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We compute asymptotic formulas for the k th Fourier coefficients of b n λ , where b λ (z) = z-λ 1-λz is the Blaschke factor associated to λ ∈ D, k ∈ [0, ∞) and n is a large integer. We distinguish several regions of different asymptotic behavior of those coefficients in terms of k and n.

Airy-type behavior is happening near the k-transition points n(1-λ)/(1+λ) and n(1+λ)/(1-λ). The asymptotic formulas for the k th Fourier coefficients of b n λ are derived using standard tools of asymptotic analysis of Laplace-type integrals. More precisely, the integral defining the k th Fourier coefficient of b n λ is perfectly suited for an application of the method of stationary phase when k ∈ (n(1 -λ)/(1 + λ), n(1 + λ)/(1 -λ)) and requires the use of the method of the steepest descent when k / ∈ [n(1-λ)/(1+λ), n(1+λ)/(1-λ)]. Uniform versions of those standard methods are required when k approaches one of the boundaries n(1 -λ)/(1 + λ), n(1 + λ)/(1 -λ). As an application, we construct strongly annular functions with Taylor coefficients satisfying sharp summation properties.

(b n λ ) (k) (0) k! = b n λ (k) = 1 2iπ ˆ∂D b n λ (z)z -k dz z ,
whose asymptotic behavior we wish to determine as n → ∞. . Therefore, without loss of generality we assume from now on that λ ∈ (0, 1). In this article we compute asymptotic formulas for b n λ (k) as n → ∞, when k ∈ [0, ∞). Furthermore, we apply these asymptotic formulas to construct strongly annular functions with small Taylor coefficients.

1.2. Motivations. Various motivations have led to study the asymptotic behavior of b n λ (k) in the limit of large n. We begin by mentioning a line of research in which the question of estimating l p norms of the sequence b n λ (k) k≥0 plays a central role, see Subsection 1.2.1 below. Another motivation, described in Subsection 1.2.2 is the construction of so called strongly annular functions with specific decay of the Taylor coefficients.

1.2.1. l p norms of b n λ for p ∈ [1, ∞] and related topics. We use standard notation from asymptotic analysis: From now on, for two positive functions f, g : C → R + we say that f is dominated by g, denoted by f g, if there is a constant c > 0 such that f ≤ cg. We say that f and g are comparable, denoted by f g, if both f g and g f .

(1) The study of the l p norms of b n λ was probably initiated by J.-P. Kahane [START_REF] Kahane | Sur certaines classes de series de Fourier absolument convergentes[END_REF] who was interested in the case p = 1. He applied van der Corput type estimates on b n λ (k) [27, p. 253] to get information on the asymptotic behavior of the l

1 norm of b n λ || b n λ || 1 := k≥0 | b n λ (k)|.
Kahane's motivation [START_REF] Kahane | Sur certaines classes de series de Fourier absolument convergentes[END_REF]Theorem 1] was to generalize a theorem by Z. K. Leibenson [START_REF] Leibenson | On the ring of functions with absolutely convergent Fourier series[END_REF], which is a special case of a theorem [START_REF] Rudin | Fourier Analysis on Groups[END_REF]Theorem 4.1.3] about homomorphisms of group algebras due to P. T. Cohen. Let ϕ : R → R be a continuous, non-constant and 2π-periodic function. A. Beurling and H. Helson [START_REF] Beurling | Fourier-Stieltjes transforms with bounded powers[END_REF] proved that if || e inϕ 

|| b n λ || 1 ∼ c 1 √ n, n → ∞.
The precise value c 1 of the limit

lim n→∞ n -1/2 || b n λ || 1
was computed in [START_REF] Girard | The behavior of the norm of an automorphism of the unit disk[END_REF]. A discussion on l p norms for p ∈ [1, ∞] occurred in [START_REF] Blyudze | Estimates of the norms of powers of functions in certain Banach spaces[END_REF], where the asymptotic behavior which generalizes Girard's result [START_REF] Girard | The behavior of the norm of an automorphism of the unit disk[END_REF] and strengthens [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Theorem 1]. The constants c p are not studied in this article; their computations are part of a forthcoming work.

(2) O. Szehr and R. Zarouf proved upper and lower bounds on | b n λ (k)| [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF] to complete the result of M. Blyudze and S. Shimorin (1.1) on l p norms of the sequence b n λ , extending (1.1) to the range p ∈ [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF][START_REF] Andersson | Turán's problem 10 revisited[END_REF] and providing sharp estimates on || b n λ || p for the remaining range p ∈ [4, ∞]. Later on, Szehr and Zarouf [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 2] applied those results to estimate analytic capacities in Beurling-Sobolev spaces. Finally, the same authors [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF][START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF] proved upper bounds on | (1 -z 2 )b n λ (k)| to construct a class of counterexamples to Schäffer's conjecture on optimal estimates for norms of inverses of matrices [START_REF] Schäffer | Norms and determinants of linear mappings[END_REF][START_REF] Gluskin | Zeros of analytic functions and norms of inverse matrices[END_REF][START_REF] Queffélec | Norm of the inverse of a matrix; solution to a problem of Schäffer, Harmonic Analysis from the Pichorides viewpoint[END_REF][START_REF] Queffélec | Sur un théorème de Gluskin-Meyer-Pajor[END_REF]. Namely, in 1970 J.J. Schäffer [START_REF] Schäffer | Norms and determinants of linear mappings[END_REF]Theorem 3.8] proved that for any invertible n × n matrix T and for any operator norm ||•|| the inequality

| det T | T -1 ≤ S ||T || n-1
holds with S = S(n) ≤ √ en. He conjectured that in fact this inequality holds with an S independent of n. This conjecture was refuted in the early 1990-s by E. Gluskin, M. Meyer and A. Pajor [START_REF] Gluskin | Zeros of analytic functions and norms of inverse matrices[END_REF] who have shown that for certain T = T (n) the inequality can only hold when S is growing with n. Subsequent contributions of J. Bourgain [START_REF] Gluskin | Zeros of analytic functions and norms of inverse matrices[END_REF] and H. Queffélec [START_REF] Queffélec | Norm of the inverse of a matrix; solution to a problem of Schäffer, Harmonic Analysis from the Pichorides viewpoint[END_REF][START_REF] Queffélec | Sur un théorème de Gluskin-Meyer-Pajor[END_REF] provided increasing lower estimates on S. The currently best known lower estimate on S is due to H. Queffélec [START_REF] Queffélec | Sur un théorème de Gluskin-Meyer-Pajor[END_REF] :

S ≥ √ n(1 -O(1/n)).
Those results rely on probabilistic and number theoretic arguments. The common point in the mentioned lower bounds is that they rely on an inequality of Bourgain [START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF]Inequality (2.2)] that relates Schäffer's problem to a geometric property of the spectrum of T : For S to grow the eigenvalues of T should satisfy a Turán-type power sum inequality. The construction of explicit solutions to such inequalities appears to be a well-studied but open problem in number theory [START_REF] Turán | On a new method of analysis and its applications[END_REF][START_REF] Montgomery | Ten lectures on the interface between analytic number theory and harmonic analysis[END_REF][START_REF] Erdös | A probabilistic approach to problems of Diophantine approximation[END_REF][START_REF] Andersson | Turán's problem 10 revisited[END_REF][START_REF] Andersson | On some power sum problems of Turán and Erdös[END_REF]. More precisely, Bourgain's inequality relates Schäffer's question to Turán's tenth problem [START_REF] Andersson | Turán's problem 10 revisited[END_REF][START_REF] Turán | On a new method of analysis and its applications[END_REF]. The latter has no constructive solution and relies on deep numbertheoretic existence arguments [START_REF] Andersson | Turán's problem 10 revisited[END_REF][START_REF] Montgomery | Ten lectures on the interface between analytic number theory and harmonic analysis[END_REF][START_REF] Queffélec | Sur un théorème de Gluskin-Meyer-Pajor[END_REF]. In [START_REF] Gluskin | Zeros of analytic functions and norms of inverse matrices[END_REF] as well as in [36, question 5] the construction of explicit matrices with growing S is formulated as an open problem. Constructive counterexamples to Schäffer's conjecture are proposed in [START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF] where the authors present an explicit sequence of Toeplitz matrices

T λ ∈ M n with singleton spectrum {λ} ∈ D \ {0} such that S ≥ |λ| n T -1 λ ≥ c(λ) √ n ||T λ || n-1 , c(λ) > 0.
The authors use a duality method to prove an analog of Bourgain's inequality and thereby estimate T -1 λ from below. Their lower bound on T -1 λ involves the l ∞ norm of the sequence

(1 -z 2 )b n λ (k) = b n λ (k) -b n λ (k -2), k ≥ 2.
Better numerical estimates on 

| det T λ | T -
, Ω n ⊂ Ω n+1 , Ω n ⊂ D, n ≥ 1 such that ∪ n≥1 Ω n = D and lim n→∞ min ∂Ωn |f | = ∞.
Such a function f does not belong to the Nevanlinna class, and, in particular, it does not belong to the Hardy space H 2 , that is f ∈ 2 . The function f is said to be strongly annular if it is annular with

Ω n = D(0, r n ), r n → 1.
The short book of Bonar [START_REF] Bonar | On Annular Functions[END_REF] dedicated to this subject contains several constructions of such functions coming back, in particular, to Lusin-Privalov, 1925, Paley, 1930, and Littlewood, 1944. Let us also mention here some more recent results on strongly annular functions. In 1997 Daquila [START_REF] Daquila | Strongly annular solutions of Mahler's functional equation[END_REF] studied strongly annular solutions of Mahler's functional equation and in 2010 he studied [START_REF] Daquila | Approximations by strongly annular solutions of functional equations[END_REF] the density of such solutions in the space H(D) of the functions holomorphic in the unit disc. In 2007 Redett [START_REF] Redett | Strongly annular functions in Bergman space[END_REF] constructed strongly annular functions in standard Bergman spaces. In 2013 Bernal-González-Bonilla [START_REF] Bernal-González | Families of strongly annular functions: linear structure[END_REF] proved that the set of the strongly annular functions is algebraically large (maximal dense-lineable and algebrable in H(D)). For random strongly annular functions see, for example, [START_REF] Kahane | Some random series of functions[END_REF]Chapter 13,Theorem 7] and [START_REF] Howell | Annular functions in probability[END_REF].

1.3. Known results.

1.3.1.

Estimates on b n λ (k). Below we recall the known upper/lower bounds on b n λ (k) as well as the known asymptotic formulas for these coefficients.

(1) D. D. Bonar, F. Carroll, and G. Piranian [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF]Theorem 1] proved that there exist positive numbers A 1 and A 2 such that for all k and n the coefficients b n 1/2 (k) satisfy the inequality

| b n 1/2 (k)| ≤ A 1 n -1/3
and such that, for every nonnegative integer j,

lim inf n→∞ n 1/3 | b n 1/2 (3k + j)| > A 2 .
(

) It is also shown in [13, Theorem 2] that if k < n/3, then | b n 1/2 (k)| ≤ 6 π 1 n -3k 2 
,

and that if k > 3n, then | b n 1/2 (k)| ≤ 2 π 1 k -3n
.

