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Task Driven Skill Learning in a Soft-Robotic Arm*

Paris Oikonomou1, Athanasios Dometios1, Mehdi Khamassi1,2 and Costas S. Tzafestas1

Abstract— In this paper we introduce a novel technique that
aims to dynamically control a two-module bio-inspired soft-
robotic arm in order to qualitatively reproduce a path defined
by sparse way-points. The main idea behind this work is based
on the assumption that a complex trajectory may be derived
as a combination of a discrete set of parameterizable simple
movements, as suggested by Movement Primitive (MP) theory.
Capitalising on recent advanced in this field, the proposed
controller uses a Probabilistic MP (ProMP) model which
initially creates an abstract mapping in the primitive-level
between the task and the actuation space, and subsequently
guides the movement’s composition by exploiting its unique
properties - conditioning and blending. At the same time,
a learning-based adaptive controller updates the composition
parameters by estimating the inverse kinematics of the robot,
while an auxiliary process through replanning ensures that
the trajectory complies with the new estimation. The learning
architecture is evaluated on both a simulation model, and a real
soft-robotic arm. The research findings show that the proposed
methodology constitutes a novel approach that successfully
manages to simplify the trajectory control task for robots of
complex dynamics when high-precision is not required.

Index Terms— Robot Learning, Probabilistic Movement
Primitives, Reinforcement learning, Soft Robotics

I. INTRODUCTION

Well organized health care systems are increasing the life
expectancy of modern societies, according to World Health
Organization’s research on health and aging [1]. Personal
care (showering or bathing) is included among the first
ADL, which incommode an elderly’s life [2]. As part of
the i-Support project (Fig. 1), the present work contributes
to robotics research effort for daily assistance through the
development of an innovative, modular robotic system that
supports frail older adults to safely and independently com-
plete various physically and cognitively demanding bathing
tasks, such as properly washing their back and their lower
limbs.

In this context, bathing tasks should be executed in a
human-friendly way in order to increase the comfort of an
elderly user. Thus, proper washing motions for each task
should be learned by demonstration of health care experts.
Expert demonstration in the task space might raise some
requirements for each task, in terms of execution time and
motion complexity. However, decomposition into simpler
primitive motions is necessary for a robotic device for
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(a) Soft-Robot in
Clinical Environment

(b) Soft-Robot in Lab

Fig. 1: The two module Soft-Robotic manipulator developed during
the i-Support project, (a) installed in a clinical environment and (b)
a replicated version in the lab.

technical reasons. The fusion of such primitive actions with
different parameters (e.g. duration, amplitude etc.) can re-
produce more delicate and human-friendly actions. Dynamic
Movement Primitives (DMPs) proposed in [3] are nonlinear
attractor systems which are mostly used for trajectory control
since they provide stability and scalability properties. A
more recent work described in [4] presents the concept of
Probabilistic Movement Primitives (ProMPs) which acts as
a probabilistic framework with enhanced properties, such
as conditioning or blending, that allows the exploitation of
the properties of trajectory distributions for representing and
learning primitives actions.

In addition, an interactive bathing application, which in-
volves direct human-robot physical contact, is way more
demanding in terms of safety than other assistive tasks. The
execution of such tasks by a rigid robotic manipulator is
considered risky, hence the research attention has shifted
to soft robots [5] with inherent or structural compliance,
which gives them the ability to actively interact with the
environment and undergo large deformations. Many contin-
uum manipulators have already been presented with tendon
[6] or pneumatic actuation [7] or a combination of those [8].
The more complex the mechanical and actuation structure
of the robot is, the more sophisticated kinematic analysis
and control scheme is required. Although, analytic kinematic



models based on constant curvature assumption have been
established [9], powerful control strategies for continuum
manipulators are still being developed [10].

