a central role
573	taxonomists play in DROP and its curation is that of fostering better integration of
574	taxonomy with experimental and biodiversity research. Our intention is to perpetuate
575	DROP beyond this introductory publication. We hope that experts in all areas of
576	Drosophila-parasitoid biology and related fields will join us in this effort.
577	
578	Conclusion

579 Taxonomic confusion presents many obstacles in experimental and biodiversity 580 studies. One way of addressing this impediment is to provide a reliable DNA library with 581 traceable vouchers (Astrin et al., 2013). We developed DROP as a resource and platform 582 for gathering and sharing reliable genomic sequence data for Drosophila parasitoids. We 583 hope it will serve as a model for researchers working with organisms which present 584 similar difficulties. While compiling DROP, we found that the high number of provisional 585 versus named OTUs suggests that the diversity of parasitic wasps attacking Drosophila is 586 greatly underestimated. With this in mind, DROP represents the start of an important

- 587 knowledge base that will strengthen future studies of natural host-parasitoid
- 588 interactions, population dynamics, biocontrol, and the impact of climate change on
- 589 biodiversity and ecosystem services.
- 590

591 Acknowledgements

- 592 The DROP project was developed during the 2018 Entomology Society of
- 593 America conference, during the symposium "Drosophila parasitoids: from molecular to
- 594 ecosystem level". We thank Dr. Elijah Talamas for valuable comments on earlier drafts.
- 595 We also thank Chris Jeffs for providing Australian field samples. We are also thankful for
- 596 funding support from the Czech Science Foundation (17-27184Y). Additional fund for
- 597 sequencing was provided by MLB, OTL, and PPAS. Mention of trade names or
- 598 commercial products in this publication is solely for the purpose of providing specific
- information and does not imply recommendation or endorsement by the USDA. USDA is
- 600 an equal opportunity provider and employer.
- 601

602 **References**

- Abram, P. K., Mcpherson, A. E., Kula, R., Hueppelsheuser, T., Perlman, S. J., Curtis, C. I.,
 Fraser, J. L., ... Buffington, M. (2020). New records of *Leptopilina, Ganaspis*, and
 Asobara species associated with *Drosophila suzukii* in North America, including
- 606 detections of L. japonica and G. brasiliensis. *Journal of Hymenoptera Research*, 78,
- 607 1-17, https://doi.org/10.3897/jhr.78.55026
- Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular
 taxonomy, with proposed definitions for vouchers in a molecular context. *ZooKeys*,
 365(SPEC.ISSUE), 67–70. https://doi.org/10.3897/zookeys.365.5875
- 611 Baker, C. C. M., Bittleston, L. S., Sanders, J. G., & Pierce, N. E. (2016). Dissecting host-
- 612 associated communities with DNA barcodes. *Philosophical Transactions of the*
- 613 Royal Society B: Biological Sciences, 371(1702).
- 614 https://doi.org/10.1098/rstb.2015.0328

615	Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, M.,
616	Hendrich, Vogler, A. P. (2012). The effect of geographical scale of sampling on
617	DNA barcoding. Systematic Biology, 61 (5), 851-869.
618	https://doi.org/10.1093/sysbio/sys037
619	Blaimer, B. B., Gotzek, D., Brady, S. G., & Buffington, M. (2020). Comprehensive
620	phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps.
621	BMC Ecology and Evolution, 20 (155). https://doi.org/10.1186/s12862-020-01716-2
622	Brower, A. V. Z., & DeSalle, R. (2002). Patterns of mitochondrial versus nuclear DNA
623	sequence divergence among nymphalid butterflies: The utility of wingless as a
624	source of characters for phylogenetic inference. Insect Molecular Biology, 7 (1), 73-
625	82. https://doi.org/10.1046/j.1365-2583.1998.71052.x
626	Buffington, M., & Forshage, M. (2016). Redescription of Ganaspis brasiliensis (Ihering,
627	1905), new combination, (Hymenoptera: Figitidae) a natural enemy of the Invasive
628	Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). Proceedings of the
629	Entomological Society of Washington, 118(1), 1–13. https://doi.org/10.4289/0013-
630	8797.118.1.1
631	Buffington, M., Talamas, E. J., & Hoelmer, K. A. (2018). Team Trissolcus: Integrating
632	taxonomy and biological control to combat the brown marmorated stink bug.
633	American Entomologist, 64 (4), 224–232
634	Carton, Y., Boulétreau, M., van Alphen, J. J. M., & van Lenteren, J. C. (1986). The
635	Drosophila parasitic wasps. In Ashburner M, Carson HL, Thompson JN (Eds), The
636	genetics and biology of Drosophila, (3),348–394.
637	Carton, Y., Haouas, S., Marrakchi, M., & Hochberg, M. (1991). Two competing parasitoid
638	species coexist in sympatry. <i>Oikos,</i> 60, 222-230. https://doi.org/10.2307/3544869
639	Condon, M. A., Scheffer, S. J., Lewis, M. L., Wharton, R., Adams, D.C., & Forbes, A. A.
640	(2014). Lethal interactions between parasites and prey increase niche diversity in a
641	tropical community. <i>Science, 343</i> (6176), pp.1240-1244.
642	Daane, K. M., Wang, XG., Biondi, A., Miller, B. E., Miller, J. C., Riedl, H., Shearer, P. W.,
643	Walton, V. M. (2016). First exploration of parasitoids of Drosophila suzukii in
644	South Korea as potential classical biological agents. Journal of Pest Science 89, 823–
645	835, doi:10.1007/s10340-016-0740-0.
646	Dolphin, K., & Quicke, D. L. J. (2001). Estimating the global incompletely described
647	parasitoid wasps. Biological Journal Of The Linnean Society, 73 (3), 279-286,
648	https://doi.org/10.1006
649	Escalante, P., Ibarra-Vazquez, A., & Rosas-Escobar, P. (2010). Tropical montane
650	nymphalids in Mexico: DNA barcodes reveal greater diversity. Mitochondrial DNA,
651	21, 30-37, https://doi.org/10.3109/19401736.2010.535527
652	Fagan-Jeffries, E. P., Cooper, S. J. B., Bertozzi, T., Bradford, T. M., & Austin, A. D. (2018).
653	DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using
654	high-throughput methods more than doubles the number of species known for
655	Australia. Molecular Ecology Resources, 18(5), 1132–1143.
656	https://doi.org/10.1111/1755-0998.12904
657	Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species.
658	Biological Journal of the Linnean Society, 75, 509–16.

