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The Obukhov length, although often adopted as a characteristic scale of atmospheric boundary layers, has been introduced purely based on a dimensional argument without a deductive derivation from a governing equation system. Here, its derivation is pursued by the nondimensionalization method in the same manner as for the Rossby deformation radius and the Ekman-layer depth. Physical implications of the Obukhov length is inferred by nondimensionalizing the turbulent kinetic energy (TKE) equation for the horizontally-homogeneous boundary layer.

A nondimensionalization scale for a full set of equations for the boundary-layer eddies formally reduces to the Obukhov length by multiplying a re-scaling factor to the former. This re-scaling factor increases with increasing stable stratifications of the boundary layer, in which flows tend to be more horizontal and gentler, thus the Obukhov length increasingly loses its relevance. A heuristic, but deductive derivation of the Monin-Obukhov similarity theory is also outlined based on the obtained nondimensionalization results.

methodology is alternatively called scaling in atmospheric boundary-layer studies, as reviewed by e.g., [START_REF] Holtslag | Scaling the atmospheric boundary layer[END_REF], [START_REF] Foken | 50 years of the Monin-Obukhov similarity theory[END_REF].

Some key variables controlling a given regime of turbulence are first identified, then various characteristic scales of the system (e.g., length, velocity, temperature) are determined from these key controlling variables by a dimensional consistency. For example, the Obukhov length [START_REF] Obukhov | Turbulence in an atmosphere with a non-uniform temperature[END_REF]) is defined, by dimensional analysis, from the frictional velocity and the buoyancy flux. Resulting theories from these analyses are called "similarity theories", because they remain similar regardless of specific cases by re-scaling the variables in concern by characteristic scales.

In performing a dimensional analysis correctly, a certain ingenuity is required for choosing proper controlling variables of a given system. No systematic methodology exists for choosing them, but the choice is solely based on physical intuitions. A wrong choice of controlling variables can lead to totally meaningless results (cf., [START_REF] Batchelor | Heat convection and buoyancy effects in fluids[END_REF]. With the absence of an analytical solution to turbulent flows as well as difficulties in observations and numerical modelling, usefulness of those proposed scales is often hard to judge. As a result, the Obukhov length is hardly a unique choice. There are various efforts to introduce alternative scales, as further discussed in Sects. 2.4 and 6.1, but the theory based on gradient-based scales [START_REF] Sorbjan | Local structure of stably stratified boundary layer[END_REF][START_REF] Sorbjan | Gradient-based scales and similarity laws in the stable boundary layer[END_REF][START_REF] Sorbjan | Similarity scaling system for stably stratified turbulent flows[END_REF] is probably the most notable.

However, the dimensional analysis is not a sole possibility of defining characteristic scales of a system. In atmospheric large-scale dynamics, these scales are typically derived by nondimensionalizations. No doubt, this procedure is more straightforward and formal: characteristic scales are introduced for all the variables of a system for nondimensionalizing them. These scales cannot be arbitrary, because we expect that terms in an equation balance each other, thus their orders of magnitudes must match each other. These conditions, in turn, constrain these characteristic scales in a natural manner. Advantage of the nondimensionalization analysis is that these scales are defined not only by dimensional consistencies, but also by requirements of balance by order of magnitude between the terms in a system. The Rossby radius of deformation is a classical example of a characteristic scale identified by a nondimensionalization. This scale characterizes the quasi-geostrophic system (Sect. 3.12, Pedlosky 1987). The depth of the Ekman layer is another such example (Sect. 4.3, Pedlosky 1987). Yano and Tsujimua (1987), [START_REF] Yano | Scale analysis for large-scale tropical atmospheric dynamics[END_REF] systematically apply this methodology for the scale analysis.

In a certain sense, nondimensionalization is a brute approach without relying on any physical intuitions, even observation or modeling. The procedure is totally formal and abstract. However, it can lead us to identify physically meaningful scales, because it is applied to equations that govern a given system physically: see e.g., discussions concerning Eqs. (5a, b) in Sect. 2.3 below.

Note a subtle difference of the concept of the scale in nondimensionalization from that in similarity theories: in similarity theories, precise values are used to scale the variables in universal functions that define a solution of a system.

On the other hand, under the nondimensionalization analysis, the scales are typically defined by orders of magnitudes, as just stated. This difference must clearly be kept in mind in the following analyses: see further discussions in Sects. 5. However, in principle, the characteristic scales adopted in boundarylayer similarity theories should be linked to the nondimensionalization scales identified by nondimensionalization analysis, if the former have physical basis to be adopted. The most basic motivation of the present study is to investigate whether this is the case.

As a first step of such a systematic investigation, the present study focuses on the Obukhov length. This scale is a core of the celebrated Monin-Obukhov similarity theory [START_REF] Monin | Basic laws of turbulent mixing in the surface layer of the atmosphere[END_REF]. In spite of its importance in describing boundary-layer turbulence, the basis of this Obukhov length is often questioned. In particular, previous studies suggest that this similarity theory breaks down in a strongly-stratified limit (cf., [START_REF] King | Some measurements of turbulence over an Antarctic ice shelf[END_REF][START_REF] Howell | Surface-layer fluxes in stable conditions[END_REF][START_REF] Mahrt | Stratified atmospheric boundary layers[END_REF]. Various efforts for generalization of the Monin-Obukhov theory already exist (e.g., [START_REF] Zilitinkevich | An extended similarity-theory for the stably stratified atmospheric surface layer[END_REF][START_REF] Zilitinkevich | Third-order transport due to internal waves and nonlocal turbulence in the stably stratified surface layer[END_REF][START_REF] Zilitinkevich | Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer[END_REF]. However, as far as the authors are aware of, all these efforts are under frameworks of the dimensional analysis. The present paper is going to suggest a procedure beyond those efforts by analysing governing equations of turbulence more directly.

The nondimensionalization procedure itself is hardly new in boundarylayer meteorology. For example, [START_REF] Mahrt | Momentum budget of gravity flows[END_REF] adopts it for analyzing gravitywave currents in the boundary layer. A full nondimensionalization performed by Nieuwstadt (1984) is closer to the spirit of the present study by focusing on the stably-stratified boundary layer. However, unlike the present study, applicability of his nondimensionalization result is rather limited by adopting a model already including a closure, thus a final nondimensionalization result also depends on this closure. In the present study, we consider boundary-layer governing equation systems without closure for this reason.

The present analysis is close to the spirit of [START_REF] George | A similarity theory for the turbulent plane wall jet without external stream[END_REF] in seeking to identify characteristic scales of a given system by directly examining a balance condition in a governing equation, although their study does not go through a path of nondimensionalization. This link further suggests possibilities of applying various methodologies of multiscale asymptotic expansions (cf., Yano and Tsujimua 1987) to the atmospheric boundary-layer problems, though attempts are left for future studies.

The paper proceeds as follows. The basics of nondimensionalization method are introduced in Sect. 2. First (Sect. 2.1), by taking a linear stability problem of a vertical-shear flow with stratification as a simple pedagogical example, it is demonstrated in explicit manner how characteristic scales can be identified by a nondimensionalization analysis. The basic premises of the method are then discussed (Sect. 2.3), because they become crucial in its application to the atmospheric boundary layer in subsequent sections. The adopted example is a standard stability problem in fluid mechanics (cf., [START_REF] Miles | On the stability of heterogeneous shear flows[END_REF][START_REF] Howard | Notes on a paper by John W. Miles[END_REF]. This example also serves for a purpose of introducing the Richardson number, which plays a key role in the Monin-Obukhov theory (cf., Lobocki 2013), as a nondimensional parameter of the problem. In standard analyses, the Richardson number is introduced in retrospect only after solving the stability problem in dimensional form, with an exception of Sect. 8.1 of [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF], which outlines a nondimensionalization analysis of this problem.