Recent research work [11] specifically addressed the prob-
lems related to the use of continuum robots to perform
dynamic control through model-based approaches. A similar
approach is presented in [12], where model-based controllers
are developed based on suitable models using a combina-
tion of feedforward control and decoupled PD-controllers,
applied to a pneumatically actuated manipulator. A different
approach is proposed in [13], based on the design of open-
loop predictive controllers and machine learning dynamic
models directly from the actuation to the task space. Based
on a different set of techniques, the work presented in [14]
applies novel spatial dynamics to variable length multisec-
tion continuum arms assuming circular arc deformation of
continuum sections without torsion. A relevant approach is
presented in [15] where the authors use a feedforward neural
network component to compensate for dynamic uncertainties.

In the literature, the number of control approaches that are
applied on the same soft-robot, allowing for a fair perfor-
mance comparison, is limited and only two of them focuses
on dynamic control. In our previous work [16], a model-free
neurodynamic control scheme is proposed in combination
with Central Pattern Generators (CPGs) assigned with the
task of generating cyclic motion patterns of desired features
by the end-effector of the soft-robotic arm. Despite the com-
plexity of the achieved task, this implementation is strictly
limited to produce periodic movements in the task space.
In this work, we focus on a more robust implementation
that extends and broadens the capabilities of the approach
proposed in [16], enabling the soft-arm to follow a more
generic path.

Another control architecture evaluated on the same hard-
ware is proposed in [17], where a closed-loop predictive
controller was implemented with a model-based policy learn-
ing algorithm and trained using trajectory optimization and
supervised learning. However, such control schemes require
high computational resources, big amount of data, and a
lot of iterations in order to successfully reproduce a single
trajectory, since they focus on accuracy at every time step,
while convergence during training is time-consuming. As a
consequence, it is hard to generalize their performance to
unseen trajectories, thus failing to ensure robustness. Besides,
in most applications that use soft-robots, high accuracy in
the trajectory level is not a principal requirement, while a
qualitative reproduction with similar motion properties of
the demonstrated trajectory is preferred, which constitutes
the main focus of this work. Additionally, in [17], achieving
some key motion execution properties, such as the capability
to control the completion of the trajectory execution within
a desired duration, also known as temporal scalability, is not
evident.

In this paper, we present an architecture that aims to
dynamically control a two-module bio-inspired soft-robotic
arm. Our approach focuses on the implementation of a
learning-based control scheme inspired by motor control

theory, that has the ability to qualitatively reproduce a
path defined by sparse way-points. This simplification of
the trajectory control task by is proved to be useful for
robots of complex unmodeled dynamics. In particular, our
approach combines: (a) Movement Primitive (MP) theory
which provides a mathematical model capable of building
a mapping in the trajectory-level between task and actuation
spaces, while also producing complex movements as the
result of the combination of primitives that are formed by
simple demonstrations, and (b) a Reinforcement Learning
(RL) algorithm assigned with the task of approaching the
unknown inverse kinematics of the soft-robot in a multi-
task learning manner as it is required by the nature of the
task. In parallel, an extension of the ProMP’s properties
is designed that provides the ability to replan the route
of the trajectory during the course of the execution. The
efficiency of the complete methodology is evaluated in both
a simulation model and a real soft-robot. The set of initial
experimental results presented in this paper highlights the
ability of the proposed framework to dynamically control a
complex robotic system with unknown dynamics.

The following section introduces the reader to the problem
statement before proceeding to the description of the control
architecture in Section III. Experimental evaluation results
are presented in Section IV, while concluding remarks to-
gether with indicative future research directions are provided
in Section V.

II. PROBLEM STATEMENT

A soft-robot like the one examined in the present work
(Fig. 1), is not often assigned with the task of path following,
especially when high-precision is required; the mechanical
properties of its design is mostly exploited in tasks where
safety must be ensured, such as those involving human-
robot interaction or manipulation of fragile materials. The
task examined in this paper does not differ from this class
of applications, hence our focus lies on the qualitative repro-
duction of primitive actions defined in a subspace of a soft
robot’s workspace. The desired motion properties are derived
by analysis and decomposition of human expert’s demon-
strated actions. Human demonstration is usually conducted
in the task space and their mapping to the joint-space or to
the actuation-space of as soft robot is not straightforward,
due to the complex dynamics of the robotic system. In some
approaches, kineasthetic teaching [18] of the robot by a user
is employed, in order to overcome such mapping difficulties.
In the present application where kineasthetic teaching is
impossible due to the mechanical structure of the soft-robot,
generation from demonstrations should be redefined to cover
the required subspace.