659 Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). 660 Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most 661 speciose animal order. BMC Ecology, 18(1), 1–11. https://doi.org/10.1186/s12898-662 018-0176-x 663 Funk, V. A. (2018). Collections-based science in the 21st Century. Journal of Systematics 664 and Evolution, 56(3), 175–193. https://doi.org/10.1111/jse.12315 665 Funk, V. A., Hoch, P. C., Prather, L. A., & Wagner, W. L. (2005). The importance of vouchers. Taxon, 54(1), 127-129. https://doi.org/10.2307/25065309 666 667 Gariepy, T. D., Bruin, A., Konopka, J., Scott-Dupree, C., Fraser, H., Bon, M. C., & Talamas, 668 E. (2019). A modified DNA barcode approach to define trophic interactions 669 between native and exotic pentatomids and their parasitoids. *Molecular Ecology*, 670 28(2), 456-470. https://doi.org/10.1111/mec.14868 671 Giorgini, M., Wang, X.-G., Wang, Y., Chen, F. S., Hougardy, E., Zhang, H. M., Chen, Z. 672 Q., ... Guerrieri, E. (2019). Exploration for native parasitoids of Drosophila suzukii in 673 China reveals a diversity of parasitoid species and narrow host range of the 674 dominant parasitoid. Journal of Pest Science, 92(2), 509–522. 675 https://doi.org/10.1007/s10340-018-01068-3 676 Girod, P., Borowiec, N., Buffington, M., Chen, G., Fang, Y., Kimura, M. T., Peris-Felipo, F. 677 J., ... Kenis, M. (2018). The parasitoid complex of D. suzukii and other fruit feeding 678 Drosophila species in Asia. Scientific Reports, 8(1), e11839. 679 https://doi.org/10.1038/s41598-018-29555-8 680 Girod, P., Lierhmann, O., Urvois, T., Turlings, T. C. J., Kenis. M., & Have, T. (2018). Host 681 specificity of Asian parasitoids for potential classical biological control of Drosophila 682 suzukii. Journal of Pest Science 91,1241–1250, https://doi. doi:10.1007/s10340-683 018-1003-z 684 Goldstein, P. Z., & DeSalle, R. (2011). Integrating DNA barcode data and taxonomic 685 practice: Determination, discovery, and description. BioEssays, 33(2),135-147, 686 https://doi.org/10.1002/bies.201000036 687 Gompert, Z., Forister, M. L., Fordyce, J. A., & Nice, C. C. (2008). Widespread mito-nuclear 688 discordance with evidence for introgressive hybridization and selective sweeps in 689 Lycaeides. Molecular Ecology, 17(24), 5231-5244, https://doi.org/10.1111/j.1365-690 294X.2008.03988.x 691 Grissell, E. (1999). Hymenopteran biodiversity: some alien notions. American 692 Entomologist, 45,236-244. 693 Hardy, I. C., van Alphen, J. J. M., & Godfray, H. C. J. (1994). Parasitoids: Behavioral and 694 evolutionary ecology. The Journal of Animal Ecology, 63(4), 1009-1010, 695 https://doi.org/10.2307/5282 696 Hausmann, A., Haszprunar, G., & Hebert, P. D. N. (2011). DNA barcoding the geometrid 697 fauna of bavaria (Lepidoptera): Successes, surprises, and questions. PLoS ONE, 6(2), 698 1–9. https://doi.org/10.1371/journal.pone.0017134 699 Hausmann, A., Miller, S. E., Holloway, J. D., Dewaard, J. R., Pollock, D., Prosser, S. W. J., 700 & Hebert, P. D. N. (2016). Calibrating the taxonomy of a megadiverse insect family: 701 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). 702 Genome, 59(9), 671-684. https://doi.org/10.1139/gen-2015-0197

703 Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal life: 704 Cytochrome c oxidase subunit 1 divergences among closely related species. 705 Proceedings of the Royal Society B: Biological Sciences, 270 (Suppl.), 96-99, 706 https://doi.org/10.1098/rsbl.2003.0025 707 Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P. D. N., Hausmann, A., Köhler, F., & 708 Balke, M. (2015). A comprehensive DNA barcode database for Central European 709 beetles with a focus on Germany: Adding more than 3500 identified species to 710 BOLD. Molecular Ecology Resources, 15(4), 795-818, https://doi.org/10.1111/1755-711 0998.12354 712 Hrček, J., & Godfray, H. C. J. (2015). What do molecular methods bring to host-parasitoid 713 food webs? Trends in Parasitology, 31(1), 30–35. 714 https://doi.org/10.1016/j.pt.2014.10.008 715 Hrcek, J., Miller, S. E., Quicke, D. L. J., & Smith, M. A. (2011). Molecular detection of 716 trophic links in a complex insect host-parasitoid food web. *Molecular Ecology* 717 *Resources*, 11(5), 786–794. https://doi.org/10.1111/j.1755-0998.2011.03016.x 718 Huffaker, C. B., Kennett, C. E., Finney, G. L. (1962). Biological control of olive scale, 719 Pwrlatoria oleae (Cohree), in California by imported Aphytis maculicornis (Masi) 720 (Hymenoptera: Aphelinidae). *Hilgardia*, 32 (13): 541-636. DOI: 721 10.3733/hilg.v32n13p541 722 Hughes, R. D., Woolcock, L. T. (1976). Aphaereta aotea sp. N. (Hymenoptera: 723 Braconidae), an Alysiine parasite of dung breeding flies. Journal of Australian 724 Entomological Society, 15, 191-196. 725 Jeffs, C. T., Terry, J. C. D., Higgie. M., Jandová, A., Konvičková. H., Brown. J. J., Lue. C.-H., 726 ... Lewis, O. T. (2020). Molecular analyses reveal consistent food web structure with 727 elevation in rainforest Drosophila - parasitoid communities. Ecography, 43, 1-11, 728 https://doi.org/10.1111/ecog.05390 729 Kim-Jo, C., Gatti, J. L., & Poirié, M. (2019). Drosophila cellular immunity against 730 parasitoid wasps: A complex and time-dependent process. In Frontiers in 731 *Physiology*, https://doi.org/10.3389/fphys.2019.00603 732 Kimura, M. T. (2015). Prevalence of exotic frugivorous Drosophila species, D. simulans 733 and D. immigrans (Diptera: Drosophilidae), and its effects on local parasitoids in 734 Sapporo, northern Japan. Applied Entomology and Zoology, 50(4), 509–515. 735 https://doi.org/10.1007/s13355-015-0361-8 736 Kimura, M. T., & Mitsui, H. (2020). Drosophila parasitoids (Hymenoptera) of Japan. In 737 Entomological Science, 23(4), 359-368, https://doi.org/10.1111/ens.12432 738 Klopfstein, S., Kropf, C., & Baur, H. (2016). Wolbachia endosymbionts distort DNA 739 barcoding in the parasitoid wasp genus Diplazon (Hymenoptera: Ichneumonidae). 740 Zooloaical Journal of the Linnean Society, 177(3), 541–557. https://doi.org/10.1111/zoj.12380 741 742 Kraaijeveld, A. R., & Godfray, H. C. J. (1997). Trade-off between parasitoid resistance and 743 larval competitive. Nature, 389, 278-280, https://doi.org/10.1038/38483 744 Lefèvre, T., De Roode, J. C., Kacsoh, B. Z., & Schlenke, T. A. (2012). Defence strategies 745 against a parasitoid wasp in Drosophila: Fight or flight? Biology Letters, 8(2), 230-746 233, https://doi.org/10.1098/rsbl.2011.0725