(3) Szehr-Zarouf [42, Proposition 2] proved that if α ∈ (0, α 0 ), α 0 := 1-λ 1+λ , then the following assertions hold for large enough n. (a) If k/n ≤ α, then | b n λ (k)| decays exponentially as n tends to ∞, i.e. there exists q ∈ (0, 1) depending on α and λ only such that

| b n λ (k)| ≤ q n . Similarly, if k/n ≥ α -1 then | b n λ (k)| decays exponentially as n tends to ∞. (b) If k/n ∈ (α, α 0 -n -2/3 ) ∪ (α -1 0 + n -2/3 , α -1 ) then | b n λ (k)| max 1 |α 0 n -k| , 1 |α -1 0 n -k| . (c) If k/n ∈ [α 0 -n -2/3 , α 0 + n -2/3 ) ∪ (α -1 0 -n -2/3 , α -1 0 + n -2/3 ] then | b n λ (k)| 1 n 1/3 . (d) If k/n ∈ (α 0 + n -2/3 , α -1 0 -n -2/3 ) then | b n λ (k)| max 1 n 1/2 |α 0 -k n | 1/4 , 1 n 1/2 |α -1 0 -k n | 1/4 .
(4) An asymptotic expansion of b n λ (k) as k and n tend simultaneously to ∞ and k approaches the right boundary of [α 0 n, α -1

0 n] from inside, i.e. lim n→∞ α -1 0 -k/n = 0 + , is computed in [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 6]. In this region the asymptotic behavior of b n λ (k) can be written in terms of the Airy function Ai(x). For real arguments the latter can be defined as an improper Riemann integral

Ai(x) = 1 π ˆ∞ 0 cos t 3 3 + xt dt.
The authors in [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF] were interested in the oscillatory behavior of Ai for large negative arguments for which we have the asymptotic approximation:

(1.2) Ai(-x) ∼ 1 x 1/4 √ π cos 2 3 x 3/2 - π 4 , x → +∞.
More precisely it is shown in [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 6] (making use of a uniform version of the method of stationary phase, see, for example, [14, Section 2.3]) that for

sequences k = k(n) with k ∈ [α 0 n, α -1 0 n] such that lim n→∞ k n = α -1 0 , the following asymptotic formula holds as n → ∞ b n λ (k) ∼ (1 -λ) 1/4 (λ(1 + λ)) 1/12 √ 2 k/n (k/n -α 0 ) 1/4 Ai(n 2/3 γ 2 ) n 1/3 ,
where

γ 2 = γ 2 α -1 0 ∼ 1 -λ (λ(1 + λ)) 1/3 k/n -α -1 0 .
We will see that the above asymptotic formula for b n λ (k) remains valid also when k/n approaches α -1 0 from outside of the compact interval [α 0 , α -1 0 ], see below Theorem 1 (4). When k/n > α -1 0 and lim n→∞ k n = α -1 0 we will use the fact that the Airy function has exponential asymptotics for large positive arguments

(1.3) Ai(x) ∼ 1 2x 1/4 √ π exp - 2 3 x 3/2 , x → +∞.
Let us finally mention that in what follows, Theorem 1 (4) and Theorem 2 (1), (2), show a similar asymptotic formula for b n λ (k) as k/n approaches the left boundary α 0 (both from the left and the right). 1.3.2. Strongly annular fonctions. Most of the known examples of strongly annular functions involve lacunary series. Frequently, the Taylor coefficients of the functions in such examples are unbounded. That is why Bonar asked in [11, Question 6.9] whether every strongly annular function is a sum of a bounded function and the sum of a lacunary Taylor series. In 1977 Bonar, Carroll, and Piranian [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF] constructed a strongly annular function

f such that lim n→∞ f (n) = 0 and n≥0 min(| f (2n)| 2 , | f (2n + 1)| 2 ) = ∞.
In other words, if s k are positive integers,

s k+1 > s k + 1, then n≥0, n ∈(s k ) f (n)z n ∈ H 2 .
This construction was based on the above mentioned estimates of the asymptotics of the Taylor coefficients of b n λ . Another construction of strongly annular functions whose Taylor coefficients tend to 0 was given by Bonar, Carroll, and Erdös in [START_REF] Bonar | Strongly annular functions with small coefficients and related results[END_REF]. 1.4. Goals of the paper.

1.4.1. Asymptotic analysis of b n λ (k) as n → ∞.
The first goal of this paper is to state all asymptotic formulas for b n λ (k) as n → ∞ depending on the region to which k = k(n) ∈ [0, ∞) belongs. The above mentioned upper bounds on b n λ (k) are usually based on van der Corput type estimates, and the standard Laplace-type methods which we describe below, will be used to derive exact asymptotic formulas for b n λ (k) as n → ∞. We write the integral defining b n λ (k) in a way that is convenient for asymptotic analysis: z) dz z (the so-called complex Laplace-type integral) where

(1.4) b n λ (k) = 1 2iπ ˆ∂D e nΦ(
(1.5) Φ(z) = Φ k/n (z) = log z -k n b λ (z) ,
and log denotes a branch of the complex logarithm chosen in the following way: if k/n ≤ c < α -1 0 , then we can take the branch cut [0, ∞) and fix log(-1) = iπ, and if k/n ≥ c > α 0 , then we can take the principal branch of the complex logarithm. In particular, if

α 0 < c 1 ≤ k/n ≤ c 2 < α -1
0 , then we could take either of these two definitions. The asymptotic behavior of this integral is studied using standard tools of asymptotic analysis: the method of stationary phase [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF][START_REF] Fedoryuk | Metod Perevala (Saddle-Point Method)[END_REF][START_REF] Fedoryuk | The stationary phase methods and pseudo-differential operators[END_REF][START_REF] Borovikov | Uniform Stationary Phase Method[END_REF] or the method of the steepest descent [START_REF] Bleistein | Asymptotic Expansions of Integrals[END_REF][START_REF] De Bruijn | Asymptotic Methods in Analysis[END_REF][START_REF] Copson | Asymptotic Expansions[END_REF][START_REF] Temme | Asymptotic methods for integrals[END_REF], depending on the location of the critical points of Φ. To apply the method of stationary phase we need to introduce the real function

(1.6) h(ϕ) = h k/n (ϕ) := -iΦ k/n (e iϕ ) = arg z -k/n b λ (z) |z=e iϕ ϕ ∈ [0, π], observing that z -k/n b λ (z) = 1 for z ∈ ∂D, so that b n λ (k) = 1 π ˆπ 0 e inh k/n (ϕ) dϕ . (1.7)
As usual, the dominant contribution to integrals of the form (1.4) (respectively (1.7)) comes from a small neighborhood around the stationary points of Φ (respectively h). We refer to Lemma 5 below for an identification of the critical points of Φ which we denote by z ± , see also [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF]Section 6]. It turns out that when a = k/n ∈ [α 0 , α -1 0 ] we have z ± ∈ ∂D and the integral (1.4) is especially suited for an application of the method of stationary phase [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF][START_REF] Fedoryuk | Metod Perevala (Saddle-Point Method)[END_REF][START_REF] Fedoryuk | The stationary phase methods and pseudo-differential operators[END_REF], whereas if a = k/n / ∈ [α 0 , α -1 0 ], then z ± ∈ R and this method fails. In this case, a deformation of the contour ∂D will be required in order to apply the method of the steepest descent. As k/n approaches one of the boundaries α 0 or α -1 0 , uniform versions of these methods [14, Section 2.3] [8, Section 9.2] [46, p. 366-372] (all of them being based on [START_REF] Chester | An extension of the method of steepest descents[END_REF]) will be required, see Proposition 3 below. A summary of the asymptotics of b n λ (k) is provided in Figure 2.1 below, depending on k. The asymptotic formulas for b n λ (k) are discussed in full detail in Section 2, see Theorem 1 and Theorem 2.

1.4.2. Strongly annular functions. Using the ideas from [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF] and [START_REF] Bonar | Strongly annular functions with small coefficients and related results[END_REF] and estimates on the asymptotics of b n λ (k) obtained in our paper, we construct strongly annular functions f such that (a) f belongs to q \ p for any given 2 ≤ p < q or (b) f belongs to 2 ϕ \ 2 where 2 ϕ is the set of sequences (a n ) such that

n≥0 |a n | 2 /ϕ(1/|a n |) < ∞,
and ϕ is such that lim t→∞ ϕ(t) = ∞. Furthermore, the functions f we construct are not lacunary in the sense that if (s k ) is a sequence of positive integers such that

s k+1 > s k + 1, then f • χ Z + \(s k ) ∈ p and f • χ Z + \(s k ) ∈ 2
, correspondingly, in the cases (a) and (b).

1.5. Outline of the paper. In Section 2 below, we state asymptotic formulas for b n λ (k) as n → ∞. We distinguish seven regions of k where the asymptotic behavior of b n λ (k) differs. Given α ∈ [ , α 0 ) we compute an asymptotic formula for b n λ (k) when k ∈ [0, αn] ∪ [n/α, ∞] and thereby sharpen the known fact asserting that b n λ (k) decays exponentially for k in those regions, see Theorem 1 below. Given β ∈ (α 0 , α -1 0 ) we find that for k ∈ [βn, n/β] the asymptotic of b n λ (k) is oscillatory and witnesses a decay of order O(n -1/2 ), see Theorem 2 (2) below. We also compute an asymptotic formula for b n λ (k) as k and n tend simultaneously to ∞ and k approaches the boundaries α 0 n, α -1 0 n. In these regions the asymptotic behavior of b n λ (k) is described in terms of the Airy function Ai(x), see Theorem 1 (3), (4), Theorem 2 and Proposition 3 for more details. We end Section 2 summing up b n λ (k)'s asymptotics depending on the region where k belongs, see Figure 2.1 below. The proofs of Theorem 1, Theorem 2 and Proposition 3 are collected in Section 3. In Section 4 we give two constructions of strongly annular functions with small Taylor coefficients in Theorems 6 and 7. These constructions are based on auxiliary Lemmas 8 and 9 concerning, correspondingly, properties of b n 1/2 and flat polynomials. 

Asymptotic formulas for b

n λ (k) It is known [42, Proposition 2], [40, Lemma 7] that given α < α 0 , b n λ (k) decays ex- ponentially for k ∈ [0, αn] ∪ [α -1 n, +∞
(2) If k = k(n) → ∞ as n → ∞ with k ≤ αn (Region II) or k ≥ α -1 n (Region VIII),
then the integral defining b n λ (k) is treated by a direct application of the method of the steepest descent [START_REF] Bleistein | Asymptotic Expansions of Integrals[END_REF]Chapter 7], [START_REF] Copson | Asymptotic Expansions[END_REF], [START_REF] De Bruijn | Asymptotic Methods in Analysis[END_REF]Chapter 5], [START_REF] Temme | Asymptotic methods for integrals[END_REF]Chapter 4], which we will use intensively in our proof.

(3) If k ∈ [αn, α 0 n -n 1/3 ) and in addition n 2/3 (α 0 -k/n) → +∞ (Region III) or if k ∈ [α -1 0 n + n 1/3 , α -1 n] and in addition n 2/3 (k/n -α -1 0 ) → +∞ (Region VII)
, then a uniform version of the steepest descent method based on [START_REF] Chester | An extension of the method of steepest descents[END_REF], see [8, Section 9.2], [46, p. 366-372], is required to obtain the asymptotic formula for b n λ (k). More precisely, the proof of our asymptotic formulas for k in Regions III and VII will follow from an application of Proposition 3 (stated below) together with the approximation (1.3) of the Airy function for large positive arguments.

Our asymptotic formulas witnessing exponential decay of b n λ (k) for k in Regions I-II-III-VII-VIII are sharp, new and agree on the intersections of Regions I-II, II-III and VII-VIII: We refer to the comments below just afer the statement of Theorem 1 for a detailed discussion, where we also compare our results to the previous upper estimates from [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 2]. We recall that the value of α 0 is given by α 0 = 1-λ 1+λ and that Φ is defined according to (1.5) by

Φ(z) = Φ k/n (z) = log z -k n b λ (z) . Theorem 1. Let α ∈ (0, α 0 ). Consider a sequence ω(n 1/3 ) such that ω(n 1/3 )/n 1/3 → ∞ as n → ∞ and assume additionally that ω(n 1/3 ) = o(n) as n → ∞.
The following asymptotic formulas for the k th -Fourier coefficients of b n λ hold as n tends to +∞.