The mapping between the task and joint space might
be provided by an inverse kinematic model, like in [19]
where a model is extracted based on the known geometry
of a rigid manipulator. However, in cases where the design
of such a mathematical model is difficult, because of the
complexity or the stochasticity introduced by the dynamics
of the robot, different methods are recommended. In recent



years, common approaches that cope with the difficulty to
map the task-space to the actuation-level, involves the design
of a learning-based controller that focuses on model learning
[20], [21]. The methods proposed in these papers, either
use supervised-learning techniques meaning that a model is
trained offline without being capable of adjusting online its
parameters and hence its behavior, or focus on extracting a
dynamic model for the robot, which constitutes a different
problem since the system usually is highly dependent on
previous states.

As already stated in [16], the non-linearity as well as the
stochasticity of a soft robot, introduced by its mechanical
structure, and soft-properties do not encourage the use of
a classical control scheme and the design of a fixed math-
ematical model that predicts its behavior, thus the design
of a learning-based controller is the only way forward. At
the same time, two of the main requirements that must be
satisfied by the chosen class of learning algorithms are the
generalizability and the online adaptability to any potential
change of the robot’s dynamics - which constitute a usual
phenomenon in bio-inspired systems. Under these conditions,
a Reinforcement Learning (RL) control scheme [22] seems to
be suitable for approximating the inverse static model under
an unsupervised framework.

III. CONTROL ARCHITECTURE

A. Preliminaries

We also present the experimental setup with the real robot
where some preliminary results were derived in order to
evaluate the performance of the proposed methodology.

1) Constant Curvature Approach for Simulation Model:
The present simulation model is based on a piece-wise con-
stant curvature (PCC) approximation that models the forward
kinematics of Festo’s ”Bionic Handling Assistant” [23]. The
motion of each physical module constituting the robot is
driven by three radially symmetric arranged independent
actuators, which change the configuration of the module after
modifying their length, resulting in extension, contraction, or
omnidirectional bending.

2) Experimental Setup: The performance of the proposed
learning controller was evaluated experimentally on a two-
module soft manipulator (Fig. 1), which is described in
[24], [25]. This robotic module has been adapted from the
soft-arm which was developed by the Biorobotics Institute
(Pisa, Italy) in the frame of the EU project I-SUPPORT.
Each module comprising the robot is made up of hybrid
actuation, including three radially symmetric tendons driven
by three motors, in combination with pneumatic chambers,
whose actuation is considered to be fixed in this work.
Therefore, the real robot actuation is based on six inputs
at the motor control level. Regarding position feedback, a
3D magnetic tracker (3D Guidance trakSTAR Class 1 Type
B by Ascension Technology Corp.) was used, whose 6-
DoF electromagnetic probe is attached at the end of the
manipulator, providing its position and orientation.

Fig. 2: Execution of a right to left demonstration motion generated
with coordinated activation and motion of all motors simultane-
ously. Various demonstrations are generated in order to cover the
desired subspace or the robots workspace.

B. Trajectory extraction from demonstrations

One of the main ideas behind the ProMP theory introduced
in [4] that is exploited in this work, is based on its capability
to form a single primitive from demonstrations that are
not identical but they accomplish similar tasks, due to its
property to model sequence of states as a trajectory distribu-
tion under a probabilistic framework. When experimenting
with soft-robots, this seems to be quite convenient since
the stochasticity introduced by their soft-properties does not
guarantee reproduction of the same result even when the
same actuation is applied. In addition, the ability to reach
novel targets by conditioning and blending multiple primi-
tives could cope with the requirement to pass through some
pre-determined way-points at specific timestamps during the
execution of the trajectory.