The main analyses are presented in Sects. 3-4. The turbulent-kinetic energy (TKE) equation is considered in Sect. 3 as a preliminary analysis. However, the TKE equation for the boundary-layer turbulence is hardly self-contained, thus its generalization is much desirable. For this reason, the linear analysis of Sect.2 is generalized into a fully nonlinear case in Sect. 4. The analysis identifies a vertical scale for the nondimensionalization with an explicit dependence of its definition on the Richardson number. The identified nondimensionalization scale can directly be linked to the Obukhov length with a re-scaling factor, which is defined in terms of the nondimensional eddy amplitude and the aspect ratio of dominant turbulent eddies. Furthermore, the similarity theory is derived in Sect. 5 in a heuristic manner from a derived nondimensionalized system in Sect. 4. The paper is concluded by final remarks in Sect. 6.

Throughout the paper, Boussinesq approximation is adopted for the analysis for simplicity. Though an extension of the analysis under anelastic approximation is straightforward, only with little advantage by making the analysis more involved. For the same reason, a two-dimensional system is considered in Sect. 2 with x and z taken as horizontal and vertical coordinates, respectively. Also keep in mind that throughout the paper, the vertical nondimensionalization scale is always that of the dominant eddy of a system. Thus, a certain caution is required to link it to the Obukhov length, because the latter is adopted to be in many studies a vertical characteristic scale for vertical profiles of vertical heat and momentum fluxes. [START_REF] Obukhov | Turbulence in an atmosphere with a non-uniform temperature[END_REF] originally introduced this scale to measure the height of the surface boundary layer ("sub-layer of dynamic turbulence").

The bar, ¯, and the prime, ′, signs are used throughout for designating the mean and the deviation from the former. The former is assumed to depend only on height, z. The latter corresponds to the turbulence fluctuation when a fully nonlinear problem is considered, as in Sects. 3-4. On the other hand, under a linear stability analysis in Sect. 2, the primed quantities designate the perturbation variables. Due to the linearization, the perturbation variables may grow to infinity under an unstable situation, whereas the turbulent fluctuations are bounded by full nonlinearity. Nevertheless, the formal definition of the prime sign itself does not change over these sections.

A Linear Perturbation Problem: Basic Premises of Nondimensionalization

Analysis

The purpose of this section is to introduce the basics of the nondimensionalization method, that is systematically exploited in the following sections. As a simple concrete example for a demonstration, we consider a linear perturbation equation for a standard shear instability. Viscosity is neglected by following the standard formulation (cf., [START_REF] Miles | On the stability of heterogeneous shear flows[END_REF][START_REF] Howard | Notes on a paper by John W. Miles[END_REF]. Thus, the governing equations of the problem are:

∂u ′ ∂t + w ′ dū dz + ū ∂u ′ ∂x = - ∂φ ′ ∂x , ( 1a 
)
∂w ′ ∂t + ū ∂w ′ ∂x = - ∂φ ′ ∂z + b ′ , ( 1b 
)
∂b ′ ∂t + ū ∂b ′ ∂x + w ′ d b dz = 0, ( 1c 
)
∂u ′ ∂x + ∂w ′ ∂z = 0. ( 1d 
)
Here, u and w are the horizontal and the vertical components of the velocity, φ a perturbation pressure divided by a reference density, b ′ the perturbation buoyancy, which may be evaluated from the perturbation potential temperature, θ ′ , as b ′ = gθ ′ /θ 0 , where g is the acceleration of the gravity, θ 0 is a reference value of the potential temperature. The goal of a perturbation problem in this section is to identify the unstable eddy modes.

Throughout the paper, nondimensionalizations are performed on the variables by designating the nondimensional variables by the dagger, †. The nondimensionalization scales for given variables are designated by superscript * .

Note that the nondimensionalization scales are always defined to be positive definite, for example, regardless of whether the atmosphere is stably stratified or not, unlike the standard convention of the boundary-layer meteorology.

This definition is consistent with the basic nature of the nondimensionalization that only the balances by the order of magnitude are in concern, thus the signs of the terms are not issues.

Consequently,

u ′ = u * u † , w ′ = u * w † , φ ′ = φ * φ † , b ′ = b * b † , ∂ ∂t = 1 t * ∂ ∂t † , ∂ ∂x = 1 z * ∂ ∂x † , ∂ ∂z = 1 z * ∂ ∂z † , and also ū = ū * ū † , dū dz = dū dz * dū † dz † , d b dz = d b dz * d b † dz † .
Here, the velocity and the spatial scales are not distinguished in horizontal and vertical directions for simplicity, thus x * = z * and w * = u * . Also note that the background-state gradients, dū/dz and d b/dz, are nondimensionalized directly by using the scales for these gradients, rather than by setting ū/z * and b/z * , respectively, for the purpose of deriving a standard definition of the Richardson number in the following. Furthermore, to simplify the notions, the prime sign, ′, has been omitted from the nondimensionalization scales for the perturbations.

By substituting these expressions into Eqs. (1a, b, c, d), we obtain

u * t * ∂u † ∂t † + u * dū dz * w † dū dz † + ū * u * z * ū † ∂u † ∂x † = - φ * z * ∂φ † ∂x † , (2a) 
u * t * ∂w † ∂t † + ū * u * z * ū † ∂w † ∂x † = - φ * z * ∂φ † ∂z † + b * b † , (2b) b * t * ∂b † ∂t † + b * ū * z * ū † ∂b † ∂x † + u * d b dz * w † d b dz † = 0, ( 2c 
)
u * z * ∂u † ∂x † + u * z * ∂w † ∂z † = 0. ( 2d 
)
The basic procedure of defining the scales, u * , φ * , etc. under the nondimensionalization is to set the prefactors in front of all the terms in the equations to be unity as much as possible. The continuity (Eq. 2d) already satisfies this condition, because two prefactors are identical. A final nondimensional equation is obtained simply by dividing both sides by the common prefactor, u * /z * , thus a final prefactor in front of all the terms becomes unity. In the other equations, the same goal is achieved by setting those prefactors to be equal each other as much as possible. These conditions define the characteristic scales of the system. For example, by setting the prefactors in front of the first and the third terms (temporal and advection tendencies) in Eq. (2a) equal, we obtain

u * t * = ū * u * z * ,
which leads to a definition of the time scale, t * .

By proceeding in this manner, we identify the nondimensionalization scales as:

t * = z * ū * , φ * = ū * u * , b * = ū * u * z * . (3a, b, c)
The resulting nondimensionalized set of equations is

∂u † ∂t † + z * ū * dū dz * dū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † , (4a) 
∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † , ( 4b 
)
∂b † ∂t † + ū † ∂b † ∂x † + z * ū * 2 d b dz * d b † dz † w † = 0, ( 4c 
)
∂u † ∂x † + ∂w † ∂z † = 0. ( 4d 
)
As intended, there is no constant prefactor in front of almost all the terms in the equations, except for the two in Eqs. ( 4a) and (4c). Here, by choosing a length scale, z * , in an appropriate manner, we can remove a constant prefactor from one of these two terms, but not from both of them.

As a result, in turn, there are only two options for defining the length scale, z * , consistently under the nondimensionalization analysis: set either of those two undefined prefactors to be unity. This is a fundamental difference from the dimensional analysis: with the latter, we can find variety of different ways of defining a length scale solely based on a dimensional consistency by taking various available dimensional parameters. However, under the nondimensionalization analysis, we do not have such a liberty: the given equation set dictates us in a more specific manner, what the options are, and we have to follow them.