Lendemer, J., Thiers, B., Monfils, A. K., Zaspel, J., Ellwood, E. R., Bentley, A., LeVan, K., ... 747 748 Aime, M. C. (2020). The extended specimen network: A strategy to enhance US 749 biodiversity collections, promote research and education. *BioScience*, 70(1), 23-30, 750 https://doi.org/10.1093/biosci/biz140 751 Lin, C. P., & Danforth, B. N. (2004). How do insect nuclear and mitochondrial gene 752 substitution patterns differ? Insights from Bayesian analyses of combined datasets. 753 Molecular Phylogenetics and Evolution, 30(3), 686-702, 754 https://doi.org/10.1016/S1055-7903(03)00241-0 755 Littlefair, J. E., Clare, E. L., & Naaum, A. (2016). Barcoding the food chain: From Sanger to 756 high-throughput sequencing1. Genome, 59(11), 946–958. 757 https://doi.org/10.1139/gen-2016-0028 758 Liu, L. J., Pang, A. H., Feng, S. Q., Cui, B. Y., Zhao, Z. H., Kučerová, Z., Stejskal, V., ... Li, Z. 759 H. (2017). Molecular Identification of ten species of stored-product psocids through 760 microarray method based on ITS2 rDNA. Scientific Reports, 7(1): 16694, 761 https://doi.org/10.1038/s41598-017-16888-z 762 Lue, C.-H., Borowy, D., Buffington, M. L., & Leips, J. (2018). Geographic and seasonal 763 variation in species diversity and community composition of frugivorous Drosophila 764 (Diptera: Drosophilidae) and their Leptopilina (Hymenoptera: Figitidae) parasitoids. 765 Environmental Entomology, 47(5): 1096-1106. https://doi.org/10.1093/ee/nvy114 766 Lue, C.-H., Driskell, A. C., Leips, J., & Buffington, M. L. (2016). Review of the genus 767 Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern 768 United States, including three newly described species. Journal of Hymenoptera 769 Research, 53: 35-76. https://doi.org/10.3897/jhr.53.10369 770 Meiklejohn, K. A., Damaso, N., & Robertson, J. M. (2019). Assessment of BOLD and 771 GenBank – Their accuracy and reliability for the identification of biological 772 materials. PLoS ONE, 14(6): e0217084. 773 https://doi.org/10.1371/journal.pone.0217084 774 Melk, J. P., & Govind, S. (1999). Developmental analysis of Ganaspis xanthopoda, a larval 775 parasitoid of Drosophila melanogaster. Journal of Experimental Biology, 202, 1885-776 1896 777 Miller, S. E., Hausmann, A., Hallwachs, W., & Janzen, D. H. (2016). Advancing taxonomy 778 and bioinventories with DNA barcodes. Philosophical Transactions of the Royal 779 Society Biological Sciences, 371(1702): 20150339. doi: 10.1098/rstb.2015.0339 780 Mitsui, H., van Achterberg, K., Nordlander, G., & Kimura, M. T. (2007). Geographical 781 distributions and host associations of larval parasitoids of frugivorous Drosophilidae 782 in Japan. Journal of Natural History, 41(25–28), 1731–1738. 783 https://doi.org/10.1080/00222930701504797 784 Moreau, S. J. M., Vinchon, S., Cherqui, A., & Prévost, G. (2009). Components of Asobara 785 venoms and their effects on hosts. In Advances in Parasitology, Prévost G (Ed). 70, 786 217-232, https://doi.org/10.1016/S0065-308X(09)70008-9 787 Morris, R. J., Gripenberg, S., Lewis, O. T., & Roslin, T. (2014). Antagonistic interaction 788 networks are structured independently of latitude and host guild. Ecology Letters, 789 17(3), 340-349, https://doi.org/10.1111/ele.12235 790 Nappi, A. J., & Carton, Y. (2001). Immunogenetic aspects of the cellular immune