(1) If k is fixed (Region I), then b n λ (k) ∼ (-λ) n-k (n(1 -λ 2 )) k k! .
(

) If k = k(n) → ∞ as n → ∞ with k ≤ αn (Region II) or k ≥ α -1 n (Region VIII), then b n λ (k) ∼ 1 √ 2kπ 1 (α 0 -k/n)(α -1 0 -k/n) 1/4 b λ (z + ) z k/n + n , 2 
where z + is defined by

(2.1) z + = z + (k/n) = k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n + k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n 2 -1.
(

) If k ∈ [αn, α 0 n -ω(n 1/3 )] (Region III), then b n λ (k) ∼ (-1) n-k √ 2nπ 1 k/n (α -1 0 -k/n)(α 0 -k/n) 1/4 exp - 2 3 n|γ α 0 | 3 , 3 
where γ 3 α 0 is given by

(2.2) γ 3 α 0 = 3 2 Φ(z + ) -iπ 1 - k n ,
and in particular

(2.3) γ 3 α 0 ∼ - (α 0 -k/n) 3/2 (1 + λ) 3/2 (λ(1 -λ)) 1/2 , k/n → α 0 , k/n < α 0 . (4) If k ∈ [α -1 0 n + ω(n 1/3 ), α -1 n] (Region VII), then b n λ (k) ∼ 1 √ 2nπ 1 k/n (k/n -α -1 0 )(k/n -α 0 ) 1/4 exp - 2 3 n|γ α 0 -1 | 3 , where γ 3 α -1 0 is given by (2.4) γ 3 α -1 0 = 3 2 Φ(z + ),
and in particular

(2.5) γ 3 α -1 0 ∼ - (k/n -α -1 0 ) 3/2 (1 -λ) 3/2 (λ(1 + λ)) 1/2 , k/n → α -1 0 , k/n > α -1 0 .
We proceed with a series of remarks and observations highlighting the coincidence of our formulas for k on the intersections of Regions I-II, II-III and VII-VIII, and comparing our results to [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 3 (1)] and [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 3(2)].

(1) The asymptotic formula stated for k in Region II agrees with the one for k in Region I. Indeed, a direct computation shows that if k is fixed, then

z -k + ∼ (-1) k (n(1 -λ 2 )) k k k λ k , n → ∞, and 
(b λ (z + )) n ∼ (-1) n e k λ n , n → ∞.
The coincidence of the asymptotics follows from an application of Stirling's formula:

if k = o(n), then we have b n λ (k) ∼ 1 √ 2kπ b λ (z + ) z k + n ∼ (-λ) n-k √ 2kπ (n(1 -λ 2 )) k k k e -k ∼ (-λ) n-k (n(1 -λ 2 )) k k! .
(2) Theorem 1 (1), (2) sharpens the result from [42, Proposition 3

(1)] for k ∈ [0, αn] ∪ [α -1 n, ∞).
The latter asserts that b n λ (k) decays exponentially and uniformly for k ≤ αn respectively k ≥ α -1 n. We observe that since the function a

→ |b λ (z + (a))| |z + (a)| a is increasing on the interval [0, α 0 ], we have |b λ (z + (k/n))| |z + (k/n)| k/n ≤ |b λ (z + (α))| |z + (α)| α < 1, and therefore Theorem 1 gives that | b n λ (k)| ≤ C √ k |b λ (z + (α))| |z + (α)| α n uniformly for k ∈ [0, αn], where C = C(λ, α) > 0. A similar argument for k ∈ [α -1 n, ∞) (Region VIII) leads to the same conclusion. (3) The formulation of Theorem 1 (3), (4) includes the number γ 3 ∈ γ 3 α 0 , γ 3 α -1
0 whose value is given by [8, formula (9.2.9), p. 370]:

(2.6)

γ 3 = 3 4 [Φ(z + ) -Φ(z -)]
where z + is defined by (2.1) and

z -= z -(k/n) = k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n - k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n 2 -1.
Formulas (2.2), (2.3), (2.4), and (2.5) all follow from the above definition (2.6) of γ 3 . (4) The formulas stated for k belonging to Regions II-III-VII-VIII coincide. Assuming k/n <α 0 (Region II) -respectively k/n > α -1 0 (Region VI) -we have

γ 3 α 0 < 0 - respectively γ 3 α -1 0 < 0 . Therefore exp - 2 3 n|γ α 0 | 3 = exp n Φ(z + ) -iπ 1 - k n = (-1) k-n b λ (z + ) z k/n + n and exp - 2 3 n|γ α -1 0 | 3 = exp (n(Φ(z + ))) = b λ (z + ) z k/n + n ,
which shows that our asymptotic formulas in these four regions are actually the same. (5) The asymptotic formulas stated for k in Regions III and VII, see Theorem 1 (3), (4), significantly improve the estimate from [42, Proposition 2, (2)] where the decay of b n λ (k) is only shown to be

O max 1 |α 0 n -k| , 1 |α -1 0 n -k| .
The following result, Theorem 2 below, establishes asymptotic formulas for b n λ (k) as n tends to +∞ when k belongs to the remaining regions where it turns out that the decay of b n λ (k) is no longer exponential but either of order O(n -1/3 ) or oscillatory and of order O(n -1/2 ). More precisely:

(1) Airy-type behaviour for b n λ (k) near the k-transition points nα 0 and nα -1 0 is established, which extends the formula from [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 6] to the case k > α -1 0 n and generalizes it to the left boundary α 0 n (for k both from the left and from the right of α 0 n). Our asymptotic formulas are respectively given below for k near nα 0 (Region IV) see Theorem 2 (1), and for k near nα -1 0 (Region VI), see Theorem 2(3), asserting that the decay of b n λ (k) for k in these regions is of order O(n -1/3 ) at least when k lies in neighbourhoods of the boundaries α 0 n, α -1 0 n of length proportional to n 1/3 . For k in those neighborhoods, the quantity n 2/3 γ 2 is always bounded in n. The main tool to prove Theorem 2 (1), ( 3) is the uniform version of the steepest descent method based on [START_REF] Chester | An extension of the method of steepest descents[END_REF] already mentioned above, which we apply following [8, Section 9.2] to prove Proposition 3 as an intermediate step.

(2) If k lies in the remaining central region, (α 0 n+n 1/3 , α -1 0 n-n 1/3 ), and if in addition

n 2/3 (k/n -α 0 ) → +∞ or n 2/3 (α -1 0 -k/n) → +∞,
we find that the decay of b n λ (k) is oscillatory and of order O(n -1/2 ). The corresponding asymptotic formula is stated below, see Theorem 2 (2). To prove the latter for k/n → α 0 or k/n → α -1 0 we choose β ∈ (α 0 , 1) close enough to α 0 , and combine a uniform version of the method of stationary phase [14, Section 2.3] (again based on [START_REF] Chester | An extension of the method of steepest descents[END_REF], see the proof of Proposition 3 below) with the approximation (1.2) of the Airy function for large negative arguments. The proof of Theorem 2 (2) for k in the remaining interval [βn, β -1 n] follows from an application of the standard version of the stationary phase method [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF]Theorem 4]. The proof is however rather long and technical, and we will use a more elaborate version of this method due to M.V. Fedoryuk [22, Theorem 2.4 p. 80], [23, Theorem 1.6 p.107], which will make the argument much shorter, see Section 3.3.2 for more details. The asymptotic approximations (1.3) -respectively (1.2) -for large positive -respectively negative -arguments of the Airy function, show that our asymptotic formulas coincide for k at the intersection of Regions III-IV, IV-V, V-VI and VI-VII.

Theorem 2. Let ω(n 1/3 ) be a sequence such that ω(n 1/3 )/n 1/3 → ∞ as n → ∞. We assume in addition that ω(n 1/3 ) = o(n) as n → ∞. The following asymptotic formulas for the k th Fourier coefficients of b n λ hold as n tends to +∞.

(1) If k ∈ [α 0 n -ω(n 1/3 ), α 0 n + ω(n 1/3 )] (Region IV), then b n λ (k) ∼ (-1) n-k √ 2 n 1/3 (1 + λ) 1/4 (λ(1 -λ)) 1/12 1 k/n(α -1 0 -k/n) 1/4
Ai n 2/3 γ 2 α 0 , where γ 2 α 0 is asymptotically given by

(2.7) γ 2 α 0 ∼ (α 0 -k/n) (1 + λ) (λ(1 -λ)) 1/3 , k/n → α 0 . (2) If k ∈ [α 0 n + ω(n 1/3 ), α -1 0 n -ω(n 1/3 )] (Region V), then b n λ (k) ∼ 2 nπ cos (nh(ϕ + ) -π/4) k/n (α -1 0 -k/n)(k/n -α 0 ) 1/4 ,
where h = h k/n is defined in (1.6) and the parameter ϕ + ∈ [0, π] is defined by

e iϕ + = z + = k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n + i 1 - k n (1 + λ 2 ) -(1 -λ 2 ) 2λ k n 2 .
(

) If k ∈ [α -1 0 n -ω(n 1/3 ), α -1 0 + ω(n 1/3 )] (Region VI), then b n λ (k) ∼ √ 2 n 1/3 (1 -λ) 1/4 (λ(1 + λ)) 1/12 1 k/n(k/n -α 0 ) 1/4 Ai n 2/3 γ 2 α 0 -1 , 3 
where

(2.8) γ 2 α -1 0 ∼ (k/n -α -1 0 )(1 -λ) (λ(1 + λ)) 1/3 , k/n → α -1 0 .
The formulas given in Theorem 2 (1) respectively (3) are actually valid for k/n in a fixed neighbourhood of α 0 respectively α -1 0 . In fact, they hold more generally if k ∈ [αn, βn] respectively k ∈ [β -1 n, α -1 n] as long as α ∈ (0, α 0 ) and β ∈ (α 0 , 1) are chosen close enough to α 0 . This is the content of Proposition 3 below, which entirely describes the Airy-type behaviour of b n λ (k) near the k-transition points nα 0 and nα -1 0 . It is a modified version of [START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF]Proposition 17] where only upper bounds were stated and where the factor (1 -z 2 ) has been replaced by 1. The main tool to prove Proposition 3 is a result from [START_REF] Chester | An extension of the method of steepest descents[END_REF], which we apply following [8, Section 9.2]. Proposition 3. Fix α ∈ (0, α 0 ) and β ∈ (α 0 , 1). Suppose that α and β are close enough to

α 0 . If k/n ∈ [α, β], then b n λ (k) ∼ n→∞ (-1) n-k 2|γ| k/n 1 |∆| 1/4 Ai(n 2/3 γ 2 ) n 1/3 , where ∆ = (k/n -α 0 )(α -1 0 -k/n) and γ 2 = γ 2 α 0 is asymptotically given by (2.7) as k/n → α 0 . If k/n ∈ [β -1 , α -1 ], then b n λ (k) ∼ n→∞ 2|γ| k/n 1 |∆| 1/4 Ai(n 2/3 γ 2 ) n 1/3 ,
where

γ 2 = γ 2 α -1 0
is asymptotically given by (2.8) as k/n → α -1 0 .

Remark. The factor (-1) n-k in the first formula of Proposition 3 corresponds to that in Theorem 1 for k in Regions I and II. Indeed, the Airy function is positive in a neighborhood of 0, and for k ∈ [0, αn] (Region I) the sign of the factor b λ (z + )

z k/n + n is (-1) n-k because z + = z + (k/n) is negative.
Proposition 3 shows in particular that:

(1) For k ∈ [αn, α 0 n -n 1/3 ) respectively k ∈ [α -1 0 n + n 1/3 , α -1 n] such that n 2/3 (α 0 - k/n) → +∞ respectively n 2/3 (k/n -α -1 0 ) → +∞, we use (2.7
) respectively (2.8) to observe that n 2/3 γ 2 → +∞ and then use the asymptotic approximation (1.3) for large positive arguments of the Airy function, to deduce the precise nature of b n λ (k)'s exponential decay in these regions, see Theorem 1 (3), (4) above. depending on the region to which k belongs. Again we use Landau standard notation and denote by ω(n 1/3 ) a sequence such that ω(n 1/3 )/n 1/3 → ∞ as n → ∞. We assume in addition that ω(n 1/3 ) = o(n) as n → ∞. The numbers γ α 0 and γ α 0 -1 are asymptotically given by

(2) For k ∈ (α 0 n+n 1/3 , βn]∪[β -1 n, α -1 0 n-n 1/3 ) such that either n 2/3 (k/n-α 0 ) → +∞ or n 2/3 (α -1 0 -k/n) → +∞,
γ 2 α 0 α 0 -k/n and γ 2 1/α 0 k/n -1/α 0
respectively as k/n → α 0 and α -1 0 . The table shows that the asymptotic behavior of b n λ (k) is symmetric with respect to Region V. A possible explanation for that symmetry is due to the following observation, which is a consequence of a simple change of variable. Proposition 4. Given λ ∈ (0, 1), k ≥ 1, and n ≥ 1, the following identity holds

b n λ (k) = (-1) n-k 2iπ ˆ∂D φ(z) exp k Φ(z) dz
where

φ(z) = 1 z 1 -λ 2 |1 -λz| 2 and Φ(z) = log b λ (z) z n k = Φ n/k (z),
Φ n/k being defined by (1.5).