Thus, these two options for setting the length scale, z * , are: (i) by setting a prefactor in front of the second term of Eq. ( 4a) to be unity, or (ii) by setting a prefactor in front of the second term in Eq. ( 4c) to be unity. The option (i) amounts to set the spatial scale (shear scale) to be that of the background wind shear, and we obtain

z * = z * u ≡ ū * /(dū/dz) * . ( 5a 
)
The option (ii) leads to

z * = z * b ≡ ū * /(d b/dz) * 1/2 . ( 5b 
)
The latter may be called the buoyancy-gradient scale. Recall that all the nondimensionalization scales are defined to be positive definite, thus the definition of the buoyancy scale above is applicable to both the stable and the unstable situations.

Consequently, the set of equations also reduces with the option (i) to:

∂u † ∂t † + d ū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † , (6a) 
∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † , ( 6b 
)
∂b † ∂t † + ū † ∂b † ∂x † + Ri d b † dz † w † = 0, ( 6c 
)
∂u † ∂x † + ∂w † ∂z † = 0, (6d) 
and with the option (ii) to:

∂u † ∂t † + Ri -1/2 dū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † , (7a) ∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † , ( 7b 
)
∂b † ∂t † + ū † ∂b † ∂x † + d b † dz † w † = 0, ( 7c 
)
∂u † ∂x † + ∂w † ∂z † = 0. (7d)
Here, Ri is the Richardson number defined by a ratio of the two characteristic scales:

Ri = z * u z * b 2 = (d b/dz) * (dū/dz) * 2 . ( 8 
)
Note again that the Richardson number is positive definite due to our definitions of the nondimensional scales to be positive definite.

We find that when the shear is more dominant than the buoyancy gradient (stratification), i.e., Ri < 1, the nondimensionalization based on the shear scale, z * u , (Eq. 5a) is relevant, and when the stratification is more dominant than the shear, i.e., Ri > 1, the nondimensionalization based on the buoyancygradient scale, z * b , (Eq. 5b) becomes relevant.

2.2 Asymptotic Limit of Ri → 0

The system under asymptotic limit1 of Ri → 0, i.e., when the Richardson number is very small, warrants further discussions, because in this limit, the leading-order of the buoyancy equation ( 6c) reduces to a homogeneous solution:

∂b † ∂t † + ū † ∂b † ∂x † = 0.
The evolution of the buoyancy is simply described by advection by the background flow, ū † . The time-evolving buoyancy, in turn, acts as forcing in Eq. (6b) to generate a perturbation flow as a consequence.

However, this leading-order solution of the buoyancy never becomes unstable, being purely advective. Thus, if we decide to focus only on the unstable modes, the leading-order buoyancy can be neglected, and we must re-scale it into:

b † = Ri -1 b † (9)
so that the buoyancy equation is also re-scaled into:

∂ b † ∂t † + ū † ∂ b † ∂x † + d b † dz † w † = 0.
After the re-scaling, the third term with the background stratification, d b † /dz † , contributes to a weak generation of the perturbation buoyancy. In turn, however, the generated weak buoyancy no longer feeds back to the momentum equation (7b) to the leading order.

Discussions

We have demonstrated in Sect. 2.1 how characteristic scales (not only the length scale) of a system can be determined by nondimensionalization naturally. A question that we are going to address in the next two sections is whether the Obukhov length can be derived in a similar manner for turbulent boundary-layer flows. In addressing this question, we will also proceed with the identical basic strategy as in the present section: to constrain a given partial differential equation solely based on the nondimensionalization analysis.

No observational measurement will be taken into account.

From this demonstration, the following points may be noted:

1) For maintaining the generality, it is imperative to retain all the terms in the equation system as much as possible, by keeping prefactors unity. In the example here, only a single term remains with a prefactor nonunity (Ri or

Ri -1/2 depending on the size of Ri). There is no arbitrariness in the nondimensionalization: the result is unique.

2) The nondimensional set of equations obtained can solve the given shearinstability problem in general manner, without any approximations, once a profile of the background flow, ū, is fixed, regardless of the actual scales (e.g., in a tank, over a planet) as well as magnitude of a given flow, but only by specifying a value of a single nondimensional number, Ri. An asymptotic limit of Ri → 0 or Ri → ∞ may be taken to consider a limiting background state.

In that case, one of the terms in the system can be dropped, but still a full set of solutions under these limiting states can be obtained.

3) However, if we drop any extra terms from this system, a resulting stability analysis loses its generality, by limiting a possibility of solutions by further simplifications. That is why it is crucial to keep all the terms to be of the same order of magnitude under nondimensionalization. Exactly the same principle will be applied to boundary-layer problems in Sects. 3 and 4 for achieving the same goal.

4) Not all the terms may contribute equally, in practice, with some specific solutions arising from this equation system. For example, as discussed in Sect. 2.2, under the asymptotic limit of Ri → 0, the buoyancy can be rescaled by Eq. ( 9). More generally, when steady solutions are sought, terms with time derivatives drop out. One can also consider a perturbation mode only slowly varying with time (e.g., a weakly-unstable mode). We can focus on those situations by re-scaling the time by ∂/∂t † = ǫ∂/∂τ † with a small nondimensional parameter, ǫ, then τ † is a resulting nondimensional slow time.

However, importantly, these cases are only subcategories of the general case retained by Eqs. (4a, b, c, d).

Having said those, definition of the time scale, t * , by advection (Eq. 3a) may appear to be rather restrictive. However, this appearance is rather superfluous: by substituting the two possible spatial scales, given by Eqs. (5a, b), we obtain t * = (dū/dz) * -1 and t * = (d b/dz) * -1/2 , corresponding to the shear-and the buoyancy-driven situations, respectively.

Keep in mind that in applying the same methodology to the atmospheric boundary layer in Sects.3 and 4, the same level of generality as in the present section is also maintained. Due to this generality, no particular boundary-layer regime is specified in most part of the analyses, simply because the analyses are performed in a general manner. Identification of the regimes only follow from there based on nondimensional parameters characterizing a given system.

Implications to the boundary-layer problems

The result obtained in this section already has implications in the boundarylayer problems, because the identified characteristic scales, z u * and z b * , (Eqs. 5a, b) are expected to characterize the typical size of eddies of given regimes, and thus, also characterize the resulting mixing lengths, l * . In this respect, it may be worthwhile to note that, for example, [START_REF] Grisogono | Generalizing 'z-less' mixing length for stable boundary layers[END_REF] proposes to use two different mixing lengths,

l * = u * (dū/dz) * , (10a) 
l * = u * (d b/dz) * 1/2 , (10b) 
depending on the Richardson number, Ri. A similar scale (buoyancy scale),

l * = w * (d b/dz) * 1/2 , ( 10c 
)
is introduced by [START_REF] Stull | Inversion rise model based on penetrative convection[END_REF], [START_REF] Zeman | Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer[END_REF], [START_REF] Brost | A model study of the stably stratified planetary boundary layer[END_REF]. [START_REF] Hunt | Some observational structure in stable layers[END_REF], in turn, suggest by field data analysis that the buoyancy scale (Eq. 10c) characterizes both the vertical heat transport and the temperature-variance production in the stably-stratified boundary layer.

These definitions reduces to z * u and z * b , respectively, with small and large

Richardson numbers by re-setting as u * = ū * and w * = ū * . This condition is expected to be satisfied when a system is fully turbulent.

3 Boundary-Layer System: Turbulent Kinetic Energy Equation

Obukhov Length

Now, we turn to the nondimensionalization of boundary-layer systems. The goal is to derive the Obukhov length as a natural consequence of nondimensionalization in a similar manner as in Sect. 2, and more specifically as discussed in Sect. 2.3.