In some robotic applications, the design of a dynamic
control scheme based on classical optimal control theory is
not feasible due to the absence of a fixed mathematical model
that approximates robot’s dynamics - the same phenomenon
is observed in the present case. Movement Primitive (MP)
theory could provide a straightforward solution that focuses
on building a mapping between task and actuation spaces
in a trajectory-level, in which a demonstration in the first
corresponds to a sequence of actions in the motors, and vice-
versa. Exploiting the idea of ProMPs where a single primitive
consists of multiple similar demonstrations performing the
same task, a correspondence between primitives in both
spaces - task and actuation - is formed. Following this
strategy, a task-driven skill learning process is implemented
in the sense that the composition of the requested trajectory
is performed at a high-level using the properties provided
by ProMP theory - conditioning, combining and blending
primitives. Subsequently, the composition’s parameters as



extracted in the previous step are transferred unchanged
in the actuation space, where the corresponding primitives
are activated accordingly, resulting in the generation of a
trajectory by the robot’s End-Effector (EE) which is similar
to the desired one.

The training process of ProMP model and more specif-
ically the extraction of demonstrations is crucial for the
proposed methodology’s performance. At the beginning, a
subspace within the workspace is defined as a region of in-
terest for the requested trajectories, where the demonstrations
should lie in. Subsequently, each motor is assigned with
the task to start moving from a random point defined by
a mean and a standard deviation, towards another end-point
defined accordingly as shown in Fig. 2. It is evident that both
extreme points should lie within the subspace. Randomness
between demonstrations is enhanced by forcing the motors to
pass through some median random points, lying between the
two extremes, while smooth transition between consecutive
points is guaranteed with linear interpolation. Therefore, a
demonstration is derived as the coordinated activation and
motion of all motors simultaneously. The same process
is followed for the extraction of various demonstrations,
ensuring that all of them results in movements of similar
directions in the task-space. Before proceeding to training,
the resulting trajectories are grouped into classes, under a
similarity criterion. In the present case, it is assumed that
all demonstrations generated by a distribution around the
same extreme points in the actuation-space, belong to the
same primitive. During the last step, the estimation of each
class’ parameters takes place so that each primitive, defined
as trajectory distribution, represents the variations of all
corresponding demonstrations.

C. Learning-based controller for inverse static model

In the frame of this work, a variation of Continuous Actor-
Critic Learning Automaton (CACLA) proposed in [26], [27]
has been designed, due to its ability to handle continuous
variables in both state and action spaces. The goal of the
present application is to execute a trajectory whose only
requirement - apart from the evident that must be similar
to the paths obtained by demonstrations - is that the robot’s
EE passes through (or as close as possible to) the consecutive
way-points defined by the user in the task-space. Before
proceeding to the description of the CACLA’s variation, it
should be clarified that each way-point Pcond[n] constitutes a
target, for which the learning-based controller is assigned to
the task to find the corresponding actuation a(n), where n is
the id of the conditioning point in set Pcond. This fact implies
that, during the execution of the trajectory the target is
changed right after the EE passes through a way-point at the
corresponding timestamp, so the actuation of the succeeding
way-point is requested. In this way, the conditioning points
are assigned periodically as targets, assuming that the each
trajectory is executed more than once until the proximity to
the way-points satisfies a convergence criterion.

To address the constant change of controller’s target, a
modified version of CACLA is designed, named Continuous

Actor-Critic Learning Automaton for Multi-Task Learning
(CACLA-MTL) which differs from the original in the sense
that it stores (or keeps track of) the current target’s condition,
e.g. state and error, in order to recall it when the same target
is assigned to the controller. At the same time, the actuation
of the succeeding target is computed after updating the actor-
critic model for the current one. A main requirement that
must be satisfied is that the multiple parallel tasks must
concern the same plant - the soft-arm in the present work
- since all tasks/targets share the same actor-critic model(
θV , θAc

)
. The steps of the proposed CACLA-MTL written

in pseudo-code is presented in Alg. 1.