Proof. We first write

b n λ (k) = 1 2iπ ˆ∂D (b λ (z)) n z -k-1 dz = (-1) n 2iπ ˆ∂D b λ (z) n z -k-1 dz where b λ (z) = -b λ (z) = λ-z 1-λz satisfies b λ • b λ = id. Changing the variable z by u = b λ (z) we get z = b λ (u), dz = -1-λ 2
(1-λu) 2 du and therefore

b n λ (k) = - (-1) n 2iπ ˆ∂D u n b λ (u) -k-1 1 -λ 2 (1 -λu) 2 du = (-1) n-k 2iπ ˆ∂D u n (b λ (u)) -k-1 1 -λ 2 (1 -λu) 2 du. = (-1) n-k 2π ˆ∂D u n+1 (b λ (u)) -k-1 1 -λ 2 (1 -λu) 2 | u=e it dt
Taking into account the fact that b n λ (k) is real and using complex conjugation we find

b n λ (k) = (-1) n-k 2π ˆ∂D (b λ (u)) k+1 u -n-1 u 2 1 -λ 2 (u -λ) 2 | u=e it dt = (-1) n-k 2π ˆ∂D (b λ (u)) k u -n+1 1 -λ 2 (u -λ)(1 -λu) | u=e it dt = (-1) n-k 2iπ ˆ∂D 1 -λ 2 |1 -λu| 2 (b λ (u)) k u -n du u ,
which completes the proof. 0 respectively as k/n → α 0 and α -1 0 . The formulas for k in Regions III and VII ensure the transition between the exponential decay (Regions I-II and VIII) and the O(n -1/3 ) decay, which occurs in Regions IV and VI when the distance between k and α 0 n respectively α -1 0 n does not exceed n 1/3 . Finally, the formula for k in Region V ensures the transition to an oscillatory decay of order O(n -1/2 ) when k is away from the boundaries α 0 n and α -1 0 n (we refer to Theorem 2 (2) for the definition of h(ϕ + )).

Values of k(n) in interval Asymptotics of b n λ (k) Region [0, αn] 1 √ k/n[(α 0 -k/n)(α -1 0 -k/n)] 1/4 1 √ n b λ (z + ) z k/n + n I-II (αn, α 0 n -ω(n 1/3 )] 1 √ k/n[(α -1 0 -k/n)(α 0 -k/n)] 1/4 1 √ n e -2 3 n|γ α 0 -1 | 3 III [α 0 n -ω(n 1/3 ), α 0 n + ω(n 1/3 )] 1 √ k/n(α -1 0 -k/n) 1/4 Ai(n 2/3 γ 2 α 0 ) n 1/3 IV [α 0 n + ω(n 1/3 ), α -1 0 n -ω(n 1/3 )] 1 √ n cos(nh(ϕ + )-π/4) √ k/n[(α -1 0 -k/n)(k/n-α 0 )] 1/4 V [α -1 0 n -ω(n 1/3 ), α -1 0 n + ω(n 1/3 )] 1 √ k/n(k/n-α 0 ) 1/4 Ai(n 2/3 γ 2 α 0 -1 ) n 1/3 VI [α -1 0 n + ω(n 1/3 ), α -1 n) 1 √ k/n[(k/n-α -1 0 )(k/n-α 0 )] 1/4 1 √ n e -2 3 n|γ α 0 -1 | 3 VII [α -1 n, ∞) 1 √ k/n[(α 0 -k/n)(α -1 0 -k/n)] 1/4 1 √ n b λ (z + ) z k/n + n VIII Figure 
3. Proofs of the asymptotic formulas for b n λ (k) As usual, the dominant contribution to integrals of the form (1.4) comes from a small neighborhood around the stationary points of Φ a . Therefore we start by recalling the critical points of Φ a . The following lemma is a more complete version of [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF]Lemma 11]. We prove it below for completeness.

Lemma 5. Let a = k/n and let Φ(z) = Φ a (z) be defined as above. We have the following assertions.

(1) If a ∈ (α 0 , α -1 0 ), then Φ a (•) has two distinct stationary points z ± ∈ ∂D of order one, i.e. ∂Φa ∂z (z

± ) = 0 but ∂ 2 Φa ∂z 2 (z ± ) = 0, satisfying z -= z + . (2) If a ∈ α 0 , α -1 0 , then Φ a (•) has one stationary point z 0 ∈ {-1, 1} of order two, i.e. ∂Φa ∂z (z 0 ) = ∂ 2 Φa ∂z 2 (z 0 ) = 0, but ∂ 3 Φa ∂z 3 (z 0 ) = 0. More precisely, if a = α 0 then z 0 = -1 and ∂ 3 Φ α 0 ∂z 3 (z 0 ) = 2λ(1 -λ) (1 + λ) 3 . If a = α -1 0 then z 0 = 1 and ∂ 3 Φ α -1 0 ∂z 3 (z 0 ) = 2λ(1 + λ) (1 -λ) 3 .
(

) If a / ∈ [α 0 , α -1 0 ], then Φ a (•) has two stationary points z ± ∈ R of order one, i.e. ∂Φa ∂z (z ± ) = 0 but ∂ 2 Φa ∂z 2 (z ± ) = 0, satisfying z -= z -1 3 
+ . The stationary points z + and z -are given by the formula

(3.1) z ± = z ± (a) = a(1 + λ 2 ) -(1 -λ 2 ) 2λa ± a(1 + λ 2 ) -(1 -λ 2 ) 2λa 2 -1 and if a / ∈ α 0 , α -1 0 then ∂ 2 Φ a ∂z 2 z=z ± = (1 -λ 2 )(z ± -z ∓ )λ (z ± -λ) 2 (1 -λz ± ) 2 . (3.2)
Proof. Computing derivatives we obtain

∂Φ a ∂z = 1 z -λ - a z + λ 1 -λz , ∂ 2 Φ a ∂z 2 = - 1 (z -λ) 2 + a z 2 + λ 2 (1 -λz) 2 , ∂ 3 Φ a ∂z 3 = 2 (z -λ) 3 - 2a z 3 + 2λ 3 (1 -λz) 3 .
The function Φ a (z) has a stationary point if and only if ∂Φ a /∂z = 0, i.e. if and only if

a = 1 + λ z -λ + λz 1 -λz .
Solving the latter for z yields the representation (3.1) for the roots

z ± of ∂Φa ∂z . If a / ∈ α 0 , α -1 0 , then z + and z -are distinct. If a ∈ (α 0 , α -1 0 ), then z ± ∈ ∂D \ {-1, 1} and if a / ∈ [α 0 , α -1 0 ], then z ± ∈ R \ {-1, 1}.
Plugging in the values of z ± we obtain formula (3.2) for the value of ∂ 2 Φa

∂z 2 z=z ± when a / ∈ α 0 , α -1 0 . If a ∈ α 0 , α -1 0 , then ∂Φa ∂z has a unique zero. If a = α -1 0 , then z + = z -= 1 = z 0 and Φ α -1 0 (1) = ∂Φ α -1 0 ∂z (1) = ∂ 2 Φ α -1 0 ∂z 2 (1) = 0, with ∂ 3 Φ α -1 0 ∂z 3 (1) = 2λ(1 + λ) (1 -λ) 3 = 0. If a = α 0 , then z + = z -= -1 = z 0 and ∂Φ α 0 ∂z (-1) = ∂ 2 Φ α 0 ∂z 2 (-1) = 0, ∂ 3 Φ α 0 ∂z 3 (-1) = 2λ(1 -λ) (1 + λ) 3 = 0. 3.1. Proof of Theorem 1 (1), (2). 
Proof. We start with part (1). We establish by induction on k that

(b n λ ) (k) (0) ∼ (-λ) n-k n(1 -λ 2 ) k , k ≥ 0, n → ∞.
This asymptotic formula clearly holds for k = 0. We assume that the above induction hypothesis holds for all 0 ≤ j ≤ k. We first observe that

(b n λ ) (k+1) (z) = ((b n λ ) ) (k) (z) = n(1 -λ 2 ) (1 -λz) -2 • b n-1 λ (k) (z),
and then apply Leibniz formula to the product z → (1 -λz) -2 • b n-1 λ (z), at z = 0.

Computation shows that

(1 -λz) -2 (j) (0) = (j + 1)!λ j and therefore

(1 -λz) -2 • b n-1 λ (k) (0) = k j=0 k j (j + 1)!λ j b n-1 λ (k-j) (0).
Applying our induction hypothesis to the factor b n-1 λ (k-j) (0), it turns out that the main contribution to the above sum is due to its first term (whose index is j = 0):

k 0 (0 + 1)!λ 0 b n-1 λ (k) (0) ∼ (-λ) n-1-k (n -1)(1 -λ 2 ) k ∼ (-λ) n-k-1 n(1 -λ 2 ) k .
We conclude that

(b n λ ) (k+1) (0) = n(1 -λ 2 ) (1 -λz) -2 • b n-1 λ (k) (0) ∼ (-λ) n-k-1 n(1 -λ 2 ) k+1 ,
which completes the proof of part [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF].

Proof of part [START_REF] Mehmeti | Explicit error estimates for the stationary phase method II: Interaction of amplitude singularities with stationary points[END_REF]. The integral defining b n λ (k) is of the form:

(3.3) b n λ (k) = 1 2iπ ˆ∂D ϕ(z)e nΦ(z) dz
where ϕ(z) = z -1 and Φ = Φ a with a = k/n. Case 1: a ∈ [ , α]. We first assume that a ∈ [ , α] for a given ∈ (0, α) and apply the saddle point/steepest descent method [8, Chapter 7], [START_REF] De Bruijn | Asymptotic Methods in Analysis[END_REF], [START_REF] Copson | Asymptotic Expansions[END_REF] to determine an asymptotic formula for the integral (3.3). This method essentially consists in deforming the original contour of integration (here ∂D) into a suitable one, say C, so that C remains inside the domain U where our integrand is holomorphic (here U = C \ {1/λ}) and the classical conditions -which we recall below and which relate to geometrical considerations specific to our situation -are satisfied. We refer to Figure 3.1 and Figure 3.2 for an illustration.

1) First of all C must pass through the relevant saddle point(s) of Φ i.e. the solutions z ± of the equation Φ (z) = 0. In our case a ≤ α < α 0 it can be checked that only z + is relevant: on the interval [z -, z + ] the continuous function

ψ : z → e Φ(z)
achieves its minimum at z = z + , its maximum at z = z -and

ψ(z + ) < 1 < ψ(z -).
We also observe that the function a → z + (a) is negative and monotonically decreasing for a ∈ (0, α 0 ); moreover lim a→0 z + (a) = 0 and lim a→α 0 z + (a) = -1. In particular for a ∈ [ , α] we have -1 < z + (a) < 0 and z + (a) is separated from 0.