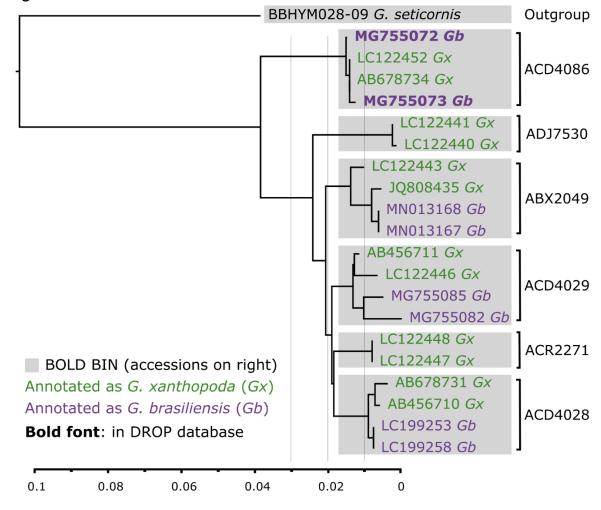
791	response of Drosophila against parasitoids. Immunogenetics, 52(3–4), 157–164.
792	https://doi.org/10.1007/s002510000272
793	Nomano, F. Y., Kasuya, N., Matsuura, A., Suwito, A., Mitsui, H., Buffington ,M.L., &
794	Kimura, M. T. (2017). Genetic differentiation of Ganaspis brasiliensis
795	(Hymenoptera: Figitidae) from East and Southeast Asia. Applied Entomology and
796	Zoology, 52(3), 429–437. https://doi.org/10.1007/s13355-017-0493-0
797	Novotny, V., & Miller, S. E. (2014). Mapping and understanding the diversity of insects in
798	the tropics: Past achievements and future directions. Austral Entomology, 53(3),
799	259–267. https://doi.org/10.1111/aen.12111
800	O'Grady, P. M., & DeSalle, R. (2018). Phylogeny of the genus Drosophila. Genetics,
801	209(1), 1–25. https://doi.org/10.1534/genetics.117.300583
802	Pentinsaari, M., Ratnasingham, S., Miller, S. E., & Hebert, P. D. N. (2020). BOLD and
803	GenBank revisited – Do identification errors arise in the lab or in the sequence
804	libraries? PLoS One, 15(4): e0231814. https://doi.org/10.1371/journal.
805	pone.0231814
806	Pfeiffer, D. G., Shrader, M. E., Wahls, J. C. E., Willbrand, B. N., Sandum, I., van der Linde,
807	K., Laub, C. A., Day, E. R. (2019). African Fig Fly (Diptera: Drosophilidae): Biology,
808	expansion of geographic range, and its potential status as a soft fruit pest. Journal
809	of Integrated Pest Management, 10(1), 1–8. https://doi.org/10.1093/jipm/pmz018
810	Prendini, L., Hanner, R., & DeSalle, R. (2002). Obtaining, storing and archiving specimens
811	and tissue samples for use in molecular studies. In Techniques in Molecular
812	Systematics and Evolution. https://doi.org/10.1007/978-3-0348-8125-8 11
813	Prévost, G. (2009). Parasitoids of Drosophila. In Advances in parasitology.
814	https://doi.org/10.1016/S0065-308X(09)70018-1
815	Quicke, D. L. J. (2015). The Braconid and Ichneumonid parasitoid wasps: Biology,
816	systematics, evolution and ecology. Wiley-Blackwell,
817	https://doi.org/10.1002/9781118907085
818	Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING: bold: The Barcode of Life Data
819	System (http://www.barcodinglife.org). <i>Molecular Ecology Notes</i> , 7(3), 355-364,
820	https://doi.org/10.1111/j.1471-8286.2007.01678.x
821	Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species:
822	the barcode index number (BIN) system. <i>PLoS ONE</i> , 8(7): e66213.
823	https://doi.org/10.1371/journal.pone.0066213
824	Raupach, M. J., Hendrich, L., Kuchler, S. M., Deister, F., Moriniere, J., & Gossner, M. M.
825	(2014). Building-Up of a DNA Barcode Library for true bugs (Insecta: Hemiptera:
826	Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLoS ONE,
827	9(9), 1–13. https://doi.org/10.1371/journal.pone.0106940
828	Remsen, J., & O'Grady, P. (2002). Phylogeny of Drosophilinae (Diptera: Drosophilidae),
829	with comments on combined analysis and character support. <i>Molecular</i>
830	<i>Phylogenetics and Evolution</i> , 24(2), 249-264, https://doi.org/10.1016/S1055-
831	7903(02)00226-9
832	Reumer, B, M., van Alphen, J. J. M., & Kraaijeveld, K. (2012). Occasional males in
833	parthenogenetic populations of Asobara japonica (Hymenoptera: Braconidae): Low
834	Wolbachia titer or incomplete coadaptation. <i>Heredity</i> , 108(3), 341-346,

835	https://doi.org/10.1038/hdy.2011.82
836	Rosen, D. (1986). The role of taxonomy in effective biological control programs.
837	Agriculture, Ecosystems & Environment, 15(2-3), 121-129.
838	https://doi.org/10.1016/0167-8809(86)90085-X
839	Santos, W. G. N., Fernandes, E. C., Souza, M. M., Guimarães, J. A., & Araujo, E. L. (2016).
840	First record of Eucoilinae (Hymenoptera: Figitidae), parasitoids of African fig fly
841	Zaprionus indianus Gupta (Diptera: Drosophilidae), in the Caatinga biome.
842	Semina:Ciencias Agrarias, 37(5), 3055–3058. https://doi.org/10.5433/1679-
843	0359.2016v37n5p3055
844	Schilthuizen, M., Vairappan, C. S., Slade, E. M., Mann, D. J., & Miller, J. A. (2015).
845	Specimens as primary data: Museums and "open science." Trends in Ecology and
846	<i>Evolution</i> , 30(5), 237–238. https://doi.org/10.1016/j.tree.2015.03.002
847	Schlenke, T. A., Morales, J., Govind, S., & Clark, A. G. (2007). Contrasting infection
848	strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster.
849	PLoS Pathogens, 3(10):e158, https://doi.org/10.1371/journal.ppat.0030158
850	Schindel, D., & Miller, S. E. (2010). Provisional Nomenclature the on-ramp to taxonomic
851	names. In: Polaszek, A. (Ed), Systema Nature, 250: The Linnaean Ark. CRC, Boca
852	Raton, 109-115.
853	Seehausen, M. L., Ris, N., Driss, L., Racca, A., Girod, P., Warot, S., Borowiec, N., Tosevski,
854	I., & Kenis, M. (2020). Evidence for a cryptic parasitoid species reveals its suitability
855	as a biological control agent. Scientific reports, 10: 19096.
856	https://doi.org/10.1038/s41598-020-76180-5
857	Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation
858	sequencing technologies for environmental DNA research. In Molecular Ecology,
859	21(8), 1794-1805, https://doi.org/10.1111/j.1365-294X.2012.05538.x
860	Smith, M. A., Fisher, B. L., & Hebert, P. D. N. (2005). DNA barcoding for effective
861	biodiversity assessment of a hyperdiverse arthropod group: The ants of
862	Madagascar. Philosophical Transactions of the Royal Society Biological Sciences,
863	360(1462), 1825-1834, https://doi.org/10.1098/rstb.2005.1714
864	Smith, M. A., Fernandez-Triana, J. L., Eveleigh, E., Gomez, J., Guclu, C., Hallwachs, W.,
865	Hebert. P. D. N., Zaldivar-Riveron, A. (2013). DNA barcoding and the taxonomy of
866	Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly
867	20000 sequences. Molecular Ecology Resources, 13, 168-276,
868	https://doi.org/10.1111/1755-0988.12038
869	Staniczenko, P. P. A., Reed-Tsochas, F., Lewis, O. T., Tylianakis, J. M., Albrecht, M.,
870	Coudrain, V., & Klein, A. M. (2017). Predicting the effect of habitat modification on
871	networks of interacting species. Nature Communications, 8, 792,
872	https://doi.org/10.1038/s41467-017-00913-w
873	Tarli, V. D., Grandcolas, P., & Pellens, R. (2018). The informative value of museum
874	collections for ecology and conservation: A comparison with target sampling in the
875	Brazilian Atlantic forest. <i>PLoS ONE</i> , 13(11).
876	https://doi.org/10.1371/journal.pone.0205710
877	Tedersoo, L., Drenkhan, R., Anslan, S., Morales-Rodriguez, C., & Cleary, M. (2019). High-
878	throughput identification and diagnostics of pathogens and pests: Overview and