Algorithm 1: CACLA-MTL(n, n+, a(n), Pcond[n+])
Def __init__(n,N, Pcond[n]):

k = 0
θVk = RestoreCriticTheta()
θAck = RestoreActorTheta()
kn = 0, for all n = 1, .., N

g
(n)
kn

= 0, for all n = 1, .., N

a(n) = Ack(Pcond[n])
return a(n)

end
Def __call__(n, n+, a(n), , Pcond[n+]):

k = k + 1
kn = kn + 1
// For action a(n) ::

Observe & store current state for point n s(n)kn

Compute & store error g(n)kn
(Eq. 9)

Compute reward r(n)k (Eq. 10)
Compute TD-error δk (Eq. 6)
Update Critic θVk (Eq. 4)
if δk > 0 then

Update Actor θAck (Eq. 5)
end
// For target Pcond[n+] ::
Sample a(n+) (Eq. 7)
return a(n+)

end

Note that, CACLA-MTL presented in this paper refers
and is applied only to the conditioning points of the ProMP
model. Thus in the rest of the current paragraph, subscript
cond is omitted from all variables. Also, for reasons of
simplicity, the following applies:

Vk(s
(n)
kn

) = V (s
(n)
kn
, θVk )

Ack(s
(n)
kn

) = Ac(s
(n)
kn
, θAck )

(1)

where subscripts k denotes the time-step of the general
algorithm, while kn is the time-step at which the update of
the conditioning point n takes place.

Here, the state-space of the conditioning point n of the
ProMP model at time kn was chosen to be composed of
6 continuous features in the task-space level; 3 of them
represent the desired EE’s position of the conditioning point



n, while the remaining indicate the corresponding current
EE’s position:

s
(n)
kn

=
{

pdesired, pcurrent
}(n)
kn

(2)

where p = {px, py, pz} denote the EE’s position along the
x,y,z-axis, respectively. As already implied, in this applica-
tion the desired position in the task-space coincides to the
way-point Pcond[n].

At this point, it should be noted that the critic model is
dependent of all the variables of the state-space as presented
above, while the actor model uses only the first component -
meaning the pdesired, indicating the desired EE’s position -
since we expect the proposed learning algorithm to compute
directly the actuation that corresponds to the desired EE’s
position as a unitary movement, without depending on its
current position, and/or learning a sequence of actions to
reach the target.

Besides, the conditioning point n of the ProMP model in
the actuation level is composed of the following 6 continuous
variables, each one of which refers to an actuator of the
robot:

a(n) = {a11, a12, a13, a21, a22, a23}(n) (3)

where aij for i = {1, 2} and j = {1, 2, 3} represents the
actuation of motor j that belongs to module i of the robot.

To deal with the continuity of both the state and action
spaces, radial basis functions with equally distributed Gaus-
sian functions are used as linear function approximators (FA).
This means that a parameter vector θV is assigned to the
critic FA, while a similar θAc is used for the actor FA.
As in the original CACLA algorithm, here the parameters
of each FA are updated based on the following equations,
with the only difference being the introduction of superscript
(n), which indicates that a variable refers to the conditioning
point n, as shown below:

θVk = θVk−1 + αV δk∇θV Vk−1(s
(n)
kn−1) (4)

θAck = θAck−1+αAc

(
a(n) −Ack−1(s

(n)
kn−1)

)
∇θAcAck−1(s

(n)
kn−1)

(5)
with

δk = r
(n)
k + γVk−1(s

(n)
kn

)− Vk−1(s
(n)
kn−1) (6)

where s(n)kn
is the state of conditioning point n at time-step

kn, and Vk(s
(n)
kn

) represents its state value function. αV is
a learning rate, while γ is a discount factor. Regarding the
actor, αAc is a learning rate, while Ack denotes the action
that the actor’s FA outputs at time-step k. a(n) is the action
that is sampled from a Gaussian distribution with mean Ack,
and corresponds to conditioning point n. Using this kind of
exploration method, the policy is defined by:

πk

(
s
(n)
kn
, a(n)

)
=

1√
2πσ

exp

−
(
a(n) −Ack(s(n)kn

)
)2

2σ2


(7)

where σ denotes the standard deviation of the Gaussian
exploration through a logistic function:

σ(g) =
h

1 + e−c(g+b)
(8)

where h, b and c are positive constants determining its
maximum value, the bias on the horizontal axis, and its
width, respectively. σ is also dependent on the variable g,
which is the last observed error for conditioning point n in
the task-space, and is defined as the corresponding Euclidean
distance between the desired and the current EE’s position:

g
(n)
kn

= ‖p(n)kn,desired
− p(n)kn,current

‖ (9)

where p = {pi} for i = {x, y, z}. It is evident that when
the error is large, implying a considerable deviation from
the target, the Gaussian’s width is large, thus enhancing the
exploration, while in the opposite case a small error results
in an action that is close to the actor’s output with high
probability.