The Obukhov length is defined by a ratio of fractional powers of the scales for the vertical momentum stress and the vertical buoyancy flux, u ′ w ′ * and

w ′ b ′ * : L = u ′ w ′ * 3/2 w ′ b ′ * . ( 11 
)
The definition of the Obukhov length is often alternatively presented as

L = u 3 * τ (w ′ b ′ ) *
by introducing a friction velocity, u * τ , defined by

u 2 * τ = (u ′ w ′ ) * .
Note that here the Obukhov length ( 11) is introduced as one of the nondimensionalization scales, thus it differs from the standard definition in two major respects: i) scales of fluxes are used rather than flux values themselves.

ii) these scales only represent orders of magnitudes rather than the actual measured values at the surface. Also keep in mind that the Obukhov length defined by Eq. ( 11) is positive definite with the flux scales chosen positive definite.

Turbulent kinetic energy equation

Can we derive the Obukhov length by following a principle of the nondimensionalization? That is a question considered in the following two sections. As seen in Eq. ( 11), the Obukhov length is defined from the vertical buoyancy flux, w ′ b ′ , and the vertical momentum stress, u ′ w ′ . Thus, for the purpose of deriving this scale as directly as possible, we would need to take an equation system that contains these two variables for nondimensionalization. We consider the turbulent kinetic energy (TKE) equation for this reason in this section.

By following a standard formulation of the atmospheric boundary-layer turbulence, only the vertical-flux terms are retained assuming horizontal homogeneity. This is solely for simplifying the analysis focusing on the goal of deriving the Obukhov length. Horizontal heterogeneity is expected to be important for some stably-stratified atmospheric boundary-layer flows, but this extension is left for a future study. Note that as in Sect. 2, the following analyses are performed in general manner without discriminating the sign of the stratification. However, as just suggested, our focus in applications will be in stably stratified cases.

The TKE equation (e.g., Deardorff 1983) is given by:

∂ ∂t v ′2 2 = w ′ b ′ -u ′ w ′ dū dz - ∂ ∂z w ′ ( v ′2 2 + φ ′ ) -D. (12) 
Here, the overbar designates a horizontal average, v is a velocity vector, and D the dissipation rate. We refer to [START_REF] Wyngaard | The budget of turbulent kinetic energy and temperature variance in the atmospheric surface layer[END_REF] for the basics of the boundary-layer TKE budget.

Here, in the present paper, we retain the temporal tendency in the equations for the generality of the analyses. Although the original Monin-Obukhov similarity theory assumes quasi-stationary, the question here is an extent that this theory may also be applicable to a transient system.

Nondimensionalization

In boundary-layer similarity theories, flux values are directly used as dimensional variables, corresponding to the nondimensionalization scales in the terminology here. By following this approach, fluxes are now nondimensionalized by their own nondimensionalization scales, thus:

w ′ b ′ = (w ′ b ′ ) * w ′ b ′ † , u ′ w ′ = (u ′ w ′ ) * u ′ w ′ † , w ′ v ′2 = (w ′ v ′2 ) * w ′ v ′2 † , w ′ φ ′ = (w ′ φ ′ ) * w ′ φ ′ † , w ′2 = w * 2 w ′2 † , b ′2 = b * 2 b ′2 † .
As in Sect. 2.1, the background-state gradients are also nondimensionalized directly by using the scales for these gradients. Also keep in mind that the nondimensionalization scales are assumed to be positive definite.

By nondimensionalizing Eq. ( 12) in this manner, we obtain

u * 2 t * ∂ ∂t † v †2 2 = (w ′ b ′ ) * w ′ b ′ † -(u ′ w ′ ) * dū dz * u ′ w ′ † dū dz † - (w ′ v ′2 ) * z * ∂ ∂z † w ′ ( v ′2 2 + φ ′ ) † -D * D † (13) with (w ′ φ ′ ) * = (w ′ v ′2 ) * .
The goal of the nondimensionalization analysis is to set the constant prefactors in front of the terms equal as much as possible, by following the principles outlined in Sect. 2.3. However, keep in mind that setting two prefactors equal does not mean at all that these two terms are well balanced with any boundary-layer regimes: this balance is only by an order of magnitude, and it does not say anything directly about the TKE budget. In the following two subsections, we examine possible balances, in the sense just stated, in the equation with the goal of identifying the Obukhov Length in mind.

3.4 The Balance:

w ′ b ′ ∼ (u ′ w ′ )dū/dz:
The first balance to be considered by order of magnitude is between two terms that involve the vertical buoyancy flux, w ′ b ′ (buoyancy production), and the vertical momentum stress, u ′ w ′ (shear production), respectively. This leads to a constraint:

(w ′ b ′ ) * = (u ′ w ′ ) * dū dz * . ( 14 
)
It can lead to the Obukhov length in the following manner: introduce a vertical scale, z * , by setting

dū dz * = ū * z * ; ( 15 
)
substituting of Eq. ( 15) into Eq. ( 14) leads to:

z * = ū * (u ′ w ′ ) * (w ′ b ′ ) * .
This length scale reduces to the Obukhov length by further assuming:

ū * u ′ w ′ * ≃ u ′ w ′ * 3/2 . ( 16 
)
3.5 The Balance:

w ′ b ′ ∼ ∂(w ′ v ′2 )/∂z:
Alternative possibility to be considered is the order-of-magnitude balance between the buoyancy production (first) and the turbulent transport (third):

w ′ b ′ * = (w ′ u ′2 ) * z * ,
which leads to a length scale:

z * = w ′ u ′2 * (w ′ b ′ ) * .
If one can further set

w ′ u ′2 * ≃ w ′ u ′ * 3/2 , ( 17 
)
it reduces to the Obukhov length.

Discussions

This section have attempted to derive the Obukhov length directly by nondimensionalizing the TKE equation. The Obukhov length has been derived by considering two possible balances by order of magnitude in this equation, however, only with additional assumptions (Eqs. 16, 17). Making any further progress is difficult due to the fact that the TKE equation is not self-contained.

Although adding more equations for turbulence statistics may help, they never close the system. Based on these considerations, in Sect. 4, we generalize a set of equations considered in Sect. 2 into a fully nonlinear three-dimensional version so that the TKE equation can be nondimensionalized in a self-consistent manner. However, as a major drawback of this alternative approach, the length scale is not defined by ratio of fractional powers of flux scales directly any more.

4 Full Eddy Equations

Formulation

As decided at the end of Sect. 3, we now turn to a fully-nonlinear set of equations, including diffusivity:

∂u ′ ∂t + w ′ dū dz + ū • ∇ H u ′ + ∇ H • u ′ u ′ + ∂ ∂z [u ′ w ′ -u ′ w ′ ] = -∇ H φ ′ + ν∇ 2 u ′ , (18a) ∂w ′ ∂t + ū • ∇ H w ′ + ∇ H • u ′ w ′ + ∂ ∂z [w ′2 -w ′2 ] = - ∂φ ′ ∂z + b ′ + ν∇ 2 w ′ , ( 18b 
)
∂b ′ ∂t + ū • ∇ H b ′ + w ′ d b dz + ∇ H • u ′ b ′ + ∂ ∂z [w ′ b ′ -w ′ b ′ ] = κ∇ 2 b ′ , (18c) 
∇ H • u ′ + ∂w ′ ∂z = 0. (18d)
Here, u and w are the horizontal and the vertical components of the velocity, ν and κ are coefficients for diffusions of momentum and heat.