879	practical recommendations. <i>Molecular Ecology Resources</i> , 19(1), 47–76.
880	https://doi.org/10.1111/1755-0998.12959
881	Terry, J. C. D., Chen, J., & Lewis, O. T. (2020). The effect of natural enemies on the
882	coexistence of competing species - an empirical test using Bayesian modern
883	coexistence theory. <i>bioRxiv</i> : https://doi.org/10.1101/2020.08.27.270389
884	Thierry, M., Pardikes, N. A., Lue, CH., Lewis, O. L., & Hrcek, J. (2021). Experimental
885	warming influences species abundances in a <i>Drosophila</i> host community through
886	direct effects on species performance rather than altered competition and
887	parasitism. <i>PLOS ONE</i> (In Press).
888	Troudet, J., Vignes-Lebbe, R., Grandcolas, P., & Legendre, F. (2018). The increasing
889	disconnection of primary biodiversity data from specimens: How does it happen
890	and how to handle it? Systematic Biology, 67(6), 1110–1119.
891	https://doi.org/10.1093/sysbio/syy044
892	Tsai, CL., Chu, IH., Chou. MH., Chareonviriyaphap, T., Chiang, MY., Lin, PA., Lu, K
893	H., & Yeh, WB. (2020). Rapid identification of the invasive fall armyworm
894	Spodoptera frugiperda (Lepidoptera, Noctuidae) using species-specific primers in
895	multiplex PCR. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-
896	73786-7
897	Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the
898	structure of tropical host-parasitoid food webs. <i>Nature</i> , 445(7124), 202–205.
899	https://doi.org/10.1038/nature05429
900	Wachi, N., Nomano, F. Y., Mitsui, H., Kasuya, N., & Kimura, M. T. (2015). Taxonomy and
901	evolution of putative thelytokous species of Leptopilina (Hymenoptera: Figitidae)
902	from Japan, with description of two new species. Entomological Science, 18(1), 41–
903	54. https://doi.org/10.1111/ens.12089
904	Wang, XG., Biondi, A., & Daane, K. M. (2020). Functional responses of three candidate
905	Asian larval parasitoids evaluated for classical biological control of Drosophila
906	suzukii. Journal of Economic Entomology, 113(1): 73–80. doi: 10.1093/jee/toz265
907	Wang, XG., Biondi, A., Nance. A. N., Zappalà, L., Hoelmer, K. A., & Daane, K. M. (2021).
908	Assessment of Asobara japonica as a potential biological control agent for the
909	spotted wing drosophila, Drosophila suzukii. Entomologia Generalis (In Press) doi:
910	10.1127/entomologia/2020/1100
911	Wang, XG., Lee, J., Daane, K.M., Buffington, M., & Hoelmer, K. A. (2020). Biological
912	control of Drosophila suzukii. CAB Reviews 54, 10.1079/PAVSNNR202015054
913	Xiao, J. H., Wang, N. X., Murphy, R. W., Cook, J., Jia, L. Y., & Huang, D. W. (2012).
914	Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a
915	fig wasp. <i>Evolution</i> , 66, 1907-1916, https://doi.org/10.1111/j.1558-
916	5646.2011.01561.x
917	Xie. J., Tiner, B., Vilchez, I., & Mateos, M. (2011). Effect of the Drosophila endosymbiont
918	Spiroplasma on parasitoid wasp development and on the reproductive fitness of
919	wasp-attacked fly survivors. Evolutionary Ecology, 25, 1065-1079,
920	https://doi.org/10.1007/s10682-010-9453-7
921	Xie, J., Winter, C., Winter, L., & Mateos, M. (2015). Rapid spread of the defensive
922	endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp

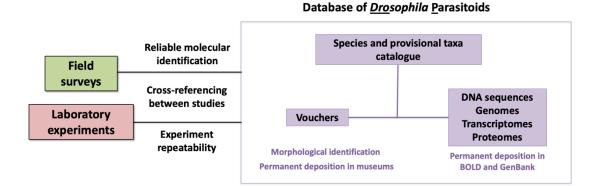
- 923 pressure. FEMS Microbiology Ecology, 91(2), 1-11,
- 924 https://doi.org/10.1093/femsec/iu017
- Yassin, A. (2013). Phylogenetic classification of the Drosophilidae Rondani (Diptera): The
 role of morphology in the postgenomic era. *Systematic Entomology*,
- 927 https://doi.org/10.1111/j.1365-3113.2012.00665.x
- 928 Yassin, A., & David, J. R. (2010). Revision of the Afrotropical species of *Zaprionus*
- 929 (Diptera, Drosophilidae), with descriptions of two new species and notes on
- 930 internal reproductive structures and immature stages. *ZooKeys*, 51, 33-72,
- 931 https://doi.org/10.3897/zookeys.51.380
- Ye, Z., Vollhardt, I. M. G., Girtler, S., Wallinger, C., Tomanovic, Z., & Traugott, M. (2017).
 An effective molecular approach for assessing cereal aphid-parasitoid-
- 934 endosymbiont networks. *Scientific Reports*, 7(1), 1–12.
- 935 https://doi.org/10.1038/s41598-017-02226-w
- 936
- 937

938 Data Accessibility


- 939 The DROP database is freely accessible at Zenodo depository
- 940 (http://doi.org/10.5281/zenodo.4519656). New sequences have been deposited in
- 941 BOLD in datasets DS-LABS, and DS-AUSPTOID. [NOTE: the doi records will be update at
- 942 revision stage]
- 943

944 Author Contributions

- 945 The initial project idea was originated by C-HL, MLB, JH, MM, TS, JV, SG, and
- 946 PPAS. Molecular work was conducted by C-HL, SS, ML, AJ, and AD. BOLD and GenBank
- 947 data was harvested by TAE and C-HL. Figures were made by AL and C-HL. Laboratory and
- 948 field sample preparations were conducted by MTK, YC, TS, MM, SG, JV, EG, MG, XW,
- 949 KM, KMD, PA, NAP, MT, JJB, MP, FMJ, WDT, JSD, BW, OTL, PPAS, JL and AL. Taxonomic
- 950 concepts and interpretations were conducted by RRK, MLB, CH-L, PG, and SEM. DROP


- 951 database was built by JH and C-HL. All authors contributed to review and final revisions
- 952 of the manuscript, which was written primarily by C-HL, MLB and JH.