The reward function at time-step k has been chosen to be
a heuristic that represents how close to, or how far from the
target position of the conditioning point n, the EE has been
moved in relation to its previous state s(n)kn−1, and is given
as follows:

r
(n)
k = g

(n)
kn−1 − g

(n)
kn

(10)

It can be easily seen that the instant reward could be either
positive or negative, in case the EE at the conditioning
point n moved towards or away from the desired position,
respectively.

D. Re-planning in the ProMP-level

As stated earlier in this section, the proposed learning-
based controller CACLA-MTL is assigned with the task to
provide the ProMP model with an estimation of the actuation
that corresponds to the desired way-point in the task-space,
as the latter is defined by the user. The update of the inverse
statics’ estimation takes place during the execution of the
trajectory by the soft-robot, implying that a new estimation of
the succeeding actuation is available right after the sequence
of actuations passes through a conditioning point. On the
other hand, the execution of the trajectory is preceded by the
weight formation of the ProMP framework which ensures
that the sequence of actions taking place in the motor-
level passes through the estimated conditioning points. The
last argument implies that the trajectory extracted by the
ProMP model is invariant during the execution, under normal
circumstances.

Re-planning in the ProMP-level facilitates the exploitation
of the new estimation of the anchor points, as they extracted
by the updated CACLA-MTL model, performing necessary
changes online rather than after the end of the execution.
In the present work, claiming that the trajectory re-plans
its route, means that the power of the dominant instance
of blended primitives is gradually decreased over the course
of the execution, and is replaced by another instance that
involves the updated estimation of the succeeding actuation.



(a) Activation Functions bi(t)
in time (s)

(b) Replanning in time (s)

Fig. 3: (a) Stars (*) indicate way-points, and circles (o) the time-
interval where the bi(t) remains fixed. (b) The activation of Red-
Green-Blue trajectories is indicated by the corresponding bi(t)
in (a), while the Cyan is the resulted trajectory generated by
replanning.

Fig. [figure with example of transition] depicts an illustrative
example of transitions between instances of blended primi-
tives.

At this point it should be clarified that as implied previ-
ously, the CACLA-MTL controller updates the actuation’s
estimation model right after the sequence of actions passes
through a conditioning point in the actuation-level, indicating
that the controller is updated as many times as the number
of way-points. As a consequence, the number of activation
factors as well as the number of instances of blended
primitives that operate in parallel, coincide with the number
of conditioning points. In the rest of this section it is assumed
that N groups of primitives ui are introduced, which are of
identical structure, meaning that each one contains a copy
of all primitives ui,j , trained using the process described in
Section III-B.

The intuition behind the process of re-planning in the
ProMP-level is quite similar to the one that is followed
when applying the blending property in the ProMP theory
as described in [4], [19], that it could be seen as a blend-
ing of blended primitives. Indeed, a time-varying activation
function b(t) ensures stable and smooth transition between
the trajectories as it changes gradually from 0 to 1 and vice-
versa in order to activate or disable, respectively, a sequence
of actions. Concretely, it only differs in the aspect that the
first is computed as the product of the exponentiation of
every single primitive ui,j to the power of the corresponding
activation factor aj(t), while the latter is the sum of the
product between every instance of the blended primitives ui
and the corresponding activation factor bi(t), as indicated in
the following equation:

v(t) =

N∑
i=1

bi(t)

 M∏
j=1

ui,j(t)
aj(t)

 (11)

where the actuation at time t is computed. Another small but
not minor difference between the two procedures is that there
is a time-interval around the critical area of each conditioning
point where the activation factor b(t) remains fixed in order
to facilitate the evaluation of the controller’s performance.
The example in Fig. 3 depicts the evolution of activation
function b(t) as well as the replanned trajectory of v(t).