Nondimensionalization Scales

The above system can be nondimensionalized by setting the variables as:

u ′ = u * u † , w ′ = w * w † , φ ′ = φ * φ † , b ′ = b * b † , ∂ ∂t = 1 t * ∂ ∂t † , ∇ H = 1 x * ∇ † H , ∂ ∂z = 1 z * ∂ ∂z † ,
and also

ū = ū * ū † , dū dz = dū dz * dū † dz † , d b dz = d b dz * d b † dz † .
By substituting these expressions into Eqs. (18a, b, c, d), we obtain

u * t * ∂u † ∂t † + ū * u * x * ū † • ∇ † H u † + w * dū dz * w † dū † dz † + u * 2 x * ∇ † H u ′2 + u * w * z * ∂ ∂z [u † w † -u † w † ] = - φ * x * ∇ † H φ † + νu * 1 x * 2 ∇ †2 H + 1 z * 2 ∂ 2 ∂z †2 u † , (19a) 
w * t * ∂w † ∂t † + ū * w * x * ū † • ∇ † H w † + u * w * x * ∇ † H • u † w † + w * 2 z * ∂ ∂z [w ′2 -w ′2 ] = - φ * z * ∂φ † ∂z † + b * b † + νw * 1 x * 2 ∇ †2 H + 1 z * 2 ∂ 2 ∂z †2 w † , (19b) b * t * ∂b † ∂t † + ū * b * x * ū † • ∇ † H b † + w * d b dz * w † d b dz † + u * b * x * ∇ † H • u † b † + w * b * z * ∂ ∂z † [w † b † -w † b † ] = κb * 1 x * 2 ∇ †2 H + 1 z * 2 ∂ 2 ∂z †2 b † , (19c) u * x * ∇ † H • u † + w * z * ∂w † ∂z † = 0. (19d)
First, we note from the continuity equation (19d) that

u * x * = w * z * .
To take into account this condition, we introduce the aspect ratio, α, defined by

α = w * u * = z * x * . (20a) 
Second, we introduce an amplitude, ǫ, for the eddies defined by

ǫ = u * ū * . ( 20b 
)
These two unspecified parameters, α and ǫ, become necessary for closing the nondimensionalized system in the following.

By setting the factors for the first two terms in Eqs. (19a, b, c) equal, i.e., the temporal and advection tendencies, we define the time scale as:

t * = x * ū * = ( 1 α ) z * ū * , (20c) 
i.e., the advective time scale. Furthermore, by equating the factors for the second terms in the left-hand and right-hand sides, i.e., the advection tendency and the pressure-gradient force, respectively, in Eq. (19a), the pressure scale is defined by:

φ * = ǫū * 2 , ( 20d 
)
that means that the magnitude of the pressure force is constrained by the advection term. By equating the factors for the first two terms in right-hand side of Eq. (19b), i.e., the pressure-gradient and buoyancy forces,

b * = ǫ ū * 2 z * . (20e)
Thus, the magnitude of buoyancy is constrained by the vertical pressure gradient, as expected from the hydrostatic balance.

The resulting nondimensionalized set of equations is:

∂u † ∂t † + ū † • ∇ † H u † + z * ū * dū dz * w † dū † dz † + ǫ[∇ † H u †2 + ∂(u † w † -u † w † ) ∂z † ] = -∇ † H φ † + 1 Re ∂ 2 ∂z †2 + α 2 ∇ †2 H u † , ( 21a 
)
∂w † ∂t † + ū † • ∇ † H w † + ǫ[∇ † H • u † w † + ∂(w †2 -w †2 ) ∂z † ] = 1 α 2 [- ∂φ † ∂z † + b † ] + 1 Re ∂ 2 ∂z †2 + α 2 ∇ †2 H w † , (21b) ∂b † ∂t † + ū † • ∇ † H b † + z * ū * 2 d b dz * w † d b † dz † + ǫ[∇ † H • u † b † + ∂(w † b † -w † b † ) ∂z † ] = 1 P rRe ∂ 2 ∂z †2 + α 2 ∇ †2 H b † , (21c) ∇ † H • u † + ∂w † ∂z † = 0, (21d) 
where

Re = α z * ū * ν , ( 22a 
) P r = ν κ , (22b) 
are the Reynolds number and the Prandtl number, respectively.

The nondimensionalized version of the TKE equation (Eq. 12) can be obtained directly from Eqs. (21a, b), and we find:

∂ ∂t † v †2 2 = w † b † - z * ū * dū dz * u † w † dū † dz † - ǫ ∂ ∂z † w † ( v †2 2 + φ † ) - 1 Re D † , ( 23a 
)
where

D † = ∂u ∂z 2 † + α 2 [ ∂u ∂x 2 + ∂u ∂y 2 + ∂w ∂z 2 † ] + α 4 (∇ H w) 2 † . ( 23b 
)

Reynolds Number and the Dissipation Term

Note that the viscosity coefficient of the air is ν ∼ 10 -5 m 2 /s. Also assuming z * ∼ 10 2 m and ū * ∼ 1 m/s, we obtain Re ∼ 10 7 as an estimate of the Reynolds number in atmospheric boundary layers. Further note that the Prandtl number of the air is P r ∼ 1. These values suggest that both kinetic and thermal diffusions are negligible in a typical situation of the atmospheric boundary layer: the orders of magnitudes of those terms, i.e., 10 -7 , are simply too small to treat properly even numerically. It is known that those molecular dissipation terms play a leading role over a very thin molecular-dissipative layer of only few centimetres above the surface (cf., Eq. 29 below). For this reason, in standard large-scale eddy simulations of atmospheric boundary layers, these molecular diffusions are effectively replaced by the so-called eddy diffusions.

However, this conclusion immediately contradicts with another known fact that the dissipation term, D, in the TKE equation balances well with the shear-production term (cf., Wyngaard andCoté 1971, Lenschow et al. 1988),

i.e.,

u ′ w ′ • dū dz ∼ D (24)
in typical stably-stratified boundary layers.

More generally, under a standard "cascade" picture of turbulence (cf., [START_REF] Pope | Turbulent Flows[END_REF], the energy cascade rate in the wavenumber space balances with the molecular energy dissipation rate. In the TKE equation, this picture is translated as the local turbulent-transport term balances with the local energy dissipation:

D ∼ ∇ • v ′2 v ′ .
Note that in this balance statement, no spatial average is applied: a different conclusion follows after a horizontal average. Thus, we expect the magnitude of the energy dissipation is constrained by

D * = u * 3 x * . ( 25 
)
This relation is often referred as the Taylor's dissipation law [START_REF] Taylor | Statistical theory of turbulence[END_REF].

However this phenomenological conclusion obviously contradicts with the order of magnitude of the dissipation term which is estimated to be Re -1 ∼ 10 -7

by nondimensionalization in Eq. ( 23a). The tendency that the dissipation term does not asymptotically vanish in the high Reynolds number limit is sometimes called anomalous dissipation (e.g., Salewski et al. 2012).

To resolve this ostensive contradiction, we have to first note that in deriving Eq. ( 23a), we have assumed that the nondimensionalization scale for the energy dissipation is:

D * = ǫ2 ν ū * 2 z * 2 = 1 ǫαRe u * 3 x * . ( 26 
)
An obvious conclusion is that for the nondimensionalization scale to be consistent with the phenomenologically-identified scale ( 25), the nondimensionalization scale must be re-scaled into:

D * = ǫαReD * . ( 27 
)
so that the new nondimensionalization scale, D * becomes identical to the phenomenologically-identified scale (25).

Thus, the question reduces to: why such a re-scaling is necessary, although it appears to be not necessary for the momentum equation? Realize that in performing the nondimensionalization, we have assumed that the system is dominated by a single pair of spatial scales, x * and z * . This reasoning works to a good extent when a simulation of a flow is of concern. However, when the focus is to close the energy budget with a horizontal average, different issues arise.