954 Figures:

955

956 Figure 1: An example of difficulties of molecular identification demonstrated on 957 Ganaspis xanthopoda and G. brasiliensis. Only two sequences (in bold text) can be 958 reliably used for identification and are included in DROP database. To select the 959 sequences, we searched the BINs associated with the organism's name "Ganaspis 960 xanthopoda" (green) or "Ganaspis brasiliensis" (purple) in BOLD. From each BIN, two sequences from each species were selected to build a neighbor-joining tree (bottom axis 961 962 indicated % genetic divergence). There was a total of 6 BINs (gray boxes) in this 963 sequence complex. Of these, 4 BINs contained both species names and without 964 examination of vouchers identification would be impossible. In DROP, vouchers from 965 two sequences, MG755073 and MG755072, were deposited in CNR-IPSP (Table S2), 966 examined by taxonomists and identify as G. brasiliensis. These two COI sequences can now be used to reliably identify G. brasiliensis. For G. xanthopoda, there were no 967 968 available vouchers or reliable sequences that passed DROP standards to use for 969 identification. Species delimitation between G. brasiliensis and G. xanthopoda is 970 convoluted (see discussion), varies according to arbitrary % genetic divergence (gray 971 vertical lines), and needs future an integrative taxonomic revision.

972

973 **Figure 2:** Concept of a centralized, vetted, integrated database for <u>*Drosophila*</u>

974 <u>Parasitoids</u> (DROP) we developed. First, we provide a species and provisional species

975 catalog with correct taxonomy. Second, to provide a reliable genetic reference library,

976 genetic data (DNA sequences, genomes, transcriptomes, proteomes) link to a voucher

977 connected to the species catalog. Third, we link the two primary sources of data (field

978 surveys and laboratory experiments) by requiring a permanent deposition of vouchers979 and sequences in order to be included in DROP.

980

981

982 Tables:

983 **Table 1:** List of species and provisional species included in DROP. For additional

984 taxonomic details, see DROP.

Superfamily	Family	Genus	Species_Name	Author
Chalcidoidea	Encyrtidae		drop_Cha2_sp12	
Chalcidoidea	Encyrtidae	Tachinaephagus	drop_IR1_sp41	Kimura
Chalcidoidea	Encyrtidae	Tachinaephagus	drop_BG1_sp42	Kimura
Chalcidoidea	Encyrtidae	Tachinaephagus	zealandicus	Ashmead 1904
Chalcidoidea	Pteromalidae		drop_Pte69_sp11	
Chalcidoidea	Pteromalidae	Pachycrepoideus	vindemmiae	(Rondani, 1875)
Chalcidoidea	Pteromalidae	Spalangia	drop_IR1_sp38	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drop_NG1_sp39	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drop_SK1_sp40	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drosophilae	Ashmead 1887
Chalcidoidea	Pteromalidae	Spalangia	erythromera	Foerster 1850
Chalcidoidea	Pteromalidae	Trichomalopsis	dubia	(Ashmead, 1896)
Chalcidoidea	Pteromalidae	Trichomalopsis	microptera	(Lindeman, 1887)
Chalcidoidea	Pteromalidae	Trichomalopsis	nigricola	Boucek

Chalcidoidea	Pteromalidae	Trichomalopsis	sarcophagae	(Gahan, 1914)
Chalcidoidea	Pteromalidae	Vrestovia	brevior	Boucek 1993
Chalcidoidea	Pteromalidae	Vrestovia	fidenas	(Walker, 1848)
Chalcidoidea	Pteromalidae		drop_ PacAtl_sp46	
Chalcidoidea	Pteromalidae		drop_ PachyPort_sp45	
Chalcidoidea			drop_ CH_sp64	
Cynipoidea	Figitidae	Ganaspis	brasiliensis	(Ihering, 1905)
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp51	
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp52	
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp53	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp1_sp67	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp2_sp68	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp50_sp66	
Cynipoidea	Figitidae	Ganaspis	drop_ IR1_sp25	Kimura
Cynipoidea	Figitidae	Ganaspis	drop_IR2_sp26	Kimura
Cynipoidea	Figitidae	Ganaspis	drop_Gan1_sp1	
Cynipoidea	Figitidae	Ganaspis	drop_TK1_sp27	Kimura
Cynipoidea	Figitidae	Ganaspis	hookeri	Craword 1913
Cynipoidea	Figitidae	Ganaspis	mahensis	Kieffer 1911
Cynipoidea	Figitidae	Ganaspis	mellipes	(Say, 1826)
Cynipoidea	Figitidae	Ganaspis	mundata	Forster 1869
Cynipoidea	Figitidae	Ganaspis	seticornis	(Hellen, 1960)
Cynipoidea	Figitidae	Ganaspis	tenuicornis	Kieffer 1904
Cynipoidea	Figitidae	Ganaspis	xanthopoda	(Ashmead, 1896)
Cynipoidea	Figitidae	Kleidotoma	bicolor	(Giraud, 1860)
Cynipoidea	Figitidae	Kleidotoma	dolichocera	Thomson 1877
Cynipoidea	Figitidae	Kleidotoma	drop_TK1_sp28	Kimura
Cynipoidea	Figitidae	Kleidotoma	filicornis	(Cameron, 1889)
Cynipoidea	Figitidae	Kleidotoma	icarus	(Quinlan, 1964)
Cynipoidea	Figitidae	Kleidotoma	psiloides	Westwood 1833
Cynipoidea	Figitidae	Kleidotoma	tetratoma	(Hartig, 1841)
Cynipoidea	Figitidae	Leptolamina	drop_Fig64_sp5	
Cynipoidea	Figitidae	Leptolamina	drop_Lmn_sp6	
Cynipoidea	Figitidae	Leptolamina	drop_TK1_sp29	Kimura
Cynipoidea	Figitidae	Leptolamina	gressitti	Yoshimoto & Yasumatsu 1965
Cynipoidea	Figitidae	Leptolamina	papuensis	Yoshimoto 1963
Cynipoidea	Figitidae	Leptolamina	ponapensis	Yoshimoto 1962
Cynipoidea	Figitidae	Leptolamina	seychellensis	(Kieffer, 1911)