2) The level curve L(z + ) = {z ∈ U : Φ(z) = Φ(z + )} passes two times through z + making angle of π/2 and divides U into two domains V (z + ) and H(z + ) respectively named valleys and hills separating the neighborhood of the saddle point z + :

V (z + ) = {z ∈ U : Φ(z) < Φ(z + )} , H(z + ) = {z ∈ U : Φ(z) > Φ(z + )} ,
and the new contour of integration C must be contained in V (z + ). Here we observe that L(z + ) is symmetric with respect to the real axis, which is the bisector in H(z + ) of the angle between the two tangents to the curve L(z + ) at z + . We have ψ(z) = 1 for z ∈ ∂D and therefore ∂D ⊂ H(z + ). Furthermore we observe that H(z + ) contains both a neighborhood of 1/λ because lim z→1/λ ψ(z) = ∞, and a neighborhood of 0 since lim z→0 ψ(z) = ∞. The fact that lim z→∞ ψ(z) = 0 shows that V (z + ) contains a neighborhood of ∞ and that the distance from any point of L(z + ) to z + is finite. V (z + ) also contains a neighborhood of λ since ψ(λ) = 0. Let us finally mention that L(z + ) is actually composed of two curves: A closed curve contained in D passing two times through z + and another one surrounding ∂D, which is not of interest for us. We refer to Figure 3.1 for a depiction of the behavior of L(z + ), H(z + ) and V (z + ) near the unit disc.

3) We recall that the curves of steepest descent respectively steepest ascent from z + , respectively named S d and S a , see Figure 3.2, are the curves defined by the equation

Φ(z) = Φ(z + )
and contained in V (z + ) -respectively in H(z + ) -and in a neighborhood of z + . If T (z + ) denotes the tangent at z + to the curve of steepest descent from z + , then T (z + ) must also be tangent to the new contour of integration C at z + and it is more convenient to choose C such that it coincides with T (z + ) on a fixed neighborhood of z + . Here T (z + ) is the vertical line passing through z + . It is usually obtained as the bisector in V (z + ) of the angle formed by the two perpendicular tangents to the level curve L(z + ) at z + . The other bisector of this angle is part of the real axis, and necessarily lies in H(z + ) : z → ψ(z) achieves its minimum at z + on [z -, 0) whereas z → ψ(z) attains its maximum at z + on T (z + ), which is required to apply the method of the steepest descent.

If such a choice of C is possible -which is the case here, see Figure 3.2 -then [8, formula (7.2.10)], [17, formula (36.7)], [15, formula (5.7.2)] we have ˆ∂D ϕ(z)e nΦ(z) dz = ˆC ϕ(z)e nΦ(z) dz

∼ ϕ(z + )e nΦ(z + )+iθ 2π n|Φ (z + )| , n → ∞, (3.4)
where θ is the angle between T (z + ) and the real axis. It follows from Lemma 5, formula (3.2), that

(3.5) Φ (z + ) = λ(z + -z -)(1 -λ 2 ) (z + -λ) 2 (1 -λz + ) 2 ,
which is strictly positive, and taking into account the fact that θ = 3π/2 we find

ˆ∂D ϕ(z)e nΦ(z) dz ∼ i 2π n 1 z + b λ (z + ) z k/n + n (z + -λ)(1 -λz + ) λ(1 -λ 2 )(z + -z -) = i 2π n b λ (z + ) z k/n + n (z + -λ)(z --λ) λ(1 -λ 2 )(z + -z -) ,
where we used the identity z + z -= 1 (see Lemma 5). It follows from (3.1) that

z + -z -= (λ 2 -1)(a(λ -1) + 1 + λ)(a(1 + λ) + λ -1) aλ = 1 -λ 2 aλ (a -α -1 0 )(a -α 0 ), (3.6)
and that where a = k/n. Therefore Dividing the above asymptotic formula for ´∂D ϕ(z)e nΦ(z) dz by 2iπ we conclude that

(3.7) (z + -λ)(z --λ) = 1 -λ 2 a ,
(z + -λ)(z --λ) λ(1 -λ 2 )(z + -z -) = 1 -λ 2 a 1 λ(1 -λ 2 ) aλ 1 -λ 2 1 (a -α -1 0 )(a -α 0 ) 1/4 = 1 √ a (a -α -1 0 )(a -α 0 ) 1/4 .
b n λ (k) ∼ 1 √ 2nπ 1 k/n (α 0 -k/n)(α -1 0 -k/n) 1/4 b λ (z + ) z k/n + n . Case 2: a = k/n → 0 and k → ∞. Now we assume that k = k(n) is such that k(n) → ∞ and k(n)/n → 0 as n → ∞.
The situation is essentially the same as before in the sense that again z + = z + (k/n) is the only relevant saddle point of Φ, but it is slightly more delicate because this time z + approaches the origin as n → ∞. The new contour of integration C is chosen in V (z + ) the same way as previously but the straight steepest descent line C ∩ T (z + ) -along which Φ (z + )(z -z + ) 2 is negative -must lie in a neighborhood of z + where Φ can be expanded as a convergent power series

Φ(z) = Φ(z + ) + j≥2 Φ (j) (z + ) j! (z -z + ) j .
A computation shows that

z + = -a λ 1 -λ 2 + O(a 2 )
as a = k/n tends to 0, and for j ≥ 2

Φ (j) (z + ) j! = (-1) j a jz j + + λ j j 1 (1 -λz + ) j - (-1) j j(z + -λ) j (3.8) ∼ (-1) j a jz j + ∼ 1 ja j-1 1 -λ 2 λ j .
In particular, for large enough n the radius of convergence R of the power series of Φ near z + is proportional to a. We put

G(z) = j≥3 Φ (j) (z + ) j! (z -z + ) j .
We follow and adapt the approach from [17, p. 92-93] to our situation. Let x = 2/5 and

u k = k -x so that lim k→∞ u k = 0, lim k→∞ ku 3 k = 0 and lim k→∞ ku 2 k = ∞. We choose C such that C ∩ T (z + ) lies in the disc |z -z + | ≤ ρ where ρ = au k = k n u k . For z in the disc |z -z + | ≤ ρ we have |G(z)| ≤ j≥3 |Φ (j) (z + )| j! |z -z + | j a j≥3 1 j 1 -λ 2 λ u k j au 3 k .
It follows that for z ∈ C ∩ T (z + ) we have

exp (nΦ(z)) = exp nΦ(z + ) + n Φ (z + ) 2 (z -z + ) 2 • 1 + O ku 3 k . Observing that z + -z z + u k , we obtain ϕ(z) = 1 z + + z -z + = 1 z + 1 + z-z + z + = 1 z + 1 + j≥1 1 z + z + -z z + j = 1 z + + O (u k ) .
Taking into account the fact that x < 2 -1 we find that for z ∈ C ∩ T (z + )

ϕ(z) exp (nΦ(z)) = z -1 + exp nΦ(z + ) + n Φ (z + ) 2 (z -z + ) 2 • 1 + O ku 3 k
The contribution of the neighbourhood |z -z + | ≤ ρ of the saddle point z + is therefore 

(3.9) ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz = z -1 + exp (nΦ(z + )) ˆC∩T(z + ) exp n Φ (z + ) 2 (z -z + ) 2 dz • 1 + O ku 3
Φ (z + ) = k n z -2 + α 0 - k n 1/2 α -1 0 - k n 1/2 .
We let r vary from -ρ to ρ and put z = z + -ir. Then (3.9) gives

ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz = -iz -1 + 1 + O ku 3 k exp (nΦ(z + )) ˆρ -ρ exp -kz -2 + α 0 -k n 1/2 α -1 0 -k n 1/2 2 r 2 dr.
Changing the variable r by

v = √ kz -1 + α 0 -k n 1/4 α -1 0 -k n 1/4 √ 2 r, we get (3.11) ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz = i (1 + o(1)) exp (nΦ(z + )) 2 k ˆω -ω exp -v 2 dv,
where

ω = k 2 |z + | -1 α 0 - k n 1/4 α -1 0 - k n 1/4 ρ ∼ k 2 1 -λ 2 λ u k √ ku k ,
and, in particular, ω tends to ∞ with k. Moreover, as k → ∞, we have

ˆ∞ ω exp(-v 2 )dv = O exp(-ω 2 ) ω = O exp(-Cku 2 k ) √ ku k ,
for some absolute constant C > 0. Therefore,

ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz = i exp (nΦ(z + )) 2π k • (1 + o(1)) ,
and, hence,

1 2iπ ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz ∼ 1 √ 2kπ b λ (z + ) z k/n + n .
To complete the proof we choose C so that C \ T (z + ) coincides with the circle centered at 0 of radius |z + | = -z + intersected with the half-plane { z > z + }, and show that

1 2iπ ˆC\T(z + ) ϕ(z) exp(nΦ(z))dz = o 1 2iπ ˆC∩T(z + ) ϕ(z) exp(nΦ(z))dz
as k → ∞. The endpoints of C \ T (z + ) are denoted by |z + |e i(π-η) and |z + |e i(-π+η) where η > 0 is such that

η sin η ρ |z + | u k .
We write

1 2iπ ˆC\T(z + ) ϕ(z) exp(nΦ(z))dz = ϕ(z + ) exp(nΦ(z + )) 1 2iπ ˆC\T(z + ) ϕ(z) exp(nΦ(z)) ϕ(z + ) exp(nΦ(z + ))
dz, put z = |z + |e it = -z + e it , and observe that

ϕ(z) exp(nΦ(z)) ϕ(z + ) exp(nΦ(z + )) = b λ (|z + |e it ) b λ (z + ) n , |z| = |z + |.
A direct computation shows that

(3.12) b λ |z + |e it 2 = 1 - (1 -λ 2 )(1 -|z + | 2 ) 1 + λ 2 |z + | 2 -2λ|z + | cos t .
This function is increasing on [0, π] and decreasing on [-π, 0]. Therefore,

ϕ(z) exp(nΦ(z)) ϕ(z + ) exp(nΦ(z + )) ≤ b λ |z + |e i(π-η) b λ (z + ) n .
By (3.12) we obtain that there exists C > 0 such that

b λ |z + |e i(π-η) b λ (z + ) ≤ 1 -Caη 2 ,
which proves that

(3.13) 1 2iπ ˆC\T(z + ) ϕ(z) exp(nΦ(z)) ϕ(z + ) exp(nΦ(z + )) dz = O exp(-Cku 2 k ) .
This completes the proof in case 2.

Case 3: a ∈ [α -1 , -1 ]. A discussion similar to that for case 1 leads to the same formula for a = k/n ∈ [α -1 , -1 ] where ∈ (0, α) is fixed. We first reproduce the three steps from the first case required to deform the original contour of integration ∂D into the suitable one C, which remains inside the domain U where our integrand is holomorphic. The geometrical considerations corresponding to conditions (1)-( 3) are sometimes slightly different in this case. We detail them below for completeness and refer to Figure 3.3 for an illustration.

1) As in case 1, C should pass through the relevant saddle point of Φ. Again, it can be checked that only the critical point z + is relevant: For z on the interval [λ, λ -1 ) the continuous function z → ψ(z) achieves its minimum at z = z + , its maximum at z = z - and

ψ(z + ) < 1 < ψ(z -).
We also observe that the function a → z + (a) is nonnegative and monotonically increasing for a ∈ (α -1 0 , -1 ); moreover lim a→α -1 0 z + (a) = 1 and lim a→+∞ z + (a) = 1/λ. In particular for a ∈ [ , α] we have 1 < z + (a) < 1/λ.

2) Again, the level curve L(z + ) passes two times through z + making angle of π/2 and divides U into V (z + ) (valleys) and H(z + ) (hills). The new contour of integration C will be contained in V (z + ) as required. L(z + ) is symmetric with respect to the real axis and it consists again of two parts. The first one is not of interest for us: it is a closed curve contained in D surrounding λ. The second one, which is the one we are interested in, is a closed curve that surrounds ∂D to the left of z + and a neighborhood of 1/λ to the right of z + . As in case 1, the real axis is the bisector in H(z + ) of the angle between the two tangents to this part of L(z + ) at z + . Finally H(z + ) still contains ∂D since ψ(z) = 1 for z ∈ ∂D, and it also contains a neighborhood of 1/λ because lim z →1/λ ψ(z) = ∞. V (z + ) contains a neighborhood of ∞ because lim z →∞ ψ(z) = 0 and also contains a neighborhood of λ because lim z →λ ψ(z) = 0.