The problem may be better understood in the wavenumber space with k 0 ∼ x * -1 . The higher wavenumbers, k 1 (≫ k 0 ), do not contribute to the motions of the scale, k 0 , in any significant manner, because any possible nonlinear interactions arising with those higher wavenubmers, k 1 ± k 1 , k 1 ± k 0 , do not project to the scale, k 0 , of the interest significantly. On the other hand, when the horizontally-averaged energy budget is considered, the higher wavenumbers can project to the horizontal average by a nonlinear interaction, k 1 -k 1 , in association with the second-order spatial derivative in the dissipation term, which amplifies its contribution by the factor of (k

1 /k 0 ) 2 .
As a result, the nondimensionalization scale of the dissipation must be rescaled by taking into account of the contributions from those higher wavenumbers:

D † ∼ z * δ * 2 , (28) 
where δ * is a dissipation scale. It constitutes the re-scaling factor for D * , thus by comparing it with the factor in Eq. ( 27), we find that the dissipation scale, δ * is defined by:

δ * /x * = (ǫαRe) -1/2 ∼ 10 -7/2 , (29) 
which is much smaller than a characteristic scale, x * , of dominant boundarylayer flows. A similar conclusion also follows from a typical boundary-layer balance (24).

Two Regimes

As in Sect. 2, the two regimes are identified depending on the magnitude of the Richardson number, Ri. In respective cases, the equation set reduces to:

(i) Ri ≪ 1, z * = ū * dū dz * -1 : ∂u † ∂t † + ū † • ∇ † H u † + dū † dz † w † + ǫ[∇ † H u †2 + ∂(u † w † -u † w † ) ∂z † ] = -∇ † H φ † + 1 Re ∂ 2 ∂z †2 + α 2 ∇ †2 H u † , (30a) 
∂b † ∂t † + ū † • ∇ † H b † + Ri w † d b † dz † + ǫ[∇ † H • u † b † + ∂(w † b † -w † b † ) ∂z † ] = 1 P rRe ∂ 2 ∂z †2 + α 2 ∇ †2 H b † , (30b) 
∂ ∂t † v †2 2 = w † b † -u † w † dū † dz † - ǫ ∂ ∂z † w † ( v †2 2 + φ † ) - 1 Re D † . ( 30c 
) (ii) Ri ≫ 1, z * = ū * d b dz * -1 2 : ∂u † ∂t † + ū † • ∇ † H u † + Ri -1 2 w † dū † dz † + ǫ[∇ † H u †2 + ∂(u † w † -u † w † ) ∂z † ] = -∇ † H φ † + 1 Re ∂ 2 ∂z †2 + α 2 ∇ †2 H u † , (31a) ∂b † ∂t † + ū † • ∇ † H b † + w † d b † dz † + ǫ[∇ † H • u † b † + ∂(w † b † -w † b † ) ∂z † ] = 1 P rRe ∂ 2 ∂z †2 + α 2 ∇ †2 H b † , (31b) 
∂ ∂t v †2 2 = w † b † -Ri -1 2 u † w † dū † dz † - ǫ ∂ ∂z † w † ( v †2 2 + φ † ) - 1 Re D † . (31c) 
As already found in Sect. 2, the stratification term with d b † /dz † in the heat equation ( 30b) is scaled by Ri in the regime with weak stratifications, Ri ≪ 1, whereas the shear-driven terms with dū † /dz † in the momentum equation (31a)

and the TKE budget (31c) are scaled by Ri -1/2 in the regimes with strong stratifications, Ri ≫ 1. Thus, those respective terms become less significant in these respective limits. Note that the nonlinear terms solely due to the eddies are scaled by the nondimensional eddy amplitude, ǫ. As already discussed in Sect. 4.3, due to a very large value of Re, diffusion terms proportional to 1/Re both in momentum and heat equations practically drop off . On other hand, in the TKE budget, the energy dissipation term may be re-scaled by re-setting D † /Re = D † , as also suggested in Sect. 4.3.

Asymptotic Limit of Ri → 0

The system under the asymptotic limit of Ri → 0 warrants further discussions, as in the linear case (Sect. 2.2). Under this limit, the leading-order of the fully-nonlinear buoyancy equation (30b) reduces to:

∂b † ∂t † + ū † ∂b † ∂x † + ǫ[∇ † H • u † b † + ∂(w † b † -w † b † ) ∂z † ] = 0.
With the absence of background stratification, the buoyancy is simply advective. The time-evolving buoyancy, in turn, drives the flow in the vertical momentum equation (21b).

However, in this regime, the buoyancy is never generated to the leading order. Thus, when a system is initialized with no buoyancy, only a weak buoyancy is generated from the term with the background buoyancy stratification, d b/dz, which remains O(Ri). Thus, in this case, the buoyancy must be re-

scaled into: b † = Ri -1 b † (32)
so that the buoyancy equation is also re-scaled into:

∂ b † ∂t † + ū † ∂ b † ∂x † + w † d b † dz † + ǫ[∇ † H • u † b † + ∂(w † b † -w †b † ) ∂z † ] = 0
to the leading order.

After this re-scaling, in turn, the buoyancy no longer contributes to the vertical momentum equation (21b) to the leading order. In the other words, the flows are no longer driven by buoyancy. Here, we face a minor difficulty with this regime, because the pressure gradient ∂φ † /∂z, has no longer any term to balance with, to the leading order, when α ≪ 1. It simply suggests that the only types of flows consistent with weak buoyancy, b † = O(Ri), are isotropic with α = 1.

When the buoyancy is re-scaled by Eq. ( 32), the buoyancy flux, w † b † , in the TKE equation must also be re-scaled accordingly, and we obtain

∂ ∂t † v †2 2 = Ri w †b † -u † w † dū † dz † - ǫ ∂ ∂z † w † ( v †2 2 + φ † ) - 1 Re D † . (33) 
This result would be consistent with typically observed stably-stratified boundarylayer states (cf., Wyngaard andCoté 1971, Lenschow et al. 1988), if the conditions 1 ≫ Ri ≫ ǫ are satisfied in asymptotic sense.

We may further speculate that the buoyancy flux must be re-scaled with

Ri ≪ 1 even when buoyancy is found to be of the leading order, because the buoyancy would simply act like a random force in the momentum equation (21b) to which the vertical velocity responds off phase, without spatial coherency. Thus, vertical motions generated by a finite buoyancy perturbation does not correlate with the buoyancy. In this case, we need to more directly set:

w †b † = Ri -1 w † b † . ( 34 
)
Eq. ( 34) also leads to the re-scaled TKE equation (33).

Obukhov Length: Derivation

The buoyancy scale defined by Eq. (20e) can alternatively be interpreted as a definition of the vertical scale:

z * = ǫ ū * 2 b * . ( 35 
)
This scale can also be interpreted, effectively, to be equivalent to the Obukhov length (Eq. 11) as seen by noting that 

u ′ w ′ * = u * w * = αu * 2 = ǫ2 αū * 2 , w ′ b ′ * = w * b * = ǫαb * ū * ,
L = ǫ2 α 1/2 z * . (37) 
Furthermore, when Ri ≪ 1, there is a possibility that the buoyancy must be further re-scaled by Eq. ( 32), and as a result, the buoyancy-flux scale must be revised into:

w ′ b ′ * = Ri w * b * = ǫRi b * ū
* , also using the constraint, α = 1, under the re-scaling. As a result, the Obukhov length becomes.

