Learning-based pose edition for efficient and interactive design
Léon Victor, Alexandre Meyer, Saïda Bouakaz

To cite this version:

HAL Id: hal-03275581
https://hal.science/hal-03275581
Submitted on 1 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Learning-based pose edition for efficient and interactive design

Léon Victor1,3, Alexandre Meyer1,2, Saïda Bouakaz1,2
leon.victor@insa-lyon.fr, \{alexandre.meyer, saida.bouakaz\}@univ-lyon1.fr

1 Univ Lyon, LIRIS, UMR CNRS 5205
2 Université Claude Bernard Lyon 1
3 INSA Lyon

Figure 1: Sample results of our method in various configuration. Our method is able to generate plausible poses given a starting pose (on the left) and some targets (in red), respecting skeleton constraints without having to explicitly specify them.

Abstract
Authoring an appealing animation for a virtual character is a challenging task. In computer-aided keyframe animation artists define the key poses of a character by manipulating its underlying skeletons. To look plausible, a character pose must respect many ill-defined constraints, and so the resulting realism greatly depends on the animator’s skill and knowledge. Animation software provide tools to help in this matter, relying on various algorithms to automatically enforce some of these constraints. The increasing availability of motion capture data has raised interest in data-driven approaches to pose design, with the potential of shifting more of the task of assessing realism from the artist to the computer, and to provide easier access to non-experts. In this paper, we propose such a method, relying on neural networks to automatically learn the constraints from the data. We describe an efficient tool for pose design, allowing naïve users to intuitively manipulate a pose to create character animations.

Keywords: Character Pose Design, Machine Learning for Animation

1 Introduction
Character animation is an essential part of computer-generated imagery industries such as feature films, cartoons or video games which make use of on-screen characters to tell stories, convey emotions and appeal to their audiences. These characters are represented by 3-dimensional meshes whose motion is driven by an underlying skeleton. A common method to design and edit animations is keyframing: animator pose the character at desired time stamps (the key frames) and the computer interpolates between them to fill in the gaps. Most animation software such as Blender or Maya provide inter-

1The code is available at https://github.com/leonvictor/neural-pose-edition
active tools allowing users to pose a character by manipulating its underlying skeleton. We propose an innovative solution that makes the pose editing process more affordable without compromising the quality of the results. The presented method leverages neural networks to implicitly learn the intricacies of a (human) skeleton and provide simple controls. Our main goal is to create an intuitive real-time system that can produce appealing poses even for a novice user.

Our framework relies on a few small networks requiring reasonable resources to train, with the added advantage of running quite fast at inference time. The core of our approach is an encoder-decoder trained on skeleton pose data, the task of which is to build a latent representation of the pose space, alleviating some of the limitations of the former. We then train a family of solver networks to work on this latent space in order to generate a pose satisfying user-defined target positions.

2 Related work

The industry standard for pose edition is to create rigs, a collection of pieces of software designed to manipulate a character’s skeleton. The rig describes the skeleton’s bones, how they relate to each other, are constrained in their possible motion and are deformed. These rules are loosely specified and creating a good rig requires a detailed understanding of physics and anatomy, as well as technical and artistic skills. Rigging is thus a time consuming task even for experienced animators, and even more so in large scale productions which often require a different in-depth rig for each character in the cast. Previous work has helped alleviate this difficulty by providing efficient tools to speed up/and or ease the rigging process, relying on inverse kinematics or data-driven methods.

2.1 Character pose design

2.1.1 Inverse Kinematics (IK)

IK solvers are a family of methods commonly used in robotics, engineering and computer graphics, in which the parameterization of a kinematic chain is determined from the position of its end effector. They are a staple tool in pose design software, ensuring the respect of elementary constraints during pose edition. Their de-facto role is to guarantee the length of the limbs, and in some cases to enforce the orientation angle range of a joint. Many IK solutions have been studied over the years [1]; usually revolving around approximated linearizations or heuristics.