Cynipoidea	Figitidae	Leptopilina	atraticeps	(Kieffer, 1911)
Cynipoidea	Figitidae	Leptopilina	australis	(Belizin, 1966)
o · · · ·	F			(Barbotin, Carton & Kelner-Pillault,
Cynipoidea	Figitidae	Leptopilina	boulardi	1979)
Cynipoidea	Figitidae	Leptopilina	clavipes	(Hartig, 1841)
Cynipoidea	Figitidae	Leptopilina	cupulifera	(Kieffer, 1916)
Cynipoidea	Figitidae	Leptopilina	decemflagella	Lue & Buffington 2017
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp54	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp55	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp56	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp57	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp58	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp59	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp60	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp61	
Cynipoidea	Figitidae	Leptopilina	drop_ Lep_sp62	
Cynipoidea	Figitidae	Leptopilina	drop_BG1_sp34	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_Fig059_sp4	
Cynipoidea	Figitidae	Leptopilina	drop_Fig124_sp2	
Cynipoidea	Figitidae	Leptopilina	drop_Fig58_sp3	
Cynipoidea	Figitidae	Leptopilina	drop_IR1_sp30	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_NG1_sp33	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_SK1_sp35	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_STL_sp7	
Cynipoidea	Figitidae	Leptopilina	drop_TK2_sp31	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_TK3_sp32	Kimura
Cynipoidea	Figitidae	Leptopilina	fimbriata	(Kieffer, 1901)
Cynipoidea	Figitidae	Leptopilina	freyae	Allemand & Nordlander 2002
Cynipoidea	Figitidae	Leptopilina	guineaensis	Allemand & Nordlander 2002
Cynipoidea	Figitidae	Leptopilina	heterotoma	(Thomson, 1862)
Cynipoidea	Figitidae	Leptopilina	japonica japonica	Novkovic & Kimura 2011
Cynipoidea	Figitidae	Leptopilina	lasallei	Buffington & Guerrieri 2020
Cynipoidea	Figitidae	Leptopilina	leipsi	Lue & Buffington 2018
Cynipoidea	Figitidae	Leptopilina	Ionchaeae	(Cameron, 1912)
Cynipoidea	Figitidae	Leptopilina	longipes	(Hartig, 1841)
Cynipoidea	Figitidae	Leptopilina	mahensis	(Kieffer, 1911)
Cynipoidea	Figitidae	Leptopilina	maia	Lue & Buffington 2016
Cynipoidea	Figitidae	Leptopilina	maria	(Girault, 1930)
Cynipoidea	Figitidae	Leptopilina	orientalis	Allemand & Nordlander 2002

Cynipoidea	Figitidae	Leptopilina	pacifica	Novkovic & Kimura 2011
Cynipoidea	Figitidae	Leptopilina	rufipes	(Cameron, 1908)
Cynipoidea	Figitidae	Leptopilina	rugipunctata	(Yoshimoto, 1962)
Cynipoidea	Figitidae	Leptopilina	ryukyuensis	Novkovic & Kimura 2011
Cynipoidea	Figitidae	Leptopilina	tokioensis	Wachi & Kimura 2015
Cynipoidea	Figitidae	Leptopilina	tsushimaensis	Wachi & Kimura 2015
Cynipoidea	Figitidae	Leptopilina	victoriae	Nordlander 1980
Cynipoidea	Figitidae	Rhoptromeris	heptoma	(Hartig, 1840)
Cynipoidea	Figitidae	Rhoptromeris	nigriventris	Nordlander 1978
Cynipoidea	Figitidae	Rhoptromeris	rufiventris	(Giraud, 1860)
Cynipoidea	Figitidae	Rhoptromeris	villosa	(Hartig, 1840)
Cynipoidea	Figitidae		drop_Lg500_sp43	
Ichneumonoidea	Braconidae	Alysia	drop_SP1_sp24	Kimura
Ichneumonoidea	Braconidae	Aphaereta	aotea	Hughes & Woolcock 1976
Ichneumonoidea	Braconidae	Aphaereta	drop_SP1_sp15	Kimura
Ichneumonoidea	Braconidae	Aphaereta	drop_TK1_sp13	Kimura
Ichneumonoidea	Braconidae	Aphaereta	drop_TM1_sp14	Kimura
Ichneumonoidea	Braconidae	Aphaereta	minuta	(Nees, 1811)
Ichneumonoidea	Braconidae	Aphaereta	pallipes	(Say, 1829)
Ichneumonoidea	Braconidae	Aphaereta	scaptomyzae	Fischer 1966
Ichneumonoidea	Braconidae	Areotetes	striatiferus	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Areotetes	carinuliferus	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Asobara	ajbelli	Berry 2007
Ichneumonoidea	Braconidae	Asobara	albiclava	Berry 2007
Ichneumonoidea	Braconidae	Asobara	antipoda	(Ashmead, 1900)
Ichneumonoidea	Braconidae	Asobara	bactrocerae	(Gahan, 1952)
Ichneumonoidea	Braconidae	Asobara	brevicauda	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	citri	(Fischer, 1963)
Ichneumonoidea	Braconidae	Asobara	drop_KG1_sp16	Kimura
Ichneumonoidea	Braconidae	Asobara	drop_NG1_sp17	Kimura
Ichneumonoidea	Braconidae	Asobara	drop_SK2_sp20	Kimura
Ichneumonoidea	Braconidae	Asobara	drop_SP1_sp18	Kimura
Ichneumonoidea	Braconidae	Asobara	drop_Sp2_sp19	Kimura
Ichneumonoidea	Braconidae	Asobara	elongata	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	gahani	(Papp, 1969)
Ichneumonoidea	Braconidae	Asobara	japonica	Belokobylskij 1998
Ichneumonoidea	Braconidae	Asobara	kenyaensis	Peris-Felipo 2014
Ichneumonoidea	Braconidae	Asobara	leveri	(Nixon, 1939)
Ichneumonoidea	Braconidae	Asobara	mesocauda	van Achterberg & Guerrieri 2016