L = ǫ2 Ri z * . (38) 

Obukhov Length: Discussions

The obtained main result is Eq. ( 37), which shows that the Obukhov length, L, underestimates the characteristic vertical scale, z * , of the system by the factors determined by the nondimensional eddy amplitude, ǫ, and the aspect ratio, α, of the flow: the discrepancy between the Obukhov length, L, and the characteristic scale, z * increases for the smaller ǫ and α. Thus, the observationally known increasing discrepancy in the limit of strong stable stratification can easily be explained by dramatic decrease of both factors, ǫ and α. On the other hand, with a strongly unstably-stratified regime (i.e., Ri ≫ 1 with a negative stratification), we rather expect to be α ∼ 1 and ǫ to increase with the increasing Ri. In contrast, an overall relevance of the Obukhov length, L, identified in observations with weak stratification may partially be explained by a re-scaling by the Richardson number, Ri, in Eq. ( 38), which compensates the tendency of making the Obukhov length smaller than the actual length scale by the factor, ǫ2 .

Keep in mind that z * measures a typical vertical scale of turbulent eddies in a given boundary layer, and not necessarily the actual vertical scale of the boundary layer itself. Although it may be intuitive enough to expect that the most dominant sale of the eddies in a boundary layer is comparable to the boundary-layer depth, this claim is still to be substantiated.

Heuristic Derivation of the Monin-Obukhov Similarity Theory

From the nondimensionalization considered so far, essence of the Monin-Obukhov similarity theory can be derived in a heuristic manner. If the nondimensionalization has been properly accomplished for a given equation system describing a boundary layer, in principle, steady solutions for all the dependent variables in the equation can be expressed as functions of z † = z/z * , where z * is the vertical scale defined by Eq. ( 35), after nondimensionalization. In other words, steady solutions for these nondimensional variables are given in terms of nondimensional functions, say, f † (z † ), g † (z † ), q † (z † ), by

w ′ b ′ † = f † (z † ), (39a) 
u ′ w ′ † = g † (z † ), ( 39b 
)
dū † dz † = q † (z † ), (39c) 
etc. We can consider these functions to be universal in the sense that we obtain the same solutions whenever the same boundary conditions are imposed on the system, regardless of its dimension, because the system reduces to identical form by re-scaling by z * . After dimensionalizations, the above equations read as: Defining the wind-shear close to the surface is even trickier, because over the surface layer, the wind speed typically increases logarithmically with height.

w ′ b ′ = w * b * f † ( z z * ), (40a) 
u ′ w ′ = u * w * g † ( z z * ), (40b) 
dū dz = dū dz * q † ( z z * ). (40c) 
For this reason, the Monin-Obukhov theory further replaces (dū/dz) 0 by ū * /z.

As a result, general solutions to the system are given by

w ′ b ′ = (w ′ b ′ ) 0 f † ( z z * ), (41a) 
u ′ w ′ = (u ′ w ′ ) 0 g † ( z z * ), (41b) 
dū dz = ū * z q † ( z z * ). ( 41c 
)
Based on the arguments so far, we may conclude that the nondimensional functions, f † (z/z * ), g † (z/z * ), q † (z/z * ), are universal only depending on the nondimensionalization scale, z * . In this manner, Monin-Obukhov similarity theory (cf., [START_REF] Sorbjan | Structure of the Atmospheric Boundary Layer[END_REF]) is essentially derived simply as steady solutions of the system under nondimensionalization.

Realize, however, that there are various caveats in this derivation. The first is replacement of the nondimensionalization scales in the right hand side of However, this merely reduces to a matter of re-scaling the nondimensional functions, f † , g † , q † with no further consequence.

A more serious problem is in replacing the nondimensionalization length scale, z * , defined by Eq. ( 35) with the Obukhov length. The nondimensionalization length scale, z * , is related to the Obukhov length by Eq. ( 37). Even after these re-scalings, these functions remain universal so long as these rescaling factors are constants for a given dynamical regime as defined, say, by the Richardson number, thus a rescaling of Eq. ( 37) into Eq. ( 38 Under weak stratifications, the shear-production term significantly contributes in defining the characteristic vertical scale (cf., Eq. 5a). This is consistent with a preliminary stand-alone analysis with the TKE equation in Sect. 3.4, which suggests that the Obukhov length may essentially be derived from a condition of an order-of-magnitude balance between buoyancy-and shear-productions.

On the other hand, with increasing stratifications with the Richardson number much larger than unity (i.e., Ri → ∞), the shear production is expected to become insignificant, being scaled by Ri -1/2 . In this limit, a more relevant vertical scale becomes the buoyancy-gradient scale, z * b , defined by Eq. ( 5b). This scale (5b) is somehow akin to the external static-stability scale

L N = (u ′ w ′ ) * 1/2 (d b/dz) * 1/2
introduced by [START_REF] Kitaigorodskii | A note on similarity theory for atmospheric boundary layers in the presence of background stable stratification[END_REF], and considered, especially, by [START_REF] Zilitinkevich | Resistance and heat-transfer for stable and neutral planetary boundary layers: Old theory advanced and reevaluated[END_REF]. Moreover, [START_REF] Zilitinkevich | An extended similarity-theory for the stably stratified atmospheric surface layer[END_REF] introduces a nondimensional parameter, L/L N , to define a transition from a regime dominated by the Obukhov length, L, to L N . [START_REF] Zilitinkevich | Resistance and heat-transfer for stable and neutral planetary boundary layers: Old theory advanced and reevaluated[END_REF] argue that the scale, L N , becomes relevant when the vertical eddy heat flux is small.

Note that the static-stability scale, L N , is further linked to the buoyancy scale (Eqs. 10b, c) introduced by [START_REF] Stull | Inversion rise model based on penetrative convection[END_REF], [START_REF] Zeman | Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer[END_REF], [START_REF] Brost | A model study of the stably stratified planetary boundary layer[END_REF]. [START_REF] Sorbjan | Local structure of stably stratified boundary layer[END_REF][START_REF] Sorbjan | Gradient-based scales and similarity laws in the stable boundary layer[END_REF][START_REF] Sorbjan | Similarity scaling system for stably stratified turbulent flows[END_REF], in turn, develops his gradient-based similarity theory based on the buoyancy scale.

By performing nondimensionalization of a full set of boundary-layer equations, we have also arrived at the order of magnitude estimate of each term in the TKE equation separately for two regimes with Ri ≪ 1 and Ri ≫ 1 in Eqs. (31c) and (32c), respectively. In the case with Ri ≪ 1, Eq. (31c) may further be re-scaled into Eq. ( 34), which appears to be consistent with the observed budget of weakly-stratified regimes (cf., Wyngaard andCoté 1971, Lenschow et al. 1988).

It would be important to keep in mind that those order-of-magnitude estimates of the TKE budget terms have been classified solely in terms of the absolute value of the Richardson number, without discriminating between the stable and unstable stratifications. Thus, rather unintuitively, if this analysis is self-consistent, the characteristics of the TKE budget, say, under strong stratification must somehow be akin to that of the convective boundary layer with the absence of the wind shear. Certainly, the signs of the budget terms would change with the change in sign of the stratification. However, importance of the buoyancy generation term compared to the shear generation must be valid in both regimes, although buoyancy generation may not be positive under strong stratifications. Also keep in mind that two additional nondimensional parameters, α and ǫ, are expected to depend on Ri in different manners depending on the sign of the stratification.

Finally, a heuristic derivation of the Monin-Obukhov similarity theory from a steady nondimensionalized solution has been outlined in Sect. 5.

Further Remarks

The present study should be considered only a first step for more extensive nondimensionalization analysis of the atmospheric boundary-layer system, especially for the stably-stratified regimes. Nevertheless, the present preliminary analysis already suggests a fruitfulness of such an investigation. The present study has suggested that different turbulent boundary-layer regimes can be identified by changing orders of magnitudes of the Richardson number. Such an analysis is expected to provide a more solid theoretical basis for interpreting the various different regimes phenomenologically identified for the stablystratified boundary layer (cf., Holtslag andNieuwstadt 1986, Mahrt 1999). [START_REF] Yano | The domain of validity of the KdV-type solitary Rossby waves in the shallow water β-plane model[END_REF] demonstrate how such a systematic analysis is possible by the nondimensionalization method for a different system.