Algorithm 2: Methodology

Set Pcond and corresponding Tcond
N : number of conditioning points
M : number of primitives
n : ID of current conditioning point
n+ : ID of subsequent conditioning point
ui : group of primitives i
ui,j : primitive j of group i
Q = ClassifyToPrimitives(Pcond)
a(t) = ActivationFunA(Tcond)
b(t) = ActivationFunB(Tcond)
Set n = 1

a
(n)
cond = CACLA-MTL-init(n,N, Pcond[n])
un,Q[n] = UpdatePrim

(
a
(n)
cond

)
while Not Converged do

tstart = getCurrentT ime()
t = 0
while Not the End of Trajectory do

Compute & execute actuation v(t) (Eq. 11)
if t == Tcond[n] then

n+ = n (mod N) + 1

a
(n+)
cond =
CACLA-MTL(n, n+, v(t), Pcond[n+])
un+,Q[n+] = UpdatePrim

(
a
(n+)
cond

)
n = n+

end
wait()
t = getCurrentT ime()− tstart

end
end

E. Complete Methodology

The ProMP training process is followed by the execu-
tion of the proposed methodology, presented step-by-step in
Alg. 2, resulting in the generation of trajectories by the EE
that satisfy the requirements set previously. Few elements of
Alg. 2 are given below: At the beginning, the user should
define the set Pcond of conditioning points in the task-space
and the corresponding timestamps Tcond where the first takes
place. Afterwards, each element Pcond[n] is classified to the
primitive with id Qn whose parameters - weights’ mean
and standard deviation - differ the least, using Mahalanobis
distance as heuristic. Regarding the next steps, note that the
activation functions are formed depending only on Tcond,
while they remain invariant as long as Pcond and Tcond
are too. Subsequently, the algorithm runs constantly until
a convergence criterion is satisfied regarding the estima-
tion of conditioning points. The estimation update a

(n+)
cond

of conditioning point n+ is performed after the actuation
passes through the precedent point a(n)cond when its evaluation
takes place. Later when conditioning point a(n+)

cond is available,
reformation of un+,Q[n+]’s weights is performed in order to
re-plan the route of the actuation’s sequence and pass through



(a) Motion Execution in Simulation (b) Real Robot Demonstrations (c) Motion Execution in Real Robot

Fig. 4: Experimental results presented both for simulated and real robot. (a) The execution of three different trajectories defined by
their conditioning points in time are shown for simulation environment with magenta, black and cyan respectively. (b) The generated
demonstrations on the real robot are grouped in different ProMPs marked with RGB colors. These demonstrations cover the whole subspace
of interest in which the robot will operate. (c) The execution of three different trajectories, defined by their conditioning points in time,
are shown for the real robot with magenta, black and cyan respectively. The proposed approach is able to generalize in novel motions
with the subspace of interest.

the updated estimation.

IV. EXPERIMENTAL EVALUATION

In this work, more than one algorithms are designed and
proposed in order to fulfil the requirements that have been
initially set. Therefore, the evaluation should focus on their
capability to perform as an entity in a collaborative way
rather than on the efficiency of each algorithm individually. A
set of initial experimental results is presented demonstrating
the capabilities of the proposed approach and the novelty of
this work. The proposed dynamic control scheme is trained,
while its performance is evaluated on both the simulation
and the real robot, which are presented in Section III-A.
Before proceeding to the execution of the proposed method-
ology, demonstrations are extracted and grouped into classes
following the process described in Section III-B, capturing
not only the generated paths in the task-space illustrated in
Fig. 4b, but also the sequence of actions resulting in each
path.