Numerical methods require a set of iterations to achieve a satisfactory solution formulated by a cost function to be minimized. IK solutions can generally be divided into three subcategories: Jacobian [2], Newtonians [3] and Heuristics. Most software implement heuristic methods such as Cyclic Coordinate Descent (CCD) [4] or Forward-Backward Reaching IK (FABRIK) [5] due to their simplicity and extensibility.

The main drawback of these solvers is that they manipulate kinematic chains without taking into account many morphological aspects that make a pose more or less plausible. They offer a first level of help to users but are not sufficient to guarantee a realistic pose. Many joints constraints are dependent on each other and require subjective, human-made approximations.

2.1.2 Data-driven pose edition

Data-driven methods offer promising opportunities to solve these approximations. Using real-life data can help in modelling the complex inter-dependencies of skeletons and providing users with smarter edition tools. While it is still an early field of research, some solutions have been studied. Wu et al. [6] propose a method for natural character posing from a large motion database. It employs adaptive KD-clustering to select a representative frame from a database and sparse approximations to accelerate training and posing. Huang et al. in [7] present a method based on the formulation of multivariate Gaussian distribution models (MGDMs), which learn the joint constraints of a kinematic skeleton from motion capture data.

Some work has also been dedicated to finding new editing interfaces. Instead of the usual setup manipulating joints directly, Guay et al. [8] articulate a framework based on the conceptual "line of action" which describes the overall pose dynamics. They provide a mathematical defini-
tion of the line of action, and a interface in which
the software modifies the pose to follow a user-provided line. In the same line of though Gar-
cia et al. [9] propose a virtual reality-based in-
terface where the user’s hands motion (position
and orientation over time) are transformed into
sequences of actions and then into detailed char-
acter animations using a dataset of parametrized
motion clips automatically fitted to the trajec-
tory.

2.2 Neural modelling of human motion

Neural networks have received a great amount
of attention over the last decade and shown im-
pressive result in modelling complex data. Hu-
man motion has not been spared and deep learn-
ing methods have proven their capability of gen-
erating realistic motion in a number of difficult
cases.

The literature in neural-based animation in-
clude example in user-controlled character nav-
gination [10] and interactions with the environ-
ment [11]. Holden et al. [12] also show that
neural networks can be used to replace parts
of existing data-driven methods, improving their
scalability potential. More recently, some work
has also focused on improving smaller parts of
the animation pipeline rather than replacing it
networks to provide an interactive system to edit
facial animation.

Data-driven IK and pose editing can relieve
animators from time-consuming, back-and-forth
pose adjustments by applying constraints ex-
tracted from real-world data. Recently, neural-
netword-based approaches have demonstrated
their ability to model the intricacies of human
motion while scaling to large amount of data
and retaining a fast inference time. In this paper
we seek to take advantage of these properties to
create an efficient posing tool, intuitively usable
even by an inexperienced user.

3 Proposed method

3.1 Method overview

We propose a method to solve a high level pose
design problem in which a pose is modified to
reach desired target positions for some of its
joints. We leverage the modelling power of neu-
rnal networks to implicitly learn skeleton con-
straints from a pre-existing pose database. Our
method, illustrated in Fig. 2, relies on two mod-
els: an auto-encoder to build an alternative la-
tent pose space, and a solver model operating on
this space to solve the pose design problem. We
also describe an optional post-processing step
to smooth out the remaining errors, and outline
a methodology using multiple instances of the
solver model at once to work with a varying
amount of targets.

3.2 Data

We train the models using a dataset of human
poses, obtained by processing multiple avail-
able motion-capture datasets from the literature:
Emilya [14], CMU [15], and the clips from Ed-
inburgh university [16]. Each animation clip is
retargeted to a standard skeleton following the
scheme proposed by [17]. The global transla-
tion is removed, and each joint’s position is cal-
culated relative to the root joint, which is the
projection of the pelvis on the floor. The uni-
fied skeleton is composed of 21 joints; using the
joints’ positions in space, a pose is described by
$3 \times 21 = 63$ float values concatenated in a single
vector. The dataset is then formed by the indi-
vidual poses in each clip. Before feeding them
to the network we also normalize each pose by
subtracting the mean and dividing by the stan-
dard deviation of each feature. With a few jittery
clips manually removed, the final dataset used in
the following experiments is composed of about
1.5 million poses.