Various further generalizations are equally feasible. The present analysis has been focused on quasi-steady states. However, some of the turbulence regimes under stable stratification may be fundamentally transient (cf., Caughey et al. 1979). A role of horizontal heterogeneity is another aspect to be investigated, especially in a context of stably-stratified boundary layers.

For example, under certain situations, the horizontal heat transport, a term that is often neglected in theoretical studies, becomes a key process in heat budget (e.g., Wittch 1991). A role of anisotropy of the flow with α ≪ 1 is still to be fully examined, as well.

Another aspect, that is not discussed herein, is a role of boundary conditions in solving the turbulence problems. When our focus is on a layer close enough to the surface (e.g., surface layer), a contribution from a top of the planetary layer may be neglected, as a basic premise of the Monin-Obukhov theory as well as in subsequent generalizations. However, when a problem concerns a whole depth of the boundary layer, this depth becomes another parameter to be considered. As pointed out by e.g., [START_REF] Holtslag | Scaling the atmospheric boundary layer[END_REF], the problem must be solved by explicitly taking into account the condition at the top of the boundary layer.

In all those respects, the major weakness of the present study is to take the Richardson number as a sole parameter for characterizing the boundary-layer regimes. Although the Richardson number can be interpreted as a measure of the stratification of the system, its correspondence to the Obukhov length, which is traditionally adopted for this measure, is not quite obvious. It is most likely that we still need to identify another controlling parameter of the system.

However, the identification of this parameter is left for our future study.

  in which Eqs. (20a, b) are invoked in deriving final expressions. Substituting these two expressions into (11), we obtain

Furthermore, let us

  suppose that the only necessary boundary conditions required for determining these variables are their surface values. In that case, we may set w * b * = (w ′ b ′ ) 0 , u * w * = (u ′ w ′ ) 0 , and (dū/dz) * = (dū/dz) 0 with the subscript, 0, designating the surface values. Here, the surface values, more precisely, refer to those at the top of the viscous-boundary layers for the fluxes.

  Eqs. (40a, b, c) by the surface values in Eqs. (41a, b, c). As already emphasized in the introduction, the nondimensionalization scales only refer to the typical physical values by orders of magnitudes. Conversely, the surface values may not necessarily represent typical values of the whole boundary-layer depth.

  ) is not an issue by adding an extra Richardson-number dependence. The most serious constraint of the above derivation of the Monin-Obukhov similarity theory from a nondimensionalized equation is an assumption that the system is solely controlled by surface values. It may not be the case with all types of boundary-layer turbulence.6 Summary and Further Remarks6.1 Summary and Link to Previous StudiesAn important aim behind the present study has been to demonstrate how characteristic scales of turbulent boundary-layer systems can be identified directly by nondimensionalization of partial differential-equations describing the system. For a demonstrative purpose, the analysis has begun with a linearstability problem (Sect. 2), then we have turned to the TKE equation for turbulent boundary layers (Sect. 3). Finally, a full set of nonlinear equations for the boundary layer has been examined (Sect. 4). All the analyses have been performed under the Boussinesq approximation, and also assuming a horizontal homogeneity for simplicity.With the general aim in mind, the present study has focused on identifying the Obukhov length. Nondimensionalization of the full nonlinear equation set in Sect. 4 shows that the characteristic vertical scale is related to the Obukhov length by Eq. (37), or alternatively by Eq. (38) in the limit of weak stratification (i.e., Ri → 0). Note that equivalence of these two scales can be established only by including a re-scaling factor, which increases with the increasing relative amplitude of the eddies with respect to the background flow, as well as the increasing aspect ratio of the flow. The value of these factors can be substantial, and as a result, the Obukhov length substantially underestimates the characteristic vertical scale of the boundary layer, especially with increasing stratifications.

Refer to e.g.,[START_REF] Olver | Asymptotics and Special Functions[END_REF],[START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF] on the concept of the asymptotic limit; see Sect. 5 of[START_REF] Yano | Scale separation[END_REF] for a pedagogical introduction. Not be confused with the analytical limit.
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Cover Letter: The final manuscript has been prepared by following the comments by the Reviewer #2. Our point-by-point response to the Reviewer is appended below. Furthermore by following your suggestion, a final pain-taking proof reading has been applied to the text to minimize the technical issues as well as language flaws. Please also note that the manuscript has been prepared by following the latest guideline.

Thank you for your very patient assistances during the long editorial process. Response to the Reviewer #2:

As final comments, the Reviewer raises five issues, to which we respond as follows.

Difference between the ND and the traditional scale analysis: The nondimensionalization is a more systematic manner for performing the so-called scale analysis. For this reason, Pedlosky's textbook systematically applies the nondimensionalization to every system introduced in the text. On the other hand, Holton's textbook on the Dynamic Meteorology performs the scale analysis in the beginning of every chapter, but without taking a step of nondimensionalization explicitly. To make this point clearer, the last sentence (L63-64) of the third paragraph in the introduction has been modified as follows: Yano and Tsujimua (1987), [START_REF] Yano | Scale analysis for large-scale tropical atmospheric dynamics[END_REF] systematically apply this methodology for the scale analysis.

Section 2: The Reviewer added final remarks on a need of section 2. However, the Reviewer also leaves the final fate of this section with us. In turn, we decide to maintain it, although with the Reviewer's remarks taken into account.

Lack of correspondence between the regimes identified by the study and those traditionally established boundary-layer meteorology: Due to the fact that the Richardson number is an only free parameter considered in the present study, correspondence between those Richardson-number dependent regimes and the various boundary-layer regimes discussed in the literature is not quite clear, as the Reviewer remarks. We believe that another controlling parameters must still be identified to make these correspondences clearer. However, this must be left for our future study, as remarked at the very end of the concluding section in revision (L733-739).

Comments on prefactors in Eqs. ( 30)-(31): By following the suggestion of the Reviewer, the following remarks have been added in revision after Eqs. ( 30) and ( 31):

As already found in Sect. 2, the stratification term with d b † /dz † in the heat equation ( 30b) is scaled by Ri in the regime with weak stratifications, Ri ≪ 1, whereas the sheardriven terms with dū † /dz † in the momentum equation (31a) and the TKE budget (31c) are scaled by Ri -1/2 in the regimes with strong stratifications, Ri ≫ 1. Thus, those respective terms become less significant in these respective limits. Note that the nonlinear terms solely due to the eddies are scaled by the nondimensional eddy amplitude, ǫ. As already discussed in Sect. 4.3, due to a very large value of Re, diffusion terms proportional to 1/Re both in momentum and heat equations practically drop off. On other hand, in the TKE budget, the energy dissipation term may be re-scaled by re-setting D † /Re = D † , as also suggested in Sect. 4.3.

Diffusion and Diffusivity:

We much appreciate the efforts of the Reviewer for checking the meaning of the two terms in the AMS Glossary. However, we would rather stick to more basic etymologies: English nouns often constitute of pairs. Diffusion-diffusivity is a one, action-activity, human-humanity are the others. In all those cases, the first refers to a thing itself, and the latter to its nature. We rather slipped our tongue to call it also a process in our previous response. It would be more fair to say that diffusion itself is a process rather than its nature. Apart from those details, in both occasions, we are referring to the diffusion terms rather than to the diffusivity coefficients, thus these usages stand as these are.

Spelling Errors: We much apprecite the present Reviewer for pointing us out quite few spelling errors. In finalizing the manuscript, we have performed rather pain-taking proof reading to make sure that no further spelling errors will be left.