3) We do not reproduce the discussion on the curves of steepest descent/ascent S d and S a from z + , since it is identical to the previous one (case 1). (This time z → ψ(z) attains its minimum on (λ, 1/λ) at z + whereas z → ψ(z) attains its maximum at z + on T (z + ).)

Since such a choice of C is possible -see Figure 3.3 for an illustration -the asymptotic formula (3.4) used in case 1 applies also here and we get

b n λ (k) = 1 2iπ ˆC ϕ(z)e nΦ(z) dz ∼ 1 2iπ ϕ(z + )e nΦ(z + )+iθ 2π n|Φ (z + )| ,
as n → ∞, where θ = π/2 is the angle between T (z + ) and the real axis. The rest of the proof is identical to the one we have detailed in case 1.

Case 4: a = k/n ∈ [α -1 n, ∞) and k/n → ∞.
This case is analogous to case 2. As in case 3, z + = z + (k/n) is the only relevant saddle point of Φ, but this time z + approaches 1/λ as n → ∞. The new contour of integration C is chosen in V (z + ) the same way as in case 3 but the straight steepest descent line C ∩ T (z + ) -along which Φ (z + )(z -z + ) 2 is negative -must lie (as in case 2) in a neighborhood of z + where Φ can be expanded as a Figure 3.3. This figure depicts the new contour of integration C, the level curve L(z + ), the curve S d of steepest descent from z + , the curve S a of steepest ascent from z + , the tangent T (z + ) to S d at z + , the domain V (z + ) and the domain

H(z + ), when k/n ∈ [α -1 n, -1 n].
Here we chose λ = 0.5 and k/n = 3.3.

convergent power series

Φ(z) = Φ(z + ) + j≥2 Φ (j) (z + ) j! (z -z + ) j
whose radius of convergence -which can be computed using (3.8) -is this time proportional to 1/a, whereas it was proportional to a when k/n → 0 (see case 2). We omit the rest of the proof, which is identical to the one we have detailed in case 2.

3.2. Proof of Proposition 3.

Proof of Proposition 3. We omit the proof of the second asymptotic formula (i.e. when k/n is in a neighborhood of α -1 0 ) because it follows from an almost word-for-word adaptation of the one of [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF]Proposition 10] (the part corresponding to (2)-( 4), replacing the factor (1 -z -2 ) by 1). We choose to sketch the proof of the asymptotic formulas for k/n in a neighborhood of α 0 , which similar to those in [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF][START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF], but where computations are slighlty different. We refer to the proof of [START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF]Proposition 17] for more technical details. Again, we recall that for any k and n:

b n λ (k) = 1 2iπ ˆ∂D e nΦ(z)
z dz where Φ = Φ a and a = k/n. It is explained in [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF][START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF] that the standard method of stationary phase cannot be applied when k/n approaches α -1 0 because in this case the saddle points z + and z -which are of order 1, are coalescing to the saddle point z 0 = 1, which is of order 2. If k/n approaches α 0 , then the same phenomena occurs and z ± are coalescing this time to z 0 = -1. As the main contribution of the above integral is due to the critical points z ± = z ± (a) of Φ a , if a < α 0 it is required to locally deform the unit circle to a new contour that passes through z + , z -(which are real and negative) and -1. If a > α 0 , then the critical points z ± ∈ ∂D (are complex conjugates) and there is no need to deform the contour as the unit circle already passes through z + , z -and -1: In this case the proof below is actually reduced to an application of the uniform version of the method of stationary phase [START_REF] Borovikov | Uniform Stationary Phase Method[END_REF]Section 2.3]. Let D(-1, ε) be the closed disk centered at -1 of radius ε > 0 chosen in such a way that z ± ∈ D(-1, ε). We denote by C ⊂ D(-1, ε) a corresponding local deformation of the unit circle ∂D and illustrate it below. We shall use a uniform version of the steepest descent method [START_REF] Chester | An extension of the method of steepest descents[END_REF] as described in [8, p. 369-376], where the case of two nearby saddle points is considered and the first step is to observe that:

C ε z - z + -1
b n λ (k) ∼ 1 2iπ ˆCε e nΦ(z) z dz, n → ∞,
the contribution to the integral (1.4) from the part of the contour outside D(-1, ε) being asymptotically smaller than the integral itself [START_REF] Chester | An extension of the method of steepest descents[END_REF]Subsection 5]. This can usually be proved by the familiar arguments of the ordinary method of steepest descents, similar to those we previously used to prove (3.13). Following [8, (9.2.6)], to simplify the dependence of z ± on k/n we change the variable of integration via a locally one-to-one transformation, implicitly given by s = s a (z) solving the equation

(3.14) Φ(z) = - 1 3 s 3 -γ 2 α 0 s + η,
where the parameters γ = γ α 0 and η are determined in such a way that s = 0 is mapped to z = -1 and the saddle points z ± are mapped symmetrically to s = ±γ. For z = z(s) to define a conformal map of D(-1, ε) it is necessary that γ 3 α 0 and η be respectively defined by (2.6) and

η = Φ(z + ) + Φ(z -) 2 ,
so that

γ 2 = γ 2 α 0 = (1 + λ) (α 0 -k/n) (λ(1 -λ)) 1/3 + o(α 0 -k/n),
and

η = iπ 1 - k n .
For each value of z, (3.14) defines three possible values of s, that is, there are three branches of the inverse transformation. It is shown in [START_REF] Chester | An extension of the method of steepest descents[END_REF] that there is one branch of the transformation (3.14) that defines, for each a in a neighborhood of α 0 , a conformal map of D(-1, ε). More precisely, the transformation (3.14) has exactly one branch s = s(z, a) that can be expanded into a power series in z with coefficients that are continuous in a.

On this branch the points z = z ± correspond to s = ±γ α 0 , and the mapping of z to s is one-to-one on D(-1, ε). This is an analog of [START_REF] Szehr | A constructive approach to Schäffer's conjecture[END_REF]Proposition 12] and of [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF]Proposition 9] for k/n in a neighborhood of α 0 instead of k/n close to α -1 0 . Following [8, Section 9.2] we get

1 2iπ ˆC exp (nΦ a (z)) dz z = 1 2iπ ˆĈ G 0 (s) exp n - s 3 3 + γ 2 s + η ds
where we made the notation less cluttered writing briefly γ 2 for γ 2 α 0 , and where

G 0 (s) = 1 z(s)
dz ds is regular on the image D(-1, ) of D(-1, ) under the transformation z → s(z). We exploit the fact that if the integrand vanishes near a critical point then its contribution to the asymptotic expansion is diminished. Thus we expand

G 0 (s) = A 0 + A 1 s + (s 2 -γ 2 )H 0 (s),
with A 0 , A 1 , and H 0 to be determined. As long as H 0 is regular in D(-1, ) the last term of the above identity vanishes at the two saddle points s = ±γ. We can then determine A 0 , A 1 by setting s = ±γ in the above equality to get (3.15)

A 0 = G 0 (γ) + G 0 (-γ) 2 , A 1 = G 0 (γ) -G 0 (-γ) 2γ .
With A 0 , A 1 defined by these formulas, it is shown in [8, p. 373] that

H 0 = G 0 (s)-A 0 -A 1 s s 2 -γ 2
is regular in D(-1, ) as desired. We conclude that

ˆC exp (nΦ a (z)) dz z ∼ e iπ(n-k) ˆĈ (A 0 + A 1 s) exp n - s 3 3 + γ 2 s ds.
Following the procedure described in [8, p. 371-375] we consider a contour C 1 which is asymptotically equivalent to Ĉ . This means that the contribution of C 1 near the critical points coincides with that of Ĉ , but C 1 continues to ∞ as a contour of steepest descent. When we replace Ĉ by C 1 in (3.2), the introduced error is negligible, since the integral of 

(A 0 + A 1 t) exp n -s 3 3 + γ 2 s over C 1 \ D( 1 
dz z ∼ (-1) n-k A 0 n 1/3 Ai(n 2/3 γ 2 ) + A 1 n 2/3 Ai (n 2/3 γ 2 ) , n → ∞,
where A 0 , A 1 are defined in (3.15). To compute A 0 , A 1 we write

G 0 (±γ) = G 0 (s ± ) = 1 z ± z (s ± ).
A computation (see the proof of [START_REF] Szehr | Explicit counterexamples to Schäffer's conjecture[END_REF]Proposition 17] for more details) shows that:

z (t ± ) = z ± 2|γ| a 1 |∆| 1/4 , where a = k/n, and ∆ = (a -α 0 ) α -1 0 -a . Therefore G 0 (γ) = G 0 (-γ) = 2|γ| a 1 |∆| 1/4 and A 0 = G 0 (γ) + G 0 (-γ) 2 = G 0 (γ) = 2|γ| a 1 |∆| 1/4 , A 1 = G 0 (γ) -G 0 (-γ) 2γ = 0.
3.3. Proofs of Theorem 1 (3), (4) and of Theorem 2(2).

3.3.1.

The case where a = k/n is close to the boundaries α 0 , α -1 0 . We first discuss the situation where a = k/n approaches the boundaries α 0 , α -1 0 and start by proving Theorem 1 (3), ( 4). Here we apply Proposition 3 together with (1.3).

Proof of Theorem 1 (3), ( 4). First we prove part [START_REF] Andersson | On some power sum problems of Turán and Erdös[END_REF]

. If k ∈ [αn, α 0 n -n 1/3 ) and if, in addition, n 2/3 (α 0 -k/n) → +∞ (Region III) then n 2/3 γ 2 → +∞ as n tends to ∞. Since Ai(x) ∼ 1 2x 1/4 √ π exp -2 3 x 3/2 as x → +∞, we have 2|γ| k/n (-1) n-k |∆| 1/4 Ai(n 2/3 γ 2 ) ∼ 2|γ| k/n (-1) n-k |∆| 1/4 1 2 √ πn 1/6 |γ| 1/2 exp - 2 3 n|γ| 3 ∼ 1 √ 2π (-1) n-k k/n (α 0 -k/n)(α -1 0 -k/n) 1/4 exp -2 3 n|γ| 3 n 1/6
.

It remains to use (3.16) and to divide both parts by n 1/3 . We omit the proof of part (4) which is almost identical.