3.3 Models description

3.3.1 Autoencoder

Auto-encoders are made up of two neural net-
works tasked to learn efficient encodings of
complex data. The encoder maps real data
points to a learned, usually more compact, la-
tent space; and the decoder maps them back to
the original data space. We build such an auto-
encoder of poses in order to build a common op-
erating space for the following solvers. Generat-
ing points in the latent space allows us to ensure
that the output is always a plausible pose, as the
Figure 2: High level overview of the generation setup. The target joint’s positions (yellow) are matched as closely as possible, while the other joints (green) should be as close as possible to the starting pose (blue).

defcoder is trained to turn any and all latent point into them.

The encoder network is composed of two fully connected layers with 200 neurons and ReLU activations, followed by an output layer with no activation. The output layer’s size is based on the number of dimensions \(d \) in which the latent representations are encoded. We empirically find that \(d = 64 \) yields a good balance of representation accuracy and inference speed.

The decoder is the exact reversed replica and uses the same set of weights.

The autoencoder’s weights are optimized by minimizing the mean squared error (MSE) between the input pose \(x \) and its reconstructed equivalent \(\hat{x} \) (Eq. 1). In the following sections we refer to the encoder as \(E \), the decoder as \(D \) and a latent encoding as \(z \), i.e. \(z = E(x) \) and \(\hat{x} = D(z) \).

\[
L_{ae} = MSE(x, \hat{x}) = \frac{1}{d} \sum_{i=1}^{d} (x_i - \hat{x}_i)^2 \quad (1)
\]

The autoencoder is trained for 20 epoch with batches of 256 poses, using the Adam optimizer with a learning rate of 0.0001.

3.3.2 Pose solver

An instance of the solver model \(S_t \) is specialized to solve the IK problem for \(n \) specific targets \(t \) and is trained to generate a new pose from an input pose and the desired targets locations. As it operates on the latent space built by the autoencoder, it more precisely accepts and outputs a latent pose vector, i.e. with \(p_t \) the concatenated target positions, \(\hat{z} = S_t(z, p_t) \).

The network is composed of three fully connected layers with 126 neurons and ReLu activations, and an output layer with \(d \) neurons.

During training, we randomly sample an input pose \(x \) from the dataset and feed it to the network. We also sample a second pose \(x' \) from the same source clip to use as target. We found that this association helped the network learning by not relying on random (and possibly unreachable) target positions.

The network’s weights are optimized to minimize the loss function in Eq.2 designed to represent its high level objective: reaching the targets with the associated joints while retaining a realistic pose. We guide the network toward this objective by using a modified mean squared error function, separating the poses \((x \) in this example) in two sets of joints: \(x_{\text{target}} \) the joints associated to the targets \(t \), and \(x_{\text{rest}} \) the others.

We introduce a constant \(k \) to give more relative importance to the target term of the function, so that the non-targets joints of \(x' \) are only used to nudge the final result toward a plausible pose. In our experiments \(k \) is set to 0.01.

\[
L_s = MSE(\hat{x}_{\text{target}}, x'_{\text{target}}) + k \cdot MSE(\hat{x}_{\text{rest}}, x'_{\text{rest}}) \quad (2)
\]

An instance of the solver model is trained for
5 epochs with the Adam optimizer using a learning rate of 0.0001 and a batch size of 256.

3.4 Post processing

It is a common observation with neural networks working with joints position that the generated positions can be jittery, and the resulting poses can suffer from slight variations in bone lengths. Our model is no exception, and while the variation is not visually detectable most of the time, computing the total bone length difference between the input skeleton and the generated pose shows that it is present. These variations are naturally undesirable and can result in visual discomfort on the spectator’s end. In order to alleviate the problem we apply an optional post-processing step to the resulting poses to ensure constant bone lengths. We use the backward step from FABRIK as it is very lightweight computation-wise. Our experiments show that following this process lends better results at a small cost in computing time (see table 1).