As a consequence, a dataset Dfwd of EE’s points with
the corresponding actuation is formed that is exploited as
follows: a Radial Basis Function Neural Network (RBF-
NN) [28] is trained using the extracted information in order
to form a model that approximates the forward kinematics
of the robot. Such a model facilitates the learning process
since it gives the possibility to train the proposed controller
offline, providing a good initial estimate of the model before
the online execution. This technique is recommended when
the convergence is proved to be time-consuming due to the
absence of a fixed mathematical model that approximates
the robot’s behavior. Note that, the same process is followed
for the simulation even though the latter is executed in the
software level. The evaluation of the RBF-NN on Dfwd’s
observations (error in simulation: [3.7+−1.6]mm, error in
real softarm: [6.3+−3.4]mm) ensures that it approximates
adequately the forward kinematics.

The training of the CACLA-MTL is then performed offline
for both configurations - simulation and real robot - using
the RBF-NN model. At this point, it should be noted that
at the beginning this process takes place independently of
the ProMP, since the controller is randomly initialized and
potentially results in actuations that are out of the predefined
subspace of demonstrations. Therefore, even though all al-
gorithms should be evaluated as an entity, CACLA-MTL’s
performance is clearly independent of the ProMP. At every
epoch, N points are selected randomly in the task-space
considered as targets constituting the set Pcond of condi-
tioning points, and CACLA-MTL is executed continuously
until a criterion is satisfied; all conditioning points of Pcond
simultaneously result in error that is under a predetermined
threshold, or the maximum number of iterations is exceeded.
Considering the distance between the RBFs forming the
linear FA (30mm in critic, and 15mm in actor), the evaluation
of CACLA-MTL on Dfwd’s observations (error in simula-
tion: [17.3+−9.4]mm, error in real softarm: [22.2+−12.8]mm)
proves that the controller sufficiently models the inverse
kinematics.

The training of each MP as described in [19] using
the corresponding set of demonstrations is followed by the
assessment of the complete methodology. At this step, the
learned models are used by the robot in order to perform
some desired tasks, and are evaluated in terms of repeatabil-
ity and skill transfer. As proposed in Alg. 2 the user defines
a set of conditioning points Pcond in the task-space along
with the corresponding timestamps Tcond and the algorithm
is executed, resulting in the generation of the trajectory
only once. As implied in Alg. 1 during the first execution
the component of Gaussian exploration is removed for all
Pcond[n] and the pure estimation of the learned model is
used without performing online correction. Figures 4a and 4c
depict three trajectories in the task-space produced in simula-
tion and the real robot, along with the corresponding desired



TABLE I: Mean error values for 10 consecutive executions of
experimental trajectories described with their Dominant ProMP
(Fig. 4c) with real Soft-arm. The errors are measured in each
conditioning point (CP) in the respective time

Traj. Dominant CP1 CP2 CP3 CP4 CP5
ID ProMP

1 (Magenta) 11232 3.1 1.9 2.5 3.3 6.3

2 (Black) 32221 2.9 3.2 2.3 1.2 3.9

3 (Cyan) 31133 2.0 2.4 2.6 1.0 4.0

conditioning points. From Table I we see that the mean
error in each conditioning point for consecutive execution (10
times) of three different trajectories is small, demonstrating
the robustness of our algorithm. These results show that the
dynamic control scheme proposed in this paper is capable
of producing and generalizing in complex movements out of
simple demonstrations on a soft-robotic arm.

V. CONCLUSION AND DISCUSSION

In the frames of this work, apart from the application of the
existing ProMP theory on a soft-robotic arm, two new meth-
ods are proposed: (i) a variation of CACLA for multi-task
learning named CACLA-MTK and (ii) a technique for re-
planning in the ProMP-level. Both implementations are used
as auxiliary algorithms to the ProMP in order to facilitate
the trajectory generation in the task-space, providing online
correction and adaptation capabilities. The results show that
the proposed architecture satisfies the requirements that have
been set from the beginning regarding the ability of the
algorithm to qualitatively reproduce a trajectory defined by
sparse way-points. In future work, we plan to improve the
RL controller, accelerating the convergence in order to learn
faster when using the real robot. One of the main drawbacks
of the methodology is that the requested trajectories are
limited to be similar with the derived demonstrations, e.g.
in terms of trajectory direction/flow, which is planned to be
improved. Eventually, the action-set could also be extended
to include the pneumatic actuation, offering the ability to
physically interact with the environment, handling external
loads and applying forces.
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