Next we apply Proposition 3 together with (1.2) to prove Theorem 2 (2) for k ≤ βn or

k ≥ β -1 n. Proof of Theorem 2 (2) for k ≤ βn or k ≥ β -1 n. Let k ∈ (α 0 n + n 1/3 , βn] ∪ [β -1 n, α -1 0 n - n 1/3 ). We assume in addition that either n 2/3 (k/n -α 0 ) → +∞ or n 2/3 (α -1 0 -k/n) → +∞ (i.e. k lies in Region IV\(βn, β -1 n) ): i) If n 2/3 (k/n -α 0 ) → +∞ then γ 2 = γ 2 α 0 and n 2/3 γ 2 → -∞. Recalling that Ai(-x) ∼ 1 x 1/4 √ π cos 2 3 x 3/2 -π 4 as x → +∞ we obtain 2|γ| k/n (-1) n-k |∆| 1/4 Ai(n 2/3 γ 2 ) ∼ 2|γ| k/n (-1) n-k |∆| 1/4 1 √ πn 1/6 |γ| 1/2 cos 2 3 n|γ| 3 - π 4 ,
and therefore

2|γ| k/n (-1) n-k |∆| 1/4 Ai(n 2/3 γ 2 ) ∼ 2 π (-1) n-k k/n (α 0 -k/n)(α -1 0 -k/n) 1/4 cos n|ih(ϕ + ) -iπ(1 -k/n)| -π 4 n 1/6 ,
where we use the definitions of γ 3 (see (2.2)) and h (see (1.6)). Using the fact that γ 3 ∈ iR + we obtain

cos n|ih(ϕ + ) -iπ(1 -k/n)| - π 4 = cos nh(ϕ + ) -π(n -k) - π 4 = (-1) n-k cos nh(ϕ + ) - π 4 .
It remains to use Proposition 3 and to divide by n 1/3 . ii) If n 2/3 (α -1 0 -k/n) → +∞, then our argument is similar. We use the second formula in Proposition 3 and the fact that this time γ

3 = γ 3 α -1 0 = -3 2 ih(ϕ + ), see (2.4). 3.3.2.
The case where a = k/n is separate from the boundaries α 0 , α -1 0 . Lemma 5 shows that the location of stationary points of Φ a in C is determined by the location of a relative to the critical interval [α 0 , α -1 0 ]. The situation where a approaches the boundaries α 0 , α -1 0 was discussed in the previous subsection. In this case, the stationary points z ± degenerate and uniform methods are required. The situation where a is separate from α 0 , α -1 0 , that is there exists β ∈ (α 0 , 1) that separates a from the boundary, a ∈ [β, β -1 ], is different and even simpler. In this case the stationary points z ± = e iϕ ± of Φ a belong to the contour of integration ∂D and remain separate from ±1, see below. Since z -k/n z-λ 1-λz = 1 for any z ∈ ∂D we can introduce the real function h

(ϕ) = h a (ϕ) = -h a (ϕ) = iΦ a (e iϕ ), ϕ ∈ [0, π],
to write the integral as a generalized Fourier integral (the Fourier/Taylor coefficients of b n λ are real because λ ∈ (0, 1)),

b n λ (k) = 1 2π ˆπ -π e -nΦa(e iϕ ) dϕ = 1 π ˆπ 0 e in ha(ϕ) dϕ .

The asymptotic behavior of this integral can be determined using A. Erdélyi's standard method of stationary phase [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF] and the approach from [40, Section 3.1], which will be done at the end of this section. Before that let us mention that a more elaborate version of the classical method of stationary phase, due to M.V. Fedoryuk [22, Theorem 2.4 p. 80] (see [START_REF] Fedoryuk | Metod Perevala (Saddle-Point Method)[END_REF]Theorem 1.6 p.107] for a simple version in one dimension), will make our proof much shorter. Moreover, Fedoryuk's method immediately provides us with a sharp error term for the first order approximation of b n λ (k), which holds uniformly for k ∈ [βn, β -1 n]. We first provide this simple proof making use of Fedoryuk's result, and then write in full detail a classical (but longer and more technical) proof of the same formula, using A.Erdélyi's standard method of stationary phase.

Proof of Theorem 2 (2) for βn ≤ k ≤ β -1 n using Fedoryuk's method. Suppose that a = k/n ∈ [β, β -1 ]. The stationary points of h = h a are given by

z ± = a(1 + λ 2 ) -(1 -λ 2 ) 2λa ± i 1 - a(1 + λ 2 ) -(1 -λ 2 ) 2λa 2 ∈ ∂D
and we write z ± = e iϕ ± with ϕ + ∈ [0, π] and ϕ -∈ (-π, 0]. Only z + is relevant since we integrate over [0, π] and the unique critical point ϕ

+ = ϕ + (k/n) of h a in (0, π) satisfies x ≤ ϕ + ≤ π -x for some x = x(β, λ) > 0 because e iϕ + -1 ≥ (1 -λ) β λ α -1 0 -β -1 , e iϕ + + 1 ≥ (1 + λ) β λ β -α 0 .
These inequalities follow from the identities

e iϕ + -1 2 = (1 -λ) 2 α -1 0 -a aλ , e iϕ + + 1 2 = (1 + λ) 2 (a -α 0 ) aλ .
For the second derivative we have

-i h (ϕ) = ∂ ∂ϕ ∂Φ ∂z dz dϕ = ∂ 2 Φ ∂z 2 dz dϕ 2 + ∂Φ ∂z d 2 z (dϕ) 2 . It follows from (3.5) that i ∂ 2 h ∂ϕ 2 ϕ=ϕ + = z 2 + Φ (z + ),
which gives, by (3.10), that

h (ϕ + ) = k n k n -α 0 α -1 0 - k n ≥ min a∈[β,β -1 ] a (a -α 0 )(α -1 0 -a) =: C(β, λ) > 0.
We are now ready to apply Fedoryuk's result [22, Theorem 2. for k n ∈ [β, β -1 ]. We only provide a proof of (3.19) for the case l = 0, the other cases 1 ≤ l ≤ 3, can be proved similarly. Let t = t(n) ∈ [0, s 1 ] be such that .

By compactness, we can construct a new subsequence (n q ) (actually extracted from (n l )) such that both k(nq) nq converges to some β ∈ [β, β -1 ] and ϕ(n q ) converges to some φ ∈ [x, π -η]. Passing to the limit as q tends to ∞ we find that lim q h (ψ -1 1 (t(n q ))) = h β ( φ) = β -

1 -λ 2 1 + λ 2 -2λ cos ( φ)
.

Therefore, lim q κ 1 (t(n q )) = κ1 ( ψ1 ( φ)),

where ψ1 (ϕ) = hβ (ϕ) -hβ (ϕ + ), h (ϕ + ) = 0 and κ1 (s) = . This contradicts the assumption lim q→∞ |κ 1 (t(n q ))| = ∞. The analysis of the first integral ´ϕ+ 0 e in h(ϕ) dϕ is essentially the same but we change the variable of integration ϕ → -ϕ as suggested in [20, p. 23]. We get ˆϕ+ 0 e in h(ϕ) dϕ = ˆ0 -ϕ + e in h(-ϕ) dϕ.

Applying Theorem 4 of [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF] (together with [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF]Theorem 1.3] to estimate the O-term), we obtain that ˆ0 -ϕ + e in h(-ϕ) dϕ = 1 2 Γ(1/2)κ 3 (0)e i π 4 n -1/2 e in h(ϕ + ) + 1 2 Γ(1)κ 3 (0)e i π 2 n -1 e in h(ϕ + ) (3. The question we are interested in here is how small and how (non)-lacunar could be the Taylor coefficients f (n) of f :

f (z) = n≥0 f (n)z n , z ∈ D.
In 1977, Bonar, Carroll, and Piranian [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF] produced f ∈ SA such that f ∈ c 0 . It is clear that if f ∈ SA, then f ∈ 2 . Furthermore, the function constructed in [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF] is far from being lacunary. Given 0 < p < ∞, set p = {a n } n≥0 :

k≥0 min(|a 2k | p , |a 2k+1 | p ) < ∞ .
Then, the function f constructed in [START_REF] Bonar | Strongly annular functions with small Taylor coefficients[END_REF] is such that f ∈ c 0 \ 2 .

In this section we are going to get new results in this direction.

Theorem 6. Let 2 ≤ p < q. There exists f ∈ SA such that f ∈ q \ p .

Given a positive function ϕ on R + , we set Another proof of the second asymptotic relation in Lemma 8 (v) is given in [START_REF] Szehr | l p -norms of Fourier coefficients of powers of a Blaschke factor[END_REF].

Proof of Theorem 6. Choose r ∈ (p, q) \ {4}. Given an integer A > 1, set

f (z) = k≥1 A kvr g A k (z)z A k .
First of all, the function f is analytic in the unit disc. Furthermore, 

1 .

 1 Notation. Let D = {z : |z| < 1} be the open unit disk and ∂D its boundary. For a given λ ∈ D we denote by b λ (z) = z -λ 1 -λz , the Blaschke factor corresponding to λ ∈ D. It is well-known that the function b λ is an automorphism of D and that |b λ (z)| = 1 ⇐⇒ z ∈ ∂D. Given a nonnegative integer n we recall the definition of the k th -Taylor/Fourier coefficient of the n th -power of b λ :

  Let b n λ (z) = k≥0 b n λ (k)z k be the Taylor expansion of b n λ . Then we have z -λ 1 -λz n = e inθ ze -iθ -|λ| 1 -|λ|ze -iθ n = k≥0 b n |λ| (k)e i(n-k)θ z k , with θ = arg λ, which shows that b n λ (k) = b n |λ| (k)e i(n-k)θ

|| 1 =

 1 O (1) , n ∈ Z, then ϕ is affine. Kahane proved that: (a) If ϕ is piecewise linear, then || e inϕ || 1 = O (log(|n|)), [27, Theorem III] and (b) if ϕ is analytic, then || e inϕ || 1 |n|, [27, Theorem V]. Writing b λ (e it ) as e iϕ(t) for t ∈ (-π, π], we deduce from (b) that

(1. 1 )

 1 || b n λ || p n 2-p 2p for p ∈ [1, 2] is derived. The discussion in [9] is more general and motivated by investigating the boundedness of the composition operator C b , C b (f ) = f • b, where b = b λ . To assess whether C b is a bounded linear operator from one Banach space X of analytic functions into another, say Y , it is often enough to know the asymptotic behavior of ||b n λ || Y . Let us mention that the asymptotic formulas for b n λ (k) obtained in the present paper could be used to compute the exact values of c p defined as follows: (a) If p ∈ (0, 4), then lim n→∞ n -2-p 2p || b n λ || p = c p , (b) if p = 4, then lim n→∞ n log n 1/4 || b n λ || 4 = c 4 , (c) and if p ∈ (4, ∞], then lim n→∞ n -1-p 3p || b n λ || p = c p ,

  ) as n tends to +∞. Theorem 1 below sharpens the previous results in [13, Theorem 2], [42, Proposition 2], [40, Lemma 7] by stating asymptotic formulas for b n λ (k) as n tends to +∞ when k belongs to those regions: (1) If k is fixed (Region I), then the proof of the asymptotic formula for b n λ (k) follows by induction on k.

2 . 1 . 2 α - 1 0

 2121 Figure 2.1. Asymptotic formulas for b n λ (k) as n → ∞, up to numerical factors. For k in Regions I-II and VIII, we have |z -k/n + b λ (z + )| < 1 and the decay of b n λ (k) is exponential. The values γ α 0 and γ α 0 -1 are asymptotically given by γ 2 α 0

Figure 3 . 1 .

 31 Figure 3.1. This figure depicts L(z + ) H(z + ) and V (z + ) where λ = 0.5 and k/n = 0.32.

Figure 3 . 2 .

 32 Figure 3.2. This figure depicts the new contour of integration C, the level curve L(z + ), the curve S d of steepest descent from z + , the curve S a of steepest ascent from z + , the tangent T (z + ) to S d at z + , the domain V (z + ) and the domain H(z + ), when k/n ∈ [ n, αn]. Here we chose λ = 0.5 and k/n = 0.32.

k

  It follows from (3.5),(3.6), and (3.7) that(3.10) 

Figure 3 . 4 .C ε z + z - - 1 Figure 3 . 5 .

 34135 Figure 3.4. The contour C for k n < α 0 .

C 1

 1 starts at infinity with points of argument -2π/3 and ends at infinity with points of argument 2π/3. See Figure 3.6, Figure 3.7 and Figure 3.8 below, for a description of C 1 and Ĉ . We refer to [8, Section 7.2] for a detailed description of such contours.

1 Figure 3 . 6 .

 136 Figure 3.6. Introduction of the asymptotically equivalent contour C 1 .

Figure 3 . 7 .Figure 3 . 8 .

 3738 Figure 3.7. The contour Ĉ for k n < α 0 and the asymptotically equivalent contour C 1 .

1 .