3.5 Solving other targets configurations

Even though our solvers are designed to generate a pose considering one to two targets at once, it is possible to use multiple instances side by side and to switch to the correct one with regard to the selected targets. In cases where the user desires to use an arbitrary number of targets (to suggest a position for a fixed joint for example) we can combine the multiple instances by running them in sequence, i.e.
\[
\hat{z} = (S_{t3} \circ S_{t2} \circ S_{t1})(z) \text{ for } t1, t2, t3 \text{ various targets and } S_{ti} \text{ the solvers trained to reach them.}
\]

4 Results

In order to evaluate the results of our method we integrate our solver in an example posing software and compare its outcome with a comparable, non-neural method: FABRIK [5]. We pick FABRIK for the traits that make it a popular IK solver: its simplicity and fast convergence times. We implement a full-body human skeleton solver as described in [20] but stay as close as possible to our method setup process by not manually implementing any joint orient constraints.

4.1 Visual results

Figure 3: Starting from a pose and targets for two joints, an IK solver like FABRIK (middle) generates less realistic poses than our neural solver (bottom).

Fig. 3 showcases an example of how our method can be used to edit a pose by moving the targets around. in this case a single solver with the targets set to both skeleton’s hands is used.

Our solver yields poses satisfying the constraints without breaking the implicit skeleton rules: the distance between limbs is constant, self-occlusion is avoided and the poses appear natural. The side-by-side comparisons with FABRIK’s results highlight the limits of working on kinematics chains with no prior on the human skeleton.

Example (1) illustrates how the targets are used as guides rather than fixed, unbreakable rules. While FABRIK extends the full body, our solver generates a new pose where the torso is slightly twisted towards the right-hand target while the legs are spread to mimic main-
taining balance. Even though our method is aimed toward beginner animators, experienced ones could also find it useful. It could for example be used as a fast prototyping tool to flesh out the pose, while switching to more accurate and manipulation-heavy tools to focus on the details later on.

Examples of real-time usage of our method can also be found in the accompanying video.

4.2 Combining solvers

Figure 4 demonstrates an example with the multi-solver setup described in 3.5. In this example three solvers are used at once: for the two hands, the two ankles and the head. Compared to the FABRIK result, our method yields a plausible pose: the skeleton is bent down to meet the head target, but the general orientation of the pose is kept intact. The limbs also retain some sort of curvature rather than fully extending in an unnatural way. Here again some of the targets are not strictly reached, as the pose generated by earlier solvers in the chain are modified by the others further down, but the guidance provided by the targets is respected. This setup also incurs slightly slower runtimes (see Table 1) but is still faster than FABRIK.

![Figure 4: Sample results solving multiple targets with a sequence of neural solvers. Targets are shown in red.](image)

4.3 Run times

At run-time the complexity of the solver is fixed and regardless of the targets’ positions, a single pass through the networks, which can be seen as just a few matrix multiplications, is enough to produce a result pose. This property coupled with the relatively small size of the networks allow for a fast solving process, as highlighted in the table below.

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory footprint (kB)</th>
<th>Runtime (ms)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRIK (2)</td>
<td>-</td>
<td>6.56</td>
</tr>
<tr>
<td>Ours (2)</td>
<td>442</td>
<td>1.47 (3.03*)</td>
</tr>
<tr>
<td>FABRIK (5)</td>
<td>-</td>
<td>6.74</td>
</tr>
<tr>
<td>Ours (5)</td>
<td>826</td>
<td>3.36 (4.58*)</td>
</tr>
</tbody>
</table>

*With post-processing
**Average over 1000 random iterations

Table 1: Comparative numeric results of the neural and FABRIK solvers with two and five end-effectors (using the combined solver method). All experiments are run on a single CPU thread.