Ichneumonoidea	Braconidae	Asobara	orientalis	Viereck 1913
Ichneumonoidea	Braconidae	Asobara	persimilis	(Prince, 1976)
Ichneumonoidea	Braconidae	Asobara	pleuralis	(Ashmead, 1905)
Ichneumonoidea	Braconidae	Asobara	rossica	Belokobylskij 1998
Ichneumonoidea	Braconidae	Asobara	rufescens	(F^rster, 1862)
Ichneumonoidea	Braconidae	Asobara	tabida	(Nees, 1834)
Ichneumonoidea	Braconidae	Asobara	triangulata	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	turneri	Peris-Felipo 2014
Ichneumonoidea	Braconidae	Asobara	unicolorata	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Aspilota	albertica	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	andyaustini	Wharton 2002
Ichneumonoidea	Braconidae	Aspilota	angusta	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	concolor	Nees 1812
Ichneumonoidea	Braconidae	Aspilota	parecur	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	villosa	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	barrattae	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	longworthi	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	philipi	Berry 2007
Ichneumonoidea	Braconidae		drop_Aso_sp8	
Ichneumonoidea	Braconidae	Opiognathus	pactus	(Haliday, 1837)
Ichneumonoidea	Braconidae	Opius	bellus	Gahan 1930
Ichneumonoidea	Braconidae	Opius	cinerariae	Fischer
Ichneumonoidea	Braconidae	Opius	crenuliferus	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Opius	monilipalpis	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Opius	ocreatus	(Papp)
Ichneumonoidea	Braconidae	Opius	pallipes	Wesmael 1835
Ichneumonoidea	Braconidae	Opius	pteridiophilus	Wharton & Austin 1990
Ichneumonoidea	Braconidae	Opius	pterus	Wharton & Austin 1990
Ichneumonoidea	Braconidae	Opius	trimaculatus	Spinola
Ichneumonoidea	Braconidae	Opius	youi	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Phaenocarpa	conspurcator	(Haliday, 1838)
Ichneumonoidea	Braconidae	Phaenocarpa	drop_IR1_sp22	Kimura
Ichneumonoidea	Braconidae	Phaenocarpa	drop_TK1_sp21	Kimura
Ichneumonoidea	Braconidae	Phaenocarpa	tacita	Stelfox 1941
Ichneumonoidea	Braconidae	Phaenocarpa	drosophilae	(Fischer 1975)
Ichneumonoidea	Braconidae	Tanycarpa	bicolor	(Nees, 1814)
Ichneumonoidea	Braconidae	Tanycarpa	chors	Belokobylskij 1998
Ichneumonoidea	Braconidae	Tanycarpa	drop_NG1_sp23	Kimura
Ichneumonoidea	Braconidae	Tanycarpa	punctata	van Achterberg 1976

Ichneumonoidea	Braconidae		drop_ Aly_sp47		
Ichneumonoidea	Braconidae		drop_Aly_sp48		
Ichneumonoidea	Braconidae		drop_Aly_sp49		
Ichneumonoidea	Braconidae		drop_Aly_sp50		
Ichneumonoidea	Braconidae		drop_ Aly_sp63		
Ichneumonoidea	Braconidae		drop_ Aso_sp69		
Diaprioidea	Diapriidae <i>Trichopria</i>		anastrephae	Costa Lima 1940	
Diaprioidea	Diapriidae Trichopria		drop_ BG1_sp37 Kimura		
Diaprioidea	Diapriidae Trichopria		drop_ Dia70_sp65		
Diaprioidea	Diapriidae Trichopria		drop_ Tri_sp44		
Diaprioidea	Diapriidae	Trichopria	drop_Bdia_sp10		
Diaprioidea	Diapriidae Trichopria		drop_Dia127_sp9		
Diaprioidea	Diapriidae Trichopria		drop_TK1_sp36	Kimura	
Diaprioidea	Diapriidae Trichopria		drosophilae	(Kieffer, 1912)	
Diaprioidea	Diapriidae	Trichopria	modesta	(Ratzeburg, 1848)	

Table 2.1: *Drosophila* parasitoid whole-genome sequences included in DROP. For

988 additional details, see DROP.

Genus	Species_Name	Species_id	Genome_id	Voucher_id	GenBank_id
Ganaspis	brasiliensis	19	8	868	GCA_009823575.1
Ganaspis	brasiliensis	19	16	872	SRX8882993
Ganaspis	brasiliensis	19	17	871	SRX8882992
Ganaspis	drop_Gsp1_sp67	182	15	873	SRX8882994
Ganaspis	drop_Gsp2_sp68	183	14	874	SRX8882995
Ganaspis	drop_Gsp50_sp66	181	9	869	GCA_011057455.1
Leptolamina	ponapensis	48	13	875	SRX8883008
Leptopilina	boulardi	4	5	865	GCA_011634795.1
Leptopilina	boulardi	4	6	866	GCA_003121605.1
Leptopilina	boulardi	4	12	876	SRX8883009
Leptopilina	clavipes	5	7	867	GCA_001855655.1
Leptopilina	heterotoma	6	1	861	GCA_010016045.1
Leptopilina	heterotoma	6	2	862	GCA_009602685.1
Leptopilina	heterotoma	6	3	863	GCA_009026005.1
Leptopilina	heterotoma	6	4	864	GCA_009025955.1
Leptopilina	japonica japonica	13	11	877	SRX8883011

993	Table 2.2: Drosophila parasitoid t	transcriptome data included in DROP.

Genus	Species_Name	Strain_id	Transcriptome_id	Voucher_id	Genbank_id
Leptopilina	boulardi	126	2	858	2183568
Leptopilina	boulardi	127	3	859	2183567
Leptopilina	boulardi	151	8	882	15642271
Leptopilina	boulardi	151	9	883	15642270
Leptopilina	heterotoma	147	1	857	2183569
Leptopilina	heterotoma	152	5	884	2046288
Leptopilina	heterotoma	61	6	880	11581553
Leptopilina	heterotoma	60	7	881	11662592
Leptopilina	boulardi	11	10	908	GAJA00000000.1
Leptopilina	heterotoma	14	11	909	GAJC00000000.1
Ganaspis	hookeri	7	12	910	GAIW00000000.1

Table 2.3: *Drosophila* parasitoid proteomes data included in DROP

Genus	Species_Name	Strain_id	Proteomes_id	Voucher_id	Assession_id
Leptopilina	heterotoma	152	1	885	PRIDE: PXD005639
Leptopilina	heterotoma	61	2	886	PRIDE: PXD005632
					Upon request to
Leptopilina	boulardi	27	3	911	julien.varaldi@univ-lyon1.fr
Leptopilina	boulardi	11	4	912	PRIDE: PDX023836
Leptopilina	heterotoma	14	5	913	PRIDE: PDX023824
Ganaspis	hookeri	7	6	914	PRIDE: PDX023825