 1 4 p. 80] with d = 1 and Ω = (0, π) to I(n, a) = ˆπ 0 ν(ϕ)e in h(ϕ) dϕ,whereh = h a , a = k/n ∈ [β, β -1 ] =: M , x = x(β, λ) > 0 and ν : [0, π] -→ R is a neutralizer satisfying ν = 1 on [x/2, π -x/2] , ν = 0 on [0, x/4] ∪ [π -x/4, π] and 0 ν The compact K := x 4 , π -x 4 satisfies Assumption 2 in[START_REF] Fedoryuk | The stationary phase methods and pseudo-differential operators[END_REF]. The function ν : ϕ → ν(ϕ) does not depend neither on a nor on ξ = n and Assumption 3 in[START_REF] Fedoryuk | The stationary phase methods and pseudo-differential operators[END_REF] is satisfied with m = 0.Finally for a = k n ∈ M the unique critical point ϕ + = ϕ + (a) of ϕ → h a (ϕ) satisfies h (ϕ + ) ≥ C(β, λ) > 0and Assumptions 4 and 5 in[START_REF] Fedoryuk | The stationary phase methods and pseudo-differential operators[END_REF] are also satisfied. Applying Fedoryuk's asymptotic formula with l = 1,α 1 = 3 2 , b 1 = √ 2π h (ϕ + ) -1/2 exp iπ 4 , we obtain that I(n, a) = √ 2π h (ϕ + ) -1/2 exp iπ 4 n -1/2 e in h(ϕ + ) + O n -3/2where O n -3/2 is uniform over k/n ∈ [β, β -1 ]. It remains to observe that ´π 0 e in ha(ϕ) dϕ -I(n, a) = O(n -2 ) uniformly for k/n ∈ [β, β -1 ] to conclude that (3.17) b n λ (k) = 2 nπ cos n h(ϕ + ) + π/4 k/n (α -1 0 -k/n)(k/n -α 0 ) 1/4 + O n -3/2 ,where O n -3/2 is uniform over k/n ∈ [β, β -1 ].

  max s∈[0,s 1 ] |κ 1 (s)| = |κ 1 (t(n))| = |κ 1 (ψ 1 (ϕ(n)))|, where ϕ(n) ∈ [x, π -η]. If |κ 1 (t(n))| is not uniformly bounded for k n = k(n) n ∈ [β, β -1 ] as n tends to ∞, then |κ 1 (t(n l ))| → l ∞ for some subsequence (n l ) l and k(n l ) n l ∈ [β, β -1 ]. A direct computation shows that h (ψ -1 1 (t(n l ))) = k(n l ) n l -1 -λ 2 1 + λ 2 -2λ cos (ϕ(n l ))

- 1 / 2 e i π 4 n 4 k 2 . 4 .

 124424 ϕ + ) ,where, as for the above asymptotic expansion of ´π ϕ + e in h(ϕ) dϕ, the O n -3/2 -term is againuniform over a = k n ∈ [β, β -1 ]. Observing that h(0) = 0, h(π) = (a -1)π, h (0) = (a-1)(1-λ)-2λ 1-λ and h (π) = -(a-1)(1+λ)+2λ 1+λ we compute ˆπ 0 e in h(ϕ) dϕ = Γ(1/2) 2 1/2 h (ϕ + ) -1/2 e in h(ϕ + ) + O n -3/2 = √ 2Γ(1/2)e in h(ϕ + )+i π /n (k/n -α 0 ) α -1 0 -k/n 1/4 + O n -3/2 = √ 2π k/n (k/n -α 0 ) α -1 0 -k/n 1/4 e in h(ϕ + )+i π 4 + O n -3/We conclude that1 π ˆπ 0 e in h(ϕ) dϕ = 2 πn cos n h(ϕ + ) + π 4 k/n (k/n -α 0 ) α -1 0 -k/n 1/4 1 + O(n -1 ) , where O n -3/2 is uniform over k/n ∈ [β, β -1 ].Strongly annular functions with small Taylor coefficients Let us recall that a function f analytic in the unit disc is said to be strongly annular (we use the notation f ∈ SA) if lim sup r→1 min ∂D(0,r) |f | = ∞.

2 ϕ

 2 = {a n } n≥0 : n≥0 |a n | 2 ϕ(1/|a n |) < ∞ .

and|

  g N (k)| N -1/2 cos A N (k), N ≤ k ≤ 6N 5 ,whereA N (t) = N H N (t) -π 4 , H N (t) = -tϕ N (t) N + ψ(ϕ N (t)),

Furthermore,A 5 ≤ 1 .

 51 N (t) = -ϕ N (t), A N (t) = 3N 4t 2 sin ϕ N (t).For t ∈ [N, 6N/5] we havecos ϕ N (t) ∈ [1/2, 5/8], A N (t) 1/t, -π/3 ≤ A N (t) ≤ -π/4,and, hence,-2π A N (k + 1) -A N (k) ≤ -Thus, for every k ∈ [N, 6N 5 -1], (4.8) min(| g N (k)|, | g N (k + 1)|) N -1/2 .Finally, (iii) is (4.6), (iv) follows from (4.1)-(4.6), and (v) follows from (4.1)-(4.8).

  1-A -k ) |A kvr g A k (z)z A k | -s≥1, s =k max ∂D(0,1-A -k ) |A svr g A s (z)z A s | ≥ e -6 A kvr -1≤s<k A svr -s>k A svr exp(-A s-k ) A kvr → ∞, k → ∞, if A vr ≥ A 0 . Thus, f ∈ SA.

  we use (2.7) and(2.8) to observe that n 2/3 γ 2 → -∞ and then apply the asymptotic approximation (1.2) for large negative arguments of the Airy function, which shows that the decay of b n λ (k) is oscillatory in these regions, see Theorem 2 (2) above. 2.1. Summary of b n λ (k)'s asymptotics. The table below, see Figure 2.1, shows values of A(n, k) such that

	b n λ (k) A(n, k)

  , ), is asymptotically smaller than the integral over Ĉ , see[8, p. 372] for details. The Airy function can be represented as an integral over C 1 . By a change of variable τ → iτ and a deformation of the contour of integration one obtains

			Ai(x) =	1 2π	ˆ+∞ -∞	cos	τ 3 3	+ τ x dτ =	1 2iπ ˆC1	exp -	u 3 3	+ ux du
	and therefore							
	(3.16) 1 2iπ	ˆC	exp (nΦ a (z))						

The work is supported by the project ANR 18-CE40-0035.

For the sake of completeness we end this section by proving the above asymptotic expansion (3.17) using the standard method of stationary phase [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF].

Proof of Theorem 2 (2) for βn ≤ k ≤ β -1 n using Erdélyi's method. To determine the asymptotic behavior we apply a standard result of A. Erdélyi [20, Theorem 4] (see also [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF]Theorem 1.3] for a detailed discussion of this result and the involved error estimates), which however requires that the stationary point is an endpoint of the interval of integration. Hence we begin by splitting our generalized Fourier integral:

ˆπ 0 e in h(ϕ) dϕ = ˆϕ+ 0 e in h(ϕ) dϕ + ˆπ ϕ + e in h(ϕ) dϕ.

For the second integral, Theorem 4 of [START_REF] Erdélyi | Asymptotic Representations of Fourier Integrals and The Method of Stationary Phase[END_REF] yields ˆπ ϕ + e in h(ϕ) dϕ = 1 2 Γ(1/2)κ 1 (0)e i π 4 n -1/2 e in h(ϕ + ) + 1 2 Γ(1)κ 1 (0)e i π 2 n -1 e in h(ϕ + )

the error terms R

(1)

3 (n) will be explicitly estimated from above in what follows, according to [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF]Theorem 1.3], and the function κ 1 will be explicitly defined later on. First of all we observe that for k ∈ [βn, β -1 n] we have

k n -α 0 we find that the third term in the expansion of ´π ϕ + e in h(ϕ) dϕ is purely imaginary.

The second one will cancel out when we will add to ´π ϕ + e in h(ϕ) dϕ, the integral ´ϕ+ 0 e in h(ϕ) dϕ whose asymptotic expansion is computed below, see (3.20). Now, we show that the error terms R

(1)

To this aim we first recall that for k ∈ [βn, β -1 n] the unique critical point ϕ + of h satisfies x ≤ ϕ + ≤ π -x for some x = x(β, λ) > 0. We use the notation from [1, Section 1] and choose η = x 4 ∈ 0, π-ϕ +

2

. For j = 1, 2, let ψ j = I j → R be the functions defined by

shown to be a diffeomorphism between I j and [0, s j ], see [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF]Proposition 3.2]. For j = 1, 2, let κ j : (0, s j ] → C be the functions defined by

It is shown in [START_REF] Mehmeti | Explicit error estimates for the stationary phase method I: The influence of amplitudes singularities[END_REF]Proposition 3.3] that κ j can be continuously extended to [0, s j ] and that

π] and 0 ν 1, where η is defined above. For j = 1, 2, let ν j = [0, s j ] → R be the functions defined by

To prove that R

First, we treat in details the case j = 2. We need to show that

.

Computing the derivatives of κ 2 and taking into account that h and each of its derivatives are uniformly bounded on [0, π] ⊃ [ϕ + + η, π], we observe that the proof of (3.18) follows from the fact that

] and for ϕ ∈ (0, π), we have

By the mean-value theorem there is θ ∈ (ϕ

The same type of argument yields max

and ν 2 is of the same nature as κ 2 . We conclude that R

(2)

. Now, we deal with the case j = 1. We apply the same type of reasoning to show that R

(1)

1 are expressed as quotients whose numerators are uniformly bounded from above and whose denominators are powers of h (ψ -1 1 ) which are therefore uniformly separated from 0 (this can be seen, for example, by an application of the mean-value theorem as above). For s ∈ [0, s 1 ], we have ψ -1 1 (s) ∈ [ϕ + , π -η] and

.

To show that

we begin with a series of preliminary observations. First, for 0 ≤ l ≤ 3, the functions κ 1 (s)| attains its maximum on this interval. Second, we recall that the three explicit formulas we have previously written for κ (l) 1 (0), 0 ≤ l ≤ 2, show that these quantities are expressed as quotients whose numerators are uniformly bounded (because h and its derivatives are bounded) and whose denominators are expressed as powers of h (ϕ + ) ≥ C(β, λ) > 0. Therefore for 0 ≤ l ≤ 3, we have |κ

. Third, if s is separated from 0, a direct computation shows again that κ (l) 1 are expressed as quotients whose numerators are uniformly bounded from above and whose denominators are powers of h (ψ -1 1 ) which are therefore uniformly separated from 0. We use these observations to prove that for any 0 ≤ l ≤ 3, (3.19) holds uniformly Theorem 7. Let ϕ be an increasing positive function on R + such that lim x→∞ ϕ(x) = ∞.

and

We use the following corollary of Theorem 1 and Theorem 2.

Lemma 8. Given N ≥ 10, for some δ > 0 we have

Proof. The properties (i) and (ii) follow immediately from the definition of g N . Furthermore, we use that by Theorem 1 and Theorem 2, we have several upper estimates on

Next, by Theorem 2 we have two lower estimates on | g N | for some intervals of values of k:

As in the proof of Theorem 6, f is analytic in the unit disc and for A ≥ A 0 we have

ϕ(cN

and, again by Lemma 8, we conclude that f ∈ 2 ϕ and f / ∈ 2 .

4.1. Flat polynomials. Here we discuss an alternative approach to Theorems 6 and 7 in such a way that they use different constructions of flat polynomials.

Lemma 9. Given a large N , there exists a polynomial g N of degree N such that

One can easily modify the proofs of Theorems 6 and 7 in such a way that they use Lemma 9 instead of Lemma 8.

Furthermore, Lemma 9 follows from a 1978 result of Körner. Solving a Littlewood problem he established in [START_REF] Körner | On a polynomial of Byrnes[END_REF]Theorem 6] the existence of polynomials of degree N with unimodular coefficients equivalent to √ N on the unit circle. This gives Lemma 9 immediately. This result of Körner is non-constructive. For further progress in this direction including some explicit constructions see [START_REF] Bombieri | On Kahane's ultraflat polynomials[END_REF] and the recent paper [START_REF] Balister | Flat Littlewood polynomials exist[END_REF].