Compared to other data-driven pose methods, the computing-heavy part of our process is done once at training time. Even so, the training itself is kept short thanks to the modest size of the networks: around an hour for the auto-encoder and 15 minutes for the solvers, on a single GPU.

4.4 Memory footprint

An advantage of neural networks is the low memory footprint they hold. While other data-driven pose design methods require the pose database (or a compressed version of it) to be kept in memory, neural networks only require their trained weights. These can be quite heavy as well in the case of large models, but as ours are quite small, so are their weights. As a comparison point, [6] discloses a 30MB memory footprint while our full-body solver only takes up 826kB.

4.5 Comparison with other pose edition approaches

Huang et al. [7] proposed a general comparison chart for full-body IK methods, ranking common approaches by speed and subjective quality. Adding our solution to the chart (Fig. 5) highlights the useful spot it fills by striking a good balance between speed and accuracy. To the best of our knowledge, this work presents the first method leveraging neural networks for pose edition. It stands apart from previous learning-based approaches as the first one to combine real-time edition speed with fully learned skeleton constraints. In comparison, NAT-IK [7] uses...
soft learned constraints but still requires explicit,
manual ones to be set. [6] does not, but the poses
are not generated in real time.

Figure 5: General comparison of various full-
body IK methods in terms of speed and quality.
Style IK [6], NAT-IK [7], JDLS [21], CCD [4]
FABRIK [5]

5 Conclusion and perspectives

We propose a method leveraging neural net-
works to provide an interactive and efficient tool
to pose a character’s skeleton. Learning from
a large dataset of ground truth poses allows us
to avoid manually specifying the complex con-
straints of the human skeleton, and only gener-
ings plausible poses. Our approach also shifts
a large part of the algorithmic burden of tradi-
tional methods to the training phase, allowing it
to run competitively fast once set up. Compared
to previous data-driven pose edition methods,
our method takes up a small amount of memory,
freeing up resources for other processes. We
provide examples of integration of our method
in a prototype posing software, as well as a way
to switch to multiple targets configurations. Fu-
ture work on the subject will focus on extend-
ing the method to more use cases: using the
method for other, non standardized skeletons
(with a different morphology or non-humanoid)
and adding joint rotations to the solver’s input
and output.

References

[1] A. Aristidou, J. Lasenby, Y. Chrysanthou,
and A. Shamir. Inverse Kinematics Tech-

Springer Handbook of Robotics. Springer
Publishing Company, Incorporated, 2nd

Bodenheimer, and Charles Rose. Effi-
cient generation of motion transitions us-
using spacetime constraints. In SIGGRAPH
96. Association for Computing Machinery,
1996.

bined optimization method for solving the
inverse kinematics problems of mecha-
nical manipulators. IEEE Transactions on
Robotics and Automation, 7(4):489–499,

FABRIK: A fast, iterative solver for the
Inverse Kinematics problem. Graphical

[6] Xiaomao Wu, Maxime Tournier, and
Lionel Reveret. Natural Character
Posing from a Large Motion Database.
IEEE Computer Graphics and Applications,

[7] Jing Huang, Qi Wang, Marco Fratarcan-
geli, Ke Yan, and Catherine Pelachaud.
Multi-variate gaussian-based inverse kinema-
tics. In Computer Graphics Forum, vol-
ume 36, pages 418–428. Wiley Online Li-
brary, 2017.

[8] Martin Guay, Marie-Paule Cani, and Rémi
Ronfard. The line of action: an intuitive
interface for expressive character posing.
ACM Transactions on Graphics, 32(6):1–
8, November 2013.

[9] Maxime Garcia, Rémi Ronfard, and Marie-Paule Cani. Spatial Motion Doo-
dles: Sketching Animation in VR Using
Hand Gestures and Laban Motion Analy-
sis. In MIG 2019 - ACM SIGGRAPH
Conference on Motion, Interaction and
Games, 2019.

